Merge tag 'perf-core-for-mingo-5.1-20190311' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160         {0x40700E11, "Smart Array 5300", &SA5A_access},
161         {0x40800E11, "Smart Array 5i", &SA5B_access},
162         {0x40820E11, "Smart Array 532", &SA5B_access},
163         {0x40830E11, "Smart Array 5312", &SA5B_access},
164         {0x409A0E11, "Smart Array 641", &SA5A_access},
165         {0x409B0E11, "Smart Array 642", &SA5A_access},
166         {0x409C0E11, "Smart Array 6400", &SA5A_access},
167         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168         {0x40910E11, "Smart Array 6i", &SA5A_access},
169         {0x3225103C, "Smart Array P600", &SA5A_access},
170         {0x3223103C, "Smart Array P800", &SA5A_access},
171         {0x3234103C, "Smart Array P400", &SA5A_access},
172         {0x3235103C, "Smart Array P400i", &SA5A_access},
173         {0x3211103C, "Smart Array E200i", &SA5A_access},
174         {0x3212103C, "Smart Array E200", &SA5A_access},
175         {0x3213103C, "Smart Array E200i", &SA5A_access},
176         {0x3214103C, "Smart Array E200i", &SA5A_access},
177         {0x3215103C, "Smart Array E200i", &SA5A_access},
178         {0x3237103C, "Smart Array E500", &SA5A_access},
179         {0x323D103C, "Smart Array P700m", &SA5A_access},
180         {0x3241103C, "Smart Array P212", &SA5_access},
181         {0x3243103C, "Smart Array P410", &SA5_access},
182         {0x3245103C, "Smart Array P410i", &SA5_access},
183         {0x3247103C, "Smart Array P411", &SA5_access},
184         {0x3249103C, "Smart Array P812", &SA5_access},
185         {0x324A103C, "Smart Array P712m", &SA5_access},
186         {0x324B103C, "Smart Array P711m", &SA5_access},
187         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188         {0x3350103C, "Smart Array P222", &SA5_access},
189         {0x3351103C, "Smart Array P420", &SA5_access},
190         {0x3352103C, "Smart Array P421", &SA5_access},
191         {0x3353103C, "Smart Array P822", &SA5_access},
192         {0x3354103C, "Smart Array P420i", &SA5_access},
193         {0x3355103C, "Smart Array P220i", &SA5_access},
194         {0x3356103C, "Smart Array P721m", &SA5_access},
195         {0x1920103C, "Smart Array P430i", &SA5_access},
196         {0x1921103C, "Smart Array P830i", &SA5_access},
197         {0x1922103C, "Smart Array P430", &SA5_access},
198         {0x1923103C, "Smart Array P431", &SA5_access},
199         {0x1924103C, "Smart Array P830", &SA5_access},
200         {0x1925103C, "Smart Array P831", &SA5_access},
201         {0x1926103C, "Smart Array P731m", &SA5_access},
202         {0x1928103C, "Smart Array P230i", &SA5_access},
203         {0x1929103C, "Smart Array P530", &SA5_access},
204         {0x21BD103C, "Smart Array P244br", &SA5_access},
205         {0x21BE103C, "Smart Array P741m", &SA5_access},
206         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207         {0x21C0103C, "Smart Array P440ar", &SA5_access},
208         {0x21C1103C, "Smart Array P840ar", &SA5_access},
209         {0x21C2103C, "Smart Array P440", &SA5_access},
210         {0x21C3103C, "Smart Array P441", &SA5_access},
211         {0x21C4103C, "Smart Array", &SA5_access},
212         {0x21C5103C, "Smart Array P841", &SA5_access},
213         {0x21C6103C, "Smart HBA H244br", &SA5_access},
214         {0x21C7103C, "Smart HBA H240", &SA5_access},
215         {0x21C8103C, "Smart HBA H241", &SA5_access},
216         {0x21C9103C, "Smart Array", &SA5_access},
217         {0x21CA103C, "Smart Array P246br", &SA5_access},
218         {0x21CB103C, "Smart Array P840", &SA5_access},
219         {0x21CC103C, "Smart Array", &SA5_access},
220         {0x21CD103C, "Smart Array", &SA5_access},
221         {0x21CE103C, "Smart HBA", &SA5_access},
222         {0x05809005, "SmartHBA-SA", &SA5_access},
223         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240                         struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244                 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
255                       void __user *arg);
256
257 #ifdef CONFIG_COMPAT
258 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
259         void __user *arg);
260 #endif
261
262 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
263 static struct CommandList *cmd_alloc(struct ctlr_info *h);
264 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
266                                             struct scsi_cmnd *scmd);
267 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
268         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
269         int cmd_type);
270 static void hpsa_free_cmd_pool(struct ctlr_info *h);
271 #define VPD_PAGE (1 << 8)
272 #define HPSA_SIMPLE_ERROR_BITS 0x03
273
274 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
275 static void hpsa_scan_start(struct Scsi_Host *);
276 static int hpsa_scan_finished(struct Scsi_Host *sh,
277         unsigned long elapsed_time);
278 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
279
280 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
281 static int hpsa_slave_alloc(struct scsi_device *sdev);
282 static int hpsa_slave_configure(struct scsi_device *sdev);
283 static void hpsa_slave_destroy(struct scsi_device *sdev);
284
285 static void hpsa_update_scsi_devices(struct ctlr_info *h);
286 static int check_for_unit_attention(struct ctlr_info *h,
287         struct CommandList *c);
288 static void check_ioctl_unit_attention(struct ctlr_info *h,
289         struct CommandList *c);
290 /* performant mode helper functions */
291 static void calc_bucket_map(int *bucket, int num_buckets,
292         int nsgs, int min_blocks, u32 *bucket_map);
293 static void hpsa_free_performant_mode(struct ctlr_info *h);
294 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
295 static inline u32 next_command(struct ctlr_info *h, u8 q);
296 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
297                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
298                                u64 *cfg_offset);
299 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
300                                     unsigned long *memory_bar);
301 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
302                                 bool *legacy_board);
303 static int wait_for_device_to_become_ready(struct ctlr_info *h,
304                                            unsigned char lunaddr[],
305                                            int reply_queue);
306 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
307                                      int wait_for_ready);
308 static inline void finish_cmd(struct CommandList *c);
309 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
310 #define BOARD_NOT_READY 0
311 #define BOARD_READY 1
312 static void hpsa_drain_accel_commands(struct ctlr_info *h);
313 static void hpsa_flush_cache(struct ctlr_info *h);
314 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
315         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
316         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
317 static void hpsa_command_resubmit_worker(struct work_struct *work);
318 static u32 lockup_detected(struct ctlr_info *h);
319 static int detect_controller_lockup(struct ctlr_info *h);
320 static void hpsa_disable_rld_caching(struct ctlr_info *h);
321 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
322         struct ReportExtendedLUNdata *buf, int bufsize);
323 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
324         unsigned char scsi3addr[], u8 page);
325 static int hpsa_luns_changed(struct ctlr_info *h);
326 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
327                                struct hpsa_scsi_dev_t *dev,
328                                unsigned char *scsi3addr);
329
330 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
331 {
332         unsigned long *priv = shost_priv(sdev->host);
333         return (struct ctlr_info *) *priv;
334 }
335
336 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
337 {
338         unsigned long *priv = shost_priv(sh);
339         return (struct ctlr_info *) *priv;
340 }
341
342 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
343 {
344         return c->scsi_cmd == SCSI_CMD_IDLE;
345 }
346
347 static inline bool hpsa_is_pending_event(struct CommandList *c)
348 {
349         return c->reset_pending;
350 }
351
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354                         u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356         struct scsi_sense_hdr sshdr;
357         bool rc;
358
359         *sense_key = -1;
360         *asc = -1;
361         *ascq = -1;
362
363         if (sense_data_len < 1)
364                 return;
365
366         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367         if (rc) {
368                 *sense_key = sshdr.sense_key;
369                 *asc = sshdr.asc;
370                 *ascq = sshdr.ascq;
371         }
372 }
373
374 static int check_for_unit_attention(struct ctlr_info *h,
375         struct CommandList *c)
376 {
377         u8 sense_key, asc, ascq;
378         int sense_len;
379
380         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381                 sense_len = sizeof(c->err_info->SenseInfo);
382         else
383                 sense_len = c->err_info->SenseLen;
384
385         decode_sense_data(c->err_info->SenseInfo, sense_len,
386                                 &sense_key, &asc, &ascq);
387         if (sense_key != UNIT_ATTENTION || asc == 0xff)
388                 return 0;
389
390         switch (asc) {
391         case STATE_CHANGED:
392                 dev_warn(&h->pdev->dev,
393                         "%s: a state change detected, command retried\n",
394                         h->devname);
395                 break;
396         case LUN_FAILED:
397                 dev_warn(&h->pdev->dev,
398                         "%s: LUN failure detected\n", h->devname);
399                 break;
400         case REPORT_LUNS_CHANGED:
401                 dev_warn(&h->pdev->dev,
402                         "%s: report LUN data changed\n", h->devname);
403         /*
404          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405          * target (array) devices.
406          */
407                 break;
408         case POWER_OR_RESET:
409                 dev_warn(&h->pdev->dev,
410                         "%s: a power on or device reset detected\n",
411                         h->devname);
412                 break;
413         case UNIT_ATTENTION_CLEARED:
414                 dev_warn(&h->pdev->dev,
415                         "%s: unit attention cleared by another initiator\n",
416                         h->devname);
417                 break;
418         default:
419                 dev_warn(&h->pdev->dev,
420                         "%s: unknown unit attention detected\n",
421                         h->devname);
422                 break;
423         }
424         return 1;
425 }
426
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432                 return 0;
433         dev_warn(&h->pdev->dev, HPSA "device busy");
434         return 1;
435 }
436
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439                 struct device_attribute *attr, char *buf)
440 {
441         int ld;
442         struct ctlr_info *h;
443         struct Scsi_Host *shost = class_to_shost(dev);
444
445         h = shost_to_hba(shost);
446         ld = lockup_detected(h);
447
448         return sprintf(buf, "ld=%d\n", ld);
449 }
450
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452                                          struct device_attribute *attr,
453                                          const char *buf, size_t count)
454 {
455         int status, len;
456         struct ctlr_info *h;
457         struct Scsi_Host *shost = class_to_shost(dev);
458         char tmpbuf[10];
459
460         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461                 return -EACCES;
462         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463         strncpy(tmpbuf, buf, len);
464         tmpbuf[len] = '\0';
465         if (sscanf(tmpbuf, "%d", &status) != 1)
466                 return -EINVAL;
467         h = shost_to_hba(shost);
468         h->acciopath_status = !!status;
469         dev_warn(&h->pdev->dev,
470                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471                 h->acciopath_status ? "enabled" : "disabled");
472         return count;
473 }
474
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476                                          struct device_attribute *attr,
477                                          const char *buf, size_t count)
478 {
479         int debug_level, len;
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482         char tmpbuf[10];
483
484         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485                 return -EACCES;
486         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487         strncpy(tmpbuf, buf, len);
488         tmpbuf[len] = '\0';
489         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490                 return -EINVAL;
491         if (debug_level < 0)
492                 debug_level = 0;
493         h = shost_to_hba(shost);
494         h->raid_offload_debug = debug_level;
495         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496                 h->raid_offload_debug);
497         return count;
498 }
499
500 static ssize_t host_store_rescan(struct device *dev,
501                                  struct device_attribute *attr,
502                                  const char *buf, size_t count)
503 {
504         struct ctlr_info *h;
505         struct Scsi_Host *shost = class_to_shost(dev);
506         h = shost_to_hba(shost);
507         hpsa_scan_start(h->scsi_host);
508         return count;
509 }
510
511 static ssize_t host_show_firmware_revision(struct device *dev,
512              struct device_attribute *attr, char *buf)
513 {
514         struct ctlr_info *h;
515         struct Scsi_Host *shost = class_to_shost(dev);
516         unsigned char *fwrev;
517
518         h = shost_to_hba(shost);
519         if (!h->hba_inquiry_data)
520                 return 0;
521         fwrev = &h->hba_inquiry_data[32];
522         return snprintf(buf, 20, "%c%c%c%c\n",
523                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
524 }
525
526 static ssize_t host_show_commands_outstanding(struct device *dev,
527              struct device_attribute *attr, char *buf)
528 {
529         struct Scsi_Host *shost = class_to_shost(dev);
530         struct ctlr_info *h = shost_to_hba(shost);
531
532         return snprintf(buf, 20, "%d\n",
533                         atomic_read(&h->commands_outstanding));
534 }
535
536 static ssize_t host_show_transport_mode(struct device *dev,
537         struct device_attribute *attr, char *buf)
538 {
539         struct ctlr_info *h;
540         struct Scsi_Host *shost = class_to_shost(dev);
541
542         h = shost_to_hba(shost);
543         return snprintf(buf, 20, "%s\n",
544                 h->transMethod & CFGTBL_Trans_Performant ?
545                         "performant" : "simple");
546 }
547
548 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
549         struct device_attribute *attr, char *buf)
550 {
551         struct ctlr_info *h;
552         struct Scsi_Host *shost = class_to_shost(dev);
553
554         h = shost_to_hba(shost);
555         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
556                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
557 }
558
559 /* List of controllers which cannot be hard reset on kexec with reset_devices */
560 static u32 unresettable_controller[] = {
561         0x324a103C, /* Smart Array P712m */
562         0x324b103C, /* Smart Array P711m */
563         0x3223103C, /* Smart Array P800 */
564         0x3234103C, /* Smart Array P400 */
565         0x3235103C, /* Smart Array P400i */
566         0x3211103C, /* Smart Array E200i */
567         0x3212103C, /* Smart Array E200 */
568         0x3213103C, /* Smart Array E200i */
569         0x3214103C, /* Smart Array E200i */
570         0x3215103C, /* Smart Array E200i */
571         0x3237103C, /* Smart Array E500 */
572         0x323D103C, /* Smart Array P700m */
573         0x40800E11, /* Smart Array 5i */
574         0x409C0E11, /* Smart Array 6400 */
575         0x409D0E11, /* Smart Array 6400 EM */
576         0x40700E11, /* Smart Array 5300 */
577         0x40820E11, /* Smart Array 532 */
578         0x40830E11, /* Smart Array 5312 */
579         0x409A0E11, /* Smart Array 641 */
580         0x409B0E11, /* Smart Array 642 */
581         0x40910E11, /* Smart Array 6i */
582 };
583
584 /* List of controllers which cannot even be soft reset */
585 static u32 soft_unresettable_controller[] = {
586         0x40800E11, /* Smart Array 5i */
587         0x40700E11, /* Smart Array 5300 */
588         0x40820E11, /* Smart Array 532 */
589         0x40830E11, /* Smart Array 5312 */
590         0x409A0E11, /* Smart Array 641 */
591         0x409B0E11, /* Smart Array 642 */
592         0x40910E11, /* Smart Array 6i */
593         /* Exclude 640x boards.  These are two pci devices in one slot
594          * which share a battery backed cache module.  One controls the
595          * cache, the other accesses the cache through the one that controls
596          * it.  If we reset the one controlling the cache, the other will
597          * likely not be happy.  Just forbid resetting this conjoined mess.
598          * The 640x isn't really supported by hpsa anyway.
599          */
600         0x409C0E11, /* Smart Array 6400 */
601         0x409D0E11, /* Smart Array 6400 EM */
602 };
603
604 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
605 {
606         int i;
607
608         for (i = 0; i < nelems; i++)
609                 if (a[i] == board_id)
610                         return 1;
611         return 0;
612 }
613
614 static int ctlr_is_hard_resettable(u32 board_id)
615 {
616         return !board_id_in_array(unresettable_controller,
617                         ARRAY_SIZE(unresettable_controller), board_id);
618 }
619
620 static int ctlr_is_soft_resettable(u32 board_id)
621 {
622         return !board_id_in_array(soft_unresettable_controller,
623                         ARRAY_SIZE(soft_unresettable_controller), board_id);
624 }
625
626 static int ctlr_is_resettable(u32 board_id)
627 {
628         return ctlr_is_hard_resettable(board_id) ||
629                 ctlr_is_soft_resettable(board_id);
630 }
631
632 static ssize_t host_show_resettable(struct device *dev,
633         struct device_attribute *attr, char *buf)
634 {
635         struct ctlr_info *h;
636         struct Scsi_Host *shost = class_to_shost(dev);
637
638         h = shost_to_hba(shost);
639         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
640 }
641
642 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
643 {
644         return (scsi3addr[3] & 0xC0) == 0x40;
645 }
646
647 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
648         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
649 };
650 #define HPSA_RAID_0     0
651 #define HPSA_RAID_4     1
652 #define HPSA_RAID_1     2       /* also used for RAID 10 */
653 #define HPSA_RAID_5     3       /* also used for RAID 50 */
654 #define HPSA_RAID_51    4
655 #define HPSA_RAID_6     5       /* also used for RAID 60 */
656 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
657 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
658 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
659
660 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
661 {
662         return !device->physical_device;
663 }
664
665 static ssize_t raid_level_show(struct device *dev,
666              struct device_attribute *attr, char *buf)
667 {
668         ssize_t l = 0;
669         unsigned char rlevel;
670         struct ctlr_info *h;
671         struct scsi_device *sdev;
672         struct hpsa_scsi_dev_t *hdev;
673         unsigned long flags;
674
675         sdev = to_scsi_device(dev);
676         h = sdev_to_hba(sdev);
677         spin_lock_irqsave(&h->lock, flags);
678         hdev = sdev->hostdata;
679         if (!hdev) {
680                 spin_unlock_irqrestore(&h->lock, flags);
681                 return -ENODEV;
682         }
683
684         /* Is this even a logical drive? */
685         if (!is_logical_device(hdev)) {
686                 spin_unlock_irqrestore(&h->lock, flags);
687                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
688                 return l;
689         }
690
691         rlevel = hdev->raid_level;
692         spin_unlock_irqrestore(&h->lock, flags);
693         if (rlevel > RAID_UNKNOWN)
694                 rlevel = RAID_UNKNOWN;
695         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
696         return l;
697 }
698
699 static ssize_t lunid_show(struct device *dev,
700              struct device_attribute *attr, char *buf)
701 {
702         struct ctlr_info *h;
703         struct scsi_device *sdev;
704         struct hpsa_scsi_dev_t *hdev;
705         unsigned long flags;
706         unsigned char lunid[8];
707
708         sdev = to_scsi_device(dev);
709         h = sdev_to_hba(sdev);
710         spin_lock_irqsave(&h->lock, flags);
711         hdev = sdev->hostdata;
712         if (!hdev) {
713                 spin_unlock_irqrestore(&h->lock, flags);
714                 return -ENODEV;
715         }
716         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
717         spin_unlock_irqrestore(&h->lock, flags);
718         return snprintf(buf, 20, "0x%8phN\n", lunid);
719 }
720
721 static ssize_t unique_id_show(struct device *dev,
722              struct device_attribute *attr, char *buf)
723 {
724         struct ctlr_info *h;
725         struct scsi_device *sdev;
726         struct hpsa_scsi_dev_t *hdev;
727         unsigned long flags;
728         unsigned char sn[16];
729
730         sdev = to_scsi_device(dev);
731         h = sdev_to_hba(sdev);
732         spin_lock_irqsave(&h->lock, flags);
733         hdev = sdev->hostdata;
734         if (!hdev) {
735                 spin_unlock_irqrestore(&h->lock, flags);
736                 return -ENODEV;
737         }
738         memcpy(sn, hdev->device_id, sizeof(sn));
739         spin_unlock_irqrestore(&h->lock, flags);
740         return snprintf(buf, 16 * 2 + 2,
741                         "%02X%02X%02X%02X%02X%02X%02X%02X"
742                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
743                         sn[0], sn[1], sn[2], sn[3],
744                         sn[4], sn[5], sn[6], sn[7],
745                         sn[8], sn[9], sn[10], sn[11],
746                         sn[12], sn[13], sn[14], sn[15]);
747 }
748
749 static ssize_t sas_address_show(struct device *dev,
750               struct device_attribute *attr, char *buf)
751 {
752         struct ctlr_info *h;
753         struct scsi_device *sdev;
754         struct hpsa_scsi_dev_t *hdev;
755         unsigned long flags;
756         u64 sas_address;
757
758         sdev = to_scsi_device(dev);
759         h = sdev_to_hba(sdev);
760         spin_lock_irqsave(&h->lock, flags);
761         hdev = sdev->hostdata;
762         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
763                 spin_unlock_irqrestore(&h->lock, flags);
764                 return -ENODEV;
765         }
766         sas_address = hdev->sas_address;
767         spin_unlock_irqrestore(&h->lock, flags);
768
769         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
770 }
771
772 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
773              struct device_attribute *attr, char *buf)
774 {
775         struct ctlr_info *h;
776         struct scsi_device *sdev;
777         struct hpsa_scsi_dev_t *hdev;
778         unsigned long flags;
779         int offload_enabled;
780
781         sdev = to_scsi_device(dev);
782         h = sdev_to_hba(sdev);
783         spin_lock_irqsave(&h->lock, flags);
784         hdev = sdev->hostdata;
785         if (!hdev) {
786                 spin_unlock_irqrestore(&h->lock, flags);
787                 return -ENODEV;
788         }
789         offload_enabled = hdev->offload_enabled;
790         spin_unlock_irqrestore(&h->lock, flags);
791
792         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
793                 return snprintf(buf, 20, "%d\n", offload_enabled);
794         else
795                 return snprintf(buf, 40, "%s\n",
796                                 "Not applicable for a controller");
797 }
798
799 #define MAX_PATHS 8
800 static ssize_t path_info_show(struct device *dev,
801              struct device_attribute *attr, char *buf)
802 {
803         struct ctlr_info *h;
804         struct scsi_device *sdev;
805         struct hpsa_scsi_dev_t *hdev;
806         unsigned long flags;
807         int i;
808         int output_len = 0;
809         u8 box;
810         u8 bay;
811         u8 path_map_index = 0;
812         char *active;
813         unsigned char phys_connector[2];
814
815         sdev = to_scsi_device(dev);
816         h = sdev_to_hba(sdev);
817         spin_lock_irqsave(&h->devlock, flags);
818         hdev = sdev->hostdata;
819         if (!hdev) {
820                 spin_unlock_irqrestore(&h->devlock, flags);
821                 return -ENODEV;
822         }
823
824         bay = hdev->bay;
825         for (i = 0; i < MAX_PATHS; i++) {
826                 path_map_index = 1<<i;
827                 if (i == hdev->active_path_index)
828                         active = "Active";
829                 else if (hdev->path_map & path_map_index)
830                         active = "Inactive";
831                 else
832                         continue;
833
834                 output_len += scnprintf(buf + output_len,
835                                 PAGE_SIZE - output_len,
836                                 "[%d:%d:%d:%d] %20.20s ",
837                                 h->scsi_host->host_no,
838                                 hdev->bus, hdev->target, hdev->lun,
839                                 scsi_device_type(hdev->devtype));
840
841                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
842                         output_len += scnprintf(buf + output_len,
843                                                 PAGE_SIZE - output_len,
844                                                 "%s\n", active);
845                         continue;
846                 }
847
848                 box = hdev->box[i];
849                 memcpy(&phys_connector, &hdev->phys_connector[i],
850                         sizeof(phys_connector));
851                 if (phys_connector[0] < '0')
852                         phys_connector[0] = '0';
853                 if (phys_connector[1] < '0')
854                         phys_connector[1] = '0';
855                 output_len += scnprintf(buf + output_len,
856                                 PAGE_SIZE - output_len,
857                                 "PORT: %.2s ",
858                                 phys_connector);
859                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
860                         hdev->expose_device) {
861                         if (box == 0 || box == 0xFF) {
862                                 output_len += scnprintf(buf + output_len,
863                                         PAGE_SIZE - output_len,
864                                         "BAY: %hhu %s\n",
865                                         bay, active);
866                         } else {
867                                 output_len += scnprintf(buf + output_len,
868                                         PAGE_SIZE - output_len,
869                                         "BOX: %hhu BAY: %hhu %s\n",
870                                         box, bay, active);
871                         }
872                 } else if (box != 0 && box != 0xFF) {
873                         output_len += scnprintf(buf + output_len,
874                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
875                                 box, active);
876                 } else
877                         output_len += scnprintf(buf + output_len,
878                                 PAGE_SIZE - output_len, "%s\n", active);
879         }
880
881         spin_unlock_irqrestore(&h->devlock, flags);
882         return output_len;
883 }
884
885 static ssize_t host_show_ctlr_num(struct device *dev,
886         struct device_attribute *attr, char *buf)
887 {
888         struct ctlr_info *h;
889         struct Scsi_Host *shost = class_to_shost(dev);
890
891         h = shost_to_hba(shost);
892         return snprintf(buf, 20, "%d\n", h->ctlr);
893 }
894
895 static ssize_t host_show_legacy_board(struct device *dev,
896         struct device_attribute *attr, char *buf)
897 {
898         struct ctlr_info *h;
899         struct Scsi_Host *shost = class_to_shost(dev);
900
901         h = shost_to_hba(shost);
902         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
903 }
904
905 static DEVICE_ATTR_RO(raid_level);
906 static DEVICE_ATTR_RO(lunid);
907 static DEVICE_ATTR_RO(unique_id);
908 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
909 static DEVICE_ATTR_RO(sas_address);
910 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
911                         host_show_hp_ssd_smart_path_enabled, NULL);
912 static DEVICE_ATTR_RO(path_info);
913 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
914                 host_show_hp_ssd_smart_path_status,
915                 host_store_hp_ssd_smart_path_status);
916 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
917                         host_store_raid_offload_debug);
918 static DEVICE_ATTR(firmware_revision, S_IRUGO,
919         host_show_firmware_revision, NULL);
920 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
921         host_show_commands_outstanding, NULL);
922 static DEVICE_ATTR(transport_mode, S_IRUGO,
923         host_show_transport_mode, NULL);
924 static DEVICE_ATTR(resettable, S_IRUGO,
925         host_show_resettable, NULL);
926 static DEVICE_ATTR(lockup_detected, S_IRUGO,
927         host_show_lockup_detected, NULL);
928 static DEVICE_ATTR(ctlr_num, S_IRUGO,
929         host_show_ctlr_num, NULL);
930 static DEVICE_ATTR(legacy_board, S_IRUGO,
931         host_show_legacy_board, NULL);
932
933 static struct device_attribute *hpsa_sdev_attrs[] = {
934         &dev_attr_raid_level,
935         &dev_attr_lunid,
936         &dev_attr_unique_id,
937         &dev_attr_hp_ssd_smart_path_enabled,
938         &dev_attr_path_info,
939         &dev_attr_sas_address,
940         NULL,
941 };
942
943 static struct device_attribute *hpsa_shost_attrs[] = {
944         &dev_attr_rescan,
945         &dev_attr_firmware_revision,
946         &dev_attr_commands_outstanding,
947         &dev_attr_transport_mode,
948         &dev_attr_resettable,
949         &dev_attr_hp_ssd_smart_path_status,
950         &dev_attr_raid_offload_debug,
951         &dev_attr_lockup_detected,
952         &dev_attr_ctlr_num,
953         &dev_attr_legacy_board,
954         NULL,
955 };
956
957 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
958                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
959
960 static struct scsi_host_template hpsa_driver_template = {
961         .module                 = THIS_MODULE,
962         .name                   = HPSA,
963         .proc_name              = HPSA,
964         .queuecommand           = hpsa_scsi_queue_command,
965         .scan_start             = hpsa_scan_start,
966         .scan_finished          = hpsa_scan_finished,
967         .change_queue_depth     = hpsa_change_queue_depth,
968         .this_id                = -1,
969         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970         .ioctl                  = hpsa_ioctl,
971         .slave_alloc            = hpsa_slave_alloc,
972         .slave_configure        = hpsa_slave_configure,
973         .slave_destroy          = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975         .compat_ioctl           = hpsa_compat_ioctl,
976 #endif
977         .sdev_attrs = hpsa_sdev_attrs,
978         .shost_attrs = hpsa_shost_attrs,
979         .max_sectors = 2048,
980         .no_write_same = 1,
981 };
982
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985         u32 a;
986         struct reply_queue_buffer *rq = &h->reply_queue[q];
987
988         if (h->transMethod & CFGTBL_Trans_io_accel1)
989                 return h->access.command_completed(h, q);
990
991         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992                 return h->access.command_completed(h, q);
993
994         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995                 a = rq->head[rq->current_entry];
996                 rq->current_entry++;
997                 atomic_dec(&h->commands_outstanding);
998         } else {
999                 a = FIFO_EMPTY;
1000         }
1001         /* Check for wraparound */
1002         if (rq->current_entry == h->max_commands) {
1003                 rq->current_entry = 0;
1004                 rq->wraparound ^= 1;
1005         }
1006         return a;
1007 }
1008
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042                                         int reply_queue)
1043 {
1044         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046                 if (unlikely(!h->msix_vectors))
1047                         return;
1048                 c->Header.ReplyQueue = reply_queue;
1049         }
1050 }
1051
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053                                                 struct CommandList *c,
1054                                                 int reply_queue)
1055 {
1056         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057
1058         /*
1059          * Tell the controller to post the reply to the queue for this
1060          * processor.  This seems to give the best I/O throughput.
1061          */
1062         cp->ReplyQueue = reply_queue;
1063         /*
1064          * Set the bits in the address sent down to include:
1065          *  - performant mode bit (bit 0)
1066          *  - pull count (bits 1-3)
1067          *  - command type (bits 4-6)
1068          */
1069         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070                                         IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074                                                 struct CommandList *c,
1075                                                 int reply_queue)
1076 {
1077         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078                 &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080         /* Tell the controller to post the reply to the queue for this
1081          * processor.  This seems to give the best I/O throughput.
1082          */
1083         cp->reply_queue = reply_queue;
1084         /* Set the bits in the address sent down to include:
1085          *  - performant mode bit not used in ioaccel mode 2
1086          *  - pull count (bits 0-3)
1087          *  - command type isn't needed for ioaccel2
1088          */
1089         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093                                                 struct CommandList *c,
1094                                                 int reply_queue)
1095 {
1096         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097
1098         /*
1099          * Tell the controller to post the reply to the queue for this
1100          * processor.  This seems to give the best I/O throughput.
1101          */
1102         cp->reply_queue = reply_queue;
1103         /*
1104          * Set the bits in the address sent down to include:
1105          *  - performant mode bit not used in ioaccel mode 2
1106          *  - pull count (bits 0-3)
1107          *  - command type isn't needed for ioaccel2
1108          */
1109         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126                 struct CommandList *c)
1127 {
1128         if (!is_firmware_flash_cmd(c->Request.CDB))
1129                 return;
1130         atomic_inc(&h->firmware_flash_in_progress);
1131         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135                 struct CommandList *c)
1136 {
1137         if (is_firmware_flash_cmd(c->Request.CDB) &&
1138                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1139                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143         struct CommandList *c, int reply_queue)
1144 {
1145         dial_down_lockup_detection_during_fw_flash(h, c);
1146         atomic_inc(&h->commands_outstanding);
1147
1148         reply_queue = h->reply_map[raw_smp_processor_id()];
1149         switch (c->cmd_type) {
1150         case CMD_IOACCEL1:
1151                 set_ioaccel1_performant_mode(h, c, reply_queue);
1152                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153                 break;
1154         case CMD_IOACCEL2:
1155                 set_ioaccel2_performant_mode(h, c, reply_queue);
1156                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157                 break;
1158         case IOACCEL2_TMF:
1159                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161                 break;
1162         default:
1163                 set_performant_mode(h, c, reply_queue);
1164                 h->access.submit_command(h, c);
1165         }
1166 }
1167
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170         if (unlikely(hpsa_is_pending_event(c)))
1171                 return finish_cmd(c);
1172
1173         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183         if (!h->hba_inquiry_data)
1184                 return 0;
1185         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186                 return 1;
1187         return 0;
1188 }
1189
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191         unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193         /* finds an unused bus, target, lun for a new physical device
1194          * assumes h->devlock is held
1195          */
1196         int i, found = 0;
1197         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198
1199         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200
1201         for (i = 0; i < h->ndevices; i++) {
1202                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203                         __set_bit(h->dev[i]->target, lun_taken);
1204         }
1205
1206         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207         if (i < HPSA_MAX_DEVICES) {
1208                 /* *bus = 1; */
1209                 *target = i;
1210                 *lun = 0;
1211                 found = 1;
1212         }
1213         return !found;
1214 }
1215
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217         struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220         char label[LABEL_SIZE];
1221
1222         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223                 return;
1224
1225         switch (dev->devtype) {
1226         case TYPE_RAID:
1227                 snprintf(label, LABEL_SIZE, "controller");
1228                 break;
1229         case TYPE_ENCLOSURE:
1230                 snprintf(label, LABEL_SIZE, "enclosure");
1231                 break;
1232         case TYPE_DISK:
1233         case TYPE_ZBC:
1234                 if (dev->external)
1235                         snprintf(label, LABEL_SIZE, "external");
1236                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237                         snprintf(label, LABEL_SIZE, "%s",
1238                                 raid_label[PHYSICAL_DRIVE]);
1239                 else
1240                         snprintf(label, LABEL_SIZE, "RAID-%s",
1241                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1242                                 raid_label[dev->raid_level]);
1243                 break;
1244         case TYPE_ROM:
1245                 snprintf(label, LABEL_SIZE, "rom");
1246                 break;
1247         case TYPE_TAPE:
1248                 snprintf(label, LABEL_SIZE, "tape");
1249                 break;
1250         case TYPE_MEDIUM_CHANGER:
1251                 snprintf(label, LABEL_SIZE, "changer");
1252                 break;
1253         default:
1254                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1255                 break;
1256         }
1257
1258         dev_printk(level, &h->pdev->dev,
1259                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261                         description,
1262                         scsi_device_type(dev->devtype),
1263                         dev->vendor,
1264                         dev->model,
1265                         label,
1266                         dev->offload_config ? '+' : '-',
1267                         dev->offload_to_be_enabled ? '+' : '-',
1268                         dev->expose_device);
1269 }
1270
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273                 struct hpsa_scsi_dev_t *device,
1274                 struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276         /* assumes h->devlock is held */
1277         int n = h->ndevices;
1278         int i;
1279         unsigned char addr1[8], addr2[8];
1280         struct hpsa_scsi_dev_t *sd;
1281
1282         if (n >= HPSA_MAX_DEVICES) {
1283                 dev_err(&h->pdev->dev, "too many devices, some will be "
1284                         "inaccessible.\n");
1285                 return -1;
1286         }
1287
1288         /* physical devices do not have lun or target assigned until now. */
1289         if (device->lun != -1)
1290                 /* Logical device, lun is already assigned. */
1291                 goto lun_assigned;
1292
1293         /* If this device a non-zero lun of a multi-lun device
1294          * byte 4 of the 8-byte LUN addr will contain the logical
1295          * unit no, zero otherwise.
1296          */
1297         if (device->scsi3addr[4] == 0) {
1298                 /* This is not a non-zero lun of a multi-lun device */
1299                 if (hpsa_find_target_lun(h, device->scsi3addr,
1300                         device->bus, &device->target, &device->lun) != 0)
1301                         return -1;
1302                 goto lun_assigned;
1303         }
1304
1305         /* This is a non-zero lun of a multi-lun device.
1306          * Search through our list and find the device which
1307          * has the same 8 byte LUN address, excepting byte 4 and 5.
1308          * Assign the same bus and target for this new LUN.
1309          * Use the logical unit number from the firmware.
1310          */
1311         memcpy(addr1, device->scsi3addr, 8);
1312         addr1[4] = 0;
1313         addr1[5] = 0;
1314         for (i = 0; i < n; i++) {
1315                 sd = h->dev[i];
1316                 memcpy(addr2, sd->scsi3addr, 8);
1317                 addr2[4] = 0;
1318                 addr2[5] = 0;
1319                 /* differ only in byte 4 and 5? */
1320                 if (memcmp(addr1, addr2, 8) == 0) {
1321                         device->bus = sd->bus;
1322                         device->target = sd->target;
1323                         device->lun = device->scsi3addr[4];
1324                         break;
1325                 }
1326         }
1327         if (device->lun == -1) {
1328                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329                         " suspect firmware bug or unsupported hardware "
1330                         "configuration.\n");
1331                 return -1;
1332         }
1333
1334 lun_assigned:
1335
1336         h->dev[n] = device;
1337         h->ndevices++;
1338         added[*nadded] = device;
1339         (*nadded)++;
1340         hpsa_show_dev_msg(KERN_INFO, h, device,
1341                 device->expose_device ? "added" : "masked");
1342         return 0;
1343 }
1344
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351         int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353         /* assumes h->devlock is held */
1354         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355
1356         /* Raid level changed. */
1357         h->dev[entry]->raid_level = new_entry->raid_level;
1358
1359         /*
1360          * ioacccel_handle may have changed for a dual domain disk
1361          */
1362         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363
1364         /* Raid offload parameters changed.  Careful about the ordering. */
1365         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366                 /*
1367                  * if drive is newly offload_enabled, we want to copy the
1368                  * raid map data first.  If previously offload_enabled and
1369                  * offload_config were set, raid map data had better be
1370                  * the same as it was before. If raid map data has changed
1371                  * then it had better be the case that
1372                  * h->dev[entry]->offload_enabled is currently 0.
1373                  */
1374                 h->dev[entry]->raid_map = new_entry->raid_map;
1375                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376         }
1377         if (new_entry->offload_to_be_enabled) {
1378                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380         }
1381         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382         h->dev[entry]->offload_config = new_entry->offload_config;
1383         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384         h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386         /*
1387          * We can turn off ioaccel offload now, but need to delay turning
1388          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389          * can't do that until all the devices are updated.
1390          */
1391         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392
1393         /*
1394          * turn ioaccel off immediately if told to do so.
1395          */
1396         if (!new_entry->offload_to_be_enabled)
1397                 h->dev[entry]->offload_enabled = 0;
1398
1399         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404         int entry, struct hpsa_scsi_dev_t *new_entry,
1405         struct hpsa_scsi_dev_t *added[], int *nadded,
1406         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408         /* assumes h->devlock is held */
1409         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410         removed[*nremoved] = h->dev[entry];
1411         (*nremoved)++;
1412
1413         /*
1414          * New physical devices won't have target/lun assigned yet
1415          * so we need to preserve the values in the slot we are replacing.
1416          */
1417         if (new_entry->target == -1) {
1418                 new_entry->target = h->dev[entry]->target;
1419                 new_entry->lun = h->dev[entry]->lun;
1420         }
1421
1422         h->dev[entry] = new_entry;
1423         added[*nadded] = new_entry;
1424         (*nadded)++;
1425
1426         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433         /* assumes h->devlock is held */
1434         int i;
1435         struct hpsa_scsi_dev_t *sd;
1436
1437         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439         sd = h->dev[entry];
1440         removed[*nremoved] = h->dev[entry];
1441         (*nremoved)++;
1442
1443         for (i = entry; i < h->ndevices-1; i++)
1444                 h->dev[i] = h->dev[i+1];
1445         h->ndevices--;
1446         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450         (a)[7] == (b)[7] && \
1451         (a)[6] == (b)[6] && \
1452         (a)[5] == (b)[5] && \
1453         (a)[4] == (b)[4] && \
1454         (a)[3] == (b)[3] && \
1455         (a)[2] == (b)[2] && \
1456         (a)[1] == (b)[1] && \
1457         (a)[0] == (b)[0])
1458
1459 static void fixup_botched_add(struct ctlr_info *h,
1460         struct hpsa_scsi_dev_t *added)
1461 {
1462         /* called when scsi_add_device fails in order to re-adjust
1463          * h->dev[] to match the mid layer's view.
1464          */
1465         unsigned long flags;
1466         int i, j;
1467
1468         spin_lock_irqsave(&h->lock, flags);
1469         for (i = 0; i < h->ndevices; i++) {
1470                 if (h->dev[i] == added) {
1471                         for (j = i; j < h->ndevices-1; j++)
1472                                 h->dev[j] = h->dev[j+1];
1473                         h->ndevices--;
1474                         break;
1475                 }
1476         }
1477         spin_unlock_irqrestore(&h->lock, flags);
1478         kfree(added);
1479 }
1480
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482         struct hpsa_scsi_dev_t *dev2)
1483 {
1484         /* we compare everything except lun and target as these
1485          * are not yet assigned.  Compare parts likely
1486          * to differ first
1487          */
1488         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489                 sizeof(dev1->scsi3addr)) != 0)
1490                 return 0;
1491         if (memcmp(dev1->device_id, dev2->device_id,
1492                 sizeof(dev1->device_id)) != 0)
1493                 return 0;
1494         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495                 return 0;
1496         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497                 return 0;
1498         if (dev1->devtype != dev2->devtype)
1499                 return 0;
1500         if (dev1->bus != dev2->bus)
1501                 return 0;
1502         return 1;
1503 }
1504
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506         struct hpsa_scsi_dev_t *dev2)
1507 {
1508         /* Device attributes that can change, but don't mean
1509          * that the device is a different device, nor that the OS
1510          * needs to be told anything about the change.
1511          */
1512         if (dev1->raid_level != dev2->raid_level)
1513                 return 1;
1514         if (dev1->offload_config != dev2->offload_config)
1515                 return 1;
1516         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517                 return 1;
1518         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519                 if (dev1->queue_depth != dev2->queue_depth)
1520                         return 1;
1521         /*
1522          * This can happen for dual domain devices. An active
1523          * path change causes the ioaccel handle to change
1524          *
1525          * for example note the handle differences between p0 and p1
1526          * Device                    WWN               ,WWN hash,Handle
1527          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529          */
1530         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531                 return 1;
1532         return 0;
1533 }
1534
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545         int *index)
1546 {
1547         int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552         if (needle == NULL)
1553                 return DEVICE_NOT_FOUND;
1554
1555         for (i = 0; i < haystack_size; i++) {
1556                 if (haystack[i] == NULL) /* previously removed. */
1557                         continue;
1558                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559                         *index = i;
1560                         if (device_is_the_same(needle, haystack[i])) {
1561                                 if (device_updated(needle, haystack[i]))
1562                                         return DEVICE_UPDATED;
1563                                 return DEVICE_SAME;
1564                         } else {
1565                                 /* Keep offline devices offline */
1566                                 if (needle->volume_offline)
1567                                         return DEVICE_NOT_FOUND;
1568                                 return DEVICE_CHANGED;
1569                         }
1570                 }
1571         }
1572         *index = -1;
1573         return DEVICE_NOT_FOUND;
1574 }
1575
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577                                         unsigned char scsi3addr[])
1578 {
1579         struct offline_device_entry *device;
1580         unsigned long flags;
1581
1582         /* Check to see if device is already on the list */
1583         spin_lock_irqsave(&h->offline_device_lock, flags);
1584         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585                 if (memcmp(device->scsi3addr, scsi3addr,
1586                         sizeof(device->scsi3addr)) == 0) {
1587                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588                         return;
1589                 }
1590         }
1591         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592
1593         /* Device is not on the list, add it. */
1594         device = kmalloc(sizeof(*device), GFP_KERNEL);
1595         if (!device)
1596                 return;
1597
1598         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599         spin_lock_irqsave(&h->offline_device_lock, flags);
1600         list_add_tail(&device->offline_list, &h->offline_device_list);
1601         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606         struct hpsa_scsi_dev_t *sd)
1607 {
1608         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609                 dev_info(&h->pdev->dev,
1610                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611                         h->scsi_host->host_no,
1612                         sd->bus, sd->target, sd->lun);
1613         switch (sd->volume_offline) {
1614         case HPSA_LV_OK:
1615                 break;
1616         case HPSA_LV_UNDERGOING_ERASE:
1617                 dev_info(&h->pdev->dev,
1618                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619                         h->scsi_host->host_no,
1620                         sd->bus, sd->target, sd->lun);
1621                 break;
1622         case HPSA_LV_NOT_AVAILABLE:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_UNDERGOING_RPI:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         case HPSA_LV_PENDING_RPI:
1635                 dev_info(&h->pdev->dev,
1636                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637                         h->scsi_host->host_no,
1638                         sd->bus, sd->target, sd->lun);
1639                 break;
1640         case HPSA_LV_ENCRYPTED_NO_KEY:
1641                 dev_info(&h->pdev->dev,
1642                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643                         h->scsi_host->host_no,
1644                         sd->bus, sd->target, sd->lun);
1645                 break;
1646         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647                 dev_info(&h->pdev->dev,
1648                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649                         h->scsi_host->host_no,
1650                         sd->bus, sd->target, sd->lun);
1651                 break;
1652         case HPSA_LV_UNDERGOING_ENCRYPTION:
1653                 dev_info(&h->pdev->dev,
1654                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655                         h->scsi_host->host_no,
1656                         sd->bus, sd->target, sd->lun);
1657                 break;
1658         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659                 dev_info(&h->pdev->dev,
1660                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661                         h->scsi_host->host_no,
1662                         sd->bus, sd->target, sd->lun);
1663                 break;
1664         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665                 dev_info(&h->pdev->dev,
1666                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667                         h->scsi_host->host_no,
1668                         sd->bus, sd->target, sd->lun);
1669                 break;
1670         case HPSA_LV_PENDING_ENCRYPTION:
1671                 dev_info(&h->pdev->dev,
1672                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673                         h->scsi_host->host_no,
1674                         sd->bus, sd->target, sd->lun);
1675                 break;
1676         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677                 dev_info(&h->pdev->dev,
1678                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679                         h->scsi_host->host_no,
1680                         sd->bus, sd->target, sd->lun);
1681                 break;
1682         }
1683 }
1684
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1691                                 struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693         struct raid_map_data *map = &logical_drive->raid_map;
1694         struct raid_map_disk_data *dd = &map->data[0];
1695         int i, j;
1696         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697                                 le16_to_cpu(map->metadata_disks_per_row);
1698         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699                                 le16_to_cpu(map->layout_map_count) *
1700                                 total_disks_per_row;
1701         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702                                 total_disks_per_row;
1703         int qdepth;
1704
1705         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707
1708         logical_drive->nphysical_disks = nraid_map_entries;
1709
1710         qdepth = 0;
1711         for (i = 0; i < nraid_map_entries; i++) {
1712                 logical_drive->phys_disk[i] = NULL;
1713                 if (!logical_drive->offload_config)
1714                         continue;
1715                 for (j = 0; j < ndevices; j++) {
1716                         if (dev[j] == NULL)
1717                                 continue;
1718                         if (dev[j]->devtype != TYPE_DISK &&
1719                             dev[j]->devtype != TYPE_ZBC)
1720                                 continue;
1721                         if (is_logical_device(dev[j]))
1722                                 continue;
1723                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724                                 continue;
1725
1726                         logical_drive->phys_disk[i] = dev[j];
1727                         if (i < nphys_disk)
1728                                 qdepth = min(h->nr_cmds, qdepth +
1729                                     logical_drive->phys_disk[i]->queue_depth);
1730                         break;
1731                 }
1732
1733                 /*
1734                  * This can happen if a physical drive is removed and
1735                  * the logical drive is degraded.  In that case, the RAID
1736                  * map data will refer to a physical disk which isn't actually
1737                  * present.  And in that case offload_enabled should already
1738                  * be 0, but we'll turn it off here just in case
1739                  */
1740                 if (!logical_drive->phys_disk[i]) {
1741                         dev_warn(&h->pdev->dev,
1742                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743                                 __func__,
1744                                 h->scsi_host->host_no, logical_drive->bus,
1745                                 logical_drive->target, logical_drive->lun);
1746                         logical_drive->offload_enabled = 0;
1747                         logical_drive->offload_to_be_enabled = 0;
1748                         logical_drive->queue_depth = 8;
1749                 }
1750         }
1751         if (nraid_map_entries)
1752                 /*
1753                  * This is correct for reads, too high for full stripe writes,
1754                  * way too high for partial stripe writes
1755                  */
1756                 logical_drive->queue_depth = qdepth;
1757         else {
1758                 if (logical_drive->external)
1759                         logical_drive->queue_depth = EXTERNAL_QD;
1760                 else
1761                         logical_drive->queue_depth = h->nr_cmds;
1762         }
1763 }
1764
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768         int i;
1769
1770         for (i = 0; i < ndevices; i++) {
1771                 if (dev[i] == NULL)
1772                         continue;
1773                 if (dev[i]->devtype != TYPE_DISK &&
1774                     dev[i]->devtype != TYPE_ZBC)
1775                         continue;
1776                 if (!is_logical_device(dev[i]))
1777                         continue;
1778
1779                 /*
1780                  * If offload is currently enabled, the RAID map and
1781                  * phys_disk[] assignment *better* not be changing
1782                  * because we would be changing ioaccel phsy_disk[] pointers
1783                  * on a ioaccel volume processing I/O requests.
1784                  *
1785                  * If an ioaccel volume status changed, initially because it was
1786                  * re-configured and thus underwent a transformation, or
1787                  * a drive failed, we would have received a state change
1788                  * request and ioaccel should have been turned off. When the
1789                  * transformation completes, we get another state change
1790                  * request to turn ioaccel back on. In this case, we need
1791                  * to update the ioaccel information.
1792                  *
1793                  * Thus: If it is not currently enabled, but will be after
1794                  * the scan completes, make sure the ioaccel pointers
1795                  * are up to date.
1796                  */
1797
1798                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800         }
1801 }
1802
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805         int rc = 0;
1806
1807         if (!h->scsi_host)
1808                 return 1;
1809
1810         if (is_logical_device(device)) /* RAID */
1811                 rc = scsi_add_device(h->scsi_host, device->bus,
1812                                         device->target, device->lun);
1813         else /* HBA */
1814                 rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816         return rc;
1817 }
1818
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820                                                 struct hpsa_scsi_dev_t *dev)
1821 {
1822         int i;
1823         int count = 0;
1824
1825         for (i = 0; i < h->nr_cmds; i++) {
1826                 struct CommandList *c = h->cmd_pool + i;
1827                 int refcount = atomic_inc_return(&c->refcount);
1828
1829                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830                                 dev->scsi3addr)) {
1831                         unsigned long flags;
1832
1833                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1834                         if (!hpsa_is_cmd_idle(c))
1835                                 ++count;
1836                         spin_unlock_irqrestore(&h->lock, flags);
1837                 }
1838
1839                 cmd_free(h, c);
1840         }
1841
1842         return count;
1843 }
1844
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846                                                 struct hpsa_scsi_dev_t *device)
1847 {
1848         int cmds = 0;
1849         int waits = 0;
1850
1851         while (1) {
1852                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853                 if (cmds == 0)
1854                         break;
1855                 if (++waits > 20)
1856                         break;
1857                 msleep(1000);
1858         }
1859
1860         if (waits > 20)
1861                 dev_warn(&h->pdev->dev,
1862                         "%s: removing device with %d outstanding commands!\n",
1863                         __func__, cmds);
1864 }
1865
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867                         struct hpsa_scsi_dev_t *device)
1868 {
1869         struct scsi_device *sdev = NULL;
1870
1871         if (!h->scsi_host)
1872                 return;
1873
1874         /*
1875          * Allow for commands to drain
1876          */
1877         device->removed = 1;
1878         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879
1880         if (is_logical_device(device)) { /* RAID */
1881                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882                                                 device->target, device->lun);
1883                 if (sdev) {
1884                         scsi_remove_device(sdev);
1885                         scsi_device_put(sdev);
1886                 } else {
1887                         /*
1888                          * We don't expect to get here.  Future commands
1889                          * to this device will get a selection timeout as
1890                          * if the device were gone.
1891                          */
1892                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1893                                         "didn't find device for removal.");
1894                 }
1895         } else { /* HBA */
1896
1897                 hpsa_remove_sas_device(device);
1898         }
1899 }
1900
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902         struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904         /* sd contains scsi3 addresses and devtypes, and inquiry
1905          * data.  This function takes what's in sd to be the current
1906          * reality and updates h->dev[] to reflect that reality.
1907          */
1908         int i, entry, device_change, changes = 0;
1909         struct hpsa_scsi_dev_t *csd;
1910         unsigned long flags;
1911         struct hpsa_scsi_dev_t **added, **removed;
1912         int nadded, nremoved;
1913
1914         /*
1915          * A reset can cause a device status to change
1916          * re-schedule the scan to see what happened.
1917          */
1918         spin_lock_irqsave(&h->reset_lock, flags);
1919         if (h->reset_in_progress) {
1920                 h->drv_req_rescan = 1;
1921                 spin_unlock_irqrestore(&h->reset_lock, flags);
1922                 return;
1923         }
1924         spin_unlock_irqrestore(&h->reset_lock, flags);
1925
1926         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928
1929         if (!added || !removed) {
1930                 dev_warn(&h->pdev->dev, "out of memory in "
1931                         "adjust_hpsa_scsi_table\n");
1932                 goto free_and_out;
1933         }
1934
1935         spin_lock_irqsave(&h->devlock, flags);
1936
1937         /* find any devices in h->dev[] that are not in
1938          * sd[] and remove them from h->dev[], and for any
1939          * devices which have changed, remove the old device
1940          * info and add the new device info.
1941          * If minor device attributes change, just update
1942          * the existing device structure.
1943          */
1944         i = 0;
1945         nremoved = 0;
1946         nadded = 0;
1947         while (i < h->ndevices) {
1948                 csd = h->dev[i];
1949                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950                 if (device_change == DEVICE_NOT_FOUND) {
1951                         changes++;
1952                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953                         continue; /* remove ^^^, hence i not incremented */
1954                 } else if (device_change == DEVICE_CHANGED) {
1955                         changes++;
1956                         hpsa_scsi_replace_entry(h, i, sd[entry],
1957                                 added, &nadded, removed, &nremoved);
1958                         /* Set it to NULL to prevent it from being freed
1959                          * at the bottom of hpsa_update_scsi_devices()
1960                          */
1961                         sd[entry] = NULL;
1962                 } else if (device_change == DEVICE_UPDATED) {
1963                         hpsa_scsi_update_entry(h, i, sd[entry]);
1964                 }
1965                 i++;
1966         }
1967
1968         /* Now, make sure every device listed in sd[] is also
1969          * listed in h->dev[], adding them if they aren't found
1970          */
1971
1972         for (i = 0; i < nsds; i++) {
1973                 if (!sd[i]) /* if already added above. */
1974                         continue;
1975
1976                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977                  * as the SCSI mid-layer does not handle such devices well.
1978                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979                  * at 160Hz, and prevents the system from coming up.
1980                  */
1981                 if (sd[i]->volume_offline) {
1982                         hpsa_show_volume_status(h, sd[i]);
1983                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984                         continue;
1985                 }
1986
1987                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988                                         h->ndevices, &entry);
1989                 if (device_change == DEVICE_NOT_FOUND) {
1990                         changes++;
1991                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992                                 break;
1993                         sd[i] = NULL; /* prevent from being freed later. */
1994                 } else if (device_change == DEVICE_CHANGED) {
1995                         /* should never happen... */
1996                         changes++;
1997                         dev_warn(&h->pdev->dev,
1998                                 "device unexpectedly changed.\n");
1999                         /* but if it does happen, we just ignore that device */
2000                 }
2001         }
2002         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003
2004         /*
2005          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006          * any logical drives that need it enabled.
2007          *
2008          * The raid map should be current by now.
2009          *
2010          * We are updating the device list used for I/O requests.
2011          */
2012         for (i = 0; i < h->ndevices; i++) {
2013                 if (h->dev[i] == NULL)
2014                         continue;
2015                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016         }
2017
2018         spin_unlock_irqrestore(&h->devlock, flags);
2019
2020         /* Monitor devices which are in one of several NOT READY states to be
2021          * brought online later. This must be done without holding h->devlock,
2022          * so don't touch h->dev[]
2023          */
2024         for (i = 0; i < nsds; i++) {
2025                 if (!sd[i]) /* if already added above. */
2026                         continue;
2027                 if (sd[i]->volume_offline)
2028                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029         }
2030
2031         /* Don't notify scsi mid layer of any changes the first time through
2032          * (or if there are no changes) scsi_scan_host will do it later the
2033          * first time through.
2034          */
2035         if (!changes)
2036                 goto free_and_out;
2037
2038         /* Notify scsi mid layer of any removed devices */
2039         for (i = 0; i < nremoved; i++) {
2040                 if (removed[i] == NULL)
2041                         continue;
2042                 if (removed[i]->expose_device)
2043                         hpsa_remove_device(h, removed[i]);
2044                 kfree(removed[i]);
2045                 removed[i] = NULL;
2046         }
2047
2048         /* Notify scsi mid layer of any added devices */
2049         for (i = 0; i < nadded; i++) {
2050                 int rc = 0;
2051
2052                 if (added[i] == NULL)
2053                         continue;
2054                 if (!(added[i]->expose_device))
2055                         continue;
2056                 rc = hpsa_add_device(h, added[i]);
2057                 if (!rc)
2058                         continue;
2059                 dev_warn(&h->pdev->dev,
2060                         "addition failed %d, device not added.", rc);
2061                 /* now we have to remove it from h->dev,
2062                  * since it didn't get added to scsi mid layer
2063                  */
2064                 fixup_botched_add(h, added[i]);
2065                 h->drv_req_rescan = 1;
2066         }
2067
2068 free_and_out:
2069         kfree(added);
2070         kfree(removed);
2071 }
2072
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078         int bus, int target, int lun)
2079 {
2080         int i;
2081         struct hpsa_scsi_dev_t *sd;
2082
2083         for (i = 0; i < h->ndevices; i++) {
2084                 sd = h->dev[i];
2085                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086                         return sd;
2087         }
2088         return NULL;
2089 }
2090
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093         struct hpsa_scsi_dev_t *sd = NULL;
2094         unsigned long flags;
2095         struct ctlr_info *h;
2096
2097         h = sdev_to_hba(sdev);
2098         spin_lock_irqsave(&h->devlock, flags);
2099         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100                 struct scsi_target *starget;
2101                 struct sas_rphy *rphy;
2102
2103                 starget = scsi_target(sdev);
2104                 rphy = target_to_rphy(starget);
2105                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106                 if (sd) {
2107                         sd->target = sdev_id(sdev);
2108                         sd->lun = sdev->lun;
2109                 }
2110         }
2111         if (!sd)
2112                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113                                         sdev_id(sdev), sdev->lun);
2114
2115         if (sd && sd->expose_device) {
2116                 atomic_set(&sd->ioaccel_cmds_out, 0);
2117                 sdev->hostdata = sd;
2118         } else
2119                 sdev->hostdata = NULL;
2120         spin_unlock_irqrestore(&h->devlock, flags);
2121         return 0;
2122 }
2123
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127         struct hpsa_scsi_dev_t *sd;
2128         int queue_depth;
2129
2130         sd = sdev->hostdata;
2131         sdev->no_uld_attach = !sd || !sd->expose_device;
2132
2133         if (sd) {
2134                 if (sd->external)
2135                         queue_depth = EXTERNAL_QD;
2136                 else
2137                         queue_depth = sd->queue_depth != 0 ?
2138                                         sd->queue_depth : sdev->host->can_queue;
2139         } else
2140                 queue_depth = sdev->host->can_queue;
2141
2142         scsi_change_queue_depth(sdev, queue_depth);
2143
2144         return 0;
2145 }
2146
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149         /* nothing to do. */
2150 }
2151
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154         int i;
2155
2156         if (!h->ioaccel2_cmd_sg_list)
2157                 return;
2158         for (i = 0; i < h->nr_cmds; i++) {
2159                 kfree(h->ioaccel2_cmd_sg_list[i]);
2160                 h->ioaccel2_cmd_sg_list[i] = NULL;
2161         }
2162         kfree(h->ioaccel2_cmd_sg_list);
2163         h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168         int i;
2169
2170         if (h->chainsize <= 0)
2171                 return 0;
2172
2173         h->ioaccel2_cmd_sg_list =
2174                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175                                         GFP_KERNEL);
2176         if (!h->ioaccel2_cmd_sg_list)
2177                 return -ENOMEM;
2178         for (i = 0; i < h->nr_cmds; i++) {
2179                 h->ioaccel2_cmd_sg_list[i] =
2180                         kmalloc_array(h->maxsgentries,
2181                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182                                       GFP_KERNEL);
2183                 if (!h->ioaccel2_cmd_sg_list[i])
2184                         goto clean;
2185         }
2186         return 0;
2187
2188 clean:
2189         hpsa_free_ioaccel2_sg_chain_blocks(h);
2190         return -ENOMEM;
2191 }
2192
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195         int i;
2196
2197         if (!h->cmd_sg_list)
2198                 return;
2199         for (i = 0; i < h->nr_cmds; i++) {
2200                 kfree(h->cmd_sg_list[i]);
2201                 h->cmd_sg_list[i] = NULL;
2202         }
2203         kfree(h->cmd_sg_list);
2204         h->cmd_sg_list = NULL;
2205 }
2206
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209         int i;
2210
2211         if (h->chainsize <= 0)
2212                 return 0;
2213
2214         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215                                  GFP_KERNEL);
2216         if (!h->cmd_sg_list)
2217                 return -ENOMEM;
2218
2219         for (i = 0; i < h->nr_cmds; i++) {
2220                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221                                                   sizeof(*h->cmd_sg_list[i]),
2222                                                   GFP_KERNEL);
2223                 if (!h->cmd_sg_list[i])
2224                         goto clean;
2225
2226         }
2227         return 0;
2228
2229 clean:
2230         hpsa_free_sg_chain_blocks(h);
2231         return -ENOMEM;
2232 }
2233
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235         struct io_accel2_cmd *cp, struct CommandList *c)
2236 {
2237         struct ioaccel2_sg_element *chain_block;
2238         u64 temp64;
2239         u32 chain_size;
2240
2241         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242         chain_size = le32_to_cpu(cp->sg[0].length);
2243         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2244                                 DMA_TO_DEVICE);
2245         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246                 /* prevent subsequent unmapping */
2247                 cp->sg->address = 0;
2248                 return -1;
2249         }
2250         cp->sg->address = cpu_to_le64(temp64);
2251         return 0;
2252 }
2253
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255         struct io_accel2_cmd *cp)
2256 {
2257         struct ioaccel2_sg_element *chain_sg;
2258         u64 temp64;
2259         u32 chain_size;
2260
2261         chain_sg = cp->sg;
2262         temp64 = le64_to_cpu(chain_sg->address);
2263         chain_size = le32_to_cpu(cp->sg[0].length);
2264         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2265 }
2266
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268         struct CommandList *c)
2269 {
2270         struct SGDescriptor *chain_sg, *chain_block;
2271         u64 temp64;
2272         u32 chain_len;
2273
2274         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275         chain_block = h->cmd_sg_list[c->cmdindex];
2276         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277         chain_len = sizeof(*chain_sg) *
2278                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279         chain_sg->Len = cpu_to_le32(chain_len);
2280         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2281                                 DMA_TO_DEVICE);
2282         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283                 /* prevent subsequent unmapping */
2284                 chain_sg->Addr = cpu_to_le64(0);
2285                 return -1;
2286         }
2287         chain_sg->Addr = cpu_to_le64(temp64);
2288         return 0;
2289 }
2290
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292         struct CommandList *c)
2293 {
2294         struct SGDescriptor *chain_sg;
2295
2296         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297                 return;
2298
2299         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2301                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2302 }
2303
2304
2305 /* Decode the various types of errors on ioaccel2 path.
2306  * Return 1 for any error that should generate a RAID path retry.
2307  * Return 0 for errors that don't require a RAID path retry.
2308  */
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310                                         struct CommandList *c,
2311                                         struct scsi_cmnd *cmd,
2312                                         struct io_accel2_cmd *c2,
2313                                         struct hpsa_scsi_dev_t *dev)
2314 {
2315         int data_len;
2316         int retry = 0;
2317         u32 ioaccel2_resid = 0;
2318
2319         switch (c2->error_data.serv_response) {
2320         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321                 switch (c2->error_data.status) {
2322                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323                         break;
2324                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2326                         if (c2->error_data.data_present !=
2327                                         IOACCEL2_SENSE_DATA_PRESENT) {
2328                                 memset(cmd->sense_buffer, 0,
2329                                         SCSI_SENSE_BUFFERSIZE);
2330                                 break;
2331                         }
2332                         /* copy the sense data */
2333                         data_len = c2->error_data.sense_data_len;
2334                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2335                                 data_len = SCSI_SENSE_BUFFERSIZE;
2336                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2337                                 data_len =
2338                                         sizeof(c2->error_data.sense_data_buff);
2339                         memcpy(cmd->sense_buffer,
2340                                 c2->error_data.sense_data_buff, data_len);
2341                         retry = 1;
2342                         break;
2343                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344                         retry = 1;
2345                         break;
2346                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347                         retry = 1;
2348                         break;
2349                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350                         retry = 1;
2351                         break;
2352                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353                         retry = 1;
2354                         break;
2355                 default:
2356                         retry = 1;
2357                         break;
2358                 }
2359                 break;
2360         case IOACCEL2_SERV_RESPONSE_FAILURE:
2361                 switch (c2->error_data.status) {
2362                 case IOACCEL2_STATUS_SR_IO_ERROR:
2363                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2364                 case IOACCEL2_STATUS_SR_OVERRUN:
2365                         retry = 1;
2366                         break;
2367                 case IOACCEL2_STATUS_SR_UNDERRUN:
2368                         cmd->result = (DID_OK << 16);           /* host byte */
2369                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2370                         ioaccel2_resid = get_unaligned_le32(
2371                                                 &c2->error_data.resid_cnt[0]);
2372                         scsi_set_resid(cmd, ioaccel2_resid);
2373                         break;
2374                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377                         /*
2378                          * Did an HBA disk disappear? We will eventually
2379                          * get a state change event from the controller but
2380                          * in the meantime, we need to tell the OS that the
2381                          * HBA disk is no longer there and stop I/O
2382                          * from going down. This allows the potential re-insert
2383                          * of the disk to get the same device node.
2384                          */
2385                         if (dev->physical_device && dev->expose_device) {
2386                                 cmd->result = DID_NO_CONNECT << 16;
2387                                 dev->removed = 1;
2388                                 h->drv_req_rescan = 1;
2389                                 dev_warn(&h->pdev->dev,
2390                                         "%s: device is gone!\n", __func__);
2391                         } else
2392                                 /*
2393                                  * Retry by sending down the RAID path.
2394                                  * We will get an event from ctlr to
2395                                  * trigger rescan regardless.
2396                                  */
2397                                 retry = 1;
2398                         break;
2399                 default:
2400                         retry = 1;
2401                 }
2402                 break;
2403         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404                 break;
2405         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406                 break;
2407         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408                 retry = 1;
2409                 break;
2410         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411                 break;
2412         default:
2413                 retry = 1;
2414                 break;
2415         }
2416
2417         return retry;   /* retry on raid path? */
2418 }
2419
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421                 struct CommandList *c)
2422 {
2423         bool do_wake = false;
2424
2425         /*
2426          * Reset c->scsi_cmd here so that the reset handler will know
2427          * this command has completed.  Then, check to see if the handler is
2428          * waiting for this command, and, if so, wake it.
2429          */
2430         c->scsi_cmd = SCSI_CMD_IDLE;
2431         mb();   /* Declare command idle before checking for pending events. */
2432         if (c->reset_pending) {
2433                 unsigned long flags;
2434                 struct hpsa_scsi_dev_t *dev;
2435
2436                 /*
2437                  * There appears to be a reset pending; lock the lock and
2438                  * reconfirm.  If so, then decrement the count of outstanding
2439                  * commands and wake the reset command if this is the last one.
2440                  */
2441                 spin_lock_irqsave(&h->lock, flags);
2442                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2443                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444                         do_wake = true;
2445                 c->reset_pending = NULL;
2446                 spin_unlock_irqrestore(&h->lock, flags);
2447         }
2448
2449         if (do_wake)
2450                 wake_up_all(&h->event_sync_wait_queue);
2451 }
2452
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454                                       struct CommandList *c)
2455 {
2456         hpsa_cmd_resolve_events(h, c);
2457         cmd_tagged_free(h, c);
2458 }
2459
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461                 struct CommandList *c, struct scsi_cmnd *cmd)
2462 {
2463         hpsa_cmd_resolve_and_free(h, c);
2464         if (cmd && cmd->scsi_done)
2465                 cmd->scsi_done(cmd);
2466 }
2467
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469 {
2470         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472 }
2473
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475                 struct CommandList *c, struct scsi_cmnd *cmd,
2476                 struct hpsa_scsi_dev_t *dev)
2477 {
2478         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479
2480         /* check for good status */
2481         if (likely(c2->error_data.serv_response == 0 &&
2482                         c2->error_data.status == 0))
2483                 return hpsa_cmd_free_and_done(h, c, cmd);
2484
2485         /*
2486          * Any RAID offload error results in retry which will use
2487          * the normal I/O path so the controller can handle whatever is
2488          * wrong.
2489          */
2490         if (is_logical_device(dev) &&
2491                 c2->error_data.serv_response ==
2492                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2493                 if (c2->error_data.status ==
2494                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495                         dev->offload_enabled = 0;
2496                         dev->offload_to_be_enabled = 0;
2497                 }
2498
2499                 return hpsa_retry_cmd(h, c);
2500         }
2501
2502         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503                 return hpsa_retry_cmd(h, c);
2504
2505         return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510                                         struct CommandList *cp)
2511 {
2512         u8 tmf_status = cp->err_info->ScsiStatus;
2513
2514         switch (tmf_status) {
2515         case CISS_TMF_COMPLETE:
2516                 /*
2517                  * CISS_TMF_COMPLETE never happens, instead,
2518                  * ei->CommandStatus == 0 for this case.
2519                  */
2520         case CISS_TMF_SUCCESS:
2521                 return 0;
2522         case CISS_TMF_INVALID_FRAME:
2523         case CISS_TMF_NOT_SUPPORTED:
2524         case CISS_TMF_FAILED:
2525         case CISS_TMF_WRONG_LUN:
2526         case CISS_TMF_OVERLAPPED_TAG:
2527                 break;
2528         default:
2529                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530                                 tmf_status);
2531                 break;
2532         }
2533         return -tmf_status;
2534 }
2535
2536 static void complete_scsi_command(struct CommandList *cp)
2537 {
2538         struct scsi_cmnd *cmd;
2539         struct ctlr_info *h;
2540         struct ErrorInfo *ei;
2541         struct hpsa_scsi_dev_t *dev;
2542         struct io_accel2_cmd *c2;
2543
2544         u8 sense_key;
2545         u8 asc;      /* additional sense code */
2546         u8 ascq;     /* additional sense code qualifier */
2547         unsigned long sense_data_size;
2548
2549         ei = cp->err_info;
2550         cmd = cp->scsi_cmd;
2551         h = cp->h;
2552
2553         if (!cmd->device) {
2554                 cmd->result = DID_NO_CONNECT << 16;
2555                 return hpsa_cmd_free_and_done(h, cp, cmd);
2556         }
2557
2558         dev = cmd->device->hostdata;
2559         if (!dev) {
2560                 cmd->result = DID_NO_CONNECT << 16;
2561                 return hpsa_cmd_free_and_done(h, cp, cmd);
2562         }
2563         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564
2565         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566         if ((cp->cmd_type == CMD_SCSI) &&
2567                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568                 hpsa_unmap_sg_chain_block(h, cp);
2569
2570         if ((cp->cmd_type == CMD_IOACCEL2) &&
2571                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573
2574         cmd->result = (DID_OK << 16);           /* host byte */
2575         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2576
2577         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578                 if (dev->physical_device && dev->expose_device &&
2579                         dev->removed) {
2580                         cmd->result = DID_NO_CONNECT << 16;
2581                         return hpsa_cmd_free_and_done(h, cp, cmd);
2582                 }
2583                 if (likely(cp->phys_disk != NULL))
2584                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585         }
2586
2587         /*
2588          * We check for lockup status here as it may be set for
2589          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590          * fail_all_oustanding_cmds()
2591          */
2592         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593                 /* DID_NO_CONNECT will prevent a retry */
2594                 cmd->result = DID_NO_CONNECT << 16;
2595                 return hpsa_cmd_free_and_done(h, cp, cmd);
2596         }
2597
2598         if ((unlikely(hpsa_is_pending_event(cp))))
2599                 if (cp->reset_pending)
2600                         return hpsa_cmd_free_and_done(h, cp, cmd);
2601
2602         if (cp->cmd_type == CMD_IOACCEL2)
2603                 return process_ioaccel2_completion(h, cp, cmd, dev);
2604
2605         scsi_set_resid(cmd, ei->ResidualCnt);
2606         if (ei->CommandStatus == 0)
2607                 return hpsa_cmd_free_and_done(h, cp, cmd);
2608
2609         /* For I/O accelerator commands, copy over some fields to the normal
2610          * CISS header used below for error handling.
2611          */
2612         if (cp->cmd_type == CMD_IOACCEL1) {
2613                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614                 cp->Header.SGList = scsi_sg_count(cmd);
2615                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618                 cp->Header.tag = c->tag;
2619                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621
2622                 /* Any RAID offload error results in retry which will use
2623                  * the normal I/O path so the controller can handle whatever's
2624                  * wrong.
2625                  */
2626                 if (is_logical_device(dev)) {
2627                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628                                 dev->offload_enabled = 0;
2629                         return hpsa_retry_cmd(h, cp);
2630                 }
2631         }
2632
2633         /* an error has occurred */
2634         switch (ei->CommandStatus) {
2635
2636         case CMD_TARGET_STATUS:
2637                 cmd->result |= ei->ScsiStatus;
2638                 /* copy the sense data */
2639                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641                 else
2642                         sense_data_size = sizeof(ei->SenseInfo);
2643                 if (ei->SenseLen < sense_data_size)
2644                         sense_data_size = ei->SenseLen;
2645                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646                 if (ei->ScsiStatus)
2647                         decode_sense_data(ei->SenseInfo, sense_data_size,
2648                                 &sense_key, &asc, &ascq);
2649                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650                         if (sense_key == ABORTED_COMMAND) {
2651                                 cmd->result |= DID_SOFT_ERROR << 16;
2652                                 break;
2653                         }
2654                         break;
2655                 }
2656                 /* Problem was not a check condition
2657                  * Pass it up to the upper layers...
2658                  */
2659                 if (ei->ScsiStatus) {
2660                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2661                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2662                                 "Returning result: 0x%x\n",
2663                                 cp, ei->ScsiStatus,
2664                                 sense_key, asc, ascq,
2665                                 cmd->result);
2666                 } else {  /* scsi status is zero??? How??? */
2667                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2668                                 "Returning no connection.\n", cp),
2669
2670                         /* Ordinarily, this case should never happen,
2671                          * but there is a bug in some released firmware
2672                          * revisions that allows it to happen if, for
2673                          * example, a 4100 backplane loses power and
2674                          * the tape drive is in it.  We assume that
2675                          * it's a fatal error of some kind because we
2676                          * can't show that it wasn't. We will make it
2677                          * look like selection timeout since that is
2678                          * the most common reason for this to occur,
2679                          * and it's severe enough.
2680                          */
2681
2682                         cmd->result = DID_NO_CONNECT << 16;
2683                 }
2684                 break;
2685
2686         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2687                 break;
2688         case CMD_DATA_OVERRUN:
2689                 dev_warn(&h->pdev->dev,
2690                         "CDB %16phN data overrun\n", cp->Request.CDB);
2691                 break;
2692         case CMD_INVALID: {
2693                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2694                 print_cmd(cp); */
2695                 /* We get CMD_INVALID if you address a non-existent device
2696                  * instead of a selection timeout (no response).  You will
2697                  * see this if you yank out a drive, then try to access it.
2698                  * This is kind of a shame because it means that any other
2699                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2700                  * missing target. */
2701                 cmd->result = DID_NO_CONNECT << 16;
2702         }
2703                 break;
2704         case CMD_PROTOCOL_ERR:
2705                 cmd->result = DID_ERROR << 16;
2706                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2707                                 cp->Request.CDB);
2708                 break;
2709         case CMD_HARDWARE_ERR:
2710                 cmd->result = DID_ERROR << 16;
2711                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2712                         cp->Request.CDB);
2713                 break;
2714         case CMD_CONNECTION_LOST:
2715                 cmd->result = DID_ERROR << 16;
2716                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2717                         cp->Request.CDB);
2718                 break;
2719         case CMD_ABORTED:
2720                 cmd->result = DID_ABORT << 16;
2721                 break;
2722         case CMD_ABORT_FAILED:
2723                 cmd->result = DID_ERROR << 16;
2724                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2725                         cp->Request.CDB);
2726                 break;
2727         case CMD_UNSOLICITED_ABORT:
2728                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2729                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2730                         cp->Request.CDB);
2731                 break;
2732         case CMD_TIMEOUT:
2733                 cmd->result = DID_TIME_OUT << 16;
2734                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2735                         cp->Request.CDB);
2736                 break;
2737         case CMD_UNABORTABLE:
2738                 cmd->result = DID_ERROR << 16;
2739                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2740                 break;
2741         case CMD_TMF_STATUS:
2742                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2743                         cmd->result = DID_ERROR << 16;
2744                 break;
2745         case CMD_IOACCEL_DISABLED:
2746                 /* This only handles the direct pass-through case since RAID
2747                  * offload is handled above.  Just attempt a retry.
2748                  */
2749                 cmd->result = DID_SOFT_ERROR << 16;
2750                 dev_warn(&h->pdev->dev,
2751                                 "cp %p had HP SSD Smart Path error\n", cp);
2752                 break;
2753         default:
2754                 cmd->result = DID_ERROR << 16;
2755                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2756                                 cp, ei->CommandStatus);
2757         }
2758
2759         return hpsa_cmd_free_and_done(h, cp, cmd);
2760 }
2761
2762 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2763                 int sg_used, enum dma_data_direction data_direction)
2764 {
2765         int i;
2766
2767         for (i = 0; i < sg_used; i++)
2768                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2769                                 le32_to_cpu(c->SG[i].Len),
2770                                 data_direction);
2771 }
2772
2773 static int hpsa_map_one(struct pci_dev *pdev,
2774                 struct CommandList *cp,
2775                 unsigned char *buf,
2776                 size_t buflen,
2777                 enum dma_data_direction data_direction)
2778 {
2779         u64 addr64;
2780
2781         if (buflen == 0 || data_direction == DMA_NONE) {
2782                 cp->Header.SGList = 0;
2783                 cp->Header.SGTotal = cpu_to_le16(0);
2784                 return 0;
2785         }
2786
2787         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2788         if (dma_mapping_error(&pdev->dev, addr64)) {
2789                 /* Prevent subsequent unmap of something never mapped */
2790                 cp->Header.SGList = 0;
2791                 cp->Header.SGTotal = cpu_to_le16(0);
2792                 return -1;
2793         }
2794         cp->SG[0].Addr = cpu_to_le64(addr64);
2795         cp->SG[0].Len = cpu_to_le32(buflen);
2796         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2797         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2798         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2799         return 0;
2800 }
2801
2802 #define NO_TIMEOUT ((unsigned long) -1)
2803 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2804 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2805         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2806 {
2807         DECLARE_COMPLETION_ONSTACK(wait);
2808
2809         c->waiting = &wait;
2810         __enqueue_cmd_and_start_io(h, c, reply_queue);
2811         if (timeout_msecs == NO_TIMEOUT) {
2812                 /* TODO: get rid of this no-timeout thing */
2813                 wait_for_completion_io(&wait);
2814                 return IO_OK;
2815         }
2816         if (!wait_for_completion_io_timeout(&wait,
2817                                         msecs_to_jiffies(timeout_msecs))) {
2818                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2819                 return -ETIMEDOUT;
2820         }
2821         return IO_OK;
2822 }
2823
2824 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2825                                    int reply_queue, unsigned long timeout_msecs)
2826 {
2827         if (unlikely(lockup_detected(h))) {
2828                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2829                 return IO_OK;
2830         }
2831         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2832 }
2833
2834 static u32 lockup_detected(struct ctlr_info *h)
2835 {
2836         int cpu;
2837         u32 rc, *lockup_detected;
2838
2839         cpu = get_cpu();
2840         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2841         rc = *lockup_detected;
2842         put_cpu();
2843         return rc;
2844 }
2845
2846 #define MAX_DRIVER_CMD_RETRIES 25
2847 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2848                 struct CommandList *c, enum dma_data_direction data_direction,
2849                 unsigned long timeout_msecs)
2850 {
2851         int backoff_time = 10, retry_count = 0;
2852         int rc;
2853
2854         do {
2855                 memset(c->err_info, 0, sizeof(*c->err_info));
2856                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2857                                                   timeout_msecs);
2858                 if (rc)
2859                         break;
2860                 retry_count++;
2861                 if (retry_count > 3) {
2862                         msleep(backoff_time);
2863                         if (backoff_time < 1000)
2864                                 backoff_time *= 2;
2865                 }
2866         } while ((check_for_unit_attention(h, c) ||
2867                         check_for_busy(h, c)) &&
2868                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2869         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2870         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2871                 rc = -EIO;
2872         return rc;
2873 }
2874
2875 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2876                                 struct CommandList *c)
2877 {
2878         const u8 *cdb = c->Request.CDB;
2879         const u8 *lun = c->Header.LUN.LunAddrBytes;
2880
2881         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2882                  txt, lun, cdb);
2883 }
2884
2885 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2886                         struct CommandList *cp)
2887 {
2888         const struct ErrorInfo *ei = cp->err_info;
2889         struct device *d = &cp->h->pdev->dev;
2890         u8 sense_key, asc, ascq;
2891         int sense_len;
2892
2893         switch (ei->CommandStatus) {
2894         case CMD_TARGET_STATUS:
2895                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2896                         sense_len = sizeof(ei->SenseInfo);
2897                 else
2898                         sense_len = ei->SenseLen;
2899                 decode_sense_data(ei->SenseInfo, sense_len,
2900                                         &sense_key, &asc, &ascq);
2901                 hpsa_print_cmd(h, "SCSI status", cp);
2902                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2903                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2904                                 sense_key, asc, ascq);
2905                 else
2906                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2907                 if (ei->ScsiStatus == 0)
2908                         dev_warn(d, "SCSI status is abnormally zero.  "
2909                         "(probably indicates selection timeout "
2910                         "reported incorrectly due to a known "
2911                         "firmware bug, circa July, 2001.)\n");
2912                 break;
2913         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2914                 break;
2915         case CMD_DATA_OVERRUN:
2916                 hpsa_print_cmd(h, "overrun condition", cp);
2917                 break;
2918         case CMD_INVALID: {
2919                 /* controller unfortunately reports SCSI passthru's
2920                  * to non-existent targets as invalid commands.
2921                  */
2922                 hpsa_print_cmd(h, "invalid command", cp);
2923                 dev_warn(d, "probably means device no longer present\n");
2924                 }
2925                 break;
2926         case CMD_PROTOCOL_ERR:
2927                 hpsa_print_cmd(h, "protocol error", cp);
2928                 break;
2929         case CMD_HARDWARE_ERR:
2930                 hpsa_print_cmd(h, "hardware error", cp);
2931                 break;
2932         case CMD_CONNECTION_LOST:
2933                 hpsa_print_cmd(h, "connection lost", cp);
2934                 break;
2935         case CMD_ABORTED:
2936                 hpsa_print_cmd(h, "aborted", cp);
2937                 break;
2938         case CMD_ABORT_FAILED:
2939                 hpsa_print_cmd(h, "abort failed", cp);
2940                 break;
2941         case CMD_UNSOLICITED_ABORT:
2942                 hpsa_print_cmd(h, "unsolicited abort", cp);
2943                 break;
2944         case CMD_TIMEOUT:
2945                 hpsa_print_cmd(h, "timed out", cp);
2946                 break;
2947         case CMD_UNABORTABLE:
2948                 hpsa_print_cmd(h, "unabortable", cp);
2949                 break;
2950         case CMD_CTLR_LOCKUP:
2951                 hpsa_print_cmd(h, "controller lockup detected", cp);
2952                 break;
2953         default:
2954                 hpsa_print_cmd(h, "unknown status", cp);
2955                 dev_warn(d, "Unknown command status %x\n",
2956                                 ei->CommandStatus);
2957         }
2958 }
2959
2960 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2961                                         u8 page, u8 *buf, size_t bufsize)
2962 {
2963         int rc = IO_OK;
2964         struct CommandList *c;
2965         struct ErrorInfo *ei;
2966
2967         c = cmd_alloc(h);
2968         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2969                         page, scsi3addr, TYPE_CMD)) {
2970                 rc = -1;
2971                 goto out;
2972         }
2973         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2974                         NO_TIMEOUT);
2975         if (rc)
2976                 goto out;
2977         ei = c->err_info;
2978         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2979                 hpsa_scsi_interpret_error(h, c);
2980                 rc = -1;
2981         }
2982 out:
2983         cmd_free(h, c);
2984         return rc;
2985 }
2986
2987 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2988                                                 u8 *scsi3addr)
2989 {
2990         u8 *buf;
2991         u64 sa = 0;
2992         int rc = 0;
2993
2994         buf = kzalloc(1024, GFP_KERNEL);
2995         if (!buf)
2996                 return 0;
2997
2998         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2999                                         buf, 1024);
3000
3001         if (rc)
3002                 goto out;
3003
3004         sa = get_unaligned_be64(buf+12);
3005
3006 out:
3007         kfree(buf);
3008         return sa;
3009 }
3010
3011 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3012                         u16 page, unsigned char *buf,
3013                         unsigned char bufsize)
3014 {
3015         int rc = IO_OK;
3016         struct CommandList *c;
3017         struct ErrorInfo *ei;
3018
3019         c = cmd_alloc(h);
3020
3021         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3022                         page, scsi3addr, TYPE_CMD)) {
3023                 rc = -1;
3024                 goto out;
3025         }
3026         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3027                         NO_TIMEOUT);
3028         if (rc)
3029                 goto out;
3030         ei = c->err_info;
3031         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3032                 hpsa_scsi_interpret_error(h, c);
3033                 rc = -1;
3034         }
3035 out:
3036         cmd_free(h, c);
3037         return rc;
3038 }
3039
3040 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3041         u8 reset_type, int reply_queue)
3042 {
3043         int rc = IO_OK;
3044         struct CommandList *c;
3045         struct ErrorInfo *ei;
3046
3047         c = cmd_alloc(h);
3048
3049
3050         /* fill_cmd can't fail here, no data buffer to map. */
3051         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3052                         scsi3addr, TYPE_MSG);
3053         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3054         if (rc) {
3055                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3056                 goto out;
3057         }
3058         /* no unmap needed here because no data xfer. */
3059
3060         ei = c->err_info;
3061         if (ei->CommandStatus != 0) {
3062                 hpsa_scsi_interpret_error(h, c);
3063                 rc = -1;
3064         }
3065 out:
3066         cmd_free(h, c);
3067         return rc;
3068 }
3069
3070 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3071                                struct hpsa_scsi_dev_t *dev,
3072                                unsigned char *scsi3addr)
3073 {
3074         int i;
3075         bool match = false;
3076         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3077         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3078
3079         if (hpsa_is_cmd_idle(c))
3080                 return false;
3081
3082         switch (c->cmd_type) {
3083         case CMD_SCSI:
3084         case CMD_IOCTL_PEND:
3085                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3086                                 sizeof(c->Header.LUN.LunAddrBytes));
3087                 break;
3088
3089         case CMD_IOACCEL1:
3090         case CMD_IOACCEL2:
3091                 if (c->phys_disk == dev) {
3092                         /* HBA mode match */
3093                         match = true;
3094                 } else {
3095                         /* Possible RAID mode -- check each phys dev. */
3096                         /* FIXME:  Do we need to take out a lock here?  If
3097                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3098                          * instead. */
3099                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3100                                 /* FIXME: an alternate test might be
3101                                  *
3102                                  * match = dev->phys_disk[i]->ioaccel_handle
3103                                  *              == c2->scsi_nexus;      */
3104                                 match = dev->phys_disk[i] == c->phys_disk;
3105                         }
3106                 }
3107                 break;
3108
3109         case IOACCEL2_TMF:
3110                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3111                         match = dev->phys_disk[i]->ioaccel_handle ==
3112                                         le32_to_cpu(ac->it_nexus);
3113                 }
3114                 break;
3115
3116         case 0:         /* The command is in the middle of being initialized. */
3117                 match = false;
3118                 break;
3119
3120         default:
3121                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3122                         c->cmd_type);
3123                 BUG();
3124         }
3125
3126         return match;
3127 }
3128
3129 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3130         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3131 {
3132         int i;
3133         int rc = 0;
3134
3135         /* We can really only handle one reset at a time */
3136         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3137                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3138                 return -EINTR;
3139         }
3140
3141         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3142
3143         for (i = 0; i < h->nr_cmds; i++) {
3144                 struct CommandList *c = h->cmd_pool + i;
3145                 int refcount = atomic_inc_return(&c->refcount);
3146
3147                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3148                         unsigned long flags;
3149
3150                         /*
3151                          * Mark the target command as having a reset pending,
3152                          * then lock a lock so that the command cannot complete
3153                          * while we're considering it.  If the command is not
3154                          * idle then count it; otherwise revoke the event.
3155                          */
3156                         c->reset_pending = dev;
3157                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3158                         if (!hpsa_is_cmd_idle(c))
3159                                 atomic_inc(&dev->reset_cmds_out);
3160                         else
3161                                 c->reset_pending = NULL;
3162                         spin_unlock_irqrestore(&h->lock, flags);
3163                 }
3164
3165                 cmd_free(h, c);
3166         }
3167
3168         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3169         if (!rc)
3170                 wait_event(h->event_sync_wait_queue,
3171                         atomic_read(&dev->reset_cmds_out) == 0 ||
3172                         lockup_detected(h));
3173
3174         if (unlikely(lockup_detected(h))) {
3175                 dev_warn(&h->pdev->dev,
3176                          "Controller lockup detected during reset wait\n");
3177                 rc = -ENODEV;
3178         }
3179
3180         if (unlikely(rc))
3181                 atomic_set(&dev->reset_cmds_out, 0);
3182         else
3183                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3184
3185         mutex_unlock(&h->reset_mutex);
3186         return rc;
3187 }
3188
3189 static void hpsa_get_raid_level(struct ctlr_info *h,
3190         unsigned char *scsi3addr, unsigned char *raid_level)
3191 {
3192         int rc;
3193         unsigned char *buf;
3194
3195         *raid_level = RAID_UNKNOWN;
3196         buf = kzalloc(64, GFP_KERNEL);
3197         if (!buf)
3198                 return;
3199
3200         if (!hpsa_vpd_page_supported(h, scsi3addr,
3201                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3202                 goto exit;
3203
3204         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3205                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3206
3207         if (rc == 0)
3208                 *raid_level = buf[8];
3209         if (*raid_level > RAID_UNKNOWN)
3210                 *raid_level = RAID_UNKNOWN;
3211 exit:
3212         kfree(buf);
3213         return;
3214 }
3215
3216 #define HPSA_MAP_DEBUG
3217 #ifdef HPSA_MAP_DEBUG
3218 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3219                                 struct raid_map_data *map_buff)
3220 {
3221         struct raid_map_disk_data *dd = &map_buff->data[0];
3222         int map, row, col;
3223         u16 map_cnt, row_cnt, disks_per_row;
3224
3225         if (rc != 0)
3226                 return;
3227
3228         /* Show details only if debugging has been activated. */
3229         if (h->raid_offload_debug < 2)
3230                 return;
3231
3232         dev_info(&h->pdev->dev, "structure_size = %u\n",
3233                                 le32_to_cpu(map_buff->structure_size));
3234         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3235                         le32_to_cpu(map_buff->volume_blk_size));
3236         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3237                         le64_to_cpu(map_buff->volume_blk_cnt));
3238         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3239                         map_buff->phys_blk_shift);
3240         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3241                         map_buff->parity_rotation_shift);
3242         dev_info(&h->pdev->dev, "strip_size = %u\n",
3243                         le16_to_cpu(map_buff->strip_size));
3244         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3245                         le64_to_cpu(map_buff->disk_starting_blk));
3246         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3247                         le64_to_cpu(map_buff->disk_blk_cnt));
3248         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3249                         le16_to_cpu(map_buff->data_disks_per_row));
3250         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3251                         le16_to_cpu(map_buff->metadata_disks_per_row));
3252         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3253                         le16_to_cpu(map_buff->row_cnt));
3254         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3255                         le16_to_cpu(map_buff->layout_map_count));
3256         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3257                         le16_to_cpu(map_buff->flags));
3258         dev_info(&h->pdev->dev, "encryption = %s\n",
3259                         le16_to_cpu(map_buff->flags) &
3260                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3261         dev_info(&h->pdev->dev, "dekindex = %u\n",
3262                         le16_to_cpu(map_buff->dekindex));
3263         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3264         for (map = 0; map < map_cnt; map++) {
3265                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3266                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3267                 for (row = 0; row < row_cnt; row++) {
3268                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3269                         disks_per_row =
3270                                 le16_to_cpu(map_buff->data_disks_per_row);
3271                         for (col = 0; col < disks_per_row; col++, dd++)
3272                                 dev_info(&h->pdev->dev,
3273                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3274                                         col, dd->ioaccel_handle,
3275                                         dd->xor_mult[0], dd->xor_mult[1]);
3276                         disks_per_row =
3277                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3278                         for (col = 0; col < disks_per_row; col++, dd++)
3279                                 dev_info(&h->pdev->dev,
3280                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3281                                         col, dd->ioaccel_handle,
3282                                         dd->xor_mult[0], dd->xor_mult[1]);
3283                 }
3284         }
3285 }
3286 #else
3287 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3288                         __attribute__((unused)) int rc,
3289                         __attribute__((unused)) struct raid_map_data *map_buff)
3290 {
3291 }
3292 #endif
3293
3294 static int hpsa_get_raid_map(struct ctlr_info *h,
3295         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3296 {
3297         int rc = 0;
3298         struct CommandList *c;
3299         struct ErrorInfo *ei;
3300
3301         c = cmd_alloc(h);
3302
3303         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3304                         sizeof(this_device->raid_map), 0,
3305                         scsi3addr, TYPE_CMD)) {
3306                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3307                 cmd_free(h, c);
3308                 return -1;
3309         }
3310         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3311                         NO_TIMEOUT);
3312         if (rc)
3313                 goto out;
3314         ei = c->err_info;
3315         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3316                 hpsa_scsi_interpret_error(h, c);
3317                 rc = -1;
3318                 goto out;
3319         }
3320         cmd_free(h, c);
3321
3322         /* @todo in the future, dynamically allocate RAID map memory */
3323         if (le32_to_cpu(this_device->raid_map.structure_size) >
3324                                 sizeof(this_device->raid_map)) {
3325                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3326                 rc = -1;
3327         }
3328         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3329         return rc;
3330 out:
3331         cmd_free(h, c);
3332         return rc;
3333 }
3334
3335 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3336                 unsigned char scsi3addr[], u16 bmic_device_index,
3337                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3338 {
3339         int rc = IO_OK;
3340         struct CommandList *c;
3341         struct ErrorInfo *ei;
3342
3343         c = cmd_alloc(h);
3344
3345         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3346                 0, RAID_CTLR_LUNID, TYPE_CMD);
3347         if (rc)
3348                 goto out;
3349
3350         c->Request.CDB[2] = bmic_device_index & 0xff;
3351         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3352
3353         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3354                         NO_TIMEOUT);
3355         if (rc)
3356                 goto out;
3357         ei = c->err_info;
3358         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3359                 hpsa_scsi_interpret_error(h, c);
3360                 rc = -1;
3361         }
3362 out:
3363         cmd_free(h, c);
3364         return rc;
3365 }
3366
3367 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3368         struct bmic_identify_controller *buf, size_t bufsize)
3369 {
3370         int rc = IO_OK;
3371         struct CommandList *c;
3372         struct ErrorInfo *ei;
3373
3374         c = cmd_alloc(h);
3375
3376         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3377                 0, RAID_CTLR_LUNID, TYPE_CMD);
3378         if (rc)
3379                 goto out;
3380
3381         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3382                         NO_TIMEOUT);
3383         if (rc)
3384                 goto out;
3385         ei = c->err_info;
3386         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3387                 hpsa_scsi_interpret_error(h, c);
3388                 rc = -1;
3389         }
3390 out:
3391         cmd_free(h, c);
3392         return rc;
3393 }
3394
3395 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3396                 unsigned char scsi3addr[], u16 bmic_device_index,
3397                 struct bmic_identify_physical_device *buf, size_t bufsize)
3398 {
3399         int rc = IO_OK;
3400         struct CommandList *c;
3401         struct ErrorInfo *ei;
3402
3403         c = cmd_alloc(h);
3404         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3405                 0, RAID_CTLR_LUNID, TYPE_CMD);
3406         if (rc)
3407                 goto out;
3408
3409         c->Request.CDB[2] = bmic_device_index & 0xff;
3410         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3411
3412         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3413                                                 NO_TIMEOUT);
3414         ei = c->err_info;
3415         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3416                 hpsa_scsi_interpret_error(h, c);
3417                 rc = -1;
3418         }
3419 out:
3420         cmd_free(h, c);
3421
3422         return rc;
3423 }
3424
3425 /*
3426  * get enclosure information
3427  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3428  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3429  * Uses id_physical_device to determine the box_index.
3430  */
3431 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3432                         unsigned char *scsi3addr,
3433                         struct ReportExtendedLUNdata *rlep, int rle_index,
3434                         struct hpsa_scsi_dev_t *encl_dev)
3435 {
3436         int rc = -1;
3437         struct CommandList *c = NULL;
3438         struct ErrorInfo *ei = NULL;
3439         struct bmic_sense_storage_box_params *bssbp = NULL;
3440         struct bmic_identify_physical_device *id_phys = NULL;
3441         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3442         u16 bmic_device_index = 0;
3443
3444         encl_dev->eli =
3445                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3446
3447         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3448
3449         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3450                 rc = IO_OK;
3451                 goto out;
3452         }
3453
3454         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3455                 rc = IO_OK;
3456                 goto out;
3457         }
3458
3459         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3460         if (!bssbp)
3461                 goto out;
3462
3463         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3464         if (!id_phys)
3465                 goto out;
3466
3467         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3468                                                 id_phys, sizeof(*id_phys));
3469         if (rc) {
3470                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3471                         __func__, encl_dev->external, bmic_device_index);
3472                 goto out;
3473         }
3474
3475         c = cmd_alloc(h);
3476
3477         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3478                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3479
3480         if (rc)
3481                 goto out;
3482
3483         if (id_phys->phys_connector[1] == 'E')
3484                 c->Request.CDB[5] = id_phys->box_index;
3485         else
3486                 c->Request.CDB[5] = 0;
3487
3488         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3489                                                 NO_TIMEOUT);
3490         if (rc)
3491                 goto out;
3492
3493         ei = c->err_info;
3494         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3495                 rc = -1;
3496                 goto out;
3497         }
3498
3499         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3500         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3501                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3502
3503         rc = IO_OK;
3504 out:
3505         kfree(bssbp);
3506         kfree(id_phys);
3507
3508         if (c)
3509                 cmd_free(h, c);
3510
3511         if (rc != IO_OK)
3512                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3513                         "Error, could not get enclosure information");
3514 }
3515
3516 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3517                                                 unsigned char *scsi3addr)
3518 {
3519         struct ReportExtendedLUNdata *physdev;
3520         u32 nphysicals;
3521         u64 sa = 0;
3522         int i;
3523
3524         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3525         if (!physdev)
3526                 return 0;
3527
3528         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3529                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3530                 kfree(physdev);
3531                 return 0;
3532         }
3533         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3534
3535         for (i = 0; i < nphysicals; i++)
3536                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3537                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3538                         break;
3539                 }
3540
3541         kfree(physdev);
3542
3543         return sa;
3544 }
3545
3546 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3547                                         struct hpsa_scsi_dev_t *dev)
3548 {
3549         int rc;
3550         u64 sa = 0;
3551
3552         if (is_hba_lunid(scsi3addr)) {
3553                 struct bmic_sense_subsystem_info *ssi;
3554
3555                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3556                 if (!ssi)
3557                         return;
3558
3559                 rc = hpsa_bmic_sense_subsystem_information(h,
3560                                         scsi3addr, 0, ssi, sizeof(*ssi));
3561                 if (rc == 0) {
3562                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3563                         h->sas_address = sa;
3564                 }
3565
3566                 kfree(ssi);
3567         } else
3568                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3569
3570         dev->sas_address = sa;
3571 }
3572
3573 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3574         struct ReportExtendedLUNdata *physdev)
3575 {
3576         u32 nphysicals;
3577         int i;
3578
3579         if (h->discovery_polling)
3580                 return;
3581
3582         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3583
3584         for (i = 0; i < nphysicals; i++) {
3585                 if (physdev->LUN[i].device_type ==
3586                         BMIC_DEVICE_TYPE_CONTROLLER
3587                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3588                         dev_info(&h->pdev->dev,
3589                                 "External controller present, activate discovery polling and disable rld caching\n");
3590                         hpsa_disable_rld_caching(h);
3591                         h->discovery_polling = 1;
3592                         break;
3593                 }
3594         }
3595 }
3596
3597 /* Get a device id from inquiry page 0x83 */
3598 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3599         unsigned char scsi3addr[], u8 page)
3600 {
3601         int rc;
3602         int i;
3603         int pages;
3604         unsigned char *buf, bufsize;
3605
3606         buf = kzalloc(256, GFP_KERNEL);
3607         if (!buf)
3608                 return false;
3609
3610         /* Get the size of the page list first */
3611         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3612                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3613                                 buf, HPSA_VPD_HEADER_SZ);
3614         if (rc != 0)
3615                 goto exit_unsupported;
3616         pages = buf[3];
3617         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3618                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3619         else
3620                 bufsize = 255;
3621
3622         /* Get the whole VPD page list */
3623         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3624                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3625                                 buf, bufsize);
3626         if (rc != 0)
3627                 goto exit_unsupported;
3628
3629         pages = buf[3];
3630         for (i = 1; i <= pages; i++)
3631                 if (buf[3 + i] == page)
3632                         goto exit_supported;
3633 exit_unsupported:
3634         kfree(buf);
3635         return false;
3636 exit_supported:
3637         kfree(buf);
3638         return true;
3639 }
3640
3641 /*
3642  * Called during a scan operation.
3643  * Sets ioaccel status on the new device list, not the existing device list
3644  *
3645  * The device list used during I/O will be updated later in
3646  * adjust_hpsa_scsi_table.
3647  */
3648 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3649         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3650 {
3651         int rc;
3652         unsigned char *buf;
3653         u8 ioaccel_status;
3654
3655         this_device->offload_config = 0;
3656         this_device->offload_enabled = 0;
3657         this_device->offload_to_be_enabled = 0;
3658
3659         buf = kzalloc(64, GFP_KERNEL);
3660         if (!buf)
3661                 return;
3662         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3663                 goto out;
3664         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3665                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3666         if (rc != 0)
3667                 goto out;
3668
3669 #define IOACCEL_STATUS_BYTE 4
3670 #define OFFLOAD_CONFIGURED_BIT 0x01
3671 #define OFFLOAD_ENABLED_BIT 0x02
3672         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3673         this_device->offload_config =
3674                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3675         if (this_device->offload_config) {
3676                 this_device->offload_to_be_enabled =
3677                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3678                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3679                         this_device->offload_to_be_enabled = 0;
3680         }
3681
3682 out:
3683         kfree(buf);
3684         return;
3685 }
3686
3687 /* Get the device id from inquiry page 0x83 */
3688 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3689         unsigned char *device_id, int index, int buflen)
3690 {
3691         int rc;
3692         unsigned char *buf;
3693
3694         /* Does controller have VPD for device id? */
3695         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3696                 return 1; /* not supported */
3697
3698         buf = kzalloc(64, GFP_KERNEL);
3699         if (!buf)
3700                 return -ENOMEM;
3701
3702         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3703                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3704         if (rc == 0) {
3705                 if (buflen > 16)
3706                         buflen = 16;
3707                 memcpy(device_id, &buf[8], buflen);
3708         }
3709
3710         kfree(buf);
3711
3712         return rc; /*0 - got id,  otherwise, didn't */
3713 }
3714
3715 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3716                 void *buf, int bufsize,
3717                 int extended_response)
3718 {
3719         int rc = IO_OK;
3720         struct CommandList *c;
3721         unsigned char scsi3addr[8];
3722         struct ErrorInfo *ei;
3723
3724         c = cmd_alloc(h);
3725
3726         /* address the controller */
3727         memset(scsi3addr, 0, sizeof(scsi3addr));
3728         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3729                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3730                 rc = -EAGAIN;
3731                 goto out;
3732         }
3733         if (extended_response)
3734                 c->Request.CDB[1] = extended_response;
3735         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3736                         NO_TIMEOUT);
3737         if (rc)
3738                 goto out;
3739         ei = c->err_info;
3740         if (ei->CommandStatus != 0 &&
3741             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3742                 hpsa_scsi_interpret_error(h, c);
3743                 rc = -EIO;
3744         } else {
3745                 struct ReportLUNdata *rld = buf;
3746
3747                 if (rld->extended_response_flag != extended_response) {
3748                         if (!h->legacy_board) {
3749                                 dev_err(&h->pdev->dev,
3750                                         "report luns requested format %u, got %u\n",
3751                                         extended_response,
3752                                         rld->extended_response_flag);
3753                                 rc = -EINVAL;
3754                         } else
3755                                 rc = -EOPNOTSUPP;
3756                 }
3757         }
3758 out:
3759         cmd_free(h, c);
3760         return rc;
3761 }
3762
3763 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3764                 struct ReportExtendedLUNdata *buf, int bufsize)
3765 {
3766         int rc;
3767         struct ReportLUNdata *lbuf;
3768
3769         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3770                                       HPSA_REPORT_PHYS_EXTENDED);
3771         if (!rc || rc != -EOPNOTSUPP)
3772                 return rc;
3773
3774         /* REPORT PHYS EXTENDED is not supported */
3775         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3776         if (!lbuf)
3777                 return -ENOMEM;
3778
3779         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3780         if (!rc) {
3781                 int i;
3782                 u32 nphys;
3783
3784                 /* Copy ReportLUNdata header */
3785                 memcpy(buf, lbuf, 8);
3786                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3787                 for (i = 0; i < nphys; i++)
3788                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3789         }
3790         kfree(lbuf);
3791         return rc;
3792 }
3793
3794 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3795                 struct ReportLUNdata *buf, int bufsize)
3796 {
3797         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3798 }
3799
3800 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3801         int bus, int target, int lun)
3802 {
3803         device->bus = bus;
3804         device->target = target;
3805         device->lun = lun;
3806 }
3807
3808 /* Use VPD inquiry to get details of volume status */
3809 static int hpsa_get_volume_status(struct ctlr_info *h,
3810                                         unsigned char scsi3addr[])
3811 {
3812         int rc;
3813         int status;
3814         int size;
3815         unsigned char *buf;
3816
3817         buf = kzalloc(64, GFP_KERNEL);
3818         if (!buf)
3819                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3820
3821         /* Does controller have VPD for logical volume status? */
3822         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3823                 goto exit_failed;
3824
3825         /* Get the size of the VPD return buffer */
3826         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3827                                         buf, HPSA_VPD_HEADER_SZ);
3828         if (rc != 0)
3829                 goto exit_failed;
3830         size = buf[3];
3831
3832         /* Now get the whole VPD buffer */
3833         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3834                                         buf, size + HPSA_VPD_HEADER_SZ);
3835         if (rc != 0)
3836                 goto exit_failed;
3837         status = buf[4]; /* status byte */
3838
3839         kfree(buf);
3840         return status;
3841 exit_failed:
3842         kfree(buf);
3843         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3844 }
3845
3846 /* Determine offline status of a volume.
3847  * Return either:
3848  *  0 (not offline)
3849  *  0xff (offline for unknown reasons)
3850  *  # (integer code indicating one of several NOT READY states
3851  *     describing why a volume is to be kept offline)
3852  */
3853 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3854                                         unsigned char scsi3addr[])
3855 {
3856         struct CommandList *c;
3857         unsigned char *sense;
3858         u8 sense_key, asc, ascq;
3859         int sense_len;
3860         int rc, ldstat = 0;
3861         u16 cmd_status;
3862         u8 scsi_status;
3863 #define ASC_LUN_NOT_READY 0x04
3864 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3865 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3866
3867         c = cmd_alloc(h);
3868
3869         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3870         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3871                                         NO_TIMEOUT);
3872         if (rc) {
3873                 cmd_free(h, c);
3874                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3875         }
3876         sense = c->err_info->SenseInfo;
3877         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3878                 sense_len = sizeof(c->err_info->SenseInfo);
3879         else
3880                 sense_len = c->err_info->SenseLen;
3881         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3882         cmd_status = c->err_info->CommandStatus;
3883         scsi_status = c->err_info->ScsiStatus;
3884         cmd_free(h, c);
3885
3886         /* Determine the reason for not ready state */
3887         ldstat = hpsa_get_volume_status(h, scsi3addr);
3888
3889         /* Keep volume offline in certain cases: */
3890         switch (ldstat) {
3891         case HPSA_LV_FAILED:
3892         case HPSA_LV_UNDERGOING_ERASE:
3893         case HPSA_LV_NOT_AVAILABLE:
3894         case HPSA_LV_UNDERGOING_RPI:
3895         case HPSA_LV_PENDING_RPI:
3896         case HPSA_LV_ENCRYPTED_NO_KEY:
3897         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3898         case HPSA_LV_UNDERGOING_ENCRYPTION:
3899         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3900         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3901                 return ldstat;
3902         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3903                 /* If VPD status page isn't available,
3904                  * use ASC/ASCQ to determine state
3905                  */
3906                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3907                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3908                         return ldstat;
3909                 break;
3910         default:
3911                 break;
3912         }
3913         return HPSA_LV_OK;
3914 }
3915
3916 static int hpsa_update_device_info(struct ctlr_info *h,
3917         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3918         unsigned char *is_OBDR_device)
3919 {
3920
3921 #define OBDR_SIG_OFFSET 43
3922 #define OBDR_TAPE_SIG "$DR-10"
3923 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3924 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3925
3926         unsigned char *inq_buff;
3927         unsigned char *obdr_sig;
3928         int rc = 0;
3929
3930         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3931         if (!inq_buff) {
3932                 rc = -ENOMEM;
3933                 goto bail_out;
3934         }
3935
3936         /* Do an inquiry to the device to see what it is. */
3937         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3938                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3939                 dev_err(&h->pdev->dev,
3940                         "%s: inquiry failed, device will be skipped.\n",
3941                         __func__);
3942                 rc = HPSA_INQUIRY_FAILED;
3943                 goto bail_out;
3944         }
3945
3946         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3947         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3948
3949         this_device->devtype = (inq_buff[0] & 0x1f);
3950         memcpy(this_device->scsi3addr, scsi3addr, 8);
3951         memcpy(this_device->vendor, &inq_buff[8],
3952                 sizeof(this_device->vendor));
3953         memcpy(this_device->model, &inq_buff[16],
3954                 sizeof(this_device->model));
3955         this_device->rev = inq_buff[2];
3956         memset(this_device->device_id, 0,
3957                 sizeof(this_device->device_id));
3958         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3959                 sizeof(this_device->device_id)) < 0)
3960                 dev_err(&h->pdev->dev,
3961                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3962                         h->ctlr, __func__,
3963                         h->scsi_host->host_no,
3964                         this_device->target, this_device->lun,
3965                         scsi_device_type(this_device->devtype),
3966                         this_device->model);
3967
3968         if ((this_device->devtype == TYPE_DISK ||
3969                 this_device->devtype == TYPE_ZBC) &&
3970                 is_logical_dev_addr_mode(scsi3addr)) {
3971                 unsigned char volume_offline;
3972
3973                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3974                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3975                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3976                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3977                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3978                     h->legacy_board) {
3979                         /*
3980                          * Legacy boards might not support volume status
3981                          */
3982                         dev_info(&h->pdev->dev,
3983                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3984                                  this_device->target, this_device->lun);
3985                         volume_offline = 0;
3986                 }
3987                 this_device->volume_offline = volume_offline;
3988                 if (volume_offline == HPSA_LV_FAILED) {
3989                         rc = HPSA_LV_FAILED;
3990                         dev_err(&h->pdev->dev,
3991                                 "%s: LV failed, device will be skipped.\n",
3992                                 __func__);
3993                         goto bail_out;
3994                 }
3995         } else {
3996                 this_device->raid_level = RAID_UNKNOWN;
3997                 this_device->offload_config = 0;
3998                 this_device->offload_enabled = 0;
3999                 this_device->offload_to_be_enabled = 0;
4000                 this_device->hba_ioaccel_enabled = 0;
4001                 this_device->volume_offline = 0;
4002                 this_device->queue_depth = h->nr_cmds;
4003         }
4004
4005         if (this_device->external)
4006                 this_device->queue_depth = EXTERNAL_QD;
4007
4008         if (is_OBDR_device) {
4009                 /* See if this is a One-Button-Disaster-Recovery device
4010                  * by looking for "$DR-10" at offset 43 in inquiry data.
4011                  */
4012                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4013                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4014                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4015                                                 OBDR_SIG_LEN) == 0);
4016         }
4017         kfree(inq_buff);
4018         return 0;
4019
4020 bail_out:
4021         kfree(inq_buff);
4022         return rc;
4023 }
4024
4025 /*
4026  * Helper function to assign bus, target, lun mapping of devices.
4027  * Logical drive target and lun are assigned at this time, but
4028  * physical device lun and target assignment are deferred (assigned
4029  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4030 */
4031 static void figure_bus_target_lun(struct ctlr_info *h,
4032         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4033 {
4034         u32 lunid = get_unaligned_le32(lunaddrbytes);
4035
4036         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4037                 /* physical device, target and lun filled in later */
4038                 if (is_hba_lunid(lunaddrbytes)) {
4039                         int bus = HPSA_HBA_BUS;
4040
4041                         if (!device->rev)
4042                                 bus = HPSA_LEGACY_HBA_BUS;
4043                         hpsa_set_bus_target_lun(device,
4044                                         bus, 0, lunid & 0x3fff);
4045                 } else
4046                         /* defer target, lun assignment for physical devices */
4047                         hpsa_set_bus_target_lun(device,
4048                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4049                 return;
4050         }
4051         /* It's a logical device */
4052         if (device->external) {
4053                 hpsa_set_bus_target_lun(device,
4054                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4055                         lunid & 0x00ff);
4056                 return;
4057         }
4058         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4059                                 0, lunid & 0x3fff);
4060 }
4061
4062 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4063         int i, int nphysicals, int nlocal_logicals)
4064 {
4065         /* In report logicals, local logicals are listed first,
4066         * then any externals.
4067         */
4068         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4069
4070         if (i == raid_ctlr_position)
4071                 return 0;
4072
4073         if (i < logicals_start)
4074                 return 0;
4075
4076         /* i is in logicals range, but still within local logicals */
4077         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4078                 return 0;
4079
4080         return 1; /* it's an external lun */
4081 }
4082
4083 /*
4084  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4085  * logdev.  The number of luns in physdev and logdev are returned in
4086  * *nphysicals and *nlogicals, respectively.
4087  * Returns 0 on success, -1 otherwise.
4088  */
4089 static int hpsa_gather_lun_info(struct ctlr_info *h,
4090         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4091         struct ReportLUNdata *logdev, u32 *nlogicals)
4092 {
4093         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4094                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4095                 return -1;
4096         }
4097         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4098         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4099                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4100                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4101                 *nphysicals = HPSA_MAX_PHYS_LUN;
4102         }
4103         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4104                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4105                 return -1;
4106         }
4107         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4108         /* Reject Logicals in excess of our max capability. */
4109         if (*nlogicals > HPSA_MAX_LUN) {
4110                 dev_warn(&h->pdev->dev,
4111                         "maximum logical LUNs (%d) exceeded.  "
4112                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4113                         *nlogicals - HPSA_MAX_LUN);
4114                 *nlogicals = HPSA_MAX_LUN;
4115         }
4116         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4117                 dev_warn(&h->pdev->dev,
4118                         "maximum logical + physical LUNs (%d) exceeded. "
4119                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4120                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4121                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4122         }
4123         return 0;
4124 }
4125
4126 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4127         int i, int nphysicals, int nlogicals,
4128         struct ReportExtendedLUNdata *physdev_list,
4129         struct ReportLUNdata *logdev_list)
4130 {
4131         /* Helper function, figure out where the LUN ID info is coming from
4132          * given index i, lists of physical and logical devices, where in
4133          * the list the raid controller is supposed to appear (first or last)
4134          */
4135
4136         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4137         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4138
4139         if (i == raid_ctlr_position)
4140                 return RAID_CTLR_LUNID;
4141
4142         if (i < logicals_start)
4143                 return &physdev_list->LUN[i -
4144                                 (raid_ctlr_position == 0)].lunid[0];
4145
4146         if (i < last_device)
4147                 return &logdev_list->LUN[i - nphysicals -
4148                         (raid_ctlr_position == 0)][0];
4149         BUG();
4150         return NULL;
4151 }
4152
4153 /* get physical drive ioaccel handle and queue depth */
4154 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4155                 struct hpsa_scsi_dev_t *dev,
4156                 struct ReportExtendedLUNdata *rlep, int rle_index,
4157                 struct bmic_identify_physical_device *id_phys)
4158 {
4159         int rc;
4160         struct ext_report_lun_entry *rle;
4161
4162         rle = &rlep->LUN[rle_index];
4163
4164         dev->ioaccel_handle = rle->ioaccel_handle;
4165         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4166                 dev->hba_ioaccel_enabled = 1;
4167         memset(id_phys, 0, sizeof(*id_phys));
4168         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4169                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4170                         sizeof(*id_phys));
4171         if (!rc)
4172                 /* Reserve space for FW operations */
4173 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4174 #define DRIVE_QUEUE_DEPTH 7
4175                 dev->queue_depth =
4176                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4177                                 DRIVE_CMDS_RESERVED_FOR_FW;
4178         else
4179                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4180 }
4181
4182 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4183         struct ReportExtendedLUNdata *rlep, int rle_index,
4184         struct bmic_identify_physical_device *id_phys)
4185 {
4186         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4187
4188         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4189                 this_device->hba_ioaccel_enabled = 1;
4190
4191         memcpy(&this_device->active_path_index,
4192                 &id_phys->active_path_number,
4193                 sizeof(this_device->active_path_index));
4194         memcpy(&this_device->path_map,
4195                 &id_phys->redundant_path_present_map,
4196                 sizeof(this_device->path_map));
4197         memcpy(&this_device->box,
4198                 &id_phys->alternate_paths_phys_box_on_port,
4199                 sizeof(this_device->box));
4200         memcpy(&this_device->phys_connector,
4201                 &id_phys->alternate_paths_phys_connector,
4202                 sizeof(this_device->phys_connector));
4203         memcpy(&this_device->bay,
4204                 &id_phys->phys_bay_in_box,
4205                 sizeof(this_device->bay));
4206 }
4207
4208 /* get number of local logical disks. */
4209 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4210         struct bmic_identify_controller *id_ctlr,
4211         u32 *nlocals)
4212 {
4213         int rc;
4214
4215         if (!id_ctlr) {
4216                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4217                         __func__);
4218                 return -ENOMEM;
4219         }
4220         memset(id_ctlr, 0, sizeof(*id_ctlr));
4221         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4222         if (!rc)
4223                 if (id_ctlr->configured_logical_drive_count < 255)
4224                         *nlocals = id_ctlr->configured_logical_drive_count;
4225                 else
4226                         *nlocals = le16_to_cpu(
4227                                         id_ctlr->extended_logical_unit_count);
4228         else
4229                 *nlocals = -1;
4230         return rc;
4231 }
4232
4233 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4234 {
4235         struct bmic_identify_physical_device *id_phys;
4236         bool is_spare = false;
4237         int rc;
4238
4239         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4240         if (!id_phys)
4241                 return false;
4242
4243         rc = hpsa_bmic_id_physical_device(h,
4244                                         lunaddrbytes,
4245                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4246                                         id_phys, sizeof(*id_phys));
4247         if (rc == 0)
4248                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4249
4250         kfree(id_phys);
4251         return is_spare;
4252 }
4253
4254 #define RPL_DEV_FLAG_NON_DISK                           0x1
4255 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4256 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4257
4258 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4259
4260 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4261                                 struct ext_report_lun_entry *rle)
4262 {
4263         u8 device_flags;
4264         u8 device_type;
4265
4266         if (!MASKED_DEVICE(lunaddrbytes))
4267                 return false;
4268
4269         device_flags = rle->device_flags;
4270         device_type = rle->device_type;
4271
4272         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4273                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4274                         return false;
4275                 return true;
4276         }
4277
4278         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4279                 return false;
4280
4281         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4282                 return false;
4283
4284         /*
4285          * Spares may be spun down, we do not want to
4286          * do an Inquiry to a RAID set spare drive as
4287          * that would have them spun up, that is a
4288          * performance hit because I/O to the RAID device
4289          * stops while the spin up occurs which can take
4290          * over 50 seconds.
4291          */
4292         if (hpsa_is_disk_spare(h, lunaddrbytes))
4293                 return true;
4294
4295         return false;
4296 }
4297
4298 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4299 {
4300         /* the idea here is we could get notified
4301          * that some devices have changed, so we do a report
4302          * physical luns and report logical luns cmd, and adjust
4303          * our list of devices accordingly.
4304          *
4305          * The scsi3addr's of devices won't change so long as the
4306          * adapter is not reset.  That means we can rescan and
4307          * tell which devices we already know about, vs. new
4308          * devices, vs.  disappearing devices.
4309          */
4310         struct ReportExtendedLUNdata *physdev_list = NULL;
4311         struct ReportLUNdata *logdev_list = NULL;
4312         struct bmic_identify_physical_device *id_phys = NULL;
4313         struct bmic_identify_controller *id_ctlr = NULL;
4314         u32 nphysicals = 0;
4315         u32 nlogicals = 0;
4316         u32 nlocal_logicals = 0;
4317         u32 ndev_allocated = 0;
4318         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4319         int ncurrent = 0;
4320         int i, n_ext_target_devs, ndevs_to_allocate;
4321         int raid_ctlr_position;
4322         bool physical_device;
4323         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4324
4325         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4326         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4327         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4328         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4329         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4330         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4331
4332         if (!currentsd || !physdev_list || !logdev_list ||
4333                 !tmpdevice || !id_phys || !id_ctlr) {
4334                 dev_err(&h->pdev->dev, "out of memory\n");
4335                 goto out;
4336         }
4337         memset(lunzerobits, 0, sizeof(lunzerobits));
4338
4339         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4340
4341         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4342                         logdev_list, &nlogicals)) {
4343                 h->drv_req_rescan = 1;
4344                 goto out;
4345         }
4346
4347         /* Set number of local logicals (non PTRAID) */
4348         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4349                 dev_warn(&h->pdev->dev,
4350                         "%s: Can't determine number of local logical devices.\n",
4351                         __func__);
4352         }
4353
4354         /* We might see up to the maximum number of logical and physical disks
4355          * plus external target devices, and a device for the local RAID
4356          * controller.
4357          */
4358         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4359
4360         hpsa_ext_ctrl_present(h, physdev_list);
4361
4362         /* Allocate the per device structures */
4363         for (i = 0; i < ndevs_to_allocate; i++) {
4364                 if (i >= HPSA_MAX_DEVICES) {
4365                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4366                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4367                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4368                         break;
4369                 }
4370
4371                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4372                 if (!currentsd[i]) {
4373                         h->drv_req_rescan = 1;
4374                         goto out;
4375                 }
4376                 ndev_allocated++;
4377         }
4378
4379         if (is_scsi_rev_5(h))
4380                 raid_ctlr_position = 0;
4381         else
4382                 raid_ctlr_position = nphysicals + nlogicals;
4383
4384         /* adjust our table of devices */
4385         n_ext_target_devs = 0;
4386         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4387                 u8 *lunaddrbytes, is_OBDR = 0;
4388                 int rc = 0;
4389                 int phys_dev_index = i - (raid_ctlr_position == 0);
4390                 bool skip_device = false;
4391
4392                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4393
4394                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4395
4396                 /* Figure out where the LUN ID info is coming from */
4397                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4398                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4399
4400                 /* Determine if this is a lun from an external target array */
4401                 tmpdevice->external =
4402                         figure_external_status(h, raid_ctlr_position, i,
4403                                                 nphysicals, nlocal_logicals);
4404
4405                 /*
4406                  * Skip over some devices such as a spare.
4407                  */
4408                 if (!tmpdevice->external && physical_device) {
4409                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4410                                         &physdev_list->LUN[phys_dev_index]);
4411                         if (skip_device)
4412                                 continue;
4413                 }
4414
4415                 /* Get device type, vendor, model, device id, raid_map */
4416                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4417                                                         &is_OBDR);
4418                 if (rc == -ENOMEM) {
4419                         dev_warn(&h->pdev->dev,
4420                                 "Out of memory, rescan deferred.\n");
4421                         h->drv_req_rescan = 1;
4422                         goto out;
4423                 }
4424                 if (rc) {
4425                         h->drv_req_rescan = 1;
4426                         continue;
4427                 }
4428
4429                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4430                 this_device = currentsd[ncurrent];
4431
4432                 *this_device = *tmpdevice;
4433                 this_device->physical_device = physical_device;
4434
4435                 /*
4436                  * Expose all devices except for physical devices that
4437                  * are masked.
4438                  */
4439                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4440                         this_device->expose_device = 0;
4441                 else
4442                         this_device->expose_device = 1;
4443
4444
4445                 /*
4446                  * Get the SAS address for physical devices that are exposed.
4447                  */
4448                 if (this_device->physical_device && this_device->expose_device)
4449                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4450
4451                 switch (this_device->devtype) {
4452                 case TYPE_ROM:
4453                         /* We don't *really* support actual CD-ROM devices,
4454                          * just "One Button Disaster Recovery" tape drive
4455                          * which temporarily pretends to be a CD-ROM drive.
4456                          * So we check that the device is really an OBDR tape
4457                          * device by checking for "$DR-10" in bytes 43-48 of
4458                          * the inquiry data.
4459                          */
4460                         if (is_OBDR)
4461                                 ncurrent++;
4462                         break;
4463                 case TYPE_DISK:
4464                 case TYPE_ZBC:
4465                         if (this_device->physical_device) {
4466                                 /* The disk is in HBA mode. */
4467                                 /* Never use RAID mapper in HBA mode. */
4468                                 this_device->offload_enabled = 0;
4469                                 hpsa_get_ioaccel_drive_info(h, this_device,
4470                                         physdev_list, phys_dev_index, id_phys);
4471                                 hpsa_get_path_info(this_device,
4472                                         physdev_list, phys_dev_index, id_phys);
4473                         }
4474                         ncurrent++;
4475                         break;
4476                 case TYPE_TAPE:
4477                 case TYPE_MEDIUM_CHANGER:
4478                         ncurrent++;
4479                         break;
4480                 case TYPE_ENCLOSURE:
4481                         if (!this_device->external)
4482                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4483                                                 physdev_list, phys_dev_index,
4484                                                 this_device);
4485                         ncurrent++;
4486                         break;
4487                 case TYPE_RAID:
4488                         /* Only present the Smartarray HBA as a RAID controller.
4489                          * If it's a RAID controller other than the HBA itself
4490                          * (an external RAID controller, MSA500 or similar)
4491                          * don't present it.
4492                          */
4493                         if (!is_hba_lunid(lunaddrbytes))
4494                                 break;
4495                         ncurrent++;
4496                         break;
4497                 default:
4498                         break;
4499                 }
4500                 if (ncurrent >= HPSA_MAX_DEVICES)
4501                         break;
4502         }
4503
4504         if (h->sas_host == NULL) {
4505                 int rc = 0;
4506
4507                 rc = hpsa_add_sas_host(h);
4508                 if (rc) {
4509                         dev_warn(&h->pdev->dev,
4510                                 "Could not add sas host %d\n", rc);
4511                         goto out;
4512                 }
4513         }
4514
4515         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4516 out:
4517         kfree(tmpdevice);
4518         for (i = 0; i < ndev_allocated; i++)
4519                 kfree(currentsd[i]);
4520         kfree(currentsd);
4521         kfree(physdev_list);
4522         kfree(logdev_list);
4523         kfree(id_ctlr);
4524         kfree(id_phys);
4525 }
4526
4527 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4528                                    struct scatterlist *sg)
4529 {
4530         u64 addr64 = (u64) sg_dma_address(sg);
4531         unsigned int len = sg_dma_len(sg);
4532
4533         desc->Addr = cpu_to_le64(addr64);
4534         desc->Len = cpu_to_le32(len);
4535         desc->Ext = 0;
4536 }
4537
4538 /*
4539  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4540  * dma mapping  and fills in the scatter gather entries of the
4541  * hpsa command, cp.
4542  */
4543 static int hpsa_scatter_gather(struct ctlr_info *h,
4544                 struct CommandList *cp,
4545                 struct scsi_cmnd *cmd)
4546 {
4547         struct scatterlist *sg;
4548         int use_sg, i, sg_limit, chained, last_sg;
4549         struct SGDescriptor *curr_sg;
4550
4551         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4552
4553         use_sg = scsi_dma_map(cmd);
4554         if (use_sg < 0)
4555                 return use_sg;
4556
4557         if (!use_sg)
4558                 goto sglist_finished;
4559
4560         /*
4561          * If the number of entries is greater than the max for a single list,
4562          * then we have a chained list; we will set up all but one entry in the
4563          * first list (the last entry is saved for link information);
4564          * otherwise, we don't have a chained list and we'll set up at each of
4565          * the entries in the one list.
4566          */
4567         curr_sg = cp->SG;
4568         chained = use_sg > h->max_cmd_sg_entries;
4569         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4570         last_sg = scsi_sg_count(cmd) - 1;
4571         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4572                 hpsa_set_sg_descriptor(curr_sg, sg);
4573                 curr_sg++;
4574         }
4575
4576         if (chained) {
4577                 /*
4578                  * Continue with the chained list.  Set curr_sg to the chained
4579                  * list.  Modify the limit to the total count less the entries
4580                  * we've already set up.  Resume the scan at the list entry
4581                  * where the previous loop left off.
4582                  */
4583                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4584                 sg_limit = use_sg - sg_limit;
4585                 for_each_sg(sg, sg, sg_limit, i) {
4586                         hpsa_set_sg_descriptor(curr_sg, sg);
4587                         curr_sg++;
4588                 }
4589         }
4590
4591         /* Back the pointer up to the last entry and mark it as "last". */
4592         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4593
4594         if (use_sg + chained > h->maxSG)
4595                 h->maxSG = use_sg + chained;
4596
4597         if (chained) {
4598                 cp->Header.SGList = h->max_cmd_sg_entries;
4599                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4600                 if (hpsa_map_sg_chain_block(h, cp)) {
4601                         scsi_dma_unmap(cmd);
4602                         return -1;
4603                 }
4604                 return 0;
4605         }
4606
4607 sglist_finished:
4608
4609         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4610         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4611         return 0;
4612 }
4613
4614 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4615                                                 u8 *cdb, int cdb_len,
4616                                                 const char *func)
4617 {
4618         dev_warn(&h->pdev->dev,
4619                  "%s: Blocking zero-length request: CDB:%*phN\n",
4620                  func, cdb_len, cdb);
4621 }
4622
4623 #define IO_ACCEL_INELIGIBLE 1
4624 /* zero-length transfers trigger hardware errors. */
4625 static bool is_zero_length_transfer(u8 *cdb)
4626 {
4627         u32 block_cnt;
4628
4629         /* Block zero-length transfer sizes on certain commands. */
4630         switch (cdb[0]) {
4631         case READ_10:
4632         case WRITE_10:
4633         case VERIFY:            /* 0x2F */
4634         case WRITE_VERIFY:      /* 0x2E */
4635                 block_cnt = get_unaligned_be16(&cdb[7]);
4636                 break;
4637         case READ_12:
4638         case WRITE_12:
4639         case VERIFY_12: /* 0xAF */
4640         case WRITE_VERIFY_12:   /* 0xAE */
4641                 block_cnt = get_unaligned_be32(&cdb[6]);
4642                 break;
4643         case READ_16:
4644         case WRITE_16:
4645         case VERIFY_16:         /* 0x8F */
4646                 block_cnt = get_unaligned_be32(&cdb[10]);
4647                 break;
4648         default:
4649                 return false;
4650         }
4651
4652         return block_cnt == 0;
4653 }
4654
4655 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4656 {
4657         int is_write = 0;
4658         u32 block;
4659         u32 block_cnt;
4660
4661         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4662         switch (cdb[0]) {
4663         case WRITE_6:
4664         case WRITE_12:
4665                 is_write = 1;
4666                 /* fall through */
4667         case READ_6:
4668         case READ_12:
4669                 if (*cdb_len == 6) {
4670                         block = (((cdb[1] & 0x1F) << 16) |
4671                                 (cdb[2] << 8) |
4672                                 cdb[3]);
4673                         block_cnt = cdb[4];
4674                         if (block_cnt == 0)
4675                                 block_cnt = 256;
4676                 } else {
4677                         BUG_ON(*cdb_len != 12);
4678                         block = get_unaligned_be32(&cdb[2]);
4679                         block_cnt = get_unaligned_be32(&cdb[6]);
4680                 }
4681                 if (block_cnt > 0xffff)
4682                         return IO_ACCEL_INELIGIBLE;
4683
4684                 cdb[0] = is_write ? WRITE_10 : READ_10;
4685                 cdb[1] = 0;
4686                 cdb[2] = (u8) (block >> 24);
4687                 cdb[3] = (u8) (block >> 16);
4688                 cdb[4] = (u8) (block >> 8);
4689                 cdb[5] = (u8) (block);
4690                 cdb[6] = 0;
4691                 cdb[7] = (u8) (block_cnt >> 8);
4692                 cdb[8] = (u8) (block_cnt);
4693                 cdb[9] = 0;
4694                 *cdb_len = 10;
4695                 break;
4696         }
4697         return 0;
4698 }
4699
4700 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4701         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4702         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4703 {
4704         struct scsi_cmnd *cmd = c->scsi_cmd;
4705         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4706         unsigned int len;
4707         unsigned int total_len = 0;
4708         struct scatterlist *sg;
4709         u64 addr64;
4710         int use_sg, i;
4711         struct SGDescriptor *curr_sg;
4712         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4713
4714         /* TODO: implement chaining support */
4715         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4716                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4717                 return IO_ACCEL_INELIGIBLE;
4718         }
4719
4720         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4721
4722         if (is_zero_length_transfer(cdb)) {
4723                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4724                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4725                 return IO_ACCEL_INELIGIBLE;
4726         }
4727
4728         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4729                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4730                 return IO_ACCEL_INELIGIBLE;
4731         }
4732
4733         c->cmd_type = CMD_IOACCEL1;
4734
4735         /* Adjust the DMA address to point to the accelerated command buffer */
4736         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4737                                 (c->cmdindex * sizeof(*cp));
4738         BUG_ON(c->busaddr & 0x0000007F);
4739
4740         use_sg = scsi_dma_map(cmd);
4741         if (use_sg < 0) {
4742                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4743                 return use_sg;
4744         }
4745
4746         if (use_sg) {
4747                 curr_sg = cp->SG;
4748                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4749                         addr64 = (u64) sg_dma_address(sg);
4750                         len  = sg_dma_len(sg);
4751                         total_len += len;
4752                         curr_sg->Addr = cpu_to_le64(addr64);
4753                         curr_sg->Len = cpu_to_le32(len);
4754                         curr_sg->Ext = cpu_to_le32(0);
4755                         curr_sg++;
4756                 }
4757                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4758
4759                 switch (cmd->sc_data_direction) {
4760                 case DMA_TO_DEVICE:
4761                         control |= IOACCEL1_CONTROL_DATA_OUT;
4762                         break;
4763                 case DMA_FROM_DEVICE:
4764                         control |= IOACCEL1_CONTROL_DATA_IN;
4765                         break;
4766                 case DMA_NONE:
4767                         control |= IOACCEL1_CONTROL_NODATAXFER;
4768                         break;
4769                 default:
4770                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4771                         cmd->sc_data_direction);
4772                         BUG();
4773                         break;
4774                 }
4775         } else {
4776                 control |= IOACCEL1_CONTROL_NODATAXFER;
4777         }
4778
4779         c->Header.SGList = use_sg;
4780         /* Fill out the command structure to submit */
4781         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4782         cp->transfer_len = cpu_to_le32(total_len);
4783         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4784                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4785         cp->control = cpu_to_le32(control);
4786         memcpy(cp->CDB, cdb, cdb_len);
4787         memcpy(cp->CISS_LUN, scsi3addr, 8);
4788         /* Tag was already set at init time. */
4789         enqueue_cmd_and_start_io(h, c);
4790         return 0;
4791 }
4792
4793 /*
4794  * Queue a command directly to a device behind the controller using the
4795  * I/O accelerator path.
4796  */
4797 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4798         struct CommandList *c)
4799 {
4800         struct scsi_cmnd *cmd = c->scsi_cmd;
4801         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4802
4803         if (!dev)
4804                 return -1;
4805
4806         c->phys_disk = dev;
4807
4808         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4809                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4810 }
4811
4812 /*
4813  * Set encryption parameters for the ioaccel2 request
4814  */
4815 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4816         struct CommandList *c, struct io_accel2_cmd *cp)
4817 {
4818         struct scsi_cmnd *cmd = c->scsi_cmd;
4819         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4820         struct raid_map_data *map = &dev->raid_map;
4821         u64 first_block;
4822
4823         /* Are we doing encryption on this device */
4824         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4825                 return;
4826         /* Set the data encryption key index. */
4827         cp->dekindex = map->dekindex;
4828
4829         /* Set the encryption enable flag, encoded into direction field. */
4830         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4831
4832         /* Set encryption tweak values based on logical block address
4833          * If block size is 512, tweak value is LBA.
4834          * For other block sizes, tweak is (LBA * block size)/ 512)
4835          */
4836         switch (cmd->cmnd[0]) {
4837         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4838         case READ_6:
4839         case WRITE_6:
4840                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4841                                 (cmd->cmnd[2] << 8) |
4842                                 cmd->cmnd[3]);
4843                 break;
4844         case WRITE_10:
4845         case READ_10:
4846         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4847         case WRITE_12:
4848         case READ_12:
4849                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4850                 break;
4851         case WRITE_16:
4852         case READ_16:
4853                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4854                 break;
4855         default:
4856                 dev_err(&h->pdev->dev,
4857                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4858                         __func__, cmd->cmnd[0]);
4859                 BUG();
4860                 break;
4861         }
4862
4863         if (le32_to_cpu(map->volume_blk_size) != 512)
4864                 first_block = first_block *
4865                                 le32_to_cpu(map->volume_blk_size)/512;
4866
4867         cp->tweak_lower = cpu_to_le32(first_block);
4868         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4869 }
4870
4871 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4872         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4873         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4874 {
4875         struct scsi_cmnd *cmd = c->scsi_cmd;
4876         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4877         struct ioaccel2_sg_element *curr_sg;
4878         int use_sg, i;
4879         struct scatterlist *sg;
4880         u64 addr64;
4881         u32 len;
4882         u32 total_len = 0;
4883
4884         if (!cmd->device)
4885                 return -1;
4886
4887         if (!cmd->device->hostdata)
4888                 return -1;
4889
4890         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4891
4892         if (is_zero_length_transfer(cdb)) {
4893                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4894                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4895                 return IO_ACCEL_INELIGIBLE;
4896         }
4897
4898         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4899                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4900                 return IO_ACCEL_INELIGIBLE;
4901         }
4902
4903         c->cmd_type = CMD_IOACCEL2;
4904         /* Adjust the DMA address to point to the accelerated command buffer */
4905         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4906                                 (c->cmdindex * sizeof(*cp));
4907         BUG_ON(c->busaddr & 0x0000007F);
4908
4909         memset(cp, 0, sizeof(*cp));
4910         cp->IU_type = IOACCEL2_IU_TYPE;
4911
4912         use_sg = scsi_dma_map(cmd);
4913         if (use_sg < 0) {
4914                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4915                 return use_sg;
4916         }
4917
4918         if (use_sg) {
4919                 curr_sg = cp->sg;
4920                 if (use_sg > h->ioaccel_maxsg) {
4921                         addr64 = le64_to_cpu(
4922                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4923                         curr_sg->address = cpu_to_le64(addr64);
4924                         curr_sg->length = 0;
4925                         curr_sg->reserved[0] = 0;
4926                         curr_sg->reserved[1] = 0;
4927                         curr_sg->reserved[2] = 0;
4928                         curr_sg->chain_indicator = 0x80;
4929
4930                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4931                 }
4932                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4933                         addr64 = (u64) sg_dma_address(sg);
4934                         len  = sg_dma_len(sg);
4935                         total_len += len;
4936                         curr_sg->address = cpu_to_le64(addr64);
4937                         curr_sg->length = cpu_to_le32(len);
4938                         curr_sg->reserved[0] = 0;
4939                         curr_sg->reserved[1] = 0;
4940                         curr_sg->reserved[2] = 0;
4941                         curr_sg->chain_indicator = 0;
4942                         curr_sg++;
4943                 }
4944
4945                 switch (cmd->sc_data_direction) {
4946                 case DMA_TO_DEVICE:
4947                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4948                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4949                         break;
4950                 case DMA_FROM_DEVICE:
4951                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4952                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4953                         break;
4954                 case DMA_NONE:
4955                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4956                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4957                         break;
4958                 default:
4959                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4960                                 cmd->sc_data_direction);
4961                         BUG();
4962                         break;
4963                 }
4964         } else {
4965                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4966                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4967         }
4968
4969         /* Set encryption parameters, if necessary */
4970         set_encrypt_ioaccel2(h, c, cp);
4971
4972         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4973         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4974         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4975
4976         cp->data_len = cpu_to_le32(total_len);
4977         cp->err_ptr = cpu_to_le64(c->busaddr +
4978                         offsetof(struct io_accel2_cmd, error_data));
4979         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4980
4981         /* fill in sg elements */
4982         if (use_sg > h->ioaccel_maxsg) {
4983                 cp->sg_count = 1;
4984                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4985                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4986                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4987                         scsi_dma_unmap(cmd);
4988                         return -1;
4989                 }
4990         } else
4991                 cp->sg_count = (u8) use_sg;
4992
4993         enqueue_cmd_and_start_io(h, c);
4994         return 0;
4995 }
4996
4997 /*
4998  * Queue a command to the correct I/O accelerator path.
4999  */
5000 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5001         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5002         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5003 {
5004         if (!c->scsi_cmd->device)
5005                 return -1;
5006
5007         if (!c->scsi_cmd->device->hostdata)
5008                 return -1;
5009
5010         /* Try to honor the device's queue depth */
5011         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5012                                         phys_disk->queue_depth) {
5013                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5014                 return IO_ACCEL_INELIGIBLE;
5015         }
5016         if (h->transMethod & CFGTBL_Trans_io_accel1)
5017                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5018                                                 cdb, cdb_len, scsi3addr,
5019                                                 phys_disk);
5020         else
5021                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5022                                                 cdb, cdb_len, scsi3addr,
5023                                                 phys_disk);
5024 }
5025
5026 static void raid_map_helper(struct raid_map_data *map,
5027                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5028 {
5029         if (offload_to_mirror == 0)  {
5030                 /* use physical disk in the first mirrored group. */
5031                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5032                 return;
5033         }
5034         do {
5035                 /* determine mirror group that *map_index indicates */
5036                 *current_group = *map_index /
5037                         le16_to_cpu(map->data_disks_per_row);
5038                 if (offload_to_mirror == *current_group)
5039                         continue;
5040                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5041                         /* select map index from next group */
5042                         *map_index += le16_to_cpu(map->data_disks_per_row);
5043                         (*current_group)++;
5044                 } else {
5045                         /* select map index from first group */
5046                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5047                         *current_group = 0;
5048                 }
5049         } while (offload_to_mirror != *current_group);
5050 }
5051
5052 /*
5053  * Attempt to perform offload RAID mapping for a logical volume I/O.
5054  */
5055 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5056         struct CommandList *c)
5057 {
5058         struct scsi_cmnd *cmd = c->scsi_cmd;
5059         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5060         struct raid_map_data *map = &dev->raid_map;
5061         struct raid_map_disk_data *dd = &map->data[0];
5062         int is_write = 0;
5063         u32 map_index;
5064         u64 first_block, last_block;
5065         u32 block_cnt;
5066         u32 blocks_per_row;
5067         u64 first_row, last_row;
5068         u32 first_row_offset, last_row_offset;
5069         u32 first_column, last_column;
5070         u64 r0_first_row, r0_last_row;
5071         u32 r5or6_blocks_per_row;
5072         u64 r5or6_first_row, r5or6_last_row;
5073         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5074         u32 r5or6_first_column, r5or6_last_column;
5075         u32 total_disks_per_row;
5076         u32 stripesize;
5077         u32 first_group, last_group, current_group;
5078         u32 map_row;
5079         u32 disk_handle;
5080         u64 disk_block;
5081         u32 disk_block_cnt;
5082         u8 cdb[16];
5083         u8 cdb_len;
5084         u16 strip_size;
5085 #if BITS_PER_LONG == 32
5086         u64 tmpdiv;
5087 #endif
5088         int offload_to_mirror;
5089
5090         if (!dev)
5091                 return -1;
5092
5093         /* check for valid opcode, get LBA and block count */
5094         switch (cmd->cmnd[0]) {
5095         case WRITE_6:
5096                 is_write = 1;
5097                 /* fall through */
5098         case READ_6:
5099                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5100                                 (cmd->cmnd[2] << 8) |
5101                                 cmd->cmnd[3]);
5102                 block_cnt = cmd->cmnd[4];
5103                 if (block_cnt == 0)
5104                         block_cnt = 256;
5105                 break;
5106         case WRITE_10:
5107                 is_write = 1;
5108                 /* fall through */
5109         case READ_10:
5110                 first_block =
5111                         (((u64) cmd->cmnd[2]) << 24) |
5112                         (((u64) cmd->cmnd[3]) << 16) |
5113                         (((u64) cmd->cmnd[4]) << 8) |
5114                         cmd->cmnd[5];
5115                 block_cnt =
5116                         (((u32) cmd->cmnd[7]) << 8) |
5117                         cmd->cmnd[8];
5118                 break;
5119         case WRITE_12:
5120                 is_write = 1;
5121                 /* fall through */
5122         case READ_12:
5123                 first_block =
5124                         (((u64) cmd->cmnd[2]) << 24) |
5125                         (((u64) cmd->cmnd[3]) << 16) |
5126                         (((u64) cmd->cmnd[4]) << 8) |
5127                         cmd->cmnd[5];
5128                 block_cnt =
5129                         (((u32) cmd->cmnd[6]) << 24) |
5130                         (((u32) cmd->cmnd[7]) << 16) |
5131                         (((u32) cmd->cmnd[8]) << 8) |
5132                 cmd->cmnd[9];
5133                 break;
5134         case WRITE_16:
5135                 is_write = 1;
5136                 /* fall through */
5137         case READ_16:
5138                 first_block =
5139                         (((u64) cmd->cmnd[2]) << 56) |
5140                         (((u64) cmd->cmnd[3]) << 48) |
5141                         (((u64) cmd->cmnd[4]) << 40) |
5142                         (((u64) cmd->cmnd[5]) << 32) |
5143                         (((u64) cmd->cmnd[6]) << 24) |
5144                         (((u64) cmd->cmnd[7]) << 16) |
5145                         (((u64) cmd->cmnd[8]) << 8) |
5146                         cmd->cmnd[9];
5147                 block_cnt =
5148                         (((u32) cmd->cmnd[10]) << 24) |
5149                         (((u32) cmd->cmnd[11]) << 16) |
5150                         (((u32) cmd->cmnd[12]) << 8) |
5151                         cmd->cmnd[13];
5152                 break;
5153         default:
5154                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5155         }
5156         last_block = first_block + block_cnt - 1;
5157
5158         /* check for write to non-RAID-0 */
5159         if (is_write && dev->raid_level != 0)
5160                 return IO_ACCEL_INELIGIBLE;
5161
5162         /* check for invalid block or wraparound */
5163         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5164                 last_block < first_block)
5165                 return IO_ACCEL_INELIGIBLE;
5166
5167         /* calculate stripe information for the request */
5168         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5169                                 le16_to_cpu(map->strip_size);
5170         strip_size = le16_to_cpu(map->strip_size);
5171 #if BITS_PER_LONG == 32
5172         tmpdiv = first_block;
5173         (void) do_div(tmpdiv, blocks_per_row);
5174         first_row = tmpdiv;
5175         tmpdiv = last_block;
5176         (void) do_div(tmpdiv, blocks_per_row);
5177         last_row = tmpdiv;
5178         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5179         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5180         tmpdiv = first_row_offset;
5181         (void) do_div(tmpdiv, strip_size);
5182         first_column = tmpdiv;
5183         tmpdiv = last_row_offset;
5184         (void) do_div(tmpdiv, strip_size);
5185         last_column = tmpdiv;
5186 #else
5187         first_row = first_block / blocks_per_row;
5188         last_row = last_block / blocks_per_row;
5189         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5190         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5191         first_column = first_row_offset / strip_size;
5192         last_column = last_row_offset / strip_size;
5193 #endif
5194
5195         /* if this isn't a single row/column then give to the controller */
5196         if ((first_row != last_row) || (first_column != last_column))
5197                 return IO_ACCEL_INELIGIBLE;
5198
5199         /* proceeding with driver mapping */
5200         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5201                                 le16_to_cpu(map->metadata_disks_per_row);
5202         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5203                                 le16_to_cpu(map->row_cnt);
5204         map_index = (map_row * total_disks_per_row) + first_column;
5205
5206         switch (dev->raid_level) {
5207         case HPSA_RAID_0:
5208                 break; /* nothing special to do */
5209         case HPSA_RAID_1:
5210                 /* Handles load balance across RAID 1 members.
5211                  * (2-drive R1 and R10 with even # of drives.)
5212                  * Appropriate for SSDs, not optimal for HDDs
5213                  */
5214                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5215                 if (dev->offload_to_mirror)
5216                         map_index += le16_to_cpu(map->data_disks_per_row);
5217                 dev->offload_to_mirror = !dev->offload_to_mirror;
5218                 break;
5219         case HPSA_RAID_ADM:
5220                 /* Handles N-way mirrors  (R1-ADM)
5221                  * and R10 with # of drives divisible by 3.)
5222                  */
5223                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5224
5225                 offload_to_mirror = dev->offload_to_mirror;
5226                 raid_map_helper(map, offload_to_mirror,
5227                                 &map_index, &current_group);
5228                 /* set mirror group to use next time */
5229                 offload_to_mirror =
5230                         (offload_to_mirror >=
5231                         le16_to_cpu(map->layout_map_count) - 1)
5232                         ? 0 : offload_to_mirror + 1;
5233                 dev->offload_to_mirror = offload_to_mirror;
5234                 /* Avoid direct use of dev->offload_to_mirror within this
5235                  * function since multiple threads might simultaneously
5236                  * increment it beyond the range of dev->layout_map_count -1.
5237                  */
5238                 break;
5239         case HPSA_RAID_5:
5240         case HPSA_RAID_6:
5241                 if (le16_to_cpu(map->layout_map_count) <= 1)
5242                         break;
5243
5244                 /* Verify first and last block are in same RAID group */
5245                 r5or6_blocks_per_row =
5246                         le16_to_cpu(map->strip_size) *
5247                         le16_to_cpu(map->data_disks_per_row);
5248                 BUG_ON(r5or6_blocks_per_row == 0);
5249                 stripesize = r5or6_blocks_per_row *
5250                         le16_to_cpu(map->layout_map_count);
5251 #if BITS_PER_LONG == 32
5252                 tmpdiv = first_block;
5253                 first_group = do_div(tmpdiv, stripesize);
5254                 tmpdiv = first_group;
5255                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5256                 first_group = tmpdiv;
5257                 tmpdiv = last_block;
5258                 last_group = do_div(tmpdiv, stripesize);
5259                 tmpdiv = last_group;
5260                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5261                 last_group = tmpdiv;
5262 #else
5263                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5264                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5265 #endif
5266                 if (first_group != last_group)
5267                         return IO_ACCEL_INELIGIBLE;
5268
5269                 /* Verify request is in a single row of RAID 5/6 */
5270 #if BITS_PER_LONG == 32
5271                 tmpdiv = first_block;
5272                 (void) do_div(tmpdiv, stripesize);
5273                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5274                 tmpdiv = last_block;
5275                 (void) do_div(tmpdiv, stripesize);
5276                 r5or6_last_row = r0_last_row = tmpdiv;
5277 #else
5278                 first_row = r5or6_first_row = r0_first_row =
5279                                                 first_block / stripesize;
5280                 r5or6_last_row = r0_last_row = last_block / stripesize;
5281 #endif
5282                 if (r5or6_first_row != r5or6_last_row)
5283                         return IO_ACCEL_INELIGIBLE;
5284
5285
5286                 /* Verify request is in a single column */
5287 #if BITS_PER_LONG == 32
5288                 tmpdiv = first_block;
5289                 first_row_offset = do_div(tmpdiv, stripesize);
5290                 tmpdiv = first_row_offset;
5291                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5292                 r5or6_first_row_offset = first_row_offset;
5293                 tmpdiv = last_block;
5294                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5295                 tmpdiv = r5or6_last_row_offset;
5296                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5297                 tmpdiv = r5or6_first_row_offset;
5298                 (void) do_div(tmpdiv, map->strip_size);
5299                 first_column = r5or6_first_column = tmpdiv;
5300                 tmpdiv = r5or6_last_row_offset;
5301                 (void) do_div(tmpdiv, map->strip_size);
5302                 r5or6_last_column = tmpdiv;
5303 #else
5304                 first_row_offset = r5or6_first_row_offset =
5305                         (u32)((first_block % stripesize) %
5306                                                 r5or6_blocks_per_row);
5307
5308                 r5or6_last_row_offset =
5309                         (u32)((last_block % stripesize) %
5310                                                 r5or6_blocks_per_row);
5311
5312                 first_column = r5or6_first_column =
5313                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5314                 r5or6_last_column =
5315                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5316 #endif
5317                 if (r5or6_first_column != r5or6_last_column)
5318                         return IO_ACCEL_INELIGIBLE;
5319
5320                 /* Request is eligible */
5321                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5322                         le16_to_cpu(map->row_cnt);
5323
5324                 map_index = (first_group *
5325                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5326                         (map_row * total_disks_per_row) + first_column;
5327                 break;
5328         default:
5329                 return IO_ACCEL_INELIGIBLE;
5330         }
5331
5332         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5333                 return IO_ACCEL_INELIGIBLE;
5334
5335         c->phys_disk = dev->phys_disk[map_index];
5336         if (!c->phys_disk)
5337                 return IO_ACCEL_INELIGIBLE;
5338
5339         disk_handle = dd[map_index].ioaccel_handle;
5340         disk_block = le64_to_cpu(map->disk_starting_blk) +
5341                         first_row * le16_to_cpu(map->strip_size) +
5342                         (first_row_offset - first_column *
5343                         le16_to_cpu(map->strip_size));
5344         disk_block_cnt = block_cnt;
5345
5346         /* handle differing logical/physical block sizes */
5347         if (map->phys_blk_shift) {
5348                 disk_block <<= map->phys_blk_shift;
5349                 disk_block_cnt <<= map->phys_blk_shift;
5350         }
5351         BUG_ON(disk_block_cnt > 0xffff);
5352
5353         /* build the new CDB for the physical disk I/O */
5354         if (disk_block > 0xffffffff) {
5355                 cdb[0] = is_write ? WRITE_16 : READ_16;
5356                 cdb[1] = 0;
5357                 cdb[2] = (u8) (disk_block >> 56);
5358                 cdb[3] = (u8) (disk_block >> 48);
5359                 cdb[4] = (u8) (disk_block >> 40);
5360                 cdb[5] = (u8) (disk_block >> 32);
5361                 cdb[6] = (u8) (disk_block >> 24);
5362                 cdb[7] = (u8) (disk_block >> 16);
5363                 cdb[8] = (u8) (disk_block >> 8);
5364                 cdb[9] = (u8) (disk_block);
5365                 cdb[10] = (u8) (disk_block_cnt >> 24);
5366                 cdb[11] = (u8) (disk_block_cnt >> 16);
5367                 cdb[12] = (u8) (disk_block_cnt >> 8);
5368                 cdb[13] = (u8) (disk_block_cnt);
5369                 cdb[14] = 0;
5370                 cdb[15] = 0;
5371                 cdb_len = 16;
5372         } else {
5373                 cdb[0] = is_write ? WRITE_10 : READ_10;
5374                 cdb[1] = 0;
5375                 cdb[2] = (u8) (disk_block >> 24);
5376                 cdb[3] = (u8) (disk_block >> 16);
5377                 cdb[4] = (u8) (disk_block >> 8);
5378                 cdb[5] = (u8) (disk_block);
5379                 cdb[6] = 0;
5380                 cdb[7] = (u8) (disk_block_cnt >> 8);
5381                 cdb[8] = (u8) (disk_block_cnt);
5382                 cdb[9] = 0;
5383                 cdb_len = 10;
5384         }
5385         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5386                                                 dev->scsi3addr,
5387                                                 dev->phys_disk[map_index]);
5388 }
5389
5390 /*
5391  * Submit commands down the "normal" RAID stack path
5392  * All callers to hpsa_ciss_submit must check lockup_detected
5393  * beforehand, before (opt.) and after calling cmd_alloc
5394  */
5395 static int hpsa_ciss_submit(struct ctlr_info *h,
5396         struct CommandList *c, struct scsi_cmnd *cmd,
5397         unsigned char scsi3addr[])
5398 {
5399         cmd->host_scribble = (unsigned char *) c;
5400         c->cmd_type = CMD_SCSI;
5401         c->scsi_cmd = cmd;
5402         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5403         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5404         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5405
5406         /* Fill in the request block... */
5407
5408         c->Request.Timeout = 0;
5409         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5410         c->Request.CDBLen = cmd->cmd_len;
5411         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5412         switch (cmd->sc_data_direction) {
5413         case DMA_TO_DEVICE:
5414                 c->Request.type_attr_dir =
5415                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5416                 break;
5417         case DMA_FROM_DEVICE:
5418                 c->Request.type_attr_dir =
5419                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5420                 break;
5421         case DMA_NONE:
5422                 c->Request.type_attr_dir =
5423                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5424                 break;
5425         case DMA_BIDIRECTIONAL:
5426                 /* This can happen if a buggy application does a scsi passthru
5427                  * and sets both inlen and outlen to non-zero. ( see
5428                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5429                  */
5430
5431                 c->Request.type_attr_dir =
5432                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5433                 /* This is technically wrong, and hpsa controllers should
5434                  * reject it with CMD_INVALID, which is the most correct
5435                  * response, but non-fibre backends appear to let it
5436                  * slide by, and give the same results as if this field
5437                  * were set correctly.  Either way is acceptable for
5438                  * our purposes here.
5439                  */
5440
5441                 break;
5442
5443         default:
5444                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5445                         cmd->sc_data_direction);
5446                 BUG();
5447                 break;
5448         }
5449
5450         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5451                 hpsa_cmd_resolve_and_free(h, c);
5452                 return SCSI_MLQUEUE_HOST_BUSY;
5453         }
5454         enqueue_cmd_and_start_io(h, c);
5455         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5456         return 0;
5457 }
5458
5459 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5460                                 struct CommandList *c)
5461 {
5462         dma_addr_t cmd_dma_handle, err_dma_handle;
5463
5464         /* Zero out all of commandlist except the last field, refcount */
5465         memset(c, 0, offsetof(struct CommandList, refcount));
5466         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5467         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5468         c->err_info = h->errinfo_pool + index;
5469         memset(c->err_info, 0, sizeof(*c->err_info));
5470         err_dma_handle = h->errinfo_pool_dhandle
5471             + index * sizeof(*c->err_info);
5472         c->cmdindex = index;
5473         c->busaddr = (u32) cmd_dma_handle;
5474         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5475         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5476         c->h = h;
5477         c->scsi_cmd = SCSI_CMD_IDLE;
5478 }
5479
5480 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5481 {
5482         int i;
5483
5484         for (i = 0; i < h->nr_cmds; i++) {
5485                 struct CommandList *c = h->cmd_pool + i;
5486
5487                 hpsa_cmd_init(h, i, c);
5488                 atomic_set(&c->refcount, 0);
5489         }
5490 }
5491
5492 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5493                                 struct CommandList *c)
5494 {
5495         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5496
5497         BUG_ON(c->cmdindex != index);
5498
5499         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5500         memset(c->err_info, 0, sizeof(*c->err_info));
5501         c->busaddr = (u32) cmd_dma_handle;
5502 }
5503
5504 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5505                 struct CommandList *c, struct scsi_cmnd *cmd,
5506                 unsigned char *scsi3addr)
5507 {
5508         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5509         int rc = IO_ACCEL_INELIGIBLE;
5510
5511         if (!dev)
5512                 return SCSI_MLQUEUE_HOST_BUSY;
5513
5514         cmd->host_scribble = (unsigned char *) c;
5515
5516         if (dev->offload_enabled) {
5517                 hpsa_cmd_init(h, c->cmdindex, c);
5518                 c->cmd_type = CMD_SCSI;
5519                 c->scsi_cmd = cmd;
5520                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5521                 if (rc < 0)     /* scsi_dma_map failed. */
5522                         rc = SCSI_MLQUEUE_HOST_BUSY;
5523         } else if (dev->hba_ioaccel_enabled) {
5524                 hpsa_cmd_init(h, c->cmdindex, c);
5525                 c->cmd_type = CMD_SCSI;
5526                 c->scsi_cmd = cmd;
5527                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5528                 if (rc < 0)     /* scsi_dma_map failed. */
5529                         rc = SCSI_MLQUEUE_HOST_BUSY;
5530         }
5531         return rc;
5532 }
5533
5534 static void hpsa_command_resubmit_worker(struct work_struct *work)
5535 {
5536         struct scsi_cmnd *cmd;
5537         struct hpsa_scsi_dev_t *dev;
5538         struct CommandList *c = container_of(work, struct CommandList, work);
5539
5540         cmd = c->scsi_cmd;
5541         dev = cmd->device->hostdata;
5542         if (!dev) {
5543                 cmd->result = DID_NO_CONNECT << 16;
5544                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5545         }
5546         if (c->reset_pending)
5547                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5548         if (c->cmd_type == CMD_IOACCEL2) {
5549                 struct ctlr_info *h = c->h;
5550                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5551                 int rc;
5552
5553                 if (c2->error_data.serv_response ==
5554                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5555                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5556                         if (rc == 0)
5557                                 return;
5558                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5559                                 /*
5560                                  * If we get here, it means dma mapping failed.
5561                                  * Try again via scsi mid layer, which will
5562                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5563                                  */
5564                                 cmd->result = DID_IMM_RETRY << 16;
5565                                 return hpsa_cmd_free_and_done(h, c, cmd);
5566                         }
5567                         /* else, fall thru and resubmit down CISS path */
5568                 }
5569         }
5570         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5571         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5572                 /*
5573                  * If we get here, it means dma mapping failed. Try
5574                  * again via scsi mid layer, which will then get
5575                  * SCSI_MLQUEUE_HOST_BUSY.
5576                  *
5577                  * hpsa_ciss_submit will have already freed c
5578                  * if it encountered a dma mapping failure.
5579                  */
5580                 cmd->result = DID_IMM_RETRY << 16;
5581                 cmd->scsi_done(cmd);
5582         }
5583 }
5584
5585 /* Running in struct Scsi_Host->host_lock less mode */
5586 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5587 {
5588         struct ctlr_info *h;
5589         struct hpsa_scsi_dev_t *dev;
5590         unsigned char scsi3addr[8];
5591         struct CommandList *c;
5592         int rc = 0;
5593
5594         /* Get the ptr to our adapter structure out of cmd->host. */
5595         h = sdev_to_hba(cmd->device);
5596
5597         BUG_ON(cmd->request->tag < 0);
5598
5599         dev = cmd->device->hostdata;
5600         if (!dev) {
5601                 cmd->result = DID_NO_CONNECT << 16;
5602                 cmd->scsi_done(cmd);
5603                 return 0;
5604         }
5605
5606         if (dev->removed) {
5607                 cmd->result = DID_NO_CONNECT << 16;
5608                 cmd->scsi_done(cmd);
5609                 return 0;
5610         }
5611
5612         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5613
5614         if (unlikely(lockup_detected(h))) {
5615                 cmd->result = DID_NO_CONNECT << 16;
5616                 cmd->scsi_done(cmd);
5617                 return 0;
5618         }
5619         c = cmd_tagged_alloc(h, cmd);
5620
5621         /*
5622          * Call alternate submit routine for I/O accelerated commands.
5623          * Retries always go down the normal I/O path.
5624          */
5625         if (likely(cmd->retries == 0 &&
5626                         !blk_rq_is_passthrough(cmd->request) &&
5627                         h->acciopath_status)) {
5628                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5629                 if (rc == 0)
5630                         return 0;
5631                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5632                         hpsa_cmd_resolve_and_free(h, c);
5633                         return SCSI_MLQUEUE_HOST_BUSY;
5634                 }
5635         }
5636         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5637 }
5638
5639 static void hpsa_scan_complete(struct ctlr_info *h)
5640 {
5641         unsigned long flags;
5642
5643         spin_lock_irqsave(&h->scan_lock, flags);
5644         h->scan_finished = 1;
5645         wake_up(&h->scan_wait_queue);
5646         spin_unlock_irqrestore(&h->scan_lock, flags);
5647 }
5648
5649 static void hpsa_scan_start(struct Scsi_Host *sh)
5650 {
5651         struct ctlr_info *h = shost_to_hba(sh);
5652         unsigned long flags;
5653
5654         /*
5655          * Don't let rescans be initiated on a controller known to be locked
5656          * up.  If the controller locks up *during* a rescan, that thread is
5657          * probably hosed, but at least we can prevent new rescan threads from
5658          * piling up on a locked up controller.
5659          */
5660         if (unlikely(lockup_detected(h)))
5661                 return hpsa_scan_complete(h);
5662
5663         /*
5664          * If a scan is already waiting to run, no need to add another
5665          */
5666         spin_lock_irqsave(&h->scan_lock, flags);
5667         if (h->scan_waiting) {
5668                 spin_unlock_irqrestore(&h->scan_lock, flags);
5669                 return;
5670         }
5671
5672         spin_unlock_irqrestore(&h->scan_lock, flags);
5673
5674         /* wait until any scan already in progress is finished. */
5675         while (1) {
5676                 spin_lock_irqsave(&h->scan_lock, flags);
5677                 if (h->scan_finished)
5678                         break;
5679                 h->scan_waiting = 1;
5680                 spin_unlock_irqrestore(&h->scan_lock, flags);
5681                 wait_event(h->scan_wait_queue, h->scan_finished);
5682                 /* Note: We don't need to worry about a race between this
5683                  * thread and driver unload because the midlayer will
5684                  * have incremented the reference count, so unload won't
5685                  * happen if we're in here.
5686                  */
5687         }
5688         h->scan_finished = 0; /* mark scan as in progress */
5689         h->scan_waiting = 0;
5690         spin_unlock_irqrestore(&h->scan_lock, flags);
5691
5692         if (unlikely(lockup_detected(h)))
5693                 return hpsa_scan_complete(h);
5694
5695         /*
5696          * Do the scan after a reset completion
5697          */
5698         spin_lock_irqsave(&h->reset_lock, flags);
5699         if (h->reset_in_progress) {
5700                 h->drv_req_rescan = 1;
5701                 spin_unlock_irqrestore(&h->reset_lock, flags);
5702                 hpsa_scan_complete(h);
5703                 return;
5704         }
5705         spin_unlock_irqrestore(&h->reset_lock, flags);
5706
5707         hpsa_update_scsi_devices(h);
5708
5709         hpsa_scan_complete(h);
5710 }
5711
5712 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5713 {
5714         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5715
5716         if (!logical_drive)
5717                 return -ENODEV;
5718
5719         if (qdepth < 1)
5720                 qdepth = 1;
5721         else if (qdepth > logical_drive->queue_depth)
5722                 qdepth = logical_drive->queue_depth;
5723
5724         return scsi_change_queue_depth(sdev, qdepth);
5725 }
5726
5727 static int hpsa_scan_finished(struct Scsi_Host *sh,
5728         unsigned long elapsed_time)
5729 {
5730         struct ctlr_info *h = shost_to_hba(sh);
5731         unsigned long flags;
5732         int finished;
5733
5734         spin_lock_irqsave(&h->scan_lock, flags);
5735         finished = h->scan_finished;
5736         spin_unlock_irqrestore(&h->scan_lock, flags);
5737         return finished;
5738 }
5739
5740 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5741 {
5742         struct Scsi_Host *sh;
5743
5744         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5745         if (sh == NULL) {
5746                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5747                 return -ENOMEM;
5748         }
5749
5750         sh->io_port = 0;
5751         sh->n_io_port = 0;
5752         sh->this_id = -1;
5753         sh->max_channel = 3;
5754         sh->max_cmd_len = MAX_COMMAND_SIZE;
5755         sh->max_lun = HPSA_MAX_LUN;
5756         sh->max_id = HPSA_MAX_LUN;
5757         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5758         sh->cmd_per_lun = sh->can_queue;
5759         sh->sg_tablesize = h->maxsgentries;
5760         sh->transportt = hpsa_sas_transport_template;
5761         sh->hostdata[0] = (unsigned long) h;
5762         sh->irq = pci_irq_vector(h->pdev, 0);
5763         sh->unique_id = sh->irq;
5764
5765         h->scsi_host = sh;
5766         return 0;
5767 }
5768
5769 static int hpsa_scsi_add_host(struct ctlr_info *h)
5770 {
5771         int rv;
5772
5773         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5774         if (rv) {
5775                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5776                 return rv;
5777         }
5778         scsi_scan_host(h->scsi_host);
5779         return 0;
5780 }
5781
5782 /*
5783  * The block layer has already gone to the trouble of picking out a unique,
5784  * small-integer tag for this request.  We use an offset from that value as
5785  * an index to select our command block.  (The offset allows us to reserve the
5786  * low-numbered entries for our own uses.)
5787  */
5788 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5789 {
5790         int idx = scmd->request->tag;
5791
5792         if (idx < 0)
5793                 return idx;
5794
5795         /* Offset to leave space for internal cmds. */
5796         return idx += HPSA_NRESERVED_CMDS;
5797 }
5798
5799 /*
5800  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5801  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5802  */
5803 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5804                                 struct CommandList *c, unsigned char lunaddr[],
5805                                 int reply_queue)
5806 {
5807         int rc;
5808
5809         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5810         (void) fill_cmd(c, TEST_UNIT_READY, h,
5811                         NULL, 0, 0, lunaddr, TYPE_CMD);
5812         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5813         if (rc)
5814                 return rc;
5815         /* no unmap needed here because no data xfer. */
5816
5817         /* Check if the unit is already ready. */
5818         if (c->err_info->CommandStatus == CMD_SUCCESS)
5819                 return 0;
5820
5821         /*
5822          * The first command sent after reset will receive "unit attention" to
5823          * indicate that the LUN has been reset...this is actually what we're
5824          * looking for (but, success is good too).
5825          */
5826         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5827                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5828                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5829                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5830                 return 0;
5831
5832         return 1;
5833 }
5834
5835 /*
5836  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5837  * returns zero when the unit is ready, and non-zero when giving up.
5838  */
5839 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5840                                 struct CommandList *c,
5841                                 unsigned char lunaddr[], int reply_queue)
5842 {
5843         int rc;
5844         int count = 0;
5845         int waittime = 1; /* seconds */
5846
5847         /* Send test unit ready until device ready, or give up. */
5848         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5849
5850                 /*
5851                  * Wait for a bit.  do this first, because if we send
5852                  * the TUR right away, the reset will just abort it.
5853                  */
5854                 msleep(1000 * waittime);
5855
5856                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5857                 if (!rc)
5858                         break;
5859
5860                 /* Increase wait time with each try, up to a point. */
5861                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5862                         waittime *= 2;
5863
5864                 dev_warn(&h->pdev->dev,
5865                          "waiting %d secs for device to become ready.\n",
5866                          waittime);
5867         }
5868
5869         return rc;
5870 }
5871
5872 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5873                                            unsigned char lunaddr[],
5874                                            int reply_queue)
5875 {
5876         int first_queue;
5877         int last_queue;
5878         int rq;
5879         int rc = 0;
5880         struct CommandList *c;
5881
5882         c = cmd_alloc(h);
5883
5884         /*
5885          * If no specific reply queue was requested, then send the TUR
5886          * repeatedly, requesting a reply on each reply queue; otherwise execute
5887          * the loop exactly once using only the specified queue.
5888          */
5889         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5890                 first_queue = 0;
5891                 last_queue = h->nreply_queues - 1;
5892         } else {
5893                 first_queue = reply_queue;
5894                 last_queue = reply_queue;
5895         }
5896
5897         for (rq = first_queue; rq <= last_queue; rq++) {
5898                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5899                 if (rc)
5900                         break;
5901         }
5902
5903         if (rc)
5904                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5905         else
5906                 dev_warn(&h->pdev->dev, "device is ready.\n");
5907
5908         cmd_free(h, c);
5909         return rc;
5910 }
5911
5912 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5913  * complaining.  Doing a host- or bus-reset can't do anything good here.
5914  */
5915 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5916 {
5917         int rc = SUCCESS;
5918         struct ctlr_info *h;
5919         struct hpsa_scsi_dev_t *dev;
5920         u8 reset_type;
5921         char msg[48];
5922         unsigned long flags;
5923
5924         /* find the controller to which the command to be aborted was sent */
5925         h = sdev_to_hba(scsicmd->device);
5926         if (h == NULL) /* paranoia */
5927                 return FAILED;
5928
5929         spin_lock_irqsave(&h->reset_lock, flags);
5930         h->reset_in_progress = 1;
5931         spin_unlock_irqrestore(&h->reset_lock, flags);
5932
5933         if (lockup_detected(h)) {
5934                 rc = FAILED;
5935                 goto return_reset_status;
5936         }
5937
5938         dev = scsicmd->device->hostdata;
5939         if (!dev) {
5940                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5941                 rc = FAILED;
5942                 goto return_reset_status;
5943         }
5944
5945         if (dev->devtype == TYPE_ENCLOSURE) {
5946                 rc = SUCCESS;
5947                 goto return_reset_status;
5948         }
5949
5950         /* if controller locked up, we can guarantee command won't complete */
5951         if (lockup_detected(h)) {
5952                 snprintf(msg, sizeof(msg),
5953                          "cmd %d RESET FAILED, lockup detected",
5954                          hpsa_get_cmd_index(scsicmd));
5955                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5956                 rc = FAILED;
5957                 goto return_reset_status;
5958         }
5959
5960         /* this reset request might be the result of a lockup; check */
5961         if (detect_controller_lockup(h)) {
5962                 snprintf(msg, sizeof(msg),
5963                          "cmd %d RESET FAILED, new lockup detected",
5964                          hpsa_get_cmd_index(scsicmd));
5965                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5966                 rc = FAILED;
5967                 goto return_reset_status;
5968         }
5969
5970         /* Do not attempt on controller */
5971         if (is_hba_lunid(dev->scsi3addr)) {
5972                 rc = SUCCESS;
5973                 goto return_reset_status;
5974         }
5975
5976         if (is_logical_dev_addr_mode(dev->scsi3addr))
5977                 reset_type = HPSA_DEVICE_RESET_MSG;
5978         else
5979                 reset_type = HPSA_PHYS_TARGET_RESET;
5980
5981         sprintf(msg, "resetting %s",
5982                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5983         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5984
5985         /* send a reset to the SCSI LUN which the command was sent to */
5986         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5987                            DEFAULT_REPLY_QUEUE);
5988         if (rc == 0)
5989                 rc = SUCCESS;
5990         else
5991                 rc = FAILED;
5992
5993         sprintf(msg, "reset %s %s",
5994                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5995                 rc == SUCCESS ? "completed successfully" : "failed");
5996         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5997
5998 return_reset_status:
5999         spin_lock_irqsave(&h->reset_lock, flags);
6000         h->reset_in_progress = 0;
6001         spin_unlock_irqrestore(&h->reset_lock, flags);
6002         return rc;
6003 }
6004
6005 /*
6006  * For operations with an associated SCSI command, a command block is allocated
6007  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6008  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6009  * the complement, although cmd_free() may be called instead.
6010  */
6011 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6012                                             struct scsi_cmnd *scmd)
6013 {
6014         int idx = hpsa_get_cmd_index(scmd);
6015         struct CommandList *c = h->cmd_pool + idx;
6016
6017         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6018                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6019                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6020                 /* The index value comes from the block layer, so if it's out of
6021                  * bounds, it's probably not our bug.
6022                  */
6023                 BUG();
6024         }
6025
6026         atomic_inc(&c->refcount);
6027         if (unlikely(!hpsa_is_cmd_idle(c))) {
6028                 /*
6029                  * We expect that the SCSI layer will hand us a unique tag
6030                  * value.  Thus, there should never be a collision here between
6031                  * two requests...because if the selected command isn't idle
6032                  * then someone is going to be very disappointed.
6033                  */
6034                 dev_err(&h->pdev->dev,
6035                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6036                         idx);
6037                 if (c->scsi_cmd != NULL)
6038                         scsi_print_command(c->scsi_cmd);
6039                 scsi_print_command(scmd);
6040         }
6041
6042         hpsa_cmd_partial_init(h, idx, c);
6043         return c;
6044 }
6045
6046 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6047 {
6048         /*
6049          * Release our reference to the block.  We don't need to do anything
6050          * else to free it, because it is accessed by index.
6051          */
6052         (void)atomic_dec(&c->refcount);
6053 }
6054
6055 /*
6056  * For operations that cannot sleep, a command block is allocated at init,
6057  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6058  * which ones are free or in use.  Lock must be held when calling this.
6059  * cmd_free() is the complement.
6060  * This function never gives up and returns NULL.  If it hangs,
6061  * another thread must call cmd_free() to free some tags.
6062  */
6063
6064 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6065 {
6066         struct CommandList *c;
6067         int refcount, i;
6068         int offset = 0;
6069
6070         /*
6071          * There is some *extremely* small but non-zero chance that that
6072          * multiple threads could get in here, and one thread could
6073          * be scanning through the list of bits looking for a free
6074          * one, but the free ones are always behind him, and other
6075          * threads sneak in behind him and eat them before he can
6076          * get to them, so that while there is always a free one, a
6077          * very unlucky thread might be starved anyway, never able to
6078          * beat the other threads.  In reality, this happens so
6079          * infrequently as to be indistinguishable from never.
6080          *
6081          * Note that we start allocating commands before the SCSI host structure
6082          * is initialized.  Since the search starts at bit zero, this
6083          * all works, since we have at least one command structure available;
6084          * however, it means that the structures with the low indexes have to be
6085          * reserved for driver-initiated requests, while requests from the block
6086          * layer will use the higher indexes.
6087          */
6088
6089         for (;;) {
6090                 i = find_next_zero_bit(h->cmd_pool_bits,
6091                                         HPSA_NRESERVED_CMDS,
6092                                         offset);
6093                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6094                         offset = 0;
6095                         continue;
6096                 }
6097                 c = h->cmd_pool + i;
6098                 refcount = atomic_inc_return(&c->refcount);
6099                 if (unlikely(refcount > 1)) {
6100                         cmd_free(h, c); /* already in use */
6101                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6102                         continue;
6103                 }
6104                 set_bit(i & (BITS_PER_LONG - 1),
6105                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6106                 break; /* it's ours now. */
6107         }
6108         hpsa_cmd_partial_init(h, i, c);
6109         return c;
6110 }
6111
6112 /*
6113  * This is the complementary operation to cmd_alloc().  Note, however, in some
6114  * corner cases it may also be used to free blocks allocated by
6115  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6116  * the clear-bit is harmless.
6117  */
6118 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6119 {
6120         if (atomic_dec_and_test(&c->refcount)) {
6121                 int i;
6122
6123                 i = c - h->cmd_pool;
6124                 clear_bit(i & (BITS_PER_LONG - 1),
6125                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6126         }
6127 }
6128
6129 #ifdef CONFIG_COMPAT
6130
6131 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6132         void __user *arg)
6133 {
6134         IOCTL32_Command_struct __user *arg32 =
6135             (IOCTL32_Command_struct __user *) arg;
6136         IOCTL_Command_struct arg64;
6137         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6138         int err;
6139         u32 cp;
6140
6141         memset(&arg64, 0, sizeof(arg64));
6142         err = 0;
6143         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6144                            sizeof(arg64.LUN_info));
6145         err |= copy_from_user(&arg64.Request, &arg32->Request,
6146                            sizeof(arg64.Request));
6147         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6148                            sizeof(arg64.error_info));
6149         err |= get_user(arg64.buf_size, &arg32->buf_size);
6150         err |= get_user(cp, &arg32->buf);
6151         arg64.buf = compat_ptr(cp);
6152         err |= copy_to_user(p, &arg64, sizeof(arg64));
6153
6154         if (err)
6155                 return -EFAULT;
6156
6157         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6158         if (err)
6159                 return err;
6160         err |= copy_in_user(&arg32->error_info, &p->error_info,
6161                          sizeof(arg32->error_info));
6162         if (err)
6163                 return -EFAULT;
6164         return err;
6165 }
6166
6167 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6168         unsigned int cmd, void __user *arg)
6169 {
6170         BIG_IOCTL32_Command_struct __user *arg32 =
6171             (BIG_IOCTL32_Command_struct __user *) arg;
6172         BIG_IOCTL_Command_struct arg64;
6173         BIG_IOCTL_Command_struct __user *p =
6174             compat_alloc_user_space(sizeof(arg64));
6175         int err;
6176         u32 cp;
6177
6178         memset(&arg64, 0, sizeof(arg64));
6179         err = 0;
6180         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6181                            sizeof(arg64.LUN_info));
6182         err |= copy_from_user(&arg64.Request, &arg32->Request,
6183                            sizeof(arg64.Request));
6184         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6185                            sizeof(arg64.error_info));
6186         err |= get_user(arg64.buf_size, &arg32->buf_size);
6187         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6188         err |= get_user(cp, &arg32->buf);
6189         arg64.buf = compat_ptr(cp);
6190         err |= copy_to_user(p, &arg64, sizeof(arg64));
6191
6192         if (err)
6193                 return -EFAULT;
6194
6195         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6196         if (err)
6197                 return err;
6198         err |= copy_in_user(&arg32->error_info, &p->error_info,
6199                          sizeof(arg32->error_info));
6200         if (err)
6201                 return -EFAULT;
6202         return err;
6203 }
6204
6205 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6206                              void __user *arg)
6207 {
6208         switch (cmd) {
6209         case CCISS_GETPCIINFO:
6210         case CCISS_GETINTINFO:
6211         case CCISS_SETINTINFO:
6212         case CCISS_GETNODENAME:
6213         case CCISS_SETNODENAME:
6214         case CCISS_GETHEARTBEAT:
6215         case CCISS_GETBUSTYPES:
6216         case CCISS_GETFIRMVER:
6217         case CCISS_GETDRIVVER:
6218         case CCISS_REVALIDVOLS:
6219         case CCISS_DEREGDISK:
6220         case CCISS_REGNEWDISK:
6221         case CCISS_REGNEWD:
6222         case CCISS_RESCANDISK:
6223         case CCISS_GETLUNINFO:
6224                 return hpsa_ioctl(dev, cmd, arg);
6225
6226         case CCISS_PASSTHRU32:
6227                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6228         case CCISS_BIG_PASSTHRU32:
6229                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6230
6231         default:
6232                 return -ENOIOCTLCMD;
6233         }
6234 }
6235 #endif
6236
6237 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6238 {
6239         struct hpsa_pci_info pciinfo;
6240
6241         if (!argp)
6242                 return -EINVAL;
6243         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6244         pciinfo.bus = h->pdev->bus->number;
6245         pciinfo.dev_fn = h->pdev->devfn;
6246         pciinfo.board_id = h->board_id;
6247         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6248                 return -EFAULT;
6249         return 0;
6250 }
6251
6252 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6253 {
6254         DriverVer_type DriverVer;
6255         unsigned char vmaj, vmin, vsubmin;
6256         int rc;
6257
6258         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6259                 &vmaj, &vmin, &vsubmin);
6260         if (rc != 3) {
6261                 dev_info(&h->pdev->dev, "driver version string '%s' "
6262                         "unrecognized.", HPSA_DRIVER_VERSION);
6263                 vmaj = 0;
6264                 vmin = 0;
6265                 vsubmin = 0;
6266         }
6267         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6268         if (!argp)
6269                 return -EINVAL;
6270         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6271                 return -EFAULT;
6272         return 0;
6273 }
6274
6275 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6276 {
6277         IOCTL_Command_struct iocommand;
6278         struct CommandList *c;
6279         char *buff = NULL;
6280         u64 temp64;
6281         int rc = 0;
6282
6283         if (!argp)
6284                 return -EINVAL;
6285         if (!capable(CAP_SYS_RAWIO))
6286                 return -EPERM;
6287         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6288                 return -EFAULT;
6289         if ((iocommand.buf_size < 1) &&
6290             (iocommand.Request.Type.Direction != XFER_NONE)) {
6291                 return -EINVAL;
6292         }
6293         if (iocommand.buf_size > 0) {
6294                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6295                 if (buff == NULL)
6296                         return -ENOMEM;
6297                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6298                         /* Copy the data into the buffer we created */
6299                         if (copy_from_user(buff, iocommand.buf,
6300                                 iocommand.buf_size)) {
6301                                 rc = -EFAULT;
6302                                 goto out_kfree;
6303                         }
6304                 } else {
6305                         memset(buff, 0, iocommand.buf_size);
6306                 }
6307         }
6308         c = cmd_alloc(h);
6309
6310         /* Fill in the command type */
6311         c->cmd_type = CMD_IOCTL_PEND;
6312         c->scsi_cmd = SCSI_CMD_BUSY;
6313         /* Fill in Command Header */
6314         c->Header.ReplyQueue = 0; /* unused in simple mode */
6315         if (iocommand.buf_size > 0) {   /* buffer to fill */
6316                 c->Header.SGList = 1;
6317                 c->Header.SGTotal = cpu_to_le16(1);
6318         } else  { /* no buffers to fill */
6319                 c->Header.SGList = 0;
6320                 c->Header.SGTotal = cpu_to_le16(0);
6321         }
6322         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6323
6324         /* Fill in Request block */
6325         memcpy(&c->Request, &iocommand.Request,
6326                 sizeof(c->Request));
6327
6328         /* Fill in the scatter gather information */
6329         if (iocommand.buf_size > 0) {
6330                 temp64 = dma_map_single(&h->pdev->dev, buff,
6331                         iocommand.buf_size, DMA_BIDIRECTIONAL);
6332                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6333                         c->SG[0].Addr = cpu_to_le64(0);
6334                         c->SG[0].Len = cpu_to_le32(0);
6335                         rc = -ENOMEM;
6336                         goto out;
6337                 }
6338                 c->SG[0].Addr = cpu_to_le64(temp64);
6339                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6340                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6341         }
6342         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6343                                         NO_TIMEOUT);
6344         if (iocommand.buf_size > 0)
6345                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6346         check_ioctl_unit_attention(h, c);
6347         if (rc) {
6348                 rc = -EIO;
6349                 goto out;
6350         }
6351
6352         /* Copy the error information out */
6353         memcpy(&iocommand.error_info, c->err_info,
6354                 sizeof(iocommand.error_info));
6355         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6356                 rc = -EFAULT;
6357                 goto out;
6358         }
6359         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6360                 iocommand.buf_size > 0) {
6361                 /* Copy the data out of the buffer we created */
6362                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6363                         rc = -EFAULT;
6364                         goto out;
6365                 }
6366         }
6367 out:
6368         cmd_free(h, c);
6369 out_kfree:
6370         kfree(buff);
6371         return rc;
6372 }
6373
6374 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6375 {
6376         BIG_IOCTL_Command_struct *ioc;
6377         struct CommandList *c;
6378         unsigned char **buff = NULL;
6379         int *buff_size = NULL;
6380         u64 temp64;
6381         BYTE sg_used = 0;
6382         int status = 0;
6383         u32 left;
6384         u32 sz;
6385         BYTE __user *data_ptr;
6386
6387         if (!argp)
6388                 return -EINVAL;
6389         if (!capable(CAP_SYS_RAWIO))
6390                 return -EPERM;
6391         ioc = vmemdup_user(argp, sizeof(*ioc));
6392         if (IS_ERR(ioc)) {
6393                 status = PTR_ERR(ioc);
6394                 goto cleanup1;
6395         }
6396         if ((ioc->buf_size < 1) &&
6397             (ioc->Request.Type.Direction != XFER_NONE)) {
6398                 status = -EINVAL;
6399                 goto cleanup1;
6400         }
6401         /* Check kmalloc limits  using all SGs */
6402         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6403                 status = -EINVAL;
6404                 goto cleanup1;
6405         }
6406         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6407                 status = -EINVAL;
6408                 goto cleanup1;
6409         }
6410         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6411         if (!buff) {
6412                 status = -ENOMEM;
6413                 goto cleanup1;
6414         }
6415         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6416         if (!buff_size) {
6417                 status = -ENOMEM;
6418                 goto cleanup1;
6419         }
6420         left = ioc->buf_size;
6421         data_ptr = ioc->buf;
6422         while (left) {
6423                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6424                 buff_size[sg_used] = sz;
6425                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6426                 if (buff[sg_used] == NULL) {
6427                         status = -ENOMEM;
6428                         goto cleanup1;
6429                 }
6430                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6431                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6432                                 status = -EFAULT;
6433                                 goto cleanup1;
6434                         }
6435                 } else
6436                         memset(buff[sg_used], 0, sz);
6437                 left -= sz;
6438                 data_ptr += sz;
6439                 sg_used++;
6440         }
6441         c = cmd_alloc(h);
6442
6443         c->cmd_type = CMD_IOCTL_PEND;
6444         c->scsi_cmd = SCSI_CMD_BUSY;
6445         c->Header.ReplyQueue = 0;
6446         c->Header.SGList = (u8) sg_used;
6447         c->Header.SGTotal = cpu_to_le16(sg_used);
6448         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6449         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6450         if (ioc->buf_size > 0) {
6451                 int i;
6452                 for (i = 0; i < sg_used; i++) {
6453                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6454                                     buff_size[i], DMA_BIDIRECTIONAL);
6455                         if (dma_mapping_error(&h->pdev->dev,
6456                                                         (dma_addr_t) temp64)) {
6457                                 c->SG[i].Addr = cpu_to_le64(0);
6458                                 c->SG[i].Len = cpu_to_le32(0);
6459                                 hpsa_pci_unmap(h->pdev, c, i,
6460                                         DMA_BIDIRECTIONAL);
6461                                 status = -ENOMEM;
6462                                 goto cleanup0;
6463                         }
6464                         c->SG[i].Addr = cpu_to_le64(temp64);
6465                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6466                         c->SG[i].Ext = cpu_to_le32(0);
6467                 }
6468                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6469         }
6470         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6471                                                 NO_TIMEOUT);
6472         if (sg_used)
6473                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6474         check_ioctl_unit_attention(h, c);
6475         if (status) {
6476                 status = -EIO;
6477                 goto cleanup0;
6478         }
6479
6480         /* Copy the error information out */
6481         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6482         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6483                 status = -EFAULT;
6484                 goto cleanup0;
6485         }
6486         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6487                 int i;
6488
6489                 /* Copy the data out of the buffer we created */
6490                 BYTE __user *ptr = ioc->buf;
6491                 for (i = 0; i < sg_used; i++) {
6492                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6493                                 status = -EFAULT;
6494                                 goto cleanup0;
6495                         }
6496                         ptr += buff_size[i];
6497                 }
6498         }
6499         status = 0;
6500 cleanup0:
6501         cmd_free(h, c);
6502 cleanup1:
6503         if (buff) {
6504                 int i;
6505
6506                 for (i = 0; i < sg_used; i++)
6507                         kfree(buff[i]);
6508                 kfree(buff);
6509         }
6510         kfree(buff_size);
6511         kvfree(ioc);
6512         return status;
6513 }
6514
6515 static void check_ioctl_unit_attention(struct ctlr_info *h,
6516         struct CommandList *c)
6517 {
6518         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6519                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6520                 (void) check_for_unit_attention(h, c);
6521 }
6522
6523 /*
6524  * ioctl
6525  */
6526 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6527                       void __user *arg)
6528 {
6529         struct ctlr_info *h;
6530         void __user *argp = (void __user *)arg;
6531         int rc;
6532
6533         h = sdev_to_hba(dev);
6534
6535         switch (cmd) {
6536         case CCISS_DEREGDISK:
6537         case CCISS_REGNEWDISK:
6538         case CCISS_REGNEWD:
6539                 hpsa_scan_start(h->scsi_host);
6540                 return 0;
6541         case CCISS_GETPCIINFO:
6542                 return hpsa_getpciinfo_ioctl(h, argp);
6543         case CCISS_GETDRIVVER:
6544                 return hpsa_getdrivver_ioctl(h, argp);
6545         case CCISS_PASSTHRU:
6546                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6547                         return -EAGAIN;
6548                 rc = hpsa_passthru_ioctl(h, argp);
6549                 atomic_inc(&h->passthru_cmds_avail);
6550                 return rc;
6551         case CCISS_BIG_PASSTHRU:
6552                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6553                         return -EAGAIN;
6554                 rc = hpsa_big_passthru_ioctl(h, argp);
6555                 atomic_inc(&h->passthru_cmds_avail);
6556                 return rc;
6557         default:
6558                 return -ENOTTY;
6559         }
6560 }
6561
6562 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6563                                 u8 reset_type)
6564 {
6565         struct CommandList *c;
6566
6567         c = cmd_alloc(h);
6568
6569         /* fill_cmd can't fail here, no data buffer to map */
6570         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6571                 RAID_CTLR_LUNID, TYPE_MSG);
6572         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6573         c->waiting = NULL;
6574         enqueue_cmd_and_start_io(h, c);
6575         /* Don't wait for completion, the reset won't complete.  Don't free
6576          * the command either.  This is the last command we will send before
6577          * re-initializing everything, so it doesn't matter and won't leak.
6578          */
6579         return;
6580 }
6581
6582 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6583         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6584         int cmd_type)
6585 {
6586         enum dma_data_direction dir = DMA_NONE;
6587
6588         c->cmd_type = CMD_IOCTL_PEND;
6589         c->scsi_cmd = SCSI_CMD_BUSY;
6590         c->Header.ReplyQueue = 0;
6591         if (buff != NULL && size > 0) {
6592                 c->Header.SGList = 1;
6593                 c->Header.SGTotal = cpu_to_le16(1);
6594         } else {
6595                 c->Header.SGList = 0;
6596                 c->Header.SGTotal = cpu_to_le16(0);
6597         }
6598         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6599
6600         if (cmd_type == TYPE_CMD) {
6601                 switch (cmd) {
6602                 case HPSA_INQUIRY:
6603                         /* are we trying to read a vital product page */
6604                         if (page_code & VPD_PAGE) {
6605                                 c->Request.CDB[1] = 0x01;
6606                                 c->Request.CDB[2] = (page_code & 0xff);
6607                         }
6608                         c->Request.CDBLen = 6;
6609                         c->Request.type_attr_dir =
6610                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6611                         c->Request.Timeout = 0;
6612                         c->Request.CDB[0] = HPSA_INQUIRY;
6613                         c->Request.CDB[4] = size & 0xFF;
6614                         break;
6615                 case RECEIVE_DIAGNOSTIC:
6616                         c->Request.CDBLen = 6;
6617                         c->Request.type_attr_dir =
6618                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6619                         c->Request.Timeout = 0;
6620                         c->Request.CDB[0] = cmd;
6621                         c->Request.CDB[1] = 1;
6622                         c->Request.CDB[2] = 1;
6623                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6624                         c->Request.CDB[4] = size & 0xFF;
6625                         break;
6626                 case HPSA_REPORT_LOG:
6627                 case HPSA_REPORT_PHYS:
6628                         /* Talking to controller so It's a physical command
6629                            mode = 00 target = 0.  Nothing to write.
6630                          */
6631                         c->Request.CDBLen = 12;
6632                         c->Request.type_attr_dir =
6633                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6634                         c->Request.Timeout = 0;
6635                         c->Request.CDB[0] = cmd;
6636                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6637                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6638                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6639                         c->Request.CDB[9] = size & 0xFF;
6640                         break;
6641                 case BMIC_SENSE_DIAG_OPTIONS:
6642                         c->Request.CDBLen = 16;
6643                         c->Request.type_attr_dir =
6644                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6645                         c->Request.Timeout = 0;
6646                         /* Spec says this should be BMIC_WRITE */
6647                         c->Request.CDB[0] = BMIC_READ;
6648                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6649                         break;
6650                 case BMIC_SET_DIAG_OPTIONS:
6651                         c->Request.CDBLen = 16;
6652                         c->Request.type_attr_dir =
6653                                         TYPE_ATTR_DIR(cmd_type,
6654                                                 ATTR_SIMPLE, XFER_WRITE);
6655                         c->Request.Timeout = 0;
6656                         c->Request.CDB[0] = BMIC_WRITE;
6657                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6658                         break;
6659                 case HPSA_CACHE_FLUSH:
6660                         c->Request.CDBLen = 12;
6661                         c->Request.type_attr_dir =
6662                                         TYPE_ATTR_DIR(cmd_type,
6663                                                 ATTR_SIMPLE, XFER_WRITE);
6664                         c->Request.Timeout = 0;
6665                         c->Request.CDB[0] = BMIC_WRITE;
6666                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6667                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6668                         c->Request.CDB[8] = size & 0xFF;
6669                         break;
6670                 case TEST_UNIT_READY:
6671                         c->Request.CDBLen = 6;
6672                         c->Request.type_attr_dir =
6673                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6674                         c->Request.Timeout = 0;
6675                         break;
6676                 case HPSA_GET_RAID_MAP:
6677                         c->Request.CDBLen = 12;
6678                         c->Request.type_attr_dir =
6679                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6680                         c->Request.Timeout = 0;
6681                         c->Request.CDB[0] = HPSA_CISS_READ;
6682                         c->Request.CDB[1] = cmd;
6683                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6684                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6685                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6686                         c->Request.CDB[9] = size & 0xFF;
6687                         break;
6688                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6689                         c->Request.CDBLen = 10;
6690                         c->Request.type_attr_dir =
6691                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6692                         c->Request.Timeout = 0;
6693                         c->Request.CDB[0] = BMIC_READ;
6694                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6695                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6696                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6697                         break;
6698                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6699                         c->Request.CDBLen = 10;
6700                         c->Request.type_attr_dir =
6701                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6702                         c->Request.Timeout = 0;
6703                         c->Request.CDB[0] = BMIC_READ;
6704                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6705                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6706                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6707                         break;
6708                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6709                         c->Request.CDBLen = 10;
6710                         c->Request.type_attr_dir =
6711                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712                         c->Request.Timeout = 0;
6713                         c->Request.CDB[0] = BMIC_READ;
6714                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6715                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6716                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6717                         break;
6718                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6719                         c->Request.CDBLen = 10;
6720                         c->Request.type_attr_dir =
6721                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6722                         c->Request.Timeout = 0;
6723                         c->Request.CDB[0] = BMIC_READ;
6724                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6725                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6726                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6727                         break;
6728                 case BMIC_IDENTIFY_CONTROLLER:
6729                         c->Request.CDBLen = 10;
6730                         c->Request.type_attr_dir =
6731                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6732                         c->Request.Timeout = 0;
6733                         c->Request.CDB[0] = BMIC_READ;
6734                         c->Request.CDB[1] = 0;
6735                         c->Request.CDB[2] = 0;
6736                         c->Request.CDB[3] = 0;
6737                         c->Request.CDB[4] = 0;
6738                         c->Request.CDB[5] = 0;
6739                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6740                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6741                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6742                         c->Request.CDB[9] = 0;
6743                         break;
6744                 default:
6745                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6746                         BUG();
6747                 }
6748         } else if (cmd_type == TYPE_MSG) {
6749                 switch (cmd) {
6750
6751                 case  HPSA_PHYS_TARGET_RESET:
6752                         c->Request.CDBLen = 16;
6753                         c->Request.type_attr_dir =
6754                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6755                         c->Request.Timeout = 0; /* Don't time out */
6756                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6757                         c->Request.CDB[0] = HPSA_RESET;
6758                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6759                         /* Physical target reset needs no control bytes 4-7*/
6760                         c->Request.CDB[4] = 0x00;
6761                         c->Request.CDB[5] = 0x00;
6762                         c->Request.CDB[6] = 0x00;
6763                         c->Request.CDB[7] = 0x00;
6764                         break;
6765                 case  HPSA_DEVICE_RESET_MSG:
6766                         c->Request.CDBLen = 16;
6767                         c->Request.type_attr_dir =
6768                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6769                         c->Request.Timeout = 0; /* Don't time out */
6770                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6771                         c->Request.CDB[0] =  cmd;
6772                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6773                         /* If bytes 4-7 are zero, it means reset the */
6774                         /* LunID device */
6775                         c->Request.CDB[4] = 0x00;
6776                         c->Request.CDB[5] = 0x00;
6777                         c->Request.CDB[6] = 0x00;
6778                         c->Request.CDB[7] = 0x00;
6779                         break;
6780                 default:
6781                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6782                                 cmd);
6783                         BUG();
6784                 }
6785         } else {
6786                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6787                 BUG();
6788         }
6789
6790         switch (GET_DIR(c->Request.type_attr_dir)) {
6791         case XFER_READ:
6792                 dir = DMA_FROM_DEVICE;
6793                 break;
6794         case XFER_WRITE:
6795                 dir = DMA_TO_DEVICE;
6796                 break;
6797         case XFER_NONE:
6798                 dir = DMA_NONE;
6799                 break;
6800         default:
6801                 dir = DMA_BIDIRECTIONAL;
6802         }
6803         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6804                 return -1;
6805         return 0;
6806 }
6807
6808 /*
6809  * Map (physical) PCI mem into (virtual) kernel space
6810  */
6811 static void __iomem *remap_pci_mem(ulong base, ulong size)
6812 {
6813         ulong page_base = ((ulong) base) & PAGE_MASK;
6814         ulong page_offs = ((ulong) base) - page_base;
6815         void __iomem *page_remapped = ioremap_nocache(page_base,
6816                 page_offs + size);
6817
6818         return page_remapped ? (page_remapped + page_offs) : NULL;
6819 }
6820
6821 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6822 {
6823         return h->access.command_completed(h, q);
6824 }
6825
6826 static inline bool interrupt_pending(struct ctlr_info *h)
6827 {
6828         return h->access.intr_pending(h);
6829 }
6830
6831 static inline long interrupt_not_for_us(struct ctlr_info *h)
6832 {
6833         return (h->access.intr_pending(h) == 0) ||
6834                 (h->interrupts_enabled == 0);
6835 }
6836
6837 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6838         u32 raw_tag)
6839 {
6840         if (unlikely(tag_index >= h->nr_cmds)) {
6841                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6842                 return 1;
6843         }
6844         return 0;
6845 }
6846
6847 static inline void finish_cmd(struct CommandList *c)
6848 {
6849         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6850         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6851                         || c->cmd_type == CMD_IOACCEL2))
6852                 complete_scsi_command(c);
6853         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6854                 complete(c->waiting);
6855 }
6856
6857 /* process completion of an indexed ("direct lookup") command */
6858 static inline void process_indexed_cmd(struct ctlr_info *h,
6859         u32 raw_tag)
6860 {
6861         u32 tag_index;
6862         struct CommandList *c;
6863
6864         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6865         if (!bad_tag(h, tag_index, raw_tag)) {
6866                 c = h->cmd_pool + tag_index;
6867                 finish_cmd(c);
6868         }
6869 }
6870
6871 /* Some controllers, like p400, will give us one interrupt
6872  * after a soft reset, even if we turned interrupts off.
6873  * Only need to check for this in the hpsa_xxx_discard_completions
6874  * functions.
6875  */
6876 static int ignore_bogus_interrupt(struct ctlr_info *h)
6877 {
6878         if (likely(!reset_devices))
6879                 return 0;
6880
6881         if (likely(h->interrupts_enabled))
6882                 return 0;
6883
6884         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6885                 "(known firmware bug.)  Ignoring.\n");
6886
6887         return 1;
6888 }
6889
6890 /*
6891  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6892  * Relies on (h-q[x] == x) being true for x such that
6893  * 0 <= x < MAX_REPLY_QUEUES.
6894  */
6895 static struct ctlr_info *queue_to_hba(u8 *queue)
6896 {
6897         return container_of((queue - *queue), struct ctlr_info, q[0]);
6898 }
6899
6900 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6901 {
6902         struct ctlr_info *h = queue_to_hba(queue);
6903         u8 q = *(u8 *) queue;
6904         u32 raw_tag;
6905
6906         if (ignore_bogus_interrupt(h))
6907                 return IRQ_NONE;
6908
6909         if (interrupt_not_for_us(h))
6910                 return IRQ_NONE;
6911         h->last_intr_timestamp = get_jiffies_64();
6912         while (interrupt_pending(h)) {
6913                 raw_tag = get_next_completion(h, q);
6914                 while (raw_tag != FIFO_EMPTY)
6915                         raw_tag = next_command(h, q);
6916         }
6917         return IRQ_HANDLED;
6918 }
6919
6920 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6921 {
6922         struct ctlr_info *h = queue_to_hba(queue);
6923         u32 raw_tag;
6924         u8 q = *(u8 *) queue;
6925
6926         if (ignore_bogus_interrupt(h))
6927                 return IRQ_NONE;
6928
6929         h->last_intr_timestamp = get_jiffies_64();
6930         raw_tag = get_next_completion(h, q);
6931         while (raw_tag != FIFO_EMPTY)
6932                 raw_tag = next_command(h, q);
6933         return IRQ_HANDLED;
6934 }
6935
6936 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6937 {
6938         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6939         u32 raw_tag;
6940         u8 q = *(u8 *) queue;
6941
6942         if (interrupt_not_for_us(h))
6943                 return IRQ_NONE;
6944         h->last_intr_timestamp = get_jiffies_64();
6945         while (interrupt_pending(h)) {
6946                 raw_tag = get_next_completion(h, q);
6947                 while (raw_tag != FIFO_EMPTY) {
6948                         process_indexed_cmd(h, raw_tag);
6949                         raw_tag = next_command(h, q);
6950                 }
6951         }
6952         return IRQ_HANDLED;
6953 }
6954
6955 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6956 {
6957         struct ctlr_info *h = queue_to_hba(queue);
6958         u32 raw_tag;
6959         u8 q = *(u8 *) queue;
6960
6961         h->last_intr_timestamp = get_jiffies_64();
6962         raw_tag = get_next_completion(h, q);
6963         while (raw_tag != FIFO_EMPTY) {
6964                 process_indexed_cmd(h, raw_tag);
6965                 raw_tag = next_command(h, q);
6966         }
6967         return IRQ_HANDLED;
6968 }
6969
6970 /* Send a message CDB to the firmware. Careful, this only works
6971  * in simple mode, not performant mode due to the tag lookup.
6972  * We only ever use this immediately after a controller reset.
6973  */
6974 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6975                         unsigned char type)
6976 {
6977         struct Command {
6978                 struct CommandListHeader CommandHeader;
6979                 struct RequestBlock Request;
6980                 struct ErrDescriptor ErrorDescriptor;
6981         };
6982         struct Command *cmd;
6983         static const size_t cmd_sz = sizeof(*cmd) +
6984                                         sizeof(cmd->ErrorDescriptor);
6985         dma_addr_t paddr64;
6986         __le32 paddr32;
6987         u32 tag;
6988         void __iomem *vaddr;
6989         int i, err;
6990
6991         vaddr = pci_ioremap_bar(pdev, 0);
6992         if (vaddr == NULL)
6993                 return -ENOMEM;
6994
6995         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6996          * CCISS commands, so they must be allocated from the lower 4GiB of
6997          * memory.
6998          */
6999         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7000         if (err) {
7001                 iounmap(vaddr);
7002                 return err;
7003         }
7004
7005         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7006         if (cmd == NULL) {
7007                 iounmap(vaddr);
7008                 return -ENOMEM;
7009         }
7010
7011         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7012          * although there's no guarantee, we assume that the address is at
7013          * least 4-byte aligned (most likely, it's page-aligned).
7014          */
7015         paddr32 = cpu_to_le32(paddr64);
7016
7017         cmd->CommandHeader.ReplyQueue = 0;
7018         cmd->CommandHeader.SGList = 0;
7019         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7020         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7021         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7022
7023         cmd->Request.CDBLen = 16;
7024         cmd->Request.type_attr_dir =
7025                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7026         cmd->Request.Timeout = 0; /* Don't time out */
7027         cmd->Request.CDB[0] = opcode;
7028         cmd->Request.CDB[1] = type;
7029         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7030         cmd->ErrorDescriptor.Addr =
7031                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7032         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7033
7034         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7035
7036         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7037                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7038                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7039                         break;
7040                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7041         }
7042
7043         iounmap(vaddr);
7044
7045         /* we leak the DMA buffer here ... no choice since the controller could
7046          *  still complete the command.
7047          */
7048         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7049                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7050                         opcode, type);
7051                 return -ETIMEDOUT;
7052         }
7053
7054         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7055
7056         if (tag & HPSA_ERROR_BIT) {
7057                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7058                         opcode, type);
7059                 return -EIO;
7060         }
7061
7062         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7063                 opcode, type);
7064         return 0;
7065 }
7066
7067 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7068
7069 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7070         void __iomem *vaddr, u32 use_doorbell)
7071 {
7072
7073         if (use_doorbell) {
7074                 /* For everything after the P600, the PCI power state method
7075                  * of resetting the controller doesn't work, so we have this
7076                  * other way using the doorbell register.
7077                  */
7078                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7079                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7080
7081                 /* PMC hardware guys tell us we need a 10 second delay after
7082                  * doorbell reset and before any attempt to talk to the board
7083                  * at all to ensure that this actually works and doesn't fall
7084                  * over in some weird corner cases.
7085                  */
7086                 msleep(10000);
7087         } else { /* Try to do it the PCI power state way */
7088
7089                 /* Quoting from the Open CISS Specification: "The Power
7090                  * Management Control/Status Register (CSR) controls the power
7091                  * state of the device.  The normal operating state is D0,
7092                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7093                  * the controller, place the interface device in D3 then to D0,
7094                  * this causes a secondary PCI reset which will reset the
7095                  * controller." */
7096
7097                 int rc = 0;
7098
7099                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7100
7101                 /* enter the D3hot power management state */
7102                 rc = pci_set_power_state(pdev, PCI_D3hot);
7103                 if (rc)
7104                         return rc;
7105
7106                 msleep(500);
7107
7108                 /* enter the D0 power management state */
7109                 rc = pci_set_power_state(pdev, PCI_D0);
7110                 if (rc)
7111                         return rc;
7112
7113                 /*
7114                  * The P600 requires a small delay when changing states.
7115                  * Otherwise we may think the board did not reset and we bail.
7116                  * This for kdump only and is particular to the P600.
7117                  */
7118                 msleep(500);
7119         }
7120         return 0;
7121 }
7122
7123 static void init_driver_version(char *driver_version, int len)
7124 {
7125         memset(driver_version, 0, len);
7126         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7127 }
7128
7129 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7130 {
7131         char *driver_version;
7132         int i, size = sizeof(cfgtable->driver_version);
7133
7134         driver_version = kmalloc(size, GFP_KERNEL);
7135         if (!driver_version)
7136                 return -ENOMEM;
7137
7138         init_driver_version(driver_version, size);
7139         for (i = 0; i < size; i++)
7140                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7141         kfree(driver_version);
7142         return 0;
7143 }
7144
7145 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7146                                           unsigned char *driver_ver)
7147 {
7148         int i;
7149
7150         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7151                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7152 }
7153
7154 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7155 {
7156
7157         char *driver_ver, *old_driver_ver;
7158         int rc, size = sizeof(cfgtable->driver_version);
7159
7160         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7161         if (!old_driver_ver)
7162                 return -ENOMEM;
7163         driver_ver = old_driver_ver + size;
7164
7165         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7166          * should have been changed, otherwise we know the reset failed.
7167          */
7168         init_driver_version(old_driver_ver, size);
7169         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7170         rc = !memcmp(driver_ver, old_driver_ver, size);
7171         kfree(old_driver_ver);
7172         return rc;
7173 }
7174 /* This does a hard reset of the controller using PCI power management
7175  * states or the using the doorbell register.
7176  */
7177 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7178 {
7179         u64 cfg_offset;
7180         u32 cfg_base_addr;
7181         u64 cfg_base_addr_index;
7182         void __iomem *vaddr;
7183         unsigned long paddr;
7184         u32 misc_fw_support;
7185         int rc;
7186         struct CfgTable __iomem *cfgtable;
7187         u32 use_doorbell;
7188         u16 command_register;
7189
7190         /* For controllers as old as the P600, this is very nearly
7191          * the same thing as
7192          *
7193          * pci_save_state(pci_dev);
7194          * pci_set_power_state(pci_dev, PCI_D3hot);
7195          * pci_set_power_state(pci_dev, PCI_D0);
7196          * pci_restore_state(pci_dev);
7197          *
7198          * For controllers newer than the P600, the pci power state
7199          * method of resetting doesn't work so we have another way
7200          * using the doorbell register.
7201          */
7202
7203         if (!ctlr_is_resettable(board_id)) {
7204                 dev_warn(&pdev->dev, "Controller not resettable\n");
7205                 return -ENODEV;
7206         }
7207
7208         /* if controller is soft- but not hard resettable... */
7209         if (!ctlr_is_hard_resettable(board_id))
7210                 return -ENOTSUPP; /* try soft reset later. */
7211
7212         /* Save the PCI command register */
7213         pci_read_config_word(pdev, 4, &command_register);
7214         pci_save_state(pdev);
7215
7216         /* find the first memory BAR, so we can find the cfg table */
7217         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7218         if (rc)
7219                 return rc;
7220         vaddr = remap_pci_mem(paddr, 0x250);
7221         if (!vaddr)
7222                 return -ENOMEM;
7223
7224         /* find cfgtable in order to check if reset via doorbell is supported */
7225         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7226                                         &cfg_base_addr_index, &cfg_offset);
7227         if (rc)
7228                 goto unmap_vaddr;
7229         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7230                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7231         if (!cfgtable) {
7232                 rc = -ENOMEM;
7233                 goto unmap_vaddr;
7234         }
7235         rc = write_driver_ver_to_cfgtable(cfgtable);
7236         if (rc)
7237                 goto unmap_cfgtable;
7238
7239         /* If reset via doorbell register is supported, use that.
7240          * There are two such methods.  Favor the newest method.
7241          */
7242         misc_fw_support = readl(&cfgtable->misc_fw_support);
7243         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7244         if (use_doorbell) {
7245                 use_doorbell = DOORBELL_CTLR_RESET2;
7246         } else {
7247                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7248                 if (use_doorbell) {
7249                         dev_warn(&pdev->dev,
7250                                 "Soft reset not supported. Firmware update is required.\n");
7251                         rc = -ENOTSUPP; /* try soft reset */
7252                         goto unmap_cfgtable;
7253                 }
7254         }
7255
7256         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7257         if (rc)
7258                 goto unmap_cfgtable;
7259
7260         pci_restore_state(pdev);
7261         pci_write_config_word(pdev, 4, command_register);
7262
7263         /* Some devices (notably the HP Smart Array 5i Controller)
7264            need a little pause here */
7265         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7266
7267         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7268         if (rc) {
7269                 dev_warn(&pdev->dev,
7270                         "Failed waiting for board to become ready after hard reset\n");
7271                 goto unmap_cfgtable;
7272         }
7273
7274         rc = controller_reset_failed(vaddr);
7275         if (rc < 0)
7276                 goto unmap_cfgtable;
7277         if (rc) {
7278                 dev_warn(&pdev->dev, "Unable to successfully reset "
7279                         "controller. Will try soft reset.\n");
7280                 rc = -ENOTSUPP;
7281         } else {
7282                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7283         }
7284
7285 unmap_cfgtable:
7286         iounmap(cfgtable);
7287
7288 unmap_vaddr:
7289         iounmap(vaddr);
7290         return rc;
7291 }
7292
7293 /*
7294  *  We cannot read the structure directly, for portability we must use
7295  *   the io functions.
7296  *   This is for debug only.
7297  */
7298 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7299 {
7300 #ifdef HPSA_DEBUG
7301         int i;
7302         char temp_name[17];
7303
7304         dev_info(dev, "Controller Configuration information\n");
7305         dev_info(dev, "------------------------------------\n");
7306         for (i = 0; i < 4; i++)
7307                 temp_name[i] = readb(&(tb->Signature[i]));
7308         temp_name[4] = '\0';
7309         dev_info(dev, "   Signature = %s\n", temp_name);
7310         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7311         dev_info(dev, "   Transport methods supported = 0x%x\n",
7312                readl(&(tb->TransportSupport)));
7313         dev_info(dev, "   Transport methods active = 0x%x\n",
7314                readl(&(tb->TransportActive)));
7315         dev_info(dev, "   Requested transport Method = 0x%x\n",
7316                readl(&(tb->HostWrite.TransportRequest)));
7317         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7318                readl(&(tb->HostWrite.CoalIntDelay)));
7319         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7320                readl(&(tb->HostWrite.CoalIntCount)));
7321         dev_info(dev, "   Max outstanding commands = %d\n",
7322                readl(&(tb->CmdsOutMax)));
7323         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7324         for (i = 0; i < 16; i++)
7325                 temp_name[i] = readb(&(tb->ServerName[i]));
7326         temp_name[16] = '\0';
7327         dev_info(dev, "   Server Name = %s\n", temp_name);
7328         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7329                 readl(&(tb->HeartBeat)));
7330 #endif                          /* HPSA_DEBUG */
7331 }
7332
7333 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7334 {
7335         int i, offset, mem_type, bar_type;
7336
7337         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7338                 return 0;
7339         offset = 0;
7340         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7341                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7342                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7343                         offset += 4;
7344                 else {
7345                         mem_type = pci_resource_flags(pdev, i) &
7346                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7347                         switch (mem_type) {
7348                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7349                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7350                                 offset += 4;    /* 32 bit */
7351                                 break;
7352                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7353                                 offset += 8;
7354                                 break;
7355                         default:        /* reserved in PCI 2.2 */
7356                                 dev_warn(&pdev->dev,
7357                                        "base address is invalid\n");
7358                                 return -1;
7359                                 break;
7360                         }
7361                 }
7362                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7363                         return i + 1;
7364         }
7365         return -1;
7366 }
7367
7368 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7369 {
7370         pci_free_irq_vectors(h->pdev);
7371         h->msix_vectors = 0;
7372 }
7373
7374 static void hpsa_setup_reply_map(struct ctlr_info *h)
7375 {
7376         const struct cpumask *mask;
7377         unsigned int queue, cpu;
7378
7379         for (queue = 0; queue < h->msix_vectors; queue++) {
7380                 mask = pci_irq_get_affinity(h->pdev, queue);
7381                 if (!mask)
7382                         goto fallback;
7383
7384                 for_each_cpu(cpu, mask)
7385                         h->reply_map[cpu] = queue;
7386         }
7387         return;
7388
7389 fallback:
7390         for_each_possible_cpu(cpu)
7391                 h->reply_map[cpu] = 0;
7392 }
7393
7394 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7395  * controllers that are capable. If not, we use legacy INTx mode.
7396  */
7397 static int hpsa_interrupt_mode(struct ctlr_info *h)
7398 {
7399         unsigned int flags = PCI_IRQ_LEGACY;
7400         int ret;
7401
7402         /* Some boards advertise MSI but don't really support it */
7403         switch (h->board_id) {
7404         case 0x40700E11:
7405         case 0x40800E11:
7406         case 0x40820E11:
7407         case 0x40830E11:
7408                 break;
7409         default:
7410                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7411                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7412                 if (ret > 0) {
7413                         h->msix_vectors = ret;
7414                         return 0;
7415                 }
7416
7417                 flags |= PCI_IRQ_MSI;
7418                 break;
7419         }
7420
7421         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7422         if (ret < 0)
7423                 return ret;
7424         return 0;
7425 }
7426
7427 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7428                                 bool *legacy_board)
7429 {
7430         int i;
7431         u32 subsystem_vendor_id, subsystem_device_id;
7432
7433         subsystem_vendor_id = pdev->subsystem_vendor;
7434         subsystem_device_id = pdev->subsystem_device;
7435         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7436                     subsystem_vendor_id;
7437
7438         if (legacy_board)
7439                 *legacy_board = false;
7440         for (i = 0; i < ARRAY_SIZE(products); i++)
7441                 if (*board_id == products[i].board_id) {
7442                         if (products[i].access != &SA5A_access &&
7443                             products[i].access != &SA5B_access)
7444                                 return i;
7445                         dev_warn(&pdev->dev,
7446                                  "legacy board ID: 0x%08x\n",
7447                                  *board_id);
7448                         if (legacy_board)
7449                             *legacy_board = true;
7450                         return i;
7451                 }
7452
7453         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7454         if (legacy_board)
7455                 *legacy_board = true;
7456         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7457 }
7458
7459 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7460                                     unsigned long *memory_bar)
7461 {
7462         int i;
7463
7464         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7465                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7466                         /* addressing mode bits already removed */
7467                         *memory_bar = pci_resource_start(pdev, i);
7468                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7469                                 *memory_bar);
7470                         return 0;
7471                 }
7472         dev_warn(&pdev->dev, "no memory BAR found\n");
7473         return -ENODEV;
7474 }
7475
7476 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7477                                      int wait_for_ready)
7478 {
7479         int i, iterations;
7480         u32 scratchpad;
7481         if (wait_for_ready)
7482                 iterations = HPSA_BOARD_READY_ITERATIONS;
7483         else
7484                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7485
7486         for (i = 0; i < iterations; i++) {
7487                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7488                 if (wait_for_ready) {
7489                         if (scratchpad == HPSA_FIRMWARE_READY)
7490                                 return 0;
7491                 } else {
7492                         if (scratchpad != HPSA_FIRMWARE_READY)
7493                                 return 0;
7494                 }
7495                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7496         }
7497         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7498         return -ENODEV;
7499 }
7500
7501 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7502                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7503                                u64 *cfg_offset)
7504 {
7505         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7506         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7507         *cfg_base_addr &= (u32) 0x0000ffff;
7508         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7509         if (*cfg_base_addr_index == -1) {
7510                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7511                 return -ENODEV;
7512         }
7513         return 0;
7514 }
7515
7516 static void hpsa_free_cfgtables(struct ctlr_info *h)
7517 {
7518         if (h->transtable) {
7519                 iounmap(h->transtable);
7520                 h->transtable = NULL;
7521         }
7522         if (h->cfgtable) {
7523                 iounmap(h->cfgtable);
7524                 h->cfgtable = NULL;
7525         }
7526 }
7527
7528 /* Find and map CISS config table and transfer table
7529 + * several items must be unmapped (freed) later
7530 + * */
7531 static int hpsa_find_cfgtables(struct ctlr_info *h)
7532 {
7533         u64 cfg_offset;
7534         u32 cfg_base_addr;
7535         u64 cfg_base_addr_index;
7536         u32 trans_offset;
7537         int rc;
7538
7539         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7540                 &cfg_base_addr_index, &cfg_offset);
7541         if (rc)
7542                 return rc;
7543         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7544                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7545         if (!h->cfgtable) {
7546                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7547                 return -ENOMEM;
7548         }
7549         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7550         if (rc)
7551                 return rc;
7552         /* Find performant mode table. */
7553         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7554         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7555                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7556                                 sizeof(*h->transtable));
7557         if (!h->transtable) {
7558                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7559                 hpsa_free_cfgtables(h);
7560                 return -ENOMEM;
7561         }
7562         return 0;
7563 }
7564
7565 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7566 {
7567 #define MIN_MAX_COMMANDS 16
7568         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7569
7570         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7571
7572         /* Limit commands in memory limited kdump scenario. */
7573         if (reset_devices && h->max_commands > 32)
7574                 h->max_commands = 32;
7575
7576         if (h->max_commands < MIN_MAX_COMMANDS) {
7577                 dev_warn(&h->pdev->dev,
7578                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7579                         h->max_commands,
7580                         MIN_MAX_COMMANDS);
7581                 h->max_commands = MIN_MAX_COMMANDS;
7582         }
7583 }
7584
7585 /* If the controller reports that the total max sg entries is greater than 512,
7586  * then we know that chained SG blocks work.  (Original smart arrays did not
7587  * support chained SG blocks and would return zero for max sg entries.)
7588  */
7589 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7590 {
7591         return h->maxsgentries > 512;
7592 }
7593
7594 /* Interrogate the hardware for some limits:
7595  * max commands, max SG elements without chaining, and with chaining,
7596  * SG chain block size, etc.
7597  */
7598 static void hpsa_find_board_params(struct ctlr_info *h)
7599 {
7600         hpsa_get_max_perf_mode_cmds(h);
7601         h->nr_cmds = h->max_commands;
7602         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7603         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7604         if (hpsa_supports_chained_sg_blocks(h)) {
7605                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7606                 h->max_cmd_sg_entries = 32;
7607                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7608                 h->maxsgentries--; /* save one for chain pointer */
7609         } else {
7610                 /*
7611                  * Original smart arrays supported at most 31 s/g entries
7612                  * embedded inline in the command (trying to use more
7613                  * would lock up the controller)
7614                  */
7615                 h->max_cmd_sg_entries = 31;
7616                 h->maxsgentries = 31; /* default to traditional values */
7617                 h->chainsize = 0;
7618         }
7619
7620         /* Find out what task management functions are supported and cache */
7621         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7622         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7623                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7624         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7625                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7626         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7627                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7628 }
7629
7630 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7631 {
7632         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7633                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7634                 return false;
7635         }
7636         return true;
7637 }
7638
7639 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7640 {
7641         u32 driver_support;
7642
7643         driver_support = readl(&(h->cfgtable->driver_support));
7644         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7645 #ifdef CONFIG_X86
7646         driver_support |= ENABLE_SCSI_PREFETCH;
7647 #endif
7648         driver_support |= ENABLE_UNIT_ATTN;
7649         writel(driver_support, &(h->cfgtable->driver_support));
7650 }
7651
7652 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7653  * in a prefetch beyond physical memory.
7654  */
7655 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7656 {
7657         u32 dma_prefetch;
7658
7659         if (h->board_id != 0x3225103C)
7660                 return;
7661         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7662         dma_prefetch |= 0x8000;
7663         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7664 }
7665
7666 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7667 {
7668         int i;
7669         u32 doorbell_value;
7670         unsigned long flags;
7671         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7672         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7673                 spin_lock_irqsave(&h->lock, flags);
7674                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7675                 spin_unlock_irqrestore(&h->lock, flags);
7676                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7677                         goto done;
7678                 /* delay and try again */
7679                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7680         }
7681         return -ENODEV;
7682 done:
7683         return 0;
7684 }
7685
7686 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7687 {
7688         int i;
7689         u32 doorbell_value;
7690         unsigned long flags;
7691
7692         /* under certain very rare conditions, this can take awhile.
7693          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7694          * as we enter this code.)
7695          */
7696         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7697                 if (h->remove_in_progress)
7698                         goto done;
7699                 spin_lock_irqsave(&h->lock, flags);
7700                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7701                 spin_unlock_irqrestore(&h->lock, flags);
7702                 if (!(doorbell_value & CFGTBL_ChangeReq))
7703                         goto done;
7704                 /* delay and try again */
7705                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7706         }
7707         return -ENODEV;
7708 done:
7709         return 0;
7710 }
7711
7712 /* return -ENODEV or other reason on error, 0 on success */
7713 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7714 {
7715         u32 trans_support;
7716
7717         trans_support = readl(&(h->cfgtable->TransportSupport));
7718         if (!(trans_support & SIMPLE_MODE))
7719                 return -ENOTSUPP;
7720
7721         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7722
7723         /* Update the field, and then ring the doorbell */
7724         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7725         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7726         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7727         if (hpsa_wait_for_mode_change_ack(h))
7728                 goto error;
7729         print_cfg_table(&h->pdev->dev, h->cfgtable);
7730         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7731                 goto error;
7732         h->transMethod = CFGTBL_Trans_Simple;
7733         return 0;
7734 error:
7735         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7736         return -ENODEV;
7737 }
7738
7739 /* free items allocated or mapped by hpsa_pci_init */
7740 static void hpsa_free_pci_init(struct ctlr_info *h)
7741 {
7742         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7743         iounmap(h->vaddr);                      /* pci_init 3 */
7744         h->vaddr = NULL;
7745         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7746         /*
7747          * call pci_disable_device before pci_release_regions per
7748          * Documentation/PCI/pci.txt
7749          */
7750         pci_disable_device(h->pdev);            /* pci_init 1 */
7751         pci_release_regions(h->pdev);           /* pci_init 2 */
7752 }
7753
7754 /* several items must be freed later */
7755 static int hpsa_pci_init(struct ctlr_info *h)
7756 {
7757         int prod_index, err;
7758         bool legacy_board;
7759
7760         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7761         if (prod_index < 0)
7762                 return prod_index;
7763         h->product_name = products[prod_index].product_name;
7764         h->access = *(products[prod_index].access);
7765         h->legacy_board = legacy_board;
7766         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7767                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7768
7769         err = pci_enable_device(h->pdev);
7770         if (err) {
7771                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7772                 pci_disable_device(h->pdev);
7773                 return err;
7774         }
7775
7776         err = pci_request_regions(h->pdev, HPSA);
7777         if (err) {
7778                 dev_err(&h->pdev->dev,
7779                         "failed to obtain PCI resources\n");
7780                 pci_disable_device(h->pdev);
7781                 return err;
7782         }
7783
7784         pci_set_master(h->pdev);
7785
7786         err = hpsa_interrupt_mode(h);
7787         if (err)
7788                 goto clean1;
7789
7790         /* setup mapping between CPU and reply queue */
7791         hpsa_setup_reply_map(h);
7792
7793         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7794         if (err)
7795                 goto clean2;    /* intmode+region, pci */
7796         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7797         if (!h->vaddr) {
7798                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7799                 err = -ENOMEM;
7800                 goto clean2;    /* intmode+region, pci */
7801         }
7802         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7803         if (err)
7804                 goto clean3;    /* vaddr, intmode+region, pci */
7805         err = hpsa_find_cfgtables(h);
7806         if (err)
7807                 goto clean3;    /* vaddr, intmode+region, pci */
7808         hpsa_find_board_params(h);
7809
7810         if (!hpsa_CISS_signature_present(h)) {
7811                 err = -ENODEV;
7812                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7813         }
7814         hpsa_set_driver_support_bits(h);
7815         hpsa_p600_dma_prefetch_quirk(h);
7816         err = hpsa_enter_simple_mode(h);
7817         if (err)
7818                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7819         return 0;
7820
7821 clean4: /* cfgtables, vaddr, intmode+region, pci */
7822         hpsa_free_cfgtables(h);
7823 clean3: /* vaddr, intmode+region, pci */
7824         iounmap(h->vaddr);
7825         h->vaddr = NULL;
7826 clean2: /* intmode+region, pci */
7827         hpsa_disable_interrupt_mode(h);
7828 clean1:
7829         /*
7830          * call pci_disable_device before pci_release_regions per
7831          * Documentation/PCI/pci.txt
7832          */
7833         pci_disable_device(h->pdev);
7834         pci_release_regions(h->pdev);
7835         return err;
7836 }
7837
7838 static void hpsa_hba_inquiry(struct ctlr_info *h)
7839 {
7840         int rc;
7841
7842 #define HBA_INQUIRY_BYTE_COUNT 64
7843         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7844         if (!h->hba_inquiry_data)
7845                 return;
7846         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7847                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7848         if (rc != 0) {
7849                 kfree(h->hba_inquiry_data);
7850                 h->hba_inquiry_data = NULL;
7851         }
7852 }
7853
7854 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7855 {
7856         int rc, i;
7857         void __iomem *vaddr;
7858
7859         if (!reset_devices)
7860                 return 0;
7861
7862         /* kdump kernel is loading, we don't know in which state is
7863          * the pci interface. The dev->enable_cnt is equal zero
7864          * so we call enable+disable, wait a while and switch it on.
7865          */
7866         rc = pci_enable_device(pdev);
7867         if (rc) {
7868                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7869                 return -ENODEV;
7870         }
7871         pci_disable_device(pdev);
7872         msleep(260);                    /* a randomly chosen number */
7873         rc = pci_enable_device(pdev);
7874         if (rc) {
7875                 dev_warn(&pdev->dev, "failed to enable device.\n");
7876                 return -ENODEV;
7877         }
7878
7879         pci_set_master(pdev);
7880
7881         vaddr = pci_ioremap_bar(pdev, 0);
7882         if (vaddr == NULL) {
7883                 rc = -ENOMEM;
7884                 goto out_disable;
7885         }
7886         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7887         iounmap(vaddr);
7888
7889         /* Reset the controller with a PCI power-cycle or via doorbell */
7890         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7891
7892         /* -ENOTSUPP here means we cannot reset the controller
7893          * but it's already (and still) up and running in
7894          * "performant mode".  Or, it might be 640x, which can't reset
7895          * due to concerns about shared bbwc between 6402/6404 pair.
7896          */
7897         if (rc)
7898                 goto out_disable;
7899
7900         /* Now try to get the controller to respond to a no-op */
7901         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7902         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7903                 if (hpsa_noop(pdev) == 0)
7904                         break;
7905                 else
7906                         dev_warn(&pdev->dev, "no-op failed%s\n",
7907                                         (i < 11 ? "; re-trying" : ""));
7908         }
7909
7910 out_disable:
7911
7912         pci_disable_device(pdev);
7913         return rc;
7914 }
7915
7916 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7917 {
7918         kfree(h->cmd_pool_bits);
7919         h->cmd_pool_bits = NULL;
7920         if (h->cmd_pool) {
7921                 dma_free_coherent(&h->pdev->dev,
7922                                 h->nr_cmds * sizeof(struct CommandList),
7923                                 h->cmd_pool,
7924                                 h->cmd_pool_dhandle);
7925                 h->cmd_pool = NULL;
7926                 h->cmd_pool_dhandle = 0;
7927         }
7928         if (h->errinfo_pool) {
7929                 dma_free_coherent(&h->pdev->dev,
7930                                 h->nr_cmds * sizeof(struct ErrorInfo),
7931                                 h->errinfo_pool,
7932                                 h->errinfo_pool_dhandle);
7933                 h->errinfo_pool = NULL;
7934                 h->errinfo_pool_dhandle = 0;
7935         }
7936 }
7937
7938 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7939 {
7940         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7941                                    sizeof(unsigned long),
7942                                    GFP_KERNEL);
7943         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7944                     h->nr_cmds * sizeof(*h->cmd_pool),
7945                     &h->cmd_pool_dhandle, GFP_KERNEL);
7946         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7947                     h->nr_cmds * sizeof(*h->errinfo_pool),
7948                     &h->errinfo_pool_dhandle, GFP_KERNEL);
7949         if ((h->cmd_pool_bits == NULL)
7950             || (h->cmd_pool == NULL)
7951             || (h->errinfo_pool == NULL)) {
7952                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7953                 goto clean_up;
7954         }
7955         hpsa_preinitialize_commands(h);
7956         return 0;
7957 clean_up:
7958         hpsa_free_cmd_pool(h);
7959         return -ENOMEM;
7960 }
7961
7962 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7963 static void hpsa_free_irqs(struct ctlr_info *h)
7964 {
7965         int i;
7966
7967         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7968                 /* Single reply queue, only one irq to free */
7969                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7970                 h->q[h->intr_mode] = 0;
7971                 return;
7972         }
7973
7974         for (i = 0; i < h->msix_vectors; i++) {
7975                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7976                 h->q[i] = 0;
7977         }
7978         for (; i < MAX_REPLY_QUEUES; i++)
7979                 h->q[i] = 0;
7980 }
7981
7982 /* returns 0 on success; cleans up and returns -Enn on error */
7983 static int hpsa_request_irqs(struct ctlr_info *h,
7984         irqreturn_t (*msixhandler)(int, void *),
7985         irqreturn_t (*intxhandler)(int, void *))
7986 {
7987         int rc, i;
7988
7989         /*
7990          * initialize h->q[x] = x so that interrupt handlers know which
7991          * queue to process.
7992          */
7993         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7994                 h->q[i] = (u8) i;
7995
7996         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7997                 /* If performant mode and MSI-X, use multiple reply queues */
7998                 for (i = 0; i < h->msix_vectors; i++) {
7999                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8000                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8001                                         0, h->intrname[i],
8002                                         &h->q[i]);
8003                         if (rc) {
8004                                 int j;
8005
8006                                 dev_err(&h->pdev->dev,
8007                                         "failed to get irq %d for %s\n",
8008                                        pci_irq_vector(h->pdev, i), h->devname);
8009                                 for (j = 0; j < i; j++) {
8010                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8011                                         h->q[j] = 0;
8012                                 }
8013                                 for (; j < MAX_REPLY_QUEUES; j++)
8014                                         h->q[j] = 0;
8015                                 return rc;
8016                         }
8017                 }
8018         } else {
8019                 /* Use single reply pool */
8020                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8021                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8022                                 h->msix_vectors ? "x" : "");
8023                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8024                                 msixhandler, 0,
8025                                 h->intrname[0],
8026                                 &h->q[h->intr_mode]);
8027                 } else {
8028                         sprintf(h->intrname[h->intr_mode],
8029                                 "%s-intx", h->devname);
8030                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8031                                 intxhandler, IRQF_SHARED,
8032                                 h->intrname[0],
8033                                 &h->q[h->intr_mode]);
8034                 }
8035         }
8036         if (rc) {
8037                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8038                        pci_irq_vector(h->pdev, 0), h->devname);
8039                 hpsa_free_irqs(h);
8040                 return -ENODEV;
8041         }
8042         return 0;
8043 }
8044
8045 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8046 {
8047         int rc;
8048         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8049
8050         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8051         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8052         if (rc) {
8053                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8054                 return rc;
8055         }
8056
8057         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8058         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8059         if (rc) {
8060                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8061                         "after soft reset.\n");
8062                 return rc;
8063         }
8064
8065         return 0;
8066 }
8067
8068 static void hpsa_free_reply_queues(struct ctlr_info *h)
8069 {
8070         int i;
8071
8072         for (i = 0; i < h->nreply_queues; i++) {
8073                 if (!h->reply_queue[i].head)
8074                         continue;
8075                 dma_free_coherent(&h->pdev->dev,
8076                                         h->reply_queue_size,
8077                                         h->reply_queue[i].head,
8078                                         h->reply_queue[i].busaddr);
8079                 h->reply_queue[i].head = NULL;
8080                 h->reply_queue[i].busaddr = 0;
8081         }
8082         h->reply_queue_size = 0;
8083 }
8084
8085 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8086 {
8087         hpsa_free_performant_mode(h);           /* init_one 7 */
8088         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8089         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8090         hpsa_free_irqs(h);                      /* init_one 4 */
8091         scsi_host_put(h->scsi_host);            /* init_one 3 */
8092         h->scsi_host = NULL;                    /* init_one 3 */
8093         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8094         free_percpu(h->lockup_detected);        /* init_one 2 */
8095         h->lockup_detected = NULL;              /* init_one 2 */
8096         if (h->resubmit_wq) {
8097                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8098                 h->resubmit_wq = NULL;
8099         }
8100         if (h->rescan_ctlr_wq) {
8101                 destroy_workqueue(h->rescan_ctlr_wq);
8102                 h->rescan_ctlr_wq = NULL;
8103         }
8104         kfree(h);                               /* init_one 1 */
8105 }
8106
8107 /* Called when controller lockup detected. */
8108 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8109 {
8110         int i, refcount;
8111         struct CommandList *c;
8112         int failcount = 0;
8113
8114         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8115         for (i = 0; i < h->nr_cmds; i++) {
8116                 c = h->cmd_pool + i;
8117                 refcount = atomic_inc_return(&c->refcount);
8118                 if (refcount > 1) {
8119                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8120                         finish_cmd(c);
8121                         atomic_dec(&h->commands_outstanding);
8122                         failcount++;
8123                 }
8124                 cmd_free(h, c);
8125         }
8126         dev_warn(&h->pdev->dev,
8127                 "failed %d commands in fail_all\n", failcount);
8128 }
8129
8130 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8131 {
8132         int cpu;
8133
8134         for_each_online_cpu(cpu) {
8135                 u32 *lockup_detected;
8136                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8137                 *lockup_detected = value;
8138         }
8139         wmb(); /* be sure the per-cpu variables are out to memory */
8140 }
8141
8142 static void controller_lockup_detected(struct ctlr_info *h)
8143 {
8144         unsigned long flags;
8145         u32 lockup_detected;
8146
8147         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8148         spin_lock_irqsave(&h->lock, flags);
8149         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8150         if (!lockup_detected) {
8151                 /* no heartbeat, but controller gave us a zero. */
8152                 dev_warn(&h->pdev->dev,
8153                         "lockup detected after %d but scratchpad register is zero\n",
8154                         h->heartbeat_sample_interval / HZ);
8155                 lockup_detected = 0xffffffff;
8156         }
8157         set_lockup_detected_for_all_cpus(h, lockup_detected);
8158         spin_unlock_irqrestore(&h->lock, flags);
8159         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8160                         lockup_detected, h->heartbeat_sample_interval / HZ);
8161         if (lockup_detected == 0xffff0000) {
8162                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8163                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8164         }
8165         pci_disable_device(h->pdev);
8166         fail_all_outstanding_cmds(h);
8167 }
8168
8169 static int detect_controller_lockup(struct ctlr_info *h)
8170 {
8171         u64 now;
8172         u32 heartbeat;
8173         unsigned long flags;
8174
8175         now = get_jiffies_64();
8176         /* If we've received an interrupt recently, we're ok. */
8177         if (time_after64(h->last_intr_timestamp +
8178                                 (h->heartbeat_sample_interval), now))
8179                 return false;
8180
8181         /*
8182          * If we've already checked the heartbeat recently, we're ok.
8183          * This could happen if someone sends us a signal. We
8184          * otherwise don't care about signals in this thread.
8185          */
8186         if (time_after64(h->last_heartbeat_timestamp +
8187                                 (h->heartbeat_sample_interval), now))
8188                 return false;
8189
8190         /* If heartbeat has not changed since we last looked, we're not ok. */
8191         spin_lock_irqsave(&h->lock, flags);
8192         heartbeat = readl(&h->cfgtable->HeartBeat);
8193         spin_unlock_irqrestore(&h->lock, flags);
8194         if (h->last_heartbeat == heartbeat) {
8195                 controller_lockup_detected(h);
8196                 return true;
8197         }
8198
8199         /* We're ok. */
8200         h->last_heartbeat = heartbeat;
8201         h->last_heartbeat_timestamp = now;
8202         return false;
8203 }
8204
8205 /*
8206  * Set ioaccel status for all ioaccel volumes.
8207  *
8208  * Called from monitor controller worker (hpsa_event_monitor_worker)
8209  *
8210  * A Volume (or Volumes that comprise an Array set may be undergoing a
8211  * transformation, so we will be turning off ioaccel for all volumes that
8212  * make up the Array.
8213  */
8214 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8215 {
8216         int rc;
8217         int i;
8218         u8 ioaccel_status;
8219         unsigned char *buf;
8220         struct hpsa_scsi_dev_t *device;
8221
8222         if (!h)
8223                 return;
8224
8225         buf = kmalloc(64, GFP_KERNEL);
8226         if (!buf)
8227                 return;
8228
8229         /*
8230          * Run through current device list used during I/O requests.
8231          */
8232         for (i = 0; i < h->ndevices; i++) {
8233                 device = h->dev[i];
8234
8235                 if (!device)
8236                         continue;
8237                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8238                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8239                         continue;
8240
8241                 memset(buf, 0, 64);
8242
8243                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8244                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8245                                         buf, 64);
8246                 if (rc != 0)
8247                         continue;
8248
8249                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8250                 device->offload_config =
8251                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8252                 if (device->offload_config)
8253                         device->offload_to_be_enabled =
8254                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8255
8256                 /*
8257                  * Immediately turn off ioaccel for any volume the
8258                  * controller tells us to. Some of the reasons could be:
8259                  *    transformation - change to the LVs of an Array.
8260                  *    degraded volume - component failure
8261                  *
8262                  * If ioaccel is to be re-enabled, re-enable later during the
8263                  * scan operation so the driver can get a fresh raidmap
8264                  * before turning ioaccel back on.
8265                  *
8266                  */
8267                 if (!device->offload_to_be_enabled)
8268                         device->offload_enabled = 0;
8269         }
8270
8271         kfree(buf);
8272 }
8273
8274 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8275 {
8276         char *event_type;
8277
8278         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8279                 return;
8280
8281         /* Ask the controller to clear the events we're handling. */
8282         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8283                         | CFGTBL_Trans_io_accel2)) &&
8284                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8285                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8286
8287                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8288                         event_type = "state change";
8289                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8290                         event_type = "configuration change";
8291                 /* Stop sending new RAID offload reqs via the IO accelerator */
8292                 scsi_block_requests(h->scsi_host);
8293                 hpsa_set_ioaccel_status(h);
8294                 hpsa_drain_accel_commands(h);
8295                 /* Set 'accelerator path config change' bit */
8296                 dev_warn(&h->pdev->dev,
8297                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8298                         h->events, event_type);
8299                 writel(h->events, &(h->cfgtable->clear_event_notify));
8300                 /* Set the "clear event notify field update" bit 6 */
8301                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8302                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8303                 hpsa_wait_for_clear_event_notify_ack(h);
8304                 scsi_unblock_requests(h->scsi_host);
8305         } else {
8306                 /* Acknowledge controller notification events. */
8307                 writel(h->events, &(h->cfgtable->clear_event_notify));
8308                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8309                 hpsa_wait_for_clear_event_notify_ack(h);
8310         }
8311         return;
8312 }
8313
8314 /* Check a register on the controller to see if there are configuration
8315  * changes (added/changed/removed logical drives, etc.) which mean that
8316  * we should rescan the controller for devices.
8317  * Also check flag for driver-initiated rescan.
8318  */
8319 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8320 {
8321         if (h->drv_req_rescan) {
8322                 h->drv_req_rescan = 0;
8323                 return 1;
8324         }
8325
8326         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8327                 return 0;
8328
8329         h->events = readl(&(h->cfgtable->event_notify));
8330         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8331 }
8332
8333 /*
8334  * Check if any of the offline devices have become ready
8335  */
8336 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8337 {
8338         unsigned long flags;
8339         struct offline_device_entry *d;
8340         struct list_head *this, *tmp;
8341
8342         spin_lock_irqsave(&h->offline_device_lock, flags);
8343         list_for_each_safe(this, tmp, &h->offline_device_list) {
8344                 d = list_entry(this, struct offline_device_entry,
8345                                 offline_list);
8346                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8347                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8348                         spin_lock_irqsave(&h->offline_device_lock, flags);
8349                         list_del(&d->offline_list);
8350                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8351                         return 1;
8352                 }
8353                 spin_lock_irqsave(&h->offline_device_lock, flags);
8354         }
8355         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8356         return 0;
8357 }
8358
8359 static int hpsa_luns_changed(struct ctlr_info *h)
8360 {
8361         int rc = 1; /* assume there are changes */
8362         struct ReportLUNdata *logdev = NULL;
8363
8364         /* if we can't find out if lun data has changed,
8365          * assume that it has.
8366          */
8367
8368         if (!h->lastlogicals)
8369                 return rc;
8370
8371         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8372         if (!logdev)
8373                 return rc;
8374
8375         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8376                 dev_warn(&h->pdev->dev,
8377                         "report luns failed, can't track lun changes.\n");
8378                 goto out;
8379         }
8380         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8381                 dev_info(&h->pdev->dev,
8382                         "Lun changes detected.\n");
8383                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8384                 goto out;
8385         } else
8386                 rc = 0; /* no changes detected. */
8387 out:
8388         kfree(logdev);
8389         return rc;
8390 }
8391
8392 static void hpsa_perform_rescan(struct ctlr_info *h)
8393 {
8394         struct Scsi_Host *sh = NULL;
8395         unsigned long flags;
8396
8397         /*
8398          * Do the scan after the reset
8399          */
8400         spin_lock_irqsave(&h->reset_lock, flags);
8401         if (h->reset_in_progress) {
8402                 h->drv_req_rescan = 1;
8403                 spin_unlock_irqrestore(&h->reset_lock, flags);
8404                 return;
8405         }
8406         spin_unlock_irqrestore(&h->reset_lock, flags);
8407
8408         sh = scsi_host_get(h->scsi_host);
8409         if (sh != NULL) {
8410                 hpsa_scan_start(sh);
8411                 scsi_host_put(sh);
8412                 h->drv_req_rescan = 0;
8413         }
8414 }
8415
8416 /*
8417  * watch for controller events
8418  */
8419 static void hpsa_event_monitor_worker(struct work_struct *work)
8420 {
8421         struct ctlr_info *h = container_of(to_delayed_work(work),
8422                                         struct ctlr_info, event_monitor_work);
8423         unsigned long flags;
8424
8425         spin_lock_irqsave(&h->lock, flags);
8426         if (h->remove_in_progress) {
8427                 spin_unlock_irqrestore(&h->lock, flags);
8428                 return;
8429         }
8430         spin_unlock_irqrestore(&h->lock, flags);
8431
8432         if (hpsa_ctlr_needs_rescan(h)) {
8433                 hpsa_ack_ctlr_events(h);
8434                 hpsa_perform_rescan(h);
8435         }
8436
8437         spin_lock_irqsave(&h->lock, flags);
8438         if (!h->remove_in_progress)
8439                 schedule_delayed_work(&h->event_monitor_work,
8440                                         HPSA_EVENT_MONITOR_INTERVAL);
8441         spin_unlock_irqrestore(&h->lock, flags);
8442 }
8443
8444 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8445 {
8446         unsigned long flags;
8447         struct ctlr_info *h = container_of(to_delayed_work(work),
8448                                         struct ctlr_info, rescan_ctlr_work);
8449
8450         spin_lock_irqsave(&h->lock, flags);
8451         if (h->remove_in_progress) {
8452                 spin_unlock_irqrestore(&h->lock, flags);
8453                 return;
8454         }
8455         spin_unlock_irqrestore(&h->lock, flags);
8456
8457         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8458                 hpsa_perform_rescan(h);
8459         } else if (h->discovery_polling) {
8460                 if (hpsa_luns_changed(h)) {
8461                         dev_info(&h->pdev->dev,
8462                                 "driver discovery polling rescan.\n");
8463                         hpsa_perform_rescan(h);
8464                 }
8465         }
8466         spin_lock_irqsave(&h->lock, flags);
8467         if (!h->remove_in_progress)
8468                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8469                                 h->heartbeat_sample_interval);
8470         spin_unlock_irqrestore(&h->lock, flags);
8471 }
8472
8473 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8474 {
8475         unsigned long flags;
8476         struct ctlr_info *h = container_of(to_delayed_work(work),
8477                                         struct ctlr_info, monitor_ctlr_work);
8478
8479         detect_controller_lockup(h);
8480         if (lockup_detected(h))
8481                 return;
8482
8483         spin_lock_irqsave(&h->lock, flags);
8484         if (!h->remove_in_progress)
8485                 schedule_delayed_work(&h->monitor_ctlr_work,
8486                                 h->heartbeat_sample_interval);
8487         spin_unlock_irqrestore(&h->lock, flags);
8488 }
8489
8490 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8491                                                 char *name)
8492 {
8493         struct workqueue_struct *wq = NULL;
8494
8495         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8496         if (!wq)
8497                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8498
8499         return wq;
8500 }
8501
8502 static void hpda_free_ctlr_info(struct ctlr_info *h)
8503 {
8504         kfree(h->reply_map);
8505         kfree(h);
8506 }
8507
8508 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8509 {
8510         struct ctlr_info *h;
8511
8512         h = kzalloc(sizeof(*h), GFP_KERNEL);
8513         if (!h)
8514                 return NULL;
8515
8516         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8517         if (!h->reply_map) {
8518                 kfree(h);
8519                 return NULL;
8520         }
8521         return h;
8522 }
8523
8524 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8525 {
8526         int dac, rc;
8527         struct ctlr_info *h;
8528         int try_soft_reset = 0;
8529         unsigned long flags;
8530         u32 board_id;
8531
8532         if (number_of_controllers == 0)
8533                 printk(KERN_INFO DRIVER_NAME "\n");
8534
8535         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8536         if (rc < 0) {
8537                 dev_warn(&pdev->dev, "Board ID not found\n");
8538                 return rc;
8539         }
8540
8541         rc = hpsa_init_reset_devices(pdev, board_id);
8542         if (rc) {
8543                 if (rc != -ENOTSUPP)
8544                         return rc;
8545                 /* If the reset fails in a particular way (it has no way to do
8546                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8547                  * a soft reset once we get the controller configured up to the
8548                  * point that it can accept a command.
8549                  */
8550                 try_soft_reset = 1;
8551                 rc = 0;
8552         }
8553
8554 reinit_after_soft_reset:
8555
8556         /* Command structures must be aligned on a 32-byte boundary because
8557          * the 5 lower bits of the address are used by the hardware. and by
8558          * the driver.  See comments in hpsa.h for more info.
8559          */
8560         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8561         h = hpda_alloc_ctlr_info();
8562         if (!h) {
8563                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8564                 return -ENOMEM;
8565         }
8566
8567         h->pdev = pdev;
8568
8569         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8570         INIT_LIST_HEAD(&h->offline_device_list);
8571         spin_lock_init(&h->lock);
8572         spin_lock_init(&h->offline_device_lock);
8573         spin_lock_init(&h->scan_lock);
8574         spin_lock_init(&h->reset_lock);
8575         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8576
8577         /* Allocate and clear per-cpu variable lockup_detected */
8578         h->lockup_detected = alloc_percpu(u32);
8579         if (!h->lockup_detected) {
8580                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8581                 rc = -ENOMEM;
8582                 goto clean1;    /* aer/h */
8583         }
8584         set_lockup_detected_for_all_cpus(h, 0);
8585
8586         rc = hpsa_pci_init(h);
8587         if (rc)
8588                 goto clean2;    /* lu, aer/h */
8589
8590         /* relies on h-> settings made by hpsa_pci_init, including
8591          * interrupt_mode h->intr */
8592         rc = hpsa_scsi_host_alloc(h);
8593         if (rc)
8594                 goto clean2_5;  /* pci, lu, aer/h */
8595
8596         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8597         h->ctlr = number_of_controllers;
8598         number_of_controllers++;
8599
8600         /* configure PCI DMA stuff */
8601         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8602         if (rc == 0) {
8603                 dac = 1;
8604         } else {
8605                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8606                 if (rc == 0) {
8607                         dac = 0;
8608                 } else {
8609                         dev_err(&pdev->dev, "no suitable DMA available\n");
8610                         goto clean3;    /* shost, pci, lu, aer/h */
8611                 }
8612         }
8613
8614         /* make sure the board interrupts are off */
8615         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8616
8617         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8618         if (rc)
8619                 goto clean3;    /* shost, pci, lu, aer/h */
8620         rc = hpsa_alloc_cmd_pool(h);
8621         if (rc)
8622                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8623         rc = hpsa_alloc_sg_chain_blocks(h);
8624         if (rc)
8625                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8626         init_waitqueue_head(&h->scan_wait_queue);
8627         init_waitqueue_head(&h->event_sync_wait_queue);
8628         mutex_init(&h->reset_mutex);
8629         h->scan_finished = 1; /* no scan currently in progress */
8630         h->scan_waiting = 0;
8631
8632         pci_set_drvdata(pdev, h);
8633         h->ndevices = 0;
8634
8635         spin_lock_init(&h->devlock);
8636         rc = hpsa_put_ctlr_into_performant_mode(h);
8637         if (rc)
8638                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8639
8640         /* create the resubmit workqueue */
8641         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8642         if (!h->rescan_ctlr_wq) {
8643                 rc = -ENOMEM;
8644                 goto clean7;
8645         }
8646
8647         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8648         if (!h->resubmit_wq) {
8649                 rc = -ENOMEM;
8650                 goto clean7;    /* aer/h */
8651         }
8652
8653         /*
8654          * At this point, the controller is ready to take commands.
8655          * Now, if reset_devices and the hard reset didn't work, try
8656          * the soft reset and see if that works.
8657          */
8658         if (try_soft_reset) {
8659
8660                 /* This is kind of gross.  We may or may not get a completion
8661                  * from the soft reset command, and if we do, then the value
8662                  * from the fifo may or may not be valid.  So, we wait 10 secs
8663                  * after the reset throwing away any completions we get during
8664                  * that time.  Unregister the interrupt handler and register
8665                  * fake ones to scoop up any residual completions.
8666                  */
8667                 spin_lock_irqsave(&h->lock, flags);
8668                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8669                 spin_unlock_irqrestore(&h->lock, flags);
8670                 hpsa_free_irqs(h);
8671                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8672                                         hpsa_intx_discard_completions);
8673                 if (rc) {
8674                         dev_warn(&h->pdev->dev,
8675                                 "Failed to request_irq after soft reset.\n");
8676                         /*
8677                          * cannot goto clean7 or free_irqs will be called
8678                          * again. Instead, do its work
8679                          */
8680                         hpsa_free_performant_mode(h);   /* clean7 */
8681                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8682                         hpsa_free_cmd_pool(h);          /* clean5 */
8683                         /*
8684                          * skip hpsa_free_irqs(h) clean4 since that
8685                          * was just called before request_irqs failed
8686                          */
8687                         goto clean3;
8688                 }
8689
8690                 rc = hpsa_kdump_soft_reset(h);
8691                 if (rc)
8692                         /* Neither hard nor soft reset worked, we're hosed. */
8693                         goto clean7;
8694
8695                 dev_info(&h->pdev->dev, "Board READY.\n");
8696                 dev_info(&h->pdev->dev,
8697                         "Waiting for stale completions to drain.\n");
8698                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8699                 msleep(10000);
8700                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8701
8702                 rc = controller_reset_failed(h->cfgtable);
8703                 if (rc)
8704                         dev_info(&h->pdev->dev,
8705                                 "Soft reset appears to have failed.\n");
8706
8707                 /* since the controller's reset, we have to go back and re-init
8708                  * everything.  Easiest to just forget what we've done and do it
8709                  * all over again.
8710                  */
8711                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8712                 try_soft_reset = 0;
8713                 if (rc)
8714                         /* don't goto clean, we already unallocated */
8715                         return -ENODEV;
8716
8717                 goto reinit_after_soft_reset;
8718         }
8719
8720         /* Enable Accelerated IO path at driver layer */
8721         h->acciopath_status = 1;
8722         /* Disable discovery polling.*/
8723         h->discovery_polling = 0;
8724
8725
8726         /* Turn the interrupts on so we can service requests */
8727         h->access.set_intr_mask(h, HPSA_INTR_ON);
8728
8729         hpsa_hba_inquiry(h);
8730
8731         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8732         if (!h->lastlogicals)
8733                 dev_info(&h->pdev->dev,
8734                         "Can't track change to report lun data\n");
8735
8736         /* hook into SCSI subsystem */
8737         rc = hpsa_scsi_add_host(h);
8738         if (rc)
8739                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8740
8741         /* Monitor the controller for firmware lockups */
8742         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8743         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8744         schedule_delayed_work(&h->monitor_ctlr_work,
8745                                 h->heartbeat_sample_interval);
8746         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8747         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8748                                 h->heartbeat_sample_interval);
8749         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8750         schedule_delayed_work(&h->event_monitor_work,
8751                                 HPSA_EVENT_MONITOR_INTERVAL);
8752         return 0;
8753
8754 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8755         hpsa_free_performant_mode(h);
8756         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8757 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8758         hpsa_free_sg_chain_blocks(h);
8759 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8760         hpsa_free_cmd_pool(h);
8761 clean4: /* irq, shost, pci, lu, aer/h */
8762         hpsa_free_irqs(h);
8763 clean3: /* shost, pci, lu, aer/h */
8764         scsi_host_put(h->scsi_host);
8765         h->scsi_host = NULL;
8766 clean2_5: /* pci, lu, aer/h */
8767         hpsa_free_pci_init(h);
8768 clean2: /* lu, aer/h */
8769         if (h->lockup_detected) {
8770                 free_percpu(h->lockup_detected);
8771                 h->lockup_detected = NULL;
8772         }
8773 clean1: /* wq/aer/h */
8774         if (h->resubmit_wq) {
8775                 destroy_workqueue(h->resubmit_wq);
8776                 h->resubmit_wq = NULL;
8777         }
8778         if (h->rescan_ctlr_wq) {
8779                 destroy_workqueue(h->rescan_ctlr_wq);
8780                 h->rescan_ctlr_wq = NULL;
8781         }
8782         kfree(h);
8783         return rc;
8784 }
8785
8786 static void hpsa_flush_cache(struct ctlr_info *h)
8787 {
8788         char *flush_buf;
8789         struct CommandList *c;
8790         int rc;
8791
8792         if (unlikely(lockup_detected(h)))
8793                 return;
8794         flush_buf = kzalloc(4, GFP_KERNEL);
8795         if (!flush_buf)
8796                 return;
8797
8798         c = cmd_alloc(h);
8799
8800         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8801                 RAID_CTLR_LUNID, TYPE_CMD)) {
8802                 goto out;
8803         }
8804         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8805                         DEFAULT_TIMEOUT);
8806         if (rc)
8807                 goto out;
8808         if (c->err_info->CommandStatus != 0)
8809 out:
8810                 dev_warn(&h->pdev->dev,
8811                         "error flushing cache on controller\n");
8812         cmd_free(h, c);
8813         kfree(flush_buf);
8814 }
8815
8816 /* Make controller gather fresh report lun data each time we
8817  * send down a report luns request
8818  */
8819 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8820 {
8821         u32 *options;
8822         struct CommandList *c;
8823         int rc;
8824
8825         /* Don't bother trying to set diag options if locked up */
8826         if (unlikely(h->lockup_detected))
8827                 return;
8828
8829         options = kzalloc(sizeof(*options), GFP_KERNEL);
8830         if (!options)
8831                 return;
8832
8833         c = cmd_alloc(h);
8834
8835         /* first, get the current diag options settings */
8836         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8837                 RAID_CTLR_LUNID, TYPE_CMD))
8838                 goto errout;
8839
8840         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8841                         NO_TIMEOUT);
8842         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8843                 goto errout;
8844
8845         /* Now, set the bit for disabling the RLD caching */
8846         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8847
8848         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8849                 RAID_CTLR_LUNID, TYPE_CMD))
8850                 goto errout;
8851
8852         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8853                         NO_TIMEOUT);
8854         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8855                 goto errout;
8856
8857         /* Now verify that it got set: */
8858         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8859                 RAID_CTLR_LUNID, TYPE_CMD))
8860                 goto errout;
8861
8862         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8863                         NO_TIMEOUT);
8864         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8865                 goto errout;
8866
8867         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8868                 goto out;
8869
8870 errout:
8871         dev_err(&h->pdev->dev,
8872                         "Error: failed to disable report lun data caching.\n");
8873 out:
8874         cmd_free(h, c);
8875         kfree(options);
8876 }
8877
8878 static void __hpsa_shutdown(struct pci_dev *pdev)
8879 {
8880         struct ctlr_info *h;
8881
8882         h = pci_get_drvdata(pdev);
8883         /* Turn board interrupts off  and send the flush cache command
8884          * sendcmd will turn off interrupt, and send the flush...
8885          * To write all data in the battery backed cache to disks
8886          */
8887         hpsa_flush_cache(h);
8888         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8889         hpsa_free_irqs(h);                      /* init_one 4 */
8890         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8891 }
8892
8893 static void hpsa_shutdown(struct pci_dev *pdev)
8894 {
8895         __hpsa_shutdown(pdev);
8896         pci_disable_device(pdev);
8897 }
8898
8899 static void hpsa_free_device_info(struct ctlr_info *h)
8900 {
8901         int i;
8902
8903         for (i = 0; i < h->ndevices; i++) {
8904                 kfree(h->dev[i]);
8905                 h->dev[i] = NULL;
8906         }
8907 }
8908
8909 static void hpsa_remove_one(struct pci_dev *pdev)
8910 {
8911         struct ctlr_info *h;
8912         unsigned long flags;
8913
8914         if (pci_get_drvdata(pdev) == NULL) {
8915                 dev_err(&pdev->dev, "unable to remove device\n");
8916                 return;
8917         }
8918         h = pci_get_drvdata(pdev);
8919
8920         /* Get rid of any controller monitoring work items */
8921         spin_lock_irqsave(&h->lock, flags);
8922         h->remove_in_progress = 1;
8923         spin_unlock_irqrestore(&h->lock, flags);
8924         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8925         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8926         cancel_delayed_work_sync(&h->event_monitor_work);
8927         destroy_workqueue(h->rescan_ctlr_wq);
8928         destroy_workqueue(h->resubmit_wq);
8929
8930         hpsa_delete_sas_host(h);
8931
8932         /*
8933          * Call before disabling interrupts.
8934          * scsi_remove_host can trigger I/O operations especially
8935          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8936          * operations which cannot complete and will hang the system.
8937          */
8938         if (h->scsi_host)
8939                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8940         /* includes hpsa_free_irqs - init_one 4 */
8941         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8942         __hpsa_shutdown(pdev);
8943
8944         hpsa_free_device_info(h);               /* scan */
8945
8946         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8947         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8948         hpsa_free_ioaccel2_sg_chain_blocks(h);
8949         hpsa_free_performant_mode(h);                   /* init_one 7 */
8950         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8951         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8952         kfree(h->lastlogicals);
8953
8954         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8955
8956         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8957         h->scsi_host = NULL;                            /* init_one 3 */
8958
8959         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8960         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8961
8962         free_percpu(h->lockup_detected);                /* init_one 2 */
8963         h->lockup_detected = NULL;                      /* init_one 2 */
8964         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8965
8966         hpda_free_ctlr_info(h);                         /* init_one 1 */
8967 }
8968
8969 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8970         __attribute__((unused)) pm_message_t state)
8971 {
8972         return -ENOSYS;
8973 }
8974
8975 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8976 {
8977         return -ENOSYS;
8978 }
8979
8980 static struct pci_driver hpsa_pci_driver = {
8981         .name = HPSA,
8982         .probe = hpsa_init_one,
8983         .remove = hpsa_remove_one,
8984         .id_table = hpsa_pci_device_id, /* id_table */
8985         .shutdown = hpsa_shutdown,
8986         .suspend = hpsa_suspend,
8987         .resume = hpsa_resume,
8988 };
8989
8990 /* Fill in bucket_map[], given nsgs (the max number of
8991  * scatter gather elements supported) and bucket[],
8992  * which is an array of 8 integers.  The bucket[] array
8993  * contains 8 different DMA transfer sizes (in 16
8994  * byte increments) which the controller uses to fetch
8995  * commands.  This function fills in bucket_map[], which
8996  * maps a given number of scatter gather elements to one of
8997  * the 8 DMA transfer sizes.  The point of it is to allow the
8998  * controller to only do as much DMA as needed to fetch the
8999  * command, with the DMA transfer size encoded in the lower
9000  * bits of the command address.
9001  */
9002 static void  calc_bucket_map(int bucket[], int num_buckets,
9003         int nsgs, int min_blocks, u32 *bucket_map)
9004 {
9005         int i, j, b, size;
9006
9007         /* Note, bucket_map must have nsgs+1 entries. */
9008         for (i = 0; i <= nsgs; i++) {
9009                 /* Compute size of a command with i SG entries */
9010                 size = i + min_blocks;
9011                 b = num_buckets; /* Assume the biggest bucket */
9012                 /* Find the bucket that is just big enough */
9013                 for (j = 0; j < num_buckets; j++) {
9014                         if (bucket[j] >= size) {
9015                                 b = j;
9016                                 break;
9017                         }
9018                 }
9019                 /* for a command with i SG entries, use bucket b. */
9020                 bucket_map[i] = b;
9021         }
9022 }
9023
9024 /*
9025  * return -ENODEV on err, 0 on success (or no action)
9026  * allocates numerous items that must be freed later
9027  */
9028 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9029 {
9030         int i;
9031         unsigned long register_value;
9032         unsigned long transMethod = CFGTBL_Trans_Performant |
9033                         (trans_support & CFGTBL_Trans_use_short_tags) |
9034                                 CFGTBL_Trans_enable_directed_msix |
9035                         (trans_support & (CFGTBL_Trans_io_accel1 |
9036                                 CFGTBL_Trans_io_accel2));
9037         struct access_method access = SA5_performant_access;
9038
9039         /* This is a bit complicated.  There are 8 registers on
9040          * the controller which we write to to tell it 8 different
9041          * sizes of commands which there may be.  It's a way of
9042          * reducing the DMA done to fetch each command.  Encoded into
9043          * each command's tag are 3 bits which communicate to the controller
9044          * which of the eight sizes that command fits within.  The size of
9045          * each command depends on how many scatter gather entries there are.
9046          * Each SG entry requires 16 bytes.  The eight registers are programmed
9047          * with the number of 16-byte blocks a command of that size requires.
9048          * The smallest command possible requires 5 such 16 byte blocks.
9049          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9050          * blocks.  Note, this only extends to the SG entries contained
9051          * within the command block, and does not extend to chained blocks
9052          * of SG elements.   bft[] contains the eight values we write to
9053          * the registers.  They are not evenly distributed, but have more
9054          * sizes for small commands, and fewer sizes for larger commands.
9055          */
9056         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9057 #define MIN_IOACCEL2_BFT_ENTRY 5
9058 #define HPSA_IOACCEL2_HEADER_SZ 4
9059         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9060                         13, 14, 15, 16, 17, 18, 19,
9061                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9062         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9063         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9064         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9065                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9066         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9067         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9068         /*  5 = 1 s/g entry or 4k
9069          *  6 = 2 s/g entry or 8k
9070          *  8 = 4 s/g entry or 16k
9071          * 10 = 6 s/g entry or 24k
9072          */
9073
9074         /* If the controller supports either ioaccel method then
9075          * we can also use the RAID stack submit path that does not
9076          * perform the superfluous readl() after each command submission.
9077          */
9078         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9079                 access = SA5_performant_access_no_read;
9080
9081         /* Controller spec: zero out this buffer. */
9082         for (i = 0; i < h->nreply_queues; i++)
9083                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9084
9085         bft[7] = SG_ENTRIES_IN_CMD + 4;
9086         calc_bucket_map(bft, ARRAY_SIZE(bft),
9087                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9088         for (i = 0; i < 8; i++)
9089                 writel(bft[i], &h->transtable->BlockFetch[i]);
9090
9091         /* size of controller ring buffer */
9092         writel(h->max_commands, &h->transtable->RepQSize);
9093         writel(h->nreply_queues, &h->transtable->RepQCount);
9094         writel(0, &h->transtable->RepQCtrAddrLow32);
9095         writel(0, &h->transtable->RepQCtrAddrHigh32);
9096
9097         for (i = 0; i < h->nreply_queues; i++) {
9098                 writel(0, &h->transtable->RepQAddr[i].upper);
9099                 writel(h->reply_queue[i].busaddr,
9100                         &h->transtable->RepQAddr[i].lower);
9101         }
9102
9103         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9104         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9105         /*
9106          * enable outbound interrupt coalescing in accelerator mode;
9107          */
9108         if (trans_support & CFGTBL_Trans_io_accel1) {
9109                 access = SA5_ioaccel_mode1_access;
9110                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9111                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9112         } else
9113                 if (trans_support & CFGTBL_Trans_io_accel2)
9114                         access = SA5_ioaccel_mode2_access;
9115         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9116         if (hpsa_wait_for_mode_change_ack(h)) {
9117                 dev_err(&h->pdev->dev,
9118                         "performant mode problem - doorbell timeout\n");
9119                 return -ENODEV;
9120         }
9121         register_value = readl(&(h->cfgtable->TransportActive));
9122         if (!(register_value & CFGTBL_Trans_Performant)) {
9123                 dev_err(&h->pdev->dev,
9124                         "performant mode problem - transport not active\n");
9125                 return -ENODEV;
9126         }
9127         /* Change the access methods to the performant access methods */
9128         h->access = access;
9129         h->transMethod = transMethod;
9130
9131         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9132                 (trans_support & CFGTBL_Trans_io_accel2)))
9133                 return 0;
9134
9135         if (trans_support & CFGTBL_Trans_io_accel1) {
9136                 /* Set up I/O accelerator mode */
9137                 for (i = 0; i < h->nreply_queues; i++) {
9138                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9139                         h->reply_queue[i].current_entry =
9140                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9141                 }
9142                 bft[7] = h->ioaccel_maxsg + 8;
9143                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9144                                 h->ioaccel1_blockFetchTable);
9145
9146                 /* initialize all reply queue entries to unused */
9147                 for (i = 0; i < h->nreply_queues; i++)
9148                         memset(h->reply_queue[i].head,
9149                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9150                                 h->reply_queue_size);
9151
9152                 /* set all the constant fields in the accelerator command
9153                  * frames once at init time to save CPU cycles later.
9154                  */
9155                 for (i = 0; i < h->nr_cmds; i++) {
9156                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9157
9158                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9159                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9160                                         (i * sizeof(struct ErrorInfo)));
9161                         cp->err_info_len = sizeof(struct ErrorInfo);
9162                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9163                         cp->host_context_flags =
9164                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9165                         cp->timeout_sec = 0;
9166                         cp->ReplyQueue = 0;
9167                         cp->tag =
9168                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9169                         cp->host_addr =
9170                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9171                                         (i * sizeof(struct io_accel1_cmd)));
9172                 }
9173         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9174                 u64 cfg_offset, cfg_base_addr_index;
9175                 u32 bft2_offset, cfg_base_addr;
9176                 int rc;
9177
9178                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9179                         &cfg_base_addr_index, &cfg_offset);
9180                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9181                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9182                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9183                                 4, h->ioaccel2_blockFetchTable);
9184                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9185                 BUILD_BUG_ON(offsetof(struct CfgTable,
9186                                 io_accel_request_size_offset) != 0xb8);
9187                 h->ioaccel2_bft2_regs =
9188                         remap_pci_mem(pci_resource_start(h->pdev,
9189                                         cfg_base_addr_index) +
9190                                         cfg_offset + bft2_offset,
9191                                         ARRAY_SIZE(bft2) *
9192                                         sizeof(*h->ioaccel2_bft2_regs));
9193                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9194                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9195         }
9196         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9197         if (hpsa_wait_for_mode_change_ack(h)) {
9198                 dev_err(&h->pdev->dev,
9199                         "performant mode problem - enabling ioaccel mode\n");
9200                 return -ENODEV;
9201         }
9202         return 0;
9203 }
9204
9205 /* Free ioaccel1 mode command blocks and block fetch table */
9206 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9207 {
9208         if (h->ioaccel_cmd_pool) {
9209                 pci_free_consistent(h->pdev,
9210                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9211                         h->ioaccel_cmd_pool,
9212                         h->ioaccel_cmd_pool_dhandle);
9213                 h->ioaccel_cmd_pool = NULL;
9214                 h->ioaccel_cmd_pool_dhandle = 0;
9215         }
9216         kfree(h->ioaccel1_blockFetchTable);
9217         h->ioaccel1_blockFetchTable = NULL;
9218 }
9219
9220 /* Allocate ioaccel1 mode command blocks and block fetch table */
9221 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9222 {
9223         h->ioaccel_maxsg =
9224                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9225         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9226                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9227
9228         /* Command structures must be aligned on a 128-byte boundary
9229          * because the 7 lower bits of the address are used by the
9230          * hardware.
9231          */
9232         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9233                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9234         h->ioaccel_cmd_pool =
9235                 dma_alloc_coherent(&h->pdev->dev,
9236                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9237                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9238
9239         h->ioaccel1_blockFetchTable =
9240                 kmalloc(((h->ioaccel_maxsg + 1) *
9241                                 sizeof(u32)), GFP_KERNEL);
9242
9243         if ((h->ioaccel_cmd_pool == NULL) ||
9244                 (h->ioaccel1_blockFetchTable == NULL))
9245                 goto clean_up;
9246
9247         memset(h->ioaccel_cmd_pool, 0,
9248                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9249         return 0;
9250
9251 clean_up:
9252         hpsa_free_ioaccel1_cmd_and_bft(h);
9253         return -ENOMEM;
9254 }
9255
9256 /* Free ioaccel2 mode command blocks and block fetch table */
9257 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9258 {
9259         hpsa_free_ioaccel2_sg_chain_blocks(h);
9260
9261         if (h->ioaccel2_cmd_pool) {
9262                 pci_free_consistent(h->pdev,
9263                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9264                         h->ioaccel2_cmd_pool,
9265                         h->ioaccel2_cmd_pool_dhandle);
9266                 h->ioaccel2_cmd_pool = NULL;
9267                 h->ioaccel2_cmd_pool_dhandle = 0;
9268         }
9269         kfree(h->ioaccel2_blockFetchTable);
9270         h->ioaccel2_blockFetchTable = NULL;
9271 }
9272
9273 /* Allocate ioaccel2 mode command blocks and block fetch table */
9274 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9275 {
9276         int rc;
9277
9278         /* Allocate ioaccel2 mode command blocks and block fetch table */
9279
9280         h->ioaccel_maxsg =
9281                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9282         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9283                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9284
9285         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9286                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9287         h->ioaccel2_cmd_pool =
9288                 dma_alloc_coherent(&h->pdev->dev,
9289                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9290                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9291
9292         h->ioaccel2_blockFetchTable =
9293                 kmalloc(((h->ioaccel_maxsg + 1) *
9294                                 sizeof(u32)), GFP_KERNEL);
9295
9296         if ((h->ioaccel2_cmd_pool == NULL) ||
9297                 (h->ioaccel2_blockFetchTable == NULL)) {
9298                 rc = -ENOMEM;
9299                 goto clean_up;
9300         }
9301
9302         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9303         if (rc)
9304                 goto clean_up;
9305
9306         memset(h->ioaccel2_cmd_pool, 0,
9307                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9308         return 0;
9309
9310 clean_up:
9311         hpsa_free_ioaccel2_cmd_and_bft(h);
9312         return rc;
9313 }
9314
9315 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9316 static void hpsa_free_performant_mode(struct ctlr_info *h)
9317 {
9318         kfree(h->blockFetchTable);
9319         h->blockFetchTable = NULL;
9320         hpsa_free_reply_queues(h);
9321         hpsa_free_ioaccel1_cmd_and_bft(h);
9322         hpsa_free_ioaccel2_cmd_and_bft(h);
9323 }
9324
9325 /* return -ENODEV on error, 0 on success (or no action)
9326  * allocates numerous items that must be freed later
9327  */
9328 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9329 {
9330         u32 trans_support;
9331         unsigned long transMethod = CFGTBL_Trans_Performant |
9332                                         CFGTBL_Trans_use_short_tags;
9333         int i, rc;
9334
9335         if (hpsa_simple_mode)
9336                 return 0;
9337
9338         trans_support = readl(&(h->cfgtable->TransportSupport));
9339         if (!(trans_support & PERFORMANT_MODE))
9340                 return 0;
9341
9342         /* Check for I/O accelerator mode support */
9343         if (trans_support & CFGTBL_Trans_io_accel1) {
9344                 transMethod |= CFGTBL_Trans_io_accel1 |
9345                                 CFGTBL_Trans_enable_directed_msix;
9346                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9347                 if (rc)
9348                         return rc;
9349         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9350                 transMethod |= CFGTBL_Trans_io_accel2 |
9351                                 CFGTBL_Trans_enable_directed_msix;
9352                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9353                 if (rc)
9354                         return rc;
9355         }
9356
9357         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9358         hpsa_get_max_perf_mode_cmds(h);
9359         /* Performant mode ring buffer and supporting data structures */
9360         h->reply_queue_size = h->max_commands * sizeof(u64);
9361
9362         for (i = 0; i < h->nreply_queues; i++) {
9363                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9364                                                 h->reply_queue_size,
9365                                                 &h->reply_queue[i].busaddr,
9366                                                 GFP_KERNEL);
9367                 if (!h->reply_queue[i].head) {
9368                         rc = -ENOMEM;
9369                         goto clean1;    /* rq, ioaccel */
9370                 }
9371                 h->reply_queue[i].size = h->max_commands;
9372                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9373                 h->reply_queue[i].current_entry = 0;
9374         }
9375
9376         /* Need a block fetch table for performant mode */
9377         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9378                                 sizeof(u32)), GFP_KERNEL);
9379         if (!h->blockFetchTable) {
9380                 rc = -ENOMEM;
9381                 goto clean1;    /* rq, ioaccel */
9382         }
9383
9384         rc = hpsa_enter_performant_mode(h, trans_support);
9385         if (rc)
9386                 goto clean2;    /* bft, rq, ioaccel */
9387         return 0;
9388
9389 clean2: /* bft, rq, ioaccel */
9390         kfree(h->blockFetchTable);
9391         h->blockFetchTable = NULL;
9392 clean1: /* rq, ioaccel */
9393         hpsa_free_reply_queues(h);
9394         hpsa_free_ioaccel1_cmd_and_bft(h);
9395         hpsa_free_ioaccel2_cmd_and_bft(h);
9396         return rc;
9397 }
9398
9399 static int is_accelerated_cmd(struct CommandList *c)
9400 {
9401         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9402 }
9403
9404 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9405 {
9406         struct CommandList *c = NULL;
9407         int i, accel_cmds_out;
9408         int refcount;
9409
9410         do { /* wait for all outstanding ioaccel commands to drain out */
9411                 accel_cmds_out = 0;
9412                 for (i = 0; i < h->nr_cmds; i++) {
9413                         c = h->cmd_pool + i;
9414                         refcount = atomic_inc_return(&c->refcount);
9415                         if (refcount > 1) /* Command is allocated */
9416                                 accel_cmds_out += is_accelerated_cmd(c);
9417                         cmd_free(h, c);
9418                 }
9419                 if (accel_cmds_out <= 0)
9420                         break;
9421                 msleep(100);
9422         } while (1);
9423 }
9424
9425 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9426                                 struct hpsa_sas_port *hpsa_sas_port)
9427 {
9428         struct hpsa_sas_phy *hpsa_sas_phy;
9429         struct sas_phy *phy;
9430
9431         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9432         if (!hpsa_sas_phy)
9433                 return NULL;
9434
9435         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9436                 hpsa_sas_port->next_phy_index);
9437         if (!phy) {
9438                 kfree(hpsa_sas_phy);
9439                 return NULL;
9440         }
9441
9442         hpsa_sas_port->next_phy_index++;
9443         hpsa_sas_phy->phy = phy;
9444         hpsa_sas_phy->parent_port = hpsa_sas_port;
9445
9446         return hpsa_sas_phy;
9447 }
9448
9449 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9450 {
9451         struct sas_phy *phy = hpsa_sas_phy->phy;
9452
9453         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9454         if (hpsa_sas_phy->added_to_port)
9455                 list_del(&hpsa_sas_phy->phy_list_entry);
9456         sas_phy_delete(phy);
9457         kfree(hpsa_sas_phy);
9458 }
9459
9460 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9461 {
9462         int rc;
9463         struct hpsa_sas_port *hpsa_sas_port;
9464         struct sas_phy *phy;
9465         struct sas_identify *identify;
9466
9467         hpsa_sas_port = hpsa_sas_phy->parent_port;
9468         phy = hpsa_sas_phy->phy;
9469
9470         identify = &phy->identify;
9471         memset(identify, 0, sizeof(*identify));
9472         identify->sas_address = hpsa_sas_port->sas_address;
9473         identify->device_type = SAS_END_DEVICE;
9474         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9475         identify->target_port_protocols = SAS_PROTOCOL_STP;
9476         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9477         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9478         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9479         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9480         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9481
9482         rc = sas_phy_add(hpsa_sas_phy->phy);
9483         if (rc)
9484                 return rc;
9485
9486         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9487         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9488                         &hpsa_sas_port->phy_list_head);
9489         hpsa_sas_phy->added_to_port = true;
9490
9491         return 0;
9492 }
9493
9494 static int
9495         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9496                                 struct sas_rphy *rphy)
9497 {
9498         struct sas_identify *identify;
9499
9500         identify = &rphy->identify;
9501         identify->sas_address = hpsa_sas_port->sas_address;
9502         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9503         identify->target_port_protocols = SAS_PROTOCOL_STP;
9504
9505         return sas_rphy_add(rphy);
9506 }
9507
9508 static struct hpsa_sas_port
9509         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9510                                 u64 sas_address)
9511 {
9512         int rc;
9513         struct hpsa_sas_port *hpsa_sas_port;
9514         struct sas_port *port;
9515
9516         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9517         if (!hpsa_sas_port)
9518                 return NULL;
9519
9520         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9521         hpsa_sas_port->parent_node = hpsa_sas_node;
9522
9523         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9524         if (!port)
9525                 goto free_hpsa_port;
9526
9527         rc = sas_port_add(port);
9528         if (rc)
9529                 goto free_sas_port;
9530
9531         hpsa_sas_port->port = port;
9532         hpsa_sas_port->sas_address = sas_address;
9533         list_add_tail(&hpsa_sas_port->port_list_entry,
9534                         &hpsa_sas_node->port_list_head);
9535
9536         return hpsa_sas_port;
9537
9538 free_sas_port:
9539         sas_port_free(port);
9540 free_hpsa_port:
9541         kfree(hpsa_sas_port);
9542
9543         return NULL;
9544 }
9545
9546 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9547 {
9548         struct hpsa_sas_phy *hpsa_sas_phy;
9549         struct hpsa_sas_phy *next;
9550
9551         list_for_each_entry_safe(hpsa_sas_phy, next,
9552                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9553                 hpsa_free_sas_phy(hpsa_sas_phy);
9554
9555         sas_port_delete(hpsa_sas_port->port);
9556         list_del(&hpsa_sas_port->port_list_entry);
9557         kfree(hpsa_sas_port);
9558 }
9559
9560 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9561 {
9562         struct hpsa_sas_node *hpsa_sas_node;
9563
9564         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9565         if (hpsa_sas_node) {
9566                 hpsa_sas_node->parent_dev = parent_dev;
9567                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9568         }
9569
9570         return hpsa_sas_node;
9571 }
9572
9573 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9574 {
9575         struct hpsa_sas_port *hpsa_sas_port;
9576         struct hpsa_sas_port *next;
9577
9578         if (!hpsa_sas_node)
9579                 return;
9580
9581         list_for_each_entry_safe(hpsa_sas_port, next,
9582                         &hpsa_sas_node->port_list_head, port_list_entry)
9583                 hpsa_free_sas_port(hpsa_sas_port);
9584
9585         kfree(hpsa_sas_node);
9586 }
9587
9588 static struct hpsa_scsi_dev_t
9589         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9590                                         struct sas_rphy *rphy)
9591 {
9592         int i;
9593         struct hpsa_scsi_dev_t *device;
9594
9595         for (i = 0; i < h->ndevices; i++) {
9596                 device = h->dev[i];
9597                 if (!device->sas_port)
9598                         continue;
9599                 if (device->sas_port->rphy == rphy)
9600                         return device;
9601         }
9602
9603         return NULL;
9604 }
9605
9606 static int hpsa_add_sas_host(struct ctlr_info *h)
9607 {
9608         int rc;
9609         struct device *parent_dev;
9610         struct hpsa_sas_node *hpsa_sas_node;
9611         struct hpsa_sas_port *hpsa_sas_port;
9612         struct hpsa_sas_phy *hpsa_sas_phy;
9613
9614         parent_dev = &h->scsi_host->shost_dev;
9615
9616         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9617         if (!hpsa_sas_node)
9618                 return -ENOMEM;
9619
9620         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9621         if (!hpsa_sas_port) {
9622                 rc = -ENODEV;
9623                 goto free_sas_node;
9624         }
9625
9626         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9627         if (!hpsa_sas_phy) {
9628                 rc = -ENODEV;
9629                 goto free_sas_port;
9630         }
9631
9632         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9633         if (rc)
9634                 goto free_sas_phy;
9635
9636         h->sas_host = hpsa_sas_node;
9637
9638         return 0;
9639
9640 free_sas_phy:
9641         hpsa_free_sas_phy(hpsa_sas_phy);
9642 free_sas_port:
9643         hpsa_free_sas_port(hpsa_sas_port);
9644 free_sas_node:
9645         hpsa_free_sas_node(hpsa_sas_node);
9646
9647         return rc;
9648 }
9649
9650 static void hpsa_delete_sas_host(struct ctlr_info *h)
9651 {
9652         hpsa_free_sas_node(h->sas_host);
9653 }
9654
9655 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9656                                 struct hpsa_scsi_dev_t *device)
9657 {
9658         int rc;
9659         struct hpsa_sas_port *hpsa_sas_port;
9660         struct sas_rphy *rphy;
9661
9662         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9663         if (!hpsa_sas_port)
9664                 return -ENOMEM;
9665
9666         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9667         if (!rphy) {
9668                 rc = -ENODEV;
9669                 goto free_sas_port;
9670         }
9671
9672         hpsa_sas_port->rphy = rphy;
9673         device->sas_port = hpsa_sas_port;
9674
9675         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9676         if (rc)
9677                 goto free_sas_port;
9678
9679         return 0;
9680
9681 free_sas_port:
9682         hpsa_free_sas_port(hpsa_sas_port);
9683         device->sas_port = NULL;
9684
9685         return rc;
9686 }
9687
9688 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9689 {
9690         if (device->sas_port) {
9691                 hpsa_free_sas_port(device->sas_port);
9692                 device->sas_port = NULL;
9693         }
9694 }
9695
9696 static int
9697 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9698 {
9699         return 0;
9700 }
9701
9702 static int
9703 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9704 {
9705         struct Scsi_Host *shost = phy_to_shost(rphy);
9706         struct ctlr_info *h;
9707         struct hpsa_scsi_dev_t *sd;
9708
9709         if (!shost)
9710                 return -ENXIO;
9711
9712         h = shost_to_hba(shost);
9713
9714         if (!h)
9715                 return -ENXIO;
9716
9717         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9718         if (!sd)
9719                 return -ENXIO;
9720
9721         *identifier = sd->eli;
9722
9723         return 0;
9724 }
9725
9726 static int
9727 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9728 {
9729         return -ENXIO;
9730 }
9731
9732 static int
9733 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9734 {
9735         return 0;
9736 }
9737
9738 static int
9739 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9740 {
9741         return 0;
9742 }
9743
9744 static int
9745 hpsa_sas_phy_setup(struct sas_phy *phy)
9746 {
9747         return 0;
9748 }
9749
9750 static void
9751 hpsa_sas_phy_release(struct sas_phy *phy)
9752 {
9753 }
9754
9755 static int
9756 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9757 {
9758         return -EINVAL;
9759 }
9760
9761 static struct sas_function_template hpsa_sas_transport_functions = {
9762         .get_linkerrors = hpsa_sas_get_linkerrors,
9763         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9764         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9765         .phy_reset = hpsa_sas_phy_reset,
9766         .phy_enable = hpsa_sas_phy_enable,
9767         .phy_setup = hpsa_sas_phy_setup,
9768         .phy_release = hpsa_sas_phy_release,
9769         .set_phy_speed = hpsa_sas_phy_speed,
9770 };
9771
9772 /*
9773  *  This is it.  Register the PCI driver information for the cards we control
9774  *  the OS will call our registered routines when it finds one of our cards.
9775  */
9776 static int __init hpsa_init(void)
9777 {
9778         int rc;
9779
9780         hpsa_sas_transport_template =
9781                 sas_attach_transport(&hpsa_sas_transport_functions);
9782         if (!hpsa_sas_transport_template)
9783                 return -ENODEV;
9784
9785         rc = pci_register_driver(&hpsa_pci_driver);
9786
9787         if (rc)
9788                 sas_release_transport(hpsa_sas_transport_template);
9789
9790         return rc;
9791 }
9792
9793 static void __exit hpsa_cleanup(void)
9794 {
9795         pci_unregister_driver(&hpsa_pci_driver);
9796         sas_release_transport(hpsa_sas_transport_template);
9797 }
9798
9799 static void __attribute__((unused)) verify_offsets(void)
9800 {
9801 #define VERIFY_OFFSET(member, offset) \
9802         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9803
9804         VERIFY_OFFSET(structure_size, 0);
9805         VERIFY_OFFSET(volume_blk_size, 4);
9806         VERIFY_OFFSET(volume_blk_cnt, 8);
9807         VERIFY_OFFSET(phys_blk_shift, 16);
9808         VERIFY_OFFSET(parity_rotation_shift, 17);
9809         VERIFY_OFFSET(strip_size, 18);
9810         VERIFY_OFFSET(disk_starting_blk, 20);
9811         VERIFY_OFFSET(disk_blk_cnt, 28);
9812         VERIFY_OFFSET(data_disks_per_row, 36);
9813         VERIFY_OFFSET(metadata_disks_per_row, 38);
9814         VERIFY_OFFSET(row_cnt, 40);
9815         VERIFY_OFFSET(layout_map_count, 42);
9816         VERIFY_OFFSET(flags, 44);
9817         VERIFY_OFFSET(dekindex, 46);
9818         /* VERIFY_OFFSET(reserved, 48 */
9819         VERIFY_OFFSET(data, 64);
9820
9821 #undef VERIFY_OFFSET
9822
9823 #define VERIFY_OFFSET(member, offset) \
9824         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9825
9826         VERIFY_OFFSET(IU_type, 0);
9827         VERIFY_OFFSET(direction, 1);
9828         VERIFY_OFFSET(reply_queue, 2);
9829         /* VERIFY_OFFSET(reserved1, 3);  */
9830         VERIFY_OFFSET(scsi_nexus, 4);
9831         VERIFY_OFFSET(Tag, 8);
9832         VERIFY_OFFSET(cdb, 16);
9833         VERIFY_OFFSET(cciss_lun, 32);
9834         VERIFY_OFFSET(data_len, 40);
9835         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9836         VERIFY_OFFSET(sg_count, 45);
9837         /* VERIFY_OFFSET(reserved3 */
9838         VERIFY_OFFSET(err_ptr, 48);
9839         VERIFY_OFFSET(err_len, 56);
9840         /* VERIFY_OFFSET(reserved4  */
9841         VERIFY_OFFSET(sg, 64);
9842
9843 #undef VERIFY_OFFSET
9844
9845 #define VERIFY_OFFSET(member, offset) \
9846         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9847
9848         VERIFY_OFFSET(dev_handle, 0x00);
9849         VERIFY_OFFSET(reserved1, 0x02);
9850         VERIFY_OFFSET(function, 0x03);
9851         VERIFY_OFFSET(reserved2, 0x04);
9852         VERIFY_OFFSET(err_info, 0x0C);
9853         VERIFY_OFFSET(reserved3, 0x10);
9854         VERIFY_OFFSET(err_info_len, 0x12);
9855         VERIFY_OFFSET(reserved4, 0x13);
9856         VERIFY_OFFSET(sgl_offset, 0x14);
9857         VERIFY_OFFSET(reserved5, 0x15);
9858         VERIFY_OFFSET(transfer_len, 0x1C);
9859         VERIFY_OFFSET(reserved6, 0x20);
9860         VERIFY_OFFSET(io_flags, 0x24);
9861         VERIFY_OFFSET(reserved7, 0x26);
9862         VERIFY_OFFSET(LUN, 0x34);
9863         VERIFY_OFFSET(control, 0x3C);
9864         VERIFY_OFFSET(CDB, 0x40);
9865         VERIFY_OFFSET(reserved8, 0x50);
9866         VERIFY_OFFSET(host_context_flags, 0x60);
9867         VERIFY_OFFSET(timeout_sec, 0x62);
9868         VERIFY_OFFSET(ReplyQueue, 0x64);
9869         VERIFY_OFFSET(reserved9, 0x65);
9870         VERIFY_OFFSET(tag, 0x68);
9871         VERIFY_OFFSET(host_addr, 0x70);
9872         VERIFY_OFFSET(CISS_LUN, 0x78);
9873         VERIFY_OFFSET(SG, 0x78 + 8);
9874 #undef VERIFY_OFFSET
9875 }
9876
9877 module_init(hpsa_init);
9878 module_exit(hpsa_cleanup);