Merge tag 'trace-v4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160         {0x40700E11, "Smart Array 5300", &SA5A_access},
161         {0x40800E11, "Smart Array 5i", &SA5B_access},
162         {0x40820E11, "Smart Array 532", &SA5B_access},
163         {0x40830E11, "Smart Array 5312", &SA5B_access},
164         {0x409A0E11, "Smart Array 641", &SA5A_access},
165         {0x409B0E11, "Smart Array 642", &SA5A_access},
166         {0x409C0E11, "Smart Array 6400", &SA5A_access},
167         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168         {0x40910E11, "Smart Array 6i", &SA5A_access},
169         {0x3225103C, "Smart Array P600", &SA5A_access},
170         {0x3223103C, "Smart Array P800", &SA5A_access},
171         {0x3234103C, "Smart Array P400", &SA5A_access},
172         {0x3235103C, "Smart Array P400i", &SA5A_access},
173         {0x3211103C, "Smart Array E200i", &SA5A_access},
174         {0x3212103C, "Smart Array E200", &SA5A_access},
175         {0x3213103C, "Smart Array E200i", &SA5A_access},
176         {0x3214103C, "Smart Array E200i", &SA5A_access},
177         {0x3215103C, "Smart Array E200i", &SA5A_access},
178         {0x3237103C, "Smart Array E500", &SA5A_access},
179         {0x323D103C, "Smart Array P700m", &SA5A_access},
180         {0x3241103C, "Smart Array P212", &SA5_access},
181         {0x3243103C, "Smart Array P410", &SA5_access},
182         {0x3245103C, "Smart Array P410i", &SA5_access},
183         {0x3247103C, "Smart Array P411", &SA5_access},
184         {0x3249103C, "Smart Array P812", &SA5_access},
185         {0x324A103C, "Smart Array P712m", &SA5_access},
186         {0x324B103C, "Smart Array P711m", &SA5_access},
187         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188         {0x3350103C, "Smart Array P222", &SA5_access},
189         {0x3351103C, "Smart Array P420", &SA5_access},
190         {0x3352103C, "Smart Array P421", &SA5_access},
191         {0x3353103C, "Smart Array P822", &SA5_access},
192         {0x3354103C, "Smart Array P420i", &SA5_access},
193         {0x3355103C, "Smart Array P220i", &SA5_access},
194         {0x3356103C, "Smart Array P721m", &SA5_access},
195         {0x1920103C, "Smart Array P430i", &SA5_access},
196         {0x1921103C, "Smart Array P830i", &SA5_access},
197         {0x1922103C, "Smart Array P430", &SA5_access},
198         {0x1923103C, "Smart Array P431", &SA5_access},
199         {0x1924103C, "Smart Array P830", &SA5_access},
200         {0x1925103C, "Smart Array P831", &SA5_access},
201         {0x1926103C, "Smart Array P731m", &SA5_access},
202         {0x1928103C, "Smart Array P230i", &SA5_access},
203         {0x1929103C, "Smart Array P530", &SA5_access},
204         {0x21BD103C, "Smart Array P244br", &SA5_access},
205         {0x21BE103C, "Smart Array P741m", &SA5_access},
206         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207         {0x21C0103C, "Smart Array P440ar", &SA5_access},
208         {0x21C1103C, "Smart Array P840ar", &SA5_access},
209         {0x21C2103C, "Smart Array P440", &SA5_access},
210         {0x21C3103C, "Smart Array P441", &SA5_access},
211         {0x21C4103C, "Smart Array", &SA5_access},
212         {0x21C5103C, "Smart Array P841", &SA5_access},
213         {0x21C6103C, "Smart HBA H244br", &SA5_access},
214         {0x21C7103C, "Smart HBA H240", &SA5_access},
215         {0x21C8103C, "Smart HBA H241", &SA5_access},
216         {0x21C9103C, "Smart Array", &SA5_access},
217         {0x21CA103C, "Smart Array P246br", &SA5_access},
218         {0x21CB103C, "Smart Array P840", &SA5_access},
219         {0x21CC103C, "Smart Array", &SA5_access},
220         {0x21CD103C, "Smart Array", &SA5_access},
221         {0x21CE103C, "Smart HBA", &SA5_access},
222         {0x05809005, "SmartHBA-SA", &SA5_access},
223         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240                         struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244                 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258         void __user *arg);
259 #endif
260
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265                                             struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268         int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276         unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286         struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291         int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297                                u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299                                     unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301                                 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303                                            unsigned char lunaddr[],
304                                            int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306                                      int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321         struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323         unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326                                struct hpsa_scsi_dev_t *dev,
327                                unsigned char *scsi3addr);
328
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331         unsigned long *priv = shost_priv(sdev->host);
332         return (struct ctlr_info *) *priv;
333 }
334
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337         unsigned long *priv = shost_priv(sh);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343         return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348         return c->reset_pending;
349 }
350
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353                         u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355         struct scsi_sense_hdr sshdr;
356         bool rc;
357
358         *sense_key = -1;
359         *asc = -1;
360         *ascq = -1;
361
362         if (sense_data_len < 1)
363                 return;
364
365         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366         if (rc) {
367                 *sense_key = sshdr.sense_key;
368                 *asc = sshdr.asc;
369                 *ascq = sshdr.ascq;
370         }
371 }
372
373 static int check_for_unit_attention(struct ctlr_info *h,
374         struct CommandList *c)
375 {
376         u8 sense_key, asc, ascq;
377         int sense_len;
378
379         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380                 sense_len = sizeof(c->err_info->SenseInfo);
381         else
382                 sense_len = c->err_info->SenseLen;
383
384         decode_sense_data(c->err_info->SenseInfo, sense_len,
385                                 &sense_key, &asc, &ascq);
386         if (sense_key != UNIT_ATTENTION || asc == 0xff)
387                 return 0;
388
389         switch (asc) {
390         case STATE_CHANGED:
391                 dev_warn(&h->pdev->dev,
392                         "%s: a state change detected, command retried\n",
393                         h->devname);
394                 break;
395         case LUN_FAILED:
396                 dev_warn(&h->pdev->dev,
397                         "%s: LUN failure detected\n", h->devname);
398                 break;
399         case REPORT_LUNS_CHANGED:
400                 dev_warn(&h->pdev->dev,
401                         "%s: report LUN data changed\n", h->devname);
402         /*
403          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404          * target (array) devices.
405          */
406                 break;
407         case POWER_OR_RESET:
408                 dev_warn(&h->pdev->dev,
409                         "%s: a power on or device reset detected\n",
410                         h->devname);
411                 break;
412         case UNIT_ATTENTION_CLEARED:
413                 dev_warn(&h->pdev->dev,
414                         "%s: unit attention cleared by another initiator\n",
415                         h->devname);
416                 break;
417         default:
418                 dev_warn(&h->pdev->dev,
419                         "%s: unknown unit attention detected\n",
420                         h->devname);
421                 break;
422         }
423         return 1;
424 }
425
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431                 return 0;
432         dev_warn(&h->pdev->dev, HPSA "device busy");
433         return 1;
434 }
435
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438                 struct device_attribute *attr, char *buf)
439 {
440         int ld;
441         struct ctlr_info *h;
442         struct Scsi_Host *shost = class_to_shost(dev);
443
444         h = shost_to_hba(shost);
445         ld = lockup_detected(h);
446
447         return sprintf(buf, "ld=%d\n", ld);
448 }
449
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451                                          struct device_attribute *attr,
452                                          const char *buf, size_t count)
453 {
454         int status, len;
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         char tmpbuf[10];
458
459         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460                 return -EACCES;
461         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462         strncpy(tmpbuf, buf, len);
463         tmpbuf[len] = '\0';
464         if (sscanf(tmpbuf, "%d", &status) != 1)
465                 return -EINVAL;
466         h = shost_to_hba(shost);
467         h->acciopath_status = !!status;
468         dev_warn(&h->pdev->dev,
469                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470                 h->acciopath_status ? "enabled" : "disabled");
471         return count;
472 }
473
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475                                          struct device_attribute *attr,
476                                          const char *buf, size_t count)
477 {
478         int debug_level, len;
479         struct ctlr_info *h;
480         struct Scsi_Host *shost = class_to_shost(dev);
481         char tmpbuf[10];
482
483         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484                 return -EACCES;
485         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486         strncpy(tmpbuf, buf, len);
487         tmpbuf[len] = '\0';
488         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489                 return -EINVAL;
490         if (debug_level < 0)
491                 debug_level = 0;
492         h = shost_to_hba(shost);
493         h->raid_offload_debug = debug_level;
494         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495                 h->raid_offload_debug);
496         return count;
497 }
498
499 static ssize_t host_store_rescan(struct device *dev,
500                                  struct device_attribute *attr,
501                                  const char *buf, size_t count)
502 {
503         struct ctlr_info *h;
504         struct Scsi_Host *shost = class_to_shost(dev);
505         h = shost_to_hba(shost);
506         hpsa_scan_start(h->scsi_host);
507         return count;
508 }
509
510 static ssize_t host_show_firmware_revision(struct device *dev,
511              struct device_attribute *attr, char *buf)
512 {
513         struct ctlr_info *h;
514         struct Scsi_Host *shost = class_to_shost(dev);
515         unsigned char *fwrev;
516
517         h = shost_to_hba(shost);
518         if (!h->hba_inquiry_data)
519                 return 0;
520         fwrev = &h->hba_inquiry_data[32];
521         return snprintf(buf, 20, "%c%c%c%c\n",
522                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526              struct device_attribute *attr, char *buf)
527 {
528         struct Scsi_Host *shost = class_to_shost(dev);
529         struct ctlr_info *h = shost_to_hba(shost);
530
531         return snprintf(buf, 20, "%d\n",
532                         atomic_read(&h->commands_outstanding));
533 }
534
535 static ssize_t host_show_transport_mode(struct device *dev,
536         struct device_attribute *attr, char *buf)
537 {
538         struct ctlr_info *h;
539         struct Scsi_Host *shost = class_to_shost(dev);
540
541         h = shost_to_hba(shost);
542         return snprintf(buf, 20, "%s\n",
543                 h->transMethod & CFGTBL_Trans_Performant ?
544                         "performant" : "simple");
545 }
546
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548         struct device_attribute *attr, char *buf)
549 {
550         struct ctlr_info *h;
551         struct Scsi_Host *shost = class_to_shost(dev);
552
553         h = shost_to_hba(shost);
554         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560         0x324a103C, /* Smart Array P712m */
561         0x324b103C, /* Smart Array P711m */
562         0x3223103C, /* Smart Array P800 */
563         0x3234103C, /* Smart Array P400 */
564         0x3235103C, /* Smart Array P400i */
565         0x3211103C, /* Smart Array E200i */
566         0x3212103C, /* Smart Array E200 */
567         0x3213103C, /* Smart Array E200i */
568         0x3214103C, /* Smart Array E200i */
569         0x3215103C, /* Smart Array E200i */
570         0x3237103C, /* Smart Array E500 */
571         0x323D103C, /* Smart Array P700m */
572         0x40800E11, /* Smart Array 5i */
573         0x409C0E11, /* Smart Array 6400 */
574         0x409D0E11, /* Smart Array 6400 EM */
575         0x40700E11, /* Smart Array 5300 */
576         0x40820E11, /* Smart Array 532 */
577         0x40830E11, /* Smart Array 5312 */
578         0x409A0E11, /* Smart Array 641 */
579         0x409B0E11, /* Smart Array 642 */
580         0x40910E11, /* Smart Array 6i */
581 };
582
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585         0x40800E11, /* Smart Array 5i */
586         0x40700E11, /* Smart Array 5300 */
587         0x40820E11, /* Smart Array 532 */
588         0x40830E11, /* Smart Array 5312 */
589         0x409A0E11, /* Smart Array 641 */
590         0x409B0E11, /* Smart Array 642 */
591         0x40910E11, /* Smart Array 6i */
592         /* Exclude 640x boards.  These are two pci devices in one slot
593          * which share a battery backed cache module.  One controls the
594          * cache, the other accesses the cache through the one that controls
595          * it.  If we reset the one controlling the cache, the other will
596          * likely not be happy.  Just forbid resetting this conjoined mess.
597          * The 640x isn't really supported by hpsa anyway.
598          */
599         0x409C0E11, /* Smart Array 6400 */
600         0x409D0E11, /* Smart Array 6400 EM */
601 };
602
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605         int i;
606
607         for (i = 0; i < nelems; i++)
608                 if (a[i] == board_id)
609                         return 1;
610         return 0;
611 }
612
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615         return !board_id_in_array(unresettable_controller,
616                         ARRAY_SIZE(unresettable_controller), board_id);
617 }
618
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621         return !board_id_in_array(soft_unresettable_controller,
622                         ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624
625 static int ctlr_is_resettable(u32 board_id)
626 {
627         return ctlr_is_hard_resettable(board_id) ||
628                 ctlr_is_soft_resettable(board_id);
629 }
630
631 static ssize_t host_show_resettable(struct device *dev,
632         struct device_attribute *attr, char *buf)
633 {
634         struct ctlr_info *h;
635         struct Scsi_Host *shost = class_to_shost(dev);
636
637         h = shost_to_hba(shost);
638         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643         return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0     0
650 #define HPSA_RAID_4     1
651 #define HPSA_RAID_1     2       /* also used for RAID 10 */
652 #define HPSA_RAID_5     3       /* also used for RAID 50 */
653 #define HPSA_RAID_51    4
654 #define HPSA_RAID_6     5       /* also used for RAID 60 */
655 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661         return !device->physical_device;
662 }
663
664 static ssize_t raid_level_show(struct device *dev,
665              struct device_attribute *attr, char *buf)
666 {
667         ssize_t l = 0;
668         unsigned char rlevel;
669         struct ctlr_info *h;
670         struct scsi_device *sdev;
671         struct hpsa_scsi_dev_t *hdev;
672         unsigned long flags;
673
674         sdev = to_scsi_device(dev);
675         h = sdev_to_hba(sdev);
676         spin_lock_irqsave(&h->lock, flags);
677         hdev = sdev->hostdata;
678         if (!hdev) {
679                 spin_unlock_irqrestore(&h->lock, flags);
680                 return -ENODEV;
681         }
682
683         /* Is this even a logical drive? */
684         if (!is_logical_device(hdev)) {
685                 spin_unlock_irqrestore(&h->lock, flags);
686                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687                 return l;
688         }
689
690         rlevel = hdev->raid_level;
691         spin_unlock_irqrestore(&h->lock, flags);
692         if (rlevel > RAID_UNKNOWN)
693                 rlevel = RAID_UNKNOWN;
694         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695         return l;
696 }
697
698 static ssize_t lunid_show(struct device *dev,
699              struct device_attribute *attr, char *buf)
700 {
701         struct ctlr_info *h;
702         struct scsi_device *sdev;
703         struct hpsa_scsi_dev_t *hdev;
704         unsigned long flags;
705         unsigned char lunid[8];
706
707         sdev = to_scsi_device(dev);
708         h = sdev_to_hba(sdev);
709         spin_lock_irqsave(&h->lock, flags);
710         hdev = sdev->hostdata;
711         if (!hdev) {
712                 spin_unlock_irqrestore(&h->lock, flags);
713                 return -ENODEV;
714         }
715         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716         spin_unlock_irqrestore(&h->lock, flags);
717         return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719
720 static ssize_t unique_id_show(struct device *dev,
721              struct device_attribute *attr, char *buf)
722 {
723         struct ctlr_info *h;
724         struct scsi_device *sdev;
725         struct hpsa_scsi_dev_t *hdev;
726         unsigned long flags;
727         unsigned char sn[16];
728
729         sdev = to_scsi_device(dev);
730         h = sdev_to_hba(sdev);
731         spin_lock_irqsave(&h->lock, flags);
732         hdev = sdev->hostdata;
733         if (!hdev) {
734                 spin_unlock_irqrestore(&h->lock, flags);
735                 return -ENODEV;
736         }
737         memcpy(sn, hdev->device_id, sizeof(sn));
738         spin_unlock_irqrestore(&h->lock, flags);
739         return snprintf(buf, 16 * 2 + 2,
740                         "%02X%02X%02X%02X%02X%02X%02X%02X"
741                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742                         sn[0], sn[1], sn[2], sn[3],
743                         sn[4], sn[5], sn[6], sn[7],
744                         sn[8], sn[9], sn[10], sn[11],
745                         sn[12], sn[13], sn[14], sn[15]);
746 }
747
748 static ssize_t sas_address_show(struct device *dev,
749               struct device_attribute *attr, char *buf)
750 {
751         struct ctlr_info *h;
752         struct scsi_device *sdev;
753         struct hpsa_scsi_dev_t *hdev;
754         unsigned long flags;
755         u64 sas_address;
756
757         sdev = to_scsi_device(dev);
758         h = sdev_to_hba(sdev);
759         spin_lock_irqsave(&h->lock, flags);
760         hdev = sdev->hostdata;
761         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762                 spin_unlock_irqrestore(&h->lock, flags);
763                 return -ENODEV;
764         }
765         sas_address = hdev->sas_address;
766         spin_unlock_irqrestore(&h->lock, flags);
767
768         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772              struct device_attribute *attr, char *buf)
773 {
774         struct ctlr_info *h;
775         struct scsi_device *sdev;
776         struct hpsa_scsi_dev_t *hdev;
777         unsigned long flags;
778         int offload_enabled;
779
780         sdev = to_scsi_device(dev);
781         h = sdev_to_hba(sdev);
782         spin_lock_irqsave(&h->lock, flags);
783         hdev = sdev->hostdata;
784         if (!hdev) {
785                 spin_unlock_irqrestore(&h->lock, flags);
786                 return -ENODEV;
787         }
788         offload_enabled = hdev->offload_enabled;
789         spin_unlock_irqrestore(&h->lock, flags);
790
791         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792                 return snprintf(buf, 20, "%d\n", offload_enabled);
793         else
794                 return snprintf(buf, 40, "%s\n",
795                                 "Not applicable for a controller");
796 }
797
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800              struct device_attribute *attr, char *buf)
801 {
802         struct ctlr_info *h;
803         struct scsi_device *sdev;
804         struct hpsa_scsi_dev_t *hdev;
805         unsigned long flags;
806         int i;
807         int output_len = 0;
808         u8 box;
809         u8 bay;
810         u8 path_map_index = 0;
811         char *active;
812         unsigned char phys_connector[2];
813
814         sdev = to_scsi_device(dev);
815         h = sdev_to_hba(sdev);
816         spin_lock_irqsave(&h->devlock, flags);
817         hdev = sdev->hostdata;
818         if (!hdev) {
819                 spin_unlock_irqrestore(&h->devlock, flags);
820                 return -ENODEV;
821         }
822
823         bay = hdev->bay;
824         for (i = 0; i < MAX_PATHS; i++) {
825                 path_map_index = 1<<i;
826                 if (i == hdev->active_path_index)
827                         active = "Active";
828                 else if (hdev->path_map & path_map_index)
829                         active = "Inactive";
830                 else
831                         continue;
832
833                 output_len += scnprintf(buf + output_len,
834                                 PAGE_SIZE - output_len,
835                                 "[%d:%d:%d:%d] %20.20s ",
836                                 h->scsi_host->host_no,
837                                 hdev->bus, hdev->target, hdev->lun,
838                                 scsi_device_type(hdev->devtype));
839
840                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841                         output_len += scnprintf(buf + output_len,
842                                                 PAGE_SIZE - output_len,
843                                                 "%s\n", active);
844                         continue;
845                 }
846
847                 box = hdev->box[i];
848                 memcpy(&phys_connector, &hdev->phys_connector[i],
849                         sizeof(phys_connector));
850                 if (phys_connector[0] < '0')
851                         phys_connector[0] = '0';
852                 if (phys_connector[1] < '0')
853                         phys_connector[1] = '0';
854                 output_len += scnprintf(buf + output_len,
855                                 PAGE_SIZE - output_len,
856                                 "PORT: %.2s ",
857                                 phys_connector);
858                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859                         hdev->expose_device) {
860                         if (box == 0 || box == 0xFF) {
861                                 output_len += scnprintf(buf + output_len,
862                                         PAGE_SIZE - output_len,
863                                         "BAY: %hhu %s\n",
864                                         bay, active);
865                         } else {
866                                 output_len += scnprintf(buf + output_len,
867                                         PAGE_SIZE - output_len,
868                                         "BOX: %hhu BAY: %hhu %s\n",
869                                         box, bay, active);
870                         }
871                 } else if (box != 0 && box != 0xFF) {
872                         output_len += scnprintf(buf + output_len,
873                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874                                 box, active);
875                 } else
876                         output_len += scnprintf(buf + output_len,
877                                 PAGE_SIZE - output_len, "%s\n", active);
878         }
879
880         spin_unlock_irqrestore(&h->devlock, flags);
881         return output_len;
882 }
883
884 static ssize_t host_show_ctlr_num(struct device *dev,
885         struct device_attribute *attr, char *buf)
886 {
887         struct ctlr_info *h;
888         struct Scsi_Host *shost = class_to_shost(dev);
889
890         h = shost_to_hba(shost);
891         return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893
894 static ssize_t host_show_legacy_board(struct device *dev,
895         struct device_attribute *attr, char *buf)
896 {
897         struct ctlr_info *h;
898         struct Scsi_Host *shost = class_to_shost(dev);
899
900         h = shost_to_hba(shost);
901         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910                         host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913                 host_show_hp_ssd_smart_path_status,
914                 host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916                         host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918         host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920         host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922         host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924         host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926         host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928         host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930         host_show_legacy_board, NULL);
931
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933         &dev_attr_raid_level,
934         &dev_attr_lunid,
935         &dev_attr_unique_id,
936         &dev_attr_hp_ssd_smart_path_enabled,
937         &dev_attr_path_info,
938         &dev_attr_sas_address,
939         NULL,
940 };
941
942 static struct device_attribute *hpsa_shost_attrs[] = {
943         &dev_attr_rescan,
944         &dev_attr_firmware_revision,
945         &dev_attr_commands_outstanding,
946         &dev_attr_transport_mode,
947         &dev_attr_resettable,
948         &dev_attr_hp_ssd_smart_path_status,
949         &dev_attr_raid_offload_debug,
950         &dev_attr_lockup_detected,
951         &dev_attr_ctlr_num,
952         &dev_attr_legacy_board,
953         NULL,
954 };
955
956 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
957                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
958
959 static struct scsi_host_template hpsa_driver_template = {
960         .module                 = THIS_MODULE,
961         .name                   = HPSA,
962         .proc_name              = HPSA,
963         .queuecommand           = hpsa_scsi_queue_command,
964         .scan_start             = hpsa_scan_start,
965         .scan_finished          = hpsa_scan_finished,
966         .change_queue_depth     = hpsa_change_queue_depth,
967         .this_id                = -1,
968         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
969         .ioctl                  = hpsa_ioctl,
970         .slave_alloc            = hpsa_slave_alloc,
971         .slave_configure        = hpsa_slave_configure,
972         .slave_destroy          = hpsa_slave_destroy,
973 #ifdef CONFIG_COMPAT
974         .compat_ioctl           = hpsa_compat_ioctl,
975 #endif
976         .sdev_attrs = hpsa_sdev_attrs,
977         .shost_attrs = hpsa_shost_attrs,
978         .max_sectors = 2048,
979         .no_write_same = 1,
980 };
981
982 static inline u32 next_command(struct ctlr_info *h, u8 q)
983 {
984         u32 a;
985         struct reply_queue_buffer *rq = &h->reply_queue[q];
986
987         if (h->transMethod & CFGTBL_Trans_io_accel1)
988                 return h->access.command_completed(h, q);
989
990         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
991                 return h->access.command_completed(h, q);
992
993         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
994                 a = rq->head[rq->current_entry];
995                 rq->current_entry++;
996                 atomic_dec(&h->commands_outstanding);
997         } else {
998                 a = FIFO_EMPTY;
999         }
1000         /* Check for wraparound */
1001         if (rq->current_entry == h->max_commands) {
1002                 rq->current_entry = 0;
1003                 rq->wraparound ^= 1;
1004         }
1005         return a;
1006 }
1007
1008 /*
1009  * There are some special bits in the bus address of the
1010  * command that we have to set for the controller to know
1011  * how to process the command:
1012  *
1013  * Normal performant mode:
1014  * bit 0: 1 means performant mode, 0 means simple mode.
1015  * bits 1-3 = block fetch table entry
1016  * bits 4-6 = command type (== 0)
1017  *
1018  * ioaccel1 mode:
1019  * bit 0 = "performant mode" bit.
1020  * bits 1-3 = block fetch table entry
1021  * bits 4-6 = command type (== 110)
1022  * (command type is needed because ioaccel1 mode
1023  * commands are submitted through the same register as normal
1024  * mode commands, so this is how the controller knows whether
1025  * the command is normal mode or ioaccel1 mode.)
1026  *
1027  * ioaccel2 mode:
1028  * bit 0 = "performant mode" bit.
1029  * bits 1-4 = block fetch table entry (note extra bit)
1030  * bits 4-6 = not needed, because ioaccel2 mode has
1031  * a separate special register for submitting commands.
1032  */
1033
1034 /*
1035  * set_performant_mode: Modify the tag for cciss performant
1036  * set bit 0 for pull model, bits 3-1 for block fetch
1037  * register number
1038  */
1039 #define DEFAULT_REPLY_QUEUE (-1)
1040 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1041                                         int reply_queue)
1042 {
1043         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1044                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1045                 if (unlikely(!h->msix_vectors))
1046                         return;
1047                 c->Header.ReplyQueue = reply_queue;
1048         }
1049 }
1050
1051 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1052                                                 struct CommandList *c,
1053                                                 int reply_queue)
1054 {
1055         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1056
1057         /*
1058          * Tell the controller to post the reply to the queue for this
1059          * processor.  This seems to give the best I/O throughput.
1060          */
1061         cp->ReplyQueue = reply_queue;
1062         /*
1063          * Set the bits in the address sent down to include:
1064          *  - performant mode bit (bit 0)
1065          *  - pull count (bits 1-3)
1066          *  - command type (bits 4-6)
1067          */
1068         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1069                                         IOACCEL1_BUSADDR_CMDTYPE;
1070 }
1071
1072 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1073                                                 struct CommandList *c,
1074                                                 int reply_queue)
1075 {
1076         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1077                 &h->ioaccel2_cmd_pool[c->cmdindex];
1078
1079         /* Tell the controller to post the reply to the queue for this
1080          * processor.  This seems to give the best I/O throughput.
1081          */
1082         cp->reply_queue = reply_queue;
1083         /* Set the bits in the address sent down to include:
1084          *  - performant mode bit not used in ioaccel mode 2
1085          *  - pull count (bits 0-3)
1086          *  - command type isn't needed for ioaccel2
1087          */
1088         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1089 }
1090
1091 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1092                                                 struct CommandList *c,
1093                                                 int reply_queue)
1094 {
1095         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1096
1097         /*
1098          * Tell the controller to post the reply to the queue for this
1099          * processor.  This seems to give the best I/O throughput.
1100          */
1101         cp->reply_queue = reply_queue;
1102         /*
1103          * Set the bits in the address sent down to include:
1104          *  - performant mode bit not used in ioaccel mode 2
1105          *  - pull count (bits 0-3)
1106          *  - command type isn't needed for ioaccel2
1107          */
1108         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1109 }
1110
1111 static int is_firmware_flash_cmd(u8 *cdb)
1112 {
1113         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1114 }
1115
1116 /*
1117  * During firmware flash, the heartbeat register may not update as frequently
1118  * as it should.  So we dial down lockup detection during firmware flash. and
1119  * dial it back up when firmware flash completes.
1120  */
1121 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1122 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1123 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1124 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1125                 struct CommandList *c)
1126 {
1127         if (!is_firmware_flash_cmd(c->Request.CDB))
1128                 return;
1129         atomic_inc(&h->firmware_flash_in_progress);
1130         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1131 }
1132
1133 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1134                 struct CommandList *c)
1135 {
1136         if (is_firmware_flash_cmd(c->Request.CDB) &&
1137                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1138                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1139 }
1140
1141 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1142         struct CommandList *c, int reply_queue)
1143 {
1144         dial_down_lockup_detection_during_fw_flash(h, c);
1145         atomic_inc(&h->commands_outstanding);
1146
1147         reply_queue = h->reply_map[raw_smp_processor_id()];
1148         switch (c->cmd_type) {
1149         case CMD_IOACCEL1:
1150                 set_ioaccel1_performant_mode(h, c, reply_queue);
1151                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1152                 break;
1153         case CMD_IOACCEL2:
1154                 set_ioaccel2_performant_mode(h, c, reply_queue);
1155                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1156                 break;
1157         case IOACCEL2_TMF:
1158                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1159                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1160                 break;
1161         default:
1162                 set_performant_mode(h, c, reply_queue);
1163                 h->access.submit_command(h, c);
1164         }
1165 }
1166
1167 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1168 {
1169         if (unlikely(hpsa_is_pending_event(c)))
1170                 return finish_cmd(c);
1171
1172         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1173 }
1174
1175 static inline int is_hba_lunid(unsigned char scsi3addr[])
1176 {
1177         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1178 }
1179
1180 static inline int is_scsi_rev_5(struct ctlr_info *h)
1181 {
1182         if (!h->hba_inquiry_data)
1183                 return 0;
1184         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1185                 return 1;
1186         return 0;
1187 }
1188
1189 static int hpsa_find_target_lun(struct ctlr_info *h,
1190         unsigned char scsi3addr[], int bus, int *target, int *lun)
1191 {
1192         /* finds an unused bus, target, lun for a new physical device
1193          * assumes h->devlock is held
1194          */
1195         int i, found = 0;
1196         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1197
1198         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1199
1200         for (i = 0; i < h->ndevices; i++) {
1201                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1202                         __set_bit(h->dev[i]->target, lun_taken);
1203         }
1204
1205         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1206         if (i < HPSA_MAX_DEVICES) {
1207                 /* *bus = 1; */
1208                 *target = i;
1209                 *lun = 0;
1210                 found = 1;
1211         }
1212         return !found;
1213 }
1214
1215 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1216         struct hpsa_scsi_dev_t *dev, char *description)
1217 {
1218 #define LABEL_SIZE 25
1219         char label[LABEL_SIZE];
1220
1221         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1222                 return;
1223
1224         switch (dev->devtype) {
1225         case TYPE_RAID:
1226                 snprintf(label, LABEL_SIZE, "controller");
1227                 break;
1228         case TYPE_ENCLOSURE:
1229                 snprintf(label, LABEL_SIZE, "enclosure");
1230                 break;
1231         case TYPE_DISK:
1232         case TYPE_ZBC:
1233                 if (dev->external)
1234                         snprintf(label, LABEL_SIZE, "external");
1235                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1236                         snprintf(label, LABEL_SIZE, "%s",
1237                                 raid_label[PHYSICAL_DRIVE]);
1238                 else
1239                         snprintf(label, LABEL_SIZE, "RAID-%s",
1240                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1241                                 raid_label[dev->raid_level]);
1242                 break;
1243         case TYPE_ROM:
1244                 snprintf(label, LABEL_SIZE, "rom");
1245                 break;
1246         case TYPE_TAPE:
1247                 snprintf(label, LABEL_SIZE, "tape");
1248                 break;
1249         case TYPE_MEDIUM_CHANGER:
1250                 snprintf(label, LABEL_SIZE, "changer");
1251                 break;
1252         default:
1253                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1254                 break;
1255         }
1256
1257         dev_printk(level, &h->pdev->dev,
1258                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1259                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1260                         description,
1261                         scsi_device_type(dev->devtype),
1262                         dev->vendor,
1263                         dev->model,
1264                         label,
1265                         dev->offload_config ? '+' : '-',
1266                         dev->offload_to_be_enabled ? '+' : '-',
1267                         dev->expose_device);
1268 }
1269
1270 /* Add an entry into h->dev[] array. */
1271 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1272                 struct hpsa_scsi_dev_t *device,
1273                 struct hpsa_scsi_dev_t *added[], int *nadded)
1274 {
1275         /* assumes h->devlock is held */
1276         int n = h->ndevices;
1277         int i;
1278         unsigned char addr1[8], addr2[8];
1279         struct hpsa_scsi_dev_t *sd;
1280
1281         if (n >= HPSA_MAX_DEVICES) {
1282                 dev_err(&h->pdev->dev, "too many devices, some will be "
1283                         "inaccessible.\n");
1284                 return -1;
1285         }
1286
1287         /* physical devices do not have lun or target assigned until now. */
1288         if (device->lun != -1)
1289                 /* Logical device, lun is already assigned. */
1290                 goto lun_assigned;
1291
1292         /* If this device a non-zero lun of a multi-lun device
1293          * byte 4 of the 8-byte LUN addr will contain the logical
1294          * unit no, zero otherwise.
1295          */
1296         if (device->scsi3addr[4] == 0) {
1297                 /* This is not a non-zero lun of a multi-lun device */
1298                 if (hpsa_find_target_lun(h, device->scsi3addr,
1299                         device->bus, &device->target, &device->lun) != 0)
1300                         return -1;
1301                 goto lun_assigned;
1302         }
1303
1304         /* This is a non-zero lun of a multi-lun device.
1305          * Search through our list and find the device which
1306          * has the same 8 byte LUN address, excepting byte 4 and 5.
1307          * Assign the same bus and target for this new LUN.
1308          * Use the logical unit number from the firmware.
1309          */
1310         memcpy(addr1, device->scsi3addr, 8);
1311         addr1[4] = 0;
1312         addr1[5] = 0;
1313         for (i = 0; i < n; i++) {
1314                 sd = h->dev[i];
1315                 memcpy(addr2, sd->scsi3addr, 8);
1316                 addr2[4] = 0;
1317                 addr2[5] = 0;
1318                 /* differ only in byte 4 and 5? */
1319                 if (memcmp(addr1, addr2, 8) == 0) {
1320                         device->bus = sd->bus;
1321                         device->target = sd->target;
1322                         device->lun = device->scsi3addr[4];
1323                         break;
1324                 }
1325         }
1326         if (device->lun == -1) {
1327                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1328                         " suspect firmware bug or unsupported hardware "
1329                         "configuration.\n");
1330                         return -1;
1331         }
1332
1333 lun_assigned:
1334
1335         h->dev[n] = device;
1336         h->ndevices++;
1337         added[*nadded] = device;
1338         (*nadded)++;
1339         hpsa_show_dev_msg(KERN_INFO, h, device,
1340                 device->expose_device ? "added" : "masked");
1341         return 0;
1342 }
1343
1344 /*
1345  * Called during a scan operation.
1346  *
1347  * Update an entry in h->dev[] array.
1348  */
1349 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1350         int entry, struct hpsa_scsi_dev_t *new_entry)
1351 {
1352         /* assumes h->devlock is held */
1353         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1354
1355         /* Raid level changed. */
1356         h->dev[entry]->raid_level = new_entry->raid_level;
1357
1358         /*
1359          * ioacccel_handle may have changed for a dual domain disk
1360          */
1361         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1362
1363         /* Raid offload parameters changed.  Careful about the ordering. */
1364         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1365                 /*
1366                  * if drive is newly offload_enabled, we want to copy the
1367                  * raid map data first.  If previously offload_enabled and
1368                  * offload_config were set, raid map data had better be
1369                  * the same as it was before. If raid map data has changed
1370                  * then it had better be the case that
1371                  * h->dev[entry]->offload_enabled is currently 0.
1372                  */
1373                 h->dev[entry]->raid_map = new_entry->raid_map;
1374                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375         }
1376         if (new_entry->offload_to_be_enabled) {
1377                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1378                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1379         }
1380         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1381         h->dev[entry]->offload_config = new_entry->offload_config;
1382         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1383         h->dev[entry]->queue_depth = new_entry->queue_depth;
1384
1385         /*
1386          * We can turn off ioaccel offload now, but need to delay turning
1387          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1388          * can't do that until all the devices are updated.
1389          */
1390         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1391
1392         /*
1393          * turn ioaccel off immediately if told to do so.
1394          */
1395         if (!new_entry->offload_to_be_enabled)
1396                 h->dev[entry]->offload_enabled = 0;
1397
1398         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1399 }
1400
1401 /* Replace an entry from h->dev[] array. */
1402 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1403         int entry, struct hpsa_scsi_dev_t *new_entry,
1404         struct hpsa_scsi_dev_t *added[], int *nadded,
1405         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1406 {
1407         /* assumes h->devlock is held */
1408         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1409         removed[*nremoved] = h->dev[entry];
1410         (*nremoved)++;
1411
1412         /*
1413          * New physical devices won't have target/lun assigned yet
1414          * so we need to preserve the values in the slot we are replacing.
1415          */
1416         if (new_entry->target == -1) {
1417                 new_entry->target = h->dev[entry]->target;
1418                 new_entry->lun = h->dev[entry]->lun;
1419         }
1420
1421         h->dev[entry] = new_entry;
1422         added[*nadded] = new_entry;
1423         (*nadded)++;
1424
1425         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1426 }
1427
1428 /* Remove an entry from h->dev[] array. */
1429 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1430         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1431 {
1432         /* assumes h->devlock is held */
1433         int i;
1434         struct hpsa_scsi_dev_t *sd;
1435
1436         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1437
1438         sd = h->dev[entry];
1439         removed[*nremoved] = h->dev[entry];
1440         (*nremoved)++;
1441
1442         for (i = entry; i < h->ndevices-1; i++)
1443                 h->dev[i] = h->dev[i+1];
1444         h->ndevices--;
1445         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1446 }
1447
1448 #define SCSI3ADDR_EQ(a, b) ( \
1449         (a)[7] == (b)[7] && \
1450         (a)[6] == (b)[6] && \
1451         (a)[5] == (b)[5] && \
1452         (a)[4] == (b)[4] && \
1453         (a)[3] == (b)[3] && \
1454         (a)[2] == (b)[2] && \
1455         (a)[1] == (b)[1] && \
1456         (a)[0] == (b)[0])
1457
1458 static void fixup_botched_add(struct ctlr_info *h,
1459         struct hpsa_scsi_dev_t *added)
1460 {
1461         /* called when scsi_add_device fails in order to re-adjust
1462          * h->dev[] to match the mid layer's view.
1463          */
1464         unsigned long flags;
1465         int i, j;
1466
1467         spin_lock_irqsave(&h->lock, flags);
1468         for (i = 0; i < h->ndevices; i++) {
1469                 if (h->dev[i] == added) {
1470                         for (j = i; j < h->ndevices-1; j++)
1471                                 h->dev[j] = h->dev[j+1];
1472                         h->ndevices--;
1473                         break;
1474                 }
1475         }
1476         spin_unlock_irqrestore(&h->lock, flags);
1477         kfree(added);
1478 }
1479
1480 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1481         struct hpsa_scsi_dev_t *dev2)
1482 {
1483         /* we compare everything except lun and target as these
1484          * are not yet assigned.  Compare parts likely
1485          * to differ first
1486          */
1487         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1488                 sizeof(dev1->scsi3addr)) != 0)
1489                 return 0;
1490         if (memcmp(dev1->device_id, dev2->device_id,
1491                 sizeof(dev1->device_id)) != 0)
1492                 return 0;
1493         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1494                 return 0;
1495         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1496                 return 0;
1497         if (dev1->devtype != dev2->devtype)
1498                 return 0;
1499         if (dev1->bus != dev2->bus)
1500                 return 0;
1501         return 1;
1502 }
1503
1504 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1505         struct hpsa_scsi_dev_t *dev2)
1506 {
1507         /* Device attributes that can change, but don't mean
1508          * that the device is a different device, nor that the OS
1509          * needs to be told anything about the change.
1510          */
1511         if (dev1->raid_level != dev2->raid_level)
1512                 return 1;
1513         if (dev1->offload_config != dev2->offload_config)
1514                 return 1;
1515         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1516                 return 1;
1517         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1518                 if (dev1->queue_depth != dev2->queue_depth)
1519                         return 1;
1520         /*
1521          * This can happen for dual domain devices. An active
1522          * path change causes the ioaccel handle to change
1523          *
1524          * for example note the handle differences between p0 and p1
1525          * Device                    WWN               ,WWN hash,Handle
1526          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1527          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1528          */
1529         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1530                 return 1;
1531         return 0;
1532 }
1533
1534 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1535  * and return needle location in *index.  If scsi3addr matches, but not
1536  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1537  * location in *index.
1538  * In the case of a minor device attribute change, such as RAID level, just
1539  * return DEVICE_UPDATED, along with the updated device's location in index.
1540  * If needle not found, return DEVICE_NOT_FOUND.
1541  */
1542 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1543         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1544         int *index)
1545 {
1546         int i;
1547 #define DEVICE_NOT_FOUND 0
1548 #define DEVICE_CHANGED 1
1549 #define DEVICE_SAME 2
1550 #define DEVICE_UPDATED 3
1551         if (needle == NULL)
1552                 return DEVICE_NOT_FOUND;
1553
1554         for (i = 0; i < haystack_size; i++) {
1555                 if (haystack[i] == NULL) /* previously removed. */
1556                         continue;
1557                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1558                         *index = i;
1559                         if (device_is_the_same(needle, haystack[i])) {
1560                                 if (device_updated(needle, haystack[i]))
1561                                         return DEVICE_UPDATED;
1562                                 return DEVICE_SAME;
1563                         } else {
1564                                 /* Keep offline devices offline */
1565                                 if (needle->volume_offline)
1566                                         return DEVICE_NOT_FOUND;
1567                                 return DEVICE_CHANGED;
1568                         }
1569                 }
1570         }
1571         *index = -1;
1572         return DEVICE_NOT_FOUND;
1573 }
1574
1575 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1576                                         unsigned char scsi3addr[])
1577 {
1578         struct offline_device_entry *device;
1579         unsigned long flags;
1580
1581         /* Check to see if device is already on the list */
1582         spin_lock_irqsave(&h->offline_device_lock, flags);
1583         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1584                 if (memcmp(device->scsi3addr, scsi3addr,
1585                         sizeof(device->scsi3addr)) == 0) {
1586                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1587                         return;
1588                 }
1589         }
1590         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1591
1592         /* Device is not on the list, add it. */
1593         device = kmalloc(sizeof(*device), GFP_KERNEL);
1594         if (!device)
1595                 return;
1596
1597         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1598         spin_lock_irqsave(&h->offline_device_lock, flags);
1599         list_add_tail(&device->offline_list, &h->offline_device_list);
1600         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1601 }
1602
1603 /* Print a message explaining various offline volume states */
1604 static void hpsa_show_volume_status(struct ctlr_info *h,
1605         struct hpsa_scsi_dev_t *sd)
1606 {
1607         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1608                 dev_info(&h->pdev->dev,
1609                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1610                         h->scsi_host->host_no,
1611                         sd->bus, sd->target, sd->lun);
1612         switch (sd->volume_offline) {
1613         case HPSA_LV_OK:
1614                 break;
1615         case HPSA_LV_UNDERGOING_ERASE:
1616                 dev_info(&h->pdev->dev,
1617                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1618                         h->scsi_host->host_no,
1619                         sd->bus, sd->target, sd->lun);
1620                 break;
1621         case HPSA_LV_NOT_AVAILABLE:
1622                 dev_info(&h->pdev->dev,
1623                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1624                         h->scsi_host->host_no,
1625                         sd->bus, sd->target, sd->lun);
1626                 break;
1627         case HPSA_LV_UNDERGOING_RPI:
1628                 dev_info(&h->pdev->dev,
1629                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1630                         h->scsi_host->host_no,
1631                         sd->bus, sd->target, sd->lun);
1632                 break;
1633         case HPSA_LV_PENDING_RPI:
1634                 dev_info(&h->pdev->dev,
1635                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1636                         h->scsi_host->host_no,
1637                         sd->bus, sd->target, sd->lun);
1638                 break;
1639         case HPSA_LV_ENCRYPTED_NO_KEY:
1640                 dev_info(&h->pdev->dev,
1641                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1642                         h->scsi_host->host_no,
1643                         sd->bus, sd->target, sd->lun);
1644                 break;
1645         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1646                 dev_info(&h->pdev->dev,
1647                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1648                         h->scsi_host->host_no,
1649                         sd->bus, sd->target, sd->lun);
1650                 break;
1651         case HPSA_LV_UNDERGOING_ENCRYPTION:
1652                 dev_info(&h->pdev->dev,
1653                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1654                         h->scsi_host->host_no,
1655                         sd->bus, sd->target, sd->lun);
1656                 break;
1657         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1658                 dev_info(&h->pdev->dev,
1659                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1660                         h->scsi_host->host_no,
1661                         sd->bus, sd->target, sd->lun);
1662                 break;
1663         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1664                 dev_info(&h->pdev->dev,
1665                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1666                         h->scsi_host->host_no,
1667                         sd->bus, sd->target, sd->lun);
1668                 break;
1669         case HPSA_LV_PENDING_ENCRYPTION:
1670                 dev_info(&h->pdev->dev,
1671                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1672                         h->scsi_host->host_no,
1673                         sd->bus, sd->target, sd->lun);
1674                 break;
1675         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1676                 dev_info(&h->pdev->dev,
1677                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1678                         h->scsi_host->host_no,
1679                         sd->bus, sd->target, sd->lun);
1680                 break;
1681         }
1682 }
1683
1684 /*
1685  * Figure the list of physical drive pointers for a logical drive with
1686  * raid offload configured.
1687  */
1688 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1689                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1690                                 struct hpsa_scsi_dev_t *logical_drive)
1691 {
1692         struct raid_map_data *map = &logical_drive->raid_map;
1693         struct raid_map_disk_data *dd = &map->data[0];
1694         int i, j;
1695         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1696                                 le16_to_cpu(map->metadata_disks_per_row);
1697         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1698                                 le16_to_cpu(map->layout_map_count) *
1699                                 total_disks_per_row;
1700         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1701                                 total_disks_per_row;
1702         int qdepth;
1703
1704         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1705                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1706
1707         logical_drive->nphysical_disks = nraid_map_entries;
1708
1709         qdepth = 0;
1710         for (i = 0; i < nraid_map_entries; i++) {
1711                 logical_drive->phys_disk[i] = NULL;
1712                 if (!logical_drive->offload_config)
1713                         continue;
1714                 for (j = 0; j < ndevices; j++) {
1715                         if (dev[j] == NULL)
1716                                 continue;
1717                         if (dev[j]->devtype != TYPE_DISK &&
1718                             dev[j]->devtype != TYPE_ZBC)
1719                                 continue;
1720                         if (is_logical_device(dev[j]))
1721                                 continue;
1722                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1723                                 continue;
1724
1725                         logical_drive->phys_disk[i] = dev[j];
1726                         if (i < nphys_disk)
1727                                 qdepth = min(h->nr_cmds, qdepth +
1728                                     logical_drive->phys_disk[i]->queue_depth);
1729                         break;
1730                 }
1731
1732                 /*
1733                  * This can happen if a physical drive is removed and
1734                  * the logical drive is degraded.  In that case, the RAID
1735                  * map data will refer to a physical disk which isn't actually
1736                  * present.  And in that case offload_enabled should already
1737                  * be 0, but we'll turn it off here just in case
1738                  */
1739                 if (!logical_drive->phys_disk[i]) {
1740                         dev_warn(&h->pdev->dev,
1741                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1742                                 __func__,
1743                                 h->scsi_host->host_no, logical_drive->bus,
1744                                 logical_drive->target, logical_drive->lun);
1745                         logical_drive->offload_enabled = 0;
1746                         logical_drive->offload_to_be_enabled = 0;
1747                         logical_drive->queue_depth = 8;
1748                 }
1749         }
1750         if (nraid_map_entries)
1751                 /*
1752                  * This is correct for reads, too high for full stripe writes,
1753                  * way too high for partial stripe writes
1754                  */
1755                 logical_drive->queue_depth = qdepth;
1756         else {
1757                 if (logical_drive->external)
1758                         logical_drive->queue_depth = EXTERNAL_QD;
1759                 else
1760                         logical_drive->queue_depth = h->nr_cmds;
1761         }
1762 }
1763
1764 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1765                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1766 {
1767         int i;
1768
1769         for (i = 0; i < ndevices; i++) {
1770                 if (dev[i] == NULL)
1771                         continue;
1772                 if (dev[i]->devtype != TYPE_DISK &&
1773                     dev[i]->devtype != TYPE_ZBC)
1774                         continue;
1775                 if (!is_logical_device(dev[i]))
1776                         continue;
1777
1778                 /*
1779                  * If offload is currently enabled, the RAID map and
1780                  * phys_disk[] assignment *better* not be changing
1781                  * because we would be changing ioaccel phsy_disk[] pointers
1782                  * on a ioaccel volume processing I/O requests.
1783                  *
1784                  * If an ioaccel volume status changed, initially because it was
1785                  * re-configured and thus underwent a transformation, or
1786                  * a drive failed, we would have received a state change
1787                  * request and ioaccel should have been turned off. When the
1788                  * transformation completes, we get another state change
1789                  * request to turn ioaccel back on. In this case, we need
1790                  * to update the ioaccel information.
1791                  *
1792                  * Thus: If it is not currently enabled, but will be after
1793                  * the scan completes, make sure the ioaccel pointers
1794                  * are up to date.
1795                  */
1796
1797                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1798                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1799         }
1800 }
1801
1802 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1803 {
1804         int rc = 0;
1805
1806         if (!h->scsi_host)
1807                 return 1;
1808
1809         if (is_logical_device(device)) /* RAID */
1810                 rc = scsi_add_device(h->scsi_host, device->bus,
1811                                         device->target, device->lun);
1812         else /* HBA */
1813                 rc = hpsa_add_sas_device(h->sas_host, device);
1814
1815         return rc;
1816 }
1817
1818 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1819                                                 struct hpsa_scsi_dev_t *dev)
1820 {
1821         int i;
1822         int count = 0;
1823
1824         for (i = 0; i < h->nr_cmds; i++) {
1825                 struct CommandList *c = h->cmd_pool + i;
1826                 int refcount = atomic_inc_return(&c->refcount);
1827
1828                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1829                                 dev->scsi3addr)) {
1830                         unsigned long flags;
1831
1832                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1833                         if (!hpsa_is_cmd_idle(c))
1834                                 ++count;
1835                         spin_unlock_irqrestore(&h->lock, flags);
1836                 }
1837
1838                 cmd_free(h, c);
1839         }
1840
1841         return count;
1842 }
1843
1844 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1845                                                 struct hpsa_scsi_dev_t *device)
1846 {
1847         int cmds = 0;
1848         int waits = 0;
1849
1850         while (1) {
1851                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1852                 if (cmds == 0)
1853                         break;
1854                 if (++waits > 20)
1855                         break;
1856                 msleep(1000);
1857         }
1858
1859         if (waits > 20)
1860                 dev_warn(&h->pdev->dev,
1861                         "%s: removing device with %d outstanding commands!\n",
1862                         __func__, cmds);
1863 }
1864
1865 static void hpsa_remove_device(struct ctlr_info *h,
1866                         struct hpsa_scsi_dev_t *device)
1867 {
1868         struct scsi_device *sdev = NULL;
1869
1870         if (!h->scsi_host)
1871                 return;
1872
1873         /*
1874          * Allow for commands to drain
1875          */
1876         device->removed = 1;
1877         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1878
1879         if (is_logical_device(device)) { /* RAID */
1880                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1881                                                 device->target, device->lun);
1882                 if (sdev) {
1883                         scsi_remove_device(sdev);
1884                         scsi_device_put(sdev);
1885                 } else {
1886                         /*
1887                          * We don't expect to get here.  Future commands
1888                          * to this device will get a selection timeout as
1889                          * if the device were gone.
1890                          */
1891                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1892                                         "didn't find device for removal.");
1893                 }
1894         } else { /* HBA */
1895
1896                 hpsa_remove_sas_device(device);
1897         }
1898 }
1899
1900 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1901         struct hpsa_scsi_dev_t *sd[], int nsds)
1902 {
1903         /* sd contains scsi3 addresses and devtypes, and inquiry
1904          * data.  This function takes what's in sd to be the current
1905          * reality and updates h->dev[] to reflect that reality.
1906          */
1907         int i, entry, device_change, changes = 0;
1908         struct hpsa_scsi_dev_t *csd;
1909         unsigned long flags;
1910         struct hpsa_scsi_dev_t **added, **removed;
1911         int nadded, nremoved;
1912
1913         /*
1914          * A reset can cause a device status to change
1915          * re-schedule the scan to see what happened.
1916          */
1917         spin_lock_irqsave(&h->reset_lock, flags);
1918         if (h->reset_in_progress) {
1919                 h->drv_req_rescan = 1;
1920                 spin_unlock_irqrestore(&h->reset_lock, flags);
1921                 return;
1922         }
1923         spin_unlock_irqrestore(&h->reset_lock, flags);
1924
1925         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1926         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1927
1928         if (!added || !removed) {
1929                 dev_warn(&h->pdev->dev, "out of memory in "
1930                         "adjust_hpsa_scsi_table\n");
1931                 goto free_and_out;
1932         }
1933
1934         spin_lock_irqsave(&h->devlock, flags);
1935
1936         /* find any devices in h->dev[] that are not in
1937          * sd[] and remove them from h->dev[], and for any
1938          * devices which have changed, remove the old device
1939          * info and add the new device info.
1940          * If minor device attributes change, just update
1941          * the existing device structure.
1942          */
1943         i = 0;
1944         nremoved = 0;
1945         nadded = 0;
1946         while (i < h->ndevices) {
1947                 csd = h->dev[i];
1948                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1949                 if (device_change == DEVICE_NOT_FOUND) {
1950                         changes++;
1951                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1952                         continue; /* remove ^^^, hence i not incremented */
1953                 } else if (device_change == DEVICE_CHANGED) {
1954                         changes++;
1955                         hpsa_scsi_replace_entry(h, i, sd[entry],
1956                                 added, &nadded, removed, &nremoved);
1957                         /* Set it to NULL to prevent it from being freed
1958                          * at the bottom of hpsa_update_scsi_devices()
1959                          */
1960                         sd[entry] = NULL;
1961                 } else if (device_change == DEVICE_UPDATED) {
1962                         hpsa_scsi_update_entry(h, i, sd[entry]);
1963                 }
1964                 i++;
1965         }
1966
1967         /* Now, make sure every device listed in sd[] is also
1968          * listed in h->dev[], adding them if they aren't found
1969          */
1970
1971         for (i = 0; i < nsds; i++) {
1972                 if (!sd[i]) /* if already added above. */
1973                         continue;
1974
1975                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1976                  * as the SCSI mid-layer does not handle such devices well.
1977                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1978                  * at 160Hz, and prevents the system from coming up.
1979                  */
1980                 if (sd[i]->volume_offline) {
1981                         hpsa_show_volume_status(h, sd[i]);
1982                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1983                         continue;
1984                 }
1985
1986                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1987                                         h->ndevices, &entry);
1988                 if (device_change == DEVICE_NOT_FOUND) {
1989                         changes++;
1990                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1991                                 break;
1992                         sd[i] = NULL; /* prevent from being freed later. */
1993                 } else if (device_change == DEVICE_CHANGED) {
1994                         /* should never happen... */
1995                         changes++;
1996                         dev_warn(&h->pdev->dev,
1997                                 "device unexpectedly changed.\n");
1998                         /* but if it does happen, we just ignore that device */
1999                 }
2000         }
2001         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2002
2003         /*
2004          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2005          * any logical drives that need it enabled.
2006          *
2007          * The raid map should be current by now.
2008          *
2009          * We are updating the device list used for I/O requests.
2010          */
2011         for (i = 0; i < h->ndevices; i++) {
2012                 if (h->dev[i] == NULL)
2013                         continue;
2014                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2015         }
2016
2017         spin_unlock_irqrestore(&h->devlock, flags);
2018
2019         /* Monitor devices which are in one of several NOT READY states to be
2020          * brought online later. This must be done without holding h->devlock,
2021          * so don't touch h->dev[]
2022          */
2023         for (i = 0; i < nsds; i++) {
2024                 if (!sd[i]) /* if already added above. */
2025                         continue;
2026                 if (sd[i]->volume_offline)
2027                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2028         }
2029
2030         /* Don't notify scsi mid layer of any changes the first time through
2031          * (or if there are no changes) scsi_scan_host will do it later the
2032          * first time through.
2033          */
2034         if (!changes)
2035                 goto free_and_out;
2036
2037         /* Notify scsi mid layer of any removed devices */
2038         for (i = 0; i < nremoved; i++) {
2039                 if (removed[i] == NULL)
2040                         continue;
2041                 if (removed[i]->expose_device)
2042                         hpsa_remove_device(h, removed[i]);
2043                 kfree(removed[i]);
2044                 removed[i] = NULL;
2045         }
2046
2047         /* Notify scsi mid layer of any added devices */
2048         for (i = 0; i < nadded; i++) {
2049                 int rc = 0;
2050
2051                 if (added[i] == NULL)
2052                         continue;
2053                 if (!(added[i]->expose_device))
2054                         continue;
2055                 rc = hpsa_add_device(h, added[i]);
2056                 if (!rc)
2057                         continue;
2058                 dev_warn(&h->pdev->dev,
2059                         "addition failed %d, device not added.", rc);
2060                 /* now we have to remove it from h->dev,
2061                  * since it didn't get added to scsi mid layer
2062                  */
2063                 fixup_botched_add(h, added[i]);
2064                 h->drv_req_rescan = 1;
2065         }
2066
2067 free_and_out:
2068         kfree(added);
2069         kfree(removed);
2070 }
2071
2072 /*
2073  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2074  * Assume's h->devlock is held.
2075  */
2076 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2077         int bus, int target, int lun)
2078 {
2079         int i;
2080         struct hpsa_scsi_dev_t *sd;
2081
2082         for (i = 0; i < h->ndevices; i++) {
2083                 sd = h->dev[i];
2084                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2085                         return sd;
2086         }
2087         return NULL;
2088 }
2089
2090 static int hpsa_slave_alloc(struct scsi_device *sdev)
2091 {
2092         struct hpsa_scsi_dev_t *sd = NULL;
2093         unsigned long flags;
2094         struct ctlr_info *h;
2095
2096         h = sdev_to_hba(sdev);
2097         spin_lock_irqsave(&h->devlock, flags);
2098         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2099                 struct scsi_target *starget;
2100                 struct sas_rphy *rphy;
2101
2102                 starget = scsi_target(sdev);
2103                 rphy = target_to_rphy(starget);
2104                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2105                 if (sd) {
2106                         sd->target = sdev_id(sdev);
2107                         sd->lun = sdev->lun;
2108                 }
2109         }
2110         if (!sd)
2111                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2112                                         sdev_id(sdev), sdev->lun);
2113
2114         if (sd && sd->expose_device) {
2115                 atomic_set(&sd->ioaccel_cmds_out, 0);
2116                 sdev->hostdata = sd;
2117         } else
2118                 sdev->hostdata = NULL;
2119         spin_unlock_irqrestore(&h->devlock, flags);
2120         return 0;
2121 }
2122
2123 /* configure scsi device based on internal per-device structure */
2124 static int hpsa_slave_configure(struct scsi_device *sdev)
2125 {
2126         struct hpsa_scsi_dev_t *sd;
2127         int queue_depth;
2128
2129         sd = sdev->hostdata;
2130         sdev->no_uld_attach = !sd || !sd->expose_device;
2131
2132         if (sd) {
2133                 if (sd->external)
2134                         queue_depth = EXTERNAL_QD;
2135                 else
2136                         queue_depth = sd->queue_depth != 0 ?
2137                                         sd->queue_depth : sdev->host->can_queue;
2138         } else
2139                 queue_depth = sdev->host->can_queue;
2140
2141         scsi_change_queue_depth(sdev, queue_depth);
2142
2143         return 0;
2144 }
2145
2146 static void hpsa_slave_destroy(struct scsi_device *sdev)
2147 {
2148         /* nothing to do. */
2149 }
2150
2151 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2152 {
2153         int i;
2154
2155         if (!h->ioaccel2_cmd_sg_list)
2156                 return;
2157         for (i = 0; i < h->nr_cmds; i++) {
2158                 kfree(h->ioaccel2_cmd_sg_list[i]);
2159                 h->ioaccel2_cmd_sg_list[i] = NULL;
2160         }
2161         kfree(h->ioaccel2_cmd_sg_list);
2162         h->ioaccel2_cmd_sg_list = NULL;
2163 }
2164
2165 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167         int i;
2168
2169         if (h->chainsize <= 0)
2170                 return 0;
2171
2172         h->ioaccel2_cmd_sg_list =
2173                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2174                                         GFP_KERNEL);
2175         if (!h->ioaccel2_cmd_sg_list)
2176                 return -ENOMEM;
2177         for (i = 0; i < h->nr_cmds; i++) {
2178                 h->ioaccel2_cmd_sg_list[i] =
2179                         kmalloc_array(h->maxsgentries,
2180                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2181                                       GFP_KERNEL);
2182                 if (!h->ioaccel2_cmd_sg_list[i])
2183                         goto clean;
2184         }
2185         return 0;
2186
2187 clean:
2188         hpsa_free_ioaccel2_sg_chain_blocks(h);
2189         return -ENOMEM;
2190 }
2191
2192 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2193 {
2194         int i;
2195
2196         if (!h->cmd_sg_list)
2197                 return;
2198         for (i = 0; i < h->nr_cmds; i++) {
2199                 kfree(h->cmd_sg_list[i]);
2200                 h->cmd_sg_list[i] = NULL;
2201         }
2202         kfree(h->cmd_sg_list);
2203         h->cmd_sg_list = NULL;
2204 }
2205
2206 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2207 {
2208         int i;
2209
2210         if (h->chainsize <= 0)
2211                 return 0;
2212
2213         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2214                                  GFP_KERNEL);
2215         if (!h->cmd_sg_list)
2216                 return -ENOMEM;
2217
2218         for (i = 0; i < h->nr_cmds; i++) {
2219                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2220                                                   sizeof(*h->cmd_sg_list[i]),
2221                                                   GFP_KERNEL);
2222                 if (!h->cmd_sg_list[i])
2223                         goto clean;
2224
2225         }
2226         return 0;
2227
2228 clean:
2229         hpsa_free_sg_chain_blocks(h);
2230         return -ENOMEM;
2231 }
2232
2233 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2234         struct io_accel2_cmd *cp, struct CommandList *c)
2235 {
2236         struct ioaccel2_sg_element *chain_block;
2237         u64 temp64;
2238         u32 chain_size;
2239
2240         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2241         chain_size = le32_to_cpu(cp->sg[0].length);
2242         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2243                                 DMA_TO_DEVICE);
2244         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2245                 /* prevent subsequent unmapping */
2246                 cp->sg->address = 0;
2247                 return -1;
2248         }
2249         cp->sg->address = cpu_to_le64(temp64);
2250         return 0;
2251 }
2252
2253 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2254         struct io_accel2_cmd *cp)
2255 {
2256         struct ioaccel2_sg_element *chain_sg;
2257         u64 temp64;
2258         u32 chain_size;
2259
2260         chain_sg = cp->sg;
2261         temp64 = le64_to_cpu(chain_sg->address);
2262         chain_size = le32_to_cpu(cp->sg[0].length);
2263         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2264 }
2265
2266 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2267         struct CommandList *c)
2268 {
2269         struct SGDescriptor *chain_sg, *chain_block;
2270         u64 temp64;
2271         u32 chain_len;
2272
2273         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2274         chain_block = h->cmd_sg_list[c->cmdindex];
2275         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2276         chain_len = sizeof(*chain_sg) *
2277                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2278         chain_sg->Len = cpu_to_le32(chain_len);
2279         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2280                                 DMA_TO_DEVICE);
2281         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2282                 /* prevent subsequent unmapping */
2283                 chain_sg->Addr = cpu_to_le64(0);
2284                 return -1;
2285         }
2286         chain_sg->Addr = cpu_to_le64(temp64);
2287         return 0;
2288 }
2289
2290 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2291         struct CommandList *c)
2292 {
2293         struct SGDescriptor *chain_sg;
2294
2295         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2296                 return;
2297
2298         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2299         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2300                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2301 }
2302
2303
2304 /* Decode the various types of errors on ioaccel2 path.
2305  * Return 1 for any error that should generate a RAID path retry.
2306  * Return 0 for errors that don't require a RAID path retry.
2307  */
2308 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2309                                         struct CommandList *c,
2310                                         struct scsi_cmnd *cmd,
2311                                         struct io_accel2_cmd *c2,
2312                                         struct hpsa_scsi_dev_t *dev)
2313 {
2314         int data_len;
2315         int retry = 0;
2316         u32 ioaccel2_resid = 0;
2317
2318         switch (c2->error_data.serv_response) {
2319         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2320                 switch (c2->error_data.status) {
2321                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2322                         break;
2323                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2324                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2325                         if (c2->error_data.data_present !=
2326                                         IOACCEL2_SENSE_DATA_PRESENT) {
2327                                 memset(cmd->sense_buffer, 0,
2328                                         SCSI_SENSE_BUFFERSIZE);
2329                                 break;
2330                         }
2331                         /* copy the sense data */
2332                         data_len = c2->error_data.sense_data_len;
2333                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2334                                 data_len = SCSI_SENSE_BUFFERSIZE;
2335                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2336                                 data_len =
2337                                         sizeof(c2->error_data.sense_data_buff);
2338                         memcpy(cmd->sense_buffer,
2339                                 c2->error_data.sense_data_buff, data_len);
2340                         retry = 1;
2341                         break;
2342                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2343                         retry = 1;
2344                         break;
2345                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2346                         retry = 1;
2347                         break;
2348                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2349                         retry = 1;
2350                         break;
2351                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2352                         retry = 1;
2353                         break;
2354                 default:
2355                         retry = 1;
2356                         break;
2357                 }
2358                 break;
2359         case IOACCEL2_SERV_RESPONSE_FAILURE:
2360                 switch (c2->error_data.status) {
2361                 case IOACCEL2_STATUS_SR_IO_ERROR:
2362                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2363                 case IOACCEL2_STATUS_SR_OVERRUN:
2364                         retry = 1;
2365                         break;
2366                 case IOACCEL2_STATUS_SR_UNDERRUN:
2367                         cmd->result = (DID_OK << 16);           /* host byte */
2368                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2369                         ioaccel2_resid = get_unaligned_le32(
2370                                                 &c2->error_data.resid_cnt[0]);
2371                         scsi_set_resid(cmd, ioaccel2_resid);
2372                         break;
2373                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2374                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2375                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2376                         /*
2377                          * Did an HBA disk disappear? We will eventually
2378                          * get a state change event from the controller but
2379                          * in the meantime, we need to tell the OS that the
2380                          * HBA disk is no longer there and stop I/O
2381                          * from going down. This allows the potential re-insert
2382                          * of the disk to get the same device node.
2383                          */
2384                         if (dev->physical_device && dev->expose_device) {
2385                                 cmd->result = DID_NO_CONNECT << 16;
2386                                 dev->removed = 1;
2387                                 h->drv_req_rescan = 1;
2388                                 dev_warn(&h->pdev->dev,
2389                                         "%s: device is gone!\n", __func__);
2390                         } else
2391                                 /*
2392                                  * Retry by sending down the RAID path.
2393                                  * We will get an event from ctlr to
2394                                  * trigger rescan regardless.
2395                                  */
2396                                 retry = 1;
2397                         break;
2398                 default:
2399                         retry = 1;
2400                 }
2401                 break;
2402         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2403                 break;
2404         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2405                 break;
2406         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2407                 retry = 1;
2408                 break;
2409         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2410                 break;
2411         default:
2412                 retry = 1;
2413                 break;
2414         }
2415
2416         return retry;   /* retry on raid path? */
2417 }
2418
2419 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2420                 struct CommandList *c)
2421 {
2422         bool do_wake = false;
2423
2424         /*
2425          * Reset c->scsi_cmd here so that the reset handler will know
2426          * this command has completed.  Then, check to see if the handler is
2427          * waiting for this command, and, if so, wake it.
2428          */
2429         c->scsi_cmd = SCSI_CMD_IDLE;
2430         mb();   /* Declare command idle before checking for pending events. */
2431         if (c->reset_pending) {
2432                 unsigned long flags;
2433                 struct hpsa_scsi_dev_t *dev;
2434
2435                 /*
2436                  * There appears to be a reset pending; lock the lock and
2437                  * reconfirm.  If so, then decrement the count of outstanding
2438                  * commands and wake the reset command if this is the last one.
2439                  */
2440                 spin_lock_irqsave(&h->lock, flags);
2441                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2442                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2443                         do_wake = true;
2444                 c->reset_pending = NULL;
2445                 spin_unlock_irqrestore(&h->lock, flags);
2446         }
2447
2448         if (do_wake)
2449                 wake_up_all(&h->event_sync_wait_queue);
2450 }
2451
2452 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2453                                       struct CommandList *c)
2454 {
2455         hpsa_cmd_resolve_events(h, c);
2456         cmd_tagged_free(h, c);
2457 }
2458
2459 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2460                 struct CommandList *c, struct scsi_cmnd *cmd)
2461 {
2462         hpsa_cmd_resolve_and_free(h, c);
2463         if (cmd && cmd->scsi_done)
2464                 cmd->scsi_done(cmd);
2465 }
2466
2467 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2468 {
2469         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2470         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2471 }
2472
2473 static void process_ioaccel2_completion(struct ctlr_info *h,
2474                 struct CommandList *c, struct scsi_cmnd *cmd,
2475                 struct hpsa_scsi_dev_t *dev)
2476 {
2477         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2478
2479         /* check for good status */
2480         if (likely(c2->error_data.serv_response == 0 &&
2481                         c2->error_data.status == 0))
2482                 return hpsa_cmd_free_and_done(h, c, cmd);
2483
2484         /*
2485          * Any RAID offload error results in retry which will use
2486          * the normal I/O path so the controller can handle whatever is
2487          * wrong.
2488          */
2489         if (is_logical_device(dev) &&
2490                 c2->error_data.serv_response ==
2491                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2492                 if (c2->error_data.status ==
2493                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2494                         dev->offload_enabled = 0;
2495                         dev->offload_to_be_enabled = 0;
2496                 }
2497
2498                 return hpsa_retry_cmd(h, c);
2499         }
2500
2501         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2502                 return hpsa_retry_cmd(h, c);
2503
2504         return hpsa_cmd_free_and_done(h, c, cmd);
2505 }
2506
2507 /* Returns 0 on success, < 0 otherwise. */
2508 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2509                                         struct CommandList *cp)
2510 {
2511         u8 tmf_status = cp->err_info->ScsiStatus;
2512
2513         switch (tmf_status) {
2514         case CISS_TMF_COMPLETE:
2515                 /*
2516                  * CISS_TMF_COMPLETE never happens, instead,
2517                  * ei->CommandStatus == 0 for this case.
2518                  */
2519         case CISS_TMF_SUCCESS:
2520                 return 0;
2521         case CISS_TMF_INVALID_FRAME:
2522         case CISS_TMF_NOT_SUPPORTED:
2523         case CISS_TMF_FAILED:
2524         case CISS_TMF_WRONG_LUN:
2525         case CISS_TMF_OVERLAPPED_TAG:
2526                 break;
2527         default:
2528                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2529                                 tmf_status);
2530                 break;
2531         }
2532         return -tmf_status;
2533 }
2534
2535 static void complete_scsi_command(struct CommandList *cp)
2536 {
2537         struct scsi_cmnd *cmd;
2538         struct ctlr_info *h;
2539         struct ErrorInfo *ei;
2540         struct hpsa_scsi_dev_t *dev;
2541         struct io_accel2_cmd *c2;
2542
2543         u8 sense_key;
2544         u8 asc;      /* additional sense code */
2545         u8 ascq;     /* additional sense code qualifier */
2546         unsigned long sense_data_size;
2547
2548         ei = cp->err_info;
2549         cmd = cp->scsi_cmd;
2550         h = cp->h;
2551
2552         if (!cmd->device) {
2553                 cmd->result = DID_NO_CONNECT << 16;
2554                 return hpsa_cmd_free_and_done(h, cp, cmd);
2555         }
2556
2557         dev = cmd->device->hostdata;
2558         if (!dev) {
2559                 cmd->result = DID_NO_CONNECT << 16;
2560                 return hpsa_cmd_free_and_done(h, cp, cmd);
2561         }
2562         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2563
2564         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2565         if ((cp->cmd_type == CMD_SCSI) &&
2566                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2567                 hpsa_unmap_sg_chain_block(h, cp);
2568
2569         if ((cp->cmd_type == CMD_IOACCEL2) &&
2570                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2571                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2572
2573         cmd->result = (DID_OK << 16);           /* host byte */
2574         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2575
2576         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2577                 if (dev->physical_device && dev->expose_device &&
2578                         dev->removed) {
2579                         cmd->result = DID_NO_CONNECT << 16;
2580                         return hpsa_cmd_free_and_done(h, cp, cmd);
2581                 }
2582                 if (likely(cp->phys_disk != NULL))
2583                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2584         }
2585
2586         /*
2587          * We check for lockup status here as it may be set for
2588          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2589          * fail_all_oustanding_cmds()
2590          */
2591         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2592                 /* DID_NO_CONNECT will prevent a retry */
2593                 cmd->result = DID_NO_CONNECT << 16;
2594                 return hpsa_cmd_free_and_done(h, cp, cmd);
2595         }
2596
2597         if ((unlikely(hpsa_is_pending_event(cp))))
2598                 if (cp->reset_pending)
2599                         return hpsa_cmd_free_and_done(h, cp, cmd);
2600
2601         if (cp->cmd_type == CMD_IOACCEL2)
2602                 return process_ioaccel2_completion(h, cp, cmd, dev);
2603
2604         scsi_set_resid(cmd, ei->ResidualCnt);
2605         if (ei->CommandStatus == 0)
2606                 return hpsa_cmd_free_and_done(h, cp, cmd);
2607
2608         /* For I/O accelerator commands, copy over some fields to the normal
2609          * CISS header used below for error handling.
2610          */
2611         if (cp->cmd_type == CMD_IOACCEL1) {
2612                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2613                 cp->Header.SGList = scsi_sg_count(cmd);
2614                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2615                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2616                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2617                 cp->Header.tag = c->tag;
2618                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2619                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2620
2621                 /* Any RAID offload error results in retry which will use
2622                  * the normal I/O path so the controller can handle whatever's
2623                  * wrong.
2624                  */
2625                 if (is_logical_device(dev)) {
2626                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2627                                 dev->offload_enabled = 0;
2628                         return hpsa_retry_cmd(h, cp);
2629                 }
2630         }
2631
2632         /* an error has occurred */
2633         switch (ei->CommandStatus) {
2634
2635         case CMD_TARGET_STATUS:
2636                 cmd->result |= ei->ScsiStatus;
2637                 /* copy the sense data */
2638                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2639                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2640                 else
2641                         sense_data_size = sizeof(ei->SenseInfo);
2642                 if (ei->SenseLen < sense_data_size)
2643                         sense_data_size = ei->SenseLen;
2644                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2645                 if (ei->ScsiStatus)
2646                         decode_sense_data(ei->SenseInfo, sense_data_size,
2647                                 &sense_key, &asc, &ascq);
2648                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2649                         if (sense_key == ABORTED_COMMAND) {
2650                                 cmd->result |= DID_SOFT_ERROR << 16;
2651                                 break;
2652                         }
2653                         break;
2654                 }
2655                 /* Problem was not a check condition
2656                  * Pass it up to the upper layers...
2657                  */
2658                 if (ei->ScsiStatus) {
2659                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2660                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2661                                 "Returning result: 0x%x\n",
2662                                 cp, ei->ScsiStatus,
2663                                 sense_key, asc, ascq,
2664                                 cmd->result);
2665                 } else {  /* scsi status is zero??? How??? */
2666                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2667                                 "Returning no connection.\n", cp),
2668
2669                         /* Ordinarily, this case should never happen,
2670                          * but there is a bug in some released firmware
2671                          * revisions that allows it to happen if, for
2672                          * example, a 4100 backplane loses power and
2673                          * the tape drive is in it.  We assume that
2674                          * it's a fatal error of some kind because we
2675                          * can't show that it wasn't. We will make it
2676                          * look like selection timeout since that is
2677                          * the most common reason for this to occur,
2678                          * and it's severe enough.
2679                          */
2680
2681                         cmd->result = DID_NO_CONNECT << 16;
2682                 }
2683                 break;
2684
2685         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2686                 break;
2687         case CMD_DATA_OVERRUN:
2688                 dev_warn(&h->pdev->dev,
2689                         "CDB %16phN data overrun\n", cp->Request.CDB);
2690                 break;
2691         case CMD_INVALID: {
2692                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2693                 print_cmd(cp); */
2694                 /* We get CMD_INVALID if you address a non-existent device
2695                  * instead of a selection timeout (no response).  You will
2696                  * see this if you yank out a drive, then try to access it.
2697                  * This is kind of a shame because it means that any other
2698                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2699                  * missing target. */
2700                 cmd->result = DID_NO_CONNECT << 16;
2701         }
2702                 break;
2703         case CMD_PROTOCOL_ERR:
2704                 cmd->result = DID_ERROR << 16;
2705                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2706                                 cp->Request.CDB);
2707                 break;
2708         case CMD_HARDWARE_ERR:
2709                 cmd->result = DID_ERROR << 16;
2710                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2711                         cp->Request.CDB);
2712                 break;
2713         case CMD_CONNECTION_LOST:
2714                 cmd->result = DID_ERROR << 16;
2715                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2716                         cp->Request.CDB);
2717                 break;
2718         case CMD_ABORTED:
2719                 cmd->result = DID_ABORT << 16;
2720                 break;
2721         case CMD_ABORT_FAILED:
2722                 cmd->result = DID_ERROR << 16;
2723                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2724                         cp->Request.CDB);
2725                 break;
2726         case CMD_UNSOLICITED_ABORT:
2727                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2728                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2729                         cp->Request.CDB);
2730                 break;
2731         case CMD_TIMEOUT:
2732                 cmd->result = DID_TIME_OUT << 16;
2733                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2734                         cp->Request.CDB);
2735                 break;
2736         case CMD_UNABORTABLE:
2737                 cmd->result = DID_ERROR << 16;
2738                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2739                 break;
2740         case CMD_TMF_STATUS:
2741                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2742                         cmd->result = DID_ERROR << 16;
2743                 break;
2744         case CMD_IOACCEL_DISABLED:
2745                 /* This only handles the direct pass-through case since RAID
2746                  * offload is handled above.  Just attempt a retry.
2747                  */
2748                 cmd->result = DID_SOFT_ERROR << 16;
2749                 dev_warn(&h->pdev->dev,
2750                                 "cp %p had HP SSD Smart Path error\n", cp);
2751                 break;
2752         default:
2753                 cmd->result = DID_ERROR << 16;
2754                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2755                                 cp, ei->CommandStatus);
2756         }
2757
2758         return hpsa_cmd_free_and_done(h, cp, cmd);
2759 }
2760
2761 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2762                 int sg_used, enum dma_data_direction data_direction)
2763 {
2764         int i;
2765
2766         for (i = 0; i < sg_used; i++)
2767                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2768                                 le32_to_cpu(c->SG[i].Len),
2769                                 data_direction);
2770 }
2771
2772 static int hpsa_map_one(struct pci_dev *pdev,
2773                 struct CommandList *cp,
2774                 unsigned char *buf,
2775                 size_t buflen,
2776                 enum dma_data_direction data_direction)
2777 {
2778         u64 addr64;
2779
2780         if (buflen == 0 || data_direction == DMA_NONE) {
2781                 cp->Header.SGList = 0;
2782                 cp->Header.SGTotal = cpu_to_le16(0);
2783                 return 0;
2784         }
2785
2786         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2787         if (dma_mapping_error(&pdev->dev, addr64)) {
2788                 /* Prevent subsequent unmap of something never mapped */
2789                 cp->Header.SGList = 0;
2790                 cp->Header.SGTotal = cpu_to_le16(0);
2791                 return -1;
2792         }
2793         cp->SG[0].Addr = cpu_to_le64(addr64);
2794         cp->SG[0].Len = cpu_to_le32(buflen);
2795         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2796         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2797         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2798         return 0;
2799 }
2800
2801 #define NO_TIMEOUT ((unsigned long) -1)
2802 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2803 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2804         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2805 {
2806         DECLARE_COMPLETION_ONSTACK(wait);
2807
2808         c->waiting = &wait;
2809         __enqueue_cmd_and_start_io(h, c, reply_queue);
2810         if (timeout_msecs == NO_TIMEOUT) {
2811                 /* TODO: get rid of this no-timeout thing */
2812                 wait_for_completion_io(&wait);
2813                 return IO_OK;
2814         }
2815         if (!wait_for_completion_io_timeout(&wait,
2816                                         msecs_to_jiffies(timeout_msecs))) {
2817                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2818                 return -ETIMEDOUT;
2819         }
2820         return IO_OK;
2821 }
2822
2823 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2824                                    int reply_queue, unsigned long timeout_msecs)
2825 {
2826         if (unlikely(lockup_detected(h))) {
2827                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2828                 return IO_OK;
2829         }
2830         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2831 }
2832
2833 static u32 lockup_detected(struct ctlr_info *h)
2834 {
2835         int cpu;
2836         u32 rc, *lockup_detected;
2837
2838         cpu = get_cpu();
2839         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2840         rc = *lockup_detected;
2841         put_cpu();
2842         return rc;
2843 }
2844
2845 #define MAX_DRIVER_CMD_RETRIES 25
2846 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2847                 struct CommandList *c, enum dma_data_direction data_direction,
2848                 unsigned long timeout_msecs)
2849 {
2850         int backoff_time = 10, retry_count = 0;
2851         int rc;
2852
2853         do {
2854                 memset(c->err_info, 0, sizeof(*c->err_info));
2855                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2856                                                   timeout_msecs);
2857                 if (rc)
2858                         break;
2859                 retry_count++;
2860                 if (retry_count > 3) {
2861                         msleep(backoff_time);
2862                         if (backoff_time < 1000)
2863                                 backoff_time *= 2;
2864                 }
2865         } while ((check_for_unit_attention(h, c) ||
2866                         check_for_busy(h, c)) &&
2867                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2868         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2869         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2870                 rc = -EIO;
2871         return rc;
2872 }
2873
2874 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2875                                 struct CommandList *c)
2876 {
2877         const u8 *cdb = c->Request.CDB;
2878         const u8 *lun = c->Header.LUN.LunAddrBytes;
2879
2880         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2881                  txt, lun, cdb);
2882 }
2883
2884 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2885                         struct CommandList *cp)
2886 {
2887         const struct ErrorInfo *ei = cp->err_info;
2888         struct device *d = &cp->h->pdev->dev;
2889         u8 sense_key, asc, ascq;
2890         int sense_len;
2891
2892         switch (ei->CommandStatus) {
2893         case CMD_TARGET_STATUS:
2894                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2895                         sense_len = sizeof(ei->SenseInfo);
2896                 else
2897                         sense_len = ei->SenseLen;
2898                 decode_sense_data(ei->SenseInfo, sense_len,
2899                                         &sense_key, &asc, &ascq);
2900                 hpsa_print_cmd(h, "SCSI status", cp);
2901                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2902                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2903                                 sense_key, asc, ascq);
2904                 else
2905                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2906                 if (ei->ScsiStatus == 0)
2907                         dev_warn(d, "SCSI status is abnormally zero.  "
2908                         "(probably indicates selection timeout "
2909                         "reported incorrectly due to a known "
2910                         "firmware bug, circa July, 2001.)\n");
2911                 break;
2912         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2913                 break;
2914         case CMD_DATA_OVERRUN:
2915                 hpsa_print_cmd(h, "overrun condition", cp);
2916                 break;
2917         case CMD_INVALID: {
2918                 /* controller unfortunately reports SCSI passthru's
2919                  * to non-existent targets as invalid commands.
2920                  */
2921                 hpsa_print_cmd(h, "invalid command", cp);
2922                 dev_warn(d, "probably means device no longer present\n");
2923                 }
2924                 break;
2925         case CMD_PROTOCOL_ERR:
2926                 hpsa_print_cmd(h, "protocol error", cp);
2927                 break;
2928         case CMD_HARDWARE_ERR:
2929                 hpsa_print_cmd(h, "hardware error", cp);
2930                 break;
2931         case CMD_CONNECTION_LOST:
2932                 hpsa_print_cmd(h, "connection lost", cp);
2933                 break;
2934         case CMD_ABORTED:
2935                 hpsa_print_cmd(h, "aborted", cp);
2936                 break;
2937         case CMD_ABORT_FAILED:
2938                 hpsa_print_cmd(h, "abort failed", cp);
2939                 break;
2940         case CMD_UNSOLICITED_ABORT:
2941                 hpsa_print_cmd(h, "unsolicited abort", cp);
2942                 break;
2943         case CMD_TIMEOUT:
2944                 hpsa_print_cmd(h, "timed out", cp);
2945                 break;
2946         case CMD_UNABORTABLE:
2947                 hpsa_print_cmd(h, "unabortable", cp);
2948                 break;
2949         case CMD_CTLR_LOCKUP:
2950                 hpsa_print_cmd(h, "controller lockup detected", cp);
2951                 break;
2952         default:
2953                 hpsa_print_cmd(h, "unknown status", cp);
2954                 dev_warn(d, "Unknown command status %x\n",
2955                                 ei->CommandStatus);
2956         }
2957 }
2958
2959 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2960                                         u8 page, u8 *buf, size_t bufsize)
2961 {
2962         int rc = IO_OK;
2963         struct CommandList *c;
2964         struct ErrorInfo *ei;
2965
2966         c = cmd_alloc(h);
2967         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2968                         page, scsi3addr, TYPE_CMD)) {
2969                 rc = -1;
2970                 goto out;
2971         }
2972         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2973                         NO_TIMEOUT);
2974         if (rc)
2975                 goto out;
2976         ei = c->err_info;
2977         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2978                 hpsa_scsi_interpret_error(h, c);
2979                 rc = -1;
2980         }
2981 out:
2982         cmd_free(h, c);
2983         return rc;
2984 }
2985
2986 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2987                                                 u8 *scsi3addr)
2988 {
2989         u8 *buf;
2990         u64 sa = 0;
2991         int rc = 0;
2992
2993         buf = kzalloc(1024, GFP_KERNEL);
2994         if (!buf)
2995                 return 0;
2996
2997         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2998                                         buf, 1024);
2999
3000         if (rc)
3001                 goto out;
3002
3003         sa = get_unaligned_be64(buf+12);
3004
3005 out:
3006         kfree(buf);
3007         return sa;
3008 }
3009
3010 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3011                         u16 page, unsigned char *buf,
3012                         unsigned char bufsize)
3013 {
3014         int rc = IO_OK;
3015         struct CommandList *c;
3016         struct ErrorInfo *ei;
3017
3018         c = cmd_alloc(h);
3019
3020         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3021                         page, scsi3addr, TYPE_CMD)) {
3022                 rc = -1;
3023                 goto out;
3024         }
3025         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3026                         NO_TIMEOUT);
3027         if (rc)
3028                 goto out;
3029         ei = c->err_info;
3030         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3031                 hpsa_scsi_interpret_error(h, c);
3032                 rc = -1;
3033         }
3034 out:
3035         cmd_free(h, c);
3036         return rc;
3037 }
3038
3039 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3040         u8 reset_type, int reply_queue)
3041 {
3042         int rc = IO_OK;
3043         struct CommandList *c;
3044         struct ErrorInfo *ei;
3045
3046         c = cmd_alloc(h);
3047
3048
3049         /* fill_cmd can't fail here, no data buffer to map. */
3050         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3051                         scsi3addr, TYPE_MSG);
3052         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3053         if (rc) {
3054                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3055                 goto out;
3056         }
3057         /* no unmap needed here because no data xfer. */
3058
3059         ei = c->err_info;
3060         if (ei->CommandStatus != 0) {
3061                 hpsa_scsi_interpret_error(h, c);
3062                 rc = -1;
3063         }
3064 out:
3065         cmd_free(h, c);
3066         return rc;
3067 }
3068
3069 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3070                                struct hpsa_scsi_dev_t *dev,
3071                                unsigned char *scsi3addr)
3072 {
3073         int i;
3074         bool match = false;
3075         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3076         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3077
3078         if (hpsa_is_cmd_idle(c))
3079                 return false;
3080
3081         switch (c->cmd_type) {
3082         case CMD_SCSI:
3083         case CMD_IOCTL_PEND:
3084                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3085                                 sizeof(c->Header.LUN.LunAddrBytes));
3086                 break;
3087
3088         case CMD_IOACCEL1:
3089         case CMD_IOACCEL2:
3090                 if (c->phys_disk == dev) {
3091                         /* HBA mode match */
3092                         match = true;
3093                 } else {
3094                         /* Possible RAID mode -- check each phys dev. */
3095                         /* FIXME:  Do we need to take out a lock here?  If
3096                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3097                          * instead. */
3098                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3099                                 /* FIXME: an alternate test might be
3100                                  *
3101                                  * match = dev->phys_disk[i]->ioaccel_handle
3102                                  *              == c2->scsi_nexus;      */
3103                                 match = dev->phys_disk[i] == c->phys_disk;
3104                         }
3105                 }
3106                 break;
3107
3108         case IOACCEL2_TMF:
3109                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3110                         match = dev->phys_disk[i]->ioaccel_handle ==
3111                                         le32_to_cpu(ac->it_nexus);
3112                 }
3113                 break;
3114
3115         case 0:         /* The command is in the middle of being initialized. */
3116                 match = false;
3117                 break;
3118
3119         default:
3120                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3121                         c->cmd_type);
3122                 BUG();
3123         }
3124
3125         return match;
3126 }
3127
3128 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3129         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3130 {
3131         int i;
3132         int rc = 0;
3133
3134         /* We can really only handle one reset at a time */
3135         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3136                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3137                 return -EINTR;
3138         }
3139
3140         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3141
3142         for (i = 0; i < h->nr_cmds; i++) {
3143                 struct CommandList *c = h->cmd_pool + i;
3144                 int refcount = atomic_inc_return(&c->refcount);
3145
3146                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3147                         unsigned long flags;
3148
3149                         /*
3150                          * Mark the target command as having a reset pending,
3151                          * then lock a lock so that the command cannot complete
3152                          * while we're considering it.  If the command is not
3153                          * idle then count it; otherwise revoke the event.
3154                          */
3155                         c->reset_pending = dev;
3156                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3157                         if (!hpsa_is_cmd_idle(c))
3158                                 atomic_inc(&dev->reset_cmds_out);
3159                         else
3160                                 c->reset_pending = NULL;
3161                         spin_unlock_irqrestore(&h->lock, flags);
3162                 }
3163
3164                 cmd_free(h, c);
3165         }
3166
3167         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3168         if (!rc)
3169                 wait_event(h->event_sync_wait_queue,
3170                         atomic_read(&dev->reset_cmds_out) == 0 ||
3171                         lockup_detected(h));
3172
3173         if (unlikely(lockup_detected(h))) {
3174                 dev_warn(&h->pdev->dev,
3175                          "Controller lockup detected during reset wait\n");
3176                 rc = -ENODEV;
3177         }
3178
3179         if (unlikely(rc))
3180                 atomic_set(&dev->reset_cmds_out, 0);
3181         else
3182                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3183
3184         mutex_unlock(&h->reset_mutex);
3185         return rc;
3186 }
3187
3188 static void hpsa_get_raid_level(struct ctlr_info *h,
3189         unsigned char *scsi3addr, unsigned char *raid_level)
3190 {
3191         int rc;
3192         unsigned char *buf;
3193
3194         *raid_level = RAID_UNKNOWN;
3195         buf = kzalloc(64, GFP_KERNEL);
3196         if (!buf)
3197                 return;
3198
3199         if (!hpsa_vpd_page_supported(h, scsi3addr,
3200                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3201                 goto exit;
3202
3203         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3204                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3205
3206         if (rc == 0)
3207                 *raid_level = buf[8];
3208         if (*raid_level > RAID_UNKNOWN)
3209                 *raid_level = RAID_UNKNOWN;
3210 exit:
3211         kfree(buf);
3212         return;
3213 }
3214
3215 #define HPSA_MAP_DEBUG
3216 #ifdef HPSA_MAP_DEBUG
3217 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3218                                 struct raid_map_data *map_buff)
3219 {
3220         struct raid_map_disk_data *dd = &map_buff->data[0];
3221         int map, row, col;
3222         u16 map_cnt, row_cnt, disks_per_row;
3223
3224         if (rc != 0)
3225                 return;
3226
3227         /* Show details only if debugging has been activated. */
3228         if (h->raid_offload_debug < 2)
3229                 return;
3230
3231         dev_info(&h->pdev->dev, "structure_size = %u\n",
3232                                 le32_to_cpu(map_buff->structure_size));
3233         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3234                         le32_to_cpu(map_buff->volume_blk_size));
3235         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3236                         le64_to_cpu(map_buff->volume_blk_cnt));
3237         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3238                         map_buff->phys_blk_shift);
3239         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3240                         map_buff->parity_rotation_shift);
3241         dev_info(&h->pdev->dev, "strip_size = %u\n",
3242                         le16_to_cpu(map_buff->strip_size));
3243         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3244                         le64_to_cpu(map_buff->disk_starting_blk));
3245         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3246                         le64_to_cpu(map_buff->disk_blk_cnt));
3247         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3248                         le16_to_cpu(map_buff->data_disks_per_row));
3249         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3250                         le16_to_cpu(map_buff->metadata_disks_per_row));
3251         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3252                         le16_to_cpu(map_buff->row_cnt));
3253         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3254                         le16_to_cpu(map_buff->layout_map_count));
3255         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3256                         le16_to_cpu(map_buff->flags));
3257         dev_info(&h->pdev->dev, "encryption = %s\n",
3258                         le16_to_cpu(map_buff->flags) &
3259                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3260         dev_info(&h->pdev->dev, "dekindex = %u\n",
3261                         le16_to_cpu(map_buff->dekindex));
3262         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3263         for (map = 0; map < map_cnt; map++) {
3264                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3265                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3266                 for (row = 0; row < row_cnt; row++) {
3267                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3268                         disks_per_row =
3269                                 le16_to_cpu(map_buff->data_disks_per_row);
3270                         for (col = 0; col < disks_per_row; col++, dd++)
3271                                 dev_info(&h->pdev->dev,
3272                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3273                                         col, dd->ioaccel_handle,
3274                                         dd->xor_mult[0], dd->xor_mult[1]);
3275                         disks_per_row =
3276                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3277                         for (col = 0; col < disks_per_row; col++, dd++)
3278                                 dev_info(&h->pdev->dev,
3279                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3280                                         col, dd->ioaccel_handle,
3281                                         dd->xor_mult[0], dd->xor_mult[1]);
3282                 }
3283         }
3284 }
3285 #else
3286 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3287                         __attribute__((unused)) int rc,
3288                         __attribute__((unused)) struct raid_map_data *map_buff)
3289 {
3290 }
3291 #endif
3292
3293 static int hpsa_get_raid_map(struct ctlr_info *h,
3294         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3295 {
3296         int rc = 0;
3297         struct CommandList *c;
3298         struct ErrorInfo *ei;
3299
3300         c = cmd_alloc(h);
3301
3302         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3303                         sizeof(this_device->raid_map), 0,
3304                         scsi3addr, TYPE_CMD)) {
3305                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3306                 cmd_free(h, c);
3307                 return -1;
3308         }
3309         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3310                         NO_TIMEOUT);
3311         if (rc)
3312                 goto out;
3313         ei = c->err_info;
3314         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3315                 hpsa_scsi_interpret_error(h, c);
3316                 rc = -1;
3317                 goto out;
3318         }
3319         cmd_free(h, c);
3320
3321         /* @todo in the future, dynamically allocate RAID map memory */
3322         if (le32_to_cpu(this_device->raid_map.structure_size) >
3323                                 sizeof(this_device->raid_map)) {
3324                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3325                 rc = -1;
3326         }
3327         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3328         return rc;
3329 out:
3330         cmd_free(h, c);
3331         return rc;
3332 }
3333
3334 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3335                 unsigned char scsi3addr[], u16 bmic_device_index,
3336                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3337 {
3338         int rc = IO_OK;
3339         struct CommandList *c;
3340         struct ErrorInfo *ei;
3341
3342         c = cmd_alloc(h);
3343
3344         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3345                 0, RAID_CTLR_LUNID, TYPE_CMD);
3346         if (rc)
3347                 goto out;
3348
3349         c->Request.CDB[2] = bmic_device_index & 0xff;
3350         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3351
3352         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3353                         NO_TIMEOUT);
3354         if (rc)
3355                 goto out;
3356         ei = c->err_info;
3357         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3358                 hpsa_scsi_interpret_error(h, c);
3359                 rc = -1;
3360         }
3361 out:
3362         cmd_free(h, c);
3363         return rc;
3364 }
3365
3366 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3367         struct bmic_identify_controller *buf, size_t bufsize)
3368 {
3369         int rc = IO_OK;
3370         struct CommandList *c;
3371         struct ErrorInfo *ei;
3372
3373         c = cmd_alloc(h);
3374
3375         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3376                 0, RAID_CTLR_LUNID, TYPE_CMD);
3377         if (rc)
3378                 goto out;
3379
3380         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3381                         NO_TIMEOUT);
3382         if (rc)
3383                 goto out;
3384         ei = c->err_info;
3385         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3386                 hpsa_scsi_interpret_error(h, c);
3387                 rc = -1;
3388         }
3389 out:
3390         cmd_free(h, c);
3391         return rc;
3392 }
3393
3394 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3395                 unsigned char scsi3addr[], u16 bmic_device_index,
3396                 struct bmic_identify_physical_device *buf, size_t bufsize)
3397 {
3398         int rc = IO_OK;
3399         struct CommandList *c;
3400         struct ErrorInfo *ei;
3401
3402         c = cmd_alloc(h);
3403         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3404                 0, RAID_CTLR_LUNID, TYPE_CMD);
3405         if (rc)
3406                 goto out;
3407
3408         c->Request.CDB[2] = bmic_device_index & 0xff;
3409         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3410
3411         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3412                                                 NO_TIMEOUT);
3413         ei = c->err_info;
3414         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3415                 hpsa_scsi_interpret_error(h, c);
3416                 rc = -1;
3417         }
3418 out:
3419         cmd_free(h, c);
3420
3421         return rc;
3422 }
3423
3424 /*
3425  * get enclosure information
3426  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3427  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3428  * Uses id_physical_device to determine the box_index.
3429  */
3430 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3431                         unsigned char *scsi3addr,
3432                         struct ReportExtendedLUNdata *rlep, int rle_index,
3433                         struct hpsa_scsi_dev_t *encl_dev)
3434 {
3435         int rc = -1;
3436         struct CommandList *c = NULL;
3437         struct ErrorInfo *ei = NULL;
3438         struct bmic_sense_storage_box_params *bssbp = NULL;
3439         struct bmic_identify_physical_device *id_phys = NULL;
3440         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3441         u16 bmic_device_index = 0;
3442
3443         encl_dev->eli =
3444                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3445
3446         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3447
3448         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3449                 rc = IO_OK;
3450                 goto out;
3451         }
3452
3453         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3454                 rc = IO_OK;
3455                 goto out;
3456         }
3457
3458         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3459         if (!bssbp)
3460                 goto out;
3461
3462         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3463         if (!id_phys)
3464                 goto out;
3465
3466         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3467                                                 id_phys, sizeof(*id_phys));
3468         if (rc) {
3469                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3470                         __func__, encl_dev->external, bmic_device_index);
3471                 goto out;
3472         }
3473
3474         c = cmd_alloc(h);
3475
3476         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3477                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3478
3479         if (rc)
3480                 goto out;
3481
3482         if (id_phys->phys_connector[1] == 'E')
3483                 c->Request.CDB[5] = id_phys->box_index;
3484         else
3485                 c->Request.CDB[5] = 0;
3486
3487         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3488                                                 NO_TIMEOUT);
3489         if (rc)
3490                 goto out;
3491
3492         ei = c->err_info;
3493         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3494                 rc = -1;
3495                 goto out;
3496         }
3497
3498         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3499         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3500                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3501
3502         rc = IO_OK;
3503 out:
3504         kfree(bssbp);
3505         kfree(id_phys);
3506
3507         if (c)
3508                 cmd_free(h, c);
3509
3510         if (rc != IO_OK)
3511                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3512                         "Error, could not get enclosure information");
3513 }
3514
3515 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3516                                                 unsigned char *scsi3addr)
3517 {
3518         struct ReportExtendedLUNdata *physdev;
3519         u32 nphysicals;
3520         u64 sa = 0;
3521         int i;
3522
3523         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3524         if (!physdev)
3525                 return 0;
3526
3527         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3528                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3529                 kfree(physdev);
3530                 return 0;
3531         }
3532         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3533
3534         for (i = 0; i < nphysicals; i++)
3535                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3536                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3537                         break;
3538                 }
3539
3540         kfree(physdev);
3541
3542         return sa;
3543 }
3544
3545 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3546                                         struct hpsa_scsi_dev_t *dev)
3547 {
3548         int rc;
3549         u64 sa = 0;
3550
3551         if (is_hba_lunid(scsi3addr)) {
3552                 struct bmic_sense_subsystem_info *ssi;
3553
3554                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3555                 if (!ssi)
3556                         return;
3557
3558                 rc = hpsa_bmic_sense_subsystem_information(h,
3559                                         scsi3addr, 0, ssi, sizeof(*ssi));
3560                 if (rc == 0) {
3561                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3562                         h->sas_address = sa;
3563                 }
3564
3565                 kfree(ssi);
3566         } else
3567                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3568
3569         dev->sas_address = sa;
3570 }
3571
3572 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3573         struct ReportExtendedLUNdata *physdev)
3574 {
3575         u32 nphysicals;
3576         int i;
3577
3578         if (h->discovery_polling)
3579                 return;
3580
3581         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3582
3583         for (i = 0; i < nphysicals; i++) {
3584                 if (physdev->LUN[i].device_type ==
3585                         BMIC_DEVICE_TYPE_CONTROLLER
3586                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3587                         dev_info(&h->pdev->dev,
3588                                 "External controller present, activate discovery polling and disable rld caching\n");
3589                         hpsa_disable_rld_caching(h);
3590                         h->discovery_polling = 1;
3591                         break;
3592                 }
3593         }
3594 }
3595
3596 /* Get a device id from inquiry page 0x83 */
3597 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3598         unsigned char scsi3addr[], u8 page)
3599 {
3600         int rc;
3601         int i;
3602         int pages;
3603         unsigned char *buf, bufsize;
3604
3605         buf = kzalloc(256, GFP_KERNEL);
3606         if (!buf)
3607                 return false;
3608
3609         /* Get the size of the page list first */
3610         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3611                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3612                                 buf, HPSA_VPD_HEADER_SZ);
3613         if (rc != 0)
3614                 goto exit_unsupported;
3615         pages = buf[3];
3616         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3617                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3618         else
3619                 bufsize = 255;
3620
3621         /* Get the whole VPD page list */
3622         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3623                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3624                                 buf, bufsize);
3625         if (rc != 0)
3626                 goto exit_unsupported;
3627
3628         pages = buf[3];
3629         for (i = 1; i <= pages; i++)
3630                 if (buf[3 + i] == page)
3631                         goto exit_supported;
3632 exit_unsupported:
3633         kfree(buf);
3634         return false;
3635 exit_supported:
3636         kfree(buf);
3637         return true;
3638 }
3639
3640 /*
3641  * Called during a scan operation.
3642  * Sets ioaccel status on the new device list, not the existing device list
3643  *
3644  * The device list used during I/O will be updated later in
3645  * adjust_hpsa_scsi_table.
3646  */
3647 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3648         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3649 {
3650         int rc;
3651         unsigned char *buf;
3652         u8 ioaccel_status;
3653
3654         this_device->offload_config = 0;
3655         this_device->offload_enabled = 0;
3656         this_device->offload_to_be_enabled = 0;
3657
3658         buf = kzalloc(64, GFP_KERNEL);
3659         if (!buf)
3660                 return;
3661         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3662                 goto out;
3663         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3664                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3665         if (rc != 0)
3666                 goto out;
3667
3668 #define IOACCEL_STATUS_BYTE 4
3669 #define OFFLOAD_CONFIGURED_BIT 0x01
3670 #define OFFLOAD_ENABLED_BIT 0x02
3671         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3672         this_device->offload_config =
3673                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3674         if (this_device->offload_config) {
3675                 this_device->offload_to_be_enabled =
3676                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3677                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3678                         this_device->offload_to_be_enabled = 0;
3679         }
3680
3681 out:
3682         kfree(buf);
3683         return;
3684 }
3685
3686 /* Get the device id from inquiry page 0x83 */
3687 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3688         unsigned char *device_id, int index, int buflen)
3689 {
3690         int rc;
3691         unsigned char *buf;
3692
3693         /* Does controller have VPD for device id? */
3694         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3695                 return 1; /* not supported */
3696
3697         buf = kzalloc(64, GFP_KERNEL);
3698         if (!buf)
3699                 return -ENOMEM;
3700
3701         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3702                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3703         if (rc == 0) {
3704                 if (buflen > 16)
3705                         buflen = 16;
3706                 memcpy(device_id, &buf[8], buflen);
3707         }
3708
3709         kfree(buf);
3710
3711         return rc; /*0 - got id,  otherwise, didn't */
3712 }
3713
3714 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3715                 void *buf, int bufsize,
3716                 int extended_response)
3717 {
3718         int rc = IO_OK;
3719         struct CommandList *c;
3720         unsigned char scsi3addr[8];
3721         struct ErrorInfo *ei;
3722
3723         c = cmd_alloc(h);
3724
3725         /* address the controller */
3726         memset(scsi3addr, 0, sizeof(scsi3addr));
3727         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3728                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3729                 rc = -EAGAIN;
3730                 goto out;
3731         }
3732         if (extended_response)
3733                 c->Request.CDB[1] = extended_response;
3734         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3735                         NO_TIMEOUT);
3736         if (rc)
3737                 goto out;
3738         ei = c->err_info;
3739         if (ei->CommandStatus != 0 &&
3740             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3741                 hpsa_scsi_interpret_error(h, c);
3742                 rc = -EIO;
3743         } else {
3744                 struct ReportLUNdata *rld = buf;
3745
3746                 if (rld->extended_response_flag != extended_response) {
3747                         if (!h->legacy_board) {
3748                                 dev_err(&h->pdev->dev,
3749                                         "report luns requested format %u, got %u\n",
3750                                         extended_response,
3751                                         rld->extended_response_flag);
3752                                 rc = -EINVAL;
3753                         } else
3754                                 rc = -EOPNOTSUPP;
3755                 }
3756         }
3757 out:
3758         cmd_free(h, c);
3759         return rc;
3760 }
3761
3762 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3763                 struct ReportExtendedLUNdata *buf, int bufsize)
3764 {
3765         int rc;
3766         struct ReportLUNdata *lbuf;
3767
3768         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3769                                       HPSA_REPORT_PHYS_EXTENDED);
3770         if (!rc || rc != -EOPNOTSUPP)
3771                 return rc;
3772
3773         /* REPORT PHYS EXTENDED is not supported */
3774         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3775         if (!lbuf)
3776                 return -ENOMEM;
3777
3778         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3779         if (!rc) {
3780                 int i;
3781                 u32 nphys;
3782
3783                 /* Copy ReportLUNdata header */
3784                 memcpy(buf, lbuf, 8);
3785                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3786                 for (i = 0; i < nphys; i++)
3787                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3788         }
3789         kfree(lbuf);
3790         return rc;
3791 }
3792
3793 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3794                 struct ReportLUNdata *buf, int bufsize)
3795 {
3796         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3797 }
3798
3799 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3800         int bus, int target, int lun)
3801 {
3802         device->bus = bus;
3803         device->target = target;
3804         device->lun = lun;
3805 }
3806
3807 /* Use VPD inquiry to get details of volume status */
3808 static int hpsa_get_volume_status(struct ctlr_info *h,
3809                                         unsigned char scsi3addr[])
3810 {
3811         int rc;
3812         int status;
3813         int size;
3814         unsigned char *buf;
3815
3816         buf = kzalloc(64, GFP_KERNEL);
3817         if (!buf)
3818                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3819
3820         /* Does controller have VPD for logical volume status? */
3821         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3822                 goto exit_failed;
3823
3824         /* Get the size of the VPD return buffer */
3825         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3826                                         buf, HPSA_VPD_HEADER_SZ);
3827         if (rc != 0)
3828                 goto exit_failed;
3829         size = buf[3];
3830
3831         /* Now get the whole VPD buffer */
3832         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3833                                         buf, size + HPSA_VPD_HEADER_SZ);
3834         if (rc != 0)
3835                 goto exit_failed;
3836         status = buf[4]; /* status byte */
3837
3838         kfree(buf);
3839         return status;
3840 exit_failed:
3841         kfree(buf);
3842         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843 }
3844
3845 /* Determine offline status of a volume.
3846  * Return either:
3847  *  0 (not offline)
3848  *  0xff (offline for unknown reasons)
3849  *  # (integer code indicating one of several NOT READY states
3850  *     describing why a volume is to be kept offline)
3851  */
3852 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3853                                         unsigned char scsi3addr[])
3854 {
3855         struct CommandList *c;
3856         unsigned char *sense;
3857         u8 sense_key, asc, ascq;
3858         int sense_len;
3859         int rc, ldstat = 0;
3860         u16 cmd_status;
3861         u8 scsi_status;
3862 #define ASC_LUN_NOT_READY 0x04
3863 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3864 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3865
3866         c = cmd_alloc(h);
3867
3868         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3869         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3870                                         NO_TIMEOUT);
3871         if (rc) {
3872                 cmd_free(h, c);
3873                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3874         }
3875         sense = c->err_info->SenseInfo;
3876         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3877                 sense_len = sizeof(c->err_info->SenseInfo);
3878         else
3879                 sense_len = c->err_info->SenseLen;
3880         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3881         cmd_status = c->err_info->CommandStatus;
3882         scsi_status = c->err_info->ScsiStatus;
3883         cmd_free(h, c);
3884
3885         /* Determine the reason for not ready state */
3886         ldstat = hpsa_get_volume_status(h, scsi3addr);
3887
3888         /* Keep volume offline in certain cases: */
3889         switch (ldstat) {
3890         case HPSA_LV_FAILED:
3891         case HPSA_LV_UNDERGOING_ERASE:
3892         case HPSA_LV_NOT_AVAILABLE:
3893         case HPSA_LV_UNDERGOING_RPI:
3894         case HPSA_LV_PENDING_RPI:
3895         case HPSA_LV_ENCRYPTED_NO_KEY:
3896         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3897         case HPSA_LV_UNDERGOING_ENCRYPTION:
3898         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3899         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3900                 return ldstat;
3901         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3902                 /* If VPD status page isn't available,
3903                  * use ASC/ASCQ to determine state
3904                  */
3905                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3906                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3907                         return ldstat;
3908                 break;
3909         default:
3910                 break;
3911         }
3912         return HPSA_LV_OK;
3913 }
3914
3915 static int hpsa_update_device_info(struct ctlr_info *h,
3916         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3917         unsigned char *is_OBDR_device)
3918 {
3919
3920 #define OBDR_SIG_OFFSET 43
3921 #define OBDR_TAPE_SIG "$DR-10"
3922 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3923 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3924
3925         unsigned char *inq_buff;
3926         unsigned char *obdr_sig;
3927         int rc = 0;
3928
3929         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3930         if (!inq_buff) {
3931                 rc = -ENOMEM;
3932                 goto bail_out;
3933         }
3934
3935         /* Do an inquiry to the device to see what it is. */
3936         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3937                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3938                 dev_err(&h->pdev->dev,
3939                         "%s: inquiry failed, device will be skipped.\n",
3940                         __func__);
3941                 rc = HPSA_INQUIRY_FAILED;
3942                 goto bail_out;
3943         }
3944
3945         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3946         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3947
3948         this_device->devtype = (inq_buff[0] & 0x1f);
3949         memcpy(this_device->scsi3addr, scsi3addr, 8);
3950         memcpy(this_device->vendor, &inq_buff[8],
3951                 sizeof(this_device->vendor));
3952         memcpy(this_device->model, &inq_buff[16],
3953                 sizeof(this_device->model));
3954         this_device->rev = inq_buff[2];
3955         memset(this_device->device_id, 0,
3956                 sizeof(this_device->device_id));
3957         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3958                 sizeof(this_device->device_id)) < 0)
3959                 dev_err(&h->pdev->dev,
3960                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3961                         h->ctlr, __func__,
3962                         h->scsi_host->host_no,
3963                         this_device->target, this_device->lun,
3964                         scsi_device_type(this_device->devtype),
3965                         this_device->model);
3966
3967         if ((this_device->devtype == TYPE_DISK ||
3968                 this_device->devtype == TYPE_ZBC) &&
3969                 is_logical_dev_addr_mode(scsi3addr)) {
3970                 unsigned char volume_offline;
3971
3972                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3973                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3974                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3975                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3976                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3977                     h->legacy_board) {
3978                         /*
3979                          * Legacy boards might not support volume status
3980                          */
3981                         dev_info(&h->pdev->dev,
3982                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3983                                  this_device->target, this_device->lun);
3984                         volume_offline = 0;
3985                 }
3986                 this_device->volume_offline = volume_offline;
3987                 if (volume_offline == HPSA_LV_FAILED) {
3988                         rc = HPSA_LV_FAILED;
3989                         dev_err(&h->pdev->dev,
3990                                 "%s: LV failed, device will be skipped.\n",
3991                                 __func__);
3992                         goto bail_out;
3993                 }
3994         } else {
3995                 this_device->raid_level = RAID_UNKNOWN;
3996                 this_device->offload_config = 0;
3997                 this_device->offload_enabled = 0;
3998                 this_device->offload_to_be_enabled = 0;
3999                 this_device->hba_ioaccel_enabled = 0;
4000                 this_device->volume_offline = 0;
4001                 this_device->queue_depth = h->nr_cmds;
4002         }
4003
4004         if (this_device->external)
4005                 this_device->queue_depth = EXTERNAL_QD;
4006
4007         if (is_OBDR_device) {
4008                 /* See if this is a One-Button-Disaster-Recovery device
4009                  * by looking for "$DR-10" at offset 43 in inquiry data.
4010                  */
4011                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4012                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4013                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4014                                                 OBDR_SIG_LEN) == 0);
4015         }
4016         kfree(inq_buff);
4017         return 0;
4018
4019 bail_out:
4020         kfree(inq_buff);
4021         return rc;
4022 }
4023
4024 /*
4025  * Helper function to assign bus, target, lun mapping of devices.
4026  * Logical drive target and lun are assigned at this time, but
4027  * physical device lun and target assignment are deferred (assigned
4028  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4029 */
4030 static void figure_bus_target_lun(struct ctlr_info *h,
4031         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4032 {
4033         u32 lunid = get_unaligned_le32(lunaddrbytes);
4034
4035         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4036                 /* physical device, target and lun filled in later */
4037                 if (is_hba_lunid(lunaddrbytes)) {
4038                         int bus = HPSA_HBA_BUS;
4039
4040                         if (!device->rev)
4041                                 bus = HPSA_LEGACY_HBA_BUS;
4042                         hpsa_set_bus_target_lun(device,
4043                                         bus, 0, lunid & 0x3fff);
4044                 } else
4045                         /* defer target, lun assignment for physical devices */
4046                         hpsa_set_bus_target_lun(device,
4047                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4048                 return;
4049         }
4050         /* It's a logical device */
4051         if (device->external) {
4052                 hpsa_set_bus_target_lun(device,
4053                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4054                         lunid & 0x00ff);
4055                 return;
4056         }
4057         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4058                                 0, lunid & 0x3fff);
4059 }
4060
4061 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4062         int i, int nphysicals, int nlocal_logicals)
4063 {
4064         /* In report logicals, local logicals are listed first,
4065         * then any externals.
4066         */
4067         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4068
4069         if (i == raid_ctlr_position)
4070                 return 0;
4071
4072         if (i < logicals_start)
4073                 return 0;
4074
4075         /* i is in logicals range, but still within local logicals */
4076         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4077                 return 0;
4078
4079         return 1; /* it's an external lun */
4080 }
4081
4082 /*
4083  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4084  * logdev.  The number of luns in physdev and logdev are returned in
4085  * *nphysicals and *nlogicals, respectively.
4086  * Returns 0 on success, -1 otherwise.
4087  */
4088 static int hpsa_gather_lun_info(struct ctlr_info *h,
4089         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4090         struct ReportLUNdata *logdev, u32 *nlogicals)
4091 {
4092         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4093                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4094                 return -1;
4095         }
4096         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4097         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4098                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4099                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4100                 *nphysicals = HPSA_MAX_PHYS_LUN;
4101         }
4102         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4103                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4104                 return -1;
4105         }
4106         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4107         /* Reject Logicals in excess of our max capability. */
4108         if (*nlogicals > HPSA_MAX_LUN) {
4109                 dev_warn(&h->pdev->dev,
4110                         "maximum logical LUNs (%d) exceeded.  "
4111                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4112                         *nlogicals - HPSA_MAX_LUN);
4113                         *nlogicals = HPSA_MAX_LUN;
4114         }
4115         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4116                 dev_warn(&h->pdev->dev,
4117                         "maximum logical + physical LUNs (%d) exceeded. "
4118                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4119                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4120                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4121         }
4122         return 0;
4123 }
4124
4125 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4126         int i, int nphysicals, int nlogicals,
4127         struct ReportExtendedLUNdata *physdev_list,
4128         struct ReportLUNdata *logdev_list)
4129 {
4130         /* Helper function, figure out where the LUN ID info is coming from
4131          * given index i, lists of physical and logical devices, where in
4132          * the list the raid controller is supposed to appear (first or last)
4133          */
4134
4135         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4136         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4137
4138         if (i == raid_ctlr_position)
4139                 return RAID_CTLR_LUNID;
4140
4141         if (i < logicals_start)
4142                 return &physdev_list->LUN[i -
4143                                 (raid_ctlr_position == 0)].lunid[0];
4144
4145         if (i < last_device)
4146                 return &logdev_list->LUN[i - nphysicals -
4147                         (raid_ctlr_position == 0)][0];
4148         BUG();
4149         return NULL;
4150 }
4151
4152 /* get physical drive ioaccel handle and queue depth */
4153 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4154                 struct hpsa_scsi_dev_t *dev,
4155                 struct ReportExtendedLUNdata *rlep, int rle_index,
4156                 struct bmic_identify_physical_device *id_phys)
4157 {
4158         int rc;
4159         struct ext_report_lun_entry *rle;
4160
4161         rle = &rlep->LUN[rle_index];
4162
4163         dev->ioaccel_handle = rle->ioaccel_handle;
4164         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4165                 dev->hba_ioaccel_enabled = 1;
4166         memset(id_phys, 0, sizeof(*id_phys));
4167         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4168                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4169                         sizeof(*id_phys));
4170         if (!rc)
4171                 /* Reserve space for FW operations */
4172 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4173 #define DRIVE_QUEUE_DEPTH 7
4174                 dev->queue_depth =
4175                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4176                                 DRIVE_CMDS_RESERVED_FOR_FW;
4177         else
4178                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4179 }
4180
4181 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4182         struct ReportExtendedLUNdata *rlep, int rle_index,
4183         struct bmic_identify_physical_device *id_phys)
4184 {
4185         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4186
4187         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4188                 this_device->hba_ioaccel_enabled = 1;
4189
4190         memcpy(&this_device->active_path_index,
4191                 &id_phys->active_path_number,
4192                 sizeof(this_device->active_path_index));
4193         memcpy(&this_device->path_map,
4194                 &id_phys->redundant_path_present_map,
4195                 sizeof(this_device->path_map));
4196         memcpy(&this_device->box,
4197                 &id_phys->alternate_paths_phys_box_on_port,
4198                 sizeof(this_device->box));
4199         memcpy(&this_device->phys_connector,
4200                 &id_phys->alternate_paths_phys_connector,
4201                 sizeof(this_device->phys_connector));
4202         memcpy(&this_device->bay,
4203                 &id_phys->phys_bay_in_box,
4204                 sizeof(this_device->bay));
4205 }
4206
4207 /* get number of local logical disks. */
4208 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4209         struct bmic_identify_controller *id_ctlr,
4210         u32 *nlocals)
4211 {
4212         int rc;
4213
4214         if (!id_ctlr) {
4215                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4216                         __func__);
4217                 return -ENOMEM;
4218         }
4219         memset(id_ctlr, 0, sizeof(*id_ctlr));
4220         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4221         if (!rc)
4222                 if (id_ctlr->configured_logical_drive_count < 255)
4223                         *nlocals = id_ctlr->configured_logical_drive_count;
4224                 else
4225                         *nlocals = le16_to_cpu(
4226                                         id_ctlr->extended_logical_unit_count);
4227         else
4228                 *nlocals = -1;
4229         return rc;
4230 }
4231
4232 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4233 {
4234         struct bmic_identify_physical_device *id_phys;
4235         bool is_spare = false;
4236         int rc;
4237
4238         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4239         if (!id_phys)
4240                 return false;
4241
4242         rc = hpsa_bmic_id_physical_device(h,
4243                                         lunaddrbytes,
4244                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4245                                         id_phys, sizeof(*id_phys));
4246         if (rc == 0)
4247                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4248
4249         kfree(id_phys);
4250         return is_spare;
4251 }
4252
4253 #define RPL_DEV_FLAG_NON_DISK                           0x1
4254 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4255 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4256
4257 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4258
4259 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4260                                 struct ext_report_lun_entry *rle)
4261 {
4262         u8 device_flags;
4263         u8 device_type;
4264
4265         if (!MASKED_DEVICE(lunaddrbytes))
4266                 return false;
4267
4268         device_flags = rle->device_flags;
4269         device_type = rle->device_type;
4270
4271         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4272                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4273                         return false;
4274                 return true;
4275         }
4276
4277         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4278                 return false;
4279
4280         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4281                 return false;
4282
4283         /*
4284          * Spares may be spun down, we do not want to
4285          * do an Inquiry to a RAID set spare drive as
4286          * that would have them spun up, that is a
4287          * performance hit because I/O to the RAID device
4288          * stops while the spin up occurs which can take
4289          * over 50 seconds.
4290          */
4291         if (hpsa_is_disk_spare(h, lunaddrbytes))
4292                 return true;
4293
4294         return false;
4295 }
4296
4297 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4298 {
4299         /* the idea here is we could get notified
4300          * that some devices have changed, so we do a report
4301          * physical luns and report logical luns cmd, and adjust
4302          * our list of devices accordingly.
4303          *
4304          * The scsi3addr's of devices won't change so long as the
4305          * adapter is not reset.  That means we can rescan and
4306          * tell which devices we already know about, vs. new
4307          * devices, vs.  disappearing devices.
4308          */
4309         struct ReportExtendedLUNdata *physdev_list = NULL;
4310         struct ReportLUNdata *logdev_list = NULL;
4311         struct bmic_identify_physical_device *id_phys = NULL;
4312         struct bmic_identify_controller *id_ctlr = NULL;
4313         u32 nphysicals = 0;
4314         u32 nlogicals = 0;
4315         u32 nlocal_logicals = 0;
4316         u32 ndev_allocated = 0;
4317         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4318         int ncurrent = 0;
4319         int i, n_ext_target_devs, ndevs_to_allocate;
4320         int raid_ctlr_position;
4321         bool physical_device;
4322         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4323
4324         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4325         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4326         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4327         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4328         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4329         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4330
4331         if (!currentsd || !physdev_list || !logdev_list ||
4332                 !tmpdevice || !id_phys || !id_ctlr) {
4333                 dev_err(&h->pdev->dev, "out of memory\n");
4334                 goto out;
4335         }
4336         memset(lunzerobits, 0, sizeof(lunzerobits));
4337
4338         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4339
4340         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4341                         logdev_list, &nlogicals)) {
4342                 h->drv_req_rescan = 1;
4343                 goto out;
4344         }
4345
4346         /* Set number of local logicals (non PTRAID) */
4347         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4348                 dev_warn(&h->pdev->dev,
4349                         "%s: Can't determine number of local logical devices.\n",
4350                         __func__);
4351         }
4352
4353         /* We might see up to the maximum number of logical and physical disks
4354          * plus external target devices, and a device for the local RAID
4355          * controller.
4356          */
4357         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4358
4359         hpsa_ext_ctrl_present(h, physdev_list);
4360
4361         /* Allocate the per device structures */
4362         for (i = 0; i < ndevs_to_allocate; i++) {
4363                 if (i >= HPSA_MAX_DEVICES) {
4364                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4365                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4366                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4367                         break;
4368                 }
4369
4370                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4371                 if (!currentsd[i]) {
4372                         h->drv_req_rescan = 1;
4373                         goto out;
4374                 }
4375                 ndev_allocated++;
4376         }
4377
4378         if (is_scsi_rev_5(h))
4379                 raid_ctlr_position = 0;
4380         else
4381                 raid_ctlr_position = nphysicals + nlogicals;
4382
4383         /* adjust our table of devices */
4384         n_ext_target_devs = 0;
4385         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4386                 u8 *lunaddrbytes, is_OBDR = 0;
4387                 int rc = 0;
4388                 int phys_dev_index = i - (raid_ctlr_position == 0);
4389                 bool skip_device = false;
4390
4391                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4392
4393                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4394
4395                 /* Figure out where the LUN ID info is coming from */
4396                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4397                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4398
4399                 /* Determine if this is a lun from an external target array */
4400                 tmpdevice->external =
4401                         figure_external_status(h, raid_ctlr_position, i,
4402                                                 nphysicals, nlocal_logicals);
4403
4404                 /*
4405                  * Skip over some devices such as a spare.
4406                  */
4407                 if (!tmpdevice->external && physical_device) {
4408                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4409                                         &physdev_list->LUN[phys_dev_index]);
4410                         if (skip_device)
4411                                 continue;
4412                 }
4413
4414                 /* Get device type, vendor, model, device id, raid_map */
4415                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4416                                                         &is_OBDR);
4417                 if (rc == -ENOMEM) {
4418                         dev_warn(&h->pdev->dev,
4419                                 "Out of memory, rescan deferred.\n");
4420                         h->drv_req_rescan = 1;
4421                         goto out;
4422                 }
4423                 if (rc) {
4424                         h->drv_req_rescan = 1;
4425                         continue;
4426                 }
4427
4428                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4429                 this_device = currentsd[ncurrent];
4430
4431                 *this_device = *tmpdevice;
4432                 this_device->physical_device = physical_device;
4433
4434                 /*
4435                  * Expose all devices except for physical devices that
4436                  * are masked.
4437                  */
4438                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4439                         this_device->expose_device = 0;
4440                 else
4441                         this_device->expose_device = 1;
4442
4443
4444                 /*
4445                  * Get the SAS address for physical devices that are exposed.
4446                  */
4447                 if (this_device->physical_device && this_device->expose_device)
4448                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4449
4450                 switch (this_device->devtype) {
4451                 case TYPE_ROM:
4452                         /* We don't *really* support actual CD-ROM devices,
4453                          * just "One Button Disaster Recovery" tape drive
4454                          * which temporarily pretends to be a CD-ROM drive.
4455                          * So we check that the device is really an OBDR tape
4456                          * device by checking for "$DR-10" in bytes 43-48 of
4457                          * the inquiry data.
4458                          */
4459                         if (is_OBDR)
4460                                 ncurrent++;
4461                         break;
4462                 case TYPE_DISK:
4463                 case TYPE_ZBC:
4464                         if (this_device->physical_device) {
4465                                 /* The disk is in HBA mode. */
4466                                 /* Never use RAID mapper in HBA mode. */
4467                                 this_device->offload_enabled = 0;
4468                                 hpsa_get_ioaccel_drive_info(h, this_device,
4469                                         physdev_list, phys_dev_index, id_phys);
4470                                 hpsa_get_path_info(this_device,
4471                                         physdev_list, phys_dev_index, id_phys);
4472                         }
4473                         ncurrent++;
4474                         break;
4475                 case TYPE_TAPE:
4476                 case TYPE_MEDIUM_CHANGER:
4477                         ncurrent++;
4478                         break;
4479                 case TYPE_ENCLOSURE:
4480                         if (!this_device->external)
4481                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4482                                                 physdev_list, phys_dev_index,
4483                                                 this_device);
4484                         ncurrent++;
4485                         break;
4486                 case TYPE_RAID:
4487                         /* Only present the Smartarray HBA as a RAID controller.
4488                          * If it's a RAID controller other than the HBA itself
4489                          * (an external RAID controller, MSA500 or similar)
4490                          * don't present it.
4491                          */
4492                         if (!is_hba_lunid(lunaddrbytes))
4493                                 break;
4494                         ncurrent++;
4495                         break;
4496                 default:
4497                         break;
4498                 }
4499                 if (ncurrent >= HPSA_MAX_DEVICES)
4500                         break;
4501         }
4502
4503         if (h->sas_host == NULL) {
4504                 int rc = 0;
4505
4506                 rc = hpsa_add_sas_host(h);
4507                 if (rc) {
4508                         dev_warn(&h->pdev->dev,
4509                                 "Could not add sas host %d\n", rc);
4510                         goto out;
4511                 }
4512         }
4513
4514         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4515 out:
4516         kfree(tmpdevice);
4517         for (i = 0; i < ndev_allocated; i++)
4518                 kfree(currentsd[i]);
4519         kfree(currentsd);
4520         kfree(physdev_list);
4521         kfree(logdev_list);
4522         kfree(id_ctlr);
4523         kfree(id_phys);
4524 }
4525
4526 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4527                                    struct scatterlist *sg)
4528 {
4529         u64 addr64 = (u64) sg_dma_address(sg);
4530         unsigned int len = sg_dma_len(sg);
4531
4532         desc->Addr = cpu_to_le64(addr64);
4533         desc->Len = cpu_to_le32(len);
4534         desc->Ext = 0;
4535 }
4536
4537 /*
4538  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4539  * dma mapping  and fills in the scatter gather entries of the
4540  * hpsa command, cp.
4541  */
4542 static int hpsa_scatter_gather(struct ctlr_info *h,
4543                 struct CommandList *cp,
4544                 struct scsi_cmnd *cmd)
4545 {
4546         struct scatterlist *sg;
4547         int use_sg, i, sg_limit, chained, last_sg;
4548         struct SGDescriptor *curr_sg;
4549
4550         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4551
4552         use_sg = scsi_dma_map(cmd);
4553         if (use_sg < 0)
4554                 return use_sg;
4555
4556         if (!use_sg)
4557                 goto sglist_finished;
4558
4559         /*
4560          * If the number of entries is greater than the max for a single list,
4561          * then we have a chained list; we will set up all but one entry in the
4562          * first list (the last entry is saved for link information);
4563          * otherwise, we don't have a chained list and we'll set up at each of
4564          * the entries in the one list.
4565          */
4566         curr_sg = cp->SG;
4567         chained = use_sg > h->max_cmd_sg_entries;
4568         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4569         last_sg = scsi_sg_count(cmd) - 1;
4570         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4571                 hpsa_set_sg_descriptor(curr_sg, sg);
4572                 curr_sg++;
4573         }
4574
4575         if (chained) {
4576                 /*
4577                  * Continue with the chained list.  Set curr_sg to the chained
4578                  * list.  Modify the limit to the total count less the entries
4579                  * we've already set up.  Resume the scan at the list entry
4580                  * where the previous loop left off.
4581                  */
4582                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4583                 sg_limit = use_sg - sg_limit;
4584                 for_each_sg(sg, sg, sg_limit, i) {
4585                         hpsa_set_sg_descriptor(curr_sg, sg);
4586                         curr_sg++;
4587                 }
4588         }
4589
4590         /* Back the pointer up to the last entry and mark it as "last". */
4591         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4592
4593         if (use_sg + chained > h->maxSG)
4594                 h->maxSG = use_sg + chained;
4595
4596         if (chained) {
4597                 cp->Header.SGList = h->max_cmd_sg_entries;
4598                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4599                 if (hpsa_map_sg_chain_block(h, cp)) {
4600                         scsi_dma_unmap(cmd);
4601                         return -1;
4602                 }
4603                 return 0;
4604         }
4605
4606 sglist_finished:
4607
4608         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4609         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4610         return 0;
4611 }
4612
4613 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4614                                                 u8 *cdb, int cdb_len,
4615                                                 const char *func)
4616 {
4617         dev_warn(&h->pdev->dev,
4618                  "%s: Blocking zero-length request: CDB:%*phN\n",
4619                  func, cdb_len, cdb);
4620 }
4621
4622 #define IO_ACCEL_INELIGIBLE 1
4623 /* zero-length transfers trigger hardware errors. */
4624 static bool is_zero_length_transfer(u8 *cdb)
4625 {
4626         u32 block_cnt;
4627
4628         /* Block zero-length transfer sizes on certain commands. */
4629         switch (cdb[0]) {
4630         case READ_10:
4631         case WRITE_10:
4632         case VERIFY:            /* 0x2F */
4633         case WRITE_VERIFY:      /* 0x2E */
4634                 block_cnt = get_unaligned_be16(&cdb[7]);
4635                 break;
4636         case READ_12:
4637         case WRITE_12:
4638         case VERIFY_12: /* 0xAF */
4639         case WRITE_VERIFY_12:   /* 0xAE */
4640                 block_cnt = get_unaligned_be32(&cdb[6]);
4641                 break;
4642         case READ_16:
4643         case WRITE_16:
4644         case VERIFY_16:         /* 0x8F */
4645                 block_cnt = get_unaligned_be32(&cdb[10]);
4646                 break;
4647         default:
4648                 return false;
4649         }
4650
4651         return block_cnt == 0;
4652 }
4653
4654 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4655 {
4656         int is_write = 0;
4657         u32 block;
4658         u32 block_cnt;
4659
4660         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4661         switch (cdb[0]) {
4662         case WRITE_6:
4663         case WRITE_12:
4664                 is_write = 1;
4665                 /* fall through */
4666         case READ_6:
4667         case READ_12:
4668                 if (*cdb_len == 6) {
4669                         block = (((cdb[1] & 0x1F) << 16) |
4670                                 (cdb[2] << 8) |
4671                                 cdb[3]);
4672                         block_cnt = cdb[4];
4673                         if (block_cnt == 0)
4674                                 block_cnt = 256;
4675                 } else {
4676                         BUG_ON(*cdb_len != 12);
4677                         block = get_unaligned_be32(&cdb[2]);
4678                         block_cnt = get_unaligned_be32(&cdb[6]);
4679                 }
4680                 if (block_cnt > 0xffff)
4681                         return IO_ACCEL_INELIGIBLE;
4682
4683                 cdb[0] = is_write ? WRITE_10 : READ_10;
4684                 cdb[1] = 0;
4685                 cdb[2] = (u8) (block >> 24);
4686                 cdb[3] = (u8) (block >> 16);
4687                 cdb[4] = (u8) (block >> 8);
4688                 cdb[5] = (u8) (block);
4689                 cdb[6] = 0;
4690                 cdb[7] = (u8) (block_cnt >> 8);
4691                 cdb[8] = (u8) (block_cnt);
4692                 cdb[9] = 0;
4693                 *cdb_len = 10;
4694                 break;
4695         }
4696         return 0;
4697 }
4698
4699 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4700         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4701         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4702 {
4703         struct scsi_cmnd *cmd = c->scsi_cmd;
4704         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4705         unsigned int len;
4706         unsigned int total_len = 0;
4707         struct scatterlist *sg;
4708         u64 addr64;
4709         int use_sg, i;
4710         struct SGDescriptor *curr_sg;
4711         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4712
4713         /* TODO: implement chaining support */
4714         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4715                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4716                 return IO_ACCEL_INELIGIBLE;
4717         }
4718
4719         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4720
4721         if (is_zero_length_transfer(cdb)) {
4722                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4723                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4724                 return IO_ACCEL_INELIGIBLE;
4725         }
4726
4727         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4728                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4729                 return IO_ACCEL_INELIGIBLE;
4730         }
4731
4732         c->cmd_type = CMD_IOACCEL1;
4733
4734         /* Adjust the DMA address to point to the accelerated command buffer */
4735         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4736                                 (c->cmdindex * sizeof(*cp));
4737         BUG_ON(c->busaddr & 0x0000007F);
4738
4739         use_sg = scsi_dma_map(cmd);
4740         if (use_sg < 0) {
4741                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4742                 return use_sg;
4743         }
4744
4745         if (use_sg) {
4746                 curr_sg = cp->SG;
4747                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4748                         addr64 = (u64) sg_dma_address(sg);
4749                         len  = sg_dma_len(sg);
4750                         total_len += len;
4751                         curr_sg->Addr = cpu_to_le64(addr64);
4752                         curr_sg->Len = cpu_to_le32(len);
4753                         curr_sg->Ext = cpu_to_le32(0);
4754                         curr_sg++;
4755                 }
4756                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4757
4758                 switch (cmd->sc_data_direction) {
4759                 case DMA_TO_DEVICE:
4760                         control |= IOACCEL1_CONTROL_DATA_OUT;
4761                         break;
4762                 case DMA_FROM_DEVICE:
4763                         control |= IOACCEL1_CONTROL_DATA_IN;
4764                         break;
4765                 case DMA_NONE:
4766                         control |= IOACCEL1_CONTROL_NODATAXFER;
4767                         break;
4768                 default:
4769                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4770                         cmd->sc_data_direction);
4771                         BUG();
4772                         break;
4773                 }
4774         } else {
4775                 control |= IOACCEL1_CONTROL_NODATAXFER;
4776         }
4777
4778         c->Header.SGList = use_sg;
4779         /* Fill out the command structure to submit */
4780         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4781         cp->transfer_len = cpu_to_le32(total_len);
4782         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4783                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4784         cp->control = cpu_to_le32(control);
4785         memcpy(cp->CDB, cdb, cdb_len);
4786         memcpy(cp->CISS_LUN, scsi3addr, 8);
4787         /* Tag was already set at init time. */
4788         enqueue_cmd_and_start_io(h, c);
4789         return 0;
4790 }
4791
4792 /*
4793  * Queue a command directly to a device behind the controller using the
4794  * I/O accelerator path.
4795  */
4796 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4797         struct CommandList *c)
4798 {
4799         struct scsi_cmnd *cmd = c->scsi_cmd;
4800         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4801
4802         if (!dev)
4803                 return -1;
4804
4805         c->phys_disk = dev;
4806
4807         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4808                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4809 }
4810
4811 /*
4812  * Set encryption parameters for the ioaccel2 request
4813  */
4814 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4815         struct CommandList *c, struct io_accel2_cmd *cp)
4816 {
4817         struct scsi_cmnd *cmd = c->scsi_cmd;
4818         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4819         struct raid_map_data *map = &dev->raid_map;
4820         u64 first_block;
4821
4822         /* Are we doing encryption on this device */
4823         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4824                 return;
4825         /* Set the data encryption key index. */
4826         cp->dekindex = map->dekindex;
4827
4828         /* Set the encryption enable flag, encoded into direction field. */
4829         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4830
4831         /* Set encryption tweak values based on logical block address
4832          * If block size is 512, tweak value is LBA.
4833          * For other block sizes, tweak is (LBA * block size)/ 512)
4834          */
4835         switch (cmd->cmnd[0]) {
4836         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4837         case READ_6:
4838         case WRITE_6:
4839                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4840                                 (cmd->cmnd[2] << 8) |
4841                                 cmd->cmnd[3]);
4842                 break;
4843         case WRITE_10:
4844         case READ_10:
4845         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4846         case WRITE_12:
4847         case READ_12:
4848                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4849                 break;
4850         case WRITE_16:
4851         case READ_16:
4852                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4853                 break;
4854         default:
4855                 dev_err(&h->pdev->dev,
4856                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4857                         __func__, cmd->cmnd[0]);
4858                 BUG();
4859                 break;
4860         }
4861
4862         if (le32_to_cpu(map->volume_blk_size) != 512)
4863                 first_block = first_block *
4864                                 le32_to_cpu(map->volume_blk_size)/512;
4865
4866         cp->tweak_lower = cpu_to_le32(first_block);
4867         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4868 }
4869
4870 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4871         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4872         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4873 {
4874         struct scsi_cmnd *cmd = c->scsi_cmd;
4875         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4876         struct ioaccel2_sg_element *curr_sg;
4877         int use_sg, i;
4878         struct scatterlist *sg;
4879         u64 addr64;
4880         u32 len;
4881         u32 total_len = 0;
4882
4883         if (!cmd->device)
4884                 return -1;
4885
4886         if (!cmd->device->hostdata)
4887                 return -1;
4888
4889         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4890
4891         if (is_zero_length_transfer(cdb)) {
4892                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4893                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4894                 return IO_ACCEL_INELIGIBLE;
4895         }
4896
4897         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4898                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4899                 return IO_ACCEL_INELIGIBLE;
4900         }
4901
4902         c->cmd_type = CMD_IOACCEL2;
4903         /* Adjust the DMA address to point to the accelerated command buffer */
4904         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4905                                 (c->cmdindex * sizeof(*cp));
4906         BUG_ON(c->busaddr & 0x0000007F);
4907
4908         memset(cp, 0, sizeof(*cp));
4909         cp->IU_type = IOACCEL2_IU_TYPE;
4910
4911         use_sg = scsi_dma_map(cmd);
4912         if (use_sg < 0) {
4913                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4914                 return use_sg;
4915         }
4916
4917         if (use_sg) {
4918                 curr_sg = cp->sg;
4919                 if (use_sg > h->ioaccel_maxsg) {
4920                         addr64 = le64_to_cpu(
4921                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4922                         curr_sg->address = cpu_to_le64(addr64);
4923                         curr_sg->length = 0;
4924                         curr_sg->reserved[0] = 0;
4925                         curr_sg->reserved[1] = 0;
4926                         curr_sg->reserved[2] = 0;
4927                         curr_sg->chain_indicator = 0x80;
4928
4929                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4930                 }
4931                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4932                         addr64 = (u64) sg_dma_address(sg);
4933                         len  = sg_dma_len(sg);
4934                         total_len += len;
4935                         curr_sg->address = cpu_to_le64(addr64);
4936                         curr_sg->length = cpu_to_le32(len);
4937                         curr_sg->reserved[0] = 0;
4938                         curr_sg->reserved[1] = 0;
4939                         curr_sg->reserved[2] = 0;
4940                         curr_sg->chain_indicator = 0;
4941                         curr_sg++;
4942                 }
4943
4944                 switch (cmd->sc_data_direction) {
4945                 case DMA_TO_DEVICE:
4946                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4947                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4948                         break;
4949                 case DMA_FROM_DEVICE:
4950                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4951                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4952                         break;
4953                 case DMA_NONE:
4954                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4955                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4956                         break;
4957                 default:
4958                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4959                                 cmd->sc_data_direction);
4960                         BUG();
4961                         break;
4962                 }
4963         } else {
4964                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4965                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4966         }
4967
4968         /* Set encryption parameters, if necessary */
4969         set_encrypt_ioaccel2(h, c, cp);
4970
4971         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4972         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4973         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4974
4975         cp->data_len = cpu_to_le32(total_len);
4976         cp->err_ptr = cpu_to_le64(c->busaddr +
4977                         offsetof(struct io_accel2_cmd, error_data));
4978         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4979
4980         /* fill in sg elements */
4981         if (use_sg > h->ioaccel_maxsg) {
4982                 cp->sg_count = 1;
4983                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4984                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4985                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4986                         scsi_dma_unmap(cmd);
4987                         return -1;
4988                 }
4989         } else
4990                 cp->sg_count = (u8) use_sg;
4991
4992         enqueue_cmd_and_start_io(h, c);
4993         return 0;
4994 }
4995
4996 /*
4997  * Queue a command to the correct I/O accelerator path.
4998  */
4999 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5000         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5001         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5002 {
5003         if (!c->scsi_cmd->device)
5004                 return -1;
5005
5006         if (!c->scsi_cmd->device->hostdata)
5007                 return -1;
5008
5009         /* Try to honor the device's queue depth */
5010         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5011                                         phys_disk->queue_depth) {
5012                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5013                 return IO_ACCEL_INELIGIBLE;
5014         }
5015         if (h->transMethod & CFGTBL_Trans_io_accel1)
5016                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5017                                                 cdb, cdb_len, scsi3addr,
5018                                                 phys_disk);
5019         else
5020                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5021                                                 cdb, cdb_len, scsi3addr,
5022                                                 phys_disk);
5023 }
5024
5025 static void raid_map_helper(struct raid_map_data *map,
5026                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5027 {
5028         if (offload_to_mirror == 0)  {
5029                 /* use physical disk in the first mirrored group. */
5030                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5031                 return;
5032         }
5033         do {
5034                 /* determine mirror group that *map_index indicates */
5035                 *current_group = *map_index /
5036                         le16_to_cpu(map->data_disks_per_row);
5037                 if (offload_to_mirror == *current_group)
5038                         continue;
5039                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5040                         /* select map index from next group */
5041                         *map_index += le16_to_cpu(map->data_disks_per_row);
5042                         (*current_group)++;
5043                 } else {
5044                         /* select map index from first group */
5045                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5046                         *current_group = 0;
5047                 }
5048         } while (offload_to_mirror != *current_group);
5049 }
5050
5051 /*
5052  * Attempt to perform offload RAID mapping for a logical volume I/O.
5053  */
5054 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5055         struct CommandList *c)
5056 {
5057         struct scsi_cmnd *cmd = c->scsi_cmd;
5058         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5059         struct raid_map_data *map = &dev->raid_map;
5060         struct raid_map_disk_data *dd = &map->data[0];
5061         int is_write = 0;
5062         u32 map_index;
5063         u64 first_block, last_block;
5064         u32 block_cnt;
5065         u32 blocks_per_row;
5066         u64 first_row, last_row;
5067         u32 first_row_offset, last_row_offset;
5068         u32 first_column, last_column;
5069         u64 r0_first_row, r0_last_row;
5070         u32 r5or6_blocks_per_row;
5071         u64 r5or6_first_row, r5or6_last_row;
5072         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5073         u32 r5or6_first_column, r5or6_last_column;
5074         u32 total_disks_per_row;
5075         u32 stripesize;
5076         u32 first_group, last_group, current_group;
5077         u32 map_row;
5078         u32 disk_handle;
5079         u64 disk_block;
5080         u32 disk_block_cnt;
5081         u8 cdb[16];
5082         u8 cdb_len;
5083         u16 strip_size;
5084 #if BITS_PER_LONG == 32
5085         u64 tmpdiv;
5086 #endif
5087         int offload_to_mirror;
5088
5089         if (!dev)
5090                 return -1;
5091
5092         /* check for valid opcode, get LBA and block count */
5093         switch (cmd->cmnd[0]) {
5094         case WRITE_6:
5095                 is_write = 1;
5096                 /* fall through */
5097         case READ_6:
5098                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5099                                 (cmd->cmnd[2] << 8) |
5100                                 cmd->cmnd[3]);
5101                 block_cnt = cmd->cmnd[4];
5102                 if (block_cnt == 0)
5103                         block_cnt = 256;
5104                 break;
5105         case WRITE_10:
5106                 is_write = 1;
5107                 /* fall through */
5108         case READ_10:
5109                 first_block =
5110                         (((u64) cmd->cmnd[2]) << 24) |
5111                         (((u64) cmd->cmnd[3]) << 16) |
5112                         (((u64) cmd->cmnd[4]) << 8) |
5113                         cmd->cmnd[5];
5114                 block_cnt =
5115                         (((u32) cmd->cmnd[7]) << 8) |
5116                         cmd->cmnd[8];
5117                 break;
5118         case WRITE_12:
5119                 is_write = 1;
5120                 /* fall through */
5121         case READ_12:
5122                 first_block =
5123                         (((u64) cmd->cmnd[2]) << 24) |
5124                         (((u64) cmd->cmnd[3]) << 16) |
5125                         (((u64) cmd->cmnd[4]) << 8) |
5126                         cmd->cmnd[5];
5127                 block_cnt =
5128                         (((u32) cmd->cmnd[6]) << 24) |
5129                         (((u32) cmd->cmnd[7]) << 16) |
5130                         (((u32) cmd->cmnd[8]) << 8) |
5131                 cmd->cmnd[9];
5132                 break;
5133         case WRITE_16:
5134                 is_write = 1;
5135                 /* fall through */
5136         case READ_16:
5137                 first_block =
5138                         (((u64) cmd->cmnd[2]) << 56) |
5139                         (((u64) cmd->cmnd[3]) << 48) |
5140                         (((u64) cmd->cmnd[4]) << 40) |
5141                         (((u64) cmd->cmnd[5]) << 32) |
5142                         (((u64) cmd->cmnd[6]) << 24) |
5143                         (((u64) cmd->cmnd[7]) << 16) |
5144                         (((u64) cmd->cmnd[8]) << 8) |
5145                         cmd->cmnd[9];
5146                 block_cnt =
5147                         (((u32) cmd->cmnd[10]) << 24) |
5148                         (((u32) cmd->cmnd[11]) << 16) |
5149                         (((u32) cmd->cmnd[12]) << 8) |
5150                         cmd->cmnd[13];
5151                 break;
5152         default:
5153                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5154         }
5155         last_block = first_block + block_cnt - 1;
5156
5157         /* check for write to non-RAID-0 */
5158         if (is_write && dev->raid_level != 0)
5159                 return IO_ACCEL_INELIGIBLE;
5160
5161         /* check for invalid block or wraparound */
5162         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5163                 last_block < first_block)
5164                 return IO_ACCEL_INELIGIBLE;
5165
5166         /* calculate stripe information for the request */
5167         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5168                                 le16_to_cpu(map->strip_size);
5169         strip_size = le16_to_cpu(map->strip_size);
5170 #if BITS_PER_LONG == 32
5171         tmpdiv = first_block;
5172         (void) do_div(tmpdiv, blocks_per_row);
5173         first_row = tmpdiv;
5174         tmpdiv = last_block;
5175         (void) do_div(tmpdiv, blocks_per_row);
5176         last_row = tmpdiv;
5177         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5178         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5179         tmpdiv = first_row_offset;
5180         (void) do_div(tmpdiv, strip_size);
5181         first_column = tmpdiv;
5182         tmpdiv = last_row_offset;
5183         (void) do_div(tmpdiv, strip_size);
5184         last_column = tmpdiv;
5185 #else
5186         first_row = first_block / blocks_per_row;
5187         last_row = last_block / blocks_per_row;
5188         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5189         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5190         first_column = first_row_offset / strip_size;
5191         last_column = last_row_offset / strip_size;
5192 #endif
5193
5194         /* if this isn't a single row/column then give to the controller */
5195         if ((first_row != last_row) || (first_column != last_column))
5196                 return IO_ACCEL_INELIGIBLE;
5197
5198         /* proceeding with driver mapping */
5199         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5200                                 le16_to_cpu(map->metadata_disks_per_row);
5201         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5202                                 le16_to_cpu(map->row_cnt);
5203         map_index = (map_row * total_disks_per_row) + first_column;
5204
5205         switch (dev->raid_level) {
5206         case HPSA_RAID_0:
5207                 break; /* nothing special to do */
5208         case HPSA_RAID_1:
5209                 /* Handles load balance across RAID 1 members.
5210                  * (2-drive R1 and R10 with even # of drives.)
5211                  * Appropriate for SSDs, not optimal for HDDs
5212                  */
5213                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5214                 if (dev->offload_to_mirror)
5215                         map_index += le16_to_cpu(map->data_disks_per_row);
5216                 dev->offload_to_mirror = !dev->offload_to_mirror;
5217                 break;
5218         case HPSA_RAID_ADM:
5219                 /* Handles N-way mirrors  (R1-ADM)
5220                  * and R10 with # of drives divisible by 3.)
5221                  */
5222                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5223
5224                 offload_to_mirror = dev->offload_to_mirror;
5225                 raid_map_helper(map, offload_to_mirror,
5226                                 &map_index, &current_group);
5227                 /* set mirror group to use next time */
5228                 offload_to_mirror =
5229                         (offload_to_mirror >=
5230                         le16_to_cpu(map->layout_map_count) - 1)
5231                         ? 0 : offload_to_mirror + 1;
5232                 dev->offload_to_mirror = offload_to_mirror;
5233                 /* Avoid direct use of dev->offload_to_mirror within this
5234                  * function since multiple threads might simultaneously
5235                  * increment it beyond the range of dev->layout_map_count -1.
5236                  */
5237                 break;
5238         case HPSA_RAID_5:
5239         case HPSA_RAID_6:
5240                 if (le16_to_cpu(map->layout_map_count) <= 1)
5241                         break;
5242
5243                 /* Verify first and last block are in same RAID group */
5244                 r5or6_blocks_per_row =
5245                         le16_to_cpu(map->strip_size) *
5246                         le16_to_cpu(map->data_disks_per_row);
5247                 BUG_ON(r5or6_blocks_per_row == 0);
5248                 stripesize = r5or6_blocks_per_row *
5249                         le16_to_cpu(map->layout_map_count);
5250 #if BITS_PER_LONG == 32
5251                 tmpdiv = first_block;
5252                 first_group = do_div(tmpdiv, stripesize);
5253                 tmpdiv = first_group;
5254                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5255                 first_group = tmpdiv;
5256                 tmpdiv = last_block;
5257                 last_group = do_div(tmpdiv, stripesize);
5258                 tmpdiv = last_group;
5259                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5260                 last_group = tmpdiv;
5261 #else
5262                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5263                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5264 #endif
5265                 if (first_group != last_group)
5266                         return IO_ACCEL_INELIGIBLE;
5267
5268                 /* Verify request is in a single row of RAID 5/6 */
5269 #if BITS_PER_LONG == 32
5270                 tmpdiv = first_block;
5271                 (void) do_div(tmpdiv, stripesize);
5272                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5273                 tmpdiv = last_block;
5274                 (void) do_div(tmpdiv, stripesize);
5275                 r5or6_last_row = r0_last_row = tmpdiv;
5276 #else
5277                 first_row = r5or6_first_row = r0_first_row =
5278                                                 first_block / stripesize;
5279                 r5or6_last_row = r0_last_row = last_block / stripesize;
5280 #endif
5281                 if (r5or6_first_row != r5or6_last_row)
5282                         return IO_ACCEL_INELIGIBLE;
5283
5284
5285                 /* Verify request is in a single column */
5286 #if BITS_PER_LONG == 32
5287                 tmpdiv = first_block;
5288                 first_row_offset = do_div(tmpdiv, stripesize);
5289                 tmpdiv = first_row_offset;
5290                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5291                 r5or6_first_row_offset = first_row_offset;
5292                 tmpdiv = last_block;
5293                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5294                 tmpdiv = r5or6_last_row_offset;
5295                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5296                 tmpdiv = r5or6_first_row_offset;
5297                 (void) do_div(tmpdiv, map->strip_size);
5298                 first_column = r5or6_first_column = tmpdiv;
5299                 tmpdiv = r5or6_last_row_offset;
5300                 (void) do_div(tmpdiv, map->strip_size);
5301                 r5or6_last_column = tmpdiv;
5302 #else
5303                 first_row_offset = r5or6_first_row_offset =
5304                         (u32)((first_block % stripesize) %
5305                                                 r5or6_blocks_per_row);
5306
5307                 r5or6_last_row_offset =
5308                         (u32)((last_block % stripesize) %
5309                                                 r5or6_blocks_per_row);
5310
5311                 first_column = r5or6_first_column =
5312                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5313                 r5or6_last_column =
5314                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5315 #endif
5316                 if (r5or6_first_column != r5or6_last_column)
5317                         return IO_ACCEL_INELIGIBLE;
5318
5319                 /* Request is eligible */
5320                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5321                         le16_to_cpu(map->row_cnt);
5322
5323                 map_index = (first_group *
5324                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5325                         (map_row * total_disks_per_row) + first_column;
5326                 break;
5327         default:
5328                 return IO_ACCEL_INELIGIBLE;
5329         }
5330
5331         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5332                 return IO_ACCEL_INELIGIBLE;
5333
5334         c->phys_disk = dev->phys_disk[map_index];
5335         if (!c->phys_disk)
5336                 return IO_ACCEL_INELIGIBLE;
5337
5338         disk_handle = dd[map_index].ioaccel_handle;
5339         disk_block = le64_to_cpu(map->disk_starting_blk) +
5340                         first_row * le16_to_cpu(map->strip_size) +
5341                         (first_row_offset - first_column *
5342                         le16_to_cpu(map->strip_size));
5343         disk_block_cnt = block_cnt;
5344
5345         /* handle differing logical/physical block sizes */
5346         if (map->phys_blk_shift) {
5347                 disk_block <<= map->phys_blk_shift;
5348                 disk_block_cnt <<= map->phys_blk_shift;
5349         }
5350         BUG_ON(disk_block_cnt > 0xffff);
5351
5352         /* build the new CDB for the physical disk I/O */
5353         if (disk_block > 0xffffffff) {
5354                 cdb[0] = is_write ? WRITE_16 : READ_16;
5355                 cdb[1] = 0;
5356                 cdb[2] = (u8) (disk_block >> 56);
5357                 cdb[3] = (u8) (disk_block >> 48);
5358                 cdb[4] = (u8) (disk_block >> 40);
5359                 cdb[5] = (u8) (disk_block >> 32);
5360                 cdb[6] = (u8) (disk_block >> 24);
5361                 cdb[7] = (u8) (disk_block >> 16);
5362                 cdb[8] = (u8) (disk_block >> 8);
5363                 cdb[9] = (u8) (disk_block);
5364                 cdb[10] = (u8) (disk_block_cnt >> 24);
5365                 cdb[11] = (u8) (disk_block_cnt >> 16);
5366                 cdb[12] = (u8) (disk_block_cnt >> 8);
5367                 cdb[13] = (u8) (disk_block_cnt);
5368                 cdb[14] = 0;
5369                 cdb[15] = 0;
5370                 cdb_len = 16;
5371         } else {
5372                 cdb[0] = is_write ? WRITE_10 : READ_10;
5373                 cdb[1] = 0;
5374                 cdb[2] = (u8) (disk_block >> 24);
5375                 cdb[3] = (u8) (disk_block >> 16);
5376                 cdb[4] = (u8) (disk_block >> 8);
5377                 cdb[5] = (u8) (disk_block);
5378                 cdb[6] = 0;
5379                 cdb[7] = (u8) (disk_block_cnt >> 8);
5380                 cdb[8] = (u8) (disk_block_cnt);
5381                 cdb[9] = 0;
5382                 cdb_len = 10;
5383         }
5384         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5385                                                 dev->scsi3addr,
5386                                                 dev->phys_disk[map_index]);
5387 }
5388
5389 /*
5390  * Submit commands down the "normal" RAID stack path
5391  * All callers to hpsa_ciss_submit must check lockup_detected
5392  * beforehand, before (opt.) and after calling cmd_alloc
5393  */
5394 static int hpsa_ciss_submit(struct ctlr_info *h,
5395         struct CommandList *c, struct scsi_cmnd *cmd,
5396         unsigned char scsi3addr[])
5397 {
5398         cmd->host_scribble = (unsigned char *) c;
5399         c->cmd_type = CMD_SCSI;
5400         c->scsi_cmd = cmd;
5401         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5402         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5403         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5404
5405         /* Fill in the request block... */
5406
5407         c->Request.Timeout = 0;
5408         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5409         c->Request.CDBLen = cmd->cmd_len;
5410         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5411         switch (cmd->sc_data_direction) {
5412         case DMA_TO_DEVICE:
5413                 c->Request.type_attr_dir =
5414                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5415                 break;
5416         case DMA_FROM_DEVICE:
5417                 c->Request.type_attr_dir =
5418                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5419                 break;
5420         case DMA_NONE:
5421                 c->Request.type_attr_dir =
5422                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5423                 break;
5424         case DMA_BIDIRECTIONAL:
5425                 /* This can happen if a buggy application does a scsi passthru
5426                  * and sets both inlen and outlen to non-zero. ( see
5427                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5428                  */
5429
5430                 c->Request.type_attr_dir =
5431                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5432                 /* This is technically wrong, and hpsa controllers should
5433                  * reject it with CMD_INVALID, which is the most correct
5434                  * response, but non-fibre backends appear to let it
5435                  * slide by, and give the same results as if this field
5436                  * were set correctly.  Either way is acceptable for
5437                  * our purposes here.
5438                  */
5439
5440                 break;
5441
5442         default:
5443                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5444                         cmd->sc_data_direction);
5445                 BUG();
5446                 break;
5447         }
5448
5449         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5450                 hpsa_cmd_resolve_and_free(h, c);
5451                 return SCSI_MLQUEUE_HOST_BUSY;
5452         }
5453         enqueue_cmd_and_start_io(h, c);
5454         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5455         return 0;
5456 }
5457
5458 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5459                                 struct CommandList *c)
5460 {
5461         dma_addr_t cmd_dma_handle, err_dma_handle;
5462
5463         /* Zero out all of commandlist except the last field, refcount */
5464         memset(c, 0, offsetof(struct CommandList, refcount));
5465         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5466         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5467         c->err_info = h->errinfo_pool + index;
5468         memset(c->err_info, 0, sizeof(*c->err_info));
5469         err_dma_handle = h->errinfo_pool_dhandle
5470             + index * sizeof(*c->err_info);
5471         c->cmdindex = index;
5472         c->busaddr = (u32) cmd_dma_handle;
5473         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5474         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5475         c->h = h;
5476         c->scsi_cmd = SCSI_CMD_IDLE;
5477 }
5478
5479 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5480 {
5481         int i;
5482
5483         for (i = 0; i < h->nr_cmds; i++) {
5484                 struct CommandList *c = h->cmd_pool + i;
5485
5486                 hpsa_cmd_init(h, i, c);
5487                 atomic_set(&c->refcount, 0);
5488         }
5489 }
5490
5491 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5492                                 struct CommandList *c)
5493 {
5494         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5495
5496         BUG_ON(c->cmdindex != index);
5497
5498         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5499         memset(c->err_info, 0, sizeof(*c->err_info));
5500         c->busaddr = (u32) cmd_dma_handle;
5501 }
5502
5503 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5504                 struct CommandList *c, struct scsi_cmnd *cmd,
5505                 unsigned char *scsi3addr)
5506 {
5507         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5508         int rc = IO_ACCEL_INELIGIBLE;
5509
5510         if (!dev)
5511                 return SCSI_MLQUEUE_HOST_BUSY;
5512
5513         cmd->host_scribble = (unsigned char *) c;
5514
5515         if (dev->offload_enabled) {
5516                 hpsa_cmd_init(h, c->cmdindex, c);
5517                 c->cmd_type = CMD_SCSI;
5518                 c->scsi_cmd = cmd;
5519                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5520                 if (rc < 0)     /* scsi_dma_map failed. */
5521                         rc = SCSI_MLQUEUE_HOST_BUSY;
5522         } else if (dev->hba_ioaccel_enabled) {
5523                 hpsa_cmd_init(h, c->cmdindex, c);
5524                 c->cmd_type = CMD_SCSI;
5525                 c->scsi_cmd = cmd;
5526                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5527                 if (rc < 0)     /* scsi_dma_map failed. */
5528                         rc = SCSI_MLQUEUE_HOST_BUSY;
5529         }
5530         return rc;
5531 }
5532
5533 static void hpsa_command_resubmit_worker(struct work_struct *work)
5534 {
5535         struct scsi_cmnd *cmd;
5536         struct hpsa_scsi_dev_t *dev;
5537         struct CommandList *c = container_of(work, struct CommandList, work);
5538
5539         cmd = c->scsi_cmd;
5540         dev = cmd->device->hostdata;
5541         if (!dev) {
5542                 cmd->result = DID_NO_CONNECT << 16;
5543                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5544         }
5545         if (c->reset_pending)
5546                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5547         if (c->cmd_type == CMD_IOACCEL2) {
5548                 struct ctlr_info *h = c->h;
5549                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5550                 int rc;
5551
5552                 if (c2->error_data.serv_response ==
5553                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5554                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5555                         if (rc == 0)
5556                                 return;
5557                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5558                                 /*
5559                                  * If we get here, it means dma mapping failed.
5560                                  * Try again via scsi mid layer, which will
5561                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5562                                  */
5563                                 cmd->result = DID_IMM_RETRY << 16;
5564                                 return hpsa_cmd_free_and_done(h, c, cmd);
5565                         }
5566                         /* else, fall thru and resubmit down CISS path */
5567                 }
5568         }
5569         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5570         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5571                 /*
5572                  * If we get here, it means dma mapping failed. Try
5573                  * again via scsi mid layer, which will then get
5574                  * SCSI_MLQUEUE_HOST_BUSY.
5575                  *
5576                  * hpsa_ciss_submit will have already freed c
5577                  * if it encountered a dma mapping failure.
5578                  */
5579                 cmd->result = DID_IMM_RETRY << 16;
5580                 cmd->scsi_done(cmd);
5581         }
5582 }
5583
5584 /* Running in struct Scsi_Host->host_lock less mode */
5585 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5586 {
5587         struct ctlr_info *h;
5588         struct hpsa_scsi_dev_t *dev;
5589         unsigned char scsi3addr[8];
5590         struct CommandList *c;
5591         int rc = 0;
5592
5593         /* Get the ptr to our adapter structure out of cmd->host. */
5594         h = sdev_to_hba(cmd->device);
5595
5596         BUG_ON(cmd->request->tag < 0);
5597
5598         dev = cmd->device->hostdata;
5599         if (!dev) {
5600                 cmd->result = DID_NO_CONNECT << 16;
5601                 cmd->scsi_done(cmd);
5602                 return 0;
5603         }
5604
5605         if (dev->removed) {
5606                 cmd->result = DID_NO_CONNECT << 16;
5607                 cmd->scsi_done(cmd);
5608                 return 0;
5609         }
5610
5611         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5612
5613         if (unlikely(lockup_detected(h))) {
5614                 cmd->result = DID_NO_CONNECT << 16;
5615                 cmd->scsi_done(cmd);
5616                 return 0;
5617         }
5618         c = cmd_tagged_alloc(h, cmd);
5619
5620         /*
5621          * Call alternate submit routine for I/O accelerated commands.
5622          * Retries always go down the normal I/O path.
5623          */
5624         if (likely(cmd->retries == 0 &&
5625                         !blk_rq_is_passthrough(cmd->request) &&
5626                         h->acciopath_status)) {
5627                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5628                 if (rc == 0)
5629                         return 0;
5630                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5631                         hpsa_cmd_resolve_and_free(h, c);
5632                         return SCSI_MLQUEUE_HOST_BUSY;
5633                 }
5634         }
5635         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5636 }
5637
5638 static void hpsa_scan_complete(struct ctlr_info *h)
5639 {
5640         unsigned long flags;
5641
5642         spin_lock_irqsave(&h->scan_lock, flags);
5643         h->scan_finished = 1;
5644         wake_up(&h->scan_wait_queue);
5645         spin_unlock_irqrestore(&h->scan_lock, flags);
5646 }
5647
5648 static void hpsa_scan_start(struct Scsi_Host *sh)
5649 {
5650         struct ctlr_info *h = shost_to_hba(sh);
5651         unsigned long flags;
5652
5653         /*
5654          * Don't let rescans be initiated on a controller known to be locked
5655          * up.  If the controller locks up *during* a rescan, that thread is
5656          * probably hosed, but at least we can prevent new rescan threads from
5657          * piling up on a locked up controller.
5658          */
5659         if (unlikely(lockup_detected(h)))
5660                 return hpsa_scan_complete(h);
5661
5662         /*
5663          * If a scan is already waiting to run, no need to add another
5664          */
5665         spin_lock_irqsave(&h->scan_lock, flags);
5666         if (h->scan_waiting) {
5667                 spin_unlock_irqrestore(&h->scan_lock, flags);
5668                 return;
5669         }
5670
5671         spin_unlock_irqrestore(&h->scan_lock, flags);
5672
5673         /* wait until any scan already in progress is finished. */
5674         while (1) {
5675                 spin_lock_irqsave(&h->scan_lock, flags);
5676                 if (h->scan_finished)
5677                         break;
5678                 h->scan_waiting = 1;
5679                 spin_unlock_irqrestore(&h->scan_lock, flags);
5680                 wait_event(h->scan_wait_queue, h->scan_finished);
5681                 /* Note: We don't need to worry about a race between this
5682                  * thread and driver unload because the midlayer will
5683                  * have incremented the reference count, so unload won't
5684                  * happen if we're in here.
5685                  */
5686         }
5687         h->scan_finished = 0; /* mark scan as in progress */
5688         h->scan_waiting = 0;
5689         spin_unlock_irqrestore(&h->scan_lock, flags);
5690
5691         if (unlikely(lockup_detected(h)))
5692                 return hpsa_scan_complete(h);
5693
5694         /*
5695          * Do the scan after a reset completion
5696          */
5697         spin_lock_irqsave(&h->reset_lock, flags);
5698         if (h->reset_in_progress) {
5699                 h->drv_req_rescan = 1;
5700                 spin_unlock_irqrestore(&h->reset_lock, flags);
5701                 hpsa_scan_complete(h);
5702                 return;
5703         }
5704         spin_unlock_irqrestore(&h->reset_lock, flags);
5705
5706         hpsa_update_scsi_devices(h);
5707
5708         hpsa_scan_complete(h);
5709 }
5710
5711 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5712 {
5713         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5714
5715         if (!logical_drive)
5716                 return -ENODEV;
5717
5718         if (qdepth < 1)
5719                 qdepth = 1;
5720         else if (qdepth > logical_drive->queue_depth)
5721                 qdepth = logical_drive->queue_depth;
5722
5723         return scsi_change_queue_depth(sdev, qdepth);
5724 }
5725
5726 static int hpsa_scan_finished(struct Scsi_Host *sh,
5727         unsigned long elapsed_time)
5728 {
5729         struct ctlr_info *h = shost_to_hba(sh);
5730         unsigned long flags;
5731         int finished;
5732
5733         spin_lock_irqsave(&h->scan_lock, flags);
5734         finished = h->scan_finished;
5735         spin_unlock_irqrestore(&h->scan_lock, flags);
5736         return finished;
5737 }
5738
5739 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5740 {
5741         struct Scsi_Host *sh;
5742
5743         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5744         if (sh == NULL) {
5745                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5746                 return -ENOMEM;
5747         }
5748
5749         sh->io_port = 0;
5750         sh->n_io_port = 0;
5751         sh->this_id = -1;
5752         sh->max_channel = 3;
5753         sh->max_cmd_len = MAX_COMMAND_SIZE;
5754         sh->max_lun = HPSA_MAX_LUN;
5755         sh->max_id = HPSA_MAX_LUN;
5756         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5757         sh->cmd_per_lun = sh->can_queue;
5758         sh->sg_tablesize = h->maxsgentries;
5759         sh->transportt = hpsa_sas_transport_template;
5760         sh->hostdata[0] = (unsigned long) h;
5761         sh->irq = pci_irq_vector(h->pdev, 0);
5762         sh->unique_id = sh->irq;
5763
5764         h->scsi_host = sh;
5765         return 0;
5766 }
5767
5768 static int hpsa_scsi_add_host(struct ctlr_info *h)
5769 {
5770         int rv;
5771
5772         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5773         if (rv) {
5774                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5775                 return rv;
5776         }
5777         scsi_scan_host(h->scsi_host);
5778         return 0;
5779 }
5780
5781 /*
5782  * The block layer has already gone to the trouble of picking out a unique,
5783  * small-integer tag for this request.  We use an offset from that value as
5784  * an index to select our command block.  (The offset allows us to reserve the
5785  * low-numbered entries for our own uses.)
5786  */
5787 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5788 {
5789         int idx = scmd->request->tag;
5790
5791         if (idx < 0)
5792                 return idx;
5793
5794         /* Offset to leave space for internal cmds. */
5795         return idx += HPSA_NRESERVED_CMDS;
5796 }
5797
5798 /*
5799  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5800  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5801  */
5802 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5803                                 struct CommandList *c, unsigned char lunaddr[],
5804                                 int reply_queue)
5805 {
5806         int rc;
5807
5808         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5809         (void) fill_cmd(c, TEST_UNIT_READY, h,
5810                         NULL, 0, 0, lunaddr, TYPE_CMD);
5811         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5812         if (rc)
5813                 return rc;
5814         /* no unmap needed here because no data xfer. */
5815
5816         /* Check if the unit is already ready. */
5817         if (c->err_info->CommandStatus == CMD_SUCCESS)
5818                 return 0;
5819
5820         /*
5821          * The first command sent after reset will receive "unit attention" to
5822          * indicate that the LUN has been reset...this is actually what we're
5823          * looking for (but, success is good too).
5824          */
5825         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5826                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5827                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5828                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5829                 return 0;
5830
5831         return 1;
5832 }
5833
5834 /*
5835  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5836  * returns zero when the unit is ready, and non-zero when giving up.
5837  */
5838 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5839                                 struct CommandList *c,
5840                                 unsigned char lunaddr[], int reply_queue)
5841 {
5842         int rc;
5843         int count = 0;
5844         int waittime = 1; /* seconds */
5845
5846         /* Send test unit ready until device ready, or give up. */
5847         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5848
5849                 /*
5850                  * Wait for a bit.  do this first, because if we send
5851                  * the TUR right away, the reset will just abort it.
5852                  */
5853                 msleep(1000 * waittime);
5854
5855                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5856                 if (!rc)
5857                         break;
5858
5859                 /* Increase wait time with each try, up to a point. */
5860                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5861                         waittime *= 2;
5862
5863                 dev_warn(&h->pdev->dev,
5864                          "waiting %d secs for device to become ready.\n",
5865                          waittime);
5866         }
5867
5868         return rc;
5869 }
5870
5871 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5872                                            unsigned char lunaddr[],
5873                                            int reply_queue)
5874 {
5875         int first_queue;
5876         int last_queue;
5877         int rq;
5878         int rc = 0;
5879         struct CommandList *c;
5880
5881         c = cmd_alloc(h);
5882
5883         /*
5884          * If no specific reply queue was requested, then send the TUR
5885          * repeatedly, requesting a reply on each reply queue; otherwise execute
5886          * the loop exactly once using only the specified queue.
5887          */
5888         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5889                 first_queue = 0;
5890                 last_queue = h->nreply_queues - 1;
5891         } else {
5892                 first_queue = reply_queue;
5893                 last_queue = reply_queue;
5894         }
5895
5896         for (rq = first_queue; rq <= last_queue; rq++) {
5897                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5898                 if (rc)
5899                         break;
5900         }
5901
5902         if (rc)
5903                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5904         else
5905                 dev_warn(&h->pdev->dev, "device is ready.\n");
5906
5907         cmd_free(h, c);
5908         return rc;
5909 }
5910
5911 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5912  * complaining.  Doing a host- or bus-reset can't do anything good here.
5913  */
5914 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5915 {
5916         int rc = SUCCESS;
5917         struct ctlr_info *h;
5918         struct hpsa_scsi_dev_t *dev;
5919         u8 reset_type;
5920         char msg[48];
5921         unsigned long flags;
5922
5923         /* find the controller to which the command to be aborted was sent */
5924         h = sdev_to_hba(scsicmd->device);
5925         if (h == NULL) /* paranoia */
5926                 return FAILED;
5927
5928         spin_lock_irqsave(&h->reset_lock, flags);
5929         h->reset_in_progress = 1;
5930         spin_unlock_irqrestore(&h->reset_lock, flags);
5931
5932         if (lockup_detected(h)) {
5933                 rc = FAILED;
5934                 goto return_reset_status;
5935         }
5936
5937         dev = scsicmd->device->hostdata;
5938         if (!dev) {
5939                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5940                 rc = FAILED;
5941                 goto return_reset_status;
5942         }
5943
5944         if (dev->devtype == TYPE_ENCLOSURE) {
5945                 rc = SUCCESS;
5946                 goto return_reset_status;
5947         }
5948
5949         /* if controller locked up, we can guarantee command won't complete */
5950         if (lockup_detected(h)) {
5951                 snprintf(msg, sizeof(msg),
5952                          "cmd %d RESET FAILED, lockup detected",
5953                          hpsa_get_cmd_index(scsicmd));
5954                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5955                 rc = FAILED;
5956                 goto return_reset_status;
5957         }
5958
5959         /* this reset request might be the result of a lockup; check */
5960         if (detect_controller_lockup(h)) {
5961                 snprintf(msg, sizeof(msg),
5962                          "cmd %d RESET FAILED, new lockup detected",
5963                          hpsa_get_cmd_index(scsicmd));
5964                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5965                 rc = FAILED;
5966                 goto return_reset_status;
5967         }
5968
5969         /* Do not attempt on controller */
5970         if (is_hba_lunid(dev->scsi3addr)) {
5971                 rc = SUCCESS;
5972                 goto return_reset_status;
5973         }
5974
5975         if (is_logical_dev_addr_mode(dev->scsi3addr))
5976                 reset_type = HPSA_DEVICE_RESET_MSG;
5977         else
5978                 reset_type = HPSA_PHYS_TARGET_RESET;
5979
5980         sprintf(msg, "resetting %s",
5981                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5982         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5983
5984         /* send a reset to the SCSI LUN which the command was sent to */
5985         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5986                            DEFAULT_REPLY_QUEUE);
5987         if (rc == 0)
5988                 rc = SUCCESS;
5989         else
5990                 rc = FAILED;
5991
5992         sprintf(msg, "reset %s %s",
5993                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5994                 rc == SUCCESS ? "completed successfully" : "failed");
5995         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5996
5997 return_reset_status:
5998         spin_lock_irqsave(&h->reset_lock, flags);
5999         h->reset_in_progress = 0;
6000         spin_unlock_irqrestore(&h->reset_lock, flags);
6001         return rc;
6002 }
6003
6004 /*
6005  * For operations with an associated SCSI command, a command block is allocated
6006  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6007  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6008  * the complement, although cmd_free() may be called instead.
6009  */
6010 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6011                                             struct scsi_cmnd *scmd)
6012 {
6013         int idx = hpsa_get_cmd_index(scmd);
6014         struct CommandList *c = h->cmd_pool + idx;
6015
6016         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6017                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6018                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6019                 /* The index value comes from the block layer, so if it's out of
6020                  * bounds, it's probably not our bug.
6021                  */
6022                 BUG();
6023         }
6024
6025         atomic_inc(&c->refcount);
6026         if (unlikely(!hpsa_is_cmd_idle(c))) {
6027                 /*
6028                  * We expect that the SCSI layer will hand us a unique tag
6029                  * value.  Thus, there should never be a collision here between
6030                  * two requests...because if the selected command isn't idle
6031                  * then someone is going to be very disappointed.
6032                  */
6033                 dev_err(&h->pdev->dev,
6034                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6035                         idx);
6036                 if (c->scsi_cmd != NULL)
6037                         scsi_print_command(c->scsi_cmd);
6038                 scsi_print_command(scmd);
6039         }
6040
6041         hpsa_cmd_partial_init(h, idx, c);
6042         return c;
6043 }
6044
6045 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6046 {
6047         /*
6048          * Release our reference to the block.  We don't need to do anything
6049          * else to free it, because it is accessed by index.
6050          */
6051         (void)atomic_dec(&c->refcount);
6052 }
6053
6054 /*
6055  * For operations that cannot sleep, a command block is allocated at init,
6056  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6057  * which ones are free or in use.  Lock must be held when calling this.
6058  * cmd_free() is the complement.
6059  * This function never gives up and returns NULL.  If it hangs,
6060  * another thread must call cmd_free() to free some tags.
6061  */
6062
6063 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6064 {
6065         struct CommandList *c;
6066         int refcount, i;
6067         int offset = 0;
6068
6069         /*
6070          * There is some *extremely* small but non-zero chance that that
6071          * multiple threads could get in here, and one thread could
6072          * be scanning through the list of bits looking for a free
6073          * one, but the free ones are always behind him, and other
6074          * threads sneak in behind him and eat them before he can
6075          * get to them, so that while there is always a free one, a
6076          * very unlucky thread might be starved anyway, never able to
6077          * beat the other threads.  In reality, this happens so
6078          * infrequently as to be indistinguishable from never.
6079          *
6080          * Note that we start allocating commands before the SCSI host structure
6081          * is initialized.  Since the search starts at bit zero, this
6082          * all works, since we have at least one command structure available;
6083          * however, it means that the structures with the low indexes have to be
6084          * reserved for driver-initiated requests, while requests from the block
6085          * layer will use the higher indexes.
6086          */
6087
6088         for (;;) {
6089                 i = find_next_zero_bit(h->cmd_pool_bits,
6090                                         HPSA_NRESERVED_CMDS,
6091                                         offset);
6092                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6093                         offset = 0;
6094                         continue;
6095                 }
6096                 c = h->cmd_pool + i;
6097                 refcount = atomic_inc_return(&c->refcount);
6098                 if (unlikely(refcount > 1)) {
6099                         cmd_free(h, c); /* already in use */
6100                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6101                         continue;
6102                 }
6103                 set_bit(i & (BITS_PER_LONG - 1),
6104                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6105                 break; /* it's ours now. */
6106         }
6107         hpsa_cmd_partial_init(h, i, c);
6108         return c;
6109 }
6110
6111 /*
6112  * This is the complementary operation to cmd_alloc().  Note, however, in some
6113  * corner cases it may also be used to free blocks allocated by
6114  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6115  * the clear-bit is harmless.
6116  */
6117 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6118 {
6119         if (atomic_dec_and_test(&c->refcount)) {
6120                 int i;
6121
6122                 i = c - h->cmd_pool;
6123                 clear_bit(i & (BITS_PER_LONG - 1),
6124                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6125         }
6126 }
6127
6128 #ifdef CONFIG_COMPAT
6129
6130 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6131         void __user *arg)
6132 {
6133         IOCTL32_Command_struct __user *arg32 =
6134             (IOCTL32_Command_struct __user *) arg;
6135         IOCTL_Command_struct arg64;
6136         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6137         int err;
6138         u32 cp;
6139
6140         memset(&arg64, 0, sizeof(arg64));
6141         err = 0;
6142         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6143                            sizeof(arg64.LUN_info));
6144         err |= copy_from_user(&arg64.Request, &arg32->Request,
6145                            sizeof(arg64.Request));
6146         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6147                            sizeof(arg64.error_info));
6148         err |= get_user(arg64.buf_size, &arg32->buf_size);
6149         err |= get_user(cp, &arg32->buf);
6150         arg64.buf = compat_ptr(cp);
6151         err |= copy_to_user(p, &arg64, sizeof(arg64));
6152
6153         if (err)
6154                 return -EFAULT;
6155
6156         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6157         if (err)
6158                 return err;
6159         err |= copy_in_user(&arg32->error_info, &p->error_info,
6160                          sizeof(arg32->error_info));
6161         if (err)
6162                 return -EFAULT;
6163         return err;
6164 }
6165
6166 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6167         int cmd, void __user *arg)
6168 {
6169         BIG_IOCTL32_Command_struct __user *arg32 =
6170             (BIG_IOCTL32_Command_struct __user *) arg;
6171         BIG_IOCTL_Command_struct arg64;
6172         BIG_IOCTL_Command_struct __user *p =
6173             compat_alloc_user_space(sizeof(arg64));
6174         int err;
6175         u32 cp;
6176
6177         memset(&arg64, 0, sizeof(arg64));
6178         err = 0;
6179         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6180                            sizeof(arg64.LUN_info));
6181         err |= copy_from_user(&arg64.Request, &arg32->Request,
6182                            sizeof(arg64.Request));
6183         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6184                            sizeof(arg64.error_info));
6185         err |= get_user(arg64.buf_size, &arg32->buf_size);
6186         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6187         err |= get_user(cp, &arg32->buf);
6188         arg64.buf = compat_ptr(cp);
6189         err |= copy_to_user(p, &arg64, sizeof(arg64));
6190
6191         if (err)
6192                 return -EFAULT;
6193
6194         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6195         if (err)
6196                 return err;
6197         err |= copy_in_user(&arg32->error_info, &p->error_info,
6198                          sizeof(arg32->error_info));
6199         if (err)
6200                 return -EFAULT;
6201         return err;
6202 }
6203
6204 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6205 {
6206         switch (cmd) {
6207         case CCISS_GETPCIINFO:
6208         case CCISS_GETINTINFO:
6209         case CCISS_SETINTINFO:
6210         case CCISS_GETNODENAME:
6211         case CCISS_SETNODENAME:
6212         case CCISS_GETHEARTBEAT:
6213         case CCISS_GETBUSTYPES:
6214         case CCISS_GETFIRMVER:
6215         case CCISS_GETDRIVVER:
6216         case CCISS_REVALIDVOLS:
6217         case CCISS_DEREGDISK:
6218         case CCISS_REGNEWDISK:
6219         case CCISS_REGNEWD:
6220         case CCISS_RESCANDISK:
6221         case CCISS_GETLUNINFO:
6222                 return hpsa_ioctl(dev, cmd, arg);
6223
6224         case CCISS_PASSTHRU32:
6225                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6226         case CCISS_BIG_PASSTHRU32:
6227                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6228
6229         default:
6230                 return -ENOIOCTLCMD;
6231         }
6232 }
6233 #endif
6234
6235 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6236 {
6237         struct hpsa_pci_info pciinfo;
6238
6239         if (!argp)
6240                 return -EINVAL;
6241         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6242         pciinfo.bus = h->pdev->bus->number;
6243         pciinfo.dev_fn = h->pdev->devfn;
6244         pciinfo.board_id = h->board_id;
6245         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6246                 return -EFAULT;
6247         return 0;
6248 }
6249
6250 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6251 {
6252         DriverVer_type DriverVer;
6253         unsigned char vmaj, vmin, vsubmin;
6254         int rc;
6255
6256         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6257                 &vmaj, &vmin, &vsubmin);
6258         if (rc != 3) {
6259                 dev_info(&h->pdev->dev, "driver version string '%s' "
6260                         "unrecognized.", HPSA_DRIVER_VERSION);
6261                 vmaj = 0;
6262                 vmin = 0;
6263                 vsubmin = 0;
6264         }
6265         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6266         if (!argp)
6267                 return -EINVAL;
6268         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6269                 return -EFAULT;
6270         return 0;
6271 }
6272
6273 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6274 {
6275         IOCTL_Command_struct iocommand;
6276         struct CommandList *c;
6277         char *buff = NULL;
6278         u64 temp64;
6279         int rc = 0;
6280
6281         if (!argp)
6282                 return -EINVAL;
6283         if (!capable(CAP_SYS_RAWIO))
6284                 return -EPERM;
6285         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6286                 return -EFAULT;
6287         if ((iocommand.buf_size < 1) &&
6288             (iocommand.Request.Type.Direction != XFER_NONE)) {
6289                 return -EINVAL;
6290         }
6291         if (iocommand.buf_size > 0) {
6292                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6293                 if (buff == NULL)
6294                         return -ENOMEM;
6295                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6296                         /* Copy the data into the buffer we created */
6297                         if (copy_from_user(buff, iocommand.buf,
6298                                 iocommand.buf_size)) {
6299                                 rc = -EFAULT;
6300                                 goto out_kfree;
6301                         }
6302                 } else {
6303                         memset(buff, 0, iocommand.buf_size);
6304                 }
6305         }
6306         c = cmd_alloc(h);
6307
6308         /* Fill in the command type */
6309         c->cmd_type = CMD_IOCTL_PEND;
6310         c->scsi_cmd = SCSI_CMD_BUSY;
6311         /* Fill in Command Header */
6312         c->Header.ReplyQueue = 0; /* unused in simple mode */
6313         if (iocommand.buf_size > 0) {   /* buffer to fill */
6314                 c->Header.SGList = 1;
6315                 c->Header.SGTotal = cpu_to_le16(1);
6316         } else  { /* no buffers to fill */
6317                 c->Header.SGList = 0;
6318                 c->Header.SGTotal = cpu_to_le16(0);
6319         }
6320         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6321
6322         /* Fill in Request block */
6323         memcpy(&c->Request, &iocommand.Request,
6324                 sizeof(c->Request));
6325
6326         /* Fill in the scatter gather information */
6327         if (iocommand.buf_size > 0) {
6328                 temp64 = dma_map_single(&h->pdev->dev, buff,
6329                         iocommand.buf_size, DMA_BIDIRECTIONAL);
6330                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6331                         c->SG[0].Addr = cpu_to_le64(0);
6332                         c->SG[0].Len = cpu_to_le32(0);
6333                         rc = -ENOMEM;
6334                         goto out;
6335                 }
6336                 c->SG[0].Addr = cpu_to_le64(temp64);
6337                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6338                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6339         }
6340         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6341                                         NO_TIMEOUT);
6342         if (iocommand.buf_size > 0)
6343                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6344         check_ioctl_unit_attention(h, c);
6345         if (rc) {
6346                 rc = -EIO;
6347                 goto out;
6348         }
6349
6350         /* Copy the error information out */
6351         memcpy(&iocommand.error_info, c->err_info,
6352                 sizeof(iocommand.error_info));
6353         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6354                 rc = -EFAULT;
6355                 goto out;
6356         }
6357         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6358                 iocommand.buf_size > 0) {
6359                 /* Copy the data out of the buffer we created */
6360                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6361                         rc = -EFAULT;
6362                         goto out;
6363                 }
6364         }
6365 out:
6366         cmd_free(h, c);
6367 out_kfree:
6368         kfree(buff);
6369         return rc;
6370 }
6371
6372 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6373 {
6374         BIG_IOCTL_Command_struct *ioc;
6375         struct CommandList *c;
6376         unsigned char **buff = NULL;
6377         int *buff_size = NULL;
6378         u64 temp64;
6379         BYTE sg_used = 0;
6380         int status = 0;
6381         u32 left;
6382         u32 sz;
6383         BYTE __user *data_ptr;
6384
6385         if (!argp)
6386                 return -EINVAL;
6387         if (!capable(CAP_SYS_RAWIO))
6388                 return -EPERM;
6389         ioc = vmemdup_user(argp, sizeof(*ioc));
6390         if (IS_ERR(ioc)) {
6391                 status = PTR_ERR(ioc);
6392                 goto cleanup1;
6393         }
6394         if ((ioc->buf_size < 1) &&
6395             (ioc->Request.Type.Direction != XFER_NONE)) {
6396                 status = -EINVAL;
6397                 goto cleanup1;
6398         }
6399         /* Check kmalloc limits  using all SGs */
6400         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6401                 status = -EINVAL;
6402                 goto cleanup1;
6403         }
6404         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6405                 status = -EINVAL;
6406                 goto cleanup1;
6407         }
6408         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6409         if (!buff) {
6410                 status = -ENOMEM;
6411                 goto cleanup1;
6412         }
6413         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6414         if (!buff_size) {
6415                 status = -ENOMEM;
6416                 goto cleanup1;
6417         }
6418         left = ioc->buf_size;
6419         data_ptr = ioc->buf;
6420         while (left) {
6421                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6422                 buff_size[sg_used] = sz;
6423                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6424                 if (buff[sg_used] == NULL) {
6425                         status = -ENOMEM;
6426                         goto cleanup1;
6427                 }
6428                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6429                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6430                                 status = -EFAULT;
6431                                 goto cleanup1;
6432                         }
6433                 } else
6434                         memset(buff[sg_used], 0, sz);
6435                 left -= sz;
6436                 data_ptr += sz;
6437                 sg_used++;
6438         }
6439         c = cmd_alloc(h);
6440
6441         c->cmd_type = CMD_IOCTL_PEND;
6442         c->scsi_cmd = SCSI_CMD_BUSY;
6443         c->Header.ReplyQueue = 0;
6444         c->Header.SGList = (u8) sg_used;
6445         c->Header.SGTotal = cpu_to_le16(sg_used);
6446         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6447         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6448         if (ioc->buf_size > 0) {
6449                 int i;
6450                 for (i = 0; i < sg_used; i++) {
6451                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6452                                     buff_size[i], DMA_BIDIRECTIONAL);
6453                         if (dma_mapping_error(&h->pdev->dev,
6454                                                         (dma_addr_t) temp64)) {
6455                                 c->SG[i].Addr = cpu_to_le64(0);
6456                                 c->SG[i].Len = cpu_to_le32(0);
6457                                 hpsa_pci_unmap(h->pdev, c, i,
6458                                         DMA_BIDIRECTIONAL);
6459                                 status = -ENOMEM;
6460                                 goto cleanup0;
6461                         }
6462                         c->SG[i].Addr = cpu_to_le64(temp64);
6463                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6464                         c->SG[i].Ext = cpu_to_le32(0);
6465                 }
6466                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6467         }
6468         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6469                                                 NO_TIMEOUT);
6470         if (sg_used)
6471                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6472         check_ioctl_unit_attention(h, c);
6473         if (status) {
6474                 status = -EIO;
6475                 goto cleanup0;
6476         }
6477
6478         /* Copy the error information out */
6479         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6480         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6481                 status = -EFAULT;
6482                 goto cleanup0;
6483         }
6484         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6485                 int i;
6486
6487                 /* Copy the data out of the buffer we created */
6488                 BYTE __user *ptr = ioc->buf;
6489                 for (i = 0; i < sg_used; i++) {
6490                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6491                                 status = -EFAULT;
6492                                 goto cleanup0;
6493                         }
6494                         ptr += buff_size[i];
6495                 }
6496         }
6497         status = 0;
6498 cleanup0:
6499         cmd_free(h, c);
6500 cleanup1:
6501         if (buff) {
6502                 int i;
6503
6504                 for (i = 0; i < sg_used; i++)
6505                         kfree(buff[i]);
6506                 kfree(buff);
6507         }
6508         kfree(buff_size);
6509         kvfree(ioc);
6510         return status;
6511 }
6512
6513 static void check_ioctl_unit_attention(struct ctlr_info *h,
6514         struct CommandList *c)
6515 {
6516         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6517                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6518                 (void) check_for_unit_attention(h, c);
6519 }
6520
6521 /*
6522  * ioctl
6523  */
6524 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6525 {
6526         struct ctlr_info *h;
6527         void __user *argp = (void __user *)arg;
6528         int rc;
6529
6530         h = sdev_to_hba(dev);
6531
6532         switch (cmd) {
6533         case CCISS_DEREGDISK:
6534         case CCISS_REGNEWDISK:
6535         case CCISS_REGNEWD:
6536                 hpsa_scan_start(h->scsi_host);
6537                 return 0;
6538         case CCISS_GETPCIINFO:
6539                 return hpsa_getpciinfo_ioctl(h, argp);
6540         case CCISS_GETDRIVVER:
6541                 return hpsa_getdrivver_ioctl(h, argp);
6542         case CCISS_PASSTHRU:
6543                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6544                         return -EAGAIN;
6545                 rc = hpsa_passthru_ioctl(h, argp);
6546                 atomic_inc(&h->passthru_cmds_avail);
6547                 return rc;
6548         case CCISS_BIG_PASSTHRU:
6549                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6550                         return -EAGAIN;
6551                 rc = hpsa_big_passthru_ioctl(h, argp);
6552                 atomic_inc(&h->passthru_cmds_avail);
6553                 return rc;
6554         default:
6555                 return -ENOTTY;
6556         }
6557 }
6558
6559 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6560                                 u8 reset_type)
6561 {
6562         struct CommandList *c;
6563
6564         c = cmd_alloc(h);
6565
6566         /* fill_cmd can't fail here, no data buffer to map */
6567         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6568                 RAID_CTLR_LUNID, TYPE_MSG);
6569         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6570         c->waiting = NULL;
6571         enqueue_cmd_and_start_io(h, c);
6572         /* Don't wait for completion, the reset won't complete.  Don't free
6573          * the command either.  This is the last command we will send before
6574          * re-initializing everything, so it doesn't matter and won't leak.
6575          */
6576         return;
6577 }
6578
6579 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6580         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6581         int cmd_type)
6582 {
6583         enum dma_data_direction dir = DMA_NONE;
6584
6585         c->cmd_type = CMD_IOCTL_PEND;
6586         c->scsi_cmd = SCSI_CMD_BUSY;
6587         c->Header.ReplyQueue = 0;
6588         if (buff != NULL && size > 0) {
6589                 c->Header.SGList = 1;
6590                 c->Header.SGTotal = cpu_to_le16(1);
6591         } else {
6592                 c->Header.SGList = 0;
6593                 c->Header.SGTotal = cpu_to_le16(0);
6594         }
6595         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6596
6597         if (cmd_type == TYPE_CMD) {
6598                 switch (cmd) {
6599                 case HPSA_INQUIRY:
6600                         /* are we trying to read a vital product page */
6601                         if (page_code & VPD_PAGE) {
6602                                 c->Request.CDB[1] = 0x01;
6603                                 c->Request.CDB[2] = (page_code & 0xff);
6604                         }
6605                         c->Request.CDBLen = 6;
6606                         c->Request.type_attr_dir =
6607                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6608                         c->Request.Timeout = 0;
6609                         c->Request.CDB[0] = HPSA_INQUIRY;
6610                         c->Request.CDB[4] = size & 0xFF;
6611                         break;
6612                 case RECEIVE_DIAGNOSTIC:
6613                         c->Request.CDBLen = 6;
6614                         c->Request.type_attr_dir =
6615                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6616                         c->Request.Timeout = 0;
6617                         c->Request.CDB[0] = cmd;
6618                         c->Request.CDB[1] = 1;
6619                         c->Request.CDB[2] = 1;
6620                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6621                         c->Request.CDB[4] = size & 0xFF;
6622                         break;
6623                 case HPSA_REPORT_LOG:
6624                 case HPSA_REPORT_PHYS:
6625                         /* Talking to controller so It's a physical command
6626                            mode = 00 target = 0.  Nothing to write.
6627                          */
6628                         c->Request.CDBLen = 12;
6629                         c->Request.type_attr_dir =
6630                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6631                         c->Request.Timeout = 0;
6632                         c->Request.CDB[0] = cmd;
6633                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6634                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6635                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6636                         c->Request.CDB[9] = size & 0xFF;
6637                         break;
6638                 case BMIC_SENSE_DIAG_OPTIONS:
6639                         c->Request.CDBLen = 16;
6640                         c->Request.type_attr_dir =
6641                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6642                         c->Request.Timeout = 0;
6643                         /* Spec says this should be BMIC_WRITE */
6644                         c->Request.CDB[0] = BMIC_READ;
6645                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6646                         break;
6647                 case BMIC_SET_DIAG_OPTIONS:
6648                         c->Request.CDBLen = 16;
6649                         c->Request.type_attr_dir =
6650                                         TYPE_ATTR_DIR(cmd_type,
6651                                                 ATTR_SIMPLE, XFER_WRITE);
6652                         c->Request.Timeout = 0;
6653                         c->Request.CDB[0] = BMIC_WRITE;
6654                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6655                         break;
6656                 case HPSA_CACHE_FLUSH:
6657                         c->Request.CDBLen = 12;
6658                         c->Request.type_attr_dir =
6659                                         TYPE_ATTR_DIR(cmd_type,
6660                                                 ATTR_SIMPLE, XFER_WRITE);
6661                         c->Request.Timeout = 0;
6662                         c->Request.CDB[0] = BMIC_WRITE;
6663                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6664                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6665                         c->Request.CDB[8] = size & 0xFF;
6666                         break;
6667                 case TEST_UNIT_READY:
6668                         c->Request.CDBLen = 6;
6669                         c->Request.type_attr_dir =
6670                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6671                         c->Request.Timeout = 0;
6672                         break;
6673                 case HPSA_GET_RAID_MAP:
6674                         c->Request.CDBLen = 12;
6675                         c->Request.type_attr_dir =
6676                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6677                         c->Request.Timeout = 0;
6678                         c->Request.CDB[0] = HPSA_CISS_READ;
6679                         c->Request.CDB[1] = cmd;
6680                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6681                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6682                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6683                         c->Request.CDB[9] = size & 0xFF;
6684                         break;
6685                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6686                         c->Request.CDBLen = 10;
6687                         c->Request.type_attr_dir =
6688                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6689                         c->Request.Timeout = 0;
6690                         c->Request.CDB[0] = BMIC_READ;
6691                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6692                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6693                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6694                         break;
6695                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6696                         c->Request.CDBLen = 10;
6697                         c->Request.type_attr_dir =
6698                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6699                         c->Request.Timeout = 0;
6700                         c->Request.CDB[0] = BMIC_READ;
6701                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6702                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6703                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6704                         break;
6705                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6706                         c->Request.CDBLen = 10;
6707                         c->Request.type_attr_dir =
6708                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6709                         c->Request.Timeout = 0;
6710                         c->Request.CDB[0] = BMIC_READ;
6711                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6712                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6713                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6714                         break;
6715                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6716                         c->Request.CDBLen = 10;
6717                         c->Request.type_attr_dir =
6718                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719                         c->Request.Timeout = 0;
6720                         c->Request.CDB[0] = BMIC_READ;
6721                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6722                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6723                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6724                         break;
6725                 case BMIC_IDENTIFY_CONTROLLER:
6726                         c->Request.CDBLen = 10;
6727                         c->Request.type_attr_dir =
6728                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6729                         c->Request.Timeout = 0;
6730                         c->Request.CDB[0] = BMIC_READ;
6731                         c->Request.CDB[1] = 0;
6732                         c->Request.CDB[2] = 0;
6733                         c->Request.CDB[3] = 0;
6734                         c->Request.CDB[4] = 0;
6735                         c->Request.CDB[5] = 0;
6736                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6737                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6738                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6739                         c->Request.CDB[9] = 0;
6740                         break;
6741                 default:
6742                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6743                         BUG();
6744                 }
6745         } else if (cmd_type == TYPE_MSG) {
6746                 switch (cmd) {
6747
6748                 case  HPSA_PHYS_TARGET_RESET:
6749                         c->Request.CDBLen = 16;
6750                         c->Request.type_attr_dir =
6751                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6752                         c->Request.Timeout = 0; /* Don't time out */
6753                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6754                         c->Request.CDB[0] = HPSA_RESET;
6755                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6756                         /* Physical target reset needs no control bytes 4-7*/
6757                         c->Request.CDB[4] = 0x00;
6758                         c->Request.CDB[5] = 0x00;
6759                         c->Request.CDB[6] = 0x00;
6760                         c->Request.CDB[7] = 0x00;
6761                         break;
6762                 case  HPSA_DEVICE_RESET_MSG:
6763                         c->Request.CDBLen = 16;
6764                         c->Request.type_attr_dir =
6765                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6766                         c->Request.Timeout = 0; /* Don't time out */
6767                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6768                         c->Request.CDB[0] =  cmd;
6769                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6770                         /* If bytes 4-7 are zero, it means reset the */
6771                         /* LunID device */
6772                         c->Request.CDB[4] = 0x00;
6773                         c->Request.CDB[5] = 0x00;
6774                         c->Request.CDB[6] = 0x00;
6775                         c->Request.CDB[7] = 0x00;
6776                         break;
6777                 default:
6778                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6779                                 cmd);
6780                         BUG();
6781                 }
6782         } else {
6783                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6784                 BUG();
6785         }
6786
6787         switch (GET_DIR(c->Request.type_attr_dir)) {
6788         case XFER_READ:
6789                 dir = DMA_FROM_DEVICE;
6790                 break;
6791         case XFER_WRITE:
6792                 dir = DMA_TO_DEVICE;
6793                 break;
6794         case XFER_NONE:
6795                 dir = DMA_NONE;
6796                 break;
6797         default:
6798                 dir = DMA_BIDIRECTIONAL;
6799         }
6800         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6801                 return -1;
6802         return 0;
6803 }
6804
6805 /*
6806  * Map (physical) PCI mem into (virtual) kernel space
6807  */
6808 static void __iomem *remap_pci_mem(ulong base, ulong size)
6809 {
6810         ulong page_base = ((ulong) base) & PAGE_MASK;
6811         ulong page_offs = ((ulong) base) - page_base;
6812         void __iomem *page_remapped = ioremap_nocache(page_base,
6813                 page_offs + size);
6814
6815         return page_remapped ? (page_remapped + page_offs) : NULL;
6816 }
6817
6818 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6819 {
6820         return h->access.command_completed(h, q);
6821 }
6822
6823 static inline bool interrupt_pending(struct ctlr_info *h)
6824 {
6825         return h->access.intr_pending(h);
6826 }
6827
6828 static inline long interrupt_not_for_us(struct ctlr_info *h)
6829 {
6830         return (h->access.intr_pending(h) == 0) ||
6831                 (h->interrupts_enabled == 0);
6832 }
6833
6834 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6835         u32 raw_tag)
6836 {
6837         if (unlikely(tag_index >= h->nr_cmds)) {
6838                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6839                 return 1;
6840         }
6841         return 0;
6842 }
6843
6844 static inline void finish_cmd(struct CommandList *c)
6845 {
6846         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6847         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6848                         || c->cmd_type == CMD_IOACCEL2))
6849                 complete_scsi_command(c);
6850         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6851                 complete(c->waiting);
6852 }
6853
6854 /* process completion of an indexed ("direct lookup") command */
6855 static inline void process_indexed_cmd(struct ctlr_info *h,
6856         u32 raw_tag)
6857 {
6858         u32 tag_index;
6859         struct CommandList *c;
6860
6861         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6862         if (!bad_tag(h, tag_index, raw_tag)) {
6863                 c = h->cmd_pool + tag_index;
6864                 finish_cmd(c);
6865         }
6866 }
6867
6868 /* Some controllers, like p400, will give us one interrupt
6869  * after a soft reset, even if we turned interrupts off.
6870  * Only need to check for this in the hpsa_xxx_discard_completions
6871  * functions.
6872  */
6873 static int ignore_bogus_interrupt(struct ctlr_info *h)
6874 {
6875         if (likely(!reset_devices))
6876                 return 0;
6877
6878         if (likely(h->interrupts_enabled))
6879                 return 0;
6880
6881         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6882                 "(known firmware bug.)  Ignoring.\n");
6883
6884         return 1;
6885 }
6886
6887 /*
6888  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6889  * Relies on (h-q[x] == x) being true for x such that
6890  * 0 <= x < MAX_REPLY_QUEUES.
6891  */
6892 static struct ctlr_info *queue_to_hba(u8 *queue)
6893 {
6894         return container_of((queue - *queue), struct ctlr_info, q[0]);
6895 }
6896
6897 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6898 {
6899         struct ctlr_info *h = queue_to_hba(queue);
6900         u8 q = *(u8 *) queue;
6901         u32 raw_tag;
6902
6903         if (ignore_bogus_interrupt(h))
6904                 return IRQ_NONE;
6905
6906         if (interrupt_not_for_us(h))
6907                 return IRQ_NONE;
6908         h->last_intr_timestamp = get_jiffies_64();
6909         while (interrupt_pending(h)) {
6910                 raw_tag = get_next_completion(h, q);
6911                 while (raw_tag != FIFO_EMPTY)
6912                         raw_tag = next_command(h, q);
6913         }
6914         return IRQ_HANDLED;
6915 }
6916
6917 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6918 {
6919         struct ctlr_info *h = queue_to_hba(queue);
6920         u32 raw_tag;
6921         u8 q = *(u8 *) queue;
6922
6923         if (ignore_bogus_interrupt(h))
6924                 return IRQ_NONE;
6925
6926         h->last_intr_timestamp = get_jiffies_64();
6927         raw_tag = get_next_completion(h, q);
6928         while (raw_tag != FIFO_EMPTY)
6929                 raw_tag = next_command(h, q);
6930         return IRQ_HANDLED;
6931 }
6932
6933 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6934 {
6935         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6936         u32 raw_tag;
6937         u8 q = *(u8 *) queue;
6938
6939         if (interrupt_not_for_us(h))
6940                 return IRQ_NONE;
6941         h->last_intr_timestamp = get_jiffies_64();
6942         while (interrupt_pending(h)) {
6943                 raw_tag = get_next_completion(h, q);
6944                 while (raw_tag != FIFO_EMPTY) {
6945                         process_indexed_cmd(h, raw_tag);
6946                         raw_tag = next_command(h, q);
6947                 }
6948         }
6949         return IRQ_HANDLED;
6950 }
6951
6952 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6953 {
6954         struct ctlr_info *h = queue_to_hba(queue);
6955         u32 raw_tag;
6956         u8 q = *(u8 *) queue;
6957
6958         h->last_intr_timestamp = get_jiffies_64();
6959         raw_tag = get_next_completion(h, q);
6960         while (raw_tag != FIFO_EMPTY) {
6961                 process_indexed_cmd(h, raw_tag);
6962                 raw_tag = next_command(h, q);
6963         }
6964         return IRQ_HANDLED;
6965 }
6966
6967 /* Send a message CDB to the firmware. Careful, this only works
6968  * in simple mode, not performant mode due to the tag lookup.
6969  * We only ever use this immediately after a controller reset.
6970  */
6971 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6972                         unsigned char type)
6973 {
6974         struct Command {
6975                 struct CommandListHeader CommandHeader;
6976                 struct RequestBlock Request;
6977                 struct ErrDescriptor ErrorDescriptor;
6978         };
6979         struct Command *cmd;
6980         static const size_t cmd_sz = sizeof(*cmd) +
6981                                         sizeof(cmd->ErrorDescriptor);
6982         dma_addr_t paddr64;
6983         __le32 paddr32;
6984         u32 tag;
6985         void __iomem *vaddr;
6986         int i, err;
6987
6988         vaddr = pci_ioremap_bar(pdev, 0);
6989         if (vaddr == NULL)
6990                 return -ENOMEM;
6991
6992         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6993          * CCISS commands, so they must be allocated from the lower 4GiB of
6994          * memory.
6995          */
6996         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
6997         if (err) {
6998                 iounmap(vaddr);
6999                 return err;
7000         }
7001
7002         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7003         if (cmd == NULL) {
7004                 iounmap(vaddr);
7005                 return -ENOMEM;
7006         }
7007
7008         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7009          * although there's no guarantee, we assume that the address is at
7010          * least 4-byte aligned (most likely, it's page-aligned).
7011          */
7012         paddr32 = cpu_to_le32(paddr64);
7013
7014         cmd->CommandHeader.ReplyQueue = 0;
7015         cmd->CommandHeader.SGList = 0;
7016         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7017         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7018         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7019
7020         cmd->Request.CDBLen = 16;
7021         cmd->Request.type_attr_dir =
7022                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7023         cmd->Request.Timeout = 0; /* Don't time out */
7024         cmd->Request.CDB[0] = opcode;
7025         cmd->Request.CDB[1] = type;
7026         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7027         cmd->ErrorDescriptor.Addr =
7028                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7029         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7030
7031         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7032
7033         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7034                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7035                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7036                         break;
7037                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7038         }
7039
7040         iounmap(vaddr);
7041
7042         /* we leak the DMA buffer here ... no choice since the controller could
7043          *  still complete the command.
7044          */
7045         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7046                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7047                         opcode, type);
7048                 return -ETIMEDOUT;
7049         }
7050
7051         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7052
7053         if (tag & HPSA_ERROR_BIT) {
7054                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7055                         opcode, type);
7056                 return -EIO;
7057         }
7058
7059         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7060                 opcode, type);
7061         return 0;
7062 }
7063
7064 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7065
7066 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7067         void __iomem *vaddr, u32 use_doorbell)
7068 {
7069
7070         if (use_doorbell) {
7071                 /* For everything after the P600, the PCI power state method
7072                  * of resetting the controller doesn't work, so we have this
7073                  * other way using the doorbell register.
7074                  */
7075                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7076                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7077
7078                 /* PMC hardware guys tell us we need a 10 second delay after
7079                  * doorbell reset and before any attempt to talk to the board
7080                  * at all to ensure that this actually works and doesn't fall
7081                  * over in some weird corner cases.
7082                  */
7083                 msleep(10000);
7084         } else { /* Try to do it the PCI power state way */
7085
7086                 /* Quoting from the Open CISS Specification: "The Power
7087                  * Management Control/Status Register (CSR) controls the power
7088                  * state of the device.  The normal operating state is D0,
7089                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7090                  * the controller, place the interface device in D3 then to D0,
7091                  * this causes a secondary PCI reset which will reset the
7092                  * controller." */
7093
7094                 int rc = 0;
7095
7096                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7097
7098                 /* enter the D3hot power management state */
7099                 rc = pci_set_power_state(pdev, PCI_D3hot);
7100                 if (rc)
7101                         return rc;
7102
7103                 msleep(500);
7104
7105                 /* enter the D0 power management state */
7106                 rc = pci_set_power_state(pdev, PCI_D0);
7107                 if (rc)
7108                         return rc;
7109
7110                 /*
7111                  * The P600 requires a small delay when changing states.
7112                  * Otherwise we may think the board did not reset and we bail.
7113                  * This for kdump only and is particular to the P600.
7114                  */
7115                 msleep(500);
7116         }
7117         return 0;
7118 }
7119
7120 static void init_driver_version(char *driver_version, int len)
7121 {
7122         memset(driver_version, 0, len);
7123         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7124 }
7125
7126 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7127 {
7128         char *driver_version;
7129         int i, size = sizeof(cfgtable->driver_version);
7130
7131         driver_version = kmalloc(size, GFP_KERNEL);
7132         if (!driver_version)
7133                 return -ENOMEM;
7134
7135         init_driver_version(driver_version, size);
7136         for (i = 0; i < size; i++)
7137                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7138         kfree(driver_version);
7139         return 0;
7140 }
7141
7142 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7143                                           unsigned char *driver_ver)
7144 {
7145         int i;
7146
7147         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7148                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7149 }
7150
7151 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7152 {
7153
7154         char *driver_ver, *old_driver_ver;
7155         int rc, size = sizeof(cfgtable->driver_version);
7156
7157         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7158         if (!old_driver_ver)
7159                 return -ENOMEM;
7160         driver_ver = old_driver_ver + size;
7161
7162         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7163          * should have been changed, otherwise we know the reset failed.
7164          */
7165         init_driver_version(old_driver_ver, size);
7166         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7167         rc = !memcmp(driver_ver, old_driver_ver, size);
7168         kfree(old_driver_ver);
7169         return rc;
7170 }
7171 /* This does a hard reset of the controller using PCI power management
7172  * states or the using the doorbell register.
7173  */
7174 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7175 {
7176         u64 cfg_offset;
7177         u32 cfg_base_addr;
7178         u64 cfg_base_addr_index;
7179         void __iomem *vaddr;
7180         unsigned long paddr;
7181         u32 misc_fw_support;
7182         int rc;
7183         struct CfgTable __iomem *cfgtable;
7184         u32 use_doorbell;
7185         u16 command_register;
7186
7187         /* For controllers as old as the P600, this is very nearly
7188          * the same thing as
7189          *
7190          * pci_save_state(pci_dev);
7191          * pci_set_power_state(pci_dev, PCI_D3hot);
7192          * pci_set_power_state(pci_dev, PCI_D0);
7193          * pci_restore_state(pci_dev);
7194          *
7195          * For controllers newer than the P600, the pci power state
7196          * method of resetting doesn't work so we have another way
7197          * using the doorbell register.
7198          */
7199
7200         if (!ctlr_is_resettable(board_id)) {
7201                 dev_warn(&pdev->dev, "Controller not resettable\n");
7202                 return -ENODEV;
7203         }
7204
7205         /* if controller is soft- but not hard resettable... */
7206         if (!ctlr_is_hard_resettable(board_id))
7207                 return -ENOTSUPP; /* try soft reset later. */
7208
7209         /* Save the PCI command register */
7210         pci_read_config_word(pdev, 4, &command_register);
7211         pci_save_state(pdev);
7212
7213         /* find the first memory BAR, so we can find the cfg table */
7214         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7215         if (rc)
7216                 return rc;
7217         vaddr = remap_pci_mem(paddr, 0x250);
7218         if (!vaddr)
7219                 return -ENOMEM;
7220
7221         /* find cfgtable in order to check if reset via doorbell is supported */
7222         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7223                                         &cfg_base_addr_index, &cfg_offset);
7224         if (rc)
7225                 goto unmap_vaddr;
7226         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7227                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7228         if (!cfgtable) {
7229                 rc = -ENOMEM;
7230                 goto unmap_vaddr;
7231         }
7232         rc = write_driver_ver_to_cfgtable(cfgtable);
7233         if (rc)
7234                 goto unmap_cfgtable;
7235
7236         /* If reset via doorbell register is supported, use that.
7237          * There are two such methods.  Favor the newest method.
7238          */
7239         misc_fw_support = readl(&cfgtable->misc_fw_support);
7240         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7241         if (use_doorbell) {
7242                 use_doorbell = DOORBELL_CTLR_RESET2;
7243         } else {
7244                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7245                 if (use_doorbell) {
7246                         dev_warn(&pdev->dev,
7247                                 "Soft reset not supported. Firmware update is required.\n");
7248                         rc = -ENOTSUPP; /* try soft reset */
7249                         goto unmap_cfgtable;
7250                 }
7251         }
7252
7253         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7254         if (rc)
7255                 goto unmap_cfgtable;
7256
7257         pci_restore_state(pdev);
7258         pci_write_config_word(pdev, 4, command_register);
7259
7260         /* Some devices (notably the HP Smart Array 5i Controller)
7261            need a little pause here */
7262         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7263
7264         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7265         if (rc) {
7266                 dev_warn(&pdev->dev,
7267                         "Failed waiting for board to become ready after hard reset\n");
7268                 goto unmap_cfgtable;
7269         }
7270
7271         rc = controller_reset_failed(vaddr);
7272         if (rc < 0)
7273                 goto unmap_cfgtable;
7274         if (rc) {
7275                 dev_warn(&pdev->dev, "Unable to successfully reset "
7276                         "controller. Will try soft reset.\n");
7277                 rc = -ENOTSUPP;
7278         } else {
7279                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7280         }
7281
7282 unmap_cfgtable:
7283         iounmap(cfgtable);
7284
7285 unmap_vaddr:
7286         iounmap(vaddr);
7287         return rc;
7288 }
7289
7290 /*
7291  *  We cannot read the structure directly, for portability we must use
7292  *   the io functions.
7293  *   This is for debug only.
7294  */
7295 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7296 {
7297 #ifdef HPSA_DEBUG
7298         int i;
7299         char temp_name[17];
7300
7301         dev_info(dev, "Controller Configuration information\n");
7302         dev_info(dev, "------------------------------------\n");
7303         for (i = 0; i < 4; i++)
7304                 temp_name[i] = readb(&(tb->Signature[i]));
7305         temp_name[4] = '\0';
7306         dev_info(dev, "   Signature = %s\n", temp_name);
7307         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7308         dev_info(dev, "   Transport methods supported = 0x%x\n",
7309                readl(&(tb->TransportSupport)));
7310         dev_info(dev, "   Transport methods active = 0x%x\n",
7311                readl(&(tb->TransportActive)));
7312         dev_info(dev, "   Requested transport Method = 0x%x\n",
7313                readl(&(tb->HostWrite.TransportRequest)));
7314         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7315                readl(&(tb->HostWrite.CoalIntDelay)));
7316         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7317                readl(&(tb->HostWrite.CoalIntCount)));
7318         dev_info(dev, "   Max outstanding commands = %d\n",
7319                readl(&(tb->CmdsOutMax)));
7320         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7321         for (i = 0; i < 16; i++)
7322                 temp_name[i] = readb(&(tb->ServerName[i]));
7323         temp_name[16] = '\0';
7324         dev_info(dev, "   Server Name = %s\n", temp_name);
7325         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7326                 readl(&(tb->HeartBeat)));
7327 #endif                          /* HPSA_DEBUG */
7328 }
7329
7330 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7331 {
7332         int i, offset, mem_type, bar_type;
7333
7334         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7335                 return 0;
7336         offset = 0;
7337         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7338                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7339                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7340                         offset += 4;
7341                 else {
7342                         mem_type = pci_resource_flags(pdev, i) &
7343                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7344                         switch (mem_type) {
7345                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7346                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7347                                 offset += 4;    /* 32 bit */
7348                                 break;
7349                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7350                                 offset += 8;
7351                                 break;
7352                         default:        /* reserved in PCI 2.2 */
7353                                 dev_warn(&pdev->dev,
7354                                        "base address is invalid\n");
7355                                 return -1;
7356                                 break;
7357                         }
7358                 }
7359                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7360                         return i + 1;
7361         }
7362         return -1;
7363 }
7364
7365 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7366 {
7367         pci_free_irq_vectors(h->pdev);
7368         h->msix_vectors = 0;
7369 }
7370
7371 static void hpsa_setup_reply_map(struct ctlr_info *h)
7372 {
7373         const struct cpumask *mask;
7374         unsigned int queue, cpu;
7375
7376         for (queue = 0; queue < h->msix_vectors; queue++) {
7377                 mask = pci_irq_get_affinity(h->pdev, queue);
7378                 if (!mask)
7379                         goto fallback;
7380
7381                 for_each_cpu(cpu, mask)
7382                         h->reply_map[cpu] = queue;
7383         }
7384         return;
7385
7386 fallback:
7387         for_each_possible_cpu(cpu)
7388                 h->reply_map[cpu] = 0;
7389 }
7390
7391 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7392  * controllers that are capable. If not, we use legacy INTx mode.
7393  */
7394 static int hpsa_interrupt_mode(struct ctlr_info *h)
7395 {
7396         unsigned int flags = PCI_IRQ_LEGACY;
7397         int ret;
7398
7399         /* Some boards advertise MSI but don't really support it */
7400         switch (h->board_id) {
7401         case 0x40700E11:
7402         case 0x40800E11:
7403         case 0x40820E11:
7404         case 0x40830E11:
7405                 break;
7406         default:
7407                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7408                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7409                 if (ret > 0) {
7410                         h->msix_vectors = ret;
7411                         return 0;
7412                 }
7413
7414                 flags |= PCI_IRQ_MSI;
7415                 break;
7416         }
7417
7418         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7419         if (ret < 0)
7420                 return ret;
7421         return 0;
7422 }
7423
7424 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7425                                 bool *legacy_board)
7426 {
7427         int i;
7428         u32 subsystem_vendor_id, subsystem_device_id;
7429
7430         subsystem_vendor_id = pdev->subsystem_vendor;
7431         subsystem_device_id = pdev->subsystem_device;
7432         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7433                     subsystem_vendor_id;
7434
7435         if (legacy_board)
7436                 *legacy_board = false;
7437         for (i = 0; i < ARRAY_SIZE(products); i++)
7438                 if (*board_id == products[i].board_id) {
7439                         if (products[i].access != &SA5A_access &&
7440                             products[i].access != &SA5B_access)
7441                                 return i;
7442                         dev_warn(&pdev->dev,
7443                                  "legacy board ID: 0x%08x\n",
7444                                  *board_id);
7445                         if (legacy_board)
7446                             *legacy_board = true;
7447                         return i;
7448                 }
7449
7450         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7451         if (legacy_board)
7452                 *legacy_board = true;
7453         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7454 }
7455
7456 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7457                                     unsigned long *memory_bar)
7458 {
7459         int i;
7460
7461         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7462                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7463                         /* addressing mode bits already removed */
7464                         *memory_bar = pci_resource_start(pdev, i);
7465                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7466                                 *memory_bar);
7467                         return 0;
7468                 }
7469         dev_warn(&pdev->dev, "no memory BAR found\n");
7470         return -ENODEV;
7471 }
7472
7473 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7474                                      int wait_for_ready)
7475 {
7476         int i, iterations;
7477         u32 scratchpad;
7478         if (wait_for_ready)
7479                 iterations = HPSA_BOARD_READY_ITERATIONS;
7480         else
7481                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7482
7483         for (i = 0; i < iterations; i++) {
7484                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7485                 if (wait_for_ready) {
7486                         if (scratchpad == HPSA_FIRMWARE_READY)
7487                                 return 0;
7488                 } else {
7489                         if (scratchpad != HPSA_FIRMWARE_READY)
7490                                 return 0;
7491                 }
7492                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7493         }
7494         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7495         return -ENODEV;
7496 }
7497
7498 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7499                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7500                                u64 *cfg_offset)
7501 {
7502         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7503         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7504         *cfg_base_addr &= (u32) 0x0000ffff;
7505         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7506         if (*cfg_base_addr_index == -1) {
7507                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7508                 return -ENODEV;
7509         }
7510         return 0;
7511 }
7512
7513 static void hpsa_free_cfgtables(struct ctlr_info *h)
7514 {
7515         if (h->transtable) {
7516                 iounmap(h->transtable);
7517                 h->transtable = NULL;
7518         }
7519         if (h->cfgtable) {
7520                 iounmap(h->cfgtable);
7521                 h->cfgtable = NULL;
7522         }
7523 }
7524
7525 /* Find and map CISS config table and transfer table
7526 + * several items must be unmapped (freed) later
7527 + * */
7528 static int hpsa_find_cfgtables(struct ctlr_info *h)
7529 {
7530         u64 cfg_offset;
7531         u32 cfg_base_addr;
7532         u64 cfg_base_addr_index;
7533         u32 trans_offset;
7534         int rc;
7535
7536         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7537                 &cfg_base_addr_index, &cfg_offset);
7538         if (rc)
7539                 return rc;
7540         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7541                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7542         if (!h->cfgtable) {
7543                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7544                 return -ENOMEM;
7545         }
7546         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7547         if (rc)
7548                 return rc;
7549         /* Find performant mode table. */
7550         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7551         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7552                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7553                                 sizeof(*h->transtable));
7554         if (!h->transtable) {
7555                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7556                 hpsa_free_cfgtables(h);
7557                 return -ENOMEM;
7558         }
7559         return 0;
7560 }
7561
7562 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7563 {
7564 #define MIN_MAX_COMMANDS 16
7565         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7566
7567         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7568
7569         /* Limit commands in memory limited kdump scenario. */
7570         if (reset_devices && h->max_commands > 32)
7571                 h->max_commands = 32;
7572
7573         if (h->max_commands < MIN_MAX_COMMANDS) {
7574                 dev_warn(&h->pdev->dev,
7575                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7576                         h->max_commands,
7577                         MIN_MAX_COMMANDS);
7578                 h->max_commands = MIN_MAX_COMMANDS;
7579         }
7580 }
7581
7582 /* If the controller reports that the total max sg entries is greater than 512,
7583  * then we know that chained SG blocks work.  (Original smart arrays did not
7584  * support chained SG blocks and would return zero for max sg entries.)
7585  */
7586 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7587 {
7588         return h->maxsgentries > 512;
7589 }
7590
7591 /* Interrogate the hardware for some limits:
7592  * max commands, max SG elements without chaining, and with chaining,
7593  * SG chain block size, etc.
7594  */
7595 static void hpsa_find_board_params(struct ctlr_info *h)
7596 {
7597         hpsa_get_max_perf_mode_cmds(h);
7598         h->nr_cmds = h->max_commands;
7599         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7600         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7601         if (hpsa_supports_chained_sg_blocks(h)) {
7602                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7603                 h->max_cmd_sg_entries = 32;
7604                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7605                 h->maxsgentries--; /* save one for chain pointer */
7606         } else {
7607                 /*
7608                  * Original smart arrays supported at most 31 s/g entries
7609                  * embedded inline in the command (trying to use more
7610                  * would lock up the controller)
7611                  */
7612                 h->max_cmd_sg_entries = 31;
7613                 h->maxsgentries = 31; /* default to traditional values */
7614                 h->chainsize = 0;
7615         }
7616
7617         /* Find out what task management functions are supported and cache */
7618         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7619         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7620                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7621         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7622                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7623         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7624                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7625 }
7626
7627 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7628 {
7629         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7630                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7631                 return false;
7632         }
7633         return true;
7634 }
7635
7636 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7637 {
7638         u32 driver_support;
7639
7640         driver_support = readl(&(h->cfgtable->driver_support));
7641         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7642 #ifdef CONFIG_X86
7643         driver_support |= ENABLE_SCSI_PREFETCH;
7644 #endif
7645         driver_support |= ENABLE_UNIT_ATTN;
7646         writel(driver_support, &(h->cfgtable->driver_support));
7647 }
7648
7649 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7650  * in a prefetch beyond physical memory.
7651  */
7652 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7653 {
7654         u32 dma_prefetch;
7655
7656         if (h->board_id != 0x3225103C)
7657                 return;
7658         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7659         dma_prefetch |= 0x8000;
7660         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7661 }
7662
7663 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7664 {
7665         int i;
7666         u32 doorbell_value;
7667         unsigned long flags;
7668         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7669         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7670                 spin_lock_irqsave(&h->lock, flags);
7671                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7672                 spin_unlock_irqrestore(&h->lock, flags);
7673                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7674                         goto done;
7675                 /* delay and try again */
7676                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7677         }
7678         return -ENODEV;
7679 done:
7680         return 0;
7681 }
7682
7683 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7684 {
7685         int i;
7686         u32 doorbell_value;
7687         unsigned long flags;
7688
7689         /* under certain very rare conditions, this can take awhile.
7690          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7691          * as we enter this code.)
7692          */
7693         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7694                 if (h->remove_in_progress)
7695                         goto done;
7696                 spin_lock_irqsave(&h->lock, flags);
7697                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7698                 spin_unlock_irqrestore(&h->lock, flags);
7699                 if (!(doorbell_value & CFGTBL_ChangeReq))
7700                         goto done;
7701                 /* delay and try again */
7702                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7703         }
7704         return -ENODEV;
7705 done:
7706         return 0;
7707 }
7708
7709 /* return -ENODEV or other reason on error, 0 on success */
7710 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7711 {
7712         u32 trans_support;
7713
7714         trans_support = readl(&(h->cfgtable->TransportSupport));
7715         if (!(trans_support & SIMPLE_MODE))
7716                 return -ENOTSUPP;
7717
7718         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7719
7720         /* Update the field, and then ring the doorbell */
7721         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7722         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7723         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7724         if (hpsa_wait_for_mode_change_ack(h))
7725                 goto error;
7726         print_cfg_table(&h->pdev->dev, h->cfgtable);
7727         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7728                 goto error;
7729         h->transMethod = CFGTBL_Trans_Simple;
7730         return 0;
7731 error:
7732         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7733         return -ENODEV;
7734 }
7735
7736 /* free items allocated or mapped by hpsa_pci_init */
7737 static void hpsa_free_pci_init(struct ctlr_info *h)
7738 {
7739         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7740         iounmap(h->vaddr);                      /* pci_init 3 */
7741         h->vaddr = NULL;
7742         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7743         /*
7744          * call pci_disable_device before pci_release_regions per
7745          * Documentation/PCI/pci.txt
7746          */
7747         pci_disable_device(h->pdev);            /* pci_init 1 */
7748         pci_release_regions(h->pdev);           /* pci_init 2 */
7749 }
7750
7751 /* several items must be freed later */
7752 static int hpsa_pci_init(struct ctlr_info *h)
7753 {
7754         int prod_index, err;
7755         bool legacy_board;
7756
7757         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7758         if (prod_index < 0)
7759                 return prod_index;
7760         h->product_name = products[prod_index].product_name;
7761         h->access = *(products[prod_index].access);
7762         h->legacy_board = legacy_board;
7763         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7764                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7765
7766         err = pci_enable_device(h->pdev);
7767         if (err) {
7768                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7769                 pci_disable_device(h->pdev);
7770                 return err;
7771         }
7772
7773         err = pci_request_regions(h->pdev, HPSA);
7774         if (err) {
7775                 dev_err(&h->pdev->dev,
7776                         "failed to obtain PCI resources\n");
7777                 pci_disable_device(h->pdev);
7778                 return err;
7779         }
7780
7781         pci_set_master(h->pdev);
7782
7783         err = hpsa_interrupt_mode(h);
7784         if (err)
7785                 goto clean1;
7786
7787         /* setup mapping between CPU and reply queue */
7788         hpsa_setup_reply_map(h);
7789
7790         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7791         if (err)
7792                 goto clean2;    /* intmode+region, pci */
7793         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7794         if (!h->vaddr) {
7795                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7796                 err = -ENOMEM;
7797                 goto clean2;    /* intmode+region, pci */
7798         }
7799         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7800         if (err)
7801                 goto clean3;    /* vaddr, intmode+region, pci */
7802         err = hpsa_find_cfgtables(h);
7803         if (err)
7804                 goto clean3;    /* vaddr, intmode+region, pci */
7805         hpsa_find_board_params(h);
7806
7807         if (!hpsa_CISS_signature_present(h)) {
7808                 err = -ENODEV;
7809                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7810         }
7811         hpsa_set_driver_support_bits(h);
7812         hpsa_p600_dma_prefetch_quirk(h);
7813         err = hpsa_enter_simple_mode(h);
7814         if (err)
7815                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7816         return 0;
7817
7818 clean4: /* cfgtables, vaddr, intmode+region, pci */
7819         hpsa_free_cfgtables(h);
7820 clean3: /* vaddr, intmode+region, pci */
7821         iounmap(h->vaddr);
7822         h->vaddr = NULL;
7823 clean2: /* intmode+region, pci */
7824         hpsa_disable_interrupt_mode(h);
7825 clean1:
7826         /*
7827          * call pci_disable_device before pci_release_regions per
7828          * Documentation/PCI/pci.txt
7829          */
7830         pci_disable_device(h->pdev);
7831         pci_release_regions(h->pdev);
7832         return err;
7833 }
7834
7835 static void hpsa_hba_inquiry(struct ctlr_info *h)
7836 {
7837         int rc;
7838
7839 #define HBA_INQUIRY_BYTE_COUNT 64
7840         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7841         if (!h->hba_inquiry_data)
7842                 return;
7843         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7844                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7845         if (rc != 0) {
7846                 kfree(h->hba_inquiry_data);
7847                 h->hba_inquiry_data = NULL;
7848         }
7849 }
7850
7851 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7852 {
7853         int rc, i;
7854         void __iomem *vaddr;
7855
7856         if (!reset_devices)
7857                 return 0;
7858
7859         /* kdump kernel is loading, we don't know in which state is
7860          * the pci interface. The dev->enable_cnt is equal zero
7861          * so we call enable+disable, wait a while and switch it on.
7862          */
7863         rc = pci_enable_device(pdev);
7864         if (rc) {
7865                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7866                 return -ENODEV;
7867         }
7868         pci_disable_device(pdev);
7869         msleep(260);                    /* a randomly chosen number */
7870         rc = pci_enable_device(pdev);
7871         if (rc) {
7872                 dev_warn(&pdev->dev, "failed to enable device.\n");
7873                 return -ENODEV;
7874         }
7875
7876         pci_set_master(pdev);
7877
7878         vaddr = pci_ioremap_bar(pdev, 0);
7879         if (vaddr == NULL) {
7880                 rc = -ENOMEM;
7881                 goto out_disable;
7882         }
7883         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7884         iounmap(vaddr);
7885
7886         /* Reset the controller with a PCI power-cycle or via doorbell */
7887         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7888
7889         /* -ENOTSUPP here means we cannot reset the controller
7890          * but it's already (and still) up and running in
7891          * "performant mode".  Or, it might be 640x, which can't reset
7892          * due to concerns about shared bbwc between 6402/6404 pair.
7893          */
7894         if (rc)
7895                 goto out_disable;
7896
7897         /* Now try to get the controller to respond to a no-op */
7898         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7899         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7900                 if (hpsa_noop(pdev) == 0)
7901                         break;
7902                 else
7903                         dev_warn(&pdev->dev, "no-op failed%s\n",
7904                                         (i < 11 ? "; re-trying" : ""));
7905         }
7906
7907 out_disable:
7908
7909         pci_disable_device(pdev);
7910         return rc;
7911 }
7912
7913 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7914 {
7915         kfree(h->cmd_pool_bits);
7916         h->cmd_pool_bits = NULL;
7917         if (h->cmd_pool) {
7918                 dma_free_coherent(&h->pdev->dev,
7919                                 h->nr_cmds * sizeof(struct CommandList),
7920                                 h->cmd_pool,
7921                                 h->cmd_pool_dhandle);
7922                 h->cmd_pool = NULL;
7923                 h->cmd_pool_dhandle = 0;
7924         }
7925         if (h->errinfo_pool) {
7926                 dma_free_coherent(&h->pdev->dev,
7927                                 h->nr_cmds * sizeof(struct ErrorInfo),
7928                                 h->errinfo_pool,
7929                                 h->errinfo_pool_dhandle);
7930                 h->errinfo_pool = NULL;
7931                 h->errinfo_pool_dhandle = 0;
7932         }
7933 }
7934
7935 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7936 {
7937         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7938                                    sizeof(unsigned long),
7939                                    GFP_KERNEL);
7940         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7941                     h->nr_cmds * sizeof(*h->cmd_pool),
7942                     &h->cmd_pool_dhandle, GFP_KERNEL);
7943         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7944                     h->nr_cmds * sizeof(*h->errinfo_pool),
7945                     &h->errinfo_pool_dhandle, GFP_KERNEL);
7946         if ((h->cmd_pool_bits == NULL)
7947             || (h->cmd_pool == NULL)
7948             || (h->errinfo_pool == NULL)) {
7949                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7950                 goto clean_up;
7951         }
7952         hpsa_preinitialize_commands(h);
7953         return 0;
7954 clean_up:
7955         hpsa_free_cmd_pool(h);
7956         return -ENOMEM;
7957 }
7958
7959 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7960 static void hpsa_free_irqs(struct ctlr_info *h)
7961 {
7962         int i;
7963
7964         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7965                 /* Single reply queue, only one irq to free */
7966                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7967                 h->q[h->intr_mode] = 0;
7968                 return;
7969         }
7970
7971         for (i = 0; i < h->msix_vectors; i++) {
7972                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7973                 h->q[i] = 0;
7974         }
7975         for (; i < MAX_REPLY_QUEUES; i++)
7976                 h->q[i] = 0;
7977 }
7978
7979 /* returns 0 on success; cleans up and returns -Enn on error */
7980 static int hpsa_request_irqs(struct ctlr_info *h,
7981         irqreturn_t (*msixhandler)(int, void *),
7982         irqreturn_t (*intxhandler)(int, void *))
7983 {
7984         int rc, i;
7985
7986         /*
7987          * initialize h->q[x] = x so that interrupt handlers know which
7988          * queue to process.
7989          */
7990         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7991                 h->q[i] = (u8) i;
7992
7993         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7994                 /* If performant mode and MSI-X, use multiple reply queues */
7995                 for (i = 0; i < h->msix_vectors; i++) {
7996                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7997                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7998                                         0, h->intrname[i],
7999                                         &h->q[i]);
8000                         if (rc) {
8001                                 int j;
8002
8003                                 dev_err(&h->pdev->dev,
8004                                         "failed to get irq %d for %s\n",
8005                                        pci_irq_vector(h->pdev, i), h->devname);
8006                                 for (j = 0; j < i; j++) {
8007                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8008                                         h->q[j] = 0;
8009                                 }
8010                                 for (; j < MAX_REPLY_QUEUES; j++)
8011                                         h->q[j] = 0;
8012                                 return rc;
8013                         }
8014                 }
8015         } else {
8016                 /* Use single reply pool */
8017                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8018                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8019                                 h->msix_vectors ? "x" : "");
8020                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8021                                 msixhandler, 0,
8022                                 h->intrname[0],
8023                                 &h->q[h->intr_mode]);
8024                 } else {
8025                         sprintf(h->intrname[h->intr_mode],
8026                                 "%s-intx", h->devname);
8027                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8028                                 intxhandler, IRQF_SHARED,
8029                                 h->intrname[0],
8030                                 &h->q[h->intr_mode]);
8031                 }
8032         }
8033         if (rc) {
8034                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8035                        pci_irq_vector(h->pdev, 0), h->devname);
8036                 hpsa_free_irqs(h);
8037                 return -ENODEV;
8038         }
8039         return 0;
8040 }
8041
8042 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8043 {
8044         int rc;
8045         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8046
8047         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8048         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8049         if (rc) {
8050                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8051                 return rc;
8052         }
8053
8054         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8055         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8056         if (rc) {
8057                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8058                         "after soft reset.\n");
8059                 return rc;
8060         }
8061
8062         return 0;
8063 }
8064
8065 static void hpsa_free_reply_queues(struct ctlr_info *h)
8066 {
8067         int i;
8068
8069         for (i = 0; i < h->nreply_queues; i++) {
8070                 if (!h->reply_queue[i].head)
8071                         continue;
8072                 dma_free_coherent(&h->pdev->dev,
8073                                         h->reply_queue_size,
8074                                         h->reply_queue[i].head,
8075                                         h->reply_queue[i].busaddr);
8076                 h->reply_queue[i].head = NULL;
8077                 h->reply_queue[i].busaddr = 0;
8078         }
8079         h->reply_queue_size = 0;
8080 }
8081
8082 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8083 {
8084         hpsa_free_performant_mode(h);           /* init_one 7 */
8085         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8086         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8087         hpsa_free_irqs(h);                      /* init_one 4 */
8088         scsi_host_put(h->scsi_host);            /* init_one 3 */
8089         h->scsi_host = NULL;                    /* init_one 3 */
8090         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8091         free_percpu(h->lockup_detected);        /* init_one 2 */
8092         h->lockup_detected = NULL;              /* init_one 2 */
8093         if (h->resubmit_wq) {
8094                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8095                 h->resubmit_wq = NULL;
8096         }
8097         if (h->rescan_ctlr_wq) {
8098                 destroy_workqueue(h->rescan_ctlr_wq);
8099                 h->rescan_ctlr_wq = NULL;
8100         }
8101         kfree(h);                               /* init_one 1 */
8102 }
8103
8104 /* Called when controller lockup detected. */
8105 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8106 {
8107         int i, refcount;
8108         struct CommandList *c;
8109         int failcount = 0;
8110
8111         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8112         for (i = 0; i < h->nr_cmds; i++) {
8113                 c = h->cmd_pool + i;
8114                 refcount = atomic_inc_return(&c->refcount);
8115                 if (refcount > 1) {
8116                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8117                         finish_cmd(c);
8118                         atomic_dec(&h->commands_outstanding);
8119                         failcount++;
8120                 }
8121                 cmd_free(h, c);
8122         }
8123         dev_warn(&h->pdev->dev,
8124                 "failed %d commands in fail_all\n", failcount);
8125 }
8126
8127 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8128 {
8129         int cpu;
8130
8131         for_each_online_cpu(cpu) {
8132                 u32 *lockup_detected;
8133                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8134                 *lockup_detected = value;
8135         }
8136         wmb(); /* be sure the per-cpu variables are out to memory */
8137 }
8138
8139 static void controller_lockup_detected(struct ctlr_info *h)
8140 {
8141         unsigned long flags;
8142         u32 lockup_detected;
8143
8144         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8145         spin_lock_irqsave(&h->lock, flags);
8146         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8147         if (!lockup_detected) {
8148                 /* no heartbeat, but controller gave us a zero. */
8149                 dev_warn(&h->pdev->dev,
8150                         "lockup detected after %d but scratchpad register is zero\n",
8151                         h->heartbeat_sample_interval / HZ);
8152                 lockup_detected = 0xffffffff;
8153         }
8154         set_lockup_detected_for_all_cpus(h, lockup_detected);
8155         spin_unlock_irqrestore(&h->lock, flags);
8156         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8157                         lockup_detected, h->heartbeat_sample_interval / HZ);
8158         if (lockup_detected == 0xffff0000) {
8159                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8160                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8161         }
8162         pci_disable_device(h->pdev);
8163         fail_all_outstanding_cmds(h);
8164 }
8165
8166 static int detect_controller_lockup(struct ctlr_info *h)
8167 {
8168         u64 now;
8169         u32 heartbeat;
8170         unsigned long flags;
8171
8172         now = get_jiffies_64();
8173         /* If we've received an interrupt recently, we're ok. */
8174         if (time_after64(h->last_intr_timestamp +
8175                                 (h->heartbeat_sample_interval), now))
8176                 return false;
8177
8178         /*
8179          * If we've already checked the heartbeat recently, we're ok.
8180          * This could happen if someone sends us a signal. We
8181          * otherwise don't care about signals in this thread.
8182          */
8183         if (time_after64(h->last_heartbeat_timestamp +
8184                                 (h->heartbeat_sample_interval), now))
8185                 return false;
8186
8187         /* If heartbeat has not changed since we last looked, we're not ok. */
8188         spin_lock_irqsave(&h->lock, flags);
8189         heartbeat = readl(&h->cfgtable->HeartBeat);
8190         spin_unlock_irqrestore(&h->lock, flags);
8191         if (h->last_heartbeat == heartbeat) {
8192                 controller_lockup_detected(h);
8193                 return true;
8194         }
8195
8196         /* We're ok. */
8197         h->last_heartbeat = heartbeat;
8198         h->last_heartbeat_timestamp = now;
8199         return false;
8200 }
8201
8202 /*
8203  * Set ioaccel status for all ioaccel volumes.
8204  *
8205  * Called from monitor controller worker (hpsa_event_monitor_worker)
8206  *
8207  * A Volume (or Volumes that comprise an Array set may be undergoing a
8208  * transformation, so we will be turning off ioaccel for all volumes that
8209  * make up the Array.
8210  */
8211 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8212 {
8213         int rc;
8214         int i;
8215         u8 ioaccel_status;
8216         unsigned char *buf;
8217         struct hpsa_scsi_dev_t *device;
8218
8219         if (!h)
8220                 return;
8221
8222         buf = kmalloc(64, GFP_KERNEL);
8223         if (!buf)
8224                 return;
8225
8226         /*
8227          * Run through current device list used during I/O requests.
8228          */
8229         for (i = 0; i < h->ndevices; i++) {
8230                 device = h->dev[i];
8231
8232                 if (!device)
8233                         continue;
8234                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8235                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8236                         continue;
8237
8238                 memset(buf, 0, 64);
8239
8240                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8241                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8242                                         buf, 64);
8243                 if (rc != 0)
8244                         continue;
8245
8246                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8247                 device->offload_config =
8248                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8249                 if (device->offload_config)
8250                         device->offload_to_be_enabled =
8251                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8252
8253                 /*
8254                  * Immediately turn off ioaccel for any volume the
8255                  * controller tells us to. Some of the reasons could be:
8256                  *    transformation - change to the LVs of an Array.
8257                  *    degraded volume - component failure
8258                  *
8259                  * If ioaccel is to be re-enabled, re-enable later during the
8260                  * scan operation so the driver can get a fresh raidmap
8261                  * before turning ioaccel back on.
8262                  *
8263                  */
8264                 if (!device->offload_to_be_enabled)
8265                         device->offload_enabled = 0;
8266         }
8267
8268         kfree(buf);
8269 }
8270
8271 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8272 {
8273         char *event_type;
8274
8275         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8276                 return;
8277
8278         /* Ask the controller to clear the events we're handling. */
8279         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8280                         | CFGTBL_Trans_io_accel2)) &&
8281                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8282                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8283
8284                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8285                         event_type = "state change";
8286                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8287                         event_type = "configuration change";
8288                 /* Stop sending new RAID offload reqs via the IO accelerator */
8289                 scsi_block_requests(h->scsi_host);
8290                 hpsa_set_ioaccel_status(h);
8291                 hpsa_drain_accel_commands(h);
8292                 /* Set 'accelerator path config change' bit */
8293                 dev_warn(&h->pdev->dev,
8294                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8295                         h->events, event_type);
8296                 writel(h->events, &(h->cfgtable->clear_event_notify));
8297                 /* Set the "clear event notify field update" bit 6 */
8298                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8299                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8300                 hpsa_wait_for_clear_event_notify_ack(h);
8301                 scsi_unblock_requests(h->scsi_host);
8302         } else {
8303                 /* Acknowledge controller notification events. */
8304                 writel(h->events, &(h->cfgtable->clear_event_notify));
8305                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8306                 hpsa_wait_for_clear_event_notify_ack(h);
8307         }
8308         return;
8309 }
8310
8311 /* Check a register on the controller to see if there are configuration
8312  * changes (added/changed/removed logical drives, etc.) which mean that
8313  * we should rescan the controller for devices.
8314  * Also check flag for driver-initiated rescan.
8315  */
8316 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8317 {
8318         if (h->drv_req_rescan) {
8319                 h->drv_req_rescan = 0;
8320                 return 1;
8321         }
8322
8323         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8324                 return 0;
8325
8326         h->events = readl(&(h->cfgtable->event_notify));
8327         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8328 }
8329
8330 /*
8331  * Check if any of the offline devices have become ready
8332  */
8333 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8334 {
8335         unsigned long flags;
8336         struct offline_device_entry *d;
8337         struct list_head *this, *tmp;
8338
8339         spin_lock_irqsave(&h->offline_device_lock, flags);
8340         list_for_each_safe(this, tmp, &h->offline_device_list) {
8341                 d = list_entry(this, struct offline_device_entry,
8342                                 offline_list);
8343                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8344                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8345                         spin_lock_irqsave(&h->offline_device_lock, flags);
8346                         list_del(&d->offline_list);
8347                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8348                         return 1;
8349                 }
8350                 spin_lock_irqsave(&h->offline_device_lock, flags);
8351         }
8352         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8353         return 0;
8354 }
8355
8356 static int hpsa_luns_changed(struct ctlr_info *h)
8357 {
8358         int rc = 1; /* assume there are changes */
8359         struct ReportLUNdata *logdev = NULL;
8360
8361         /* if we can't find out if lun data has changed,
8362          * assume that it has.
8363          */
8364
8365         if (!h->lastlogicals)
8366                 return rc;
8367
8368         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8369         if (!logdev)
8370                 return rc;
8371
8372         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8373                 dev_warn(&h->pdev->dev,
8374                         "report luns failed, can't track lun changes.\n");
8375                 goto out;
8376         }
8377         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8378                 dev_info(&h->pdev->dev,
8379                         "Lun changes detected.\n");
8380                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8381                 goto out;
8382         } else
8383                 rc = 0; /* no changes detected. */
8384 out:
8385         kfree(logdev);
8386         return rc;
8387 }
8388
8389 static void hpsa_perform_rescan(struct ctlr_info *h)
8390 {
8391         struct Scsi_Host *sh = NULL;
8392         unsigned long flags;
8393
8394         /*
8395          * Do the scan after the reset
8396          */
8397         spin_lock_irqsave(&h->reset_lock, flags);
8398         if (h->reset_in_progress) {
8399                 h->drv_req_rescan = 1;
8400                 spin_unlock_irqrestore(&h->reset_lock, flags);
8401                 return;
8402         }
8403         spin_unlock_irqrestore(&h->reset_lock, flags);
8404
8405         sh = scsi_host_get(h->scsi_host);
8406         if (sh != NULL) {
8407                 hpsa_scan_start(sh);
8408                 scsi_host_put(sh);
8409                 h->drv_req_rescan = 0;
8410         }
8411 }
8412
8413 /*
8414  * watch for controller events
8415  */
8416 static void hpsa_event_monitor_worker(struct work_struct *work)
8417 {
8418         struct ctlr_info *h = container_of(to_delayed_work(work),
8419                                         struct ctlr_info, event_monitor_work);
8420         unsigned long flags;
8421
8422         spin_lock_irqsave(&h->lock, flags);
8423         if (h->remove_in_progress) {
8424                 spin_unlock_irqrestore(&h->lock, flags);
8425                 return;
8426         }
8427         spin_unlock_irqrestore(&h->lock, flags);
8428
8429         if (hpsa_ctlr_needs_rescan(h)) {
8430                 hpsa_ack_ctlr_events(h);
8431                 hpsa_perform_rescan(h);
8432         }
8433
8434         spin_lock_irqsave(&h->lock, flags);
8435         if (!h->remove_in_progress)
8436                 schedule_delayed_work(&h->event_monitor_work,
8437                                         HPSA_EVENT_MONITOR_INTERVAL);
8438         spin_unlock_irqrestore(&h->lock, flags);
8439 }
8440
8441 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8442 {
8443         unsigned long flags;
8444         struct ctlr_info *h = container_of(to_delayed_work(work),
8445                                         struct ctlr_info, rescan_ctlr_work);
8446
8447         spin_lock_irqsave(&h->lock, flags);
8448         if (h->remove_in_progress) {
8449                 spin_unlock_irqrestore(&h->lock, flags);
8450                 return;
8451         }
8452         spin_unlock_irqrestore(&h->lock, flags);
8453
8454         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8455                 hpsa_perform_rescan(h);
8456         } else if (h->discovery_polling) {
8457                 if (hpsa_luns_changed(h)) {
8458                         dev_info(&h->pdev->dev,
8459                                 "driver discovery polling rescan.\n");
8460                         hpsa_perform_rescan(h);
8461                 }
8462         }
8463         spin_lock_irqsave(&h->lock, flags);
8464         if (!h->remove_in_progress)
8465                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8466                                 h->heartbeat_sample_interval);
8467         spin_unlock_irqrestore(&h->lock, flags);
8468 }
8469
8470 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8471 {
8472         unsigned long flags;
8473         struct ctlr_info *h = container_of(to_delayed_work(work),
8474                                         struct ctlr_info, monitor_ctlr_work);
8475
8476         detect_controller_lockup(h);
8477         if (lockup_detected(h))
8478                 return;
8479
8480         spin_lock_irqsave(&h->lock, flags);
8481         if (!h->remove_in_progress)
8482                 schedule_delayed_work(&h->monitor_ctlr_work,
8483                                 h->heartbeat_sample_interval);
8484         spin_unlock_irqrestore(&h->lock, flags);
8485 }
8486
8487 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8488                                                 char *name)
8489 {
8490         struct workqueue_struct *wq = NULL;
8491
8492         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8493         if (!wq)
8494                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8495
8496         return wq;
8497 }
8498
8499 static void hpda_free_ctlr_info(struct ctlr_info *h)
8500 {
8501         kfree(h->reply_map);
8502         kfree(h);
8503 }
8504
8505 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8506 {
8507         struct ctlr_info *h;
8508
8509         h = kzalloc(sizeof(*h), GFP_KERNEL);
8510         if (!h)
8511                 return NULL;
8512
8513         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8514         if (!h->reply_map) {
8515                 kfree(h);
8516                 return NULL;
8517         }
8518         return h;
8519 }
8520
8521 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8522 {
8523         int dac, rc;
8524         struct ctlr_info *h;
8525         int try_soft_reset = 0;
8526         unsigned long flags;
8527         u32 board_id;
8528
8529         if (number_of_controllers == 0)
8530                 printk(KERN_INFO DRIVER_NAME "\n");
8531
8532         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8533         if (rc < 0) {
8534                 dev_warn(&pdev->dev, "Board ID not found\n");
8535                 return rc;
8536         }
8537
8538         rc = hpsa_init_reset_devices(pdev, board_id);
8539         if (rc) {
8540                 if (rc != -ENOTSUPP)
8541                         return rc;
8542                 /* If the reset fails in a particular way (it has no way to do
8543                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8544                  * a soft reset once we get the controller configured up to the
8545                  * point that it can accept a command.
8546                  */
8547                 try_soft_reset = 1;
8548                 rc = 0;
8549         }
8550
8551 reinit_after_soft_reset:
8552
8553         /* Command structures must be aligned on a 32-byte boundary because
8554          * the 5 lower bits of the address are used by the hardware. and by
8555          * the driver.  See comments in hpsa.h for more info.
8556          */
8557         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8558         h = hpda_alloc_ctlr_info();
8559         if (!h) {
8560                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8561                 return -ENOMEM;
8562         }
8563
8564         h->pdev = pdev;
8565
8566         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8567         INIT_LIST_HEAD(&h->offline_device_list);
8568         spin_lock_init(&h->lock);
8569         spin_lock_init(&h->offline_device_lock);
8570         spin_lock_init(&h->scan_lock);
8571         spin_lock_init(&h->reset_lock);
8572         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8573
8574         /* Allocate and clear per-cpu variable lockup_detected */
8575         h->lockup_detected = alloc_percpu(u32);
8576         if (!h->lockup_detected) {
8577                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8578                 rc = -ENOMEM;
8579                 goto clean1;    /* aer/h */
8580         }
8581         set_lockup_detected_for_all_cpus(h, 0);
8582
8583         rc = hpsa_pci_init(h);
8584         if (rc)
8585                 goto clean2;    /* lu, aer/h */
8586
8587         /* relies on h-> settings made by hpsa_pci_init, including
8588          * interrupt_mode h->intr */
8589         rc = hpsa_scsi_host_alloc(h);
8590         if (rc)
8591                 goto clean2_5;  /* pci, lu, aer/h */
8592
8593         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8594         h->ctlr = number_of_controllers;
8595         number_of_controllers++;
8596
8597         /* configure PCI DMA stuff */
8598         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8599         if (rc == 0) {
8600                 dac = 1;
8601         } else {
8602                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8603                 if (rc == 0) {
8604                         dac = 0;
8605                 } else {
8606                         dev_err(&pdev->dev, "no suitable DMA available\n");
8607                         goto clean3;    /* shost, pci, lu, aer/h */
8608                 }
8609         }
8610
8611         /* make sure the board interrupts are off */
8612         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8613
8614         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8615         if (rc)
8616                 goto clean3;    /* shost, pci, lu, aer/h */
8617         rc = hpsa_alloc_cmd_pool(h);
8618         if (rc)
8619                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8620         rc = hpsa_alloc_sg_chain_blocks(h);
8621         if (rc)
8622                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8623         init_waitqueue_head(&h->scan_wait_queue);
8624         init_waitqueue_head(&h->event_sync_wait_queue);
8625         mutex_init(&h->reset_mutex);
8626         h->scan_finished = 1; /* no scan currently in progress */
8627         h->scan_waiting = 0;
8628
8629         pci_set_drvdata(pdev, h);
8630         h->ndevices = 0;
8631
8632         spin_lock_init(&h->devlock);
8633         rc = hpsa_put_ctlr_into_performant_mode(h);
8634         if (rc)
8635                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8636
8637         /* create the resubmit workqueue */
8638         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8639         if (!h->rescan_ctlr_wq) {
8640                 rc = -ENOMEM;
8641                 goto clean7;
8642         }
8643
8644         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8645         if (!h->resubmit_wq) {
8646                 rc = -ENOMEM;
8647                 goto clean7;    /* aer/h */
8648         }
8649
8650         /*
8651          * At this point, the controller is ready to take commands.
8652          * Now, if reset_devices and the hard reset didn't work, try
8653          * the soft reset and see if that works.
8654          */
8655         if (try_soft_reset) {
8656
8657                 /* This is kind of gross.  We may or may not get a completion
8658                  * from the soft reset command, and if we do, then the value
8659                  * from the fifo may or may not be valid.  So, we wait 10 secs
8660                  * after the reset throwing away any completions we get during
8661                  * that time.  Unregister the interrupt handler and register
8662                  * fake ones to scoop up any residual completions.
8663                  */
8664                 spin_lock_irqsave(&h->lock, flags);
8665                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8666                 spin_unlock_irqrestore(&h->lock, flags);
8667                 hpsa_free_irqs(h);
8668                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8669                                         hpsa_intx_discard_completions);
8670                 if (rc) {
8671                         dev_warn(&h->pdev->dev,
8672                                 "Failed to request_irq after soft reset.\n");
8673                         /*
8674                          * cannot goto clean7 or free_irqs will be called
8675                          * again. Instead, do its work
8676                          */
8677                         hpsa_free_performant_mode(h);   /* clean7 */
8678                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8679                         hpsa_free_cmd_pool(h);          /* clean5 */
8680                         /*
8681                          * skip hpsa_free_irqs(h) clean4 since that
8682                          * was just called before request_irqs failed
8683                          */
8684                         goto clean3;
8685                 }
8686
8687                 rc = hpsa_kdump_soft_reset(h);
8688                 if (rc)
8689                         /* Neither hard nor soft reset worked, we're hosed. */
8690                         goto clean7;
8691
8692                 dev_info(&h->pdev->dev, "Board READY.\n");
8693                 dev_info(&h->pdev->dev,
8694                         "Waiting for stale completions to drain.\n");
8695                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8696                 msleep(10000);
8697                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8698
8699                 rc = controller_reset_failed(h->cfgtable);
8700                 if (rc)
8701                         dev_info(&h->pdev->dev,
8702                                 "Soft reset appears to have failed.\n");
8703
8704                 /* since the controller's reset, we have to go back and re-init
8705                  * everything.  Easiest to just forget what we've done and do it
8706                  * all over again.
8707                  */
8708                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8709                 try_soft_reset = 0;
8710                 if (rc)
8711                         /* don't goto clean, we already unallocated */
8712                         return -ENODEV;
8713
8714                 goto reinit_after_soft_reset;
8715         }
8716
8717         /* Enable Accelerated IO path at driver layer */
8718         h->acciopath_status = 1;
8719         /* Disable discovery polling.*/
8720         h->discovery_polling = 0;
8721
8722
8723         /* Turn the interrupts on so we can service requests */
8724         h->access.set_intr_mask(h, HPSA_INTR_ON);
8725
8726         hpsa_hba_inquiry(h);
8727
8728         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8729         if (!h->lastlogicals)
8730                 dev_info(&h->pdev->dev,
8731                         "Can't track change to report lun data\n");
8732
8733         /* hook into SCSI subsystem */
8734         rc = hpsa_scsi_add_host(h);
8735         if (rc)
8736                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8737
8738         /* Monitor the controller for firmware lockups */
8739         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8740         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8741         schedule_delayed_work(&h->monitor_ctlr_work,
8742                                 h->heartbeat_sample_interval);
8743         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8744         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8745                                 h->heartbeat_sample_interval);
8746         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8747         schedule_delayed_work(&h->event_monitor_work,
8748                                 HPSA_EVENT_MONITOR_INTERVAL);
8749         return 0;
8750
8751 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8752         hpsa_free_performant_mode(h);
8753         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8754 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8755         hpsa_free_sg_chain_blocks(h);
8756 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8757         hpsa_free_cmd_pool(h);
8758 clean4: /* irq, shost, pci, lu, aer/h */
8759         hpsa_free_irqs(h);
8760 clean3: /* shost, pci, lu, aer/h */
8761         scsi_host_put(h->scsi_host);
8762         h->scsi_host = NULL;
8763 clean2_5: /* pci, lu, aer/h */
8764         hpsa_free_pci_init(h);
8765 clean2: /* lu, aer/h */
8766         if (h->lockup_detected) {
8767                 free_percpu(h->lockup_detected);
8768                 h->lockup_detected = NULL;
8769         }
8770 clean1: /* wq/aer/h */
8771         if (h->resubmit_wq) {
8772                 destroy_workqueue(h->resubmit_wq);
8773                 h->resubmit_wq = NULL;
8774         }
8775         if (h->rescan_ctlr_wq) {
8776                 destroy_workqueue(h->rescan_ctlr_wq);
8777                 h->rescan_ctlr_wq = NULL;
8778         }
8779         kfree(h);
8780         return rc;
8781 }
8782
8783 static void hpsa_flush_cache(struct ctlr_info *h)
8784 {
8785         char *flush_buf;
8786         struct CommandList *c;
8787         int rc;
8788
8789         if (unlikely(lockup_detected(h)))
8790                 return;
8791         flush_buf = kzalloc(4, GFP_KERNEL);
8792         if (!flush_buf)
8793                 return;
8794
8795         c = cmd_alloc(h);
8796
8797         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8798                 RAID_CTLR_LUNID, TYPE_CMD)) {
8799                 goto out;
8800         }
8801         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8802                         DEFAULT_TIMEOUT);
8803         if (rc)
8804                 goto out;
8805         if (c->err_info->CommandStatus != 0)
8806 out:
8807                 dev_warn(&h->pdev->dev,
8808                         "error flushing cache on controller\n");
8809         cmd_free(h, c);
8810         kfree(flush_buf);
8811 }
8812
8813 /* Make controller gather fresh report lun data each time we
8814  * send down a report luns request
8815  */
8816 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8817 {
8818         u32 *options;
8819         struct CommandList *c;
8820         int rc;
8821
8822         /* Don't bother trying to set diag options if locked up */
8823         if (unlikely(h->lockup_detected))
8824                 return;
8825
8826         options = kzalloc(sizeof(*options), GFP_KERNEL);
8827         if (!options)
8828                 return;
8829
8830         c = cmd_alloc(h);
8831
8832         /* first, get the current diag options settings */
8833         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8834                 RAID_CTLR_LUNID, TYPE_CMD))
8835                 goto errout;
8836
8837         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8838                         NO_TIMEOUT);
8839         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8840                 goto errout;
8841
8842         /* Now, set the bit for disabling the RLD caching */
8843         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8844
8845         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8846                 RAID_CTLR_LUNID, TYPE_CMD))
8847                 goto errout;
8848
8849         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8850                         NO_TIMEOUT);
8851         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8852                 goto errout;
8853
8854         /* Now verify that it got set: */
8855         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8856                 RAID_CTLR_LUNID, TYPE_CMD))
8857                 goto errout;
8858
8859         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8860                         NO_TIMEOUT);
8861         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8862                 goto errout;
8863
8864         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8865                 goto out;
8866
8867 errout:
8868         dev_err(&h->pdev->dev,
8869                         "Error: failed to disable report lun data caching.\n");
8870 out:
8871         cmd_free(h, c);
8872         kfree(options);
8873 }
8874
8875 static void __hpsa_shutdown(struct pci_dev *pdev)
8876 {
8877         struct ctlr_info *h;
8878
8879         h = pci_get_drvdata(pdev);
8880         /* Turn board interrupts off  and send the flush cache command
8881          * sendcmd will turn off interrupt, and send the flush...
8882          * To write all data in the battery backed cache to disks
8883          */
8884         hpsa_flush_cache(h);
8885         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8886         hpsa_free_irqs(h);                      /* init_one 4 */
8887         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8888 }
8889
8890 static void hpsa_shutdown(struct pci_dev *pdev)
8891 {
8892         __hpsa_shutdown(pdev);
8893         pci_disable_device(pdev);
8894 }
8895
8896 static void hpsa_free_device_info(struct ctlr_info *h)
8897 {
8898         int i;
8899
8900         for (i = 0; i < h->ndevices; i++) {
8901                 kfree(h->dev[i]);
8902                 h->dev[i] = NULL;
8903         }
8904 }
8905
8906 static void hpsa_remove_one(struct pci_dev *pdev)
8907 {
8908         struct ctlr_info *h;
8909         unsigned long flags;
8910
8911         if (pci_get_drvdata(pdev) == NULL) {
8912                 dev_err(&pdev->dev, "unable to remove device\n");
8913                 return;
8914         }
8915         h = pci_get_drvdata(pdev);
8916
8917         /* Get rid of any controller monitoring work items */
8918         spin_lock_irqsave(&h->lock, flags);
8919         h->remove_in_progress = 1;
8920         spin_unlock_irqrestore(&h->lock, flags);
8921         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8922         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8923         cancel_delayed_work_sync(&h->event_monitor_work);
8924         destroy_workqueue(h->rescan_ctlr_wq);
8925         destroy_workqueue(h->resubmit_wq);
8926
8927         hpsa_delete_sas_host(h);
8928
8929         /*
8930          * Call before disabling interrupts.
8931          * scsi_remove_host can trigger I/O operations especially
8932          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8933          * operations which cannot complete and will hang the system.
8934          */
8935         if (h->scsi_host)
8936                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8937         /* includes hpsa_free_irqs - init_one 4 */
8938         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8939         __hpsa_shutdown(pdev);
8940
8941         hpsa_free_device_info(h);               /* scan */
8942
8943         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8944         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8945         hpsa_free_ioaccel2_sg_chain_blocks(h);
8946         hpsa_free_performant_mode(h);                   /* init_one 7 */
8947         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8948         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8949         kfree(h->lastlogicals);
8950
8951         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8952
8953         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8954         h->scsi_host = NULL;                            /* init_one 3 */
8955
8956         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8957         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8958
8959         free_percpu(h->lockup_detected);                /* init_one 2 */
8960         h->lockup_detected = NULL;                      /* init_one 2 */
8961         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8962
8963         hpda_free_ctlr_info(h);                         /* init_one 1 */
8964 }
8965
8966 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8967         __attribute__((unused)) pm_message_t state)
8968 {
8969         return -ENOSYS;
8970 }
8971
8972 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8973 {
8974         return -ENOSYS;
8975 }
8976
8977 static struct pci_driver hpsa_pci_driver = {
8978         .name = HPSA,
8979         .probe = hpsa_init_one,
8980         .remove = hpsa_remove_one,
8981         .id_table = hpsa_pci_device_id, /* id_table */
8982         .shutdown = hpsa_shutdown,
8983         .suspend = hpsa_suspend,
8984         .resume = hpsa_resume,
8985 };
8986
8987 /* Fill in bucket_map[], given nsgs (the max number of
8988  * scatter gather elements supported) and bucket[],
8989  * which is an array of 8 integers.  The bucket[] array
8990  * contains 8 different DMA transfer sizes (in 16
8991  * byte increments) which the controller uses to fetch
8992  * commands.  This function fills in bucket_map[], which
8993  * maps a given number of scatter gather elements to one of
8994  * the 8 DMA transfer sizes.  The point of it is to allow the
8995  * controller to only do as much DMA as needed to fetch the
8996  * command, with the DMA transfer size encoded in the lower
8997  * bits of the command address.
8998  */
8999 static void  calc_bucket_map(int bucket[], int num_buckets,
9000         int nsgs, int min_blocks, u32 *bucket_map)
9001 {
9002         int i, j, b, size;
9003
9004         /* Note, bucket_map must have nsgs+1 entries. */
9005         for (i = 0; i <= nsgs; i++) {
9006                 /* Compute size of a command with i SG entries */
9007                 size = i + min_blocks;
9008                 b = num_buckets; /* Assume the biggest bucket */
9009                 /* Find the bucket that is just big enough */
9010                 for (j = 0; j < num_buckets; j++) {
9011                         if (bucket[j] >= size) {
9012                                 b = j;
9013                                 break;
9014                         }
9015                 }
9016                 /* for a command with i SG entries, use bucket b. */
9017                 bucket_map[i] = b;
9018         }
9019 }
9020
9021 /*
9022  * return -ENODEV on err, 0 on success (or no action)
9023  * allocates numerous items that must be freed later
9024  */
9025 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9026 {
9027         int i;
9028         unsigned long register_value;
9029         unsigned long transMethod = CFGTBL_Trans_Performant |
9030                         (trans_support & CFGTBL_Trans_use_short_tags) |
9031                                 CFGTBL_Trans_enable_directed_msix |
9032                         (trans_support & (CFGTBL_Trans_io_accel1 |
9033                                 CFGTBL_Trans_io_accel2));
9034         struct access_method access = SA5_performant_access;
9035
9036         /* This is a bit complicated.  There are 8 registers on
9037          * the controller which we write to to tell it 8 different
9038          * sizes of commands which there may be.  It's a way of
9039          * reducing the DMA done to fetch each command.  Encoded into
9040          * each command's tag are 3 bits which communicate to the controller
9041          * which of the eight sizes that command fits within.  The size of
9042          * each command depends on how many scatter gather entries there are.
9043          * Each SG entry requires 16 bytes.  The eight registers are programmed
9044          * with the number of 16-byte blocks a command of that size requires.
9045          * The smallest command possible requires 5 such 16 byte blocks.
9046          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9047          * blocks.  Note, this only extends to the SG entries contained
9048          * within the command block, and does not extend to chained blocks
9049          * of SG elements.   bft[] contains the eight values we write to
9050          * the registers.  They are not evenly distributed, but have more
9051          * sizes for small commands, and fewer sizes for larger commands.
9052          */
9053         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9054 #define MIN_IOACCEL2_BFT_ENTRY 5
9055 #define HPSA_IOACCEL2_HEADER_SZ 4
9056         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9057                         13, 14, 15, 16, 17, 18, 19,
9058                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9059         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9060         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9061         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9062                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9063         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9064         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9065         /*  5 = 1 s/g entry or 4k
9066          *  6 = 2 s/g entry or 8k
9067          *  8 = 4 s/g entry or 16k
9068          * 10 = 6 s/g entry or 24k
9069          */
9070
9071         /* If the controller supports either ioaccel method then
9072          * we can also use the RAID stack submit path that does not
9073          * perform the superfluous readl() after each command submission.
9074          */
9075         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9076                 access = SA5_performant_access_no_read;
9077
9078         /* Controller spec: zero out this buffer. */
9079         for (i = 0; i < h->nreply_queues; i++)
9080                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9081
9082         bft[7] = SG_ENTRIES_IN_CMD + 4;
9083         calc_bucket_map(bft, ARRAY_SIZE(bft),
9084                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9085         for (i = 0; i < 8; i++)
9086                 writel(bft[i], &h->transtable->BlockFetch[i]);
9087
9088         /* size of controller ring buffer */
9089         writel(h->max_commands, &h->transtable->RepQSize);
9090         writel(h->nreply_queues, &h->transtable->RepQCount);
9091         writel(0, &h->transtable->RepQCtrAddrLow32);
9092         writel(0, &h->transtable->RepQCtrAddrHigh32);
9093
9094         for (i = 0; i < h->nreply_queues; i++) {
9095                 writel(0, &h->transtable->RepQAddr[i].upper);
9096                 writel(h->reply_queue[i].busaddr,
9097                         &h->transtable->RepQAddr[i].lower);
9098         }
9099
9100         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9101         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9102         /*
9103          * enable outbound interrupt coalescing in accelerator mode;
9104          */
9105         if (trans_support & CFGTBL_Trans_io_accel1) {
9106                 access = SA5_ioaccel_mode1_access;
9107                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9108                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9109         } else
9110                 if (trans_support & CFGTBL_Trans_io_accel2)
9111                         access = SA5_ioaccel_mode2_access;
9112         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9113         if (hpsa_wait_for_mode_change_ack(h)) {
9114                 dev_err(&h->pdev->dev,
9115                         "performant mode problem - doorbell timeout\n");
9116                 return -ENODEV;
9117         }
9118         register_value = readl(&(h->cfgtable->TransportActive));
9119         if (!(register_value & CFGTBL_Trans_Performant)) {
9120                 dev_err(&h->pdev->dev,
9121                         "performant mode problem - transport not active\n");
9122                 return -ENODEV;
9123         }
9124         /* Change the access methods to the performant access methods */
9125         h->access = access;
9126         h->transMethod = transMethod;
9127
9128         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9129                 (trans_support & CFGTBL_Trans_io_accel2)))
9130                 return 0;
9131
9132         if (trans_support & CFGTBL_Trans_io_accel1) {
9133                 /* Set up I/O accelerator mode */
9134                 for (i = 0; i < h->nreply_queues; i++) {
9135                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9136                         h->reply_queue[i].current_entry =
9137                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9138                 }
9139                 bft[7] = h->ioaccel_maxsg + 8;
9140                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9141                                 h->ioaccel1_blockFetchTable);
9142
9143                 /* initialize all reply queue entries to unused */
9144                 for (i = 0; i < h->nreply_queues; i++)
9145                         memset(h->reply_queue[i].head,
9146                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9147                                 h->reply_queue_size);
9148
9149                 /* set all the constant fields in the accelerator command
9150                  * frames once at init time to save CPU cycles later.
9151                  */
9152                 for (i = 0; i < h->nr_cmds; i++) {
9153                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9154
9155                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9156                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9157                                         (i * sizeof(struct ErrorInfo)));
9158                         cp->err_info_len = sizeof(struct ErrorInfo);
9159                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9160                         cp->host_context_flags =
9161                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9162                         cp->timeout_sec = 0;
9163                         cp->ReplyQueue = 0;
9164                         cp->tag =
9165                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9166                         cp->host_addr =
9167                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9168                                         (i * sizeof(struct io_accel1_cmd)));
9169                 }
9170         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9171                 u64 cfg_offset, cfg_base_addr_index;
9172                 u32 bft2_offset, cfg_base_addr;
9173                 int rc;
9174
9175                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9176                         &cfg_base_addr_index, &cfg_offset);
9177                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9178                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9179                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9180                                 4, h->ioaccel2_blockFetchTable);
9181                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9182                 BUILD_BUG_ON(offsetof(struct CfgTable,
9183                                 io_accel_request_size_offset) != 0xb8);
9184                 h->ioaccel2_bft2_regs =
9185                         remap_pci_mem(pci_resource_start(h->pdev,
9186                                         cfg_base_addr_index) +
9187                                         cfg_offset + bft2_offset,
9188                                         ARRAY_SIZE(bft2) *
9189                                         sizeof(*h->ioaccel2_bft2_regs));
9190                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9191                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9192         }
9193         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9194         if (hpsa_wait_for_mode_change_ack(h)) {
9195                 dev_err(&h->pdev->dev,
9196                         "performant mode problem - enabling ioaccel mode\n");
9197                 return -ENODEV;
9198         }
9199         return 0;
9200 }
9201
9202 /* Free ioaccel1 mode command blocks and block fetch table */
9203 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9204 {
9205         if (h->ioaccel_cmd_pool) {
9206                 pci_free_consistent(h->pdev,
9207                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9208                         h->ioaccel_cmd_pool,
9209                         h->ioaccel_cmd_pool_dhandle);
9210                 h->ioaccel_cmd_pool = NULL;
9211                 h->ioaccel_cmd_pool_dhandle = 0;
9212         }
9213         kfree(h->ioaccel1_blockFetchTable);
9214         h->ioaccel1_blockFetchTable = NULL;
9215 }
9216
9217 /* Allocate ioaccel1 mode command blocks and block fetch table */
9218 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9219 {
9220         h->ioaccel_maxsg =
9221                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9222         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9223                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9224
9225         /* Command structures must be aligned on a 128-byte boundary
9226          * because the 7 lower bits of the address are used by the
9227          * hardware.
9228          */
9229         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9230                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9231         h->ioaccel_cmd_pool =
9232                 dma_alloc_coherent(&h->pdev->dev,
9233                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9234                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9235
9236         h->ioaccel1_blockFetchTable =
9237                 kmalloc(((h->ioaccel_maxsg + 1) *
9238                                 sizeof(u32)), GFP_KERNEL);
9239
9240         if ((h->ioaccel_cmd_pool == NULL) ||
9241                 (h->ioaccel1_blockFetchTable == NULL))
9242                 goto clean_up;
9243
9244         memset(h->ioaccel_cmd_pool, 0,
9245                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9246         return 0;
9247
9248 clean_up:
9249         hpsa_free_ioaccel1_cmd_and_bft(h);
9250         return -ENOMEM;
9251 }
9252
9253 /* Free ioaccel2 mode command blocks and block fetch table */
9254 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9255 {
9256         hpsa_free_ioaccel2_sg_chain_blocks(h);
9257
9258         if (h->ioaccel2_cmd_pool) {
9259                 pci_free_consistent(h->pdev,
9260                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9261                         h->ioaccel2_cmd_pool,
9262                         h->ioaccel2_cmd_pool_dhandle);
9263                 h->ioaccel2_cmd_pool = NULL;
9264                 h->ioaccel2_cmd_pool_dhandle = 0;
9265         }
9266         kfree(h->ioaccel2_blockFetchTable);
9267         h->ioaccel2_blockFetchTable = NULL;
9268 }
9269
9270 /* Allocate ioaccel2 mode command blocks and block fetch table */
9271 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9272 {
9273         int rc;
9274
9275         /* Allocate ioaccel2 mode command blocks and block fetch table */
9276
9277         h->ioaccel_maxsg =
9278                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9279         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9280                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9281
9282         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9283                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9284         h->ioaccel2_cmd_pool =
9285                 dma_alloc_coherent(&h->pdev->dev,
9286                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9287                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9288
9289         h->ioaccel2_blockFetchTable =
9290                 kmalloc(((h->ioaccel_maxsg + 1) *
9291                                 sizeof(u32)), GFP_KERNEL);
9292
9293         if ((h->ioaccel2_cmd_pool == NULL) ||
9294                 (h->ioaccel2_blockFetchTable == NULL)) {
9295                 rc = -ENOMEM;
9296                 goto clean_up;
9297         }
9298
9299         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9300         if (rc)
9301                 goto clean_up;
9302
9303         memset(h->ioaccel2_cmd_pool, 0,
9304                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9305         return 0;
9306
9307 clean_up:
9308         hpsa_free_ioaccel2_cmd_and_bft(h);
9309         return rc;
9310 }
9311
9312 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9313 static void hpsa_free_performant_mode(struct ctlr_info *h)
9314 {
9315         kfree(h->blockFetchTable);
9316         h->blockFetchTable = NULL;
9317         hpsa_free_reply_queues(h);
9318         hpsa_free_ioaccel1_cmd_and_bft(h);
9319         hpsa_free_ioaccel2_cmd_and_bft(h);
9320 }
9321
9322 /* return -ENODEV on error, 0 on success (or no action)
9323  * allocates numerous items that must be freed later
9324  */
9325 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9326 {
9327         u32 trans_support;
9328         unsigned long transMethod = CFGTBL_Trans_Performant |
9329                                         CFGTBL_Trans_use_short_tags;
9330         int i, rc;
9331
9332         if (hpsa_simple_mode)
9333                 return 0;
9334
9335         trans_support = readl(&(h->cfgtable->TransportSupport));
9336         if (!(trans_support & PERFORMANT_MODE))
9337                 return 0;
9338
9339         /* Check for I/O accelerator mode support */
9340         if (trans_support & CFGTBL_Trans_io_accel1) {
9341                 transMethod |= CFGTBL_Trans_io_accel1 |
9342                                 CFGTBL_Trans_enable_directed_msix;
9343                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9344                 if (rc)
9345                         return rc;
9346         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9347                 transMethod |= CFGTBL_Trans_io_accel2 |
9348                                 CFGTBL_Trans_enable_directed_msix;
9349                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9350                 if (rc)
9351                         return rc;
9352         }
9353
9354         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9355         hpsa_get_max_perf_mode_cmds(h);
9356         /* Performant mode ring buffer and supporting data structures */
9357         h->reply_queue_size = h->max_commands * sizeof(u64);
9358
9359         for (i = 0; i < h->nreply_queues; i++) {
9360                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9361                                                 h->reply_queue_size,
9362                                                 &h->reply_queue[i].busaddr,
9363                                                 GFP_KERNEL);
9364                 if (!h->reply_queue[i].head) {
9365                         rc = -ENOMEM;
9366                         goto clean1;    /* rq, ioaccel */
9367                 }
9368                 h->reply_queue[i].size = h->max_commands;
9369                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9370                 h->reply_queue[i].current_entry = 0;
9371         }
9372
9373         /* Need a block fetch table for performant mode */
9374         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9375                                 sizeof(u32)), GFP_KERNEL);
9376         if (!h->blockFetchTable) {
9377                 rc = -ENOMEM;
9378                 goto clean1;    /* rq, ioaccel */
9379         }
9380
9381         rc = hpsa_enter_performant_mode(h, trans_support);
9382         if (rc)
9383                 goto clean2;    /* bft, rq, ioaccel */
9384         return 0;
9385
9386 clean2: /* bft, rq, ioaccel */
9387         kfree(h->blockFetchTable);
9388         h->blockFetchTable = NULL;
9389 clean1: /* rq, ioaccel */
9390         hpsa_free_reply_queues(h);
9391         hpsa_free_ioaccel1_cmd_and_bft(h);
9392         hpsa_free_ioaccel2_cmd_and_bft(h);
9393         return rc;
9394 }
9395
9396 static int is_accelerated_cmd(struct CommandList *c)
9397 {
9398         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9399 }
9400
9401 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9402 {
9403         struct CommandList *c = NULL;
9404         int i, accel_cmds_out;
9405         int refcount;
9406
9407         do { /* wait for all outstanding ioaccel commands to drain out */
9408                 accel_cmds_out = 0;
9409                 for (i = 0; i < h->nr_cmds; i++) {
9410                         c = h->cmd_pool + i;
9411                         refcount = atomic_inc_return(&c->refcount);
9412                         if (refcount > 1) /* Command is allocated */
9413                                 accel_cmds_out += is_accelerated_cmd(c);
9414                         cmd_free(h, c);
9415                 }
9416                 if (accel_cmds_out <= 0)
9417                         break;
9418                 msleep(100);
9419         } while (1);
9420 }
9421
9422 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9423                                 struct hpsa_sas_port *hpsa_sas_port)
9424 {
9425         struct hpsa_sas_phy *hpsa_sas_phy;
9426         struct sas_phy *phy;
9427
9428         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9429         if (!hpsa_sas_phy)
9430                 return NULL;
9431
9432         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9433                 hpsa_sas_port->next_phy_index);
9434         if (!phy) {
9435                 kfree(hpsa_sas_phy);
9436                 return NULL;
9437         }
9438
9439         hpsa_sas_port->next_phy_index++;
9440         hpsa_sas_phy->phy = phy;
9441         hpsa_sas_phy->parent_port = hpsa_sas_port;
9442
9443         return hpsa_sas_phy;
9444 }
9445
9446 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9447 {
9448         struct sas_phy *phy = hpsa_sas_phy->phy;
9449
9450         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9451         if (hpsa_sas_phy->added_to_port)
9452                 list_del(&hpsa_sas_phy->phy_list_entry);
9453         sas_phy_delete(phy);
9454         kfree(hpsa_sas_phy);
9455 }
9456
9457 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9458 {
9459         int rc;
9460         struct hpsa_sas_port *hpsa_sas_port;
9461         struct sas_phy *phy;
9462         struct sas_identify *identify;
9463
9464         hpsa_sas_port = hpsa_sas_phy->parent_port;
9465         phy = hpsa_sas_phy->phy;
9466
9467         identify = &phy->identify;
9468         memset(identify, 0, sizeof(*identify));
9469         identify->sas_address = hpsa_sas_port->sas_address;
9470         identify->device_type = SAS_END_DEVICE;
9471         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9472         identify->target_port_protocols = SAS_PROTOCOL_STP;
9473         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9474         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9475         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9476         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9477         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9478
9479         rc = sas_phy_add(hpsa_sas_phy->phy);
9480         if (rc)
9481                 return rc;
9482
9483         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9484         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9485                         &hpsa_sas_port->phy_list_head);
9486         hpsa_sas_phy->added_to_port = true;
9487
9488         return 0;
9489 }
9490
9491 static int
9492         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9493                                 struct sas_rphy *rphy)
9494 {
9495         struct sas_identify *identify;
9496
9497         identify = &rphy->identify;
9498         identify->sas_address = hpsa_sas_port->sas_address;
9499         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9500         identify->target_port_protocols = SAS_PROTOCOL_STP;
9501
9502         return sas_rphy_add(rphy);
9503 }
9504
9505 static struct hpsa_sas_port
9506         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9507                                 u64 sas_address)
9508 {
9509         int rc;
9510         struct hpsa_sas_port *hpsa_sas_port;
9511         struct sas_port *port;
9512
9513         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9514         if (!hpsa_sas_port)
9515                 return NULL;
9516
9517         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9518         hpsa_sas_port->parent_node = hpsa_sas_node;
9519
9520         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9521         if (!port)
9522                 goto free_hpsa_port;
9523
9524         rc = sas_port_add(port);
9525         if (rc)
9526                 goto free_sas_port;
9527
9528         hpsa_sas_port->port = port;
9529         hpsa_sas_port->sas_address = sas_address;
9530         list_add_tail(&hpsa_sas_port->port_list_entry,
9531                         &hpsa_sas_node->port_list_head);
9532
9533         return hpsa_sas_port;
9534
9535 free_sas_port:
9536         sas_port_free(port);
9537 free_hpsa_port:
9538         kfree(hpsa_sas_port);
9539
9540         return NULL;
9541 }
9542
9543 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9544 {
9545         struct hpsa_sas_phy *hpsa_sas_phy;
9546         struct hpsa_sas_phy *next;
9547
9548         list_for_each_entry_safe(hpsa_sas_phy, next,
9549                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9550                 hpsa_free_sas_phy(hpsa_sas_phy);
9551
9552         sas_port_delete(hpsa_sas_port->port);
9553         list_del(&hpsa_sas_port->port_list_entry);
9554         kfree(hpsa_sas_port);
9555 }
9556
9557 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9558 {
9559         struct hpsa_sas_node *hpsa_sas_node;
9560
9561         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9562         if (hpsa_sas_node) {
9563                 hpsa_sas_node->parent_dev = parent_dev;
9564                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9565         }
9566
9567         return hpsa_sas_node;
9568 }
9569
9570 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9571 {
9572         struct hpsa_sas_port *hpsa_sas_port;
9573         struct hpsa_sas_port *next;
9574
9575         if (!hpsa_sas_node)
9576                 return;
9577
9578         list_for_each_entry_safe(hpsa_sas_port, next,
9579                         &hpsa_sas_node->port_list_head, port_list_entry)
9580                 hpsa_free_sas_port(hpsa_sas_port);
9581
9582         kfree(hpsa_sas_node);
9583 }
9584
9585 static struct hpsa_scsi_dev_t
9586         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9587                                         struct sas_rphy *rphy)
9588 {
9589         int i;
9590         struct hpsa_scsi_dev_t *device;
9591
9592         for (i = 0; i < h->ndevices; i++) {
9593                 device = h->dev[i];
9594                 if (!device->sas_port)
9595                         continue;
9596                 if (device->sas_port->rphy == rphy)
9597                         return device;
9598         }
9599
9600         return NULL;
9601 }
9602
9603 static int hpsa_add_sas_host(struct ctlr_info *h)
9604 {
9605         int rc;
9606         struct device *parent_dev;
9607         struct hpsa_sas_node *hpsa_sas_node;
9608         struct hpsa_sas_port *hpsa_sas_port;
9609         struct hpsa_sas_phy *hpsa_sas_phy;
9610
9611         parent_dev = &h->scsi_host->shost_dev;
9612
9613         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9614         if (!hpsa_sas_node)
9615                 return -ENOMEM;
9616
9617         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9618         if (!hpsa_sas_port) {
9619                 rc = -ENODEV;
9620                 goto free_sas_node;
9621         }
9622
9623         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9624         if (!hpsa_sas_phy) {
9625                 rc = -ENODEV;
9626                 goto free_sas_port;
9627         }
9628
9629         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9630         if (rc)
9631                 goto free_sas_phy;
9632
9633         h->sas_host = hpsa_sas_node;
9634
9635         return 0;
9636
9637 free_sas_phy:
9638         hpsa_free_sas_phy(hpsa_sas_phy);
9639 free_sas_port:
9640         hpsa_free_sas_port(hpsa_sas_port);
9641 free_sas_node:
9642         hpsa_free_sas_node(hpsa_sas_node);
9643
9644         return rc;
9645 }
9646
9647 static void hpsa_delete_sas_host(struct ctlr_info *h)
9648 {
9649         hpsa_free_sas_node(h->sas_host);
9650 }
9651
9652 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9653                                 struct hpsa_scsi_dev_t *device)
9654 {
9655         int rc;
9656         struct hpsa_sas_port *hpsa_sas_port;
9657         struct sas_rphy *rphy;
9658
9659         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9660         if (!hpsa_sas_port)
9661                 return -ENOMEM;
9662
9663         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9664         if (!rphy) {
9665                 rc = -ENODEV;
9666                 goto free_sas_port;
9667         }
9668
9669         hpsa_sas_port->rphy = rphy;
9670         device->sas_port = hpsa_sas_port;
9671
9672         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9673         if (rc)
9674                 goto free_sas_port;
9675
9676         return 0;
9677
9678 free_sas_port:
9679         hpsa_free_sas_port(hpsa_sas_port);
9680         device->sas_port = NULL;
9681
9682         return rc;
9683 }
9684
9685 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9686 {
9687         if (device->sas_port) {
9688                 hpsa_free_sas_port(device->sas_port);
9689                 device->sas_port = NULL;
9690         }
9691 }
9692
9693 static int
9694 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9695 {
9696         return 0;
9697 }
9698
9699 static int
9700 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9701 {
9702         struct Scsi_Host *shost = phy_to_shost(rphy);
9703         struct ctlr_info *h;
9704         struct hpsa_scsi_dev_t *sd;
9705
9706         if (!shost)
9707                 return -ENXIO;
9708
9709         h = shost_to_hba(shost);
9710
9711         if (!h)
9712                 return -ENXIO;
9713
9714         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9715         if (!sd)
9716                 return -ENXIO;
9717
9718         *identifier = sd->eli;
9719
9720         return 0;
9721 }
9722
9723 static int
9724 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9725 {
9726         return -ENXIO;
9727 }
9728
9729 static int
9730 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9731 {
9732         return 0;
9733 }
9734
9735 static int
9736 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9737 {
9738         return 0;
9739 }
9740
9741 static int
9742 hpsa_sas_phy_setup(struct sas_phy *phy)
9743 {
9744         return 0;
9745 }
9746
9747 static void
9748 hpsa_sas_phy_release(struct sas_phy *phy)
9749 {
9750 }
9751
9752 static int
9753 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9754 {
9755         return -EINVAL;
9756 }
9757
9758 static struct sas_function_template hpsa_sas_transport_functions = {
9759         .get_linkerrors = hpsa_sas_get_linkerrors,
9760         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9761         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9762         .phy_reset = hpsa_sas_phy_reset,
9763         .phy_enable = hpsa_sas_phy_enable,
9764         .phy_setup = hpsa_sas_phy_setup,
9765         .phy_release = hpsa_sas_phy_release,
9766         .set_phy_speed = hpsa_sas_phy_speed,
9767 };
9768
9769 /*
9770  *  This is it.  Register the PCI driver information for the cards we control
9771  *  the OS will call our registered routines when it finds one of our cards.
9772  */
9773 static int __init hpsa_init(void)
9774 {
9775         int rc;
9776
9777         hpsa_sas_transport_template =
9778                 sas_attach_transport(&hpsa_sas_transport_functions);
9779         if (!hpsa_sas_transport_template)
9780                 return -ENODEV;
9781
9782         rc = pci_register_driver(&hpsa_pci_driver);
9783
9784         if (rc)
9785                 sas_release_transport(hpsa_sas_transport_template);
9786
9787         return rc;
9788 }
9789
9790 static void __exit hpsa_cleanup(void)
9791 {
9792         pci_unregister_driver(&hpsa_pci_driver);
9793         sas_release_transport(hpsa_sas_transport_template);
9794 }
9795
9796 static void __attribute__((unused)) verify_offsets(void)
9797 {
9798 #define VERIFY_OFFSET(member, offset) \
9799         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9800
9801         VERIFY_OFFSET(structure_size, 0);
9802         VERIFY_OFFSET(volume_blk_size, 4);
9803         VERIFY_OFFSET(volume_blk_cnt, 8);
9804         VERIFY_OFFSET(phys_blk_shift, 16);
9805         VERIFY_OFFSET(parity_rotation_shift, 17);
9806         VERIFY_OFFSET(strip_size, 18);
9807         VERIFY_OFFSET(disk_starting_blk, 20);
9808         VERIFY_OFFSET(disk_blk_cnt, 28);
9809         VERIFY_OFFSET(data_disks_per_row, 36);
9810         VERIFY_OFFSET(metadata_disks_per_row, 38);
9811         VERIFY_OFFSET(row_cnt, 40);
9812         VERIFY_OFFSET(layout_map_count, 42);
9813         VERIFY_OFFSET(flags, 44);
9814         VERIFY_OFFSET(dekindex, 46);
9815         /* VERIFY_OFFSET(reserved, 48 */
9816         VERIFY_OFFSET(data, 64);
9817
9818 #undef VERIFY_OFFSET
9819
9820 #define VERIFY_OFFSET(member, offset) \
9821         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9822
9823         VERIFY_OFFSET(IU_type, 0);
9824         VERIFY_OFFSET(direction, 1);
9825         VERIFY_OFFSET(reply_queue, 2);
9826         /* VERIFY_OFFSET(reserved1, 3);  */
9827         VERIFY_OFFSET(scsi_nexus, 4);
9828         VERIFY_OFFSET(Tag, 8);
9829         VERIFY_OFFSET(cdb, 16);
9830         VERIFY_OFFSET(cciss_lun, 32);
9831         VERIFY_OFFSET(data_len, 40);
9832         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9833         VERIFY_OFFSET(sg_count, 45);
9834         /* VERIFY_OFFSET(reserved3 */
9835         VERIFY_OFFSET(err_ptr, 48);
9836         VERIFY_OFFSET(err_len, 56);
9837         /* VERIFY_OFFSET(reserved4  */
9838         VERIFY_OFFSET(sg, 64);
9839
9840 #undef VERIFY_OFFSET
9841
9842 #define VERIFY_OFFSET(member, offset) \
9843         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9844
9845         VERIFY_OFFSET(dev_handle, 0x00);
9846         VERIFY_OFFSET(reserved1, 0x02);
9847         VERIFY_OFFSET(function, 0x03);
9848         VERIFY_OFFSET(reserved2, 0x04);
9849         VERIFY_OFFSET(err_info, 0x0C);
9850         VERIFY_OFFSET(reserved3, 0x10);
9851         VERIFY_OFFSET(err_info_len, 0x12);
9852         VERIFY_OFFSET(reserved4, 0x13);
9853         VERIFY_OFFSET(sgl_offset, 0x14);
9854         VERIFY_OFFSET(reserved5, 0x15);
9855         VERIFY_OFFSET(transfer_len, 0x1C);
9856         VERIFY_OFFSET(reserved6, 0x20);
9857         VERIFY_OFFSET(io_flags, 0x24);
9858         VERIFY_OFFSET(reserved7, 0x26);
9859         VERIFY_OFFSET(LUN, 0x34);
9860         VERIFY_OFFSET(control, 0x3C);
9861         VERIFY_OFFSET(CDB, 0x40);
9862         VERIFY_OFFSET(reserved8, 0x50);
9863         VERIFY_OFFSET(host_context_flags, 0x60);
9864         VERIFY_OFFSET(timeout_sec, 0x62);
9865         VERIFY_OFFSET(ReplyQueue, 0x64);
9866         VERIFY_OFFSET(reserved9, 0x65);
9867         VERIFY_OFFSET(tag, 0x68);
9868         VERIFY_OFFSET(host_addr, 0x70);
9869         VERIFY_OFFSET(CISS_LUN, 0x78);
9870         VERIFY_OFFSET(SG, 0x78 + 8);
9871 #undef VERIFY_OFFSET
9872 }
9873
9874 module_init(hpsa_init);
9875 module_exit(hpsa_cleanup);