Merge branch 'asoc-5.2' into asoc-linus
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-160"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160         {0x40700E11, "Smart Array 5300", &SA5A_access},
161         {0x40800E11, "Smart Array 5i", &SA5B_access},
162         {0x40820E11, "Smart Array 532", &SA5B_access},
163         {0x40830E11, "Smart Array 5312", &SA5B_access},
164         {0x409A0E11, "Smart Array 641", &SA5A_access},
165         {0x409B0E11, "Smart Array 642", &SA5A_access},
166         {0x409C0E11, "Smart Array 6400", &SA5A_access},
167         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168         {0x40910E11, "Smart Array 6i", &SA5A_access},
169         {0x3225103C, "Smart Array P600", &SA5A_access},
170         {0x3223103C, "Smart Array P800", &SA5A_access},
171         {0x3234103C, "Smart Array P400", &SA5A_access},
172         {0x3235103C, "Smart Array P400i", &SA5A_access},
173         {0x3211103C, "Smart Array E200i", &SA5A_access},
174         {0x3212103C, "Smart Array E200", &SA5A_access},
175         {0x3213103C, "Smart Array E200i", &SA5A_access},
176         {0x3214103C, "Smart Array E200i", &SA5A_access},
177         {0x3215103C, "Smart Array E200i", &SA5A_access},
178         {0x3237103C, "Smart Array E500", &SA5A_access},
179         {0x323D103C, "Smart Array P700m", &SA5A_access},
180         {0x3241103C, "Smart Array P212", &SA5_access},
181         {0x3243103C, "Smart Array P410", &SA5_access},
182         {0x3245103C, "Smart Array P410i", &SA5_access},
183         {0x3247103C, "Smart Array P411", &SA5_access},
184         {0x3249103C, "Smart Array P812", &SA5_access},
185         {0x324A103C, "Smart Array P712m", &SA5_access},
186         {0x324B103C, "Smart Array P711m", &SA5_access},
187         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188         {0x3350103C, "Smart Array P222", &SA5_access},
189         {0x3351103C, "Smart Array P420", &SA5_access},
190         {0x3352103C, "Smart Array P421", &SA5_access},
191         {0x3353103C, "Smart Array P822", &SA5_access},
192         {0x3354103C, "Smart Array P420i", &SA5_access},
193         {0x3355103C, "Smart Array P220i", &SA5_access},
194         {0x3356103C, "Smart Array P721m", &SA5_access},
195         {0x1920103C, "Smart Array P430i", &SA5_access},
196         {0x1921103C, "Smart Array P830i", &SA5_access},
197         {0x1922103C, "Smart Array P430", &SA5_access},
198         {0x1923103C, "Smart Array P431", &SA5_access},
199         {0x1924103C, "Smart Array P830", &SA5_access},
200         {0x1925103C, "Smart Array P831", &SA5_access},
201         {0x1926103C, "Smart Array P731m", &SA5_access},
202         {0x1928103C, "Smart Array P230i", &SA5_access},
203         {0x1929103C, "Smart Array P530", &SA5_access},
204         {0x21BD103C, "Smart Array P244br", &SA5_access},
205         {0x21BE103C, "Smart Array P741m", &SA5_access},
206         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207         {0x21C0103C, "Smart Array P440ar", &SA5_access},
208         {0x21C1103C, "Smart Array P840ar", &SA5_access},
209         {0x21C2103C, "Smart Array P440", &SA5_access},
210         {0x21C3103C, "Smart Array P441", &SA5_access},
211         {0x21C4103C, "Smart Array", &SA5_access},
212         {0x21C5103C, "Smart Array P841", &SA5_access},
213         {0x21C6103C, "Smart HBA H244br", &SA5_access},
214         {0x21C7103C, "Smart HBA H240", &SA5_access},
215         {0x21C8103C, "Smart HBA H241", &SA5_access},
216         {0x21C9103C, "Smart Array", &SA5_access},
217         {0x21CA103C, "Smart Array P246br", &SA5_access},
218         {0x21CB103C, "Smart Array P840", &SA5_access},
219         {0x21CC103C, "Smart Array", &SA5_access},
220         {0x21CD103C, "Smart Array", &SA5_access},
221         {0x21CE103C, "Smart HBA", &SA5_access},
222         {0x05809005, "SmartHBA-SA", &SA5_access},
223         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240                         struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244                 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
255                       void __user *arg);
256
257 #ifdef CONFIG_COMPAT
258 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
259         void __user *arg);
260 #endif
261
262 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
263 static struct CommandList *cmd_alloc(struct ctlr_info *h);
264 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
266                                             struct scsi_cmnd *scmd);
267 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
268         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
269         int cmd_type);
270 static void hpsa_free_cmd_pool(struct ctlr_info *h);
271 #define VPD_PAGE (1 << 8)
272 #define HPSA_SIMPLE_ERROR_BITS 0x03
273
274 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
275 static void hpsa_scan_start(struct Scsi_Host *);
276 static int hpsa_scan_finished(struct Scsi_Host *sh,
277         unsigned long elapsed_time);
278 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
279
280 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
281 static int hpsa_slave_alloc(struct scsi_device *sdev);
282 static int hpsa_slave_configure(struct scsi_device *sdev);
283 static void hpsa_slave_destroy(struct scsi_device *sdev);
284
285 static void hpsa_update_scsi_devices(struct ctlr_info *h);
286 static int check_for_unit_attention(struct ctlr_info *h,
287         struct CommandList *c);
288 static void check_ioctl_unit_attention(struct ctlr_info *h,
289         struct CommandList *c);
290 /* performant mode helper functions */
291 static void calc_bucket_map(int *bucket, int num_buckets,
292         int nsgs, int min_blocks, u32 *bucket_map);
293 static void hpsa_free_performant_mode(struct ctlr_info *h);
294 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
295 static inline u32 next_command(struct ctlr_info *h, u8 q);
296 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
297                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
298                                u64 *cfg_offset);
299 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
300                                     unsigned long *memory_bar);
301 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
302                                 bool *legacy_board);
303 static int wait_for_device_to_become_ready(struct ctlr_info *h,
304                                            unsigned char lunaddr[],
305                                            int reply_queue);
306 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
307                                      int wait_for_ready);
308 static inline void finish_cmd(struct CommandList *c);
309 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
310 #define BOARD_NOT_READY 0
311 #define BOARD_READY 1
312 static void hpsa_drain_accel_commands(struct ctlr_info *h);
313 static void hpsa_flush_cache(struct ctlr_info *h);
314 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
315         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
316         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
317 static void hpsa_command_resubmit_worker(struct work_struct *work);
318 static u32 lockup_detected(struct ctlr_info *h);
319 static int detect_controller_lockup(struct ctlr_info *h);
320 static void hpsa_disable_rld_caching(struct ctlr_info *h);
321 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
322         struct ReportExtendedLUNdata *buf, int bufsize);
323 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
324         unsigned char scsi3addr[], u8 page);
325 static int hpsa_luns_changed(struct ctlr_info *h);
326 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
327                                struct hpsa_scsi_dev_t *dev,
328                                unsigned char *scsi3addr);
329
330 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
331 {
332         unsigned long *priv = shost_priv(sdev->host);
333         return (struct ctlr_info *) *priv;
334 }
335
336 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
337 {
338         unsigned long *priv = shost_priv(sh);
339         return (struct ctlr_info *) *priv;
340 }
341
342 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
343 {
344         return c->scsi_cmd == SCSI_CMD_IDLE;
345 }
346
347 static inline bool hpsa_is_pending_event(struct CommandList *c)
348 {
349         return c->reset_pending;
350 }
351
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354                         u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356         struct scsi_sense_hdr sshdr;
357         bool rc;
358
359         *sense_key = -1;
360         *asc = -1;
361         *ascq = -1;
362
363         if (sense_data_len < 1)
364                 return;
365
366         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367         if (rc) {
368                 *sense_key = sshdr.sense_key;
369                 *asc = sshdr.asc;
370                 *ascq = sshdr.ascq;
371         }
372 }
373
374 static int check_for_unit_attention(struct ctlr_info *h,
375         struct CommandList *c)
376 {
377         u8 sense_key, asc, ascq;
378         int sense_len;
379
380         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381                 sense_len = sizeof(c->err_info->SenseInfo);
382         else
383                 sense_len = c->err_info->SenseLen;
384
385         decode_sense_data(c->err_info->SenseInfo, sense_len,
386                                 &sense_key, &asc, &ascq);
387         if (sense_key != UNIT_ATTENTION || asc == 0xff)
388                 return 0;
389
390         switch (asc) {
391         case STATE_CHANGED:
392                 dev_warn(&h->pdev->dev,
393                         "%s: a state change detected, command retried\n",
394                         h->devname);
395                 break;
396         case LUN_FAILED:
397                 dev_warn(&h->pdev->dev,
398                         "%s: LUN failure detected\n", h->devname);
399                 break;
400         case REPORT_LUNS_CHANGED:
401                 dev_warn(&h->pdev->dev,
402                         "%s: report LUN data changed\n", h->devname);
403         /*
404          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405          * target (array) devices.
406          */
407                 break;
408         case POWER_OR_RESET:
409                 dev_warn(&h->pdev->dev,
410                         "%s: a power on or device reset detected\n",
411                         h->devname);
412                 break;
413         case UNIT_ATTENTION_CLEARED:
414                 dev_warn(&h->pdev->dev,
415                         "%s: unit attention cleared by another initiator\n",
416                         h->devname);
417                 break;
418         default:
419                 dev_warn(&h->pdev->dev,
420                         "%s: unknown unit attention detected\n",
421                         h->devname);
422                 break;
423         }
424         return 1;
425 }
426
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432                 return 0;
433         dev_warn(&h->pdev->dev, HPSA "device busy");
434         return 1;
435 }
436
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439                 struct device_attribute *attr, char *buf)
440 {
441         int ld;
442         struct ctlr_info *h;
443         struct Scsi_Host *shost = class_to_shost(dev);
444
445         h = shost_to_hba(shost);
446         ld = lockup_detected(h);
447
448         return sprintf(buf, "ld=%d\n", ld);
449 }
450
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452                                          struct device_attribute *attr,
453                                          const char *buf, size_t count)
454 {
455         int status, len;
456         struct ctlr_info *h;
457         struct Scsi_Host *shost = class_to_shost(dev);
458         char tmpbuf[10];
459
460         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461                 return -EACCES;
462         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463         strncpy(tmpbuf, buf, len);
464         tmpbuf[len] = '\0';
465         if (sscanf(tmpbuf, "%d", &status) != 1)
466                 return -EINVAL;
467         h = shost_to_hba(shost);
468         h->acciopath_status = !!status;
469         dev_warn(&h->pdev->dev,
470                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471                 h->acciopath_status ? "enabled" : "disabled");
472         return count;
473 }
474
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476                                          struct device_attribute *attr,
477                                          const char *buf, size_t count)
478 {
479         int debug_level, len;
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482         char tmpbuf[10];
483
484         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485                 return -EACCES;
486         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487         strncpy(tmpbuf, buf, len);
488         tmpbuf[len] = '\0';
489         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490                 return -EINVAL;
491         if (debug_level < 0)
492                 debug_level = 0;
493         h = shost_to_hba(shost);
494         h->raid_offload_debug = debug_level;
495         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496                 h->raid_offload_debug);
497         return count;
498 }
499
500 static ssize_t host_store_rescan(struct device *dev,
501                                  struct device_attribute *attr,
502                                  const char *buf, size_t count)
503 {
504         struct ctlr_info *h;
505         struct Scsi_Host *shost = class_to_shost(dev);
506         h = shost_to_hba(shost);
507         hpsa_scan_start(h->scsi_host);
508         return count;
509 }
510
511 static ssize_t host_show_firmware_revision(struct device *dev,
512              struct device_attribute *attr, char *buf)
513 {
514         struct ctlr_info *h;
515         struct Scsi_Host *shost = class_to_shost(dev);
516         unsigned char *fwrev;
517
518         h = shost_to_hba(shost);
519         if (!h->hba_inquiry_data)
520                 return 0;
521         fwrev = &h->hba_inquiry_data[32];
522         return snprintf(buf, 20, "%c%c%c%c\n",
523                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
524 }
525
526 static ssize_t host_show_commands_outstanding(struct device *dev,
527              struct device_attribute *attr, char *buf)
528 {
529         struct Scsi_Host *shost = class_to_shost(dev);
530         struct ctlr_info *h = shost_to_hba(shost);
531
532         return snprintf(buf, 20, "%d\n",
533                         atomic_read(&h->commands_outstanding));
534 }
535
536 static ssize_t host_show_transport_mode(struct device *dev,
537         struct device_attribute *attr, char *buf)
538 {
539         struct ctlr_info *h;
540         struct Scsi_Host *shost = class_to_shost(dev);
541
542         h = shost_to_hba(shost);
543         return snprintf(buf, 20, "%s\n",
544                 h->transMethod & CFGTBL_Trans_Performant ?
545                         "performant" : "simple");
546 }
547
548 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
549         struct device_attribute *attr, char *buf)
550 {
551         struct ctlr_info *h;
552         struct Scsi_Host *shost = class_to_shost(dev);
553
554         h = shost_to_hba(shost);
555         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
556                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
557 }
558
559 /* List of controllers which cannot be hard reset on kexec with reset_devices */
560 static u32 unresettable_controller[] = {
561         0x324a103C, /* Smart Array P712m */
562         0x324b103C, /* Smart Array P711m */
563         0x3223103C, /* Smart Array P800 */
564         0x3234103C, /* Smart Array P400 */
565         0x3235103C, /* Smart Array P400i */
566         0x3211103C, /* Smart Array E200i */
567         0x3212103C, /* Smart Array E200 */
568         0x3213103C, /* Smart Array E200i */
569         0x3214103C, /* Smart Array E200i */
570         0x3215103C, /* Smart Array E200i */
571         0x3237103C, /* Smart Array E500 */
572         0x323D103C, /* Smart Array P700m */
573         0x40800E11, /* Smart Array 5i */
574         0x409C0E11, /* Smart Array 6400 */
575         0x409D0E11, /* Smart Array 6400 EM */
576         0x40700E11, /* Smart Array 5300 */
577         0x40820E11, /* Smart Array 532 */
578         0x40830E11, /* Smart Array 5312 */
579         0x409A0E11, /* Smart Array 641 */
580         0x409B0E11, /* Smart Array 642 */
581         0x40910E11, /* Smart Array 6i */
582 };
583
584 /* List of controllers which cannot even be soft reset */
585 static u32 soft_unresettable_controller[] = {
586         0x40800E11, /* Smart Array 5i */
587         0x40700E11, /* Smart Array 5300 */
588         0x40820E11, /* Smart Array 532 */
589         0x40830E11, /* Smart Array 5312 */
590         0x409A0E11, /* Smart Array 641 */
591         0x409B0E11, /* Smart Array 642 */
592         0x40910E11, /* Smart Array 6i */
593         /* Exclude 640x boards.  These are two pci devices in one slot
594          * which share a battery backed cache module.  One controls the
595          * cache, the other accesses the cache through the one that controls
596          * it.  If we reset the one controlling the cache, the other will
597          * likely not be happy.  Just forbid resetting this conjoined mess.
598          * The 640x isn't really supported by hpsa anyway.
599          */
600         0x409C0E11, /* Smart Array 6400 */
601         0x409D0E11, /* Smart Array 6400 EM */
602 };
603
604 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
605 {
606         int i;
607
608         for (i = 0; i < nelems; i++)
609                 if (a[i] == board_id)
610                         return 1;
611         return 0;
612 }
613
614 static int ctlr_is_hard_resettable(u32 board_id)
615 {
616         return !board_id_in_array(unresettable_controller,
617                         ARRAY_SIZE(unresettable_controller), board_id);
618 }
619
620 static int ctlr_is_soft_resettable(u32 board_id)
621 {
622         return !board_id_in_array(soft_unresettable_controller,
623                         ARRAY_SIZE(soft_unresettable_controller), board_id);
624 }
625
626 static int ctlr_is_resettable(u32 board_id)
627 {
628         return ctlr_is_hard_resettable(board_id) ||
629                 ctlr_is_soft_resettable(board_id);
630 }
631
632 static ssize_t host_show_resettable(struct device *dev,
633         struct device_attribute *attr, char *buf)
634 {
635         struct ctlr_info *h;
636         struct Scsi_Host *shost = class_to_shost(dev);
637
638         h = shost_to_hba(shost);
639         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
640 }
641
642 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
643 {
644         return (scsi3addr[3] & 0xC0) == 0x40;
645 }
646
647 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
648         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
649 };
650 #define HPSA_RAID_0     0
651 #define HPSA_RAID_4     1
652 #define HPSA_RAID_1     2       /* also used for RAID 10 */
653 #define HPSA_RAID_5     3       /* also used for RAID 50 */
654 #define HPSA_RAID_51    4
655 #define HPSA_RAID_6     5       /* also used for RAID 60 */
656 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
657 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
658 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
659
660 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
661 {
662         return !device->physical_device;
663 }
664
665 static ssize_t raid_level_show(struct device *dev,
666              struct device_attribute *attr, char *buf)
667 {
668         ssize_t l = 0;
669         unsigned char rlevel;
670         struct ctlr_info *h;
671         struct scsi_device *sdev;
672         struct hpsa_scsi_dev_t *hdev;
673         unsigned long flags;
674
675         sdev = to_scsi_device(dev);
676         h = sdev_to_hba(sdev);
677         spin_lock_irqsave(&h->lock, flags);
678         hdev = sdev->hostdata;
679         if (!hdev) {
680                 spin_unlock_irqrestore(&h->lock, flags);
681                 return -ENODEV;
682         }
683
684         /* Is this even a logical drive? */
685         if (!is_logical_device(hdev)) {
686                 spin_unlock_irqrestore(&h->lock, flags);
687                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
688                 return l;
689         }
690
691         rlevel = hdev->raid_level;
692         spin_unlock_irqrestore(&h->lock, flags);
693         if (rlevel > RAID_UNKNOWN)
694                 rlevel = RAID_UNKNOWN;
695         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
696         return l;
697 }
698
699 static ssize_t lunid_show(struct device *dev,
700              struct device_attribute *attr, char *buf)
701 {
702         struct ctlr_info *h;
703         struct scsi_device *sdev;
704         struct hpsa_scsi_dev_t *hdev;
705         unsigned long flags;
706         unsigned char lunid[8];
707
708         sdev = to_scsi_device(dev);
709         h = sdev_to_hba(sdev);
710         spin_lock_irqsave(&h->lock, flags);
711         hdev = sdev->hostdata;
712         if (!hdev) {
713                 spin_unlock_irqrestore(&h->lock, flags);
714                 return -ENODEV;
715         }
716         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
717         spin_unlock_irqrestore(&h->lock, flags);
718         return snprintf(buf, 20, "0x%8phN\n", lunid);
719 }
720
721 static ssize_t unique_id_show(struct device *dev,
722              struct device_attribute *attr, char *buf)
723 {
724         struct ctlr_info *h;
725         struct scsi_device *sdev;
726         struct hpsa_scsi_dev_t *hdev;
727         unsigned long flags;
728         unsigned char sn[16];
729
730         sdev = to_scsi_device(dev);
731         h = sdev_to_hba(sdev);
732         spin_lock_irqsave(&h->lock, flags);
733         hdev = sdev->hostdata;
734         if (!hdev) {
735                 spin_unlock_irqrestore(&h->lock, flags);
736                 return -ENODEV;
737         }
738         memcpy(sn, hdev->device_id, sizeof(sn));
739         spin_unlock_irqrestore(&h->lock, flags);
740         return snprintf(buf, 16 * 2 + 2,
741                         "%02X%02X%02X%02X%02X%02X%02X%02X"
742                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
743                         sn[0], sn[1], sn[2], sn[3],
744                         sn[4], sn[5], sn[6], sn[7],
745                         sn[8], sn[9], sn[10], sn[11],
746                         sn[12], sn[13], sn[14], sn[15]);
747 }
748
749 static ssize_t sas_address_show(struct device *dev,
750               struct device_attribute *attr, char *buf)
751 {
752         struct ctlr_info *h;
753         struct scsi_device *sdev;
754         struct hpsa_scsi_dev_t *hdev;
755         unsigned long flags;
756         u64 sas_address;
757
758         sdev = to_scsi_device(dev);
759         h = sdev_to_hba(sdev);
760         spin_lock_irqsave(&h->lock, flags);
761         hdev = sdev->hostdata;
762         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
763                 spin_unlock_irqrestore(&h->lock, flags);
764                 return -ENODEV;
765         }
766         sas_address = hdev->sas_address;
767         spin_unlock_irqrestore(&h->lock, flags);
768
769         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
770 }
771
772 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
773              struct device_attribute *attr, char *buf)
774 {
775         struct ctlr_info *h;
776         struct scsi_device *sdev;
777         struct hpsa_scsi_dev_t *hdev;
778         unsigned long flags;
779         int offload_enabled;
780
781         sdev = to_scsi_device(dev);
782         h = sdev_to_hba(sdev);
783         spin_lock_irqsave(&h->lock, flags);
784         hdev = sdev->hostdata;
785         if (!hdev) {
786                 spin_unlock_irqrestore(&h->lock, flags);
787                 return -ENODEV;
788         }
789         offload_enabled = hdev->offload_enabled;
790         spin_unlock_irqrestore(&h->lock, flags);
791
792         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
793                 return snprintf(buf, 20, "%d\n", offload_enabled);
794         else
795                 return snprintf(buf, 40, "%s\n",
796                                 "Not applicable for a controller");
797 }
798
799 #define MAX_PATHS 8
800 static ssize_t path_info_show(struct device *dev,
801              struct device_attribute *attr, char *buf)
802 {
803         struct ctlr_info *h;
804         struct scsi_device *sdev;
805         struct hpsa_scsi_dev_t *hdev;
806         unsigned long flags;
807         int i;
808         int output_len = 0;
809         u8 box;
810         u8 bay;
811         u8 path_map_index = 0;
812         char *active;
813         unsigned char phys_connector[2];
814
815         sdev = to_scsi_device(dev);
816         h = sdev_to_hba(sdev);
817         spin_lock_irqsave(&h->devlock, flags);
818         hdev = sdev->hostdata;
819         if (!hdev) {
820                 spin_unlock_irqrestore(&h->devlock, flags);
821                 return -ENODEV;
822         }
823
824         bay = hdev->bay;
825         for (i = 0; i < MAX_PATHS; i++) {
826                 path_map_index = 1<<i;
827                 if (i == hdev->active_path_index)
828                         active = "Active";
829                 else if (hdev->path_map & path_map_index)
830                         active = "Inactive";
831                 else
832                         continue;
833
834                 output_len += scnprintf(buf + output_len,
835                                 PAGE_SIZE - output_len,
836                                 "[%d:%d:%d:%d] %20.20s ",
837                                 h->scsi_host->host_no,
838                                 hdev->bus, hdev->target, hdev->lun,
839                                 scsi_device_type(hdev->devtype));
840
841                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
842                         output_len += scnprintf(buf + output_len,
843                                                 PAGE_SIZE - output_len,
844                                                 "%s\n", active);
845                         continue;
846                 }
847
848                 box = hdev->box[i];
849                 memcpy(&phys_connector, &hdev->phys_connector[i],
850                         sizeof(phys_connector));
851                 if (phys_connector[0] < '0')
852                         phys_connector[0] = '0';
853                 if (phys_connector[1] < '0')
854                         phys_connector[1] = '0';
855                 output_len += scnprintf(buf + output_len,
856                                 PAGE_SIZE - output_len,
857                                 "PORT: %.2s ",
858                                 phys_connector);
859                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
860                         hdev->expose_device) {
861                         if (box == 0 || box == 0xFF) {
862                                 output_len += scnprintf(buf + output_len,
863                                         PAGE_SIZE - output_len,
864                                         "BAY: %hhu %s\n",
865                                         bay, active);
866                         } else {
867                                 output_len += scnprintf(buf + output_len,
868                                         PAGE_SIZE - output_len,
869                                         "BOX: %hhu BAY: %hhu %s\n",
870                                         box, bay, active);
871                         }
872                 } else if (box != 0 && box != 0xFF) {
873                         output_len += scnprintf(buf + output_len,
874                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
875                                 box, active);
876                 } else
877                         output_len += scnprintf(buf + output_len,
878                                 PAGE_SIZE - output_len, "%s\n", active);
879         }
880
881         spin_unlock_irqrestore(&h->devlock, flags);
882         return output_len;
883 }
884
885 static ssize_t host_show_ctlr_num(struct device *dev,
886         struct device_attribute *attr, char *buf)
887 {
888         struct ctlr_info *h;
889         struct Scsi_Host *shost = class_to_shost(dev);
890
891         h = shost_to_hba(shost);
892         return snprintf(buf, 20, "%d\n", h->ctlr);
893 }
894
895 static ssize_t host_show_legacy_board(struct device *dev,
896         struct device_attribute *attr, char *buf)
897 {
898         struct ctlr_info *h;
899         struct Scsi_Host *shost = class_to_shost(dev);
900
901         h = shost_to_hba(shost);
902         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
903 }
904
905 static DEVICE_ATTR_RO(raid_level);
906 static DEVICE_ATTR_RO(lunid);
907 static DEVICE_ATTR_RO(unique_id);
908 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
909 static DEVICE_ATTR_RO(sas_address);
910 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
911                         host_show_hp_ssd_smart_path_enabled, NULL);
912 static DEVICE_ATTR_RO(path_info);
913 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
914                 host_show_hp_ssd_smart_path_status,
915                 host_store_hp_ssd_smart_path_status);
916 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
917                         host_store_raid_offload_debug);
918 static DEVICE_ATTR(firmware_revision, S_IRUGO,
919         host_show_firmware_revision, NULL);
920 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
921         host_show_commands_outstanding, NULL);
922 static DEVICE_ATTR(transport_mode, S_IRUGO,
923         host_show_transport_mode, NULL);
924 static DEVICE_ATTR(resettable, S_IRUGO,
925         host_show_resettable, NULL);
926 static DEVICE_ATTR(lockup_detected, S_IRUGO,
927         host_show_lockup_detected, NULL);
928 static DEVICE_ATTR(ctlr_num, S_IRUGO,
929         host_show_ctlr_num, NULL);
930 static DEVICE_ATTR(legacy_board, S_IRUGO,
931         host_show_legacy_board, NULL);
932
933 static struct device_attribute *hpsa_sdev_attrs[] = {
934         &dev_attr_raid_level,
935         &dev_attr_lunid,
936         &dev_attr_unique_id,
937         &dev_attr_hp_ssd_smart_path_enabled,
938         &dev_attr_path_info,
939         &dev_attr_sas_address,
940         NULL,
941 };
942
943 static struct device_attribute *hpsa_shost_attrs[] = {
944         &dev_attr_rescan,
945         &dev_attr_firmware_revision,
946         &dev_attr_commands_outstanding,
947         &dev_attr_transport_mode,
948         &dev_attr_resettable,
949         &dev_attr_hp_ssd_smart_path_status,
950         &dev_attr_raid_offload_debug,
951         &dev_attr_lockup_detected,
952         &dev_attr_ctlr_num,
953         &dev_attr_legacy_board,
954         NULL,
955 };
956
957 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
958                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
959
960 static struct scsi_host_template hpsa_driver_template = {
961         .module                 = THIS_MODULE,
962         .name                   = HPSA,
963         .proc_name              = HPSA,
964         .queuecommand           = hpsa_scsi_queue_command,
965         .scan_start             = hpsa_scan_start,
966         .scan_finished          = hpsa_scan_finished,
967         .change_queue_depth     = hpsa_change_queue_depth,
968         .this_id                = -1,
969         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970         .ioctl                  = hpsa_ioctl,
971         .slave_alloc            = hpsa_slave_alloc,
972         .slave_configure        = hpsa_slave_configure,
973         .slave_destroy          = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975         .compat_ioctl           = hpsa_compat_ioctl,
976 #endif
977         .sdev_attrs = hpsa_sdev_attrs,
978         .shost_attrs = hpsa_shost_attrs,
979         .max_sectors = 2048,
980         .no_write_same = 1,
981 };
982
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985         u32 a;
986         struct reply_queue_buffer *rq = &h->reply_queue[q];
987
988         if (h->transMethod & CFGTBL_Trans_io_accel1)
989                 return h->access.command_completed(h, q);
990
991         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992                 return h->access.command_completed(h, q);
993
994         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995                 a = rq->head[rq->current_entry];
996                 rq->current_entry++;
997                 atomic_dec(&h->commands_outstanding);
998         } else {
999                 a = FIFO_EMPTY;
1000         }
1001         /* Check for wraparound */
1002         if (rq->current_entry == h->max_commands) {
1003                 rq->current_entry = 0;
1004                 rq->wraparound ^= 1;
1005         }
1006         return a;
1007 }
1008
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042                                         int reply_queue)
1043 {
1044         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046                 if (unlikely(!h->msix_vectors))
1047                         return;
1048                 c->Header.ReplyQueue = reply_queue;
1049         }
1050 }
1051
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053                                                 struct CommandList *c,
1054                                                 int reply_queue)
1055 {
1056         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057
1058         /*
1059          * Tell the controller to post the reply to the queue for this
1060          * processor.  This seems to give the best I/O throughput.
1061          */
1062         cp->ReplyQueue = reply_queue;
1063         /*
1064          * Set the bits in the address sent down to include:
1065          *  - performant mode bit (bit 0)
1066          *  - pull count (bits 1-3)
1067          *  - command type (bits 4-6)
1068          */
1069         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070                                         IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074                                                 struct CommandList *c,
1075                                                 int reply_queue)
1076 {
1077         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078                 &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080         /* Tell the controller to post the reply to the queue for this
1081          * processor.  This seems to give the best I/O throughput.
1082          */
1083         cp->reply_queue = reply_queue;
1084         /* Set the bits in the address sent down to include:
1085          *  - performant mode bit not used in ioaccel mode 2
1086          *  - pull count (bits 0-3)
1087          *  - command type isn't needed for ioaccel2
1088          */
1089         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093                                                 struct CommandList *c,
1094                                                 int reply_queue)
1095 {
1096         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097
1098         /*
1099          * Tell the controller to post the reply to the queue for this
1100          * processor.  This seems to give the best I/O throughput.
1101          */
1102         cp->reply_queue = reply_queue;
1103         /*
1104          * Set the bits in the address sent down to include:
1105          *  - performant mode bit not used in ioaccel mode 2
1106          *  - pull count (bits 0-3)
1107          *  - command type isn't needed for ioaccel2
1108          */
1109         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126                 struct CommandList *c)
1127 {
1128         if (!is_firmware_flash_cmd(c->Request.CDB))
1129                 return;
1130         atomic_inc(&h->firmware_flash_in_progress);
1131         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135                 struct CommandList *c)
1136 {
1137         if (is_firmware_flash_cmd(c->Request.CDB) &&
1138                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1139                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143         struct CommandList *c, int reply_queue)
1144 {
1145         dial_down_lockup_detection_during_fw_flash(h, c);
1146         atomic_inc(&h->commands_outstanding);
1147
1148         reply_queue = h->reply_map[raw_smp_processor_id()];
1149         switch (c->cmd_type) {
1150         case CMD_IOACCEL1:
1151                 set_ioaccel1_performant_mode(h, c, reply_queue);
1152                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153                 break;
1154         case CMD_IOACCEL2:
1155                 set_ioaccel2_performant_mode(h, c, reply_queue);
1156                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157                 break;
1158         case IOACCEL2_TMF:
1159                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161                 break;
1162         default:
1163                 set_performant_mode(h, c, reply_queue);
1164                 h->access.submit_command(h, c);
1165         }
1166 }
1167
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170         if (unlikely(hpsa_is_pending_event(c)))
1171                 return finish_cmd(c);
1172
1173         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183         if (!h->hba_inquiry_data)
1184                 return 0;
1185         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186                 return 1;
1187         return 0;
1188 }
1189
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191         unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193         /* finds an unused bus, target, lun for a new physical device
1194          * assumes h->devlock is held
1195          */
1196         int i, found = 0;
1197         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198
1199         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200
1201         for (i = 0; i < h->ndevices; i++) {
1202                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203                         __set_bit(h->dev[i]->target, lun_taken);
1204         }
1205
1206         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207         if (i < HPSA_MAX_DEVICES) {
1208                 /* *bus = 1; */
1209                 *target = i;
1210                 *lun = 0;
1211                 found = 1;
1212         }
1213         return !found;
1214 }
1215
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217         struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220         char label[LABEL_SIZE];
1221
1222         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223                 return;
1224
1225         switch (dev->devtype) {
1226         case TYPE_RAID:
1227                 snprintf(label, LABEL_SIZE, "controller");
1228                 break;
1229         case TYPE_ENCLOSURE:
1230                 snprintf(label, LABEL_SIZE, "enclosure");
1231                 break;
1232         case TYPE_DISK:
1233         case TYPE_ZBC:
1234                 if (dev->external)
1235                         snprintf(label, LABEL_SIZE, "external");
1236                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237                         snprintf(label, LABEL_SIZE, "%s",
1238                                 raid_label[PHYSICAL_DRIVE]);
1239                 else
1240                         snprintf(label, LABEL_SIZE, "RAID-%s",
1241                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1242                                 raid_label[dev->raid_level]);
1243                 break;
1244         case TYPE_ROM:
1245                 snprintf(label, LABEL_SIZE, "rom");
1246                 break;
1247         case TYPE_TAPE:
1248                 snprintf(label, LABEL_SIZE, "tape");
1249                 break;
1250         case TYPE_MEDIUM_CHANGER:
1251                 snprintf(label, LABEL_SIZE, "changer");
1252                 break;
1253         default:
1254                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1255                 break;
1256         }
1257
1258         dev_printk(level, &h->pdev->dev,
1259                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261                         description,
1262                         scsi_device_type(dev->devtype),
1263                         dev->vendor,
1264                         dev->model,
1265                         label,
1266                         dev->offload_config ? '+' : '-',
1267                         dev->offload_to_be_enabled ? '+' : '-',
1268                         dev->expose_device);
1269 }
1270
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273                 struct hpsa_scsi_dev_t *device,
1274                 struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276         /* assumes h->devlock is held */
1277         int n = h->ndevices;
1278         int i;
1279         unsigned char addr1[8], addr2[8];
1280         struct hpsa_scsi_dev_t *sd;
1281
1282         if (n >= HPSA_MAX_DEVICES) {
1283                 dev_err(&h->pdev->dev, "too many devices, some will be "
1284                         "inaccessible.\n");
1285                 return -1;
1286         }
1287
1288         /* physical devices do not have lun or target assigned until now. */
1289         if (device->lun != -1)
1290                 /* Logical device, lun is already assigned. */
1291                 goto lun_assigned;
1292
1293         /* If this device a non-zero lun of a multi-lun device
1294          * byte 4 of the 8-byte LUN addr will contain the logical
1295          * unit no, zero otherwise.
1296          */
1297         if (device->scsi3addr[4] == 0) {
1298                 /* This is not a non-zero lun of a multi-lun device */
1299                 if (hpsa_find_target_lun(h, device->scsi3addr,
1300                         device->bus, &device->target, &device->lun) != 0)
1301                         return -1;
1302                 goto lun_assigned;
1303         }
1304
1305         /* This is a non-zero lun of a multi-lun device.
1306          * Search through our list and find the device which
1307          * has the same 8 byte LUN address, excepting byte 4 and 5.
1308          * Assign the same bus and target for this new LUN.
1309          * Use the logical unit number from the firmware.
1310          */
1311         memcpy(addr1, device->scsi3addr, 8);
1312         addr1[4] = 0;
1313         addr1[5] = 0;
1314         for (i = 0; i < n; i++) {
1315                 sd = h->dev[i];
1316                 memcpy(addr2, sd->scsi3addr, 8);
1317                 addr2[4] = 0;
1318                 addr2[5] = 0;
1319                 /* differ only in byte 4 and 5? */
1320                 if (memcmp(addr1, addr2, 8) == 0) {
1321                         device->bus = sd->bus;
1322                         device->target = sd->target;
1323                         device->lun = device->scsi3addr[4];
1324                         break;
1325                 }
1326         }
1327         if (device->lun == -1) {
1328                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329                         " suspect firmware bug or unsupported hardware "
1330                         "configuration.\n");
1331                 return -1;
1332         }
1333
1334 lun_assigned:
1335
1336         h->dev[n] = device;
1337         h->ndevices++;
1338         added[*nadded] = device;
1339         (*nadded)++;
1340         hpsa_show_dev_msg(KERN_INFO, h, device,
1341                 device->expose_device ? "added" : "masked");
1342         return 0;
1343 }
1344
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351         int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353         /* assumes h->devlock is held */
1354         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355
1356         /* Raid level changed. */
1357         h->dev[entry]->raid_level = new_entry->raid_level;
1358
1359         /*
1360          * ioacccel_handle may have changed for a dual domain disk
1361          */
1362         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363
1364         /* Raid offload parameters changed.  Careful about the ordering. */
1365         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366                 /*
1367                  * if drive is newly offload_enabled, we want to copy the
1368                  * raid map data first.  If previously offload_enabled and
1369                  * offload_config were set, raid map data had better be
1370                  * the same as it was before. If raid map data has changed
1371                  * then it had better be the case that
1372                  * h->dev[entry]->offload_enabled is currently 0.
1373                  */
1374                 h->dev[entry]->raid_map = new_entry->raid_map;
1375                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376         }
1377         if (new_entry->offload_to_be_enabled) {
1378                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380         }
1381         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382         h->dev[entry]->offload_config = new_entry->offload_config;
1383         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384         h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386         /*
1387          * We can turn off ioaccel offload now, but need to delay turning
1388          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389          * can't do that until all the devices are updated.
1390          */
1391         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392
1393         /*
1394          * turn ioaccel off immediately if told to do so.
1395          */
1396         if (!new_entry->offload_to_be_enabled)
1397                 h->dev[entry]->offload_enabled = 0;
1398
1399         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404         int entry, struct hpsa_scsi_dev_t *new_entry,
1405         struct hpsa_scsi_dev_t *added[], int *nadded,
1406         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408         /* assumes h->devlock is held */
1409         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410         removed[*nremoved] = h->dev[entry];
1411         (*nremoved)++;
1412
1413         /*
1414          * New physical devices won't have target/lun assigned yet
1415          * so we need to preserve the values in the slot we are replacing.
1416          */
1417         if (new_entry->target == -1) {
1418                 new_entry->target = h->dev[entry]->target;
1419                 new_entry->lun = h->dev[entry]->lun;
1420         }
1421
1422         h->dev[entry] = new_entry;
1423         added[*nadded] = new_entry;
1424         (*nadded)++;
1425
1426         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433         /* assumes h->devlock is held */
1434         int i;
1435         struct hpsa_scsi_dev_t *sd;
1436
1437         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439         sd = h->dev[entry];
1440         removed[*nremoved] = h->dev[entry];
1441         (*nremoved)++;
1442
1443         for (i = entry; i < h->ndevices-1; i++)
1444                 h->dev[i] = h->dev[i+1];
1445         h->ndevices--;
1446         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450         (a)[7] == (b)[7] && \
1451         (a)[6] == (b)[6] && \
1452         (a)[5] == (b)[5] && \
1453         (a)[4] == (b)[4] && \
1454         (a)[3] == (b)[3] && \
1455         (a)[2] == (b)[2] && \
1456         (a)[1] == (b)[1] && \
1457         (a)[0] == (b)[0])
1458
1459 static void fixup_botched_add(struct ctlr_info *h,
1460         struct hpsa_scsi_dev_t *added)
1461 {
1462         /* called when scsi_add_device fails in order to re-adjust
1463          * h->dev[] to match the mid layer's view.
1464          */
1465         unsigned long flags;
1466         int i, j;
1467
1468         spin_lock_irqsave(&h->lock, flags);
1469         for (i = 0; i < h->ndevices; i++) {
1470                 if (h->dev[i] == added) {
1471                         for (j = i; j < h->ndevices-1; j++)
1472                                 h->dev[j] = h->dev[j+1];
1473                         h->ndevices--;
1474                         break;
1475                 }
1476         }
1477         spin_unlock_irqrestore(&h->lock, flags);
1478         kfree(added);
1479 }
1480
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482         struct hpsa_scsi_dev_t *dev2)
1483 {
1484         /* we compare everything except lun and target as these
1485          * are not yet assigned.  Compare parts likely
1486          * to differ first
1487          */
1488         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489                 sizeof(dev1->scsi3addr)) != 0)
1490                 return 0;
1491         if (memcmp(dev1->device_id, dev2->device_id,
1492                 sizeof(dev1->device_id)) != 0)
1493                 return 0;
1494         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495                 return 0;
1496         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497                 return 0;
1498         if (dev1->devtype != dev2->devtype)
1499                 return 0;
1500         if (dev1->bus != dev2->bus)
1501                 return 0;
1502         return 1;
1503 }
1504
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506         struct hpsa_scsi_dev_t *dev2)
1507 {
1508         /* Device attributes that can change, but don't mean
1509          * that the device is a different device, nor that the OS
1510          * needs to be told anything about the change.
1511          */
1512         if (dev1->raid_level != dev2->raid_level)
1513                 return 1;
1514         if (dev1->offload_config != dev2->offload_config)
1515                 return 1;
1516         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517                 return 1;
1518         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519                 if (dev1->queue_depth != dev2->queue_depth)
1520                         return 1;
1521         /*
1522          * This can happen for dual domain devices. An active
1523          * path change causes the ioaccel handle to change
1524          *
1525          * for example note the handle differences between p0 and p1
1526          * Device                    WWN               ,WWN hash,Handle
1527          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529          */
1530         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531                 return 1;
1532         return 0;
1533 }
1534
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545         int *index)
1546 {
1547         int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552         if (needle == NULL)
1553                 return DEVICE_NOT_FOUND;
1554
1555         for (i = 0; i < haystack_size; i++) {
1556                 if (haystack[i] == NULL) /* previously removed. */
1557                         continue;
1558                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559                         *index = i;
1560                         if (device_is_the_same(needle, haystack[i])) {
1561                                 if (device_updated(needle, haystack[i]))
1562                                         return DEVICE_UPDATED;
1563                                 return DEVICE_SAME;
1564                         } else {
1565                                 /* Keep offline devices offline */
1566                                 if (needle->volume_offline)
1567                                         return DEVICE_NOT_FOUND;
1568                                 return DEVICE_CHANGED;
1569                         }
1570                 }
1571         }
1572         *index = -1;
1573         return DEVICE_NOT_FOUND;
1574 }
1575
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577                                         unsigned char scsi3addr[])
1578 {
1579         struct offline_device_entry *device;
1580         unsigned long flags;
1581
1582         /* Check to see if device is already on the list */
1583         spin_lock_irqsave(&h->offline_device_lock, flags);
1584         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585                 if (memcmp(device->scsi3addr, scsi3addr,
1586                         sizeof(device->scsi3addr)) == 0) {
1587                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588                         return;
1589                 }
1590         }
1591         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592
1593         /* Device is not on the list, add it. */
1594         device = kmalloc(sizeof(*device), GFP_KERNEL);
1595         if (!device)
1596                 return;
1597
1598         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599         spin_lock_irqsave(&h->offline_device_lock, flags);
1600         list_add_tail(&device->offline_list, &h->offline_device_list);
1601         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606         struct hpsa_scsi_dev_t *sd)
1607 {
1608         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609                 dev_info(&h->pdev->dev,
1610                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611                         h->scsi_host->host_no,
1612                         sd->bus, sd->target, sd->lun);
1613         switch (sd->volume_offline) {
1614         case HPSA_LV_OK:
1615                 break;
1616         case HPSA_LV_UNDERGOING_ERASE:
1617                 dev_info(&h->pdev->dev,
1618                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619                         h->scsi_host->host_no,
1620                         sd->bus, sd->target, sd->lun);
1621                 break;
1622         case HPSA_LV_NOT_AVAILABLE:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_UNDERGOING_RPI:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         case HPSA_LV_PENDING_RPI:
1635                 dev_info(&h->pdev->dev,
1636                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637                         h->scsi_host->host_no,
1638                         sd->bus, sd->target, sd->lun);
1639                 break;
1640         case HPSA_LV_ENCRYPTED_NO_KEY:
1641                 dev_info(&h->pdev->dev,
1642                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643                         h->scsi_host->host_no,
1644                         sd->bus, sd->target, sd->lun);
1645                 break;
1646         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647                 dev_info(&h->pdev->dev,
1648                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649                         h->scsi_host->host_no,
1650                         sd->bus, sd->target, sd->lun);
1651                 break;
1652         case HPSA_LV_UNDERGOING_ENCRYPTION:
1653                 dev_info(&h->pdev->dev,
1654                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655                         h->scsi_host->host_no,
1656                         sd->bus, sd->target, sd->lun);
1657                 break;
1658         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659                 dev_info(&h->pdev->dev,
1660                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661                         h->scsi_host->host_no,
1662                         sd->bus, sd->target, sd->lun);
1663                 break;
1664         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665                 dev_info(&h->pdev->dev,
1666                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667                         h->scsi_host->host_no,
1668                         sd->bus, sd->target, sd->lun);
1669                 break;
1670         case HPSA_LV_PENDING_ENCRYPTION:
1671                 dev_info(&h->pdev->dev,
1672                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673                         h->scsi_host->host_no,
1674                         sd->bus, sd->target, sd->lun);
1675                 break;
1676         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677                 dev_info(&h->pdev->dev,
1678                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679                         h->scsi_host->host_no,
1680                         sd->bus, sd->target, sd->lun);
1681                 break;
1682         }
1683 }
1684
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1691                                 struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693         struct raid_map_data *map = &logical_drive->raid_map;
1694         struct raid_map_disk_data *dd = &map->data[0];
1695         int i, j;
1696         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697                                 le16_to_cpu(map->metadata_disks_per_row);
1698         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699                                 le16_to_cpu(map->layout_map_count) *
1700                                 total_disks_per_row;
1701         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702                                 total_disks_per_row;
1703         int qdepth;
1704
1705         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707
1708         logical_drive->nphysical_disks = nraid_map_entries;
1709
1710         qdepth = 0;
1711         for (i = 0; i < nraid_map_entries; i++) {
1712                 logical_drive->phys_disk[i] = NULL;
1713                 if (!logical_drive->offload_config)
1714                         continue;
1715                 for (j = 0; j < ndevices; j++) {
1716                         if (dev[j] == NULL)
1717                                 continue;
1718                         if (dev[j]->devtype != TYPE_DISK &&
1719                             dev[j]->devtype != TYPE_ZBC)
1720                                 continue;
1721                         if (is_logical_device(dev[j]))
1722                                 continue;
1723                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724                                 continue;
1725
1726                         logical_drive->phys_disk[i] = dev[j];
1727                         if (i < nphys_disk)
1728                                 qdepth = min(h->nr_cmds, qdepth +
1729                                     logical_drive->phys_disk[i]->queue_depth);
1730                         break;
1731                 }
1732
1733                 /*
1734                  * This can happen if a physical drive is removed and
1735                  * the logical drive is degraded.  In that case, the RAID
1736                  * map data will refer to a physical disk which isn't actually
1737                  * present.  And in that case offload_enabled should already
1738                  * be 0, but we'll turn it off here just in case
1739                  */
1740                 if (!logical_drive->phys_disk[i]) {
1741                         dev_warn(&h->pdev->dev,
1742                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743                                 __func__,
1744                                 h->scsi_host->host_no, logical_drive->bus,
1745                                 logical_drive->target, logical_drive->lun);
1746                         logical_drive->offload_enabled = 0;
1747                         logical_drive->offload_to_be_enabled = 0;
1748                         logical_drive->queue_depth = 8;
1749                 }
1750         }
1751         if (nraid_map_entries)
1752                 /*
1753                  * This is correct for reads, too high for full stripe writes,
1754                  * way too high for partial stripe writes
1755                  */
1756                 logical_drive->queue_depth = qdepth;
1757         else {
1758                 if (logical_drive->external)
1759                         logical_drive->queue_depth = EXTERNAL_QD;
1760                 else
1761                         logical_drive->queue_depth = h->nr_cmds;
1762         }
1763 }
1764
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768         int i;
1769
1770         for (i = 0; i < ndevices; i++) {
1771                 if (dev[i] == NULL)
1772                         continue;
1773                 if (dev[i]->devtype != TYPE_DISK &&
1774                     dev[i]->devtype != TYPE_ZBC)
1775                         continue;
1776                 if (!is_logical_device(dev[i]))
1777                         continue;
1778
1779                 /*
1780                  * If offload is currently enabled, the RAID map and
1781                  * phys_disk[] assignment *better* not be changing
1782                  * because we would be changing ioaccel phsy_disk[] pointers
1783                  * on a ioaccel volume processing I/O requests.
1784                  *
1785                  * If an ioaccel volume status changed, initially because it was
1786                  * re-configured and thus underwent a transformation, or
1787                  * a drive failed, we would have received a state change
1788                  * request and ioaccel should have been turned off. When the
1789                  * transformation completes, we get another state change
1790                  * request to turn ioaccel back on. In this case, we need
1791                  * to update the ioaccel information.
1792                  *
1793                  * Thus: If it is not currently enabled, but will be after
1794                  * the scan completes, make sure the ioaccel pointers
1795                  * are up to date.
1796                  */
1797
1798                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800         }
1801 }
1802
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805         int rc = 0;
1806
1807         if (!h->scsi_host)
1808                 return 1;
1809
1810         if (is_logical_device(device)) /* RAID */
1811                 rc = scsi_add_device(h->scsi_host, device->bus,
1812                                         device->target, device->lun);
1813         else /* HBA */
1814                 rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816         return rc;
1817 }
1818
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820                                                 struct hpsa_scsi_dev_t *dev)
1821 {
1822         int i;
1823         int count = 0;
1824
1825         for (i = 0; i < h->nr_cmds; i++) {
1826                 struct CommandList *c = h->cmd_pool + i;
1827                 int refcount = atomic_inc_return(&c->refcount);
1828
1829                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830                                 dev->scsi3addr)) {
1831                         unsigned long flags;
1832
1833                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1834                         if (!hpsa_is_cmd_idle(c))
1835                                 ++count;
1836                         spin_unlock_irqrestore(&h->lock, flags);
1837                 }
1838
1839                 cmd_free(h, c);
1840         }
1841
1842         return count;
1843 }
1844
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846                                                 struct hpsa_scsi_dev_t *device)
1847 {
1848         int cmds = 0;
1849         int waits = 0;
1850
1851         while (1) {
1852                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853                 if (cmds == 0)
1854                         break;
1855                 if (++waits > 20)
1856                         break;
1857                 msleep(1000);
1858         }
1859
1860         if (waits > 20)
1861                 dev_warn(&h->pdev->dev,
1862                         "%s: removing device with %d outstanding commands!\n",
1863                         __func__, cmds);
1864 }
1865
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867                         struct hpsa_scsi_dev_t *device)
1868 {
1869         struct scsi_device *sdev = NULL;
1870
1871         if (!h->scsi_host)
1872                 return;
1873
1874         /*
1875          * Allow for commands to drain
1876          */
1877         device->removed = 1;
1878         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879
1880         if (is_logical_device(device)) { /* RAID */
1881                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882                                                 device->target, device->lun);
1883                 if (sdev) {
1884                         scsi_remove_device(sdev);
1885                         scsi_device_put(sdev);
1886                 } else {
1887                         /*
1888                          * We don't expect to get here.  Future commands
1889                          * to this device will get a selection timeout as
1890                          * if the device were gone.
1891                          */
1892                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1893                                         "didn't find device for removal.");
1894                 }
1895         } else { /* HBA */
1896
1897                 hpsa_remove_sas_device(device);
1898         }
1899 }
1900
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902         struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904         /* sd contains scsi3 addresses and devtypes, and inquiry
1905          * data.  This function takes what's in sd to be the current
1906          * reality and updates h->dev[] to reflect that reality.
1907          */
1908         int i, entry, device_change, changes = 0;
1909         struct hpsa_scsi_dev_t *csd;
1910         unsigned long flags;
1911         struct hpsa_scsi_dev_t **added, **removed;
1912         int nadded, nremoved;
1913
1914         /*
1915          * A reset can cause a device status to change
1916          * re-schedule the scan to see what happened.
1917          */
1918         spin_lock_irqsave(&h->reset_lock, flags);
1919         if (h->reset_in_progress) {
1920                 h->drv_req_rescan = 1;
1921                 spin_unlock_irqrestore(&h->reset_lock, flags);
1922                 return;
1923         }
1924         spin_unlock_irqrestore(&h->reset_lock, flags);
1925
1926         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928
1929         if (!added || !removed) {
1930                 dev_warn(&h->pdev->dev, "out of memory in "
1931                         "adjust_hpsa_scsi_table\n");
1932                 goto free_and_out;
1933         }
1934
1935         spin_lock_irqsave(&h->devlock, flags);
1936
1937         /* find any devices in h->dev[] that are not in
1938          * sd[] and remove them from h->dev[], and for any
1939          * devices which have changed, remove the old device
1940          * info and add the new device info.
1941          * If minor device attributes change, just update
1942          * the existing device structure.
1943          */
1944         i = 0;
1945         nremoved = 0;
1946         nadded = 0;
1947         while (i < h->ndevices) {
1948                 csd = h->dev[i];
1949                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950                 if (device_change == DEVICE_NOT_FOUND) {
1951                         changes++;
1952                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953                         continue; /* remove ^^^, hence i not incremented */
1954                 } else if (device_change == DEVICE_CHANGED) {
1955                         changes++;
1956                         hpsa_scsi_replace_entry(h, i, sd[entry],
1957                                 added, &nadded, removed, &nremoved);
1958                         /* Set it to NULL to prevent it from being freed
1959                          * at the bottom of hpsa_update_scsi_devices()
1960                          */
1961                         sd[entry] = NULL;
1962                 } else if (device_change == DEVICE_UPDATED) {
1963                         hpsa_scsi_update_entry(h, i, sd[entry]);
1964                 }
1965                 i++;
1966         }
1967
1968         /* Now, make sure every device listed in sd[] is also
1969          * listed in h->dev[], adding them if they aren't found
1970          */
1971
1972         for (i = 0; i < nsds; i++) {
1973                 if (!sd[i]) /* if already added above. */
1974                         continue;
1975
1976                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977                  * as the SCSI mid-layer does not handle such devices well.
1978                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979                  * at 160Hz, and prevents the system from coming up.
1980                  */
1981                 if (sd[i]->volume_offline) {
1982                         hpsa_show_volume_status(h, sd[i]);
1983                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984                         continue;
1985                 }
1986
1987                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988                                         h->ndevices, &entry);
1989                 if (device_change == DEVICE_NOT_FOUND) {
1990                         changes++;
1991                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992                                 break;
1993                         sd[i] = NULL; /* prevent from being freed later. */
1994                 } else if (device_change == DEVICE_CHANGED) {
1995                         /* should never happen... */
1996                         changes++;
1997                         dev_warn(&h->pdev->dev,
1998                                 "device unexpectedly changed.\n");
1999                         /* but if it does happen, we just ignore that device */
2000                 }
2001         }
2002         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003
2004         /*
2005          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006          * any logical drives that need it enabled.
2007          *
2008          * The raid map should be current by now.
2009          *
2010          * We are updating the device list used for I/O requests.
2011          */
2012         for (i = 0; i < h->ndevices; i++) {
2013                 if (h->dev[i] == NULL)
2014                         continue;
2015                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016         }
2017
2018         spin_unlock_irqrestore(&h->devlock, flags);
2019
2020         /* Monitor devices which are in one of several NOT READY states to be
2021          * brought online later. This must be done without holding h->devlock,
2022          * so don't touch h->dev[]
2023          */
2024         for (i = 0; i < nsds; i++) {
2025                 if (!sd[i]) /* if already added above. */
2026                         continue;
2027                 if (sd[i]->volume_offline)
2028                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029         }
2030
2031         /* Don't notify scsi mid layer of any changes the first time through
2032          * (or if there are no changes) scsi_scan_host will do it later the
2033          * first time through.
2034          */
2035         if (!changes)
2036                 goto free_and_out;
2037
2038         /* Notify scsi mid layer of any removed devices */
2039         for (i = 0; i < nremoved; i++) {
2040                 if (removed[i] == NULL)
2041                         continue;
2042                 if (removed[i]->expose_device)
2043                         hpsa_remove_device(h, removed[i]);
2044                 kfree(removed[i]);
2045                 removed[i] = NULL;
2046         }
2047
2048         /* Notify scsi mid layer of any added devices */
2049         for (i = 0; i < nadded; i++) {
2050                 int rc = 0;
2051
2052                 if (added[i] == NULL)
2053                         continue;
2054                 if (!(added[i]->expose_device))
2055                         continue;
2056                 rc = hpsa_add_device(h, added[i]);
2057                 if (!rc)
2058                         continue;
2059                 dev_warn(&h->pdev->dev,
2060                         "addition failed %d, device not added.", rc);
2061                 /* now we have to remove it from h->dev,
2062                  * since it didn't get added to scsi mid layer
2063                  */
2064                 fixup_botched_add(h, added[i]);
2065                 h->drv_req_rescan = 1;
2066         }
2067
2068 free_and_out:
2069         kfree(added);
2070         kfree(removed);
2071 }
2072
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078         int bus, int target, int lun)
2079 {
2080         int i;
2081         struct hpsa_scsi_dev_t *sd;
2082
2083         for (i = 0; i < h->ndevices; i++) {
2084                 sd = h->dev[i];
2085                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086                         return sd;
2087         }
2088         return NULL;
2089 }
2090
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093         struct hpsa_scsi_dev_t *sd = NULL;
2094         unsigned long flags;
2095         struct ctlr_info *h;
2096
2097         h = sdev_to_hba(sdev);
2098         spin_lock_irqsave(&h->devlock, flags);
2099         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100                 struct scsi_target *starget;
2101                 struct sas_rphy *rphy;
2102
2103                 starget = scsi_target(sdev);
2104                 rphy = target_to_rphy(starget);
2105                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106                 if (sd) {
2107                         sd->target = sdev_id(sdev);
2108                         sd->lun = sdev->lun;
2109                 }
2110         }
2111         if (!sd)
2112                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113                                         sdev_id(sdev), sdev->lun);
2114
2115         if (sd && sd->expose_device) {
2116                 atomic_set(&sd->ioaccel_cmds_out, 0);
2117                 sdev->hostdata = sd;
2118         } else
2119                 sdev->hostdata = NULL;
2120         spin_unlock_irqrestore(&h->devlock, flags);
2121         return 0;
2122 }
2123
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127         struct hpsa_scsi_dev_t *sd;
2128         int queue_depth;
2129
2130         sd = sdev->hostdata;
2131         sdev->no_uld_attach = !sd || !sd->expose_device;
2132
2133         if (sd) {
2134                 if (sd->external)
2135                         queue_depth = EXTERNAL_QD;
2136                 else
2137                         queue_depth = sd->queue_depth != 0 ?
2138                                         sd->queue_depth : sdev->host->can_queue;
2139         } else
2140                 queue_depth = sdev->host->can_queue;
2141
2142         scsi_change_queue_depth(sdev, queue_depth);
2143
2144         return 0;
2145 }
2146
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149         /* nothing to do. */
2150 }
2151
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154         int i;
2155
2156         if (!h->ioaccel2_cmd_sg_list)
2157                 return;
2158         for (i = 0; i < h->nr_cmds; i++) {
2159                 kfree(h->ioaccel2_cmd_sg_list[i]);
2160                 h->ioaccel2_cmd_sg_list[i] = NULL;
2161         }
2162         kfree(h->ioaccel2_cmd_sg_list);
2163         h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168         int i;
2169
2170         if (h->chainsize <= 0)
2171                 return 0;
2172
2173         h->ioaccel2_cmd_sg_list =
2174                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175                                         GFP_KERNEL);
2176         if (!h->ioaccel2_cmd_sg_list)
2177                 return -ENOMEM;
2178         for (i = 0; i < h->nr_cmds; i++) {
2179                 h->ioaccel2_cmd_sg_list[i] =
2180                         kmalloc_array(h->maxsgentries,
2181                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182                                       GFP_KERNEL);
2183                 if (!h->ioaccel2_cmd_sg_list[i])
2184                         goto clean;
2185         }
2186         return 0;
2187
2188 clean:
2189         hpsa_free_ioaccel2_sg_chain_blocks(h);
2190         return -ENOMEM;
2191 }
2192
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195         int i;
2196
2197         if (!h->cmd_sg_list)
2198                 return;
2199         for (i = 0; i < h->nr_cmds; i++) {
2200                 kfree(h->cmd_sg_list[i]);
2201                 h->cmd_sg_list[i] = NULL;
2202         }
2203         kfree(h->cmd_sg_list);
2204         h->cmd_sg_list = NULL;
2205 }
2206
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209         int i;
2210
2211         if (h->chainsize <= 0)
2212                 return 0;
2213
2214         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215                                  GFP_KERNEL);
2216         if (!h->cmd_sg_list)
2217                 return -ENOMEM;
2218
2219         for (i = 0; i < h->nr_cmds; i++) {
2220                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221                                                   sizeof(*h->cmd_sg_list[i]),
2222                                                   GFP_KERNEL);
2223                 if (!h->cmd_sg_list[i])
2224                         goto clean;
2225
2226         }
2227         return 0;
2228
2229 clean:
2230         hpsa_free_sg_chain_blocks(h);
2231         return -ENOMEM;
2232 }
2233
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235         struct io_accel2_cmd *cp, struct CommandList *c)
2236 {
2237         struct ioaccel2_sg_element *chain_block;
2238         u64 temp64;
2239         u32 chain_size;
2240
2241         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242         chain_size = le32_to_cpu(cp->sg[0].length);
2243         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2244                                 DMA_TO_DEVICE);
2245         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246                 /* prevent subsequent unmapping */
2247                 cp->sg->address = 0;
2248                 return -1;
2249         }
2250         cp->sg->address = cpu_to_le64(temp64);
2251         return 0;
2252 }
2253
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255         struct io_accel2_cmd *cp)
2256 {
2257         struct ioaccel2_sg_element *chain_sg;
2258         u64 temp64;
2259         u32 chain_size;
2260
2261         chain_sg = cp->sg;
2262         temp64 = le64_to_cpu(chain_sg->address);
2263         chain_size = le32_to_cpu(cp->sg[0].length);
2264         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2265 }
2266
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268         struct CommandList *c)
2269 {
2270         struct SGDescriptor *chain_sg, *chain_block;
2271         u64 temp64;
2272         u32 chain_len;
2273
2274         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275         chain_block = h->cmd_sg_list[c->cmdindex];
2276         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277         chain_len = sizeof(*chain_sg) *
2278                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279         chain_sg->Len = cpu_to_le32(chain_len);
2280         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2281                                 DMA_TO_DEVICE);
2282         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283                 /* prevent subsequent unmapping */
2284                 chain_sg->Addr = cpu_to_le64(0);
2285                 return -1;
2286         }
2287         chain_sg->Addr = cpu_to_le64(temp64);
2288         return 0;
2289 }
2290
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292         struct CommandList *c)
2293 {
2294         struct SGDescriptor *chain_sg;
2295
2296         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297                 return;
2298
2299         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2301                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2302 }
2303
2304
2305 /* Decode the various types of errors on ioaccel2 path.
2306  * Return 1 for any error that should generate a RAID path retry.
2307  * Return 0 for errors that don't require a RAID path retry.
2308  */
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310                                         struct CommandList *c,
2311                                         struct scsi_cmnd *cmd,
2312                                         struct io_accel2_cmd *c2,
2313                                         struct hpsa_scsi_dev_t *dev)
2314 {
2315         int data_len;
2316         int retry = 0;
2317         u32 ioaccel2_resid = 0;
2318
2319         switch (c2->error_data.serv_response) {
2320         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321                 switch (c2->error_data.status) {
2322                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323                         break;
2324                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2326                         if (c2->error_data.data_present !=
2327                                         IOACCEL2_SENSE_DATA_PRESENT) {
2328                                 memset(cmd->sense_buffer, 0,
2329                                         SCSI_SENSE_BUFFERSIZE);
2330                                 break;
2331                         }
2332                         /* copy the sense data */
2333                         data_len = c2->error_data.sense_data_len;
2334                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2335                                 data_len = SCSI_SENSE_BUFFERSIZE;
2336                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2337                                 data_len =
2338                                         sizeof(c2->error_data.sense_data_buff);
2339                         memcpy(cmd->sense_buffer,
2340                                 c2->error_data.sense_data_buff, data_len);
2341                         retry = 1;
2342                         break;
2343                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344                         retry = 1;
2345                         break;
2346                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347                         retry = 1;
2348                         break;
2349                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350                         retry = 1;
2351                         break;
2352                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353                         retry = 1;
2354                         break;
2355                 default:
2356                         retry = 1;
2357                         break;
2358                 }
2359                 break;
2360         case IOACCEL2_SERV_RESPONSE_FAILURE:
2361                 switch (c2->error_data.status) {
2362                 case IOACCEL2_STATUS_SR_IO_ERROR:
2363                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2364                 case IOACCEL2_STATUS_SR_OVERRUN:
2365                         retry = 1;
2366                         break;
2367                 case IOACCEL2_STATUS_SR_UNDERRUN:
2368                         cmd->result = (DID_OK << 16);           /* host byte */
2369                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2370                         ioaccel2_resid = get_unaligned_le32(
2371                                                 &c2->error_data.resid_cnt[0]);
2372                         scsi_set_resid(cmd, ioaccel2_resid);
2373                         break;
2374                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377                         /*
2378                          * Did an HBA disk disappear? We will eventually
2379                          * get a state change event from the controller but
2380                          * in the meantime, we need to tell the OS that the
2381                          * HBA disk is no longer there and stop I/O
2382                          * from going down. This allows the potential re-insert
2383                          * of the disk to get the same device node.
2384                          */
2385                         if (dev->physical_device && dev->expose_device) {
2386                                 cmd->result = DID_NO_CONNECT << 16;
2387                                 dev->removed = 1;
2388                                 h->drv_req_rescan = 1;
2389                                 dev_warn(&h->pdev->dev,
2390                                         "%s: device is gone!\n", __func__);
2391                         } else
2392                                 /*
2393                                  * Retry by sending down the RAID path.
2394                                  * We will get an event from ctlr to
2395                                  * trigger rescan regardless.
2396                                  */
2397                                 retry = 1;
2398                         break;
2399                 default:
2400                         retry = 1;
2401                 }
2402                 break;
2403         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404                 break;
2405         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406                 break;
2407         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408                 retry = 1;
2409                 break;
2410         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411                 break;
2412         default:
2413                 retry = 1;
2414                 break;
2415         }
2416
2417         return retry;   /* retry on raid path? */
2418 }
2419
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421                 struct CommandList *c)
2422 {
2423         bool do_wake = false;
2424
2425         /*
2426          * Reset c->scsi_cmd here so that the reset handler will know
2427          * this command has completed.  Then, check to see if the handler is
2428          * waiting for this command, and, if so, wake it.
2429          */
2430         c->scsi_cmd = SCSI_CMD_IDLE;
2431         mb();   /* Declare command idle before checking for pending events. */
2432         if (c->reset_pending) {
2433                 unsigned long flags;
2434                 struct hpsa_scsi_dev_t *dev;
2435
2436                 /*
2437                  * There appears to be a reset pending; lock the lock and
2438                  * reconfirm.  If so, then decrement the count of outstanding
2439                  * commands and wake the reset command if this is the last one.
2440                  */
2441                 spin_lock_irqsave(&h->lock, flags);
2442                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2443                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444                         do_wake = true;
2445                 c->reset_pending = NULL;
2446                 spin_unlock_irqrestore(&h->lock, flags);
2447         }
2448
2449         if (do_wake)
2450                 wake_up_all(&h->event_sync_wait_queue);
2451 }
2452
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454                                       struct CommandList *c)
2455 {
2456         hpsa_cmd_resolve_events(h, c);
2457         cmd_tagged_free(h, c);
2458 }
2459
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461                 struct CommandList *c, struct scsi_cmnd *cmd)
2462 {
2463         hpsa_cmd_resolve_and_free(h, c);
2464         if (cmd && cmd->scsi_done)
2465                 cmd->scsi_done(cmd);
2466 }
2467
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469 {
2470         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472 }
2473
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475                 struct CommandList *c, struct scsi_cmnd *cmd,
2476                 struct hpsa_scsi_dev_t *dev)
2477 {
2478         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479
2480         /* check for good status */
2481         if (likely(c2->error_data.serv_response == 0 &&
2482                         c2->error_data.status == 0))
2483                 return hpsa_cmd_free_and_done(h, c, cmd);
2484
2485         /*
2486          * Any RAID offload error results in retry which will use
2487          * the normal I/O path so the controller can handle whatever is
2488          * wrong.
2489          */
2490         if (is_logical_device(dev) &&
2491                 c2->error_data.serv_response ==
2492                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2493                 if (c2->error_data.status ==
2494                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495                         dev->offload_enabled = 0;
2496                         dev->offload_to_be_enabled = 0;
2497                 }
2498
2499                 return hpsa_retry_cmd(h, c);
2500         }
2501
2502         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503                 return hpsa_retry_cmd(h, c);
2504
2505         return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510                                         struct CommandList *cp)
2511 {
2512         u8 tmf_status = cp->err_info->ScsiStatus;
2513
2514         switch (tmf_status) {
2515         case CISS_TMF_COMPLETE:
2516                 /*
2517                  * CISS_TMF_COMPLETE never happens, instead,
2518                  * ei->CommandStatus == 0 for this case.
2519                  */
2520         case CISS_TMF_SUCCESS:
2521                 return 0;
2522         case CISS_TMF_INVALID_FRAME:
2523         case CISS_TMF_NOT_SUPPORTED:
2524         case CISS_TMF_FAILED:
2525         case CISS_TMF_WRONG_LUN:
2526         case CISS_TMF_OVERLAPPED_TAG:
2527                 break;
2528         default:
2529                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530                                 tmf_status);
2531                 break;
2532         }
2533         return -tmf_status;
2534 }
2535
2536 static void complete_scsi_command(struct CommandList *cp)
2537 {
2538         struct scsi_cmnd *cmd;
2539         struct ctlr_info *h;
2540         struct ErrorInfo *ei;
2541         struct hpsa_scsi_dev_t *dev;
2542         struct io_accel2_cmd *c2;
2543
2544         u8 sense_key;
2545         u8 asc;      /* additional sense code */
2546         u8 ascq;     /* additional sense code qualifier */
2547         unsigned long sense_data_size;
2548
2549         ei = cp->err_info;
2550         cmd = cp->scsi_cmd;
2551         h = cp->h;
2552
2553         if (!cmd->device) {
2554                 cmd->result = DID_NO_CONNECT << 16;
2555                 return hpsa_cmd_free_and_done(h, cp, cmd);
2556         }
2557
2558         dev = cmd->device->hostdata;
2559         if (!dev) {
2560                 cmd->result = DID_NO_CONNECT << 16;
2561                 return hpsa_cmd_free_and_done(h, cp, cmd);
2562         }
2563         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564
2565         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566         if ((cp->cmd_type == CMD_SCSI) &&
2567                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568                 hpsa_unmap_sg_chain_block(h, cp);
2569
2570         if ((cp->cmd_type == CMD_IOACCEL2) &&
2571                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573
2574         cmd->result = (DID_OK << 16);           /* host byte */
2575         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2576
2577         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578                 if (dev->physical_device && dev->expose_device &&
2579                         dev->removed) {
2580                         cmd->result = DID_NO_CONNECT << 16;
2581                         return hpsa_cmd_free_and_done(h, cp, cmd);
2582                 }
2583                 if (likely(cp->phys_disk != NULL))
2584                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585         }
2586
2587         /*
2588          * We check for lockup status here as it may be set for
2589          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590          * fail_all_oustanding_cmds()
2591          */
2592         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593                 /* DID_NO_CONNECT will prevent a retry */
2594                 cmd->result = DID_NO_CONNECT << 16;
2595                 return hpsa_cmd_free_and_done(h, cp, cmd);
2596         }
2597
2598         if ((unlikely(hpsa_is_pending_event(cp))))
2599                 if (cp->reset_pending)
2600                         return hpsa_cmd_free_and_done(h, cp, cmd);
2601
2602         if (cp->cmd_type == CMD_IOACCEL2)
2603                 return process_ioaccel2_completion(h, cp, cmd, dev);
2604
2605         scsi_set_resid(cmd, ei->ResidualCnt);
2606         if (ei->CommandStatus == 0)
2607                 return hpsa_cmd_free_and_done(h, cp, cmd);
2608
2609         /* For I/O accelerator commands, copy over some fields to the normal
2610          * CISS header used below for error handling.
2611          */
2612         if (cp->cmd_type == CMD_IOACCEL1) {
2613                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614                 cp->Header.SGList = scsi_sg_count(cmd);
2615                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618                 cp->Header.tag = c->tag;
2619                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621
2622                 /* Any RAID offload error results in retry which will use
2623                  * the normal I/O path so the controller can handle whatever's
2624                  * wrong.
2625                  */
2626                 if (is_logical_device(dev)) {
2627                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628                                 dev->offload_enabled = 0;
2629                         return hpsa_retry_cmd(h, cp);
2630                 }
2631         }
2632
2633         /* an error has occurred */
2634         switch (ei->CommandStatus) {
2635
2636         case CMD_TARGET_STATUS:
2637                 cmd->result |= ei->ScsiStatus;
2638                 /* copy the sense data */
2639                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641                 else
2642                         sense_data_size = sizeof(ei->SenseInfo);
2643                 if (ei->SenseLen < sense_data_size)
2644                         sense_data_size = ei->SenseLen;
2645                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646                 if (ei->ScsiStatus)
2647                         decode_sense_data(ei->SenseInfo, sense_data_size,
2648                                 &sense_key, &asc, &ascq);
2649                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650                         switch (sense_key) {
2651                         case ABORTED_COMMAND:
2652                                 cmd->result |= DID_SOFT_ERROR << 16;
2653                                 break;
2654                         case UNIT_ATTENTION:
2655                                 if (asc == 0x3F && ascq == 0x0E)
2656                                         h->drv_req_rescan = 1;
2657                                 break;
2658                         case ILLEGAL_REQUEST:
2659                                 if (asc == 0x25 && ascq == 0x00) {
2660                                         dev->removed = 1;
2661                                         cmd->result = DID_NO_CONNECT << 16;
2662                                 }
2663                                 break;
2664                         }
2665                         break;
2666                 }
2667                 /* Problem was not a check condition
2668                  * Pass it up to the upper layers...
2669                  */
2670                 if (ei->ScsiStatus) {
2671                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2672                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2673                                 "Returning result: 0x%x\n",
2674                                 cp, ei->ScsiStatus,
2675                                 sense_key, asc, ascq,
2676                                 cmd->result);
2677                 } else {  /* scsi status is zero??? How??? */
2678                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2679                                 "Returning no connection.\n", cp),
2680
2681                         /* Ordinarily, this case should never happen,
2682                          * but there is a bug in some released firmware
2683                          * revisions that allows it to happen if, for
2684                          * example, a 4100 backplane loses power and
2685                          * the tape drive is in it.  We assume that
2686                          * it's a fatal error of some kind because we
2687                          * can't show that it wasn't. We will make it
2688                          * look like selection timeout since that is
2689                          * the most common reason for this to occur,
2690                          * and it's severe enough.
2691                          */
2692
2693                         cmd->result = DID_NO_CONNECT << 16;
2694                 }
2695                 break;
2696
2697         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2698                 break;
2699         case CMD_DATA_OVERRUN:
2700                 dev_warn(&h->pdev->dev,
2701                         "CDB %16phN data overrun\n", cp->Request.CDB);
2702                 break;
2703         case CMD_INVALID: {
2704                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2705                 print_cmd(cp); */
2706                 /* We get CMD_INVALID if you address a non-existent device
2707                  * instead of a selection timeout (no response).  You will
2708                  * see this if you yank out a drive, then try to access it.
2709                  * This is kind of a shame because it means that any other
2710                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2711                  * missing target. */
2712                 cmd->result = DID_NO_CONNECT << 16;
2713         }
2714                 break;
2715         case CMD_PROTOCOL_ERR:
2716                 cmd->result = DID_ERROR << 16;
2717                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2718                                 cp->Request.CDB);
2719                 break;
2720         case CMD_HARDWARE_ERR:
2721                 cmd->result = DID_ERROR << 16;
2722                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2723                         cp->Request.CDB);
2724                 break;
2725         case CMD_CONNECTION_LOST:
2726                 cmd->result = DID_ERROR << 16;
2727                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2728                         cp->Request.CDB);
2729                 break;
2730         case CMD_ABORTED:
2731                 cmd->result = DID_ABORT << 16;
2732                 break;
2733         case CMD_ABORT_FAILED:
2734                 cmd->result = DID_ERROR << 16;
2735                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2736                         cp->Request.CDB);
2737                 break;
2738         case CMD_UNSOLICITED_ABORT:
2739                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2740                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2741                         cp->Request.CDB);
2742                 break;
2743         case CMD_TIMEOUT:
2744                 cmd->result = DID_TIME_OUT << 16;
2745                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2746                         cp->Request.CDB);
2747                 break;
2748         case CMD_UNABORTABLE:
2749                 cmd->result = DID_ERROR << 16;
2750                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2751                 break;
2752         case CMD_TMF_STATUS:
2753                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2754                         cmd->result = DID_ERROR << 16;
2755                 break;
2756         case CMD_IOACCEL_DISABLED:
2757                 /* This only handles the direct pass-through case since RAID
2758                  * offload is handled above.  Just attempt a retry.
2759                  */
2760                 cmd->result = DID_SOFT_ERROR << 16;
2761                 dev_warn(&h->pdev->dev,
2762                                 "cp %p had HP SSD Smart Path error\n", cp);
2763                 break;
2764         default:
2765                 cmd->result = DID_ERROR << 16;
2766                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2767                                 cp, ei->CommandStatus);
2768         }
2769
2770         return hpsa_cmd_free_and_done(h, cp, cmd);
2771 }
2772
2773 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2774                 int sg_used, enum dma_data_direction data_direction)
2775 {
2776         int i;
2777
2778         for (i = 0; i < sg_used; i++)
2779                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2780                                 le32_to_cpu(c->SG[i].Len),
2781                                 data_direction);
2782 }
2783
2784 static int hpsa_map_one(struct pci_dev *pdev,
2785                 struct CommandList *cp,
2786                 unsigned char *buf,
2787                 size_t buflen,
2788                 enum dma_data_direction data_direction)
2789 {
2790         u64 addr64;
2791
2792         if (buflen == 0 || data_direction == DMA_NONE) {
2793                 cp->Header.SGList = 0;
2794                 cp->Header.SGTotal = cpu_to_le16(0);
2795                 return 0;
2796         }
2797
2798         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2799         if (dma_mapping_error(&pdev->dev, addr64)) {
2800                 /* Prevent subsequent unmap of something never mapped */
2801                 cp->Header.SGList = 0;
2802                 cp->Header.SGTotal = cpu_to_le16(0);
2803                 return -1;
2804         }
2805         cp->SG[0].Addr = cpu_to_le64(addr64);
2806         cp->SG[0].Len = cpu_to_le32(buflen);
2807         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2808         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2809         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2810         return 0;
2811 }
2812
2813 #define NO_TIMEOUT ((unsigned long) -1)
2814 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2815 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2816         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2817 {
2818         DECLARE_COMPLETION_ONSTACK(wait);
2819
2820         c->waiting = &wait;
2821         __enqueue_cmd_and_start_io(h, c, reply_queue);
2822         if (timeout_msecs == NO_TIMEOUT) {
2823                 /* TODO: get rid of this no-timeout thing */
2824                 wait_for_completion_io(&wait);
2825                 return IO_OK;
2826         }
2827         if (!wait_for_completion_io_timeout(&wait,
2828                                         msecs_to_jiffies(timeout_msecs))) {
2829                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2830                 return -ETIMEDOUT;
2831         }
2832         return IO_OK;
2833 }
2834
2835 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2836                                    int reply_queue, unsigned long timeout_msecs)
2837 {
2838         if (unlikely(lockup_detected(h))) {
2839                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2840                 return IO_OK;
2841         }
2842         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2843 }
2844
2845 static u32 lockup_detected(struct ctlr_info *h)
2846 {
2847         int cpu;
2848         u32 rc, *lockup_detected;
2849
2850         cpu = get_cpu();
2851         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2852         rc = *lockup_detected;
2853         put_cpu();
2854         return rc;
2855 }
2856
2857 #define MAX_DRIVER_CMD_RETRIES 25
2858 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2859                 struct CommandList *c, enum dma_data_direction data_direction,
2860                 unsigned long timeout_msecs)
2861 {
2862         int backoff_time = 10, retry_count = 0;
2863         int rc;
2864
2865         do {
2866                 memset(c->err_info, 0, sizeof(*c->err_info));
2867                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2868                                                   timeout_msecs);
2869                 if (rc)
2870                         break;
2871                 retry_count++;
2872                 if (retry_count > 3) {
2873                         msleep(backoff_time);
2874                         if (backoff_time < 1000)
2875                                 backoff_time *= 2;
2876                 }
2877         } while ((check_for_unit_attention(h, c) ||
2878                         check_for_busy(h, c)) &&
2879                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2880         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2881         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2882                 rc = -EIO;
2883         return rc;
2884 }
2885
2886 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2887                                 struct CommandList *c)
2888 {
2889         const u8 *cdb = c->Request.CDB;
2890         const u8 *lun = c->Header.LUN.LunAddrBytes;
2891
2892         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2893                  txt, lun, cdb);
2894 }
2895
2896 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2897                         struct CommandList *cp)
2898 {
2899         const struct ErrorInfo *ei = cp->err_info;
2900         struct device *d = &cp->h->pdev->dev;
2901         u8 sense_key, asc, ascq;
2902         int sense_len;
2903
2904         switch (ei->CommandStatus) {
2905         case CMD_TARGET_STATUS:
2906                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2907                         sense_len = sizeof(ei->SenseInfo);
2908                 else
2909                         sense_len = ei->SenseLen;
2910                 decode_sense_data(ei->SenseInfo, sense_len,
2911                                         &sense_key, &asc, &ascq);
2912                 hpsa_print_cmd(h, "SCSI status", cp);
2913                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2914                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2915                                 sense_key, asc, ascq);
2916                 else
2917                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2918                 if (ei->ScsiStatus == 0)
2919                         dev_warn(d, "SCSI status is abnormally zero.  "
2920                         "(probably indicates selection timeout "
2921                         "reported incorrectly due to a known "
2922                         "firmware bug, circa July, 2001.)\n");
2923                 break;
2924         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2925                 break;
2926         case CMD_DATA_OVERRUN:
2927                 hpsa_print_cmd(h, "overrun condition", cp);
2928                 break;
2929         case CMD_INVALID: {
2930                 /* controller unfortunately reports SCSI passthru's
2931                  * to non-existent targets as invalid commands.
2932                  */
2933                 hpsa_print_cmd(h, "invalid command", cp);
2934                 dev_warn(d, "probably means device no longer present\n");
2935                 }
2936                 break;
2937         case CMD_PROTOCOL_ERR:
2938                 hpsa_print_cmd(h, "protocol error", cp);
2939                 break;
2940         case CMD_HARDWARE_ERR:
2941                 hpsa_print_cmd(h, "hardware error", cp);
2942                 break;
2943         case CMD_CONNECTION_LOST:
2944                 hpsa_print_cmd(h, "connection lost", cp);
2945                 break;
2946         case CMD_ABORTED:
2947                 hpsa_print_cmd(h, "aborted", cp);
2948                 break;
2949         case CMD_ABORT_FAILED:
2950                 hpsa_print_cmd(h, "abort failed", cp);
2951                 break;
2952         case CMD_UNSOLICITED_ABORT:
2953                 hpsa_print_cmd(h, "unsolicited abort", cp);
2954                 break;
2955         case CMD_TIMEOUT:
2956                 hpsa_print_cmd(h, "timed out", cp);
2957                 break;
2958         case CMD_UNABORTABLE:
2959                 hpsa_print_cmd(h, "unabortable", cp);
2960                 break;
2961         case CMD_CTLR_LOCKUP:
2962                 hpsa_print_cmd(h, "controller lockup detected", cp);
2963                 break;
2964         default:
2965                 hpsa_print_cmd(h, "unknown status", cp);
2966                 dev_warn(d, "Unknown command status %x\n",
2967                                 ei->CommandStatus);
2968         }
2969 }
2970
2971 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2972                                         u8 page, u8 *buf, size_t bufsize)
2973 {
2974         int rc = IO_OK;
2975         struct CommandList *c;
2976         struct ErrorInfo *ei;
2977
2978         c = cmd_alloc(h);
2979         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2980                         page, scsi3addr, TYPE_CMD)) {
2981                 rc = -1;
2982                 goto out;
2983         }
2984         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2985                         NO_TIMEOUT);
2986         if (rc)
2987                 goto out;
2988         ei = c->err_info;
2989         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2990                 hpsa_scsi_interpret_error(h, c);
2991                 rc = -1;
2992         }
2993 out:
2994         cmd_free(h, c);
2995         return rc;
2996 }
2997
2998 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2999                                                 u8 *scsi3addr)
3000 {
3001         u8 *buf;
3002         u64 sa = 0;
3003         int rc = 0;
3004
3005         buf = kzalloc(1024, GFP_KERNEL);
3006         if (!buf)
3007                 return 0;
3008
3009         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3010                                         buf, 1024);
3011
3012         if (rc)
3013                 goto out;
3014
3015         sa = get_unaligned_be64(buf+12);
3016
3017 out:
3018         kfree(buf);
3019         return sa;
3020 }
3021
3022 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3023                         u16 page, unsigned char *buf,
3024                         unsigned char bufsize)
3025 {
3026         int rc = IO_OK;
3027         struct CommandList *c;
3028         struct ErrorInfo *ei;
3029
3030         c = cmd_alloc(h);
3031
3032         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3033                         page, scsi3addr, TYPE_CMD)) {
3034                 rc = -1;
3035                 goto out;
3036         }
3037         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3038                         NO_TIMEOUT);
3039         if (rc)
3040                 goto out;
3041         ei = c->err_info;
3042         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3043                 hpsa_scsi_interpret_error(h, c);
3044                 rc = -1;
3045         }
3046 out:
3047         cmd_free(h, c);
3048         return rc;
3049 }
3050
3051 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3052         u8 reset_type, int reply_queue)
3053 {
3054         int rc = IO_OK;
3055         struct CommandList *c;
3056         struct ErrorInfo *ei;
3057
3058         c = cmd_alloc(h);
3059
3060
3061         /* fill_cmd can't fail here, no data buffer to map. */
3062         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3063                         scsi3addr, TYPE_MSG);
3064         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3065         if (rc) {
3066                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3067                 goto out;
3068         }
3069         /* no unmap needed here because no data xfer. */
3070
3071         ei = c->err_info;
3072         if (ei->CommandStatus != 0) {
3073                 hpsa_scsi_interpret_error(h, c);
3074                 rc = -1;
3075         }
3076 out:
3077         cmd_free(h, c);
3078         return rc;
3079 }
3080
3081 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3082                                struct hpsa_scsi_dev_t *dev,
3083                                unsigned char *scsi3addr)
3084 {
3085         int i;
3086         bool match = false;
3087         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3088         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3089
3090         if (hpsa_is_cmd_idle(c))
3091                 return false;
3092
3093         switch (c->cmd_type) {
3094         case CMD_SCSI:
3095         case CMD_IOCTL_PEND:
3096                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3097                                 sizeof(c->Header.LUN.LunAddrBytes));
3098                 break;
3099
3100         case CMD_IOACCEL1:
3101         case CMD_IOACCEL2:
3102                 if (c->phys_disk == dev) {
3103                         /* HBA mode match */
3104                         match = true;
3105                 } else {
3106                         /* Possible RAID mode -- check each phys dev. */
3107                         /* FIXME:  Do we need to take out a lock here?  If
3108                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3109                          * instead. */
3110                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3111                                 /* FIXME: an alternate test might be
3112                                  *
3113                                  * match = dev->phys_disk[i]->ioaccel_handle
3114                                  *              == c2->scsi_nexus;      */
3115                                 match = dev->phys_disk[i] == c->phys_disk;
3116                         }
3117                 }
3118                 break;
3119
3120         case IOACCEL2_TMF:
3121                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3122                         match = dev->phys_disk[i]->ioaccel_handle ==
3123                                         le32_to_cpu(ac->it_nexus);
3124                 }
3125                 break;
3126
3127         case 0:         /* The command is in the middle of being initialized. */
3128                 match = false;
3129                 break;
3130
3131         default:
3132                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3133                         c->cmd_type);
3134                 BUG();
3135         }
3136
3137         return match;
3138 }
3139
3140 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3141         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3142 {
3143         int i;
3144         int rc = 0;
3145
3146         /* We can really only handle one reset at a time */
3147         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3148                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3149                 return -EINTR;
3150         }
3151
3152         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3153
3154         for (i = 0; i < h->nr_cmds; i++) {
3155                 struct CommandList *c = h->cmd_pool + i;
3156                 int refcount = atomic_inc_return(&c->refcount);
3157
3158                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3159                         unsigned long flags;
3160
3161                         /*
3162                          * Mark the target command as having a reset pending,
3163                          * then lock a lock so that the command cannot complete
3164                          * while we're considering it.  If the command is not
3165                          * idle then count it; otherwise revoke the event.
3166                          */
3167                         c->reset_pending = dev;
3168                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3169                         if (!hpsa_is_cmd_idle(c))
3170                                 atomic_inc(&dev->reset_cmds_out);
3171                         else
3172                                 c->reset_pending = NULL;
3173                         spin_unlock_irqrestore(&h->lock, flags);
3174                 }
3175
3176                 cmd_free(h, c);
3177         }
3178
3179         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3180         if (!rc)
3181                 wait_event(h->event_sync_wait_queue,
3182                         atomic_read(&dev->reset_cmds_out) == 0 ||
3183                         lockup_detected(h));
3184
3185         if (unlikely(lockup_detected(h))) {
3186                 dev_warn(&h->pdev->dev,
3187                          "Controller lockup detected during reset wait\n");
3188                 rc = -ENODEV;
3189         }
3190
3191         if (unlikely(rc))
3192                 atomic_set(&dev->reset_cmds_out, 0);
3193         else
3194                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3195
3196         mutex_unlock(&h->reset_mutex);
3197         return rc;
3198 }
3199
3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201         unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203         int rc;
3204         unsigned char *buf;
3205
3206         *raid_level = RAID_UNKNOWN;
3207         buf = kzalloc(64, GFP_KERNEL);
3208         if (!buf)
3209                 return;
3210
3211         if (!hpsa_vpd_page_supported(h, scsi3addr,
3212                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3213                 goto exit;
3214
3215         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217
3218         if (rc == 0)
3219                 *raid_level = buf[8];
3220         if (*raid_level > RAID_UNKNOWN)
3221                 *raid_level = RAID_UNKNOWN;
3222 exit:
3223         kfree(buf);
3224         return;
3225 }
3226
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230                                 struct raid_map_data *map_buff)
3231 {
3232         struct raid_map_disk_data *dd = &map_buff->data[0];
3233         int map, row, col;
3234         u16 map_cnt, row_cnt, disks_per_row;
3235
3236         if (rc != 0)
3237                 return;
3238
3239         /* Show details only if debugging has been activated. */
3240         if (h->raid_offload_debug < 2)
3241                 return;
3242
3243         dev_info(&h->pdev->dev, "structure_size = %u\n",
3244                                 le32_to_cpu(map_buff->structure_size));
3245         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246                         le32_to_cpu(map_buff->volume_blk_size));
3247         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248                         le64_to_cpu(map_buff->volume_blk_cnt));
3249         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250                         map_buff->phys_blk_shift);
3251         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252                         map_buff->parity_rotation_shift);
3253         dev_info(&h->pdev->dev, "strip_size = %u\n",
3254                         le16_to_cpu(map_buff->strip_size));
3255         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256                         le64_to_cpu(map_buff->disk_starting_blk));
3257         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258                         le64_to_cpu(map_buff->disk_blk_cnt));
3259         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260                         le16_to_cpu(map_buff->data_disks_per_row));
3261         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262                         le16_to_cpu(map_buff->metadata_disks_per_row));
3263         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264                         le16_to_cpu(map_buff->row_cnt));
3265         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266                         le16_to_cpu(map_buff->layout_map_count));
3267         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268                         le16_to_cpu(map_buff->flags));
3269         dev_info(&h->pdev->dev, "encryption = %s\n",
3270                         le16_to_cpu(map_buff->flags) &
3271                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272         dev_info(&h->pdev->dev, "dekindex = %u\n",
3273                         le16_to_cpu(map_buff->dekindex));
3274         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275         for (map = 0; map < map_cnt; map++) {
3276                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3277                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3278                 for (row = 0; row < row_cnt; row++) {
3279                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280                         disks_per_row =
3281                                 le16_to_cpu(map_buff->data_disks_per_row);
3282                         for (col = 0; col < disks_per_row; col++, dd++)
3283                                 dev_info(&h->pdev->dev,
3284                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3285                                         col, dd->ioaccel_handle,
3286                                         dd->xor_mult[0], dd->xor_mult[1]);
3287                         disks_per_row =
3288                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3289                         for (col = 0; col < disks_per_row; col++, dd++)
3290                                 dev_info(&h->pdev->dev,
3291                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3292                                         col, dd->ioaccel_handle,
3293                                         dd->xor_mult[0], dd->xor_mult[1]);
3294                 }
3295         }
3296 }
3297 #else
3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299                         __attribute__((unused)) int rc,
3300                         __attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304
3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308         int rc = 0;
3309         struct CommandList *c;
3310         struct ErrorInfo *ei;
3311
3312         c = cmd_alloc(h);
3313
3314         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315                         sizeof(this_device->raid_map), 0,
3316                         scsi3addr, TYPE_CMD)) {
3317                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318                 cmd_free(h, c);
3319                 return -1;
3320         }
3321         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322                         NO_TIMEOUT);
3323         if (rc)
3324                 goto out;
3325         ei = c->err_info;
3326         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327                 hpsa_scsi_interpret_error(h, c);
3328                 rc = -1;
3329                 goto out;
3330         }
3331         cmd_free(h, c);
3332
3333         /* @todo in the future, dynamically allocate RAID map memory */
3334         if (le32_to_cpu(this_device->raid_map.structure_size) >
3335                                 sizeof(this_device->raid_map)) {
3336                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337                 rc = -1;
3338         }
3339         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340         return rc;
3341 out:
3342         cmd_free(h, c);
3343         return rc;
3344 }
3345
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347                 unsigned char scsi3addr[], u16 bmic_device_index,
3348                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350         int rc = IO_OK;
3351         struct CommandList *c;
3352         struct ErrorInfo *ei;
3353
3354         c = cmd_alloc(h);
3355
3356         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357                 0, RAID_CTLR_LUNID, TYPE_CMD);
3358         if (rc)
3359                 goto out;
3360
3361         c->Request.CDB[2] = bmic_device_index & 0xff;
3362         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363
3364         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365                         NO_TIMEOUT);
3366         if (rc)
3367                 goto out;
3368         ei = c->err_info;
3369         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370                 hpsa_scsi_interpret_error(h, c);
3371                 rc = -1;
3372         }
3373 out:
3374         cmd_free(h, c);
3375         return rc;
3376 }
3377
3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379         struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381         int rc = IO_OK;
3382         struct CommandList *c;
3383         struct ErrorInfo *ei;
3384
3385         c = cmd_alloc(h);
3386
3387         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388                 0, RAID_CTLR_LUNID, TYPE_CMD);
3389         if (rc)
3390                 goto out;
3391
3392         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393                         NO_TIMEOUT);
3394         if (rc)
3395                 goto out;
3396         ei = c->err_info;
3397         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398                 hpsa_scsi_interpret_error(h, c);
3399                 rc = -1;
3400         }
3401 out:
3402         cmd_free(h, c);
3403         return rc;
3404 }
3405
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407                 unsigned char scsi3addr[], u16 bmic_device_index,
3408                 struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410         int rc = IO_OK;
3411         struct CommandList *c;
3412         struct ErrorInfo *ei;
3413
3414         c = cmd_alloc(h);
3415         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416                 0, RAID_CTLR_LUNID, TYPE_CMD);
3417         if (rc)
3418                 goto out;
3419
3420         c->Request.CDB[2] = bmic_device_index & 0xff;
3421         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422
3423         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424                                                 NO_TIMEOUT);
3425         ei = c->err_info;
3426         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427                 hpsa_scsi_interpret_error(h, c);
3428                 rc = -1;
3429         }
3430 out:
3431         cmd_free(h, c);
3432
3433         return rc;
3434 }
3435
3436 /*
3437  * get enclosure information
3438  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440  * Uses id_physical_device to determine the box_index.
3441  */
3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443                         unsigned char *scsi3addr,
3444                         struct ReportExtendedLUNdata *rlep, int rle_index,
3445                         struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447         int rc = -1;
3448         struct CommandList *c = NULL;
3449         struct ErrorInfo *ei = NULL;
3450         struct bmic_sense_storage_box_params *bssbp = NULL;
3451         struct bmic_identify_physical_device *id_phys = NULL;
3452         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3453         u16 bmic_device_index = 0;
3454
3455         encl_dev->eli =
3456                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3457
3458         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3459
3460         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3461                 rc = IO_OK;
3462                 goto out;
3463         }
3464
3465         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3466                 rc = IO_OK;
3467                 goto out;
3468         }
3469
3470         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3471         if (!bssbp)
3472                 goto out;
3473
3474         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3475         if (!id_phys)
3476                 goto out;
3477
3478         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3479                                                 id_phys, sizeof(*id_phys));
3480         if (rc) {
3481                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3482                         __func__, encl_dev->external, bmic_device_index);
3483                 goto out;
3484         }
3485
3486         c = cmd_alloc(h);
3487
3488         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3489                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3490
3491         if (rc)
3492                 goto out;
3493
3494         if (id_phys->phys_connector[1] == 'E')
3495                 c->Request.CDB[5] = id_phys->box_index;
3496         else
3497                 c->Request.CDB[5] = 0;
3498
3499         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3500                                                 NO_TIMEOUT);
3501         if (rc)
3502                 goto out;
3503
3504         ei = c->err_info;
3505         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3506                 rc = -1;
3507                 goto out;
3508         }
3509
3510         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3511         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3512                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3513
3514         rc = IO_OK;
3515 out:
3516         kfree(bssbp);
3517         kfree(id_phys);
3518
3519         if (c)
3520                 cmd_free(h, c);
3521
3522         if (rc != IO_OK)
3523                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3524                         "Error, could not get enclosure information");
3525 }
3526
3527 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3528                                                 unsigned char *scsi3addr)
3529 {
3530         struct ReportExtendedLUNdata *physdev;
3531         u32 nphysicals;
3532         u64 sa = 0;
3533         int i;
3534
3535         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3536         if (!physdev)
3537                 return 0;
3538
3539         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3540                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3541                 kfree(physdev);
3542                 return 0;
3543         }
3544         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3545
3546         for (i = 0; i < nphysicals; i++)
3547                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3548                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3549                         break;
3550                 }
3551
3552         kfree(physdev);
3553
3554         return sa;
3555 }
3556
3557 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3558                                         struct hpsa_scsi_dev_t *dev)
3559 {
3560         int rc;
3561         u64 sa = 0;
3562
3563         if (is_hba_lunid(scsi3addr)) {
3564                 struct bmic_sense_subsystem_info *ssi;
3565
3566                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3567                 if (!ssi)
3568                         return;
3569
3570                 rc = hpsa_bmic_sense_subsystem_information(h,
3571                                         scsi3addr, 0, ssi, sizeof(*ssi));
3572                 if (rc == 0) {
3573                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3574                         h->sas_address = sa;
3575                 }
3576
3577                 kfree(ssi);
3578         } else
3579                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3580
3581         dev->sas_address = sa;
3582 }
3583
3584 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3585         struct ReportExtendedLUNdata *physdev)
3586 {
3587         u32 nphysicals;
3588         int i;
3589
3590         if (h->discovery_polling)
3591                 return;
3592
3593         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3594
3595         for (i = 0; i < nphysicals; i++) {
3596                 if (physdev->LUN[i].device_type ==
3597                         BMIC_DEVICE_TYPE_CONTROLLER
3598                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3599                         dev_info(&h->pdev->dev,
3600                                 "External controller present, activate discovery polling and disable rld caching\n");
3601                         hpsa_disable_rld_caching(h);
3602                         h->discovery_polling = 1;
3603                         break;
3604                 }
3605         }
3606 }
3607
3608 /* Get a device id from inquiry page 0x83 */
3609 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3610         unsigned char scsi3addr[], u8 page)
3611 {
3612         int rc;
3613         int i;
3614         int pages;
3615         unsigned char *buf, bufsize;
3616
3617         buf = kzalloc(256, GFP_KERNEL);
3618         if (!buf)
3619                 return false;
3620
3621         /* Get the size of the page list first */
3622         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3623                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3624                                 buf, HPSA_VPD_HEADER_SZ);
3625         if (rc != 0)
3626                 goto exit_unsupported;
3627         pages = buf[3];
3628         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3629                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3630         else
3631                 bufsize = 255;
3632
3633         /* Get the whole VPD page list */
3634         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3635                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3636                                 buf, bufsize);
3637         if (rc != 0)
3638                 goto exit_unsupported;
3639
3640         pages = buf[3];
3641         for (i = 1; i <= pages; i++)
3642                 if (buf[3 + i] == page)
3643                         goto exit_supported;
3644 exit_unsupported:
3645         kfree(buf);
3646         return false;
3647 exit_supported:
3648         kfree(buf);
3649         return true;
3650 }
3651
3652 /*
3653  * Called during a scan operation.
3654  * Sets ioaccel status on the new device list, not the existing device list
3655  *
3656  * The device list used during I/O will be updated later in
3657  * adjust_hpsa_scsi_table.
3658  */
3659 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3660         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3661 {
3662         int rc;
3663         unsigned char *buf;
3664         u8 ioaccel_status;
3665
3666         this_device->offload_config = 0;
3667         this_device->offload_enabled = 0;
3668         this_device->offload_to_be_enabled = 0;
3669
3670         buf = kzalloc(64, GFP_KERNEL);
3671         if (!buf)
3672                 return;
3673         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3674                 goto out;
3675         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3676                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3677         if (rc != 0)
3678                 goto out;
3679
3680 #define IOACCEL_STATUS_BYTE 4
3681 #define OFFLOAD_CONFIGURED_BIT 0x01
3682 #define OFFLOAD_ENABLED_BIT 0x02
3683         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3684         this_device->offload_config =
3685                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3686         if (this_device->offload_config) {
3687                 this_device->offload_to_be_enabled =
3688                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3689                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3690                         this_device->offload_to_be_enabled = 0;
3691         }
3692
3693 out:
3694         kfree(buf);
3695         return;
3696 }
3697
3698 /* Get the device id from inquiry page 0x83 */
3699 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3700         unsigned char *device_id, int index, int buflen)
3701 {
3702         int rc;
3703         unsigned char *buf;
3704
3705         /* Does controller have VPD for device id? */
3706         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3707                 return 1; /* not supported */
3708
3709         buf = kzalloc(64, GFP_KERNEL);
3710         if (!buf)
3711                 return -ENOMEM;
3712
3713         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3714                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3715         if (rc == 0) {
3716                 if (buflen > 16)
3717                         buflen = 16;
3718                 memcpy(device_id, &buf[8], buflen);
3719         }
3720
3721         kfree(buf);
3722
3723         return rc; /*0 - got id,  otherwise, didn't */
3724 }
3725
3726 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3727                 void *buf, int bufsize,
3728                 int extended_response)
3729 {
3730         int rc = IO_OK;
3731         struct CommandList *c;
3732         unsigned char scsi3addr[8];
3733         struct ErrorInfo *ei;
3734
3735         c = cmd_alloc(h);
3736
3737         /* address the controller */
3738         memset(scsi3addr, 0, sizeof(scsi3addr));
3739         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3740                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3741                 rc = -EAGAIN;
3742                 goto out;
3743         }
3744         if (extended_response)
3745                 c->Request.CDB[1] = extended_response;
3746         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3747                         NO_TIMEOUT);
3748         if (rc)
3749                 goto out;
3750         ei = c->err_info;
3751         if (ei->CommandStatus != 0 &&
3752             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3753                 hpsa_scsi_interpret_error(h, c);
3754                 rc = -EIO;
3755         } else {
3756                 struct ReportLUNdata *rld = buf;
3757
3758                 if (rld->extended_response_flag != extended_response) {
3759                         if (!h->legacy_board) {
3760                                 dev_err(&h->pdev->dev,
3761                                         "report luns requested format %u, got %u\n",
3762                                         extended_response,
3763                                         rld->extended_response_flag);
3764                                 rc = -EINVAL;
3765                         } else
3766                                 rc = -EOPNOTSUPP;
3767                 }
3768         }
3769 out:
3770         cmd_free(h, c);
3771         return rc;
3772 }
3773
3774 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3775                 struct ReportExtendedLUNdata *buf, int bufsize)
3776 {
3777         int rc;
3778         struct ReportLUNdata *lbuf;
3779
3780         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3781                                       HPSA_REPORT_PHYS_EXTENDED);
3782         if (!rc || rc != -EOPNOTSUPP)
3783                 return rc;
3784
3785         /* REPORT PHYS EXTENDED is not supported */
3786         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3787         if (!lbuf)
3788                 return -ENOMEM;
3789
3790         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3791         if (!rc) {
3792                 int i;
3793                 u32 nphys;
3794
3795                 /* Copy ReportLUNdata header */
3796                 memcpy(buf, lbuf, 8);
3797                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3798                 for (i = 0; i < nphys; i++)
3799                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3800         }
3801         kfree(lbuf);
3802         return rc;
3803 }
3804
3805 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3806                 struct ReportLUNdata *buf, int bufsize)
3807 {
3808         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3809 }
3810
3811 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3812         int bus, int target, int lun)
3813 {
3814         device->bus = bus;
3815         device->target = target;
3816         device->lun = lun;
3817 }
3818
3819 /* Use VPD inquiry to get details of volume status */
3820 static int hpsa_get_volume_status(struct ctlr_info *h,
3821                                         unsigned char scsi3addr[])
3822 {
3823         int rc;
3824         int status;
3825         int size;
3826         unsigned char *buf;
3827
3828         buf = kzalloc(64, GFP_KERNEL);
3829         if (!buf)
3830                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3831
3832         /* Does controller have VPD for logical volume status? */
3833         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3834                 goto exit_failed;
3835
3836         /* Get the size of the VPD return buffer */
3837         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3838                                         buf, HPSA_VPD_HEADER_SZ);
3839         if (rc != 0)
3840                 goto exit_failed;
3841         size = buf[3];
3842
3843         /* Now get the whole VPD buffer */
3844         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3845                                         buf, size + HPSA_VPD_HEADER_SZ);
3846         if (rc != 0)
3847                 goto exit_failed;
3848         status = buf[4]; /* status byte */
3849
3850         kfree(buf);
3851         return status;
3852 exit_failed:
3853         kfree(buf);
3854         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3855 }
3856
3857 /* Determine offline status of a volume.
3858  * Return either:
3859  *  0 (not offline)
3860  *  0xff (offline for unknown reasons)
3861  *  # (integer code indicating one of several NOT READY states
3862  *     describing why a volume is to be kept offline)
3863  */
3864 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3865                                         unsigned char scsi3addr[])
3866 {
3867         struct CommandList *c;
3868         unsigned char *sense;
3869         u8 sense_key, asc, ascq;
3870         int sense_len;
3871         int rc, ldstat = 0;
3872         u16 cmd_status;
3873         u8 scsi_status;
3874 #define ASC_LUN_NOT_READY 0x04
3875 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3876 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3877
3878         c = cmd_alloc(h);
3879
3880         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3881         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3882                                         NO_TIMEOUT);
3883         if (rc) {
3884                 cmd_free(h, c);
3885                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3886         }
3887         sense = c->err_info->SenseInfo;
3888         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3889                 sense_len = sizeof(c->err_info->SenseInfo);
3890         else
3891                 sense_len = c->err_info->SenseLen;
3892         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3893         cmd_status = c->err_info->CommandStatus;
3894         scsi_status = c->err_info->ScsiStatus;
3895         cmd_free(h, c);
3896
3897         /* Determine the reason for not ready state */
3898         ldstat = hpsa_get_volume_status(h, scsi3addr);
3899
3900         /* Keep volume offline in certain cases: */
3901         switch (ldstat) {
3902         case HPSA_LV_FAILED:
3903         case HPSA_LV_UNDERGOING_ERASE:
3904         case HPSA_LV_NOT_AVAILABLE:
3905         case HPSA_LV_UNDERGOING_RPI:
3906         case HPSA_LV_PENDING_RPI:
3907         case HPSA_LV_ENCRYPTED_NO_KEY:
3908         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3909         case HPSA_LV_UNDERGOING_ENCRYPTION:
3910         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3911         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3912                 return ldstat;
3913         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3914                 /* If VPD status page isn't available,
3915                  * use ASC/ASCQ to determine state
3916                  */
3917                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3918                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3919                         return ldstat;
3920                 break;
3921         default:
3922                 break;
3923         }
3924         return HPSA_LV_OK;
3925 }
3926
3927 static int hpsa_update_device_info(struct ctlr_info *h,
3928         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3929         unsigned char *is_OBDR_device)
3930 {
3931
3932 #define OBDR_SIG_OFFSET 43
3933 #define OBDR_TAPE_SIG "$DR-10"
3934 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3935 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3936
3937         unsigned char *inq_buff;
3938         unsigned char *obdr_sig;
3939         int rc = 0;
3940
3941         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3942         if (!inq_buff) {
3943                 rc = -ENOMEM;
3944                 goto bail_out;
3945         }
3946
3947         /* Do an inquiry to the device to see what it is. */
3948         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3949                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3950                 dev_err(&h->pdev->dev,
3951                         "%s: inquiry failed, device will be skipped.\n",
3952                         __func__);
3953                 rc = HPSA_INQUIRY_FAILED;
3954                 goto bail_out;
3955         }
3956
3957         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3958         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3959
3960         this_device->devtype = (inq_buff[0] & 0x1f);
3961         memcpy(this_device->scsi3addr, scsi3addr, 8);
3962         memcpy(this_device->vendor, &inq_buff[8],
3963                 sizeof(this_device->vendor));
3964         memcpy(this_device->model, &inq_buff[16],
3965                 sizeof(this_device->model));
3966         this_device->rev = inq_buff[2];
3967         memset(this_device->device_id, 0,
3968                 sizeof(this_device->device_id));
3969         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3970                 sizeof(this_device->device_id)) < 0) {
3971                 dev_err(&h->pdev->dev,
3972                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3973                         h->ctlr, __func__,
3974                         h->scsi_host->host_no,
3975                         this_device->bus, this_device->target,
3976                         this_device->lun,
3977                         scsi_device_type(this_device->devtype),
3978                         this_device->model);
3979                 rc = HPSA_LV_FAILED;
3980                 goto bail_out;
3981         }
3982
3983         if ((this_device->devtype == TYPE_DISK ||
3984                 this_device->devtype == TYPE_ZBC) &&
3985                 is_logical_dev_addr_mode(scsi3addr)) {
3986                 unsigned char volume_offline;
3987
3988                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3989                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3990                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3991                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3992                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3993                     h->legacy_board) {
3994                         /*
3995                          * Legacy boards might not support volume status
3996                          */
3997                         dev_info(&h->pdev->dev,
3998                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3999                                  this_device->target, this_device->lun);
4000                         volume_offline = 0;
4001                 }
4002                 this_device->volume_offline = volume_offline;
4003                 if (volume_offline == HPSA_LV_FAILED) {
4004                         rc = HPSA_LV_FAILED;
4005                         dev_err(&h->pdev->dev,
4006                                 "%s: LV failed, device will be skipped.\n",
4007                                 __func__);
4008                         goto bail_out;
4009                 }
4010         } else {
4011                 this_device->raid_level = RAID_UNKNOWN;
4012                 this_device->offload_config = 0;
4013                 this_device->offload_enabled = 0;
4014                 this_device->offload_to_be_enabled = 0;
4015                 this_device->hba_ioaccel_enabled = 0;
4016                 this_device->volume_offline = 0;
4017                 this_device->queue_depth = h->nr_cmds;
4018         }
4019
4020         if (this_device->external)
4021                 this_device->queue_depth = EXTERNAL_QD;
4022
4023         if (is_OBDR_device) {
4024                 /* See if this is a One-Button-Disaster-Recovery device
4025                  * by looking for "$DR-10" at offset 43 in inquiry data.
4026                  */
4027                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4028                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4029                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4030                                                 OBDR_SIG_LEN) == 0);
4031         }
4032         kfree(inq_buff);
4033         return 0;
4034
4035 bail_out:
4036         kfree(inq_buff);
4037         return rc;
4038 }
4039
4040 /*
4041  * Helper function to assign bus, target, lun mapping of devices.
4042  * Logical drive target and lun are assigned at this time, but
4043  * physical device lun and target assignment are deferred (assigned
4044  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4045 */
4046 static void figure_bus_target_lun(struct ctlr_info *h,
4047         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4048 {
4049         u32 lunid = get_unaligned_le32(lunaddrbytes);
4050
4051         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4052                 /* physical device, target and lun filled in later */
4053                 if (is_hba_lunid(lunaddrbytes)) {
4054                         int bus = HPSA_HBA_BUS;
4055
4056                         if (!device->rev)
4057                                 bus = HPSA_LEGACY_HBA_BUS;
4058                         hpsa_set_bus_target_lun(device,
4059                                         bus, 0, lunid & 0x3fff);
4060                 } else
4061                         /* defer target, lun assignment for physical devices */
4062                         hpsa_set_bus_target_lun(device,
4063                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4064                 return;
4065         }
4066         /* It's a logical device */
4067         if (device->external) {
4068                 hpsa_set_bus_target_lun(device,
4069                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4070                         lunid & 0x00ff);
4071                 return;
4072         }
4073         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4074                                 0, lunid & 0x3fff);
4075 }
4076
4077 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4078         int i, int nphysicals, int nlocal_logicals)
4079 {
4080         /* In report logicals, local logicals are listed first,
4081         * then any externals.
4082         */
4083         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4084
4085         if (i == raid_ctlr_position)
4086                 return 0;
4087
4088         if (i < logicals_start)
4089                 return 0;
4090
4091         /* i is in logicals range, but still within local logicals */
4092         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4093                 return 0;
4094
4095         return 1; /* it's an external lun */
4096 }
4097
4098 /*
4099  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4100  * logdev.  The number of luns in physdev and logdev are returned in
4101  * *nphysicals and *nlogicals, respectively.
4102  * Returns 0 on success, -1 otherwise.
4103  */
4104 static int hpsa_gather_lun_info(struct ctlr_info *h,
4105         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4106         struct ReportLUNdata *logdev, u32 *nlogicals)
4107 {
4108         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4109                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4110                 return -1;
4111         }
4112         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4113         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4114                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4115                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4116                 *nphysicals = HPSA_MAX_PHYS_LUN;
4117         }
4118         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4119                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4120                 return -1;
4121         }
4122         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4123         /* Reject Logicals in excess of our max capability. */
4124         if (*nlogicals > HPSA_MAX_LUN) {
4125                 dev_warn(&h->pdev->dev,
4126                         "maximum logical LUNs (%d) exceeded.  "
4127                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4128                         *nlogicals - HPSA_MAX_LUN);
4129                 *nlogicals = HPSA_MAX_LUN;
4130         }
4131         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4132                 dev_warn(&h->pdev->dev,
4133                         "maximum logical + physical LUNs (%d) exceeded. "
4134                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4135                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4136                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4137         }
4138         return 0;
4139 }
4140
4141 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4142         int i, int nphysicals, int nlogicals,
4143         struct ReportExtendedLUNdata *physdev_list,
4144         struct ReportLUNdata *logdev_list)
4145 {
4146         /* Helper function, figure out where the LUN ID info is coming from
4147          * given index i, lists of physical and logical devices, where in
4148          * the list the raid controller is supposed to appear (first or last)
4149          */
4150
4151         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4152         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4153
4154         if (i == raid_ctlr_position)
4155                 return RAID_CTLR_LUNID;
4156
4157         if (i < logicals_start)
4158                 return &physdev_list->LUN[i -
4159                                 (raid_ctlr_position == 0)].lunid[0];
4160
4161         if (i < last_device)
4162                 return &logdev_list->LUN[i - nphysicals -
4163                         (raid_ctlr_position == 0)][0];
4164         BUG();
4165         return NULL;
4166 }
4167
4168 /* get physical drive ioaccel handle and queue depth */
4169 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4170                 struct hpsa_scsi_dev_t *dev,
4171                 struct ReportExtendedLUNdata *rlep, int rle_index,
4172                 struct bmic_identify_physical_device *id_phys)
4173 {
4174         int rc;
4175         struct ext_report_lun_entry *rle;
4176
4177         rle = &rlep->LUN[rle_index];
4178
4179         dev->ioaccel_handle = rle->ioaccel_handle;
4180         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4181                 dev->hba_ioaccel_enabled = 1;
4182         memset(id_phys, 0, sizeof(*id_phys));
4183         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4184                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4185                         sizeof(*id_phys));
4186         if (!rc)
4187                 /* Reserve space for FW operations */
4188 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4189 #define DRIVE_QUEUE_DEPTH 7
4190                 dev->queue_depth =
4191                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4192                                 DRIVE_CMDS_RESERVED_FOR_FW;
4193         else
4194                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4195 }
4196
4197 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4198         struct ReportExtendedLUNdata *rlep, int rle_index,
4199         struct bmic_identify_physical_device *id_phys)
4200 {
4201         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4202
4203         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4204                 this_device->hba_ioaccel_enabled = 1;
4205
4206         memcpy(&this_device->active_path_index,
4207                 &id_phys->active_path_number,
4208                 sizeof(this_device->active_path_index));
4209         memcpy(&this_device->path_map,
4210                 &id_phys->redundant_path_present_map,
4211                 sizeof(this_device->path_map));
4212         memcpy(&this_device->box,
4213                 &id_phys->alternate_paths_phys_box_on_port,
4214                 sizeof(this_device->box));
4215         memcpy(&this_device->phys_connector,
4216                 &id_phys->alternate_paths_phys_connector,
4217                 sizeof(this_device->phys_connector));
4218         memcpy(&this_device->bay,
4219                 &id_phys->phys_bay_in_box,
4220                 sizeof(this_device->bay));
4221 }
4222
4223 /* get number of local logical disks. */
4224 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4225         struct bmic_identify_controller *id_ctlr,
4226         u32 *nlocals)
4227 {
4228         int rc;
4229
4230         if (!id_ctlr) {
4231                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4232                         __func__);
4233                 return -ENOMEM;
4234         }
4235         memset(id_ctlr, 0, sizeof(*id_ctlr));
4236         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4237         if (!rc)
4238                 if (id_ctlr->configured_logical_drive_count < 255)
4239                         *nlocals = id_ctlr->configured_logical_drive_count;
4240                 else
4241                         *nlocals = le16_to_cpu(
4242                                         id_ctlr->extended_logical_unit_count);
4243         else
4244                 *nlocals = -1;
4245         return rc;
4246 }
4247
4248 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4249 {
4250         struct bmic_identify_physical_device *id_phys;
4251         bool is_spare = false;
4252         int rc;
4253
4254         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4255         if (!id_phys)
4256                 return false;
4257
4258         rc = hpsa_bmic_id_physical_device(h,
4259                                         lunaddrbytes,
4260                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4261                                         id_phys, sizeof(*id_phys));
4262         if (rc == 0)
4263                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4264
4265         kfree(id_phys);
4266         return is_spare;
4267 }
4268
4269 #define RPL_DEV_FLAG_NON_DISK                           0x1
4270 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4271 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4272
4273 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4274
4275 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4276                                 struct ext_report_lun_entry *rle)
4277 {
4278         u8 device_flags;
4279         u8 device_type;
4280
4281         if (!MASKED_DEVICE(lunaddrbytes))
4282                 return false;
4283
4284         device_flags = rle->device_flags;
4285         device_type = rle->device_type;
4286
4287         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4288                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4289                         return false;
4290                 return true;
4291         }
4292
4293         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4294                 return false;
4295
4296         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4297                 return false;
4298
4299         /*
4300          * Spares may be spun down, we do not want to
4301          * do an Inquiry to a RAID set spare drive as
4302          * that would have them spun up, that is a
4303          * performance hit because I/O to the RAID device
4304          * stops while the spin up occurs which can take
4305          * over 50 seconds.
4306          */
4307         if (hpsa_is_disk_spare(h, lunaddrbytes))
4308                 return true;
4309
4310         return false;
4311 }
4312
4313 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4314 {
4315         /* the idea here is we could get notified
4316          * that some devices have changed, so we do a report
4317          * physical luns and report logical luns cmd, and adjust
4318          * our list of devices accordingly.
4319          *
4320          * The scsi3addr's of devices won't change so long as the
4321          * adapter is not reset.  That means we can rescan and
4322          * tell which devices we already know about, vs. new
4323          * devices, vs.  disappearing devices.
4324          */
4325         struct ReportExtendedLUNdata *physdev_list = NULL;
4326         struct ReportLUNdata *logdev_list = NULL;
4327         struct bmic_identify_physical_device *id_phys = NULL;
4328         struct bmic_identify_controller *id_ctlr = NULL;
4329         u32 nphysicals = 0;
4330         u32 nlogicals = 0;
4331         u32 nlocal_logicals = 0;
4332         u32 ndev_allocated = 0;
4333         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4334         int ncurrent = 0;
4335         int i, n_ext_target_devs, ndevs_to_allocate;
4336         int raid_ctlr_position;
4337         bool physical_device;
4338         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4339
4340         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4341         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4342         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4343         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4344         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4345         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4346
4347         if (!currentsd || !physdev_list || !logdev_list ||
4348                 !tmpdevice || !id_phys || !id_ctlr) {
4349                 dev_err(&h->pdev->dev, "out of memory\n");
4350                 goto out;
4351         }
4352         memset(lunzerobits, 0, sizeof(lunzerobits));
4353
4354         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4355
4356         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4357                         logdev_list, &nlogicals)) {
4358                 h->drv_req_rescan = 1;
4359                 goto out;
4360         }
4361
4362         /* Set number of local logicals (non PTRAID) */
4363         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4364                 dev_warn(&h->pdev->dev,
4365                         "%s: Can't determine number of local logical devices.\n",
4366                         __func__);
4367         }
4368
4369         /* We might see up to the maximum number of logical and physical disks
4370          * plus external target devices, and a device for the local RAID
4371          * controller.
4372          */
4373         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4374
4375         hpsa_ext_ctrl_present(h, physdev_list);
4376
4377         /* Allocate the per device structures */
4378         for (i = 0; i < ndevs_to_allocate; i++) {
4379                 if (i >= HPSA_MAX_DEVICES) {
4380                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4381                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4382                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4383                         break;
4384                 }
4385
4386                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4387                 if (!currentsd[i]) {
4388                         h->drv_req_rescan = 1;
4389                         goto out;
4390                 }
4391                 ndev_allocated++;
4392         }
4393
4394         if (is_scsi_rev_5(h))
4395                 raid_ctlr_position = 0;
4396         else
4397                 raid_ctlr_position = nphysicals + nlogicals;
4398
4399         /* adjust our table of devices */
4400         n_ext_target_devs = 0;
4401         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4402                 u8 *lunaddrbytes, is_OBDR = 0;
4403                 int rc = 0;
4404                 int phys_dev_index = i - (raid_ctlr_position == 0);
4405                 bool skip_device = false;
4406
4407                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4408
4409                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4410
4411                 /* Figure out where the LUN ID info is coming from */
4412                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4413                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4414
4415                 /* Determine if this is a lun from an external target array */
4416                 tmpdevice->external =
4417                         figure_external_status(h, raid_ctlr_position, i,
4418                                                 nphysicals, nlocal_logicals);
4419
4420                 /*
4421                  * Skip over some devices such as a spare.
4422                  */
4423                 if (!tmpdevice->external && physical_device) {
4424                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4425                                         &physdev_list->LUN[phys_dev_index]);
4426                         if (skip_device)
4427                                 continue;
4428                 }
4429
4430                 /* Get device type, vendor, model, device id, raid_map */
4431                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4432                                                         &is_OBDR);
4433                 if (rc == -ENOMEM) {
4434                         dev_warn(&h->pdev->dev,
4435                                 "Out of memory, rescan deferred.\n");
4436                         h->drv_req_rescan = 1;
4437                         goto out;
4438                 }
4439                 if (rc) {
4440                         h->drv_req_rescan = 1;
4441                         continue;
4442                 }
4443
4444                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4445                 this_device = currentsd[ncurrent];
4446
4447                 *this_device = *tmpdevice;
4448                 this_device->physical_device = physical_device;
4449
4450                 /*
4451                  * Expose all devices except for physical devices that
4452                  * are masked.
4453                  */
4454                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4455                         this_device->expose_device = 0;
4456                 else
4457                         this_device->expose_device = 1;
4458
4459
4460                 /*
4461                  * Get the SAS address for physical devices that are exposed.
4462                  */
4463                 if (this_device->physical_device && this_device->expose_device)
4464                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4465
4466                 switch (this_device->devtype) {
4467                 case TYPE_ROM:
4468                         /* We don't *really* support actual CD-ROM devices,
4469                          * just "One Button Disaster Recovery" tape drive
4470                          * which temporarily pretends to be a CD-ROM drive.
4471                          * So we check that the device is really an OBDR tape
4472                          * device by checking for "$DR-10" in bytes 43-48 of
4473                          * the inquiry data.
4474                          */
4475                         if (is_OBDR)
4476                                 ncurrent++;
4477                         break;
4478                 case TYPE_DISK:
4479                 case TYPE_ZBC:
4480                         if (this_device->physical_device) {
4481                                 /* The disk is in HBA mode. */
4482                                 /* Never use RAID mapper in HBA mode. */
4483                                 this_device->offload_enabled = 0;
4484                                 hpsa_get_ioaccel_drive_info(h, this_device,
4485                                         physdev_list, phys_dev_index, id_phys);
4486                                 hpsa_get_path_info(this_device,
4487                                         physdev_list, phys_dev_index, id_phys);
4488                         }
4489                         ncurrent++;
4490                         break;
4491                 case TYPE_TAPE:
4492                 case TYPE_MEDIUM_CHANGER:
4493                         ncurrent++;
4494                         break;
4495                 case TYPE_ENCLOSURE:
4496                         if (!this_device->external)
4497                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4498                                                 physdev_list, phys_dev_index,
4499                                                 this_device);
4500                         ncurrent++;
4501                         break;
4502                 case TYPE_RAID:
4503                         /* Only present the Smartarray HBA as a RAID controller.
4504                          * If it's a RAID controller other than the HBA itself
4505                          * (an external RAID controller, MSA500 or similar)
4506                          * don't present it.
4507                          */
4508                         if (!is_hba_lunid(lunaddrbytes))
4509                                 break;
4510                         ncurrent++;
4511                         break;
4512                 default:
4513                         break;
4514                 }
4515                 if (ncurrent >= HPSA_MAX_DEVICES)
4516                         break;
4517         }
4518
4519         if (h->sas_host == NULL) {
4520                 int rc = 0;
4521
4522                 rc = hpsa_add_sas_host(h);
4523                 if (rc) {
4524                         dev_warn(&h->pdev->dev,
4525                                 "Could not add sas host %d\n", rc);
4526                         goto out;
4527                 }
4528         }
4529
4530         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4531 out:
4532         kfree(tmpdevice);
4533         for (i = 0; i < ndev_allocated; i++)
4534                 kfree(currentsd[i]);
4535         kfree(currentsd);
4536         kfree(physdev_list);
4537         kfree(logdev_list);
4538         kfree(id_ctlr);
4539         kfree(id_phys);
4540 }
4541
4542 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4543                                    struct scatterlist *sg)
4544 {
4545         u64 addr64 = (u64) sg_dma_address(sg);
4546         unsigned int len = sg_dma_len(sg);
4547
4548         desc->Addr = cpu_to_le64(addr64);
4549         desc->Len = cpu_to_le32(len);
4550         desc->Ext = 0;
4551 }
4552
4553 /*
4554  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4555  * dma mapping  and fills in the scatter gather entries of the
4556  * hpsa command, cp.
4557  */
4558 static int hpsa_scatter_gather(struct ctlr_info *h,
4559                 struct CommandList *cp,
4560                 struct scsi_cmnd *cmd)
4561 {
4562         struct scatterlist *sg;
4563         int use_sg, i, sg_limit, chained, last_sg;
4564         struct SGDescriptor *curr_sg;
4565
4566         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4567
4568         use_sg = scsi_dma_map(cmd);
4569         if (use_sg < 0)
4570                 return use_sg;
4571
4572         if (!use_sg)
4573                 goto sglist_finished;
4574
4575         /*
4576          * If the number of entries is greater than the max for a single list,
4577          * then we have a chained list; we will set up all but one entry in the
4578          * first list (the last entry is saved for link information);
4579          * otherwise, we don't have a chained list and we'll set up at each of
4580          * the entries in the one list.
4581          */
4582         curr_sg = cp->SG;
4583         chained = use_sg > h->max_cmd_sg_entries;
4584         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4585         last_sg = scsi_sg_count(cmd) - 1;
4586         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4587                 hpsa_set_sg_descriptor(curr_sg, sg);
4588                 curr_sg++;
4589         }
4590
4591         if (chained) {
4592                 /*
4593                  * Continue with the chained list.  Set curr_sg to the chained
4594                  * list.  Modify the limit to the total count less the entries
4595                  * we've already set up.  Resume the scan at the list entry
4596                  * where the previous loop left off.
4597                  */
4598                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4599                 sg_limit = use_sg - sg_limit;
4600                 for_each_sg(sg, sg, sg_limit, i) {
4601                         hpsa_set_sg_descriptor(curr_sg, sg);
4602                         curr_sg++;
4603                 }
4604         }
4605
4606         /* Back the pointer up to the last entry and mark it as "last". */
4607         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4608
4609         if (use_sg + chained > h->maxSG)
4610                 h->maxSG = use_sg + chained;
4611
4612         if (chained) {
4613                 cp->Header.SGList = h->max_cmd_sg_entries;
4614                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4615                 if (hpsa_map_sg_chain_block(h, cp)) {
4616                         scsi_dma_unmap(cmd);
4617                         return -1;
4618                 }
4619                 return 0;
4620         }
4621
4622 sglist_finished:
4623
4624         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4625         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4626         return 0;
4627 }
4628
4629 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4630                                                 u8 *cdb, int cdb_len,
4631                                                 const char *func)
4632 {
4633         dev_warn(&h->pdev->dev,
4634                  "%s: Blocking zero-length request: CDB:%*phN\n",
4635                  func, cdb_len, cdb);
4636 }
4637
4638 #define IO_ACCEL_INELIGIBLE 1
4639 /* zero-length transfers trigger hardware errors. */
4640 static bool is_zero_length_transfer(u8 *cdb)
4641 {
4642         u32 block_cnt;
4643
4644         /* Block zero-length transfer sizes on certain commands. */
4645         switch (cdb[0]) {
4646         case READ_10:
4647         case WRITE_10:
4648         case VERIFY:            /* 0x2F */
4649         case WRITE_VERIFY:      /* 0x2E */
4650                 block_cnt = get_unaligned_be16(&cdb[7]);
4651                 break;
4652         case READ_12:
4653         case WRITE_12:
4654         case VERIFY_12: /* 0xAF */
4655         case WRITE_VERIFY_12:   /* 0xAE */
4656                 block_cnt = get_unaligned_be32(&cdb[6]);
4657                 break;
4658         case READ_16:
4659         case WRITE_16:
4660         case VERIFY_16:         /* 0x8F */
4661                 block_cnt = get_unaligned_be32(&cdb[10]);
4662                 break;
4663         default:
4664                 return false;
4665         }
4666
4667         return block_cnt == 0;
4668 }
4669
4670 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4671 {
4672         int is_write = 0;
4673         u32 block;
4674         u32 block_cnt;
4675
4676         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4677         switch (cdb[0]) {
4678         case WRITE_6:
4679         case WRITE_12:
4680                 is_write = 1;
4681                 /* fall through */
4682         case READ_6:
4683         case READ_12:
4684                 if (*cdb_len == 6) {
4685                         block = (((cdb[1] & 0x1F) << 16) |
4686                                 (cdb[2] << 8) |
4687                                 cdb[3]);
4688                         block_cnt = cdb[4];
4689                         if (block_cnt == 0)
4690                                 block_cnt = 256;
4691                 } else {
4692                         BUG_ON(*cdb_len != 12);
4693                         block = get_unaligned_be32(&cdb[2]);
4694                         block_cnt = get_unaligned_be32(&cdb[6]);
4695                 }
4696                 if (block_cnt > 0xffff)
4697                         return IO_ACCEL_INELIGIBLE;
4698
4699                 cdb[0] = is_write ? WRITE_10 : READ_10;
4700                 cdb[1] = 0;
4701                 cdb[2] = (u8) (block >> 24);
4702                 cdb[3] = (u8) (block >> 16);
4703                 cdb[4] = (u8) (block >> 8);
4704                 cdb[5] = (u8) (block);
4705                 cdb[6] = 0;
4706                 cdb[7] = (u8) (block_cnt >> 8);
4707                 cdb[8] = (u8) (block_cnt);
4708                 cdb[9] = 0;
4709                 *cdb_len = 10;
4710                 break;
4711         }
4712         return 0;
4713 }
4714
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4716         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4717         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4718 {
4719         struct scsi_cmnd *cmd = c->scsi_cmd;
4720         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4721         unsigned int len;
4722         unsigned int total_len = 0;
4723         struct scatterlist *sg;
4724         u64 addr64;
4725         int use_sg, i;
4726         struct SGDescriptor *curr_sg;
4727         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4728
4729         /* TODO: implement chaining support */
4730         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4731                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4732                 return IO_ACCEL_INELIGIBLE;
4733         }
4734
4735         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4736
4737         if (is_zero_length_transfer(cdb)) {
4738                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4739                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4740                 return IO_ACCEL_INELIGIBLE;
4741         }
4742
4743         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4744                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4745                 return IO_ACCEL_INELIGIBLE;
4746         }
4747
4748         c->cmd_type = CMD_IOACCEL1;
4749
4750         /* Adjust the DMA address to point to the accelerated command buffer */
4751         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4752                                 (c->cmdindex * sizeof(*cp));
4753         BUG_ON(c->busaddr & 0x0000007F);
4754
4755         use_sg = scsi_dma_map(cmd);
4756         if (use_sg < 0) {
4757                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4758                 return use_sg;
4759         }
4760
4761         if (use_sg) {
4762                 curr_sg = cp->SG;
4763                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4764                         addr64 = (u64) sg_dma_address(sg);
4765                         len  = sg_dma_len(sg);
4766                         total_len += len;
4767                         curr_sg->Addr = cpu_to_le64(addr64);
4768                         curr_sg->Len = cpu_to_le32(len);
4769                         curr_sg->Ext = cpu_to_le32(0);
4770                         curr_sg++;
4771                 }
4772                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4773
4774                 switch (cmd->sc_data_direction) {
4775                 case DMA_TO_DEVICE:
4776                         control |= IOACCEL1_CONTROL_DATA_OUT;
4777                         break;
4778                 case DMA_FROM_DEVICE:
4779                         control |= IOACCEL1_CONTROL_DATA_IN;
4780                         break;
4781                 case DMA_NONE:
4782                         control |= IOACCEL1_CONTROL_NODATAXFER;
4783                         break;
4784                 default:
4785                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4786                         cmd->sc_data_direction);
4787                         BUG();
4788                         break;
4789                 }
4790         } else {
4791                 control |= IOACCEL1_CONTROL_NODATAXFER;
4792         }
4793
4794         c->Header.SGList = use_sg;
4795         /* Fill out the command structure to submit */
4796         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4797         cp->transfer_len = cpu_to_le32(total_len);
4798         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4799                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4800         cp->control = cpu_to_le32(control);
4801         memcpy(cp->CDB, cdb, cdb_len);
4802         memcpy(cp->CISS_LUN, scsi3addr, 8);
4803         /* Tag was already set at init time. */
4804         enqueue_cmd_and_start_io(h, c);
4805         return 0;
4806 }
4807
4808 /*
4809  * Queue a command directly to a device behind the controller using the
4810  * I/O accelerator path.
4811  */
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4813         struct CommandList *c)
4814 {
4815         struct scsi_cmnd *cmd = c->scsi_cmd;
4816         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4817
4818         if (!dev)
4819                 return -1;
4820
4821         c->phys_disk = dev;
4822
4823         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4824                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4825 }
4826
4827 /*
4828  * Set encryption parameters for the ioaccel2 request
4829  */
4830 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4831         struct CommandList *c, struct io_accel2_cmd *cp)
4832 {
4833         struct scsi_cmnd *cmd = c->scsi_cmd;
4834         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4835         struct raid_map_data *map = &dev->raid_map;
4836         u64 first_block;
4837
4838         /* Are we doing encryption on this device */
4839         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4840                 return;
4841         /* Set the data encryption key index. */
4842         cp->dekindex = map->dekindex;
4843
4844         /* Set the encryption enable flag, encoded into direction field. */
4845         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4846
4847         /* Set encryption tweak values based on logical block address
4848          * If block size is 512, tweak value is LBA.
4849          * For other block sizes, tweak is (LBA * block size)/ 512)
4850          */
4851         switch (cmd->cmnd[0]) {
4852         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4853         case READ_6:
4854         case WRITE_6:
4855                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4856                                 (cmd->cmnd[2] << 8) |
4857                                 cmd->cmnd[3]);
4858                 break;
4859         case WRITE_10:
4860         case READ_10:
4861         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4862         case WRITE_12:
4863         case READ_12:
4864                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4865                 break;
4866         case WRITE_16:
4867         case READ_16:
4868                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4869                 break;
4870         default:
4871                 dev_err(&h->pdev->dev,
4872                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4873                         __func__, cmd->cmnd[0]);
4874                 BUG();
4875                 break;
4876         }
4877
4878         if (le32_to_cpu(map->volume_blk_size) != 512)
4879                 first_block = first_block *
4880                                 le32_to_cpu(map->volume_blk_size)/512;
4881
4882         cp->tweak_lower = cpu_to_le32(first_block);
4883         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4884 }
4885
4886 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4887         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890         struct scsi_cmnd *cmd = c->scsi_cmd;
4891         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4892         struct ioaccel2_sg_element *curr_sg;
4893         int use_sg, i;
4894         struct scatterlist *sg;
4895         u64 addr64;
4896         u32 len;
4897         u32 total_len = 0;
4898
4899         if (!cmd->device)
4900                 return -1;
4901
4902         if (!cmd->device->hostdata)
4903                 return -1;
4904
4905         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4906
4907         if (is_zero_length_transfer(cdb)) {
4908                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4909                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4910                 return IO_ACCEL_INELIGIBLE;
4911         }
4912
4913         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4914                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4915                 return IO_ACCEL_INELIGIBLE;
4916         }
4917
4918         c->cmd_type = CMD_IOACCEL2;
4919         /* Adjust the DMA address to point to the accelerated command buffer */
4920         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4921                                 (c->cmdindex * sizeof(*cp));
4922         BUG_ON(c->busaddr & 0x0000007F);
4923
4924         memset(cp, 0, sizeof(*cp));
4925         cp->IU_type = IOACCEL2_IU_TYPE;
4926
4927         use_sg = scsi_dma_map(cmd);
4928         if (use_sg < 0) {
4929                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4930                 return use_sg;
4931         }
4932
4933         if (use_sg) {
4934                 curr_sg = cp->sg;
4935                 if (use_sg > h->ioaccel_maxsg) {
4936                         addr64 = le64_to_cpu(
4937                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4938                         curr_sg->address = cpu_to_le64(addr64);
4939                         curr_sg->length = 0;
4940                         curr_sg->reserved[0] = 0;
4941                         curr_sg->reserved[1] = 0;
4942                         curr_sg->reserved[2] = 0;
4943                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4944
4945                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4946                 }
4947                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4948                         addr64 = (u64) sg_dma_address(sg);
4949                         len  = sg_dma_len(sg);
4950                         total_len += len;
4951                         curr_sg->address = cpu_to_le64(addr64);
4952                         curr_sg->length = cpu_to_le32(len);
4953                         curr_sg->reserved[0] = 0;
4954                         curr_sg->reserved[1] = 0;
4955                         curr_sg->reserved[2] = 0;
4956                         curr_sg->chain_indicator = 0;
4957                         curr_sg++;
4958                 }
4959
4960                 /*
4961                  * Set the last s/g element bit
4962                  */
4963                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4964
4965                 switch (cmd->sc_data_direction) {
4966                 case DMA_TO_DEVICE:
4967                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4968                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4969                         break;
4970                 case DMA_FROM_DEVICE:
4971                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4972                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4973                         break;
4974                 case DMA_NONE:
4975                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4976                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4977                         break;
4978                 default:
4979                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4980                                 cmd->sc_data_direction);
4981                         BUG();
4982                         break;
4983                 }
4984         } else {
4985                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4986                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4987         }
4988
4989         /* Set encryption parameters, if necessary */
4990         set_encrypt_ioaccel2(h, c, cp);
4991
4992         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4993         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4994         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4995
4996         cp->data_len = cpu_to_le32(total_len);
4997         cp->err_ptr = cpu_to_le64(c->busaddr +
4998                         offsetof(struct io_accel2_cmd, error_data));
4999         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5000
5001         /* fill in sg elements */
5002         if (use_sg > h->ioaccel_maxsg) {
5003                 cp->sg_count = 1;
5004                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5005                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5006                         atomic_dec(&phys_disk->ioaccel_cmds_out);
5007                         scsi_dma_unmap(cmd);
5008                         return -1;
5009                 }
5010         } else
5011                 cp->sg_count = (u8) use_sg;
5012
5013         enqueue_cmd_and_start_io(h, c);
5014         return 0;
5015 }
5016
5017 /*
5018  * Queue a command to the correct I/O accelerator path.
5019  */
5020 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5021         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5022         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5023 {
5024         if (!c->scsi_cmd->device)
5025                 return -1;
5026
5027         if (!c->scsi_cmd->device->hostdata)
5028                 return -1;
5029
5030         /* Try to honor the device's queue depth */
5031         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5032                                         phys_disk->queue_depth) {
5033                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5034                 return IO_ACCEL_INELIGIBLE;
5035         }
5036         if (h->transMethod & CFGTBL_Trans_io_accel1)
5037                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5038                                                 cdb, cdb_len, scsi3addr,
5039                                                 phys_disk);
5040         else
5041                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5042                                                 cdb, cdb_len, scsi3addr,
5043                                                 phys_disk);
5044 }
5045
5046 static void raid_map_helper(struct raid_map_data *map,
5047                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5048 {
5049         if (offload_to_mirror == 0)  {
5050                 /* use physical disk in the first mirrored group. */
5051                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5052                 return;
5053         }
5054         do {
5055                 /* determine mirror group that *map_index indicates */
5056                 *current_group = *map_index /
5057                         le16_to_cpu(map->data_disks_per_row);
5058                 if (offload_to_mirror == *current_group)
5059                         continue;
5060                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5061                         /* select map index from next group */
5062                         *map_index += le16_to_cpu(map->data_disks_per_row);
5063                         (*current_group)++;
5064                 } else {
5065                         /* select map index from first group */
5066                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5067                         *current_group = 0;
5068                 }
5069         } while (offload_to_mirror != *current_group);
5070 }
5071
5072 /*
5073  * Attempt to perform offload RAID mapping for a logical volume I/O.
5074  */
5075 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5076         struct CommandList *c)
5077 {
5078         struct scsi_cmnd *cmd = c->scsi_cmd;
5079         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5080         struct raid_map_data *map = &dev->raid_map;
5081         struct raid_map_disk_data *dd = &map->data[0];
5082         int is_write = 0;
5083         u32 map_index;
5084         u64 first_block, last_block;
5085         u32 block_cnt;
5086         u32 blocks_per_row;
5087         u64 first_row, last_row;
5088         u32 first_row_offset, last_row_offset;
5089         u32 first_column, last_column;
5090         u64 r0_first_row, r0_last_row;
5091         u32 r5or6_blocks_per_row;
5092         u64 r5or6_first_row, r5or6_last_row;
5093         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5094         u32 r5or6_first_column, r5or6_last_column;
5095         u32 total_disks_per_row;
5096         u32 stripesize;
5097         u32 first_group, last_group, current_group;
5098         u32 map_row;
5099         u32 disk_handle;
5100         u64 disk_block;
5101         u32 disk_block_cnt;
5102         u8 cdb[16];
5103         u8 cdb_len;
5104         u16 strip_size;
5105 #if BITS_PER_LONG == 32
5106         u64 tmpdiv;
5107 #endif
5108         int offload_to_mirror;
5109
5110         if (!dev)
5111                 return -1;
5112
5113         /* check for valid opcode, get LBA and block count */
5114         switch (cmd->cmnd[0]) {
5115         case WRITE_6:
5116                 is_write = 1;
5117                 /* fall through */
5118         case READ_6:
5119                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5120                                 (cmd->cmnd[2] << 8) |
5121                                 cmd->cmnd[3]);
5122                 block_cnt = cmd->cmnd[4];
5123                 if (block_cnt == 0)
5124                         block_cnt = 256;
5125                 break;
5126         case WRITE_10:
5127                 is_write = 1;
5128                 /* fall through */
5129         case READ_10:
5130                 first_block =
5131                         (((u64) cmd->cmnd[2]) << 24) |
5132                         (((u64) cmd->cmnd[3]) << 16) |
5133                         (((u64) cmd->cmnd[4]) << 8) |
5134                         cmd->cmnd[5];
5135                 block_cnt =
5136                         (((u32) cmd->cmnd[7]) << 8) |
5137                         cmd->cmnd[8];
5138                 break;
5139         case WRITE_12:
5140                 is_write = 1;
5141                 /* fall through */
5142         case READ_12:
5143                 first_block =
5144                         (((u64) cmd->cmnd[2]) << 24) |
5145                         (((u64) cmd->cmnd[3]) << 16) |
5146                         (((u64) cmd->cmnd[4]) << 8) |
5147                         cmd->cmnd[5];
5148                 block_cnt =
5149                         (((u32) cmd->cmnd[6]) << 24) |
5150                         (((u32) cmd->cmnd[7]) << 16) |
5151                         (((u32) cmd->cmnd[8]) << 8) |
5152                 cmd->cmnd[9];
5153                 break;
5154         case WRITE_16:
5155                 is_write = 1;
5156                 /* fall through */
5157         case READ_16:
5158                 first_block =
5159                         (((u64) cmd->cmnd[2]) << 56) |
5160                         (((u64) cmd->cmnd[3]) << 48) |
5161                         (((u64) cmd->cmnd[4]) << 40) |
5162                         (((u64) cmd->cmnd[5]) << 32) |
5163                         (((u64) cmd->cmnd[6]) << 24) |
5164                         (((u64) cmd->cmnd[7]) << 16) |
5165                         (((u64) cmd->cmnd[8]) << 8) |
5166                         cmd->cmnd[9];
5167                 block_cnt =
5168                         (((u32) cmd->cmnd[10]) << 24) |
5169                         (((u32) cmd->cmnd[11]) << 16) |
5170                         (((u32) cmd->cmnd[12]) << 8) |
5171                         cmd->cmnd[13];
5172                 break;
5173         default:
5174                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5175         }
5176         last_block = first_block + block_cnt - 1;
5177
5178         /* check for write to non-RAID-0 */
5179         if (is_write && dev->raid_level != 0)
5180                 return IO_ACCEL_INELIGIBLE;
5181
5182         /* check for invalid block or wraparound */
5183         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5184                 last_block < first_block)
5185                 return IO_ACCEL_INELIGIBLE;
5186
5187         /* calculate stripe information for the request */
5188         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5189                                 le16_to_cpu(map->strip_size);
5190         strip_size = le16_to_cpu(map->strip_size);
5191 #if BITS_PER_LONG == 32
5192         tmpdiv = first_block;
5193         (void) do_div(tmpdiv, blocks_per_row);
5194         first_row = tmpdiv;
5195         tmpdiv = last_block;
5196         (void) do_div(tmpdiv, blocks_per_row);
5197         last_row = tmpdiv;
5198         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5199         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5200         tmpdiv = first_row_offset;
5201         (void) do_div(tmpdiv, strip_size);
5202         first_column = tmpdiv;
5203         tmpdiv = last_row_offset;
5204         (void) do_div(tmpdiv, strip_size);
5205         last_column = tmpdiv;
5206 #else
5207         first_row = first_block / blocks_per_row;
5208         last_row = last_block / blocks_per_row;
5209         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5210         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5211         first_column = first_row_offset / strip_size;
5212         last_column = last_row_offset / strip_size;
5213 #endif
5214
5215         /* if this isn't a single row/column then give to the controller */
5216         if ((first_row != last_row) || (first_column != last_column))
5217                 return IO_ACCEL_INELIGIBLE;
5218
5219         /* proceeding with driver mapping */
5220         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5221                                 le16_to_cpu(map->metadata_disks_per_row);
5222         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5223                                 le16_to_cpu(map->row_cnt);
5224         map_index = (map_row * total_disks_per_row) + first_column;
5225
5226         switch (dev->raid_level) {
5227         case HPSA_RAID_0:
5228                 break; /* nothing special to do */
5229         case HPSA_RAID_1:
5230                 /* Handles load balance across RAID 1 members.
5231                  * (2-drive R1 and R10 with even # of drives.)
5232                  * Appropriate for SSDs, not optimal for HDDs
5233                  */
5234                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5235                 if (dev->offload_to_mirror)
5236                         map_index += le16_to_cpu(map->data_disks_per_row);
5237                 dev->offload_to_mirror = !dev->offload_to_mirror;
5238                 break;
5239         case HPSA_RAID_ADM:
5240                 /* Handles N-way mirrors  (R1-ADM)
5241                  * and R10 with # of drives divisible by 3.)
5242                  */
5243                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5244
5245                 offload_to_mirror = dev->offload_to_mirror;
5246                 raid_map_helper(map, offload_to_mirror,
5247                                 &map_index, &current_group);
5248                 /* set mirror group to use next time */
5249                 offload_to_mirror =
5250                         (offload_to_mirror >=
5251                         le16_to_cpu(map->layout_map_count) - 1)
5252                         ? 0 : offload_to_mirror + 1;
5253                 dev->offload_to_mirror = offload_to_mirror;
5254                 /* Avoid direct use of dev->offload_to_mirror within this
5255                  * function since multiple threads might simultaneously
5256                  * increment it beyond the range of dev->layout_map_count -1.
5257                  */
5258                 break;
5259         case HPSA_RAID_5:
5260         case HPSA_RAID_6:
5261                 if (le16_to_cpu(map->layout_map_count) <= 1)
5262                         break;
5263
5264                 /* Verify first and last block are in same RAID group */
5265                 r5or6_blocks_per_row =
5266                         le16_to_cpu(map->strip_size) *
5267                         le16_to_cpu(map->data_disks_per_row);
5268                 BUG_ON(r5or6_blocks_per_row == 0);
5269                 stripesize = r5or6_blocks_per_row *
5270                         le16_to_cpu(map->layout_map_count);
5271 #if BITS_PER_LONG == 32
5272                 tmpdiv = first_block;
5273                 first_group = do_div(tmpdiv, stripesize);
5274                 tmpdiv = first_group;
5275                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5276                 first_group = tmpdiv;
5277                 tmpdiv = last_block;
5278                 last_group = do_div(tmpdiv, stripesize);
5279                 tmpdiv = last_group;
5280                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5281                 last_group = tmpdiv;
5282 #else
5283                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5284                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5285 #endif
5286                 if (first_group != last_group)
5287                         return IO_ACCEL_INELIGIBLE;
5288
5289                 /* Verify request is in a single row of RAID 5/6 */
5290 #if BITS_PER_LONG == 32
5291                 tmpdiv = first_block;
5292                 (void) do_div(tmpdiv, stripesize);
5293                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5294                 tmpdiv = last_block;
5295                 (void) do_div(tmpdiv, stripesize);
5296                 r5or6_last_row = r0_last_row = tmpdiv;
5297 #else
5298                 first_row = r5or6_first_row = r0_first_row =
5299                                                 first_block / stripesize;
5300                 r5or6_last_row = r0_last_row = last_block / stripesize;
5301 #endif
5302                 if (r5or6_first_row != r5or6_last_row)
5303                         return IO_ACCEL_INELIGIBLE;
5304
5305
5306                 /* Verify request is in a single column */
5307 #if BITS_PER_LONG == 32
5308                 tmpdiv = first_block;
5309                 first_row_offset = do_div(tmpdiv, stripesize);
5310                 tmpdiv = first_row_offset;
5311                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5312                 r5or6_first_row_offset = first_row_offset;
5313                 tmpdiv = last_block;
5314                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5315                 tmpdiv = r5or6_last_row_offset;
5316                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5317                 tmpdiv = r5or6_first_row_offset;
5318                 (void) do_div(tmpdiv, map->strip_size);
5319                 first_column = r5or6_first_column = tmpdiv;
5320                 tmpdiv = r5or6_last_row_offset;
5321                 (void) do_div(tmpdiv, map->strip_size);
5322                 r5or6_last_column = tmpdiv;
5323 #else
5324                 first_row_offset = r5or6_first_row_offset =
5325                         (u32)((first_block % stripesize) %
5326                                                 r5or6_blocks_per_row);
5327
5328                 r5or6_last_row_offset =
5329                         (u32)((last_block % stripesize) %
5330                                                 r5or6_blocks_per_row);
5331
5332                 first_column = r5or6_first_column =
5333                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5334                 r5or6_last_column =
5335                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5336 #endif
5337                 if (r5or6_first_column != r5or6_last_column)
5338                         return IO_ACCEL_INELIGIBLE;
5339
5340                 /* Request is eligible */
5341                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5342                         le16_to_cpu(map->row_cnt);
5343
5344                 map_index = (first_group *
5345                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5346                         (map_row * total_disks_per_row) + first_column;
5347                 break;
5348         default:
5349                 return IO_ACCEL_INELIGIBLE;
5350         }
5351
5352         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5353                 return IO_ACCEL_INELIGIBLE;
5354
5355         c->phys_disk = dev->phys_disk[map_index];
5356         if (!c->phys_disk)
5357                 return IO_ACCEL_INELIGIBLE;
5358
5359         disk_handle = dd[map_index].ioaccel_handle;
5360         disk_block = le64_to_cpu(map->disk_starting_blk) +
5361                         first_row * le16_to_cpu(map->strip_size) +
5362                         (first_row_offset - first_column *
5363                         le16_to_cpu(map->strip_size));
5364         disk_block_cnt = block_cnt;
5365
5366         /* handle differing logical/physical block sizes */
5367         if (map->phys_blk_shift) {
5368                 disk_block <<= map->phys_blk_shift;
5369                 disk_block_cnt <<= map->phys_blk_shift;
5370         }
5371         BUG_ON(disk_block_cnt > 0xffff);
5372
5373         /* build the new CDB for the physical disk I/O */
5374         if (disk_block > 0xffffffff) {
5375                 cdb[0] = is_write ? WRITE_16 : READ_16;
5376                 cdb[1] = 0;
5377                 cdb[2] = (u8) (disk_block >> 56);
5378                 cdb[3] = (u8) (disk_block >> 48);
5379                 cdb[4] = (u8) (disk_block >> 40);
5380                 cdb[5] = (u8) (disk_block >> 32);
5381                 cdb[6] = (u8) (disk_block >> 24);
5382                 cdb[7] = (u8) (disk_block >> 16);
5383                 cdb[8] = (u8) (disk_block >> 8);
5384                 cdb[9] = (u8) (disk_block);
5385                 cdb[10] = (u8) (disk_block_cnt >> 24);
5386                 cdb[11] = (u8) (disk_block_cnt >> 16);
5387                 cdb[12] = (u8) (disk_block_cnt >> 8);
5388                 cdb[13] = (u8) (disk_block_cnt);
5389                 cdb[14] = 0;
5390                 cdb[15] = 0;
5391                 cdb_len = 16;
5392         } else {
5393                 cdb[0] = is_write ? WRITE_10 : READ_10;
5394                 cdb[1] = 0;
5395                 cdb[2] = (u8) (disk_block >> 24);
5396                 cdb[3] = (u8) (disk_block >> 16);
5397                 cdb[4] = (u8) (disk_block >> 8);
5398                 cdb[5] = (u8) (disk_block);
5399                 cdb[6] = 0;
5400                 cdb[7] = (u8) (disk_block_cnt >> 8);
5401                 cdb[8] = (u8) (disk_block_cnt);
5402                 cdb[9] = 0;
5403                 cdb_len = 10;
5404         }
5405         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5406                                                 dev->scsi3addr,
5407                                                 dev->phys_disk[map_index]);
5408 }
5409
5410 /*
5411  * Submit commands down the "normal" RAID stack path
5412  * All callers to hpsa_ciss_submit must check lockup_detected
5413  * beforehand, before (opt.) and after calling cmd_alloc
5414  */
5415 static int hpsa_ciss_submit(struct ctlr_info *h,
5416         struct CommandList *c, struct scsi_cmnd *cmd,
5417         unsigned char scsi3addr[])
5418 {
5419         cmd->host_scribble = (unsigned char *) c;
5420         c->cmd_type = CMD_SCSI;
5421         c->scsi_cmd = cmd;
5422         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5423         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5424         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5425
5426         /* Fill in the request block... */
5427
5428         c->Request.Timeout = 0;
5429         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5430         c->Request.CDBLen = cmd->cmd_len;
5431         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5432         switch (cmd->sc_data_direction) {
5433         case DMA_TO_DEVICE:
5434                 c->Request.type_attr_dir =
5435                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5436                 break;
5437         case DMA_FROM_DEVICE:
5438                 c->Request.type_attr_dir =
5439                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5440                 break;
5441         case DMA_NONE:
5442                 c->Request.type_attr_dir =
5443                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5444                 break;
5445         case DMA_BIDIRECTIONAL:
5446                 /* This can happen if a buggy application does a scsi passthru
5447                  * and sets both inlen and outlen to non-zero. ( see
5448                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5449                  */
5450
5451                 c->Request.type_attr_dir =
5452                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5453                 /* This is technically wrong, and hpsa controllers should
5454                  * reject it with CMD_INVALID, which is the most correct
5455                  * response, but non-fibre backends appear to let it
5456                  * slide by, and give the same results as if this field
5457                  * were set correctly.  Either way is acceptable for
5458                  * our purposes here.
5459                  */
5460
5461                 break;
5462
5463         default:
5464                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5465                         cmd->sc_data_direction);
5466                 BUG();
5467                 break;
5468         }
5469
5470         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5471                 hpsa_cmd_resolve_and_free(h, c);
5472                 return SCSI_MLQUEUE_HOST_BUSY;
5473         }
5474         enqueue_cmd_and_start_io(h, c);
5475         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5476         return 0;
5477 }
5478
5479 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5480                                 struct CommandList *c)
5481 {
5482         dma_addr_t cmd_dma_handle, err_dma_handle;
5483
5484         /* Zero out all of commandlist except the last field, refcount */
5485         memset(c, 0, offsetof(struct CommandList, refcount));
5486         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5487         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5488         c->err_info = h->errinfo_pool + index;
5489         memset(c->err_info, 0, sizeof(*c->err_info));
5490         err_dma_handle = h->errinfo_pool_dhandle
5491             + index * sizeof(*c->err_info);
5492         c->cmdindex = index;
5493         c->busaddr = (u32) cmd_dma_handle;
5494         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5495         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5496         c->h = h;
5497         c->scsi_cmd = SCSI_CMD_IDLE;
5498 }
5499
5500 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5501 {
5502         int i;
5503
5504         for (i = 0; i < h->nr_cmds; i++) {
5505                 struct CommandList *c = h->cmd_pool + i;
5506
5507                 hpsa_cmd_init(h, i, c);
5508                 atomic_set(&c->refcount, 0);
5509         }
5510 }
5511
5512 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5513                                 struct CommandList *c)
5514 {
5515         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5516
5517         BUG_ON(c->cmdindex != index);
5518
5519         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5520         memset(c->err_info, 0, sizeof(*c->err_info));
5521         c->busaddr = (u32) cmd_dma_handle;
5522 }
5523
5524 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5525                 struct CommandList *c, struct scsi_cmnd *cmd,
5526                 unsigned char *scsi3addr)
5527 {
5528         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5529         int rc = IO_ACCEL_INELIGIBLE;
5530
5531         if (!dev)
5532                 return SCSI_MLQUEUE_HOST_BUSY;
5533
5534         cmd->host_scribble = (unsigned char *) c;
5535
5536         if (dev->offload_enabled) {
5537                 hpsa_cmd_init(h, c->cmdindex, c);
5538                 c->cmd_type = CMD_SCSI;
5539                 c->scsi_cmd = cmd;
5540                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5541                 if (rc < 0)     /* scsi_dma_map failed. */
5542                         rc = SCSI_MLQUEUE_HOST_BUSY;
5543         } else if (dev->hba_ioaccel_enabled) {
5544                 hpsa_cmd_init(h, c->cmdindex, c);
5545                 c->cmd_type = CMD_SCSI;
5546                 c->scsi_cmd = cmd;
5547                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5548                 if (rc < 0)     /* scsi_dma_map failed. */
5549                         rc = SCSI_MLQUEUE_HOST_BUSY;
5550         }
5551         return rc;
5552 }
5553
5554 static void hpsa_command_resubmit_worker(struct work_struct *work)
5555 {
5556         struct scsi_cmnd *cmd;
5557         struct hpsa_scsi_dev_t *dev;
5558         struct CommandList *c = container_of(work, struct CommandList, work);
5559
5560         cmd = c->scsi_cmd;
5561         dev = cmd->device->hostdata;
5562         if (!dev) {
5563                 cmd->result = DID_NO_CONNECT << 16;
5564                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5565         }
5566         if (c->reset_pending)
5567                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5568         if (c->cmd_type == CMD_IOACCEL2) {
5569                 struct ctlr_info *h = c->h;
5570                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5571                 int rc;
5572
5573                 if (c2->error_data.serv_response ==
5574                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5575                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5576                         if (rc == 0)
5577                                 return;
5578                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5579                                 /*
5580                                  * If we get here, it means dma mapping failed.
5581                                  * Try again via scsi mid layer, which will
5582                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5583                                  */
5584                                 cmd->result = DID_IMM_RETRY << 16;
5585                                 return hpsa_cmd_free_and_done(h, c, cmd);
5586                         }
5587                         /* else, fall thru and resubmit down CISS path */
5588                 }
5589         }
5590         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5591         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5592                 /*
5593                  * If we get here, it means dma mapping failed. Try
5594                  * again via scsi mid layer, which will then get
5595                  * SCSI_MLQUEUE_HOST_BUSY.
5596                  *
5597                  * hpsa_ciss_submit will have already freed c
5598                  * if it encountered a dma mapping failure.
5599                  */
5600                 cmd->result = DID_IMM_RETRY << 16;
5601                 cmd->scsi_done(cmd);
5602         }
5603 }
5604
5605 /* Running in struct Scsi_Host->host_lock less mode */
5606 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5607 {
5608         struct ctlr_info *h;
5609         struct hpsa_scsi_dev_t *dev;
5610         unsigned char scsi3addr[8];
5611         struct CommandList *c;
5612         int rc = 0;
5613
5614         /* Get the ptr to our adapter structure out of cmd->host. */
5615         h = sdev_to_hba(cmd->device);
5616
5617         BUG_ON(cmd->request->tag < 0);
5618
5619         dev = cmd->device->hostdata;
5620         if (!dev) {
5621                 cmd->result = DID_NO_CONNECT << 16;
5622                 cmd->scsi_done(cmd);
5623                 return 0;
5624         }
5625
5626         if (dev->removed) {
5627                 cmd->result = DID_NO_CONNECT << 16;
5628                 cmd->scsi_done(cmd);
5629                 return 0;
5630         }
5631
5632         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5633
5634         if (unlikely(lockup_detected(h))) {
5635                 cmd->result = DID_NO_CONNECT << 16;
5636                 cmd->scsi_done(cmd);
5637                 return 0;
5638         }
5639         c = cmd_tagged_alloc(h, cmd);
5640
5641         /*
5642          * Call alternate submit routine for I/O accelerated commands.
5643          * Retries always go down the normal I/O path.
5644          */
5645         if (likely(cmd->retries == 0 &&
5646                         !blk_rq_is_passthrough(cmd->request) &&
5647                         h->acciopath_status)) {
5648                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5649                 if (rc == 0)
5650                         return 0;
5651                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5652                         hpsa_cmd_resolve_and_free(h, c);
5653                         return SCSI_MLQUEUE_HOST_BUSY;
5654                 }
5655         }
5656         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5657 }
5658
5659 static void hpsa_scan_complete(struct ctlr_info *h)
5660 {
5661         unsigned long flags;
5662
5663         spin_lock_irqsave(&h->scan_lock, flags);
5664         h->scan_finished = 1;
5665         wake_up(&h->scan_wait_queue);
5666         spin_unlock_irqrestore(&h->scan_lock, flags);
5667 }
5668
5669 static void hpsa_scan_start(struct Scsi_Host *sh)
5670 {
5671         struct ctlr_info *h = shost_to_hba(sh);
5672         unsigned long flags;
5673
5674         /*
5675          * Don't let rescans be initiated on a controller known to be locked
5676          * up.  If the controller locks up *during* a rescan, that thread is
5677          * probably hosed, but at least we can prevent new rescan threads from
5678          * piling up on a locked up controller.
5679          */
5680         if (unlikely(lockup_detected(h)))
5681                 return hpsa_scan_complete(h);
5682
5683         /*
5684          * If a scan is already waiting to run, no need to add another
5685          */
5686         spin_lock_irqsave(&h->scan_lock, flags);
5687         if (h->scan_waiting) {
5688                 spin_unlock_irqrestore(&h->scan_lock, flags);
5689                 return;
5690         }
5691
5692         spin_unlock_irqrestore(&h->scan_lock, flags);
5693
5694         /* wait until any scan already in progress is finished. */
5695         while (1) {
5696                 spin_lock_irqsave(&h->scan_lock, flags);
5697                 if (h->scan_finished)
5698                         break;
5699                 h->scan_waiting = 1;
5700                 spin_unlock_irqrestore(&h->scan_lock, flags);
5701                 wait_event(h->scan_wait_queue, h->scan_finished);
5702                 /* Note: We don't need to worry about a race between this
5703                  * thread and driver unload because the midlayer will
5704                  * have incremented the reference count, so unload won't
5705                  * happen if we're in here.
5706                  */
5707         }
5708         h->scan_finished = 0; /* mark scan as in progress */
5709         h->scan_waiting = 0;
5710         spin_unlock_irqrestore(&h->scan_lock, flags);
5711
5712         if (unlikely(lockup_detected(h)))
5713                 return hpsa_scan_complete(h);
5714
5715         /*
5716          * Do the scan after a reset completion
5717          */
5718         spin_lock_irqsave(&h->reset_lock, flags);
5719         if (h->reset_in_progress) {
5720                 h->drv_req_rescan = 1;
5721                 spin_unlock_irqrestore(&h->reset_lock, flags);
5722                 hpsa_scan_complete(h);
5723                 return;
5724         }
5725         spin_unlock_irqrestore(&h->reset_lock, flags);
5726
5727         hpsa_update_scsi_devices(h);
5728
5729         hpsa_scan_complete(h);
5730 }
5731
5732 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5733 {
5734         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5735
5736         if (!logical_drive)
5737                 return -ENODEV;
5738
5739         if (qdepth < 1)
5740                 qdepth = 1;
5741         else if (qdepth > logical_drive->queue_depth)
5742                 qdepth = logical_drive->queue_depth;
5743
5744         return scsi_change_queue_depth(sdev, qdepth);
5745 }
5746
5747 static int hpsa_scan_finished(struct Scsi_Host *sh,
5748         unsigned long elapsed_time)
5749 {
5750         struct ctlr_info *h = shost_to_hba(sh);
5751         unsigned long flags;
5752         int finished;
5753
5754         spin_lock_irqsave(&h->scan_lock, flags);
5755         finished = h->scan_finished;
5756         spin_unlock_irqrestore(&h->scan_lock, flags);
5757         return finished;
5758 }
5759
5760 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5761 {
5762         struct Scsi_Host *sh;
5763
5764         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5765         if (sh == NULL) {
5766                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5767                 return -ENOMEM;
5768         }
5769
5770         sh->io_port = 0;
5771         sh->n_io_port = 0;
5772         sh->this_id = -1;
5773         sh->max_channel = 3;
5774         sh->max_cmd_len = MAX_COMMAND_SIZE;
5775         sh->max_lun = HPSA_MAX_LUN;
5776         sh->max_id = HPSA_MAX_LUN;
5777         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5778         sh->cmd_per_lun = sh->can_queue;
5779         sh->sg_tablesize = h->maxsgentries;
5780         sh->transportt = hpsa_sas_transport_template;
5781         sh->hostdata[0] = (unsigned long) h;
5782         sh->irq = pci_irq_vector(h->pdev, 0);
5783         sh->unique_id = sh->irq;
5784
5785         h->scsi_host = sh;
5786         return 0;
5787 }
5788
5789 static int hpsa_scsi_add_host(struct ctlr_info *h)
5790 {
5791         int rv;
5792
5793         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5794         if (rv) {
5795                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5796                 return rv;
5797         }
5798         scsi_scan_host(h->scsi_host);
5799         return 0;
5800 }
5801
5802 /*
5803  * The block layer has already gone to the trouble of picking out a unique,
5804  * small-integer tag for this request.  We use an offset from that value as
5805  * an index to select our command block.  (The offset allows us to reserve the
5806  * low-numbered entries for our own uses.)
5807  */
5808 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5809 {
5810         int idx = scmd->request->tag;
5811
5812         if (idx < 0)
5813                 return idx;
5814
5815         /* Offset to leave space for internal cmds. */
5816         return idx += HPSA_NRESERVED_CMDS;
5817 }
5818
5819 /*
5820  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5821  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5822  */
5823 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5824                                 struct CommandList *c, unsigned char lunaddr[],
5825                                 int reply_queue)
5826 {
5827         int rc;
5828
5829         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5830         (void) fill_cmd(c, TEST_UNIT_READY, h,
5831                         NULL, 0, 0, lunaddr, TYPE_CMD);
5832         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5833         if (rc)
5834                 return rc;
5835         /* no unmap needed here because no data xfer. */
5836
5837         /* Check if the unit is already ready. */
5838         if (c->err_info->CommandStatus == CMD_SUCCESS)
5839                 return 0;
5840
5841         /*
5842          * The first command sent after reset will receive "unit attention" to
5843          * indicate that the LUN has been reset...this is actually what we're
5844          * looking for (but, success is good too).
5845          */
5846         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5847                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5848                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5849                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5850                 return 0;
5851
5852         return 1;
5853 }
5854
5855 /*
5856  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5857  * returns zero when the unit is ready, and non-zero when giving up.
5858  */
5859 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5860                                 struct CommandList *c,
5861                                 unsigned char lunaddr[], int reply_queue)
5862 {
5863         int rc;
5864         int count = 0;
5865         int waittime = 1; /* seconds */
5866
5867         /* Send test unit ready until device ready, or give up. */
5868         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5869
5870                 /*
5871                  * Wait for a bit.  do this first, because if we send
5872                  * the TUR right away, the reset will just abort it.
5873                  */
5874                 msleep(1000 * waittime);
5875
5876                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5877                 if (!rc)
5878                         break;
5879
5880                 /* Increase wait time with each try, up to a point. */
5881                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5882                         waittime *= 2;
5883
5884                 dev_warn(&h->pdev->dev,
5885                          "waiting %d secs for device to become ready.\n",
5886                          waittime);
5887         }
5888
5889         return rc;
5890 }
5891
5892 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5893                                            unsigned char lunaddr[],
5894                                            int reply_queue)
5895 {
5896         int first_queue;
5897         int last_queue;
5898         int rq;
5899         int rc = 0;
5900         struct CommandList *c;
5901
5902         c = cmd_alloc(h);
5903
5904         /*
5905          * If no specific reply queue was requested, then send the TUR
5906          * repeatedly, requesting a reply on each reply queue; otherwise execute
5907          * the loop exactly once using only the specified queue.
5908          */
5909         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5910                 first_queue = 0;
5911                 last_queue = h->nreply_queues - 1;
5912         } else {
5913                 first_queue = reply_queue;
5914                 last_queue = reply_queue;
5915         }
5916
5917         for (rq = first_queue; rq <= last_queue; rq++) {
5918                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5919                 if (rc)
5920                         break;
5921         }
5922
5923         if (rc)
5924                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5925         else
5926                 dev_warn(&h->pdev->dev, "device is ready.\n");
5927
5928         cmd_free(h, c);
5929         return rc;
5930 }
5931
5932 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5933  * complaining.  Doing a host- or bus-reset can't do anything good here.
5934  */
5935 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5936 {
5937         int rc = SUCCESS;
5938         struct ctlr_info *h;
5939         struct hpsa_scsi_dev_t *dev;
5940         u8 reset_type;
5941         char msg[48];
5942         unsigned long flags;
5943
5944         /* find the controller to which the command to be aborted was sent */
5945         h = sdev_to_hba(scsicmd->device);
5946         if (h == NULL) /* paranoia */
5947                 return FAILED;
5948
5949         spin_lock_irqsave(&h->reset_lock, flags);
5950         h->reset_in_progress = 1;
5951         spin_unlock_irqrestore(&h->reset_lock, flags);
5952
5953         if (lockup_detected(h)) {
5954                 rc = FAILED;
5955                 goto return_reset_status;
5956         }
5957
5958         dev = scsicmd->device->hostdata;
5959         if (!dev) {
5960                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5961                 rc = FAILED;
5962                 goto return_reset_status;
5963         }
5964
5965         if (dev->devtype == TYPE_ENCLOSURE) {
5966                 rc = SUCCESS;
5967                 goto return_reset_status;
5968         }
5969
5970         /* if controller locked up, we can guarantee command won't complete */
5971         if (lockup_detected(h)) {
5972                 snprintf(msg, sizeof(msg),
5973                          "cmd %d RESET FAILED, lockup detected",
5974                          hpsa_get_cmd_index(scsicmd));
5975                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5976                 rc = FAILED;
5977                 goto return_reset_status;
5978         }
5979
5980         /* this reset request might be the result of a lockup; check */
5981         if (detect_controller_lockup(h)) {
5982                 snprintf(msg, sizeof(msg),
5983                          "cmd %d RESET FAILED, new lockup detected",
5984                          hpsa_get_cmd_index(scsicmd));
5985                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5986                 rc = FAILED;
5987                 goto return_reset_status;
5988         }
5989
5990         /* Do not attempt on controller */
5991         if (is_hba_lunid(dev->scsi3addr)) {
5992                 rc = SUCCESS;
5993                 goto return_reset_status;
5994         }
5995
5996         if (is_logical_dev_addr_mode(dev->scsi3addr))
5997                 reset_type = HPSA_DEVICE_RESET_MSG;
5998         else
5999                 reset_type = HPSA_PHYS_TARGET_RESET;
6000
6001         sprintf(msg, "resetting %s",
6002                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6003         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6004
6005         /* send a reset to the SCSI LUN which the command was sent to */
6006         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
6007                            DEFAULT_REPLY_QUEUE);
6008         if (rc == 0)
6009                 rc = SUCCESS;
6010         else
6011                 rc = FAILED;
6012
6013         sprintf(msg, "reset %s %s",
6014                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6015                 rc == SUCCESS ? "completed successfully" : "failed");
6016         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6017
6018 return_reset_status:
6019         spin_lock_irqsave(&h->reset_lock, flags);
6020         h->reset_in_progress = 0;
6021         spin_unlock_irqrestore(&h->reset_lock, flags);
6022         return rc;
6023 }
6024
6025 /*
6026  * For operations with an associated SCSI command, a command block is allocated
6027  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6028  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6029  * the complement, although cmd_free() may be called instead.
6030  */
6031 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6032                                             struct scsi_cmnd *scmd)
6033 {
6034         int idx = hpsa_get_cmd_index(scmd);
6035         struct CommandList *c = h->cmd_pool + idx;
6036
6037         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6038                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6039                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6040                 /* The index value comes from the block layer, so if it's out of
6041                  * bounds, it's probably not our bug.
6042                  */
6043                 BUG();
6044         }
6045
6046         atomic_inc(&c->refcount);
6047         if (unlikely(!hpsa_is_cmd_idle(c))) {
6048                 /*
6049                  * We expect that the SCSI layer will hand us a unique tag
6050                  * value.  Thus, there should never be a collision here between
6051                  * two requests...because if the selected command isn't idle
6052                  * then someone is going to be very disappointed.
6053                  */
6054                 dev_err(&h->pdev->dev,
6055                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6056                         idx);
6057                 if (c->scsi_cmd != NULL)
6058                         scsi_print_command(c->scsi_cmd);
6059                 scsi_print_command(scmd);
6060         }
6061
6062         hpsa_cmd_partial_init(h, idx, c);
6063         return c;
6064 }
6065
6066 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6067 {
6068         /*
6069          * Release our reference to the block.  We don't need to do anything
6070          * else to free it, because it is accessed by index.
6071          */
6072         (void)atomic_dec(&c->refcount);
6073 }
6074
6075 /*
6076  * For operations that cannot sleep, a command block is allocated at init,
6077  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6078  * which ones are free or in use.  Lock must be held when calling this.
6079  * cmd_free() is the complement.
6080  * This function never gives up and returns NULL.  If it hangs,
6081  * another thread must call cmd_free() to free some tags.
6082  */
6083
6084 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6085 {
6086         struct CommandList *c;
6087         int refcount, i;
6088         int offset = 0;
6089
6090         /*
6091          * There is some *extremely* small but non-zero chance that that
6092          * multiple threads could get in here, and one thread could
6093          * be scanning through the list of bits looking for a free
6094          * one, but the free ones are always behind him, and other
6095          * threads sneak in behind him and eat them before he can
6096          * get to them, so that while there is always a free one, a
6097          * very unlucky thread might be starved anyway, never able to
6098          * beat the other threads.  In reality, this happens so
6099          * infrequently as to be indistinguishable from never.
6100          *
6101          * Note that we start allocating commands before the SCSI host structure
6102          * is initialized.  Since the search starts at bit zero, this
6103          * all works, since we have at least one command structure available;
6104          * however, it means that the structures with the low indexes have to be
6105          * reserved for driver-initiated requests, while requests from the block
6106          * layer will use the higher indexes.
6107          */
6108
6109         for (;;) {
6110                 i = find_next_zero_bit(h->cmd_pool_bits,
6111                                         HPSA_NRESERVED_CMDS,
6112                                         offset);
6113                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6114                         offset = 0;
6115                         continue;
6116                 }
6117                 c = h->cmd_pool + i;
6118                 refcount = atomic_inc_return(&c->refcount);
6119                 if (unlikely(refcount > 1)) {
6120                         cmd_free(h, c); /* already in use */
6121                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6122                         continue;
6123                 }
6124                 set_bit(i & (BITS_PER_LONG - 1),
6125                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6126                 break; /* it's ours now. */
6127         }
6128         hpsa_cmd_partial_init(h, i, c);
6129         return c;
6130 }
6131
6132 /*
6133  * This is the complementary operation to cmd_alloc().  Note, however, in some
6134  * corner cases it may also be used to free blocks allocated by
6135  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6136  * the clear-bit is harmless.
6137  */
6138 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6139 {
6140         if (atomic_dec_and_test(&c->refcount)) {
6141                 int i;
6142
6143                 i = c - h->cmd_pool;
6144                 clear_bit(i & (BITS_PER_LONG - 1),
6145                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6146         }
6147 }
6148
6149 #ifdef CONFIG_COMPAT
6150
6151 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6152         void __user *arg)
6153 {
6154         IOCTL32_Command_struct __user *arg32 =
6155             (IOCTL32_Command_struct __user *) arg;
6156         IOCTL_Command_struct arg64;
6157         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6158         int err;
6159         u32 cp;
6160
6161         memset(&arg64, 0, sizeof(arg64));
6162         err = 0;
6163         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6164                            sizeof(arg64.LUN_info));
6165         err |= copy_from_user(&arg64.Request, &arg32->Request,
6166                            sizeof(arg64.Request));
6167         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6168                            sizeof(arg64.error_info));
6169         err |= get_user(arg64.buf_size, &arg32->buf_size);
6170         err |= get_user(cp, &arg32->buf);
6171         arg64.buf = compat_ptr(cp);
6172         err |= copy_to_user(p, &arg64, sizeof(arg64));
6173
6174         if (err)
6175                 return -EFAULT;
6176
6177         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6178         if (err)
6179                 return err;
6180         err |= copy_in_user(&arg32->error_info, &p->error_info,
6181                          sizeof(arg32->error_info));
6182         if (err)
6183                 return -EFAULT;
6184         return err;
6185 }
6186
6187 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6188         unsigned int cmd, void __user *arg)
6189 {
6190         BIG_IOCTL32_Command_struct __user *arg32 =
6191             (BIG_IOCTL32_Command_struct __user *) arg;
6192         BIG_IOCTL_Command_struct arg64;
6193         BIG_IOCTL_Command_struct __user *p =
6194             compat_alloc_user_space(sizeof(arg64));
6195         int err;
6196         u32 cp;
6197
6198         memset(&arg64, 0, sizeof(arg64));
6199         err = 0;
6200         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6201                            sizeof(arg64.LUN_info));
6202         err |= copy_from_user(&arg64.Request, &arg32->Request,
6203                            sizeof(arg64.Request));
6204         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6205                            sizeof(arg64.error_info));
6206         err |= get_user(arg64.buf_size, &arg32->buf_size);
6207         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6208         err |= get_user(cp, &arg32->buf);
6209         arg64.buf = compat_ptr(cp);
6210         err |= copy_to_user(p, &arg64, sizeof(arg64));
6211
6212         if (err)
6213                 return -EFAULT;
6214
6215         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6216         if (err)
6217                 return err;
6218         err |= copy_in_user(&arg32->error_info, &p->error_info,
6219                          sizeof(arg32->error_info));
6220         if (err)
6221                 return -EFAULT;
6222         return err;
6223 }
6224
6225 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6226                              void __user *arg)
6227 {
6228         switch (cmd) {
6229         case CCISS_GETPCIINFO:
6230         case CCISS_GETINTINFO:
6231         case CCISS_SETINTINFO:
6232         case CCISS_GETNODENAME:
6233         case CCISS_SETNODENAME:
6234         case CCISS_GETHEARTBEAT:
6235         case CCISS_GETBUSTYPES:
6236         case CCISS_GETFIRMVER:
6237         case CCISS_GETDRIVVER:
6238         case CCISS_REVALIDVOLS:
6239         case CCISS_DEREGDISK:
6240         case CCISS_REGNEWDISK:
6241         case CCISS_REGNEWD:
6242         case CCISS_RESCANDISK:
6243         case CCISS_GETLUNINFO:
6244                 return hpsa_ioctl(dev, cmd, arg);
6245
6246         case CCISS_PASSTHRU32:
6247                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6248         case CCISS_BIG_PASSTHRU32:
6249                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6250
6251         default:
6252                 return -ENOIOCTLCMD;
6253         }
6254 }
6255 #endif
6256
6257 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6258 {
6259         struct hpsa_pci_info pciinfo;
6260
6261         if (!argp)
6262                 return -EINVAL;
6263         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6264         pciinfo.bus = h->pdev->bus->number;
6265         pciinfo.dev_fn = h->pdev->devfn;
6266         pciinfo.board_id = h->board_id;
6267         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6268                 return -EFAULT;
6269         return 0;
6270 }
6271
6272 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6273 {
6274         DriverVer_type DriverVer;
6275         unsigned char vmaj, vmin, vsubmin;
6276         int rc;
6277
6278         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6279                 &vmaj, &vmin, &vsubmin);
6280         if (rc != 3) {
6281                 dev_info(&h->pdev->dev, "driver version string '%s' "
6282                         "unrecognized.", HPSA_DRIVER_VERSION);
6283                 vmaj = 0;
6284                 vmin = 0;
6285                 vsubmin = 0;
6286         }
6287         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6288         if (!argp)
6289                 return -EINVAL;
6290         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6291                 return -EFAULT;
6292         return 0;
6293 }
6294
6295 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6296 {
6297         IOCTL_Command_struct iocommand;
6298         struct CommandList *c;
6299         char *buff = NULL;
6300         u64 temp64;
6301         int rc = 0;
6302
6303         if (!argp)
6304                 return -EINVAL;
6305         if (!capable(CAP_SYS_RAWIO))
6306                 return -EPERM;
6307         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6308                 return -EFAULT;
6309         if ((iocommand.buf_size < 1) &&
6310             (iocommand.Request.Type.Direction != XFER_NONE)) {
6311                 return -EINVAL;
6312         }
6313         if (iocommand.buf_size > 0) {
6314                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6315                 if (buff == NULL)
6316                         return -ENOMEM;
6317                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6318                         /* Copy the data into the buffer we created */
6319                         if (copy_from_user(buff, iocommand.buf,
6320                                 iocommand.buf_size)) {
6321                                 rc = -EFAULT;
6322                                 goto out_kfree;
6323                         }
6324                 } else {
6325                         memset(buff, 0, iocommand.buf_size);
6326                 }
6327         }
6328         c = cmd_alloc(h);
6329
6330         /* Fill in the command type */
6331         c->cmd_type = CMD_IOCTL_PEND;
6332         c->scsi_cmd = SCSI_CMD_BUSY;
6333         /* Fill in Command Header */
6334         c->Header.ReplyQueue = 0; /* unused in simple mode */
6335         if (iocommand.buf_size > 0) {   /* buffer to fill */
6336                 c->Header.SGList = 1;
6337                 c->Header.SGTotal = cpu_to_le16(1);
6338         } else  { /* no buffers to fill */
6339                 c->Header.SGList = 0;
6340                 c->Header.SGTotal = cpu_to_le16(0);
6341         }
6342         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6343
6344         /* Fill in Request block */
6345         memcpy(&c->Request, &iocommand.Request,
6346                 sizeof(c->Request));
6347
6348         /* Fill in the scatter gather information */
6349         if (iocommand.buf_size > 0) {
6350                 temp64 = dma_map_single(&h->pdev->dev, buff,
6351                         iocommand.buf_size, DMA_BIDIRECTIONAL);
6352                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6353                         c->SG[0].Addr = cpu_to_le64(0);
6354                         c->SG[0].Len = cpu_to_le32(0);
6355                         rc = -ENOMEM;
6356                         goto out;
6357                 }
6358                 c->SG[0].Addr = cpu_to_le64(temp64);
6359                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6360                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6361         }
6362         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6363                                         NO_TIMEOUT);
6364         if (iocommand.buf_size > 0)
6365                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6366         check_ioctl_unit_attention(h, c);
6367         if (rc) {
6368                 rc = -EIO;
6369                 goto out;
6370         }
6371
6372         /* Copy the error information out */
6373         memcpy(&iocommand.error_info, c->err_info,
6374                 sizeof(iocommand.error_info));
6375         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6376                 rc = -EFAULT;
6377                 goto out;
6378         }
6379         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6380                 iocommand.buf_size > 0) {
6381                 /* Copy the data out of the buffer we created */
6382                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6383                         rc = -EFAULT;
6384                         goto out;
6385                 }
6386         }
6387 out:
6388         cmd_free(h, c);
6389 out_kfree:
6390         kfree(buff);
6391         return rc;
6392 }
6393
6394 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6395 {
6396         BIG_IOCTL_Command_struct *ioc;
6397         struct CommandList *c;
6398         unsigned char **buff = NULL;
6399         int *buff_size = NULL;
6400         u64 temp64;
6401         BYTE sg_used = 0;
6402         int status = 0;
6403         u32 left;
6404         u32 sz;
6405         BYTE __user *data_ptr;
6406
6407         if (!argp)
6408                 return -EINVAL;
6409         if (!capable(CAP_SYS_RAWIO))
6410                 return -EPERM;
6411         ioc = vmemdup_user(argp, sizeof(*ioc));
6412         if (IS_ERR(ioc)) {
6413                 status = PTR_ERR(ioc);
6414                 goto cleanup1;
6415         }
6416         if ((ioc->buf_size < 1) &&
6417             (ioc->Request.Type.Direction != XFER_NONE)) {
6418                 status = -EINVAL;
6419                 goto cleanup1;
6420         }
6421         /* Check kmalloc limits  using all SGs */
6422         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6423                 status = -EINVAL;
6424                 goto cleanup1;
6425         }
6426         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6427                 status = -EINVAL;
6428                 goto cleanup1;
6429         }
6430         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6431         if (!buff) {
6432                 status = -ENOMEM;
6433                 goto cleanup1;
6434         }
6435         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6436         if (!buff_size) {
6437                 status = -ENOMEM;
6438                 goto cleanup1;
6439         }
6440         left = ioc->buf_size;
6441         data_ptr = ioc->buf;
6442         while (left) {
6443                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6444                 buff_size[sg_used] = sz;
6445                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6446                 if (buff[sg_used] == NULL) {
6447                         status = -ENOMEM;
6448                         goto cleanup1;
6449                 }
6450                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6451                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6452                                 status = -EFAULT;
6453                                 goto cleanup1;
6454                         }
6455                 } else
6456                         memset(buff[sg_used], 0, sz);
6457                 left -= sz;
6458                 data_ptr += sz;
6459                 sg_used++;
6460         }
6461         c = cmd_alloc(h);
6462
6463         c->cmd_type = CMD_IOCTL_PEND;
6464         c->scsi_cmd = SCSI_CMD_BUSY;
6465         c->Header.ReplyQueue = 0;
6466         c->Header.SGList = (u8) sg_used;
6467         c->Header.SGTotal = cpu_to_le16(sg_used);
6468         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6469         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6470         if (ioc->buf_size > 0) {
6471                 int i;
6472                 for (i = 0; i < sg_used; i++) {
6473                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6474                                     buff_size[i], DMA_BIDIRECTIONAL);
6475                         if (dma_mapping_error(&h->pdev->dev,
6476                                                         (dma_addr_t) temp64)) {
6477                                 c->SG[i].Addr = cpu_to_le64(0);
6478                                 c->SG[i].Len = cpu_to_le32(0);
6479                                 hpsa_pci_unmap(h->pdev, c, i,
6480                                         DMA_BIDIRECTIONAL);
6481                                 status = -ENOMEM;
6482                                 goto cleanup0;
6483                         }
6484                         c->SG[i].Addr = cpu_to_le64(temp64);
6485                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6486                         c->SG[i].Ext = cpu_to_le32(0);
6487                 }
6488                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6489         }
6490         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6491                                                 NO_TIMEOUT);
6492         if (sg_used)
6493                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6494         check_ioctl_unit_attention(h, c);
6495         if (status) {
6496                 status = -EIO;
6497                 goto cleanup0;
6498         }
6499
6500         /* Copy the error information out */
6501         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6502         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6503                 status = -EFAULT;
6504                 goto cleanup0;
6505         }
6506         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6507                 int i;
6508
6509                 /* Copy the data out of the buffer we created */
6510                 BYTE __user *ptr = ioc->buf;
6511                 for (i = 0; i < sg_used; i++) {
6512                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6513                                 status = -EFAULT;
6514                                 goto cleanup0;
6515                         }
6516                         ptr += buff_size[i];
6517                 }
6518         }
6519         status = 0;
6520 cleanup0:
6521         cmd_free(h, c);
6522 cleanup1:
6523         if (buff) {
6524                 int i;
6525
6526                 for (i = 0; i < sg_used; i++)
6527                         kfree(buff[i]);
6528                 kfree(buff);
6529         }
6530         kfree(buff_size);
6531         kvfree(ioc);
6532         return status;
6533 }
6534
6535 static void check_ioctl_unit_attention(struct ctlr_info *h,
6536         struct CommandList *c)
6537 {
6538         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6539                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6540                 (void) check_for_unit_attention(h, c);
6541 }
6542
6543 /*
6544  * ioctl
6545  */
6546 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6547                       void __user *arg)
6548 {
6549         struct ctlr_info *h;
6550         void __user *argp = (void __user *)arg;
6551         int rc;
6552
6553         h = sdev_to_hba(dev);
6554
6555         switch (cmd) {
6556         case CCISS_DEREGDISK:
6557         case CCISS_REGNEWDISK:
6558         case CCISS_REGNEWD:
6559                 hpsa_scan_start(h->scsi_host);
6560                 return 0;
6561         case CCISS_GETPCIINFO:
6562                 return hpsa_getpciinfo_ioctl(h, argp);
6563         case CCISS_GETDRIVVER:
6564                 return hpsa_getdrivver_ioctl(h, argp);
6565         case CCISS_PASSTHRU:
6566                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6567                         return -EAGAIN;
6568                 rc = hpsa_passthru_ioctl(h, argp);
6569                 atomic_inc(&h->passthru_cmds_avail);
6570                 return rc;
6571         case CCISS_BIG_PASSTHRU:
6572                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6573                         return -EAGAIN;
6574                 rc = hpsa_big_passthru_ioctl(h, argp);
6575                 atomic_inc(&h->passthru_cmds_avail);
6576                 return rc;
6577         default:
6578                 return -ENOTTY;
6579         }
6580 }
6581
6582 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6583                                 u8 reset_type)
6584 {
6585         struct CommandList *c;
6586
6587         c = cmd_alloc(h);
6588
6589         /* fill_cmd can't fail here, no data buffer to map */
6590         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6591                 RAID_CTLR_LUNID, TYPE_MSG);
6592         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6593         c->waiting = NULL;
6594         enqueue_cmd_and_start_io(h, c);
6595         /* Don't wait for completion, the reset won't complete.  Don't free
6596          * the command either.  This is the last command we will send before
6597          * re-initializing everything, so it doesn't matter and won't leak.
6598          */
6599         return;
6600 }
6601
6602 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6603         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6604         int cmd_type)
6605 {
6606         enum dma_data_direction dir = DMA_NONE;
6607
6608         c->cmd_type = CMD_IOCTL_PEND;
6609         c->scsi_cmd = SCSI_CMD_BUSY;
6610         c->Header.ReplyQueue = 0;
6611         if (buff != NULL && size > 0) {
6612                 c->Header.SGList = 1;
6613                 c->Header.SGTotal = cpu_to_le16(1);
6614         } else {
6615                 c->Header.SGList = 0;
6616                 c->Header.SGTotal = cpu_to_le16(0);
6617         }
6618         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6619
6620         if (cmd_type == TYPE_CMD) {
6621                 switch (cmd) {
6622                 case HPSA_INQUIRY:
6623                         /* are we trying to read a vital product page */
6624                         if (page_code & VPD_PAGE) {
6625                                 c->Request.CDB[1] = 0x01;
6626                                 c->Request.CDB[2] = (page_code & 0xff);
6627                         }
6628                         c->Request.CDBLen = 6;
6629                         c->Request.type_attr_dir =
6630                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6631                         c->Request.Timeout = 0;
6632                         c->Request.CDB[0] = HPSA_INQUIRY;
6633                         c->Request.CDB[4] = size & 0xFF;
6634                         break;
6635                 case RECEIVE_DIAGNOSTIC:
6636                         c->Request.CDBLen = 6;
6637                         c->Request.type_attr_dir =
6638                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639                         c->Request.Timeout = 0;
6640                         c->Request.CDB[0] = cmd;
6641                         c->Request.CDB[1] = 1;
6642                         c->Request.CDB[2] = 1;
6643                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6644                         c->Request.CDB[4] = size & 0xFF;
6645                         break;
6646                 case HPSA_REPORT_LOG:
6647                 case HPSA_REPORT_PHYS:
6648                         /* Talking to controller so It's a physical command
6649                            mode = 00 target = 0.  Nothing to write.
6650                          */
6651                         c->Request.CDBLen = 12;
6652                         c->Request.type_attr_dir =
6653                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6654                         c->Request.Timeout = 0;
6655                         c->Request.CDB[0] = cmd;
6656                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6657                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6658                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6659                         c->Request.CDB[9] = size & 0xFF;
6660                         break;
6661                 case BMIC_SENSE_DIAG_OPTIONS:
6662                         c->Request.CDBLen = 16;
6663                         c->Request.type_attr_dir =
6664                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6665                         c->Request.Timeout = 0;
6666                         /* Spec says this should be BMIC_WRITE */
6667                         c->Request.CDB[0] = BMIC_READ;
6668                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6669                         break;
6670                 case BMIC_SET_DIAG_OPTIONS:
6671                         c->Request.CDBLen = 16;
6672                         c->Request.type_attr_dir =
6673                                         TYPE_ATTR_DIR(cmd_type,
6674                                                 ATTR_SIMPLE, XFER_WRITE);
6675                         c->Request.Timeout = 0;
6676                         c->Request.CDB[0] = BMIC_WRITE;
6677                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6678                         break;
6679                 case HPSA_CACHE_FLUSH:
6680                         c->Request.CDBLen = 12;
6681                         c->Request.type_attr_dir =
6682                                         TYPE_ATTR_DIR(cmd_type,
6683                                                 ATTR_SIMPLE, XFER_WRITE);
6684                         c->Request.Timeout = 0;
6685                         c->Request.CDB[0] = BMIC_WRITE;
6686                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6687                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6688                         c->Request.CDB[8] = size & 0xFF;
6689                         break;
6690                 case TEST_UNIT_READY:
6691                         c->Request.CDBLen = 6;
6692                         c->Request.type_attr_dir =
6693                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6694                         c->Request.Timeout = 0;
6695                         break;
6696                 case HPSA_GET_RAID_MAP:
6697                         c->Request.CDBLen = 12;
6698                         c->Request.type_attr_dir =
6699                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6700                         c->Request.Timeout = 0;
6701                         c->Request.CDB[0] = HPSA_CISS_READ;
6702                         c->Request.CDB[1] = cmd;
6703                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6704                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6705                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6706                         c->Request.CDB[9] = size & 0xFF;
6707                         break;
6708                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6709                         c->Request.CDBLen = 10;
6710                         c->Request.type_attr_dir =
6711                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712                         c->Request.Timeout = 0;
6713                         c->Request.CDB[0] = BMIC_READ;
6714                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6715                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6716                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6717                         break;
6718                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6719                         c->Request.CDBLen = 10;
6720                         c->Request.type_attr_dir =
6721                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6722                         c->Request.Timeout = 0;
6723                         c->Request.CDB[0] = BMIC_READ;
6724                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6725                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6726                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6727                         break;
6728                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6729                         c->Request.CDBLen = 10;
6730                         c->Request.type_attr_dir =
6731                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6732                         c->Request.Timeout = 0;
6733                         c->Request.CDB[0] = BMIC_READ;
6734                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6735                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6736                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6737                         break;
6738                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6739                         c->Request.CDBLen = 10;
6740                         c->Request.type_attr_dir =
6741                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6742                         c->Request.Timeout = 0;
6743                         c->Request.CDB[0] = BMIC_READ;
6744                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6745                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6746                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6747                         break;
6748                 case BMIC_IDENTIFY_CONTROLLER:
6749                         c->Request.CDBLen = 10;
6750                         c->Request.type_attr_dir =
6751                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6752                         c->Request.Timeout = 0;
6753                         c->Request.CDB[0] = BMIC_READ;
6754                         c->Request.CDB[1] = 0;
6755                         c->Request.CDB[2] = 0;
6756                         c->Request.CDB[3] = 0;
6757                         c->Request.CDB[4] = 0;
6758                         c->Request.CDB[5] = 0;
6759                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6760                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6761                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6762                         c->Request.CDB[9] = 0;
6763                         break;
6764                 default:
6765                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6766                         BUG();
6767                 }
6768         } else if (cmd_type == TYPE_MSG) {
6769                 switch (cmd) {
6770
6771                 case  HPSA_PHYS_TARGET_RESET:
6772                         c->Request.CDBLen = 16;
6773                         c->Request.type_attr_dir =
6774                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6775                         c->Request.Timeout = 0; /* Don't time out */
6776                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6777                         c->Request.CDB[0] = HPSA_RESET;
6778                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6779                         /* Physical target reset needs no control bytes 4-7*/
6780                         c->Request.CDB[4] = 0x00;
6781                         c->Request.CDB[5] = 0x00;
6782                         c->Request.CDB[6] = 0x00;
6783                         c->Request.CDB[7] = 0x00;
6784                         break;
6785                 case  HPSA_DEVICE_RESET_MSG:
6786                         c->Request.CDBLen = 16;
6787                         c->Request.type_attr_dir =
6788                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6789                         c->Request.Timeout = 0; /* Don't time out */
6790                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6791                         c->Request.CDB[0] =  cmd;
6792                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6793                         /* If bytes 4-7 are zero, it means reset the */
6794                         /* LunID device */
6795                         c->Request.CDB[4] = 0x00;
6796                         c->Request.CDB[5] = 0x00;
6797                         c->Request.CDB[6] = 0x00;
6798                         c->Request.CDB[7] = 0x00;
6799                         break;
6800                 default:
6801                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6802                                 cmd);
6803                         BUG();
6804                 }
6805         } else {
6806                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6807                 BUG();
6808         }
6809
6810         switch (GET_DIR(c->Request.type_attr_dir)) {
6811         case XFER_READ:
6812                 dir = DMA_FROM_DEVICE;
6813                 break;
6814         case XFER_WRITE:
6815                 dir = DMA_TO_DEVICE;
6816                 break;
6817         case XFER_NONE:
6818                 dir = DMA_NONE;
6819                 break;
6820         default:
6821                 dir = DMA_BIDIRECTIONAL;
6822         }
6823         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6824                 return -1;
6825         return 0;
6826 }
6827
6828 /*
6829  * Map (physical) PCI mem into (virtual) kernel space
6830  */
6831 static void __iomem *remap_pci_mem(ulong base, ulong size)
6832 {
6833         ulong page_base = ((ulong) base) & PAGE_MASK;
6834         ulong page_offs = ((ulong) base) - page_base;
6835         void __iomem *page_remapped = ioremap_nocache(page_base,
6836                 page_offs + size);
6837
6838         return page_remapped ? (page_remapped + page_offs) : NULL;
6839 }
6840
6841 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6842 {
6843         return h->access.command_completed(h, q);
6844 }
6845
6846 static inline bool interrupt_pending(struct ctlr_info *h)
6847 {
6848         return h->access.intr_pending(h);
6849 }
6850
6851 static inline long interrupt_not_for_us(struct ctlr_info *h)
6852 {
6853         return (h->access.intr_pending(h) == 0) ||
6854                 (h->interrupts_enabled == 0);
6855 }
6856
6857 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6858         u32 raw_tag)
6859 {
6860         if (unlikely(tag_index >= h->nr_cmds)) {
6861                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6862                 return 1;
6863         }
6864         return 0;
6865 }
6866
6867 static inline void finish_cmd(struct CommandList *c)
6868 {
6869         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6870         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6871                         || c->cmd_type == CMD_IOACCEL2))
6872                 complete_scsi_command(c);
6873         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6874                 complete(c->waiting);
6875 }
6876
6877 /* process completion of an indexed ("direct lookup") command */
6878 static inline void process_indexed_cmd(struct ctlr_info *h,
6879         u32 raw_tag)
6880 {
6881         u32 tag_index;
6882         struct CommandList *c;
6883
6884         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6885         if (!bad_tag(h, tag_index, raw_tag)) {
6886                 c = h->cmd_pool + tag_index;
6887                 finish_cmd(c);
6888         }
6889 }
6890
6891 /* Some controllers, like p400, will give us one interrupt
6892  * after a soft reset, even if we turned interrupts off.
6893  * Only need to check for this in the hpsa_xxx_discard_completions
6894  * functions.
6895  */
6896 static int ignore_bogus_interrupt(struct ctlr_info *h)
6897 {
6898         if (likely(!reset_devices))
6899                 return 0;
6900
6901         if (likely(h->interrupts_enabled))
6902                 return 0;
6903
6904         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6905                 "(known firmware bug.)  Ignoring.\n");
6906
6907         return 1;
6908 }
6909
6910 /*
6911  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6912  * Relies on (h-q[x] == x) being true for x such that
6913  * 0 <= x < MAX_REPLY_QUEUES.
6914  */
6915 static struct ctlr_info *queue_to_hba(u8 *queue)
6916 {
6917         return container_of((queue - *queue), struct ctlr_info, q[0]);
6918 }
6919
6920 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6921 {
6922         struct ctlr_info *h = queue_to_hba(queue);
6923         u8 q = *(u8 *) queue;
6924         u32 raw_tag;
6925
6926         if (ignore_bogus_interrupt(h))
6927                 return IRQ_NONE;
6928
6929         if (interrupt_not_for_us(h))
6930                 return IRQ_NONE;
6931         h->last_intr_timestamp = get_jiffies_64();
6932         while (interrupt_pending(h)) {
6933                 raw_tag = get_next_completion(h, q);
6934                 while (raw_tag != FIFO_EMPTY)
6935                         raw_tag = next_command(h, q);
6936         }
6937         return IRQ_HANDLED;
6938 }
6939
6940 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6941 {
6942         struct ctlr_info *h = queue_to_hba(queue);
6943         u32 raw_tag;
6944         u8 q = *(u8 *) queue;
6945
6946         if (ignore_bogus_interrupt(h))
6947                 return IRQ_NONE;
6948
6949         h->last_intr_timestamp = get_jiffies_64();
6950         raw_tag = get_next_completion(h, q);
6951         while (raw_tag != FIFO_EMPTY)
6952                 raw_tag = next_command(h, q);
6953         return IRQ_HANDLED;
6954 }
6955
6956 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6957 {
6958         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6959         u32 raw_tag;
6960         u8 q = *(u8 *) queue;
6961
6962         if (interrupt_not_for_us(h))
6963                 return IRQ_NONE;
6964         h->last_intr_timestamp = get_jiffies_64();
6965         while (interrupt_pending(h)) {
6966                 raw_tag = get_next_completion(h, q);
6967                 while (raw_tag != FIFO_EMPTY) {
6968                         process_indexed_cmd(h, raw_tag);
6969                         raw_tag = next_command(h, q);
6970                 }
6971         }
6972         return IRQ_HANDLED;
6973 }
6974
6975 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6976 {
6977         struct ctlr_info *h = queue_to_hba(queue);
6978         u32 raw_tag;
6979         u8 q = *(u8 *) queue;
6980
6981         h->last_intr_timestamp = get_jiffies_64();
6982         raw_tag = get_next_completion(h, q);
6983         while (raw_tag != FIFO_EMPTY) {
6984                 process_indexed_cmd(h, raw_tag);
6985                 raw_tag = next_command(h, q);
6986         }
6987         return IRQ_HANDLED;
6988 }
6989
6990 /* Send a message CDB to the firmware. Careful, this only works
6991  * in simple mode, not performant mode due to the tag lookup.
6992  * We only ever use this immediately after a controller reset.
6993  */
6994 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6995                         unsigned char type)
6996 {
6997         struct Command {
6998                 struct CommandListHeader CommandHeader;
6999                 struct RequestBlock Request;
7000                 struct ErrDescriptor ErrorDescriptor;
7001         };
7002         struct Command *cmd;
7003         static const size_t cmd_sz = sizeof(*cmd) +
7004                                         sizeof(cmd->ErrorDescriptor);
7005         dma_addr_t paddr64;
7006         __le32 paddr32;
7007         u32 tag;
7008         void __iomem *vaddr;
7009         int i, err;
7010
7011         vaddr = pci_ioremap_bar(pdev, 0);
7012         if (vaddr == NULL)
7013                 return -ENOMEM;
7014
7015         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7016          * CCISS commands, so they must be allocated from the lower 4GiB of
7017          * memory.
7018          */
7019         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7020         if (err) {
7021                 iounmap(vaddr);
7022                 return err;
7023         }
7024
7025         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7026         if (cmd == NULL) {
7027                 iounmap(vaddr);
7028                 return -ENOMEM;
7029         }
7030
7031         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7032          * although there's no guarantee, we assume that the address is at
7033          * least 4-byte aligned (most likely, it's page-aligned).
7034          */
7035         paddr32 = cpu_to_le32(paddr64);
7036
7037         cmd->CommandHeader.ReplyQueue = 0;
7038         cmd->CommandHeader.SGList = 0;
7039         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7040         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7041         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7042
7043         cmd->Request.CDBLen = 16;
7044         cmd->Request.type_attr_dir =
7045                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7046         cmd->Request.Timeout = 0; /* Don't time out */
7047         cmd->Request.CDB[0] = opcode;
7048         cmd->Request.CDB[1] = type;
7049         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7050         cmd->ErrorDescriptor.Addr =
7051                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7052         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7053
7054         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7055
7056         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7057                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7058                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7059                         break;
7060                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7061         }
7062
7063         iounmap(vaddr);
7064
7065         /* we leak the DMA buffer here ... no choice since the controller could
7066          *  still complete the command.
7067          */
7068         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7069                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7070                         opcode, type);
7071                 return -ETIMEDOUT;
7072         }
7073
7074         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7075
7076         if (tag & HPSA_ERROR_BIT) {
7077                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7078                         opcode, type);
7079                 return -EIO;
7080         }
7081
7082         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7083                 opcode, type);
7084         return 0;
7085 }
7086
7087 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7088
7089 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7090         void __iomem *vaddr, u32 use_doorbell)
7091 {
7092
7093         if (use_doorbell) {
7094                 /* For everything after the P600, the PCI power state method
7095                  * of resetting the controller doesn't work, so we have this
7096                  * other way using the doorbell register.
7097                  */
7098                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7099                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7100
7101                 /* PMC hardware guys tell us we need a 10 second delay after
7102                  * doorbell reset and before any attempt to talk to the board
7103                  * at all to ensure that this actually works and doesn't fall
7104                  * over in some weird corner cases.
7105                  */
7106                 msleep(10000);
7107         } else { /* Try to do it the PCI power state way */
7108
7109                 /* Quoting from the Open CISS Specification: "The Power
7110                  * Management Control/Status Register (CSR) controls the power
7111                  * state of the device.  The normal operating state is D0,
7112                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7113                  * the controller, place the interface device in D3 then to D0,
7114                  * this causes a secondary PCI reset which will reset the
7115                  * controller." */
7116
7117                 int rc = 0;
7118
7119                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7120
7121                 /* enter the D3hot power management state */
7122                 rc = pci_set_power_state(pdev, PCI_D3hot);
7123                 if (rc)
7124                         return rc;
7125
7126                 msleep(500);
7127
7128                 /* enter the D0 power management state */
7129                 rc = pci_set_power_state(pdev, PCI_D0);
7130                 if (rc)
7131                         return rc;
7132
7133                 /*
7134                  * The P600 requires a small delay when changing states.
7135                  * Otherwise we may think the board did not reset and we bail.
7136                  * This for kdump only and is particular to the P600.
7137                  */
7138                 msleep(500);
7139         }
7140         return 0;
7141 }
7142
7143 static void init_driver_version(char *driver_version, int len)
7144 {
7145         memset(driver_version, 0, len);
7146         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7147 }
7148
7149 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7150 {
7151         char *driver_version;
7152         int i, size = sizeof(cfgtable->driver_version);
7153
7154         driver_version = kmalloc(size, GFP_KERNEL);
7155         if (!driver_version)
7156                 return -ENOMEM;
7157
7158         init_driver_version(driver_version, size);
7159         for (i = 0; i < size; i++)
7160                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7161         kfree(driver_version);
7162         return 0;
7163 }
7164
7165 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7166                                           unsigned char *driver_ver)
7167 {
7168         int i;
7169
7170         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7171                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7172 }
7173
7174 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7175 {
7176
7177         char *driver_ver, *old_driver_ver;
7178         int rc, size = sizeof(cfgtable->driver_version);
7179
7180         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7181         if (!old_driver_ver)
7182                 return -ENOMEM;
7183         driver_ver = old_driver_ver + size;
7184
7185         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7186          * should have been changed, otherwise we know the reset failed.
7187          */
7188         init_driver_version(old_driver_ver, size);
7189         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7190         rc = !memcmp(driver_ver, old_driver_ver, size);
7191         kfree(old_driver_ver);
7192         return rc;
7193 }
7194 /* This does a hard reset of the controller using PCI power management
7195  * states or the using the doorbell register.
7196  */
7197 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7198 {
7199         u64 cfg_offset;
7200         u32 cfg_base_addr;
7201         u64 cfg_base_addr_index;
7202         void __iomem *vaddr;
7203         unsigned long paddr;
7204         u32 misc_fw_support;
7205         int rc;
7206         struct CfgTable __iomem *cfgtable;
7207         u32 use_doorbell;
7208         u16 command_register;
7209
7210         /* For controllers as old as the P600, this is very nearly
7211          * the same thing as
7212          *
7213          * pci_save_state(pci_dev);
7214          * pci_set_power_state(pci_dev, PCI_D3hot);
7215          * pci_set_power_state(pci_dev, PCI_D0);
7216          * pci_restore_state(pci_dev);
7217          *
7218          * For controllers newer than the P600, the pci power state
7219          * method of resetting doesn't work so we have another way
7220          * using the doorbell register.
7221          */
7222
7223         if (!ctlr_is_resettable(board_id)) {
7224                 dev_warn(&pdev->dev, "Controller not resettable\n");
7225                 return -ENODEV;
7226         }
7227
7228         /* if controller is soft- but not hard resettable... */
7229         if (!ctlr_is_hard_resettable(board_id))
7230                 return -ENOTSUPP; /* try soft reset later. */
7231
7232         /* Save the PCI command register */
7233         pci_read_config_word(pdev, 4, &command_register);
7234         pci_save_state(pdev);
7235
7236         /* find the first memory BAR, so we can find the cfg table */
7237         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7238         if (rc)
7239                 return rc;
7240         vaddr = remap_pci_mem(paddr, 0x250);
7241         if (!vaddr)
7242                 return -ENOMEM;
7243
7244         /* find cfgtable in order to check if reset via doorbell is supported */
7245         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7246                                         &cfg_base_addr_index, &cfg_offset);
7247         if (rc)
7248                 goto unmap_vaddr;
7249         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7250                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7251         if (!cfgtable) {
7252                 rc = -ENOMEM;
7253                 goto unmap_vaddr;
7254         }
7255         rc = write_driver_ver_to_cfgtable(cfgtable);
7256         if (rc)
7257                 goto unmap_cfgtable;
7258
7259         /* If reset via doorbell register is supported, use that.
7260          * There are two such methods.  Favor the newest method.
7261          */
7262         misc_fw_support = readl(&cfgtable->misc_fw_support);
7263         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7264         if (use_doorbell) {
7265                 use_doorbell = DOORBELL_CTLR_RESET2;
7266         } else {
7267                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7268                 if (use_doorbell) {
7269                         dev_warn(&pdev->dev,
7270                                 "Soft reset not supported. Firmware update is required.\n");
7271                         rc = -ENOTSUPP; /* try soft reset */
7272                         goto unmap_cfgtable;
7273                 }
7274         }
7275
7276         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7277         if (rc)
7278                 goto unmap_cfgtable;
7279
7280         pci_restore_state(pdev);
7281         pci_write_config_word(pdev, 4, command_register);
7282
7283         /* Some devices (notably the HP Smart Array 5i Controller)
7284            need a little pause here */
7285         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7286
7287         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7288         if (rc) {
7289                 dev_warn(&pdev->dev,
7290                         "Failed waiting for board to become ready after hard reset\n");
7291                 goto unmap_cfgtable;
7292         }
7293
7294         rc = controller_reset_failed(vaddr);
7295         if (rc < 0)
7296                 goto unmap_cfgtable;
7297         if (rc) {
7298                 dev_warn(&pdev->dev, "Unable to successfully reset "
7299                         "controller. Will try soft reset.\n");
7300                 rc = -ENOTSUPP;
7301         } else {
7302                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7303         }
7304
7305 unmap_cfgtable:
7306         iounmap(cfgtable);
7307
7308 unmap_vaddr:
7309         iounmap(vaddr);
7310         return rc;
7311 }
7312
7313 /*
7314  *  We cannot read the structure directly, for portability we must use
7315  *   the io functions.
7316  *   This is for debug only.
7317  */
7318 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7319 {
7320 #ifdef HPSA_DEBUG
7321         int i;
7322         char temp_name[17];
7323
7324         dev_info(dev, "Controller Configuration information\n");
7325         dev_info(dev, "------------------------------------\n");
7326         for (i = 0; i < 4; i++)
7327                 temp_name[i] = readb(&(tb->Signature[i]));
7328         temp_name[4] = '\0';
7329         dev_info(dev, "   Signature = %s\n", temp_name);
7330         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7331         dev_info(dev, "   Transport methods supported = 0x%x\n",
7332                readl(&(tb->TransportSupport)));
7333         dev_info(dev, "   Transport methods active = 0x%x\n",
7334                readl(&(tb->TransportActive)));
7335         dev_info(dev, "   Requested transport Method = 0x%x\n",
7336                readl(&(tb->HostWrite.TransportRequest)));
7337         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7338                readl(&(tb->HostWrite.CoalIntDelay)));
7339         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7340                readl(&(tb->HostWrite.CoalIntCount)));
7341         dev_info(dev, "   Max outstanding commands = %d\n",
7342                readl(&(tb->CmdsOutMax)));
7343         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7344         for (i = 0; i < 16; i++)
7345                 temp_name[i] = readb(&(tb->ServerName[i]));
7346         temp_name[16] = '\0';
7347         dev_info(dev, "   Server Name = %s\n", temp_name);
7348         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7349                 readl(&(tb->HeartBeat)));
7350 #endif                          /* HPSA_DEBUG */
7351 }
7352
7353 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7354 {
7355         int i, offset, mem_type, bar_type;
7356
7357         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7358                 return 0;
7359         offset = 0;
7360         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7361                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7362                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7363                         offset += 4;
7364                 else {
7365                         mem_type = pci_resource_flags(pdev, i) &
7366                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7367                         switch (mem_type) {
7368                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7369                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7370                                 offset += 4;    /* 32 bit */
7371                                 break;
7372                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7373                                 offset += 8;
7374                                 break;
7375                         default:        /* reserved in PCI 2.2 */
7376                                 dev_warn(&pdev->dev,
7377                                        "base address is invalid\n");
7378                                 return -1;
7379                                 break;
7380                         }
7381                 }
7382                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7383                         return i + 1;
7384         }
7385         return -1;
7386 }
7387
7388 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7389 {
7390         pci_free_irq_vectors(h->pdev);
7391         h->msix_vectors = 0;
7392 }
7393
7394 static void hpsa_setup_reply_map(struct ctlr_info *h)
7395 {
7396         const struct cpumask *mask;
7397         unsigned int queue, cpu;
7398
7399         for (queue = 0; queue < h->msix_vectors; queue++) {
7400                 mask = pci_irq_get_affinity(h->pdev, queue);
7401                 if (!mask)
7402                         goto fallback;
7403
7404                 for_each_cpu(cpu, mask)
7405                         h->reply_map[cpu] = queue;
7406         }
7407         return;
7408
7409 fallback:
7410         for_each_possible_cpu(cpu)
7411                 h->reply_map[cpu] = 0;
7412 }
7413
7414 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7415  * controllers that are capable. If not, we use legacy INTx mode.
7416  */
7417 static int hpsa_interrupt_mode(struct ctlr_info *h)
7418 {
7419         unsigned int flags = PCI_IRQ_LEGACY;
7420         int ret;
7421
7422         /* Some boards advertise MSI but don't really support it */
7423         switch (h->board_id) {
7424         case 0x40700E11:
7425         case 0x40800E11:
7426         case 0x40820E11:
7427         case 0x40830E11:
7428                 break;
7429         default:
7430                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7431                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7432                 if (ret > 0) {
7433                         h->msix_vectors = ret;
7434                         return 0;
7435                 }
7436
7437                 flags |= PCI_IRQ_MSI;
7438                 break;
7439         }
7440
7441         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7442         if (ret < 0)
7443                 return ret;
7444         return 0;
7445 }
7446
7447 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7448                                 bool *legacy_board)
7449 {
7450         int i;
7451         u32 subsystem_vendor_id, subsystem_device_id;
7452
7453         subsystem_vendor_id = pdev->subsystem_vendor;
7454         subsystem_device_id = pdev->subsystem_device;
7455         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7456                     subsystem_vendor_id;
7457
7458         if (legacy_board)
7459                 *legacy_board = false;
7460         for (i = 0; i < ARRAY_SIZE(products); i++)
7461                 if (*board_id == products[i].board_id) {
7462                         if (products[i].access != &SA5A_access &&
7463                             products[i].access != &SA5B_access)
7464                                 return i;
7465                         dev_warn(&pdev->dev,
7466                                  "legacy board ID: 0x%08x\n",
7467                                  *board_id);
7468                         if (legacy_board)
7469                             *legacy_board = true;
7470                         return i;
7471                 }
7472
7473         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7474         if (legacy_board)
7475                 *legacy_board = true;
7476         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7477 }
7478
7479 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7480                                     unsigned long *memory_bar)
7481 {
7482         int i;
7483
7484         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7485                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7486                         /* addressing mode bits already removed */
7487                         *memory_bar = pci_resource_start(pdev, i);
7488                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7489                                 *memory_bar);
7490                         return 0;
7491                 }
7492         dev_warn(&pdev->dev, "no memory BAR found\n");
7493         return -ENODEV;
7494 }
7495
7496 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7497                                      int wait_for_ready)
7498 {
7499         int i, iterations;
7500         u32 scratchpad;
7501         if (wait_for_ready)
7502                 iterations = HPSA_BOARD_READY_ITERATIONS;
7503         else
7504                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7505
7506         for (i = 0; i < iterations; i++) {
7507                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7508                 if (wait_for_ready) {
7509                         if (scratchpad == HPSA_FIRMWARE_READY)
7510                                 return 0;
7511                 } else {
7512                         if (scratchpad != HPSA_FIRMWARE_READY)
7513                                 return 0;
7514                 }
7515                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7516         }
7517         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7518         return -ENODEV;
7519 }
7520
7521 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7522                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7523                                u64 *cfg_offset)
7524 {
7525         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7526         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7527         *cfg_base_addr &= (u32) 0x0000ffff;
7528         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7529         if (*cfg_base_addr_index == -1) {
7530                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7531                 return -ENODEV;
7532         }
7533         return 0;
7534 }
7535
7536 static void hpsa_free_cfgtables(struct ctlr_info *h)
7537 {
7538         if (h->transtable) {
7539                 iounmap(h->transtable);
7540                 h->transtable = NULL;
7541         }
7542         if (h->cfgtable) {
7543                 iounmap(h->cfgtable);
7544                 h->cfgtable = NULL;
7545         }
7546 }
7547
7548 /* Find and map CISS config table and transfer table
7549 + * several items must be unmapped (freed) later
7550 + * */
7551 static int hpsa_find_cfgtables(struct ctlr_info *h)
7552 {
7553         u64 cfg_offset;
7554         u32 cfg_base_addr;
7555         u64 cfg_base_addr_index;
7556         u32 trans_offset;
7557         int rc;
7558
7559         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7560                 &cfg_base_addr_index, &cfg_offset);
7561         if (rc)
7562                 return rc;
7563         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7564                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7565         if (!h->cfgtable) {
7566                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7567                 return -ENOMEM;
7568         }
7569         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7570         if (rc)
7571                 return rc;
7572         /* Find performant mode table. */
7573         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7574         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7575                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7576                                 sizeof(*h->transtable));
7577         if (!h->transtable) {
7578                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7579                 hpsa_free_cfgtables(h);
7580                 return -ENOMEM;
7581         }
7582         return 0;
7583 }
7584
7585 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7586 {
7587 #define MIN_MAX_COMMANDS 16
7588         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7589
7590         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7591
7592         /* Limit commands in memory limited kdump scenario. */
7593         if (reset_devices && h->max_commands > 32)
7594                 h->max_commands = 32;
7595
7596         if (h->max_commands < MIN_MAX_COMMANDS) {
7597                 dev_warn(&h->pdev->dev,
7598                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7599                         h->max_commands,
7600                         MIN_MAX_COMMANDS);
7601                 h->max_commands = MIN_MAX_COMMANDS;
7602         }
7603 }
7604
7605 /* If the controller reports that the total max sg entries is greater than 512,
7606  * then we know that chained SG blocks work.  (Original smart arrays did not
7607  * support chained SG blocks and would return zero for max sg entries.)
7608  */
7609 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7610 {
7611         return h->maxsgentries > 512;
7612 }
7613
7614 /* Interrogate the hardware for some limits:
7615  * max commands, max SG elements without chaining, and with chaining,
7616  * SG chain block size, etc.
7617  */
7618 static void hpsa_find_board_params(struct ctlr_info *h)
7619 {
7620         hpsa_get_max_perf_mode_cmds(h);
7621         h->nr_cmds = h->max_commands;
7622         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7623         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7624         if (hpsa_supports_chained_sg_blocks(h)) {
7625                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7626                 h->max_cmd_sg_entries = 32;
7627                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7628                 h->maxsgentries--; /* save one for chain pointer */
7629         } else {
7630                 /*
7631                  * Original smart arrays supported at most 31 s/g entries
7632                  * embedded inline in the command (trying to use more
7633                  * would lock up the controller)
7634                  */
7635                 h->max_cmd_sg_entries = 31;
7636                 h->maxsgentries = 31; /* default to traditional values */
7637                 h->chainsize = 0;
7638         }
7639
7640         /* Find out what task management functions are supported and cache */
7641         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7642         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7643                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7644         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7645                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7646         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7647                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7648 }
7649
7650 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7651 {
7652         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7653                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7654                 return false;
7655         }
7656         return true;
7657 }
7658
7659 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7660 {
7661         u32 driver_support;
7662
7663         driver_support = readl(&(h->cfgtable->driver_support));
7664         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7665 #ifdef CONFIG_X86
7666         driver_support |= ENABLE_SCSI_PREFETCH;
7667 #endif
7668         driver_support |= ENABLE_UNIT_ATTN;
7669         writel(driver_support, &(h->cfgtable->driver_support));
7670 }
7671
7672 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7673  * in a prefetch beyond physical memory.
7674  */
7675 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7676 {
7677         u32 dma_prefetch;
7678
7679         if (h->board_id != 0x3225103C)
7680                 return;
7681         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7682         dma_prefetch |= 0x8000;
7683         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7684 }
7685
7686 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7687 {
7688         int i;
7689         u32 doorbell_value;
7690         unsigned long flags;
7691         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7692         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7693                 spin_lock_irqsave(&h->lock, flags);
7694                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695                 spin_unlock_irqrestore(&h->lock, flags);
7696                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7697                         goto done;
7698                 /* delay and try again */
7699                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7700         }
7701         return -ENODEV;
7702 done:
7703         return 0;
7704 }
7705
7706 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7707 {
7708         int i;
7709         u32 doorbell_value;
7710         unsigned long flags;
7711
7712         /* under certain very rare conditions, this can take awhile.
7713          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7714          * as we enter this code.)
7715          */
7716         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7717                 if (h->remove_in_progress)
7718                         goto done;
7719                 spin_lock_irqsave(&h->lock, flags);
7720                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7721                 spin_unlock_irqrestore(&h->lock, flags);
7722                 if (!(doorbell_value & CFGTBL_ChangeReq))
7723                         goto done;
7724                 /* delay and try again */
7725                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7726         }
7727         return -ENODEV;
7728 done:
7729         return 0;
7730 }
7731
7732 /* return -ENODEV or other reason on error, 0 on success */
7733 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7734 {
7735         u32 trans_support;
7736
7737         trans_support = readl(&(h->cfgtable->TransportSupport));
7738         if (!(trans_support & SIMPLE_MODE))
7739                 return -ENOTSUPP;
7740
7741         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7742
7743         /* Update the field, and then ring the doorbell */
7744         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7745         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7746         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7747         if (hpsa_wait_for_mode_change_ack(h))
7748                 goto error;
7749         print_cfg_table(&h->pdev->dev, h->cfgtable);
7750         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7751                 goto error;
7752         h->transMethod = CFGTBL_Trans_Simple;
7753         return 0;
7754 error:
7755         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7756         return -ENODEV;
7757 }
7758
7759 /* free items allocated or mapped by hpsa_pci_init */
7760 static void hpsa_free_pci_init(struct ctlr_info *h)
7761 {
7762         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7763         iounmap(h->vaddr);                      /* pci_init 3 */
7764         h->vaddr = NULL;
7765         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7766         /*
7767          * call pci_disable_device before pci_release_regions per
7768          * Documentation/PCI/pci.txt
7769          */
7770         pci_disable_device(h->pdev);            /* pci_init 1 */
7771         pci_release_regions(h->pdev);           /* pci_init 2 */
7772 }
7773
7774 /* several items must be freed later */
7775 static int hpsa_pci_init(struct ctlr_info *h)
7776 {
7777         int prod_index, err;
7778         bool legacy_board;
7779
7780         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7781         if (prod_index < 0)
7782                 return prod_index;
7783         h->product_name = products[prod_index].product_name;
7784         h->access = *(products[prod_index].access);
7785         h->legacy_board = legacy_board;
7786         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7787                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7788
7789         err = pci_enable_device(h->pdev);
7790         if (err) {
7791                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7792                 pci_disable_device(h->pdev);
7793                 return err;
7794         }
7795
7796         err = pci_request_regions(h->pdev, HPSA);
7797         if (err) {
7798                 dev_err(&h->pdev->dev,
7799                         "failed to obtain PCI resources\n");
7800                 pci_disable_device(h->pdev);
7801                 return err;
7802         }
7803
7804         pci_set_master(h->pdev);
7805
7806         err = hpsa_interrupt_mode(h);
7807         if (err)
7808                 goto clean1;
7809
7810         /* setup mapping between CPU and reply queue */
7811         hpsa_setup_reply_map(h);
7812
7813         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7814         if (err)
7815                 goto clean2;    /* intmode+region, pci */
7816         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7817         if (!h->vaddr) {
7818                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7819                 err = -ENOMEM;
7820                 goto clean2;    /* intmode+region, pci */
7821         }
7822         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7823         if (err)
7824                 goto clean3;    /* vaddr, intmode+region, pci */
7825         err = hpsa_find_cfgtables(h);
7826         if (err)
7827                 goto clean3;    /* vaddr, intmode+region, pci */
7828         hpsa_find_board_params(h);
7829
7830         if (!hpsa_CISS_signature_present(h)) {
7831                 err = -ENODEV;
7832                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7833         }
7834         hpsa_set_driver_support_bits(h);
7835         hpsa_p600_dma_prefetch_quirk(h);
7836         err = hpsa_enter_simple_mode(h);
7837         if (err)
7838                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7839         return 0;
7840
7841 clean4: /* cfgtables, vaddr, intmode+region, pci */
7842         hpsa_free_cfgtables(h);
7843 clean3: /* vaddr, intmode+region, pci */
7844         iounmap(h->vaddr);
7845         h->vaddr = NULL;
7846 clean2: /* intmode+region, pci */
7847         hpsa_disable_interrupt_mode(h);
7848 clean1:
7849         /*
7850          * call pci_disable_device before pci_release_regions per
7851          * Documentation/PCI/pci.txt
7852          */
7853         pci_disable_device(h->pdev);
7854         pci_release_regions(h->pdev);
7855         return err;
7856 }
7857
7858 static void hpsa_hba_inquiry(struct ctlr_info *h)
7859 {
7860         int rc;
7861
7862 #define HBA_INQUIRY_BYTE_COUNT 64
7863         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7864         if (!h->hba_inquiry_data)
7865                 return;
7866         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7867                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7868         if (rc != 0) {
7869                 kfree(h->hba_inquiry_data);
7870                 h->hba_inquiry_data = NULL;
7871         }
7872 }
7873
7874 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7875 {
7876         int rc, i;
7877         void __iomem *vaddr;
7878
7879         if (!reset_devices)
7880                 return 0;
7881
7882         /* kdump kernel is loading, we don't know in which state is
7883          * the pci interface. The dev->enable_cnt is equal zero
7884          * so we call enable+disable, wait a while and switch it on.
7885          */
7886         rc = pci_enable_device(pdev);
7887         if (rc) {
7888                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7889                 return -ENODEV;
7890         }
7891         pci_disable_device(pdev);
7892         msleep(260);                    /* a randomly chosen number */
7893         rc = pci_enable_device(pdev);
7894         if (rc) {
7895                 dev_warn(&pdev->dev, "failed to enable device.\n");
7896                 return -ENODEV;
7897         }
7898
7899         pci_set_master(pdev);
7900
7901         vaddr = pci_ioremap_bar(pdev, 0);
7902         if (vaddr == NULL) {
7903                 rc = -ENOMEM;
7904                 goto out_disable;
7905         }
7906         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7907         iounmap(vaddr);
7908
7909         /* Reset the controller with a PCI power-cycle or via doorbell */
7910         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7911
7912         /* -ENOTSUPP here means we cannot reset the controller
7913          * but it's already (and still) up and running in
7914          * "performant mode".  Or, it might be 640x, which can't reset
7915          * due to concerns about shared bbwc between 6402/6404 pair.
7916          */
7917         if (rc)
7918                 goto out_disable;
7919
7920         /* Now try to get the controller to respond to a no-op */
7921         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7922         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7923                 if (hpsa_noop(pdev) == 0)
7924                         break;
7925                 else
7926                         dev_warn(&pdev->dev, "no-op failed%s\n",
7927                                         (i < 11 ? "; re-trying" : ""));
7928         }
7929
7930 out_disable:
7931
7932         pci_disable_device(pdev);
7933         return rc;
7934 }
7935
7936 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7937 {
7938         kfree(h->cmd_pool_bits);
7939         h->cmd_pool_bits = NULL;
7940         if (h->cmd_pool) {
7941                 dma_free_coherent(&h->pdev->dev,
7942                                 h->nr_cmds * sizeof(struct CommandList),
7943                                 h->cmd_pool,
7944                                 h->cmd_pool_dhandle);
7945                 h->cmd_pool = NULL;
7946                 h->cmd_pool_dhandle = 0;
7947         }
7948         if (h->errinfo_pool) {
7949                 dma_free_coherent(&h->pdev->dev,
7950                                 h->nr_cmds * sizeof(struct ErrorInfo),
7951                                 h->errinfo_pool,
7952                                 h->errinfo_pool_dhandle);
7953                 h->errinfo_pool = NULL;
7954                 h->errinfo_pool_dhandle = 0;
7955         }
7956 }
7957
7958 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7959 {
7960         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7961                                    sizeof(unsigned long),
7962                                    GFP_KERNEL);
7963         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7964                     h->nr_cmds * sizeof(*h->cmd_pool),
7965                     &h->cmd_pool_dhandle, GFP_KERNEL);
7966         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7967                     h->nr_cmds * sizeof(*h->errinfo_pool),
7968                     &h->errinfo_pool_dhandle, GFP_KERNEL);
7969         if ((h->cmd_pool_bits == NULL)
7970             || (h->cmd_pool == NULL)
7971             || (h->errinfo_pool == NULL)) {
7972                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7973                 goto clean_up;
7974         }
7975         hpsa_preinitialize_commands(h);
7976         return 0;
7977 clean_up:
7978         hpsa_free_cmd_pool(h);
7979         return -ENOMEM;
7980 }
7981
7982 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7983 static void hpsa_free_irqs(struct ctlr_info *h)
7984 {
7985         int i;
7986
7987         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7988                 /* Single reply queue, only one irq to free */
7989                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7990                 h->q[h->intr_mode] = 0;
7991                 return;
7992         }
7993
7994         for (i = 0; i < h->msix_vectors; i++) {
7995                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7996                 h->q[i] = 0;
7997         }
7998         for (; i < MAX_REPLY_QUEUES; i++)
7999                 h->q[i] = 0;
8000 }
8001
8002 /* returns 0 on success; cleans up and returns -Enn on error */
8003 static int hpsa_request_irqs(struct ctlr_info *h,
8004         irqreturn_t (*msixhandler)(int, void *),
8005         irqreturn_t (*intxhandler)(int, void *))
8006 {
8007         int rc, i;
8008
8009         /*
8010          * initialize h->q[x] = x so that interrupt handlers know which
8011          * queue to process.
8012          */
8013         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8014                 h->q[i] = (u8) i;
8015
8016         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8017                 /* If performant mode and MSI-X, use multiple reply queues */
8018                 for (i = 0; i < h->msix_vectors; i++) {
8019                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8020                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8021                                         0, h->intrname[i],
8022                                         &h->q[i]);
8023                         if (rc) {
8024                                 int j;
8025
8026                                 dev_err(&h->pdev->dev,
8027                                         "failed to get irq %d for %s\n",
8028                                        pci_irq_vector(h->pdev, i), h->devname);
8029                                 for (j = 0; j < i; j++) {
8030                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8031                                         h->q[j] = 0;
8032                                 }
8033                                 for (; j < MAX_REPLY_QUEUES; j++)
8034                                         h->q[j] = 0;
8035                                 return rc;
8036                         }
8037                 }
8038         } else {
8039                 /* Use single reply pool */
8040                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8041                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8042                                 h->msix_vectors ? "x" : "");
8043                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8044                                 msixhandler, 0,
8045                                 h->intrname[0],
8046                                 &h->q[h->intr_mode]);
8047                 } else {
8048                         sprintf(h->intrname[h->intr_mode],
8049                                 "%s-intx", h->devname);
8050                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8051                                 intxhandler, IRQF_SHARED,
8052                                 h->intrname[0],
8053                                 &h->q[h->intr_mode]);
8054                 }
8055         }
8056         if (rc) {
8057                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8058                        pci_irq_vector(h->pdev, 0), h->devname);
8059                 hpsa_free_irqs(h);
8060                 return -ENODEV;
8061         }
8062         return 0;
8063 }
8064
8065 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8066 {
8067         int rc;
8068         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8069
8070         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8071         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8072         if (rc) {
8073                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8074                 return rc;
8075         }
8076
8077         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8078         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8079         if (rc) {
8080                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8081                         "after soft reset.\n");
8082                 return rc;
8083         }
8084
8085         return 0;
8086 }
8087
8088 static void hpsa_free_reply_queues(struct ctlr_info *h)
8089 {
8090         int i;
8091
8092         for (i = 0; i < h->nreply_queues; i++) {
8093                 if (!h->reply_queue[i].head)
8094                         continue;
8095                 dma_free_coherent(&h->pdev->dev,
8096                                         h->reply_queue_size,
8097                                         h->reply_queue[i].head,
8098                                         h->reply_queue[i].busaddr);
8099                 h->reply_queue[i].head = NULL;
8100                 h->reply_queue[i].busaddr = 0;
8101         }
8102         h->reply_queue_size = 0;
8103 }
8104
8105 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8106 {
8107         hpsa_free_performant_mode(h);           /* init_one 7 */
8108         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8109         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8110         hpsa_free_irqs(h);                      /* init_one 4 */
8111         scsi_host_put(h->scsi_host);            /* init_one 3 */
8112         h->scsi_host = NULL;                    /* init_one 3 */
8113         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8114         free_percpu(h->lockup_detected);        /* init_one 2 */
8115         h->lockup_detected = NULL;              /* init_one 2 */
8116         if (h->resubmit_wq) {
8117                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8118                 h->resubmit_wq = NULL;
8119         }
8120         if (h->rescan_ctlr_wq) {
8121                 destroy_workqueue(h->rescan_ctlr_wq);
8122                 h->rescan_ctlr_wq = NULL;
8123         }
8124         kfree(h);                               /* init_one 1 */
8125 }
8126
8127 /* Called when controller lockup detected. */
8128 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8129 {
8130         int i, refcount;
8131         struct CommandList *c;
8132         int failcount = 0;
8133
8134         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8135         for (i = 0; i < h->nr_cmds; i++) {
8136                 c = h->cmd_pool + i;
8137                 refcount = atomic_inc_return(&c->refcount);
8138                 if (refcount > 1) {
8139                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8140                         finish_cmd(c);
8141                         atomic_dec(&h->commands_outstanding);
8142                         failcount++;
8143                 }
8144                 cmd_free(h, c);
8145         }
8146         dev_warn(&h->pdev->dev,
8147                 "failed %d commands in fail_all\n", failcount);
8148 }
8149
8150 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8151 {
8152         int cpu;
8153
8154         for_each_online_cpu(cpu) {
8155                 u32 *lockup_detected;
8156                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8157                 *lockup_detected = value;
8158         }
8159         wmb(); /* be sure the per-cpu variables are out to memory */
8160 }
8161
8162 static void controller_lockup_detected(struct ctlr_info *h)
8163 {
8164         unsigned long flags;
8165         u32 lockup_detected;
8166
8167         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8168         spin_lock_irqsave(&h->lock, flags);
8169         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8170         if (!lockup_detected) {
8171                 /* no heartbeat, but controller gave us a zero. */
8172                 dev_warn(&h->pdev->dev,
8173                         "lockup detected after %d but scratchpad register is zero\n",
8174                         h->heartbeat_sample_interval / HZ);
8175                 lockup_detected = 0xffffffff;
8176         }
8177         set_lockup_detected_for_all_cpus(h, lockup_detected);
8178         spin_unlock_irqrestore(&h->lock, flags);
8179         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8180                         lockup_detected, h->heartbeat_sample_interval / HZ);
8181         if (lockup_detected == 0xffff0000) {
8182                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8183                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8184         }
8185         pci_disable_device(h->pdev);
8186         fail_all_outstanding_cmds(h);
8187 }
8188
8189 static int detect_controller_lockup(struct ctlr_info *h)
8190 {
8191         u64 now;
8192         u32 heartbeat;
8193         unsigned long flags;
8194
8195         now = get_jiffies_64();
8196         /* If we've received an interrupt recently, we're ok. */
8197         if (time_after64(h->last_intr_timestamp +
8198                                 (h->heartbeat_sample_interval), now))
8199                 return false;
8200
8201         /*
8202          * If we've already checked the heartbeat recently, we're ok.
8203          * This could happen if someone sends us a signal. We
8204          * otherwise don't care about signals in this thread.
8205          */
8206         if (time_after64(h->last_heartbeat_timestamp +
8207                                 (h->heartbeat_sample_interval), now))
8208                 return false;
8209
8210         /* If heartbeat has not changed since we last looked, we're not ok. */
8211         spin_lock_irqsave(&h->lock, flags);
8212         heartbeat = readl(&h->cfgtable->HeartBeat);
8213         spin_unlock_irqrestore(&h->lock, flags);
8214         if (h->last_heartbeat == heartbeat) {
8215                 controller_lockup_detected(h);
8216                 return true;
8217         }
8218
8219         /* We're ok. */
8220         h->last_heartbeat = heartbeat;
8221         h->last_heartbeat_timestamp = now;
8222         return false;
8223 }
8224
8225 /*
8226  * Set ioaccel status for all ioaccel volumes.
8227  *
8228  * Called from monitor controller worker (hpsa_event_monitor_worker)
8229  *
8230  * A Volume (or Volumes that comprise an Array set may be undergoing a
8231  * transformation, so we will be turning off ioaccel for all volumes that
8232  * make up the Array.
8233  */
8234 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8235 {
8236         int rc;
8237         int i;
8238         u8 ioaccel_status;
8239         unsigned char *buf;
8240         struct hpsa_scsi_dev_t *device;
8241
8242         if (!h)
8243                 return;
8244
8245         buf = kmalloc(64, GFP_KERNEL);
8246         if (!buf)
8247                 return;
8248
8249         /*
8250          * Run through current device list used during I/O requests.
8251          */
8252         for (i = 0; i < h->ndevices; i++) {
8253                 device = h->dev[i];
8254
8255                 if (!device)
8256                         continue;
8257                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8258                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8259                         continue;
8260
8261                 memset(buf, 0, 64);
8262
8263                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8264                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8265                                         buf, 64);
8266                 if (rc != 0)
8267                         continue;
8268
8269                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8270                 device->offload_config =
8271                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8272                 if (device->offload_config)
8273                         device->offload_to_be_enabled =
8274                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8275
8276                 /*
8277                  * Immediately turn off ioaccel for any volume the
8278                  * controller tells us to. Some of the reasons could be:
8279                  *    transformation - change to the LVs of an Array.
8280                  *    degraded volume - component failure
8281                  *
8282                  * If ioaccel is to be re-enabled, re-enable later during the
8283                  * scan operation so the driver can get a fresh raidmap
8284                  * before turning ioaccel back on.
8285                  *
8286                  */
8287                 if (!device->offload_to_be_enabled)
8288                         device->offload_enabled = 0;
8289         }
8290
8291         kfree(buf);
8292 }
8293
8294 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8295 {
8296         char *event_type;
8297
8298         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8299                 return;
8300
8301         /* Ask the controller to clear the events we're handling. */
8302         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8303                         | CFGTBL_Trans_io_accel2)) &&
8304                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8305                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8306
8307                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8308                         event_type = "state change";
8309                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8310                         event_type = "configuration change";
8311                 /* Stop sending new RAID offload reqs via the IO accelerator */
8312                 scsi_block_requests(h->scsi_host);
8313                 hpsa_set_ioaccel_status(h);
8314                 hpsa_drain_accel_commands(h);
8315                 /* Set 'accelerator path config change' bit */
8316                 dev_warn(&h->pdev->dev,
8317                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8318                         h->events, event_type);
8319                 writel(h->events, &(h->cfgtable->clear_event_notify));
8320                 /* Set the "clear event notify field update" bit 6 */
8321                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8322                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8323                 hpsa_wait_for_clear_event_notify_ack(h);
8324                 scsi_unblock_requests(h->scsi_host);
8325         } else {
8326                 /* Acknowledge controller notification events. */
8327                 writel(h->events, &(h->cfgtable->clear_event_notify));
8328                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8329                 hpsa_wait_for_clear_event_notify_ack(h);
8330         }
8331         return;
8332 }
8333
8334 /* Check a register on the controller to see if there are configuration
8335  * changes (added/changed/removed logical drives, etc.) which mean that
8336  * we should rescan the controller for devices.
8337  * Also check flag for driver-initiated rescan.
8338  */
8339 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8340 {
8341         if (h->drv_req_rescan) {
8342                 h->drv_req_rescan = 0;
8343                 return 1;
8344         }
8345
8346         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8347                 return 0;
8348
8349         h->events = readl(&(h->cfgtable->event_notify));
8350         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8351 }
8352
8353 /*
8354  * Check if any of the offline devices have become ready
8355  */
8356 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8357 {
8358         unsigned long flags;
8359         struct offline_device_entry *d;
8360         struct list_head *this, *tmp;
8361
8362         spin_lock_irqsave(&h->offline_device_lock, flags);
8363         list_for_each_safe(this, tmp, &h->offline_device_list) {
8364                 d = list_entry(this, struct offline_device_entry,
8365                                 offline_list);
8366                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8367                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8368                         spin_lock_irqsave(&h->offline_device_lock, flags);
8369                         list_del(&d->offline_list);
8370                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8371                         return 1;
8372                 }
8373                 spin_lock_irqsave(&h->offline_device_lock, flags);
8374         }
8375         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8376         return 0;
8377 }
8378
8379 static int hpsa_luns_changed(struct ctlr_info *h)
8380 {
8381         int rc = 1; /* assume there are changes */
8382         struct ReportLUNdata *logdev = NULL;
8383
8384         /* if we can't find out if lun data has changed,
8385          * assume that it has.
8386          */
8387
8388         if (!h->lastlogicals)
8389                 return rc;
8390
8391         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8392         if (!logdev)
8393                 return rc;
8394
8395         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8396                 dev_warn(&h->pdev->dev,
8397                         "report luns failed, can't track lun changes.\n");
8398                 goto out;
8399         }
8400         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8401                 dev_info(&h->pdev->dev,
8402                         "Lun changes detected.\n");
8403                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8404                 goto out;
8405         } else
8406                 rc = 0; /* no changes detected. */
8407 out:
8408         kfree(logdev);
8409         return rc;
8410 }
8411
8412 static void hpsa_perform_rescan(struct ctlr_info *h)
8413 {
8414         struct Scsi_Host *sh = NULL;
8415         unsigned long flags;
8416
8417         /*
8418          * Do the scan after the reset
8419          */
8420         spin_lock_irqsave(&h->reset_lock, flags);
8421         if (h->reset_in_progress) {
8422                 h->drv_req_rescan = 1;
8423                 spin_unlock_irqrestore(&h->reset_lock, flags);
8424                 return;
8425         }
8426         spin_unlock_irqrestore(&h->reset_lock, flags);
8427
8428         sh = scsi_host_get(h->scsi_host);
8429         if (sh != NULL) {
8430                 hpsa_scan_start(sh);
8431                 scsi_host_put(sh);
8432                 h->drv_req_rescan = 0;
8433         }
8434 }
8435
8436 /*
8437  * watch for controller events
8438  */
8439 static void hpsa_event_monitor_worker(struct work_struct *work)
8440 {
8441         struct ctlr_info *h = container_of(to_delayed_work(work),
8442                                         struct ctlr_info, event_monitor_work);
8443         unsigned long flags;
8444
8445         spin_lock_irqsave(&h->lock, flags);
8446         if (h->remove_in_progress) {
8447                 spin_unlock_irqrestore(&h->lock, flags);
8448                 return;
8449         }
8450         spin_unlock_irqrestore(&h->lock, flags);
8451
8452         if (hpsa_ctlr_needs_rescan(h)) {
8453                 hpsa_ack_ctlr_events(h);
8454                 hpsa_perform_rescan(h);
8455         }
8456
8457         spin_lock_irqsave(&h->lock, flags);
8458         if (!h->remove_in_progress)
8459                 schedule_delayed_work(&h->event_monitor_work,
8460                                         HPSA_EVENT_MONITOR_INTERVAL);
8461         spin_unlock_irqrestore(&h->lock, flags);
8462 }
8463
8464 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8465 {
8466         unsigned long flags;
8467         struct ctlr_info *h = container_of(to_delayed_work(work),
8468                                         struct ctlr_info, rescan_ctlr_work);
8469
8470         spin_lock_irqsave(&h->lock, flags);
8471         if (h->remove_in_progress) {
8472                 spin_unlock_irqrestore(&h->lock, flags);
8473                 return;
8474         }
8475         spin_unlock_irqrestore(&h->lock, flags);
8476
8477         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8478                 hpsa_perform_rescan(h);
8479         } else if (h->discovery_polling) {
8480                 if (hpsa_luns_changed(h)) {
8481                         dev_info(&h->pdev->dev,
8482                                 "driver discovery polling rescan.\n");
8483                         hpsa_perform_rescan(h);
8484                 }
8485         }
8486         spin_lock_irqsave(&h->lock, flags);
8487         if (!h->remove_in_progress)
8488                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8489                                 h->heartbeat_sample_interval);
8490         spin_unlock_irqrestore(&h->lock, flags);
8491 }
8492
8493 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8494 {
8495         unsigned long flags;
8496         struct ctlr_info *h = container_of(to_delayed_work(work),
8497                                         struct ctlr_info, monitor_ctlr_work);
8498
8499         detect_controller_lockup(h);
8500         if (lockup_detected(h))
8501                 return;
8502
8503         spin_lock_irqsave(&h->lock, flags);
8504         if (!h->remove_in_progress)
8505                 schedule_delayed_work(&h->monitor_ctlr_work,
8506                                 h->heartbeat_sample_interval);
8507         spin_unlock_irqrestore(&h->lock, flags);
8508 }
8509
8510 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8511                                                 char *name)
8512 {
8513         struct workqueue_struct *wq = NULL;
8514
8515         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8516         if (!wq)
8517                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8518
8519         return wq;
8520 }
8521
8522 static void hpda_free_ctlr_info(struct ctlr_info *h)
8523 {
8524         kfree(h->reply_map);
8525         kfree(h);
8526 }
8527
8528 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8529 {
8530         struct ctlr_info *h;
8531
8532         h = kzalloc(sizeof(*h), GFP_KERNEL);
8533         if (!h)
8534                 return NULL;
8535
8536         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8537         if (!h->reply_map) {
8538                 kfree(h);
8539                 return NULL;
8540         }
8541         return h;
8542 }
8543
8544 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8545 {
8546         int dac, rc;
8547         struct ctlr_info *h;
8548         int try_soft_reset = 0;
8549         unsigned long flags;
8550         u32 board_id;
8551
8552         if (number_of_controllers == 0)
8553                 printk(KERN_INFO DRIVER_NAME "\n");
8554
8555         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8556         if (rc < 0) {
8557                 dev_warn(&pdev->dev, "Board ID not found\n");
8558                 return rc;
8559         }
8560
8561         rc = hpsa_init_reset_devices(pdev, board_id);
8562         if (rc) {
8563                 if (rc != -ENOTSUPP)
8564                         return rc;
8565                 /* If the reset fails in a particular way (it has no way to do
8566                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8567                  * a soft reset once we get the controller configured up to the
8568                  * point that it can accept a command.
8569                  */
8570                 try_soft_reset = 1;
8571                 rc = 0;
8572         }
8573
8574 reinit_after_soft_reset:
8575
8576         /* Command structures must be aligned on a 32-byte boundary because
8577          * the 5 lower bits of the address are used by the hardware. and by
8578          * the driver.  See comments in hpsa.h for more info.
8579          */
8580         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8581         h = hpda_alloc_ctlr_info();
8582         if (!h) {
8583                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8584                 return -ENOMEM;
8585         }
8586
8587         h->pdev = pdev;
8588
8589         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8590         INIT_LIST_HEAD(&h->offline_device_list);
8591         spin_lock_init(&h->lock);
8592         spin_lock_init(&h->offline_device_lock);
8593         spin_lock_init(&h->scan_lock);
8594         spin_lock_init(&h->reset_lock);
8595         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8596
8597         /* Allocate and clear per-cpu variable lockup_detected */
8598         h->lockup_detected = alloc_percpu(u32);
8599         if (!h->lockup_detected) {
8600                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8601                 rc = -ENOMEM;
8602                 goto clean1;    /* aer/h */
8603         }
8604         set_lockup_detected_for_all_cpus(h, 0);
8605
8606         rc = hpsa_pci_init(h);
8607         if (rc)
8608                 goto clean2;    /* lu, aer/h */
8609
8610         /* relies on h-> settings made by hpsa_pci_init, including
8611          * interrupt_mode h->intr */
8612         rc = hpsa_scsi_host_alloc(h);
8613         if (rc)
8614                 goto clean2_5;  /* pci, lu, aer/h */
8615
8616         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8617         h->ctlr = number_of_controllers;
8618         number_of_controllers++;
8619
8620         /* configure PCI DMA stuff */
8621         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8622         if (rc == 0) {
8623                 dac = 1;
8624         } else {
8625                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8626                 if (rc == 0) {
8627                         dac = 0;
8628                 } else {
8629                         dev_err(&pdev->dev, "no suitable DMA available\n");
8630                         goto clean3;    /* shost, pci, lu, aer/h */
8631                 }
8632         }
8633
8634         /* make sure the board interrupts are off */
8635         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8636
8637         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8638         if (rc)
8639                 goto clean3;    /* shost, pci, lu, aer/h */
8640         rc = hpsa_alloc_cmd_pool(h);
8641         if (rc)
8642                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8643         rc = hpsa_alloc_sg_chain_blocks(h);
8644         if (rc)
8645                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8646         init_waitqueue_head(&h->scan_wait_queue);
8647         init_waitqueue_head(&h->event_sync_wait_queue);
8648         mutex_init(&h->reset_mutex);
8649         h->scan_finished = 1; /* no scan currently in progress */
8650         h->scan_waiting = 0;
8651
8652         pci_set_drvdata(pdev, h);
8653         h->ndevices = 0;
8654
8655         spin_lock_init(&h->devlock);
8656         rc = hpsa_put_ctlr_into_performant_mode(h);
8657         if (rc)
8658                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8659
8660         /* create the resubmit workqueue */
8661         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8662         if (!h->rescan_ctlr_wq) {
8663                 rc = -ENOMEM;
8664                 goto clean7;
8665         }
8666
8667         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8668         if (!h->resubmit_wq) {
8669                 rc = -ENOMEM;
8670                 goto clean7;    /* aer/h */
8671         }
8672
8673         /*
8674          * At this point, the controller is ready to take commands.
8675          * Now, if reset_devices and the hard reset didn't work, try
8676          * the soft reset and see if that works.
8677          */
8678         if (try_soft_reset) {
8679
8680                 /* This is kind of gross.  We may or may not get a completion
8681                  * from the soft reset command, and if we do, then the value
8682                  * from the fifo may or may not be valid.  So, we wait 10 secs
8683                  * after the reset throwing away any completions we get during
8684                  * that time.  Unregister the interrupt handler and register
8685                  * fake ones to scoop up any residual completions.
8686                  */
8687                 spin_lock_irqsave(&h->lock, flags);
8688                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8689                 spin_unlock_irqrestore(&h->lock, flags);
8690                 hpsa_free_irqs(h);
8691                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8692                                         hpsa_intx_discard_completions);
8693                 if (rc) {
8694                         dev_warn(&h->pdev->dev,
8695                                 "Failed to request_irq after soft reset.\n");
8696                         /*
8697                          * cannot goto clean7 or free_irqs will be called
8698                          * again. Instead, do its work
8699                          */
8700                         hpsa_free_performant_mode(h);   /* clean7 */
8701                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8702                         hpsa_free_cmd_pool(h);          /* clean5 */
8703                         /*
8704                          * skip hpsa_free_irqs(h) clean4 since that
8705                          * was just called before request_irqs failed
8706                          */
8707                         goto clean3;
8708                 }
8709
8710                 rc = hpsa_kdump_soft_reset(h);
8711                 if (rc)
8712                         /* Neither hard nor soft reset worked, we're hosed. */
8713                         goto clean7;
8714
8715                 dev_info(&h->pdev->dev, "Board READY.\n");
8716                 dev_info(&h->pdev->dev,
8717                         "Waiting for stale completions to drain.\n");
8718                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8719                 msleep(10000);
8720                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8721
8722                 rc = controller_reset_failed(h->cfgtable);
8723                 if (rc)
8724                         dev_info(&h->pdev->dev,
8725                                 "Soft reset appears to have failed.\n");
8726
8727                 /* since the controller's reset, we have to go back and re-init
8728                  * everything.  Easiest to just forget what we've done and do it
8729                  * all over again.
8730                  */
8731                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8732                 try_soft_reset = 0;
8733                 if (rc)
8734                         /* don't goto clean, we already unallocated */
8735                         return -ENODEV;
8736
8737                 goto reinit_after_soft_reset;
8738         }
8739
8740         /* Enable Accelerated IO path at driver layer */
8741         h->acciopath_status = 1;
8742         /* Disable discovery polling.*/
8743         h->discovery_polling = 0;
8744
8745
8746         /* Turn the interrupts on so we can service requests */
8747         h->access.set_intr_mask(h, HPSA_INTR_ON);
8748
8749         hpsa_hba_inquiry(h);
8750
8751         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8752         if (!h->lastlogicals)
8753                 dev_info(&h->pdev->dev,
8754                         "Can't track change to report lun data\n");
8755
8756         /* hook into SCSI subsystem */
8757         rc = hpsa_scsi_add_host(h);
8758         if (rc)
8759                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8760
8761         /* Monitor the controller for firmware lockups */
8762         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8763         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8764         schedule_delayed_work(&h->monitor_ctlr_work,
8765                                 h->heartbeat_sample_interval);
8766         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8767         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8768                                 h->heartbeat_sample_interval);
8769         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8770         schedule_delayed_work(&h->event_monitor_work,
8771                                 HPSA_EVENT_MONITOR_INTERVAL);
8772         return 0;
8773
8774 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8775         hpsa_free_performant_mode(h);
8776         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8777 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8778         hpsa_free_sg_chain_blocks(h);
8779 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8780         hpsa_free_cmd_pool(h);
8781 clean4: /* irq, shost, pci, lu, aer/h */
8782         hpsa_free_irqs(h);
8783 clean3: /* shost, pci, lu, aer/h */
8784         scsi_host_put(h->scsi_host);
8785         h->scsi_host = NULL;
8786 clean2_5: /* pci, lu, aer/h */
8787         hpsa_free_pci_init(h);
8788 clean2: /* lu, aer/h */
8789         if (h->lockup_detected) {
8790                 free_percpu(h->lockup_detected);
8791                 h->lockup_detected = NULL;
8792         }
8793 clean1: /* wq/aer/h */
8794         if (h->resubmit_wq) {
8795                 destroy_workqueue(h->resubmit_wq);
8796                 h->resubmit_wq = NULL;
8797         }
8798         if (h->rescan_ctlr_wq) {
8799                 destroy_workqueue(h->rescan_ctlr_wq);
8800                 h->rescan_ctlr_wq = NULL;
8801         }
8802         kfree(h);
8803         return rc;
8804 }
8805
8806 static void hpsa_flush_cache(struct ctlr_info *h)
8807 {
8808         char *flush_buf;
8809         struct CommandList *c;
8810         int rc;
8811
8812         if (unlikely(lockup_detected(h)))
8813                 return;
8814         flush_buf = kzalloc(4, GFP_KERNEL);
8815         if (!flush_buf)
8816                 return;
8817
8818         c = cmd_alloc(h);
8819
8820         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8821                 RAID_CTLR_LUNID, TYPE_CMD)) {
8822                 goto out;
8823         }
8824         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8825                         DEFAULT_TIMEOUT);
8826         if (rc)
8827                 goto out;
8828         if (c->err_info->CommandStatus != 0)
8829 out:
8830                 dev_warn(&h->pdev->dev,
8831                         "error flushing cache on controller\n");
8832         cmd_free(h, c);
8833         kfree(flush_buf);
8834 }
8835
8836 /* Make controller gather fresh report lun data each time we
8837  * send down a report luns request
8838  */
8839 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8840 {
8841         u32 *options;
8842         struct CommandList *c;
8843         int rc;
8844
8845         /* Don't bother trying to set diag options if locked up */
8846         if (unlikely(h->lockup_detected))
8847                 return;
8848
8849         options = kzalloc(sizeof(*options), GFP_KERNEL);
8850         if (!options)
8851                 return;
8852
8853         c = cmd_alloc(h);
8854
8855         /* first, get the current diag options settings */
8856         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8857                 RAID_CTLR_LUNID, TYPE_CMD))
8858                 goto errout;
8859
8860         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8861                         NO_TIMEOUT);
8862         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8863                 goto errout;
8864
8865         /* Now, set the bit for disabling the RLD caching */
8866         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8867
8868         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8869                 RAID_CTLR_LUNID, TYPE_CMD))
8870                 goto errout;
8871
8872         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8873                         NO_TIMEOUT);
8874         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8875                 goto errout;
8876
8877         /* Now verify that it got set: */
8878         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8879                 RAID_CTLR_LUNID, TYPE_CMD))
8880                 goto errout;
8881
8882         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8883                         NO_TIMEOUT);
8884         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8885                 goto errout;
8886
8887         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8888                 goto out;
8889
8890 errout:
8891         dev_err(&h->pdev->dev,
8892                         "Error: failed to disable report lun data caching.\n");
8893 out:
8894         cmd_free(h, c);
8895         kfree(options);
8896 }
8897
8898 static void __hpsa_shutdown(struct pci_dev *pdev)
8899 {
8900         struct ctlr_info *h;
8901
8902         h = pci_get_drvdata(pdev);
8903         /* Turn board interrupts off  and send the flush cache command
8904          * sendcmd will turn off interrupt, and send the flush...
8905          * To write all data in the battery backed cache to disks
8906          */
8907         hpsa_flush_cache(h);
8908         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8909         hpsa_free_irqs(h);                      /* init_one 4 */
8910         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8911 }
8912
8913 static void hpsa_shutdown(struct pci_dev *pdev)
8914 {
8915         __hpsa_shutdown(pdev);
8916         pci_disable_device(pdev);
8917 }
8918
8919 static void hpsa_free_device_info(struct ctlr_info *h)
8920 {
8921         int i;
8922
8923         for (i = 0; i < h->ndevices; i++) {
8924                 kfree(h->dev[i]);
8925                 h->dev[i] = NULL;
8926         }
8927 }
8928
8929 static void hpsa_remove_one(struct pci_dev *pdev)
8930 {
8931         struct ctlr_info *h;
8932         unsigned long flags;
8933
8934         if (pci_get_drvdata(pdev) == NULL) {
8935                 dev_err(&pdev->dev, "unable to remove device\n");
8936                 return;
8937         }
8938         h = pci_get_drvdata(pdev);
8939
8940         /* Get rid of any controller monitoring work items */
8941         spin_lock_irqsave(&h->lock, flags);
8942         h->remove_in_progress = 1;
8943         spin_unlock_irqrestore(&h->lock, flags);
8944         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8945         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8946         cancel_delayed_work_sync(&h->event_monitor_work);
8947         destroy_workqueue(h->rescan_ctlr_wq);
8948         destroy_workqueue(h->resubmit_wq);
8949
8950         hpsa_delete_sas_host(h);
8951
8952         /*
8953          * Call before disabling interrupts.
8954          * scsi_remove_host can trigger I/O operations especially
8955          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8956          * operations which cannot complete and will hang the system.
8957          */
8958         if (h->scsi_host)
8959                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8960         /* includes hpsa_free_irqs - init_one 4 */
8961         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8962         __hpsa_shutdown(pdev);
8963
8964         hpsa_free_device_info(h);               /* scan */
8965
8966         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8967         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8968         hpsa_free_ioaccel2_sg_chain_blocks(h);
8969         hpsa_free_performant_mode(h);                   /* init_one 7 */
8970         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8971         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8972         kfree(h->lastlogicals);
8973
8974         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8975
8976         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8977         h->scsi_host = NULL;                            /* init_one 3 */
8978
8979         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8980         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8981
8982         free_percpu(h->lockup_detected);                /* init_one 2 */
8983         h->lockup_detected = NULL;                      /* init_one 2 */
8984         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8985
8986         hpda_free_ctlr_info(h);                         /* init_one 1 */
8987 }
8988
8989 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8990         __attribute__((unused)) pm_message_t state)
8991 {
8992         return -ENOSYS;
8993 }
8994
8995 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8996 {
8997         return -ENOSYS;
8998 }
8999
9000 static struct pci_driver hpsa_pci_driver = {
9001         .name = HPSA,
9002         .probe = hpsa_init_one,
9003         .remove = hpsa_remove_one,
9004         .id_table = hpsa_pci_device_id, /* id_table */
9005         .shutdown = hpsa_shutdown,
9006         .suspend = hpsa_suspend,
9007         .resume = hpsa_resume,
9008 };
9009
9010 /* Fill in bucket_map[], given nsgs (the max number of
9011  * scatter gather elements supported) and bucket[],
9012  * which is an array of 8 integers.  The bucket[] array
9013  * contains 8 different DMA transfer sizes (in 16
9014  * byte increments) which the controller uses to fetch
9015  * commands.  This function fills in bucket_map[], which
9016  * maps a given number of scatter gather elements to one of
9017  * the 8 DMA transfer sizes.  The point of it is to allow the
9018  * controller to only do as much DMA as needed to fetch the
9019  * command, with the DMA transfer size encoded in the lower
9020  * bits of the command address.
9021  */
9022 static void  calc_bucket_map(int bucket[], int num_buckets,
9023         int nsgs, int min_blocks, u32 *bucket_map)
9024 {
9025         int i, j, b, size;
9026
9027         /* Note, bucket_map must have nsgs+1 entries. */
9028         for (i = 0; i <= nsgs; i++) {
9029                 /* Compute size of a command with i SG entries */
9030                 size = i + min_blocks;
9031                 b = num_buckets; /* Assume the biggest bucket */
9032                 /* Find the bucket that is just big enough */
9033                 for (j = 0; j < num_buckets; j++) {
9034                         if (bucket[j] >= size) {
9035                                 b = j;
9036                                 break;
9037                         }
9038                 }
9039                 /* for a command with i SG entries, use bucket b. */
9040                 bucket_map[i] = b;
9041         }
9042 }
9043
9044 /*
9045  * return -ENODEV on err, 0 on success (or no action)
9046  * allocates numerous items that must be freed later
9047  */
9048 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9049 {
9050         int i;
9051         unsigned long register_value;
9052         unsigned long transMethod = CFGTBL_Trans_Performant |
9053                         (trans_support & CFGTBL_Trans_use_short_tags) |
9054                                 CFGTBL_Trans_enable_directed_msix |
9055                         (trans_support & (CFGTBL_Trans_io_accel1 |
9056                                 CFGTBL_Trans_io_accel2));
9057         struct access_method access = SA5_performant_access;
9058
9059         /* This is a bit complicated.  There are 8 registers on
9060          * the controller which we write to to tell it 8 different
9061          * sizes of commands which there may be.  It's a way of
9062          * reducing the DMA done to fetch each command.  Encoded into
9063          * each command's tag are 3 bits which communicate to the controller
9064          * which of the eight sizes that command fits within.  The size of
9065          * each command depends on how many scatter gather entries there are.
9066          * Each SG entry requires 16 bytes.  The eight registers are programmed
9067          * with the number of 16-byte blocks a command of that size requires.
9068          * The smallest command possible requires 5 such 16 byte blocks.
9069          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9070          * blocks.  Note, this only extends to the SG entries contained
9071          * within the command block, and does not extend to chained blocks
9072          * of SG elements.   bft[] contains the eight values we write to
9073          * the registers.  They are not evenly distributed, but have more
9074          * sizes for small commands, and fewer sizes for larger commands.
9075          */
9076         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9077 #define MIN_IOACCEL2_BFT_ENTRY 5
9078 #define HPSA_IOACCEL2_HEADER_SZ 4
9079         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9080                         13, 14, 15, 16, 17, 18, 19,
9081                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9082         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9083         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9084         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9085                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9086         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9087         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9088         /*  5 = 1 s/g entry or 4k
9089          *  6 = 2 s/g entry or 8k
9090          *  8 = 4 s/g entry or 16k
9091          * 10 = 6 s/g entry or 24k
9092          */
9093
9094         /* If the controller supports either ioaccel method then
9095          * we can also use the RAID stack submit path that does not
9096          * perform the superfluous readl() after each command submission.
9097          */
9098         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9099                 access = SA5_performant_access_no_read;
9100
9101         /* Controller spec: zero out this buffer. */
9102         for (i = 0; i < h->nreply_queues; i++)
9103                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9104
9105         bft[7] = SG_ENTRIES_IN_CMD + 4;
9106         calc_bucket_map(bft, ARRAY_SIZE(bft),
9107                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9108         for (i = 0; i < 8; i++)
9109                 writel(bft[i], &h->transtable->BlockFetch[i]);
9110
9111         /* size of controller ring buffer */
9112         writel(h->max_commands, &h->transtable->RepQSize);
9113         writel(h->nreply_queues, &h->transtable->RepQCount);
9114         writel(0, &h->transtable->RepQCtrAddrLow32);
9115         writel(0, &h->transtable->RepQCtrAddrHigh32);
9116
9117         for (i = 0; i < h->nreply_queues; i++) {
9118                 writel(0, &h->transtable->RepQAddr[i].upper);
9119                 writel(h->reply_queue[i].busaddr,
9120                         &h->transtable->RepQAddr[i].lower);
9121         }
9122
9123         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9124         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9125         /*
9126          * enable outbound interrupt coalescing in accelerator mode;
9127          */
9128         if (trans_support & CFGTBL_Trans_io_accel1) {
9129                 access = SA5_ioaccel_mode1_access;
9130                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9131                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9132         } else
9133                 if (trans_support & CFGTBL_Trans_io_accel2)
9134                         access = SA5_ioaccel_mode2_access;
9135         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9136         if (hpsa_wait_for_mode_change_ack(h)) {
9137                 dev_err(&h->pdev->dev,
9138                         "performant mode problem - doorbell timeout\n");
9139                 return -ENODEV;
9140         }
9141         register_value = readl(&(h->cfgtable->TransportActive));
9142         if (!(register_value & CFGTBL_Trans_Performant)) {
9143                 dev_err(&h->pdev->dev,
9144                         "performant mode problem - transport not active\n");
9145                 return -ENODEV;
9146         }
9147         /* Change the access methods to the performant access methods */
9148         h->access = access;
9149         h->transMethod = transMethod;
9150
9151         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9152                 (trans_support & CFGTBL_Trans_io_accel2)))
9153                 return 0;
9154
9155         if (trans_support & CFGTBL_Trans_io_accel1) {
9156                 /* Set up I/O accelerator mode */
9157                 for (i = 0; i < h->nreply_queues; i++) {
9158                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9159                         h->reply_queue[i].current_entry =
9160                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9161                 }
9162                 bft[7] = h->ioaccel_maxsg + 8;
9163                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9164                                 h->ioaccel1_blockFetchTable);
9165
9166                 /* initialize all reply queue entries to unused */
9167                 for (i = 0; i < h->nreply_queues; i++)
9168                         memset(h->reply_queue[i].head,
9169                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9170                                 h->reply_queue_size);
9171
9172                 /* set all the constant fields in the accelerator command
9173                  * frames once at init time to save CPU cycles later.
9174                  */
9175                 for (i = 0; i < h->nr_cmds; i++) {
9176                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9177
9178                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9179                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9180                                         (i * sizeof(struct ErrorInfo)));
9181                         cp->err_info_len = sizeof(struct ErrorInfo);
9182                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9183                         cp->host_context_flags =
9184                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9185                         cp->timeout_sec = 0;
9186                         cp->ReplyQueue = 0;
9187                         cp->tag =
9188                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9189                         cp->host_addr =
9190                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9191                                         (i * sizeof(struct io_accel1_cmd)));
9192                 }
9193         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9194                 u64 cfg_offset, cfg_base_addr_index;
9195                 u32 bft2_offset, cfg_base_addr;
9196                 int rc;
9197
9198                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9199                         &cfg_base_addr_index, &cfg_offset);
9200                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9201                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9202                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9203                                 4, h->ioaccel2_blockFetchTable);
9204                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9205                 BUILD_BUG_ON(offsetof(struct CfgTable,
9206                                 io_accel_request_size_offset) != 0xb8);
9207                 h->ioaccel2_bft2_regs =
9208                         remap_pci_mem(pci_resource_start(h->pdev,
9209                                         cfg_base_addr_index) +
9210                                         cfg_offset + bft2_offset,
9211                                         ARRAY_SIZE(bft2) *
9212                                         sizeof(*h->ioaccel2_bft2_regs));
9213                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9214                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9215         }
9216         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9217         if (hpsa_wait_for_mode_change_ack(h)) {
9218                 dev_err(&h->pdev->dev,
9219                         "performant mode problem - enabling ioaccel mode\n");
9220                 return -ENODEV;
9221         }
9222         return 0;
9223 }
9224
9225 /* Free ioaccel1 mode command blocks and block fetch table */
9226 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9227 {
9228         if (h->ioaccel_cmd_pool) {
9229                 pci_free_consistent(h->pdev,
9230                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9231                         h->ioaccel_cmd_pool,
9232                         h->ioaccel_cmd_pool_dhandle);
9233                 h->ioaccel_cmd_pool = NULL;
9234                 h->ioaccel_cmd_pool_dhandle = 0;
9235         }
9236         kfree(h->ioaccel1_blockFetchTable);
9237         h->ioaccel1_blockFetchTable = NULL;
9238 }
9239
9240 /* Allocate ioaccel1 mode command blocks and block fetch table */
9241 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9242 {
9243         h->ioaccel_maxsg =
9244                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9245         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9246                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9247
9248         /* Command structures must be aligned on a 128-byte boundary
9249          * because the 7 lower bits of the address are used by the
9250          * hardware.
9251          */
9252         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9253                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9254         h->ioaccel_cmd_pool =
9255                 dma_alloc_coherent(&h->pdev->dev,
9256                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9257                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9258
9259         h->ioaccel1_blockFetchTable =
9260                 kmalloc(((h->ioaccel_maxsg + 1) *
9261                                 sizeof(u32)), GFP_KERNEL);
9262
9263         if ((h->ioaccel_cmd_pool == NULL) ||
9264                 (h->ioaccel1_blockFetchTable == NULL))
9265                 goto clean_up;
9266
9267         memset(h->ioaccel_cmd_pool, 0,
9268                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9269         return 0;
9270
9271 clean_up:
9272         hpsa_free_ioaccel1_cmd_and_bft(h);
9273         return -ENOMEM;
9274 }
9275
9276 /* Free ioaccel2 mode command blocks and block fetch table */
9277 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9278 {
9279         hpsa_free_ioaccel2_sg_chain_blocks(h);
9280
9281         if (h->ioaccel2_cmd_pool) {
9282                 pci_free_consistent(h->pdev,
9283                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9284                         h->ioaccel2_cmd_pool,
9285                         h->ioaccel2_cmd_pool_dhandle);
9286                 h->ioaccel2_cmd_pool = NULL;
9287                 h->ioaccel2_cmd_pool_dhandle = 0;
9288         }
9289         kfree(h->ioaccel2_blockFetchTable);
9290         h->ioaccel2_blockFetchTable = NULL;
9291 }
9292
9293 /* Allocate ioaccel2 mode command blocks and block fetch table */
9294 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9295 {
9296         int rc;
9297
9298         /* Allocate ioaccel2 mode command blocks and block fetch table */
9299
9300         h->ioaccel_maxsg =
9301                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9302         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9303                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9304
9305         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9306                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9307         h->ioaccel2_cmd_pool =
9308                 dma_alloc_coherent(&h->pdev->dev,
9309                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9310                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9311
9312         h->ioaccel2_blockFetchTable =
9313                 kmalloc(((h->ioaccel_maxsg + 1) *
9314                                 sizeof(u32)), GFP_KERNEL);
9315
9316         if ((h->ioaccel2_cmd_pool == NULL) ||
9317                 (h->ioaccel2_blockFetchTable == NULL)) {
9318                 rc = -ENOMEM;
9319                 goto clean_up;
9320         }
9321
9322         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9323         if (rc)
9324                 goto clean_up;
9325
9326         memset(h->ioaccel2_cmd_pool, 0,
9327                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9328         return 0;
9329
9330 clean_up:
9331         hpsa_free_ioaccel2_cmd_and_bft(h);
9332         return rc;
9333 }
9334
9335 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9336 static void hpsa_free_performant_mode(struct ctlr_info *h)
9337 {
9338         kfree(h->blockFetchTable);
9339         h->blockFetchTable = NULL;
9340         hpsa_free_reply_queues(h);
9341         hpsa_free_ioaccel1_cmd_and_bft(h);
9342         hpsa_free_ioaccel2_cmd_and_bft(h);
9343 }
9344
9345 /* return -ENODEV on error, 0 on success (or no action)
9346  * allocates numerous items that must be freed later
9347  */
9348 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9349 {
9350         u32 trans_support;
9351         unsigned long transMethod = CFGTBL_Trans_Performant |
9352                                         CFGTBL_Trans_use_short_tags;
9353         int i, rc;
9354
9355         if (hpsa_simple_mode)
9356                 return 0;
9357
9358         trans_support = readl(&(h->cfgtable->TransportSupport));
9359         if (!(trans_support & PERFORMANT_MODE))
9360                 return 0;
9361
9362         /* Check for I/O accelerator mode support */
9363         if (trans_support & CFGTBL_Trans_io_accel1) {
9364                 transMethod |= CFGTBL_Trans_io_accel1 |
9365                                 CFGTBL_Trans_enable_directed_msix;
9366                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9367                 if (rc)
9368                         return rc;
9369         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9370                 transMethod |= CFGTBL_Trans_io_accel2 |
9371                                 CFGTBL_Trans_enable_directed_msix;
9372                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9373                 if (rc)
9374                         return rc;
9375         }
9376
9377         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9378         hpsa_get_max_perf_mode_cmds(h);
9379         /* Performant mode ring buffer and supporting data structures */
9380         h->reply_queue_size = h->max_commands * sizeof(u64);
9381
9382         for (i = 0; i < h->nreply_queues; i++) {
9383                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9384                                                 h->reply_queue_size,
9385                                                 &h->reply_queue[i].busaddr,
9386                                                 GFP_KERNEL);
9387                 if (!h->reply_queue[i].head) {
9388                         rc = -ENOMEM;
9389                         goto clean1;    /* rq, ioaccel */
9390                 }
9391                 h->reply_queue[i].size = h->max_commands;
9392                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9393                 h->reply_queue[i].current_entry = 0;
9394         }
9395
9396         /* Need a block fetch table for performant mode */
9397         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9398                                 sizeof(u32)), GFP_KERNEL);
9399         if (!h->blockFetchTable) {
9400                 rc = -ENOMEM;
9401                 goto clean1;    /* rq, ioaccel */
9402         }
9403
9404         rc = hpsa_enter_performant_mode(h, trans_support);
9405         if (rc)
9406                 goto clean2;    /* bft, rq, ioaccel */
9407         return 0;
9408
9409 clean2: /* bft, rq, ioaccel */
9410         kfree(h->blockFetchTable);
9411         h->blockFetchTable = NULL;
9412 clean1: /* rq, ioaccel */
9413         hpsa_free_reply_queues(h);
9414         hpsa_free_ioaccel1_cmd_and_bft(h);
9415         hpsa_free_ioaccel2_cmd_and_bft(h);
9416         return rc;
9417 }
9418
9419 static int is_accelerated_cmd(struct CommandList *c)
9420 {
9421         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9422 }
9423
9424 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9425 {
9426         struct CommandList *c = NULL;
9427         int i, accel_cmds_out;
9428         int refcount;
9429
9430         do { /* wait for all outstanding ioaccel commands to drain out */
9431                 accel_cmds_out = 0;
9432                 for (i = 0; i < h->nr_cmds; i++) {
9433                         c = h->cmd_pool + i;
9434                         refcount = atomic_inc_return(&c->refcount);
9435                         if (refcount > 1) /* Command is allocated */
9436                                 accel_cmds_out += is_accelerated_cmd(c);
9437                         cmd_free(h, c);
9438                 }
9439                 if (accel_cmds_out <= 0)
9440                         break;
9441                 msleep(100);
9442         } while (1);
9443 }
9444
9445 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9446                                 struct hpsa_sas_port *hpsa_sas_port)
9447 {
9448         struct hpsa_sas_phy *hpsa_sas_phy;
9449         struct sas_phy *phy;
9450
9451         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9452         if (!hpsa_sas_phy)
9453                 return NULL;
9454
9455         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9456                 hpsa_sas_port->next_phy_index);
9457         if (!phy) {
9458                 kfree(hpsa_sas_phy);
9459                 return NULL;
9460         }
9461
9462         hpsa_sas_port->next_phy_index++;
9463         hpsa_sas_phy->phy = phy;
9464         hpsa_sas_phy->parent_port = hpsa_sas_port;
9465
9466         return hpsa_sas_phy;
9467 }
9468
9469 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9470 {
9471         struct sas_phy *phy = hpsa_sas_phy->phy;
9472
9473         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9474         if (hpsa_sas_phy->added_to_port)
9475                 list_del(&hpsa_sas_phy->phy_list_entry);
9476         sas_phy_delete(phy);
9477         kfree(hpsa_sas_phy);
9478 }
9479
9480 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9481 {
9482         int rc;
9483         struct hpsa_sas_port *hpsa_sas_port;
9484         struct sas_phy *phy;
9485         struct sas_identify *identify;
9486
9487         hpsa_sas_port = hpsa_sas_phy->parent_port;
9488         phy = hpsa_sas_phy->phy;
9489
9490         identify = &phy->identify;
9491         memset(identify, 0, sizeof(*identify));
9492         identify->sas_address = hpsa_sas_port->sas_address;
9493         identify->device_type = SAS_END_DEVICE;
9494         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9495         identify->target_port_protocols = SAS_PROTOCOL_STP;
9496         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9497         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9498         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9499         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9500         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9501
9502         rc = sas_phy_add(hpsa_sas_phy->phy);
9503         if (rc)
9504                 return rc;
9505
9506         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9507         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9508                         &hpsa_sas_port->phy_list_head);
9509         hpsa_sas_phy->added_to_port = true;
9510
9511         return 0;
9512 }
9513
9514 static int
9515         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9516                                 struct sas_rphy *rphy)
9517 {
9518         struct sas_identify *identify;
9519
9520         identify = &rphy->identify;
9521         identify->sas_address = hpsa_sas_port->sas_address;
9522         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9523         identify->target_port_protocols = SAS_PROTOCOL_STP;
9524
9525         return sas_rphy_add(rphy);
9526 }
9527
9528 static struct hpsa_sas_port
9529         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9530                                 u64 sas_address)
9531 {
9532         int rc;
9533         struct hpsa_sas_port *hpsa_sas_port;
9534         struct sas_port *port;
9535
9536         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9537         if (!hpsa_sas_port)
9538                 return NULL;
9539
9540         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9541         hpsa_sas_port->parent_node = hpsa_sas_node;
9542
9543         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9544         if (!port)
9545                 goto free_hpsa_port;
9546
9547         rc = sas_port_add(port);
9548         if (rc)
9549                 goto free_sas_port;
9550
9551         hpsa_sas_port->port = port;
9552         hpsa_sas_port->sas_address = sas_address;
9553         list_add_tail(&hpsa_sas_port->port_list_entry,
9554                         &hpsa_sas_node->port_list_head);
9555
9556         return hpsa_sas_port;
9557
9558 free_sas_port:
9559         sas_port_free(port);
9560 free_hpsa_port:
9561         kfree(hpsa_sas_port);
9562
9563         return NULL;
9564 }
9565
9566 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9567 {
9568         struct hpsa_sas_phy *hpsa_sas_phy;
9569         struct hpsa_sas_phy *next;
9570
9571         list_for_each_entry_safe(hpsa_sas_phy, next,
9572                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9573                 hpsa_free_sas_phy(hpsa_sas_phy);
9574
9575         sas_port_delete(hpsa_sas_port->port);
9576         list_del(&hpsa_sas_port->port_list_entry);
9577         kfree(hpsa_sas_port);
9578 }
9579
9580 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9581 {
9582         struct hpsa_sas_node *hpsa_sas_node;
9583
9584         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9585         if (hpsa_sas_node) {
9586                 hpsa_sas_node->parent_dev = parent_dev;
9587                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9588         }
9589
9590         return hpsa_sas_node;
9591 }
9592
9593 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9594 {
9595         struct hpsa_sas_port *hpsa_sas_port;
9596         struct hpsa_sas_port *next;
9597
9598         if (!hpsa_sas_node)
9599                 return;
9600
9601         list_for_each_entry_safe(hpsa_sas_port, next,
9602                         &hpsa_sas_node->port_list_head, port_list_entry)
9603                 hpsa_free_sas_port(hpsa_sas_port);
9604
9605         kfree(hpsa_sas_node);
9606 }
9607
9608 static struct hpsa_scsi_dev_t
9609         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9610                                         struct sas_rphy *rphy)
9611 {
9612         int i;
9613         struct hpsa_scsi_dev_t *device;
9614
9615         for (i = 0; i < h->ndevices; i++) {
9616                 device = h->dev[i];
9617                 if (!device->sas_port)
9618                         continue;
9619                 if (device->sas_port->rphy == rphy)
9620                         return device;
9621         }
9622
9623         return NULL;
9624 }
9625
9626 static int hpsa_add_sas_host(struct ctlr_info *h)
9627 {
9628         int rc;
9629         struct device *parent_dev;
9630         struct hpsa_sas_node *hpsa_sas_node;
9631         struct hpsa_sas_port *hpsa_sas_port;
9632         struct hpsa_sas_phy *hpsa_sas_phy;
9633
9634         parent_dev = &h->scsi_host->shost_dev;
9635
9636         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9637         if (!hpsa_sas_node)
9638                 return -ENOMEM;
9639
9640         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9641         if (!hpsa_sas_port) {
9642                 rc = -ENODEV;
9643                 goto free_sas_node;
9644         }
9645
9646         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9647         if (!hpsa_sas_phy) {
9648                 rc = -ENODEV;
9649                 goto free_sas_port;
9650         }
9651
9652         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9653         if (rc)
9654                 goto free_sas_phy;
9655
9656         h->sas_host = hpsa_sas_node;
9657
9658         return 0;
9659
9660 free_sas_phy:
9661         hpsa_free_sas_phy(hpsa_sas_phy);
9662 free_sas_port:
9663         hpsa_free_sas_port(hpsa_sas_port);
9664 free_sas_node:
9665         hpsa_free_sas_node(hpsa_sas_node);
9666
9667         return rc;
9668 }
9669
9670 static void hpsa_delete_sas_host(struct ctlr_info *h)
9671 {
9672         hpsa_free_sas_node(h->sas_host);
9673 }
9674
9675 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9676                                 struct hpsa_scsi_dev_t *device)
9677 {
9678         int rc;
9679         struct hpsa_sas_port *hpsa_sas_port;
9680         struct sas_rphy *rphy;
9681
9682         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9683         if (!hpsa_sas_port)
9684                 return -ENOMEM;
9685
9686         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9687         if (!rphy) {
9688                 rc = -ENODEV;
9689                 goto free_sas_port;
9690         }
9691
9692         hpsa_sas_port->rphy = rphy;
9693         device->sas_port = hpsa_sas_port;
9694
9695         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9696         if (rc)
9697                 goto free_sas_port;
9698
9699         return 0;
9700
9701 free_sas_port:
9702         hpsa_free_sas_port(hpsa_sas_port);
9703         device->sas_port = NULL;
9704
9705         return rc;
9706 }
9707
9708 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9709 {
9710         if (device->sas_port) {
9711                 hpsa_free_sas_port(device->sas_port);
9712                 device->sas_port = NULL;
9713         }
9714 }
9715
9716 static int
9717 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9718 {
9719         return 0;
9720 }
9721
9722 static int
9723 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9724 {
9725         struct Scsi_Host *shost = phy_to_shost(rphy);
9726         struct ctlr_info *h;
9727         struct hpsa_scsi_dev_t *sd;
9728
9729         if (!shost)
9730                 return -ENXIO;
9731
9732         h = shost_to_hba(shost);
9733
9734         if (!h)
9735                 return -ENXIO;
9736
9737         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9738         if (!sd)
9739                 return -ENXIO;
9740
9741         *identifier = sd->eli;
9742
9743         return 0;
9744 }
9745
9746 static int
9747 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9748 {
9749         return -ENXIO;
9750 }
9751
9752 static int
9753 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9754 {
9755         return 0;
9756 }
9757
9758 static int
9759 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9760 {
9761         return 0;
9762 }
9763
9764 static int
9765 hpsa_sas_phy_setup(struct sas_phy *phy)
9766 {
9767         return 0;
9768 }
9769
9770 static void
9771 hpsa_sas_phy_release(struct sas_phy *phy)
9772 {
9773 }
9774
9775 static int
9776 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9777 {
9778         return -EINVAL;
9779 }
9780
9781 static struct sas_function_template hpsa_sas_transport_functions = {
9782         .get_linkerrors = hpsa_sas_get_linkerrors,
9783         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9784         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9785         .phy_reset = hpsa_sas_phy_reset,
9786         .phy_enable = hpsa_sas_phy_enable,
9787         .phy_setup = hpsa_sas_phy_setup,
9788         .phy_release = hpsa_sas_phy_release,
9789         .set_phy_speed = hpsa_sas_phy_speed,
9790 };
9791
9792 /*
9793  *  This is it.  Register the PCI driver information for the cards we control
9794  *  the OS will call our registered routines when it finds one of our cards.
9795  */
9796 static int __init hpsa_init(void)
9797 {
9798         int rc;
9799
9800         hpsa_sas_transport_template =
9801                 sas_attach_transport(&hpsa_sas_transport_functions);
9802         if (!hpsa_sas_transport_template)
9803                 return -ENODEV;
9804
9805         rc = pci_register_driver(&hpsa_pci_driver);
9806
9807         if (rc)
9808                 sas_release_transport(hpsa_sas_transport_template);
9809
9810         return rc;
9811 }
9812
9813 static void __exit hpsa_cleanup(void)
9814 {
9815         pci_unregister_driver(&hpsa_pci_driver);
9816         sas_release_transport(hpsa_sas_transport_template);
9817 }
9818
9819 static void __attribute__((unused)) verify_offsets(void)
9820 {
9821 #define VERIFY_OFFSET(member, offset) \
9822         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9823
9824         VERIFY_OFFSET(structure_size, 0);
9825         VERIFY_OFFSET(volume_blk_size, 4);
9826         VERIFY_OFFSET(volume_blk_cnt, 8);
9827         VERIFY_OFFSET(phys_blk_shift, 16);
9828         VERIFY_OFFSET(parity_rotation_shift, 17);
9829         VERIFY_OFFSET(strip_size, 18);
9830         VERIFY_OFFSET(disk_starting_blk, 20);
9831         VERIFY_OFFSET(disk_blk_cnt, 28);
9832         VERIFY_OFFSET(data_disks_per_row, 36);
9833         VERIFY_OFFSET(metadata_disks_per_row, 38);
9834         VERIFY_OFFSET(row_cnt, 40);
9835         VERIFY_OFFSET(layout_map_count, 42);
9836         VERIFY_OFFSET(flags, 44);
9837         VERIFY_OFFSET(dekindex, 46);
9838         /* VERIFY_OFFSET(reserved, 48 */
9839         VERIFY_OFFSET(data, 64);
9840
9841 #undef VERIFY_OFFSET
9842
9843 #define VERIFY_OFFSET(member, offset) \
9844         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9845
9846         VERIFY_OFFSET(IU_type, 0);
9847         VERIFY_OFFSET(direction, 1);
9848         VERIFY_OFFSET(reply_queue, 2);
9849         /* VERIFY_OFFSET(reserved1, 3);  */
9850         VERIFY_OFFSET(scsi_nexus, 4);
9851         VERIFY_OFFSET(Tag, 8);
9852         VERIFY_OFFSET(cdb, 16);
9853         VERIFY_OFFSET(cciss_lun, 32);
9854         VERIFY_OFFSET(data_len, 40);
9855         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9856         VERIFY_OFFSET(sg_count, 45);
9857         /* VERIFY_OFFSET(reserved3 */
9858         VERIFY_OFFSET(err_ptr, 48);
9859         VERIFY_OFFSET(err_len, 56);
9860         /* VERIFY_OFFSET(reserved4  */
9861         VERIFY_OFFSET(sg, 64);
9862
9863 #undef VERIFY_OFFSET
9864
9865 #define VERIFY_OFFSET(member, offset) \
9866         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9867
9868         VERIFY_OFFSET(dev_handle, 0x00);
9869         VERIFY_OFFSET(reserved1, 0x02);
9870         VERIFY_OFFSET(function, 0x03);
9871         VERIFY_OFFSET(reserved2, 0x04);
9872         VERIFY_OFFSET(err_info, 0x0C);
9873         VERIFY_OFFSET(reserved3, 0x10);
9874         VERIFY_OFFSET(err_info_len, 0x12);
9875         VERIFY_OFFSET(reserved4, 0x13);
9876         VERIFY_OFFSET(sgl_offset, 0x14);
9877         VERIFY_OFFSET(reserved5, 0x15);
9878         VERIFY_OFFSET(transfer_len, 0x1C);
9879         VERIFY_OFFSET(reserved6, 0x20);
9880         VERIFY_OFFSET(io_flags, 0x24);
9881         VERIFY_OFFSET(reserved7, 0x26);
9882         VERIFY_OFFSET(LUN, 0x34);
9883         VERIFY_OFFSET(control, 0x3C);
9884         VERIFY_OFFSET(CDB, 0x40);
9885         VERIFY_OFFSET(reserved8, 0x50);
9886         VERIFY_OFFSET(host_context_flags, 0x60);
9887         VERIFY_OFFSET(timeout_sec, 0x62);
9888         VERIFY_OFFSET(ReplyQueue, 0x64);
9889         VERIFY_OFFSET(reserved9, 0x65);
9890         VERIFY_OFFSET(tag, 0x68);
9891         VERIFY_OFFSET(host_addr, 0x70);
9892         VERIFY_OFFSET(CISS_LUN, 0x78);
9893         VERIFY_OFFSET(SG, 0x78 + 8);
9894 #undef VERIFY_OFFSET
9895 }
9896
9897 module_init(hpsa_init);
9898 module_exit(hpsa_cleanup);