Merge tag 'perf-tools-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.20-200"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
77
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81         HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90         "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151         {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161         {0x40700E11, "Smart Array 5300", &SA5A_access},
162         {0x40800E11, "Smart Array 5i", &SA5B_access},
163         {0x40820E11, "Smart Array 532", &SA5B_access},
164         {0x40830E11, "Smart Array 5312", &SA5B_access},
165         {0x409A0E11, "Smart Array 641", &SA5A_access},
166         {0x409B0E11, "Smart Array 642", &SA5A_access},
167         {0x409C0E11, "Smart Array 6400", &SA5A_access},
168         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169         {0x40910E11, "Smart Array 6i", &SA5A_access},
170         {0x3225103C, "Smart Array P600", &SA5A_access},
171         {0x3223103C, "Smart Array P800", &SA5A_access},
172         {0x3234103C, "Smart Array P400", &SA5A_access},
173         {0x3235103C, "Smart Array P400i", &SA5A_access},
174         {0x3211103C, "Smart Array E200i", &SA5A_access},
175         {0x3212103C, "Smart Array E200", &SA5A_access},
176         {0x3213103C, "Smart Array E200i", &SA5A_access},
177         {0x3214103C, "Smart Array E200i", &SA5A_access},
178         {0x3215103C, "Smart Array E200i", &SA5A_access},
179         {0x3237103C, "Smart Array E500", &SA5A_access},
180         {0x323D103C, "Smart Array P700m", &SA5A_access},
181         {0x3241103C, "Smart Array P212", &SA5_access},
182         {0x3243103C, "Smart Array P410", &SA5_access},
183         {0x3245103C, "Smart Array P410i", &SA5_access},
184         {0x3247103C, "Smart Array P411", &SA5_access},
185         {0x3249103C, "Smart Array P812", &SA5_access},
186         {0x324A103C, "Smart Array P712m", &SA5_access},
187         {0x324B103C, "Smart Array P711m", &SA5_access},
188         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189         {0x3350103C, "Smart Array P222", &SA5_access},
190         {0x3351103C, "Smart Array P420", &SA5_access},
191         {0x3352103C, "Smart Array P421", &SA5_access},
192         {0x3353103C, "Smart Array P822", &SA5_access},
193         {0x3354103C, "Smart Array P420i", &SA5_access},
194         {0x3355103C, "Smart Array P220i", &SA5_access},
195         {0x3356103C, "Smart Array P721m", &SA5_access},
196         {0x1920103C, "Smart Array P430i", &SA5_access},
197         {0x1921103C, "Smart Array P830i", &SA5_access},
198         {0x1922103C, "Smart Array P430", &SA5_access},
199         {0x1923103C, "Smart Array P431", &SA5_access},
200         {0x1924103C, "Smart Array P830", &SA5_access},
201         {0x1925103C, "Smart Array P831", &SA5_access},
202         {0x1926103C, "Smart Array P731m", &SA5_access},
203         {0x1928103C, "Smart Array P230i", &SA5_access},
204         {0x1929103C, "Smart Array P530", &SA5_access},
205         {0x21BD103C, "Smart Array P244br", &SA5_access},
206         {0x21BE103C, "Smart Array P741m", &SA5_access},
207         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208         {0x21C0103C, "Smart Array P440ar", &SA5_access},
209         {0x21C1103C, "Smart Array P840ar", &SA5_access},
210         {0x21C2103C, "Smart Array P440", &SA5_access},
211         {0x21C3103C, "Smart Array P441", &SA5_access},
212         {0x21C4103C, "Smart Array", &SA5_access},
213         {0x21C5103C, "Smart Array P841", &SA5_access},
214         {0x21C6103C, "Smart HBA H244br", &SA5_access},
215         {0x21C7103C, "Smart HBA H240", &SA5_access},
216         {0x21C8103C, "Smart HBA H241", &SA5_access},
217         {0x21C9103C, "Smart Array", &SA5_access},
218         {0x21CA103C, "Smart Array P246br", &SA5_access},
219         {0x21CB103C, "Smart Array P840", &SA5_access},
220         {0x21CC103C, "Smart Array", &SA5_access},
221         {0x21CD103C, "Smart Array", &SA5_access},
222         {0x21CE103C, "Smart HBA", &SA5_access},
223         {0x05809005, "SmartHBA-SA", &SA5_access},
224         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241                         struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245                 struct sas_rphy *rphy);
246
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256                       void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258                                IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260                                    BIG_IOCTL_Command_struct *ioc);
261
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264         void __user *arg);
265 #endif
266
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271                                             struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274         int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282         unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
289
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292         struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294         struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297         int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303                                u64 *cfg_offset);
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305                                     unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307                                 bool *legacy_board);
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309                                            unsigned char lunaddr[],
310                                            int reply_queue);
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312                                      int wait_for_ready);
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327         struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329         unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332                                struct hpsa_scsi_dev_t *dev,
333                                unsigned char *scsi3addr);
334
335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336 {
337         unsigned long *priv = shost_priv(sdev->host);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342 {
343         unsigned long *priv = shost_priv(sh);
344         return (struct ctlr_info *) *priv;
345 }
346
347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348 {
349         return c->scsi_cmd == SCSI_CMD_IDLE;
350 }
351
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354                         u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356         struct scsi_sense_hdr sshdr;
357         bool rc;
358
359         *sense_key = -1;
360         *asc = -1;
361         *ascq = -1;
362
363         if (sense_data_len < 1)
364                 return;
365
366         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367         if (rc) {
368                 *sense_key = sshdr.sense_key;
369                 *asc = sshdr.asc;
370                 *ascq = sshdr.ascq;
371         }
372 }
373
374 static int check_for_unit_attention(struct ctlr_info *h,
375         struct CommandList *c)
376 {
377         u8 sense_key, asc, ascq;
378         int sense_len;
379
380         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381                 sense_len = sizeof(c->err_info->SenseInfo);
382         else
383                 sense_len = c->err_info->SenseLen;
384
385         decode_sense_data(c->err_info->SenseInfo, sense_len,
386                                 &sense_key, &asc, &ascq);
387         if (sense_key != UNIT_ATTENTION || asc == 0xff)
388                 return 0;
389
390         switch (asc) {
391         case STATE_CHANGED:
392                 dev_warn(&h->pdev->dev,
393                         "%s: a state change detected, command retried\n",
394                         h->devname);
395                 break;
396         case LUN_FAILED:
397                 dev_warn(&h->pdev->dev,
398                         "%s: LUN failure detected\n", h->devname);
399                 break;
400         case REPORT_LUNS_CHANGED:
401                 dev_warn(&h->pdev->dev,
402                         "%s: report LUN data changed\n", h->devname);
403         /*
404          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405          * target (array) devices.
406          */
407                 break;
408         case POWER_OR_RESET:
409                 dev_warn(&h->pdev->dev,
410                         "%s: a power on or device reset detected\n",
411                         h->devname);
412                 break;
413         case UNIT_ATTENTION_CLEARED:
414                 dev_warn(&h->pdev->dev,
415                         "%s: unit attention cleared by another initiator\n",
416                         h->devname);
417                 break;
418         default:
419                 dev_warn(&h->pdev->dev,
420                         "%s: unknown unit attention detected\n",
421                         h->devname);
422                 break;
423         }
424         return 1;
425 }
426
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432                 return 0;
433         dev_warn(&h->pdev->dev, HPSA "device busy");
434         return 1;
435 }
436
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439                 struct device_attribute *attr, char *buf)
440 {
441         int ld;
442         struct ctlr_info *h;
443         struct Scsi_Host *shost = class_to_shost(dev);
444
445         h = shost_to_hba(shost);
446         ld = lockup_detected(h);
447
448         return sprintf(buf, "ld=%d\n", ld);
449 }
450
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452                                          struct device_attribute *attr,
453                                          const char *buf, size_t count)
454 {
455         int status, len;
456         struct ctlr_info *h;
457         struct Scsi_Host *shost = class_to_shost(dev);
458         char tmpbuf[10];
459
460         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461                 return -EACCES;
462         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463         strncpy(tmpbuf, buf, len);
464         tmpbuf[len] = '\0';
465         if (sscanf(tmpbuf, "%d", &status) != 1)
466                 return -EINVAL;
467         h = shost_to_hba(shost);
468         h->acciopath_status = !!status;
469         dev_warn(&h->pdev->dev,
470                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471                 h->acciopath_status ? "enabled" : "disabled");
472         return count;
473 }
474
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476                                          struct device_attribute *attr,
477                                          const char *buf, size_t count)
478 {
479         int debug_level, len;
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482         char tmpbuf[10];
483
484         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485                 return -EACCES;
486         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487         strncpy(tmpbuf, buf, len);
488         tmpbuf[len] = '\0';
489         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490                 return -EINVAL;
491         if (debug_level < 0)
492                 debug_level = 0;
493         h = shost_to_hba(shost);
494         h->raid_offload_debug = debug_level;
495         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496                 h->raid_offload_debug);
497         return count;
498 }
499
500 static ssize_t host_store_rescan(struct device *dev,
501                                  struct device_attribute *attr,
502                                  const char *buf, size_t count)
503 {
504         struct ctlr_info *h;
505         struct Scsi_Host *shost = class_to_shost(dev);
506         h = shost_to_hba(shost);
507         hpsa_scan_start(h->scsi_host);
508         return count;
509 }
510
511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512 {
513         device->offload_enabled = 0;
514         device->offload_to_be_enabled = 0;
515 }
516
517 static ssize_t host_show_firmware_revision(struct device *dev,
518              struct device_attribute *attr, char *buf)
519 {
520         struct ctlr_info *h;
521         struct Scsi_Host *shost = class_to_shost(dev);
522         unsigned char *fwrev;
523
524         h = shost_to_hba(shost);
525         if (!h->hba_inquiry_data)
526                 return 0;
527         fwrev = &h->hba_inquiry_data[32];
528         return snprintf(buf, 20, "%c%c%c%c\n",
529                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530 }
531
532 static ssize_t host_show_commands_outstanding(struct device *dev,
533              struct device_attribute *attr, char *buf)
534 {
535         struct Scsi_Host *shost = class_to_shost(dev);
536         struct ctlr_info *h = shost_to_hba(shost);
537
538         return snprintf(buf, 20, "%d\n",
539                         atomic_read(&h->commands_outstanding));
540 }
541
542 static ssize_t host_show_transport_mode(struct device *dev,
543         struct device_attribute *attr, char *buf)
544 {
545         struct ctlr_info *h;
546         struct Scsi_Host *shost = class_to_shost(dev);
547
548         h = shost_to_hba(shost);
549         return snprintf(buf, 20, "%s\n",
550                 h->transMethod & CFGTBL_Trans_Performant ?
551                         "performant" : "simple");
552 }
553
554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555         struct device_attribute *attr, char *buf)
556 {
557         struct ctlr_info *h;
558         struct Scsi_Host *shost = class_to_shost(dev);
559
560         h = shost_to_hba(shost);
561         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
563 }
564
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567         0x324a103C, /* Smart Array P712m */
568         0x324b103C, /* Smart Array P711m */
569         0x3223103C, /* Smart Array P800 */
570         0x3234103C, /* Smart Array P400 */
571         0x3235103C, /* Smart Array P400i */
572         0x3211103C, /* Smart Array E200i */
573         0x3212103C, /* Smart Array E200 */
574         0x3213103C, /* Smart Array E200i */
575         0x3214103C, /* Smart Array E200i */
576         0x3215103C, /* Smart Array E200i */
577         0x3237103C, /* Smart Array E500 */
578         0x323D103C, /* Smart Array P700m */
579         0x40800E11, /* Smart Array 5i */
580         0x409C0E11, /* Smart Array 6400 */
581         0x409D0E11, /* Smart Array 6400 EM */
582         0x40700E11, /* Smart Array 5300 */
583         0x40820E11, /* Smart Array 532 */
584         0x40830E11, /* Smart Array 5312 */
585         0x409A0E11, /* Smart Array 641 */
586         0x409B0E11, /* Smart Array 642 */
587         0x40910E11, /* Smart Array 6i */
588 };
589
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592         0x40800E11, /* Smart Array 5i */
593         0x40700E11, /* Smart Array 5300 */
594         0x40820E11, /* Smart Array 532 */
595         0x40830E11, /* Smart Array 5312 */
596         0x409A0E11, /* Smart Array 641 */
597         0x409B0E11, /* Smart Array 642 */
598         0x40910E11, /* Smart Array 6i */
599         /* Exclude 640x boards.  These are two pci devices in one slot
600          * which share a battery backed cache module.  One controls the
601          * cache, the other accesses the cache through the one that controls
602          * it.  If we reset the one controlling the cache, the other will
603          * likely not be happy.  Just forbid resetting this conjoined mess.
604          * The 640x isn't really supported by hpsa anyway.
605          */
606         0x409C0E11, /* Smart Array 6400 */
607         0x409D0E11, /* Smart Array 6400 EM */
608 };
609
610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611 {
612         int i;
613
614         for (i = 0; i < nelems; i++)
615                 if (a[i] == board_id)
616                         return 1;
617         return 0;
618 }
619
620 static int ctlr_is_hard_resettable(u32 board_id)
621 {
622         return !board_id_in_array(unresettable_controller,
623                         ARRAY_SIZE(unresettable_controller), board_id);
624 }
625
626 static int ctlr_is_soft_resettable(u32 board_id)
627 {
628         return !board_id_in_array(soft_unresettable_controller,
629                         ARRAY_SIZE(soft_unresettable_controller), board_id);
630 }
631
632 static int ctlr_is_resettable(u32 board_id)
633 {
634         return ctlr_is_hard_resettable(board_id) ||
635                 ctlr_is_soft_resettable(board_id);
636 }
637
638 static ssize_t host_show_resettable(struct device *dev,
639         struct device_attribute *attr, char *buf)
640 {
641         struct ctlr_info *h;
642         struct Scsi_Host *shost = class_to_shost(dev);
643
644         h = shost_to_hba(shost);
645         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646 }
647
648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649 {
650         return (scsi3addr[3] & 0xC0) == 0x40;
651 }
652
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
655 };
656 #define HPSA_RAID_0     0
657 #define HPSA_RAID_4     1
658 #define HPSA_RAID_1     2       /* also used for RAID 10 */
659 #define HPSA_RAID_5     3       /* also used for RAID 50 */
660 #define HPSA_RAID_51    4
661 #define HPSA_RAID_6     5       /* also used for RAID 60 */
662 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665
666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667 {
668         return !device->physical_device;
669 }
670
671 static ssize_t raid_level_show(struct device *dev,
672              struct device_attribute *attr, char *buf)
673 {
674         ssize_t l = 0;
675         unsigned char rlevel;
676         struct ctlr_info *h;
677         struct scsi_device *sdev;
678         struct hpsa_scsi_dev_t *hdev;
679         unsigned long flags;
680
681         sdev = to_scsi_device(dev);
682         h = sdev_to_hba(sdev);
683         spin_lock_irqsave(&h->lock, flags);
684         hdev = sdev->hostdata;
685         if (!hdev) {
686                 spin_unlock_irqrestore(&h->lock, flags);
687                 return -ENODEV;
688         }
689
690         /* Is this even a logical drive? */
691         if (!is_logical_device(hdev)) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
694                 return l;
695         }
696
697         rlevel = hdev->raid_level;
698         spin_unlock_irqrestore(&h->lock, flags);
699         if (rlevel > RAID_UNKNOWN)
700                 rlevel = RAID_UNKNOWN;
701         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702         return l;
703 }
704
705 static ssize_t lunid_show(struct device *dev,
706              struct device_attribute *attr, char *buf)
707 {
708         struct ctlr_info *h;
709         struct scsi_device *sdev;
710         struct hpsa_scsi_dev_t *hdev;
711         unsigned long flags;
712         unsigned char lunid[8];
713
714         sdev = to_scsi_device(dev);
715         h = sdev_to_hba(sdev);
716         spin_lock_irqsave(&h->lock, flags);
717         hdev = sdev->hostdata;
718         if (!hdev) {
719                 spin_unlock_irqrestore(&h->lock, flags);
720                 return -ENODEV;
721         }
722         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723         spin_unlock_irqrestore(&h->lock, flags);
724         return snprintf(buf, 20, "0x%8phN\n", lunid);
725 }
726
727 static ssize_t unique_id_show(struct device *dev,
728              struct device_attribute *attr, char *buf)
729 {
730         struct ctlr_info *h;
731         struct scsi_device *sdev;
732         struct hpsa_scsi_dev_t *hdev;
733         unsigned long flags;
734         unsigned char sn[16];
735
736         sdev = to_scsi_device(dev);
737         h = sdev_to_hba(sdev);
738         spin_lock_irqsave(&h->lock, flags);
739         hdev = sdev->hostdata;
740         if (!hdev) {
741                 spin_unlock_irqrestore(&h->lock, flags);
742                 return -ENODEV;
743         }
744         memcpy(sn, hdev->device_id, sizeof(sn));
745         spin_unlock_irqrestore(&h->lock, flags);
746         return snprintf(buf, 16 * 2 + 2,
747                         "%02X%02X%02X%02X%02X%02X%02X%02X"
748                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
749                         sn[0], sn[1], sn[2], sn[3],
750                         sn[4], sn[5], sn[6], sn[7],
751                         sn[8], sn[9], sn[10], sn[11],
752                         sn[12], sn[13], sn[14], sn[15]);
753 }
754
755 static ssize_t sas_address_show(struct device *dev,
756               struct device_attribute *attr, char *buf)
757 {
758         struct ctlr_info *h;
759         struct scsi_device *sdev;
760         struct hpsa_scsi_dev_t *hdev;
761         unsigned long flags;
762         u64 sas_address;
763
764         sdev = to_scsi_device(dev);
765         h = sdev_to_hba(sdev);
766         spin_lock_irqsave(&h->lock, flags);
767         hdev = sdev->hostdata;
768         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769                 spin_unlock_irqrestore(&h->lock, flags);
770                 return -ENODEV;
771         }
772         sas_address = hdev->sas_address;
773         spin_unlock_irqrestore(&h->lock, flags);
774
775         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776 }
777
778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779              struct device_attribute *attr, char *buf)
780 {
781         struct ctlr_info *h;
782         struct scsi_device *sdev;
783         struct hpsa_scsi_dev_t *hdev;
784         unsigned long flags;
785         int offload_enabled;
786
787         sdev = to_scsi_device(dev);
788         h = sdev_to_hba(sdev);
789         spin_lock_irqsave(&h->lock, flags);
790         hdev = sdev->hostdata;
791         if (!hdev) {
792                 spin_unlock_irqrestore(&h->lock, flags);
793                 return -ENODEV;
794         }
795         offload_enabled = hdev->offload_enabled;
796         spin_unlock_irqrestore(&h->lock, flags);
797
798         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799                 return snprintf(buf, 20, "%d\n", offload_enabled);
800         else
801                 return snprintf(buf, 40, "%s\n",
802                                 "Not applicable for a controller");
803 }
804
805 #define MAX_PATHS 8
806 static ssize_t path_info_show(struct device *dev,
807              struct device_attribute *attr, char *buf)
808 {
809         struct ctlr_info *h;
810         struct scsi_device *sdev;
811         struct hpsa_scsi_dev_t *hdev;
812         unsigned long flags;
813         int i;
814         int output_len = 0;
815         u8 box;
816         u8 bay;
817         u8 path_map_index = 0;
818         char *active;
819         unsigned char phys_connector[2];
820
821         sdev = to_scsi_device(dev);
822         h = sdev_to_hba(sdev);
823         spin_lock_irqsave(&h->devlock, flags);
824         hdev = sdev->hostdata;
825         if (!hdev) {
826                 spin_unlock_irqrestore(&h->devlock, flags);
827                 return -ENODEV;
828         }
829
830         bay = hdev->bay;
831         for (i = 0; i < MAX_PATHS; i++) {
832                 path_map_index = 1<<i;
833                 if (i == hdev->active_path_index)
834                         active = "Active";
835                 else if (hdev->path_map & path_map_index)
836                         active = "Inactive";
837                 else
838                         continue;
839
840                 output_len += scnprintf(buf + output_len,
841                                 PAGE_SIZE - output_len,
842                                 "[%d:%d:%d:%d] %20.20s ",
843                                 h->scsi_host->host_no,
844                                 hdev->bus, hdev->target, hdev->lun,
845                                 scsi_device_type(hdev->devtype));
846
847                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848                         output_len += scnprintf(buf + output_len,
849                                                 PAGE_SIZE - output_len,
850                                                 "%s\n", active);
851                         continue;
852                 }
853
854                 box = hdev->box[i];
855                 memcpy(&phys_connector, &hdev->phys_connector[i],
856                         sizeof(phys_connector));
857                 if (phys_connector[0] < '0')
858                         phys_connector[0] = '0';
859                 if (phys_connector[1] < '0')
860                         phys_connector[1] = '0';
861                 output_len += scnprintf(buf + output_len,
862                                 PAGE_SIZE - output_len,
863                                 "PORT: %.2s ",
864                                 phys_connector);
865                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866                         hdev->expose_device) {
867                         if (box == 0 || box == 0xFF) {
868                                 output_len += scnprintf(buf + output_len,
869                                         PAGE_SIZE - output_len,
870                                         "BAY: %hhu %s\n",
871                                         bay, active);
872                         } else {
873                                 output_len += scnprintf(buf + output_len,
874                                         PAGE_SIZE - output_len,
875                                         "BOX: %hhu BAY: %hhu %s\n",
876                                         box, bay, active);
877                         }
878                 } else if (box != 0 && box != 0xFF) {
879                         output_len += scnprintf(buf + output_len,
880                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881                                 box, active);
882                 } else
883                         output_len += scnprintf(buf + output_len,
884                                 PAGE_SIZE - output_len, "%s\n", active);
885         }
886
887         spin_unlock_irqrestore(&h->devlock, flags);
888         return output_len;
889 }
890
891 static ssize_t host_show_ctlr_num(struct device *dev,
892         struct device_attribute *attr, char *buf)
893 {
894         struct ctlr_info *h;
895         struct Scsi_Host *shost = class_to_shost(dev);
896
897         h = shost_to_hba(shost);
898         return snprintf(buf, 20, "%d\n", h->ctlr);
899 }
900
901 static ssize_t host_show_legacy_board(struct device *dev,
902         struct device_attribute *attr, char *buf)
903 {
904         struct ctlr_info *h;
905         struct Scsi_Host *shost = class_to_shost(dev);
906
907         h = shost_to_hba(shost);
908         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909 }
910
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917                         host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920                 host_show_hp_ssd_smart_path_status,
921                 host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923                         host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925         host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927         host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929         host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931         host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933         host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935         host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937         host_show_legacy_board, NULL);
938
939 static struct device_attribute *hpsa_sdev_attrs[] = {
940         &dev_attr_raid_level,
941         &dev_attr_lunid,
942         &dev_attr_unique_id,
943         &dev_attr_hp_ssd_smart_path_enabled,
944         &dev_attr_path_info,
945         &dev_attr_sas_address,
946         NULL,
947 };
948
949 static struct device_attribute *hpsa_shost_attrs[] = {
950         &dev_attr_rescan,
951         &dev_attr_firmware_revision,
952         &dev_attr_commands_outstanding,
953         &dev_attr_transport_mode,
954         &dev_attr_resettable,
955         &dev_attr_hp_ssd_smart_path_status,
956         &dev_attr_raid_offload_debug,
957         &dev_attr_lockup_detected,
958         &dev_attr_ctlr_num,
959         &dev_attr_legacy_board,
960         NULL,
961 };
962
963 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
964                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
965
966 static struct scsi_host_template hpsa_driver_template = {
967         .module                 = THIS_MODULE,
968         .name                   = HPSA,
969         .proc_name              = HPSA,
970         .queuecommand           = hpsa_scsi_queue_command,
971         .scan_start             = hpsa_scan_start,
972         .scan_finished          = hpsa_scan_finished,
973         .change_queue_depth     = hpsa_change_queue_depth,
974         .this_id                = -1,
975         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
976         .ioctl                  = hpsa_ioctl,
977         .slave_alloc            = hpsa_slave_alloc,
978         .slave_configure        = hpsa_slave_configure,
979         .slave_destroy          = hpsa_slave_destroy,
980 #ifdef CONFIG_COMPAT
981         .compat_ioctl           = hpsa_compat_ioctl,
982 #endif
983         .sdev_attrs = hpsa_sdev_attrs,
984         .shost_attrs = hpsa_shost_attrs,
985         .max_sectors = 2048,
986         .no_write_same = 1,
987 };
988
989 static inline u32 next_command(struct ctlr_info *h, u8 q)
990 {
991         u32 a;
992         struct reply_queue_buffer *rq = &h->reply_queue[q];
993
994         if (h->transMethod & CFGTBL_Trans_io_accel1)
995                 return h->access.command_completed(h, q);
996
997         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
998                 return h->access.command_completed(h, q);
999
1000         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1001                 a = rq->head[rq->current_entry];
1002                 rq->current_entry++;
1003                 atomic_dec(&h->commands_outstanding);
1004         } else {
1005                 a = FIFO_EMPTY;
1006         }
1007         /* Check for wraparound */
1008         if (rq->current_entry == h->max_commands) {
1009                 rq->current_entry = 0;
1010                 rq->wraparound ^= 1;
1011         }
1012         return a;
1013 }
1014
1015 /*
1016  * There are some special bits in the bus address of the
1017  * command that we have to set for the controller to know
1018  * how to process the command:
1019  *
1020  * Normal performant mode:
1021  * bit 0: 1 means performant mode, 0 means simple mode.
1022  * bits 1-3 = block fetch table entry
1023  * bits 4-6 = command type (== 0)
1024  *
1025  * ioaccel1 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-3 = block fetch table entry
1028  * bits 4-6 = command type (== 110)
1029  * (command type is needed because ioaccel1 mode
1030  * commands are submitted through the same register as normal
1031  * mode commands, so this is how the controller knows whether
1032  * the command is normal mode or ioaccel1 mode.)
1033  *
1034  * ioaccel2 mode:
1035  * bit 0 = "performant mode" bit.
1036  * bits 1-4 = block fetch table entry (note extra bit)
1037  * bits 4-6 = not needed, because ioaccel2 mode has
1038  * a separate special register for submitting commands.
1039  */
1040
1041 /*
1042  * set_performant_mode: Modify the tag for cciss performant
1043  * set bit 0 for pull model, bits 3-1 for block fetch
1044  * register number
1045  */
1046 #define DEFAULT_REPLY_QUEUE (-1)
1047 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1048                                         int reply_queue)
1049 {
1050         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1051                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1052                 if (unlikely(!h->msix_vectors))
1053                         return;
1054                 c->Header.ReplyQueue = reply_queue;
1055         }
1056 }
1057
1058 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1059                                                 struct CommandList *c,
1060                                                 int reply_queue)
1061 {
1062         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1063
1064         /*
1065          * Tell the controller to post the reply to the queue for this
1066          * processor.  This seems to give the best I/O throughput.
1067          */
1068         cp->ReplyQueue = reply_queue;
1069         /*
1070          * Set the bits in the address sent down to include:
1071          *  - performant mode bit (bit 0)
1072          *  - pull count (bits 1-3)
1073          *  - command type (bits 4-6)
1074          */
1075         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1076                                         IOACCEL1_BUSADDR_CMDTYPE;
1077 }
1078
1079 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1080                                                 struct CommandList *c,
1081                                                 int reply_queue)
1082 {
1083         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1084                 &h->ioaccel2_cmd_pool[c->cmdindex];
1085
1086         /* Tell the controller to post the reply to the queue for this
1087          * processor.  This seems to give the best I/O throughput.
1088          */
1089         cp->reply_queue = reply_queue;
1090         /* Set the bits in the address sent down to include:
1091          *  - performant mode bit not used in ioaccel mode 2
1092          *  - pull count (bits 0-3)
1093          *  - command type isn't needed for ioaccel2
1094          */
1095         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1096 }
1097
1098 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1099                                                 struct CommandList *c,
1100                                                 int reply_queue)
1101 {
1102         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1103
1104         /*
1105          * Tell the controller to post the reply to the queue for this
1106          * processor.  This seems to give the best I/O throughput.
1107          */
1108         cp->reply_queue = reply_queue;
1109         /*
1110          * Set the bits in the address sent down to include:
1111          *  - performant mode bit not used in ioaccel mode 2
1112          *  - pull count (bits 0-3)
1113          *  - command type isn't needed for ioaccel2
1114          */
1115         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1116 }
1117
1118 static int is_firmware_flash_cmd(u8 *cdb)
1119 {
1120         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1121 }
1122
1123 /*
1124  * During firmware flash, the heartbeat register may not update as frequently
1125  * as it should.  So we dial down lockup detection during firmware flash. and
1126  * dial it back up when firmware flash completes.
1127  */
1128 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1129 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1130 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1131 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1132                 struct CommandList *c)
1133 {
1134         if (!is_firmware_flash_cmd(c->Request.CDB))
1135                 return;
1136         atomic_inc(&h->firmware_flash_in_progress);
1137         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1138 }
1139
1140 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1141                 struct CommandList *c)
1142 {
1143         if (is_firmware_flash_cmd(c->Request.CDB) &&
1144                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1145                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1146 }
1147
1148 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1149         struct CommandList *c, int reply_queue)
1150 {
1151         dial_down_lockup_detection_during_fw_flash(h, c);
1152         atomic_inc(&h->commands_outstanding);
1153         if (c->device)
1154                 atomic_inc(&c->device->commands_outstanding);
1155
1156         reply_queue = h->reply_map[raw_smp_processor_id()];
1157         switch (c->cmd_type) {
1158         case CMD_IOACCEL1:
1159                 set_ioaccel1_performant_mode(h, c, reply_queue);
1160                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1161                 break;
1162         case CMD_IOACCEL2:
1163                 set_ioaccel2_performant_mode(h, c, reply_queue);
1164                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1165                 break;
1166         case IOACCEL2_TMF:
1167                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1168                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1169                 break;
1170         default:
1171                 set_performant_mode(h, c, reply_queue);
1172                 h->access.submit_command(h, c);
1173         }
1174 }
1175
1176 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1177 {
1178         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1179 }
1180
1181 static inline int is_hba_lunid(unsigned char scsi3addr[])
1182 {
1183         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1184 }
1185
1186 static inline int is_scsi_rev_5(struct ctlr_info *h)
1187 {
1188         if (!h->hba_inquiry_data)
1189                 return 0;
1190         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1191                 return 1;
1192         return 0;
1193 }
1194
1195 static int hpsa_find_target_lun(struct ctlr_info *h,
1196         unsigned char scsi3addr[], int bus, int *target, int *lun)
1197 {
1198         /* finds an unused bus, target, lun for a new physical device
1199          * assumes h->devlock is held
1200          */
1201         int i, found = 0;
1202         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1203
1204         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1205
1206         for (i = 0; i < h->ndevices; i++) {
1207                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1208                         __set_bit(h->dev[i]->target, lun_taken);
1209         }
1210
1211         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1212         if (i < HPSA_MAX_DEVICES) {
1213                 /* *bus = 1; */
1214                 *target = i;
1215                 *lun = 0;
1216                 found = 1;
1217         }
1218         return !found;
1219 }
1220
1221 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1222         struct hpsa_scsi_dev_t *dev, char *description)
1223 {
1224 #define LABEL_SIZE 25
1225         char label[LABEL_SIZE];
1226
1227         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1228                 return;
1229
1230         switch (dev->devtype) {
1231         case TYPE_RAID:
1232                 snprintf(label, LABEL_SIZE, "controller");
1233                 break;
1234         case TYPE_ENCLOSURE:
1235                 snprintf(label, LABEL_SIZE, "enclosure");
1236                 break;
1237         case TYPE_DISK:
1238         case TYPE_ZBC:
1239                 if (dev->external)
1240                         snprintf(label, LABEL_SIZE, "external");
1241                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1242                         snprintf(label, LABEL_SIZE, "%s",
1243                                 raid_label[PHYSICAL_DRIVE]);
1244                 else
1245                         snprintf(label, LABEL_SIZE, "RAID-%s",
1246                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1247                                 raid_label[dev->raid_level]);
1248                 break;
1249         case TYPE_ROM:
1250                 snprintf(label, LABEL_SIZE, "rom");
1251                 break;
1252         case TYPE_TAPE:
1253                 snprintf(label, LABEL_SIZE, "tape");
1254                 break;
1255         case TYPE_MEDIUM_CHANGER:
1256                 snprintf(label, LABEL_SIZE, "changer");
1257                 break;
1258         default:
1259                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1260                 break;
1261         }
1262
1263         dev_printk(level, &h->pdev->dev,
1264                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1265                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1266                         description,
1267                         scsi_device_type(dev->devtype),
1268                         dev->vendor,
1269                         dev->model,
1270                         label,
1271                         dev->offload_config ? '+' : '-',
1272                         dev->offload_to_be_enabled ? '+' : '-',
1273                         dev->expose_device);
1274 }
1275
1276 /* Add an entry into h->dev[] array. */
1277 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1278                 struct hpsa_scsi_dev_t *device,
1279                 struct hpsa_scsi_dev_t *added[], int *nadded)
1280 {
1281         /* assumes h->devlock is held */
1282         int n = h->ndevices;
1283         int i;
1284         unsigned char addr1[8], addr2[8];
1285         struct hpsa_scsi_dev_t *sd;
1286
1287         if (n >= HPSA_MAX_DEVICES) {
1288                 dev_err(&h->pdev->dev, "too many devices, some will be "
1289                         "inaccessible.\n");
1290                 return -1;
1291         }
1292
1293         /* physical devices do not have lun or target assigned until now. */
1294         if (device->lun != -1)
1295                 /* Logical device, lun is already assigned. */
1296                 goto lun_assigned;
1297
1298         /* If this device a non-zero lun of a multi-lun device
1299          * byte 4 of the 8-byte LUN addr will contain the logical
1300          * unit no, zero otherwise.
1301          */
1302         if (device->scsi3addr[4] == 0) {
1303                 /* This is not a non-zero lun of a multi-lun device */
1304                 if (hpsa_find_target_lun(h, device->scsi3addr,
1305                         device->bus, &device->target, &device->lun) != 0)
1306                         return -1;
1307                 goto lun_assigned;
1308         }
1309
1310         /* This is a non-zero lun of a multi-lun device.
1311          * Search through our list and find the device which
1312          * has the same 8 byte LUN address, excepting byte 4 and 5.
1313          * Assign the same bus and target for this new LUN.
1314          * Use the logical unit number from the firmware.
1315          */
1316         memcpy(addr1, device->scsi3addr, 8);
1317         addr1[4] = 0;
1318         addr1[5] = 0;
1319         for (i = 0; i < n; i++) {
1320                 sd = h->dev[i];
1321                 memcpy(addr2, sd->scsi3addr, 8);
1322                 addr2[4] = 0;
1323                 addr2[5] = 0;
1324                 /* differ only in byte 4 and 5? */
1325                 if (memcmp(addr1, addr2, 8) == 0) {
1326                         device->bus = sd->bus;
1327                         device->target = sd->target;
1328                         device->lun = device->scsi3addr[4];
1329                         break;
1330                 }
1331         }
1332         if (device->lun == -1) {
1333                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1334                         " suspect firmware bug or unsupported hardware "
1335                         "configuration.\n");
1336                 return -1;
1337         }
1338
1339 lun_assigned:
1340
1341         h->dev[n] = device;
1342         h->ndevices++;
1343         added[*nadded] = device;
1344         (*nadded)++;
1345         hpsa_show_dev_msg(KERN_INFO, h, device,
1346                 device->expose_device ? "added" : "masked");
1347         return 0;
1348 }
1349
1350 /*
1351  * Called during a scan operation.
1352  *
1353  * Update an entry in h->dev[] array.
1354  */
1355 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1356         int entry, struct hpsa_scsi_dev_t *new_entry)
1357 {
1358         /* assumes h->devlock is held */
1359         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1360
1361         /* Raid level changed. */
1362         h->dev[entry]->raid_level = new_entry->raid_level;
1363
1364         /*
1365          * ioacccel_handle may have changed for a dual domain disk
1366          */
1367         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1368
1369         /* Raid offload parameters changed.  Careful about the ordering. */
1370         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1371                 /*
1372                  * if drive is newly offload_enabled, we want to copy the
1373                  * raid map data first.  If previously offload_enabled and
1374                  * offload_config were set, raid map data had better be
1375                  * the same as it was before. If raid map data has changed
1376                  * then it had better be the case that
1377                  * h->dev[entry]->offload_enabled is currently 0.
1378                  */
1379                 h->dev[entry]->raid_map = new_entry->raid_map;
1380                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1381         }
1382         if (new_entry->offload_to_be_enabled) {
1383                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1384                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1385         }
1386         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1387         h->dev[entry]->offload_config = new_entry->offload_config;
1388         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1389         h->dev[entry]->queue_depth = new_entry->queue_depth;
1390
1391         /*
1392          * We can turn off ioaccel offload now, but need to delay turning
1393          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1394          * can't do that until all the devices are updated.
1395          */
1396         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1397
1398         /*
1399          * turn ioaccel off immediately if told to do so.
1400          */
1401         if (!new_entry->offload_to_be_enabled)
1402                 h->dev[entry]->offload_enabled = 0;
1403
1404         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1405 }
1406
1407 /* Replace an entry from h->dev[] array. */
1408 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1409         int entry, struct hpsa_scsi_dev_t *new_entry,
1410         struct hpsa_scsi_dev_t *added[], int *nadded,
1411         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412 {
1413         /* assumes h->devlock is held */
1414         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1415         removed[*nremoved] = h->dev[entry];
1416         (*nremoved)++;
1417
1418         /*
1419          * New physical devices won't have target/lun assigned yet
1420          * so we need to preserve the values in the slot we are replacing.
1421          */
1422         if (new_entry->target == -1) {
1423                 new_entry->target = h->dev[entry]->target;
1424                 new_entry->lun = h->dev[entry]->lun;
1425         }
1426
1427         h->dev[entry] = new_entry;
1428         added[*nadded] = new_entry;
1429         (*nadded)++;
1430
1431         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1432 }
1433
1434 /* Remove an entry from h->dev[] array. */
1435 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1436         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1437 {
1438         /* assumes h->devlock is held */
1439         int i;
1440         struct hpsa_scsi_dev_t *sd;
1441
1442         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1443
1444         sd = h->dev[entry];
1445         removed[*nremoved] = h->dev[entry];
1446         (*nremoved)++;
1447
1448         for (i = entry; i < h->ndevices-1; i++)
1449                 h->dev[i] = h->dev[i+1];
1450         h->ndevices--;
1451         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1452 }
1453
1454 #define SCSI3ADDR_EQ(a, b) ( \
1455         (a)[7] == (b)[7] && \
1456         (a)[6] == (b)[6] && \
1457         (a)[5] == (b)[5] && \
1458         (a)[4] == (b)[4] && \
1459         (a)[3] == (b)[3] && \
1460         (a)[2] == (b)[2] && \
1461         (a)[1] == (b)[1] && \
1462         (a)[0] == (b)[0])
1463
1464 static void fixup_botched_add(struct ctlr_info *h,
1465         struct hpsa_scsi_dev_t *added)
1466 {
1467         /* called when scsi_add_device fails in order to re-adjust
1468          * h->dev[] to match the mid layer's view.
1469          */
1470         unsigned long flags;
1471         int i, j;
1472
1473         spin_lock_irqsave(&h->lock, flags);
1474         for (i = 0; i < h->ndevices; i++) {
1475                 if (h->dev[i] == added) {
1476                         for (j = i; j < h->ndevices-1; j++)
1477                                 h->dev[j] = h->dev[j+1];
1478                         h->ndevices--;
1479                         break;
1480                 }
1481         }
1482         spin_unlock_irqrestore(&h->lock, flags);
1483         kfree(added);
1484 }
1485
1486 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1487         struct hpsa_scsi_dev_t *dev2)
1488 {
1489         /* we compare everything except lun and target as these
1490          * are not yet assigned.  Compare parts likely
1491          * to differ first
1492          */
1493         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1494                 sizeof(dev1->scsi3addr)) != 0)
1495                 return 0;
1496         if (memcmp(dev1->device_id, dev2->device_id,
1497                 sizeof(dev1->device_id)) != 0)
1498                 return 0;
1499         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1500                 return 0;
1501         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1502                 return 0;
1503         if (dev1->devtype != dev2->devtype)
1504                 return 0;
1505         if (dev1->bus != dev2->bus)
1506                 return 0;
1507         return 1;
1508 }
1509
1510 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1511         struct hpsa_scsi_dev_t *dev2)
1512 {
1513         /* Device attributes that can change, but don't mean
1514          * that the device is a different device, nor that the OS
1515          * needs to be told anything about the change.
1516          */
1517         if (dev1->raid_level != dev2->raid_level)
1518                 return 1;
1519         if (dev1->offload_config != dev2->offload_config)
1520                 return 1;
1521         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1522                 return 1;
1523         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1524                 if (dev1->queue_depth != dev2->queue_depth)
1525                         return 1;
1526         /*
1527          * This can happen for dual domain devices. An active
1528          * path change causes the ioaccel handle to change
1529          *
1530          * for example note the handle differences between p0 and p1
1531          * Device                    WWN               ,WWN hash,Handle
1532          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1533          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1534          */
1535         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1536                 return 1;
1537         return 0;
1538 }
1539
1540 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1541  * and return needle location in *index.  If scsi3addr matches, but not
1542  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1543  * location in *index.
1544  * In the case of a minor device attribute change, such as RAID level, just
1545  * return DEVICE_UPDATED, along with the updated device's location in index.
1546  * If needle not found, return DEVICE_NOT_FOUND.
1547  */
1548 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1549         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1550         int *index)
1551 {
1552         int i;
1553 #define DEVICE_NOT_FOUND 0
1554 #define DEVICE_CHANGED 1
1555 #define DEVICE_SAME 2
1556 #define DEVICE_UPDATED 3
1557         if (needle == NULL)
1558                 return DEVICE_NOT_FOUND;
1559
1560         for (i = 0; i < haystack_size; i++) {
1561                 if (haystack[i] == NULL) /* previously removed. */
1562                         continue;
1563                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1564                         *index = i;
1565                         if (device_is_the_same(needle, haystack[i])) {
1566                                 if (device_updated(needle, haystack[i]))
1567                                         return DEVICE_UPDATED;
1568                                 return DEVICE_SAME;
1569                         } else {
1570                                 /* Keep offline devices offline */
1571                                 if (needle->volume_offline)
1572                                         return DEVICE_NOT_FOUND;
1573                                 return DEVICE_CHANGED;
1574                         }
1575                 }
1576         }
1577         *index = -1;
1578         return DEVICE_NOT_FOUND;
1579 }
1580
1581 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1582                                         unsigned char scsi3addr[])
1583 {
1584         struct offline_device_entry *device;
1585         unsigned long flags;
1586
1587         /* Check to see if device is already on the list */
1588         spin_lock_irqsave(&h->offline_device_lock, flags);
1589         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1590                 if (memcmp(device->scsi3addr, scsi3addr,
1591                         sizeof(device->scsi3addr)) == 0) {
1592                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1593                         return;
1594                 }
1595         }
1596         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597
1598         /* Device is not on the list, add it. */
1599         device = kmalloc(sizeof(*device), GFP_KERNEL);
1600         if (!device)
1601                 return;
1602
1603         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1604         spin_lock_irqsave(&h->offline_device_lock, flags);
1605         list_add_tail(&device->offline_list, &h->offline_device_list);
1606         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1607 }
1608
1609 /* Print a message explaining various offline volume states */
1610 static void hpsa_show_volume_status(struct ctlr_info *h,
1611         struct hpsa_scsi_dev_t *sd)
1612 {
1613         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1614                 dev_info(&h->pdev->dev,
1615                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1616                         h->scsi_host->host_no,
1617                         sd->bus, sd->target, sd->lun);
1618         switch (sd->volume_offline) {
1619         case HPSA_LV_OK:
1620                 break;
1621         case HPSA_LV_UNDERGOING_ERASE:
1622                 dev_info(&h->pdev->dev,
1623                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1624                         h->scsi_host->host_no,
1625                         sd->bus, sd->target, sd->lun);
1626                 break;
1627         case HPSA_LV_NOT_AVAILABLE:
1628                 dev_info(&h->pdev->dev,
1629                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1630                         h->scsi_host->host_no,
1631                         sd->bus, sd->target, sd->lun);
1632                 break;
1633         case HPSA_LV_UNDERGOING_RPI:
1634                 dev_info(&h->pdev->dev,
1635                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1636                         h->scsi_host->host_no,
1637                         sd->bus, sd->target, sd->lun);
1638                 break;
1639         case HPSA_LV_PENDING_RPI:
1640                 dev_info(&h->pdev->dev,
1641                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1642                         h->scsi_host->host_no,
1643                         sd->bus, sd->target, sd->lun);
1644                 break;
1645         case HPSA_LV_ENCRYPTED_NO_KEY:
1646                 dev_info(&h->pdev->dev,
1647                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1648                         h->scsi_host->host_no,
1649                         sd->bus, sd->target, sd->lun);
1650                 break;
1651         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1652                 dev_info(&h->pdev->dev,
1653                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1654                         h->scsi_host->host_no,
1655                         sd->bus, sd->target, sd->lun);
1656                 break;
1657         case HPSA_LV_UNDERGOING_ENCRYPTION:
1658                 dev_info(&h->pdev->dev,
1659                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1660                         h->scsi_host->host_no,
1661                         sd->bus, sd->target, sd->lun);
1662                 break;
1663         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1664                 dev_info(&h->pdev->dev,
1665                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1666                         h->scsi_host->host_no,
1667                         sd->bus, sd->target, sd->lun);
1668                 break;
1669         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1670                 dev_info(&h->pdev->dev,
1671                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1672                         h->scsi_host->host_no,
1673                         sd->bus, sd->target, sd->lun);
1674                 break;
1675         case HPSA_LV_PENDING_ENCRYPTION:
1676                 dev_info(&h->pdev->dev,
1677                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1678                         h->scsi_host->host_no,
1679                         sd->bus, sd->target, sd->lun);
1680                 break;
1681         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1682                 dev_info(&h->pdev->dev,
1683                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1684                         h->scsi_host->host_no,
1685                         sd->bus, sd->target, sd->lun);
1686                 break;
1687         }
1688 }
1689
1690 /*
1691  * Figure the list of physical drive pointers for a logical drive with
1692  * raid offload configured.
1693  */
1694 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1695                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1696                                 struct hpsa_scsi_dev_t *logical_drive)
1697 {
1698         struct raid_map_data *map = &logical_drive->raid_map;
1699         struct raid_map_disk_data *dd = &map->data[0];
1700         int i, j;
1701         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1702                                 le16_to_cpu(map->metadata_disks_per_row);
1703         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1704                                 le16_to_cpu(map->layout_map_count) *
1705                                 total_disks_per_row;
1706         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1707                                 total_disks_per_row;
1708         int qdepth;
1709
1710         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1711                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1712
1713         logical_drive->nphysical_disks = nraid_map_entries;
1714
1715         qdepth = 0;
1716         for (i = 0; i < nraid_map_entries; i++) {
1717                 logical_drive->phys_disk[i] = NULL;
1718                 if (!logical_drive->offload_config)
1719                         continue;
1720                 for (j = 0; j < ndevices; j++) {
1721                         if (dev[j] == NULL)
1722                                 continue;
1723                         if (dev[j]->devtype != TYPE_DISK &&
1724                             dev[j]->devtype != TYPE_ZBC)
1725                                 continue;
1726                         if (is_logical_device(dev[j]))
1727                                 continue;
1728                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1729                                 continue;
1730
1731                         logical_drive->phys_disk[i] = dev[j];
1732                         if (i < nphys_disk)
1733                                 qdepth = min(h->nr_cmds, qdepth +
1734                                     logical_drive->phys_disk[i]->queue_depth);
1735                         break;
1736                 }
1737
1738                 /*
1739                  * This can happen if a physical drive is removed and
1740                  * the logical drive is degraded.  In that case, the RAID
1741                  * map data will refer to a physical disk which isn't actually
1742                  * present.  And in that case offload_enabled should already
1743                  * be 0, but we'll turn it off here just in case
1744                  */
1745                 if (!logical_drive->phys_disk[i]) {
1746                         dev_warn(&h->pdev->dev,
1747                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1748                                 __func__,
1749                                 h->scsi_host->host_no, logical_drive->bus,
1750                                 logical_drive->target, logical_drive->lun);
1751                         hpsa_turn_off_ioaccel_for_device(logical_drive);
1752                         logical_drive->queue_depth = 8;
1753                 }
1754         }
1755         if (nraid_map_entries)
1756                 /*
1757                  * This is correct for reads, too high for full stripe writes,
1758                  * way too high for partial stripe writes
1759                  */
1760                 logical_drive->queue_depth = qdepth;
1761         else {
1762                 if (logical_drive->external)
1763                         logical_drive->queue_depth = EXTERNAL_QD;
1764                 else
1765                         logical_drive->queue_depth = h->nr_cmds;
1766         }
1767 }
1768
1769 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1770                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1771 {
1772         int i;
1773
1774         for (i = 0; i < ndevices; i++) {
1775                 if (dev[i] == NULL)
1776                         continue;
1777                 if (dev[i]->devtype != TYPE_DISK &&
1778                     dev[i]->devtype != TYPE_ZBC)
1779                         continue;
1780                 if (!is_logical_device(dev[i]))
1781                         continue;
1782
1783                 /*
1784                  * If offload is currently enabled, the RAID map and
1785                  * phys_disk[] assignment *better* not be changing
1786                  * because we would be changing ioaccel phsy_disk[] pointers
1787                  * on a ioaccel volume processing I/O requests.
1788                  *
1789                  * If an ioaccel volume status changed, initially because it was
1790                  * re-configured and thus underwent a transformation, or
1791                  * a drive failed, we would have received a state change
1792                  * request and ioaccel should have been turned off. When the
1793                  * transformation completes, we get another state change
1794                  * request to turn ioaccel back on. In this case, we need
1795                  * to update the ioaccel information.
1796                  *
1797                  * Thus: If it is not currently enabled, but will be after
1798                  * the scan completes, make sure the ioaccel pointers
1799                  * are up to date.
1800                  */
1801
1802                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1803                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1804         }
1805 }
1806
1807 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1808 {
1809         int rc = 0;
1810
1811         if (!h->scsi_host)
1812                 return 1;
1813
1814         if (is_logical_device(device)) /* RAID */
1815                 rc = scsi_add_device(h->scsi_host, device->bus,
1816                                         device->target, device->lun);
1817         else /* HBA */
1818                 rc = hpsa_add_sas_device(h->sas_host, device);
1819
1820         return rc;
1821 }
1822
1823 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1824                                                 struct hpsa_scsi_dev_t *dev)
1825 {
1826         int i;
1827         int count = 0;
1828
1829         for (i = 0; i < h->nr_cmds; i++) {
1830                 struct CommandList *c = h->cmd_pool + i;
1831                 int refcount = atomic_inc_return(&c->refcount);
1832
1833                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1834                                 dev->scsi3addr)) {
1835                         unsigned long flags;
1836
1837                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1838                         if (!hpsa_is_cmd_idle(c))
1839                                 ++count;
1840                         spin_unlock_irqrestore(&h->lock, flags);
1841                 }
1842
1843                 cmd_free(h, c);
1844         }
1845
1846         return count;
1847 }
1848
1849 #define NUM_WAIT 20
1850 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1851                                                 struct hpsa_scsi_dev_t *device)
1852 {
1853         int cmds = 0;
1854         int waits = 0;
1855         int num_wait = NUM_WAIT;
1856
1857         if (device->external)
1858                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1859
1860         while (1) {
1861                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1862                 if (cmds == 0)
1863                         break;
1864                 if (++waits > num_wait)
1865                         break;
1866                 msleep(1000);
1867         }
1868
1869         if (waits > num_wait) {
1870                 dev_warn(&h->pdev->dev,
1871                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1872                         __func__,
1873                         h->scsi_host->host_no,
1874                         device->bus, device->target, device->lun, cmds);
1875         }
1876 }
1877
1878 static void hpsa_remove_device(struct ctlr_info *h,
1879                         struct hpsa_scsi_dev_t *device)
1880 {
1881         struct scsi_device *sdev = NULL;
1882
1883         if (!h->scsi_host)
1884                 return;
1885
1886         /*
1887          * Allow for commands to drain
1888          */
1889         device->removed = 1;
1890         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1891
1892         if (is_logical_device(device)) { /* RAID */
1893                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1894                                                 device->target, device->lun);
1895                 if (sdev) {
1896                         scsi_remove_device(sdev);
1897                         scsi_device_put(sdev);
1898                 } else {
1899                         /*
1900                          * We don't expect to get here.  Future commands
1901                          * to this device will get a selection timeout as
1902                          * if the device were gone.
1903                          */
1904                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1905                                         "didn't find device for removal.");
1906                 }
1907         } else { /* HBA */
1908
1909                 hpsa_remove_sas_device(device);
1910         }
1911 }
1912
1913 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1914         struct hpsa_scsi_dev_t *sd[], int nsds)
1915 {
1916         /* sd contains scsi3 addresses and devtypes, and inquiry
1917          * data.  This function takes what's in sd to be the current
1918          * reality and updates h->dev[] to reflect that reality.
1919          */
1920         int i, entry, device_change, changes = 0;
1921         struct hpsa_scsi_dev_t *csd;
1922         unsigned long flags;
1923         struct hpsa_scsi_dev_t **added, **removed;
1924         int nadded, nremoved;
1925
1926         /*
1927          * A reset can cause a device status to change
1928          * re-schedule the scan to see what happened.
1929          */
1930         spin_lock_irqsave(&h->reset_lock, flags);
1931         if (h->reset_in_progress) {
1932                 h->drv_req_rescan = 1;
1933                 spin_unlock_irqrestore(&h->reset_lock, flags);
1934                 return;
1935         }
1936         spin_unlock_irqrestore(&h->reset_lock, flags);
1937
1938         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1939         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1940
1941         if (!added || !removed) {
1942                 dev_warn(&h->pdev->dev, "out of memory in "
1943                         "adjust_hpsa_scsi_table\n");
1944                 goto free_and_out;
1945         }
1946
1947         spin_lock_irqsave(&h->devlock, flags);
1948
1949         /* find any devices in h->dev[] that are not in
1950          * sd[] and remove them from h->dev[], and for any
1951          * devices which have changed, remove the old device
1952          * info and add the new device info.
1953          * If minor device attributes change, just update
1954          * the existing device structure.
1955          */
1956         i = 0;
1957         nremoved = 0;
1958         nadded = 0;
1959         while (i < h->ndevices) {
1960                 csd = h->dev[i];
1961                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1962                 if (device_change == DEVICE_NOT_FOUND) {
1963                         changes++;
1964                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1965                         continue; /* remove ^^^, hence i not incremented */
1966                 } else if (device_change == DEVICE_CHANGED) {
1967                         changes++;
1968                         hpsa_scsi_replace_entry(h, i, sd[entry],
1969                                 added, &nadded, removed, &nremoved);
1970                         /* Set it to NULL to prevent it from being freed
1971                          * at the bottom of hpsa_update_scsi_devices()
1972                          */
1973                         sd[entry] = NULL;
1974                 } else if (device_change == DEVICE_UPDATED) {
1975                         hpsa_scsi_update_entry(h, i, sd[entry]);
1976                 }
1977                 i++;
1978         }
1979
1980         /* Now, make sure every device listed in sd[] is also
1981          * listed in h->dev[], adding them if they aren't found
1982          */
1983
1984         for (i = 0; i < nsds; i++) {
1985                 if (!sd[i]) /* if already added above. */
1986                         continue;
1987
1988                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1989                  * as the SCSI mid-layer does not handle such devices well.
1990                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1991                  * at 160Hz, and prevents the system from coming up.
1992                  */
1993                 if (sd[i]->volume_offline) {
1994                         hpsa_show_volume_status(h, sd[i]);
1995                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1996                         continue;
1997                 }
1998
1999                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2000                                         h->ndevices, &entry);
2001                 if (device_change == DEVICE_NOT_FOUND) {
2002                         changes++;
2003                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2004                                 break;
2005                         sd[i] = NULL; /* prevent from being freed later. */
2006                 } else if (device_change == DEVICE_CHANGED) {
2007                         /* should never happen... */
2008                         changes++;
2009                         dev_warn(&h->pdev->dev,
2010                                 "device unexpectedly changed.\n");
2011                         /* but if it does happen, we just ignore that device */
2012                 }
2013         }
2014         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2015
2016         /*
2017          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2018          * any logical drives that need it enabled.
2019          *
2020          * The raid map should be current by now.
2021          *
2022          * We are updating the device list used for I/O requests.
2023          */
2024         for (i = 0; i < h->ndevices; i++) {
2025                 if (h->dev[i] == NULL)
2026                         continue;
2027                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2028         }
2029
2030         spin_unlock_irqrestore(&h->devlock, flags);
2031
2032         /* Monitor devices which are in one of several NOT READY states to be
2033          * brought online later. This must be done without holding h->devlock,
2034          * so don't touch h->dev[]
2035          */
2036         for (i = 0; i < nsds; i++) {
2037                 if (!sd[i]) /* if already added above. */
2038                         continue;
2039                 if (sd[i]->volume_offline)
2040                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2041         }
2042
2043         /* Don't notify scsi mid layer of any changes the first time through
2044          * (or if there are no changes) scsi_scan_host will do it later the
2045          * first time through.
2046          */
2047         if (!changes)
2048                 goto free_and_out;
2049
2050         /* Notify scsi mid layer of any removed devices */
2051         for (i = 0; i < nremoved; i++) {
2052                 if (removed[i] == NULL)
2053                         continue;
2054                 if (removed[i]->expose_device)
2055                         hpsa_remove_device(h, removed[i]);
2056                 kfree(removed[i]);
2057                 removed[i] = NULL;
2058         }
2059
2060         /* Notify scsi mid layer of any added devices */
2061         for (i = 0; i < nadded; i++) {
2062                 int rc = 0;
2063
2064                 if (added[i] == NULL)
2065                         continue;
2066                 if (!(added[i]->expose_device))
2067                         continue;
2068                 rc = hpsa_add_device(h, added[i]);
2069                 if (!rc)
2070                         continue;
2071                 dev_warn(&h->pdev->dev,
2072                         "addition failed %d, device not added.", rc);
2073                 /* now we have to remove it from h->dev,
2074                  * since it didn't get added to scsi mid layer
2075                  */
2076                 fixup_botched_add(h, added[i]);
2077                 h->drv_req_rescan = 1;
2078         }
2079
2080 free_and_out:
2081         kfree(added);
2082         kfree(removed);
2083 }
2084
2085 /*
2086  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2087  * Assume's h->devlock is held.
2088  */
2089 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2090         int bus, int target, int lun)
2091 {
2092         int i;
2093         struct hpsa_scsi_dev_t *sd;
2094
2095         for (i = 0; i < h->ndevices; i++) {
2096                 sd = h->dev[i];
2097                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2098                         return sd;
2099         }
2100         return NULL;
2101 }
2102
2103 static int hpsa_slave_alloc(struct scsi_device *sdev)
2104 {
2105         struct hpsa_scsi_dev_t *sd = NULL;
2106         unsigned long flags;
2107         struct ctlr_info *h;
2108
2109         h = sdev_to_hba(sdev);
2110         spin_lock_irqsave(&h->devlock, flags);
2111         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2112                 struct scsi_target *starget;
2113                 struct sas_rphy *rphy;
2114
2115                 starget = scsi_target(sdev);
2116                 rphy = target_to_rphy(starget);
2117                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2118                 if (sd) {
2119                         sd->target = sdev_id(sdev);
2120                         sd->lun = sdev->lun;
2121                 }
2122         }
2123         if (!sd)
2124                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2125                                         sdev_id(sdev), sdev->lun);
2126
2127         if (sd && sd->expose_device) {
2128                 atomic_set(&sd->ioaccel_cmds_out, 0);
2129                 sdev->hostdata = sd;
2130         } else
2131                 sdev->hostdata = NULL;
2132         spin_unlock_irqrestore(&h->devlock, flags);
2133         return 0;
2134 }
2135
2136 /* configure scsi device based on internal per-device structure */
2137 #define CTLR_TIMEOUT (120 * HZ)
2138 static int hpsa_slave_configure(struct scsi_device *sdev)
2139 {
2140         struct hpsa_scsi_dev_t *sd;
2141         int queue_depth;
2142
2143         sd = sdev->hostdata;
2144         sdev->no_uld_attach = !sd || !sd->expose_device;
2145
2146         if (sd) {
2147                 sd->was_removed = 0;
2148                 queue_depth = sd->queue_depth != 0 ?
2149                                 sd->queue_depth : sdev->host->can_queue;
2150                 if (sd->external) {
2151                         queue_depth = EXTERNAL_QD;
2152                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2153                         blk_queue_rq_timeout(sdev->request_queue,
2154                                                 HPSA_EH_PTRAID_TIMEOUT);
2155                 }
2156                 if (is_hba_lunid(sd->scsi3addr)) {
2157                         sdev->eh_timeout = CTLR_TIMEOUT;
2158                         blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2159                 }
2160         } else {
2161                 queue_depth = sdev->host->can_queue;
2162         }
2163
2164         scsi_change_queue_depth(sdev, queue_depth);
2165
2166         return 0;
2167 }
2168
2169 static void hpsa_slave_destroy(struct scsi_device *sdev)
2170 {
2171         struct hpsa_scsi_dev_t *hdev = NULL;
2172
2173         hdev = sdev->hostdata;
2174
2175         if (hdev)
2176                 hdev->was_removed = 1;
2177 }
2178
2179 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2180 {
2181         int i;
2182
2183         if (!h->ioaccel2_cmd_sg_list)
2184                 return;
2185         for (i = 0; i < h->nr_cmds; i++) {
2186                 kfree(h->ioaccel2_cmd_sg_list[i]);
2187                 h->ioaccel2_cmd_sg_list[i] = NULL;
2188         }
2189         kfree(h->ioaccel2_cmd_sg_list);
2190         h->ioaccel2_cmd_sg_list = NULL;
2191 }
2192
2193 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195         int i;
2196
2197         if (h->chainsize <= 0)
2198                 return 0;
2199
2200         h->ioaccel2_cmd_sg_list =
2201                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2202                                         GFP_KERNEL);
2203         if (!h->ioaccel2_cmd_sg_list)
2204                 return -ENOMEM;
2205         for (i = 0; i < h->nr_cmds; i++) {
2206                 h->ioaccel2_cmd_sg_list[i] =
2207                         kmalloc_array(h->maxsgentries,
2208                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2209                                       GFP_KERNEL);
2210                 if (!h->ioaccel2_cmd_sg_list[i])
2211                         goto clean;
2212         }
2213         return 0;
2214
2215 clean:
2216         hpsa_free_ioaccel2_sg_chain_blocks(h);
2217         return -ENOMEM;
2218 }
2219
2220 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2221 {
2222         int i;
2223
2224         if (!h->cmd_sg_list)
2225                 return;
2226         for (i = 0; i < h->nr_cmds; i++) {
2227                 kfree(h->cmd_sg_list[i]);
2228                 h->cmd_sg_list[i] = NULL;
2229         }
2230         kfree(h->cmd_sg_list);
2231         h->cmd_sg_list = NULL;
2232 }
2233
2234 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2235 {
2236         int i;
2237
2238         if (h->chainsize <= 0)
2239                 return 0;
2240
2241         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2242                                  GFP_KERNEL);
2243         if (!h->cmd_sg_list)
2244                 return -ENOMEM;
2245
2246         for (i = 0; i < h->nr_cmds; i++) {
2247                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2248                                                   sizeof(*h->cmd_sg_list[i]),
2249                                                   GFP_KERNEL);
2250                 if (!h->cmd_sg_list[i])
2251                         goto clean;
2252
2253         }
2254         return 0;
2255
2256 clean:
2257         hpsa_free_sg_chain_blocks(h);
2258         return -ENOMEM;
2259 }
2260
2261 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2262         struct io_accel2_cmd *cp, struct CommandList *c)
2263 {
2264         struct ioaccel2_sg_element *chain_block;
2265         u64 temp64;
2266         u32 chain_size;
2267
2268         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2269         chain_size = le32_to_cpu(cp->sg[0].length);
2270         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2271                                 DMA_TO_DEVICE);
2272         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2273                 /* prevent subsequent unmapping */
2274                 cp->sg->address = 0;
2275                 return -1;
2276         }
2277         cp->sg->address = cpu_to_le64(temp64);
2278         return 0;
2279 }
2280
2281 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2282         struct io_accel2_cmd *cp)
2283 {
2284         struct ioaccel2_sg_element *chain_sg;
2285         u64 temp64;
2286         u32 chain_size;
2287
2288         chain_sg = cp->sg;
2289         temp64 = le64_to_cpu(chain_sg->address);
2290         chain_size = le32_to_cpu(cp->sg[0].length);
2291         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2292 }
2293
2294 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2295         struct CommandList *c)
2296 {
2297         struct SGDescriptor *chain_sg, *chain_block;
2298         u64 temp64;
2299         u32 chain_len;
2300
2301         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2302         chain_block = h->cmd_sg_list[c->cmdindex];
2303         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2304         chain_len = sizeof(*chain_sg) *
2305                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2306         chain_sg->Len = cpu_to_le32(chain_len);
2307         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2308                                 DMA_TO_DEVICE);
2309         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2310                 /* prevent subsequent unmapping */
2311                 chain_sg->Addr = cpu_to_le64(0);
2312                 return -1;
2313         }
2314         chain_sg->Addr = cpu_to_le64(temp64);
2315         return 0;
2316 }
2317
2318 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2319         struct CommandList *c)
2320 {
2321         struct SGDescriptor *chain_sg;
2322
2323         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2324                 return;
2325
2326         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2327         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2328                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2329 }
2330
2331
2332 /* Decode the various types of errors on ioaccel2 path.
2333  * Return 1 for any error that should generate a RAID path retry.
2334  * Return 0 for errors that don't require a RAID path retry.
2335  */
2336 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2337                                         struct CommandList *c,
2338                                         struct scsi_cmnd *cmd,
2339                                         struct io_accel2_cmd *c2,
2340                                         struct hpsa_scsi_dev_t *dev)
2341 {
2342         int data_len;
2343         int retry = 0;
2344         u32 ioaccel2_resid = 0;
2345
2346         switch (c2->error_data.serv_response) {
2347         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2348                 switch (c2->error_data.status) {
2349                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2350                         if (cmd)
2351                                 cmd->result = 0;
2352                         break;
2353                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2354                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2355                         if (c2->error_data.data_present !=
2356                                         IOACCEL2_SENSE_DATA_PRESENT) {
2357                                 memset(cmd->sense_buffer, 0,
2358                                         SCSI_SENSE_BUFFERSIZE);
2359                                 break;
2360                         }
2361                         /* copy the sense data */
2362                         data_len = c2->error_data.sense_data_len;
2363                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2364                                 data_len = SCSI_SENSE_BUFFERSIZE;
2365                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2366                                 data_len =
2367                                         sizeof(c2->error_data.sense_data_buff);
2368                         memcpy(cmd->sense_buffer,
2369                                 c2->error_data.sense_data_buff, data_len);
2370                         retry = 1;
2371                         break;
2372                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2373                         retry = 1;
2374                         break;
2375                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2376                         retry = 1;
2377                         break;
2378                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2379                         retry = 1;
2380                         break;
2381                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2382                         retry = 1;
2383                         break;
2384                 default:
2385                         retry = 1;
2386                         break;
2387                 }
2388                 break;
2389         case IOACCEL2_SERV_RESPONSE_FAILURE:
2390                 switch (c2->error_data.status) {
2391                 case IOACCEL2_STATUS_SR_IO_ERROR:
2392                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2393                 case IOACCEL2_STATUS_SR_OVERRUN:
2394                         retry = 1;
2395                         break;
2396                 case IOACCEL2_STATUS_SR_UNDERRUN:
2397                         cmd->result = (DID_OK << 16);           /* host byte */
2398                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2399                         ioaccel2_resid = get_unaligned_le32(
2400                                                 &c2->error_data.resid_cnt[0]);
2401                         scsi_set_resid(cmd, ioaccel2_resid);
2402                         break;
2403                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2404                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2405                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2406                         /*
2407                          * Did an HBA disk disappear? We will eventually
2408                          * get a state change event from the controller but
2409                          * in the meantime, we need to tell the OS that the
2410                          * HBA disk is no longer there and stop I/O
2411                          * from going down. This allows the potential re-insert
2412                          * of the disk to get the same device node.
2413                          */
2414                         if (dev->physical_device && dev->expose_device) {
2415                                 cmd->result = DID_NO_CONNECT << 16;
2416                                 dev->removed = 1;
2417                                 h->drv_req_rescan = 1;
2418                                 dev_warn(&h->pdev->dev,
2419                                         "%s: device is gone!\n", __func__);
2420                         } else
2421                                 /*
2422                                  * Retry by sending down the RAID path.
2423                                  * We will get an event from ctlr to
2424                                  * trigger rescan regardless.
2425                                  */
2426                                 retry = 1;
2427                         break;
2428                 default:
2429                         retry = 1;
2430                 }
2431                 break;
2432         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2433                 break;
2434         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2435                 break;
2436         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2437                 retry = 1;
2438                 break;
2439         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2440                 break;
2441         default:
2442                 retry = 1;
2443                 break;
2444         }
2445
2446         if (dev->in_reset)
2447                 retry = 0;
2448
2449         return retry;   /* retry on raid path? */
2450 }
2451
2452 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2453                 struct CommandList *c)
2454 {
2455         struct hpsa_scsi_dev_t *dev = c->device;
2456
2457         /*
2458          * Reset c->scsi_cmd here so that the reset handler will know
2459          * this command has completed.  Then, check to see if the handler is
2460          * waiting for this command, and, if so, wake it.
2461          */
2462         c->scsi_cmd = SCSI_CMD_IDLE;
2463         mb();   /* Declare command idle before checking for pending events. */
2464         if (dev) {
2465                 atomic_dec(&dev->commands_outstanding);
2466                 if (dev->in_reset &&
2467                         atomic_read(&dev->commands_outstanding) <= 0)
2468                         wake_up_all(&h->event_sync_wait_queue);
2469         }
2470 }
2471
2472 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2473                                       struct CommandList *c)
2474 {
2475         hpsa_cmd_resolve_events(h, c);
2476         cmd_tagged_free(h, c);
2477 }
2478
2479 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2480                 struct CommandList *c, struct scsi_cmnd *cmd)
2481 {
2482         hpsa_cmd_resolve_and_free(h, c);
2483         if (cmd && cmd->scsi_done)
2484                 cmd->scsi_done(cmd);
2485 }
2486
2487 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2488 {
2489         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2490         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2491 }
2492
2493 static void process_ioaccel2_completion(struct ctlr_info *h,
2494                 struct CommandList *c, struct scsi_cmnd *cmd,
2495                 struct hpsa_scsi_dev_t *dev)
2496 {
2497         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2498
2499         /* check for good status */
2500         if (likely(c2->error_data.serv_response == 0 &&
2501                         c2->error_data.status == 0)) {
2502                 cmd->result = 0;
2503                 return hpsa_cmd_free_and_done(h, c, cmd);
2504         }
2505
2506         /*
2507          * Any RAID offload error results in retry which will use
2508          * the normal I/O path so the controller can handle whatever is
2509          * wrong.
2510          */
2511         if (is_logical_device(dev) &&
2512                 c2->error_data.serv_response ==
2513                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2514                 if (c2->error_data.status ==
2515                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2516                         hpsa_turn_off_ioaccel_for_device(dev);
2517                 }
2518
2519                 if (dev->in_reset) {
2520                         cmd->result = DID_RESET << 16;
2521                         return hpsa_cmd_free_and_done(h, c, cmd);
2522                 }
2523
2524                 return hpsa_retry_cmd(h, c);
2525         }
2526
2527         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2528                 return hpsa_retry_cmd(h, c);
2529
2530         return hpsa_cmd_free_and_done(h, c, cmd);
2531 }
2532
2533 /* Returns 0 on success, < 0 otherwise. */
2534 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2535                                         struct CommandList *cp)
2536 {
2537         u8 tmf_status = cp->err_info->ScsiStatus;
2538
2539         switch (tmf_status) {
2540         case CISS_TMF_COMPLETE:
2541                 /*
2542                  * CISS_TMF_COMPLETE never happens, instead,
2543                  * ei->CommandStatus == 0 for this case.
2544                  */
2545         case CISS_TMF_SUCCESS:
2546                 return 0;
2547         case CISS_TMF_INVALID_FRAME:
2548         case CISS_TMF_NOT_SUPPORTED:
2549         case CISS_TMF_FAILED:
2550         case CISS_TMF_WRONG_LUN:
2551         case CISS_TMF_OVERLAPPED_TAG:
2552                 break;
2553         default:
2554                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2555                                 tmf_status);
2556                 break;
2557         }
2558         return -tmf_status;
2559 }
2560
2561 static void complete_scsi_command(struct CommandList *cp)
2562 {
2563         struct scsi_cmnd *cmd;
2564         struct ctlr_info *h;
2565         struct ErrorInfo *ei;
2566         struct hpsa_scsi_dev_t *dev;
2567         struct io_accel2_cmd *c2;
2568
2569         u8 sense_key;
2570         u8 asc;      /* additional sense code */
2571         u8 ascq;     /* additional sense code qualifier */
2572         unsigned long sense_data_size;
2573
2574         ei = cp->err_info;
2575         cmd = cp->scsi_cmd;
2576         h = cp->h;
2577
2578         if (!cmd->device) {
2579                 cmd->result = DID_NO_CONNECT << 16;
2580                 return hpsa_cmd_free_and_done(h, cp, cmd);
2581         }
2582
2583         dev = cmd->device->hostdata;
2584         if (!dev) {
2585                 cmd->result = DID_NO_CONNECT << 16;
2586                 return hpsa_cmd_free_and_done(h, cp, cmd);
2587         }
2588         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2589
2590         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2591         if ((cp->cmd_type == CMD_SCSI) &&
2592                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2593                 hpsa_unmap_sg_chain_block(h, cp);
2594
2595         if ((cp->cmd_type == CMD_IOACCEL2) &&
2596                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2597                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2598
2599         cmd->result = (DID_OK << 16);           /* host byte */
2600         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2601
2602         /* SCSI command has already been cleaned up in SML */
2603         if (dev->was_removed) {
2604                 hpsa_cmd_resolve_and_free(h, cp);
2605                 return;
2606         }
2607
2608         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2609                 if (dev->physical_device && dev->expose_device &&
2610                         dev->removed) {
2611                         cmd->result = DID_NO_CONNECT << 16;
2612                         return hpsa_cmd_free_and_done(h, cp, cmd);
2613                 }
2614                 if (likely(cp->phys_disk != NULL))
2615                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2616         }
2617
2618         /*
2619          * We check for lockup status here as it may be set for
2620          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2621          * fail_all_oustanding_cmds()
2622          */
2623         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2624                 /* DID_NO_CONNECT will prevent a retry */
2625                 cmd->result = DID_NO_CONNECT << 16;
2626                 return hpsa_cmd_free_and_done(h, cp, cmd);
2627         }
2628
2629         if (cp->cmd_type == CMD_IOACCEL2)
2630                 return process_ioaccel2_completion(h, cp, cmd, dev);
2631
2632         scsi_set_resid(cmd, ei->ResidualCnt);
2633         if (ei->CommandStatus == 0)
2634                 return hpsa_cmd_free_and_done(h, cp, cmd);
2635
2636         /* For I/O accelerator commands, copy over some fields to the normal
2637          * CISS header used below for error handling.
2638          */
2639         if (cp->cmd_type == CMD_IOACCEL1) {
2640                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2641                 cp->Header.SGList = scsi_sg_count(cmd);
2642                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2643                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2644                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2645                 cp->Header.tag = c->tag;
2646                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2647                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2648
2649                 /* Any RAID offload error results in retry which will use
2650                  * the normal I/O path so the controller can handle whatever's
2651                  * wrong.
2652                  */
2653                 if (is_logical_device(dev)) {
2654                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2655                                 dev->offload_enabled = 0;
2656                         return hpsa_retry_cmd(h, cp);
2657                 }
2658         }
2659
2660         /* an error has occurred */
2661         switch (ei->CommandStatus) {
2662
2663         case CMD_TARGET_STATUS:
2664                 cmd->result |= ei->ScsiStatus;
2665                 /* copy the sense data */
2666                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2667                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2668                 else
2669                         sense_data_size = sizeof(ei->SenseInfo);
2670                 if (ei->SenseLen < sense_data_size)
2671                         sense_data_size = ei->SenseLen;
2672                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2673                 if (ei->ScsiStatus)
2674                         decode_sense_data(ei->SenseInfo, sense_data_size,
2675                                 &sense_key, &asc, &ascq);
2676                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2677                         switch (sense_key) {
2678                         case ABORTED_COMMAND:
2679                                 cmd->result |= DID_SOFT_ERROR << 16;
2680                                 break;
2681                         case UNIT_ATTENTION:
2682                                 if (asc == 0x3F && ascq == 0x0E)
2683                                         h->drv_req_rescan = 1;
2684                                 break;
2685                         case ILLEGAL_REQUEST:
2686                                 if (asc == 0x25 && ascq == 0x00) {
2687                                         dev->removed = 1;
2688                                         cmd->result = DID_NO_CONNECT << 16;
2689                                 }
2690                                 break;
2691                         }
2692                         break;
2693                 }
2694                 /* Problem was not a check condition
2695                  * Pass it up to the upper layers...
2696                  */
2697                 if (ei->ScsiStatus) {
2698                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2699                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2700                                 "Returning result: 0x%x\n",
2701                                 cp, ei->ScsiStatus,
2702                                 sense_key, asc, ascq,
2703                                 cmd->result);
2704                 } else {  /* scsi status is zero??? How??? */
2705                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2706                                 "Returning no connection.\n", cp),
2707
2708                         /* Ordinarily, this case should never happen,
2709                          * but there is a bug in some released firmware
2710                          * revisions that allows it to happen if, for
2711                          * example, a 4100 backplane loses power and
2712                          * the tape drive is in it.  We assume that
2713                          * it's a fatal error of some kind because we
2714                          * can't show that it wasn't. We will make it
2715                          * look like selection timeout since that is
2716                          * the most common reason for this to occur,
2717                          * and it's severe enough.
2718                          */
2719
2720                         cmd->result = DID_NO_CONNECT << 16;
2721                 }
2722                 break;
2723
2724         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2725                 break;
2726         case CMD_DATA_OVERRUN:
2727                 dev_warn(&h->pdev->dev,
2728                         "CDB %16phN data overrun\n", cp->Request.CDB);
2729                 break;
2730         case CMD_INVALID: {
2731                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2732                 print_cmd(cp); */
2733                 /* We get CMD_INVALID if you address a non-existent device
2734                  * instead of a selection timeout (no response).  You will
2735                  * see this if you yank out a drive, then try to access it.
2736                  * This is kind of a shame because it means that any other
2737                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2738                  * missing target. */
2739                 cmd->result = DID_NO_CONNECT << 16;
2740         }
2741                 break;
2742         case CMD_PROTOCOL_ERR:
2743                 cmd->result = DID_ERROR << 16;
2744                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2745                                 cp->Request.CDB);
2746                 break;
2747         case CMD_HARDWARE_ERR:
2748                 cmd->result = DID_ERROR << 16;
2749                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2750                         cp->Request.CDB);
2751                 break;
2752         case CMD_CONNECTION_LOST:
2753                 cmd->result = DID_ERROR << 16;
2754                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2755                         cp->Request.CDB);
2756                 break;
2757         case CMD_ABORTED:
2758                 cmd->result = DID_ABORT << 16;
2759                 break;
2760         case CMD_ABORT_FAILED:
2761                 cmd->result = DID_ERROR << 16;
2762                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2763                         cp->Request.CDB);
2764                 break;
2765         case CMD_UNSOLICITED_ABORT:
2766                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2767                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2768                         cp->Request.CDB);
2769                 break;
2770         case CMD_TIMEOUT:
2771                 cmd->result = DID_TIME_OUT << 16;
2772                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2773                         cp->Request.CDB);
2774                 break;
2775         case CMD_UNABORTABLE:
2776                 cmd->result = DID_ERROR << 16;
2777                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2778                 break;
2779         case CMD_TMF_STATUS:
2780                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2781                         cmd->result = DID_ERROR << 16;
2782                 break;
2783         case CMD_IOACCEL_DISABLED:
2784                 /* This only handles the direct pass-through case since RAID
2785                  * offload is handled above.  Just attempt a retry.
2786                  */
2787                 cmd->result = DID_SOFT_ERROR << 16;
2788                 dev_warn(&h->pdev->dev,
2789                                 "cp %p had HP SSD Smart Path error\n", cp);
2790                 break;
2791         default:
2792                 cmd->result = DID_ERROR << 16;
2793                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2794                                 cp, ei->CommandStatus);
2795         }
2796
2797         return hpsa_cmd_free_and_done(h, cp, cmd);
2798 }
2799
2800 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2801                 int sg_used, enum dma_data_direction data_direction)
2802 {
2803         int i;
2804
2805         for (i = 0; i < sg_used; i++)
2806                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2807                                 le32_to_cpu(c->SG[i].Len),
2808                                 data_direction);
2809 }
2810
2811 static int hpsa_map_one(struct pci_dev *pdev,
2812                 struct CommandList *cp,
2813                 unsigned char *buf,
2814                 size_t buflen,
2815                 enum dma_data_direction data_direction)
2816 {
2817         u64 addr64;
2818
2819         if (buflen == 0 || data_direction == DMA_NONE) {
2820                 cp->Header.SGList = 0;
2821                 cp->Header.SGTotal = cpu_to_le16(0);
2822                 return 0;
2823         }
2824
2825         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2826         if (dma_mapping_error(&pdev->dev, addr64)) {
2827                 /* Prevent subsequent unmap of something never mapped */
2828                 cp->Header.SGList = 0;
2829                 cp->Header.SGTotal = cpu_to_le16(0);
2830                 return -1;
2831         }
2832         cp->SG[0].Addr = cpu_to_le64(addr64);
2833         cp->SG[0].Len = cpu_to_le32(buflen);
2834         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2835         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2836         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2837         return 0;
2838 }
2839
2840 #define NO_TIMEOUT ((unsigned long) -1)
2841 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2842 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2843         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2844 {
2845         DECLARE_COMPLETION_ONSTACK(wait);
2846
2847         c->waiting = &wait;
2848         __enqueue_cmd_and_start_io(h, c, reply_queue);
2849         if (timeout_msecs == NO_TIMEOUT) {
2850                 /* TODO: get rid of this no-timeout thing */
2851                 wait_for_completion_io(&wait);
2852                 return IO_OK;
2853         }
2854         if (!wait_for_completion_io_timeout(&wait,
2855                                         msecs_to_jiffies(timeout_msecs))) {
2856                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2857                 return -ETIMEDOUT;
2858         }
2859         return IO_OK;
2860 }
2861
2862 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2863                                    int reply_queue, unsigned long timeout_msecs)
2864 {
2865         if (unlikely(lockup_detected(h))) {
2866                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2867                 return IO_OK;
2868         }
2869         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2870 }
2871
2872 static u32 lockup_detected(struct ctlr_info *h)
2873 {
2874         int cpu;
2875         u32 rc, *lockup_detected;
2876
2877         cpu = get_cpu();
2878         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2879         rc = *lockup_detected;
2880         put_cpu();
2881         return rc;
2882 }
2883
2884 #define MAX_DRIVER_CMD_RETRIES 25
2885 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2886                 struct CommandList *c, enum dma_data_direction data_direction,
2887                 unsigned long timeout_msecs)
2888 {
2889         int backoff_time = 10, retry_count = 0;
2890         int rc;
2891
2892         do {
2893                 memset(c->err_info, 0, sizeof(*c->err_info));
2894                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2895                                                   timeout_msecs);
2896                 if (rc)
2897                         break;
2898                 retry_count++;
2899                 if (retry_count > 3) {
2900                         msleep(backoff_time);
2901                         if (backoff_time < 1000)
2902                                 backoff_time *= 2;
2903                 }
2904         } while ((check_for_unit_attention(h, c) ||
2905                         check_for_busy(h, c)) &&
2906                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2907         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2908         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2909                 rc = -EIO;
2910         return rc;
2911 }
2912
2913 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2914                                 struct CommandList *c)
2915 {
2916         const u8 *cdb = c->Request.CDB;
2917         const u8 *lun = c->Header.LUN.LunAddrBytes;
2918
2919         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2920                  txt, lun, cdb);
2921 }
2922
2923 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2924                         struct CommandList *cp)
2925 {
2926         const struct ErrorInfo *ei = cp->err_info;
2927         struct device *d = &cp->h->pdev->dev;
2928         u8 sense_key, asc, ascq;
2929         int sense_len;
2930
2931         switch (ei->CommandStatus) {
2932         case CMD_TARGET_STATUS:
2933                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2934                         sense_len = sizeof(ei->SenseInfo);
2935                 else
2936                         sense_len = ei->SenseLen;
2937                 decode_sense_data(ei->SenseInfo, sense_len,
2938                                         &sense_key, &asc, &ascq);
2939                 hpsa_print_cmd(h, "SCSI status", cp);
2940                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2941                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2942                                 sense_key, asc, ascq);
2943                 else
2944                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2945                 if (ei->ScsiStatus == 0)
2946                         dev_warn(d, "SCSI status is abnormally zero.  "
2947                         "(probably indicates selection timeout "
2948                         "reported incorrectly due to a known "
2949                         "firmware bug, circa July, 2001.)\n");
2950                 break;
2951         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2952                 break;
2953         case CMD_DATA_OVERRUN:
2954                 hpsa_print_cmd(h, "overrun condition", cp);
2955                 break;
2956         case CMD_INVALID: {
2957                 /* controller unfortunately reports SCSI passthru's
2958                  * to non-existent targets as invalid commands.
2959                  */
2960                 hpsa_print_cmd(h, "invalid command", cp);
2961                 dev_warn(d, "probably means device no longer present\n");
2962                 }
2963                 break;
2964         case CMD_PROTOCOL_ERR:
2965                 hpsa_print_cmd(h, "protocol error", cp);
2966                 break;
2967         case CMD_HARDWARE_ERR:
2968                 hpsa_print_cmd(h, "hardware error", cp);
2969                 break;
2970         case CMD_CONNECTION_LOST:
2971                 hpsa_print_cmd(h, "connection lost", cp);
2972                 break;
2973         case CMD_ABORTED:
2974                 hpsa_print_cmd(h, "aborted", cp);
2975                 break;
2976         case CMD_ABORT_FAILED:
2977                 hpsa_print_cmd(h, "abort failed", cp);
2978                 break;
2979         case CMD_UNSOLICITED_ABORT:
2980                 hpsa_print_cmd(h, "unsolicited abort", cp);
2981                 break;
2982         case CMD_TIMEOUT:
2983                 hpsa_print_cmd(h, "timed out", cp);
2984                 break;
2985         case CMD_UNABORTABLE:
2986                 hpsa_print_cmd(h, "unabortable", cp);
2987                 break;
2988         case CMD_CTLR_LOCKUP:
2989                 hpsa_print_cmd(h, "controller lockup detected", cp);
2990                 break;
2991         default:
2992                 hpsa_print_cmd(h, "unknown status", cp);
2993                 dev_warn(d, "Unknown command status %x\n",
2994                                 ei->CommandStatus);
2995         }
2996 }
2997
2998 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2999                                         u8 page, u8 *buf, size_t bufsize)
3000 {
3001         int rc = IO_OK;
3002         struct CommandList *c;
3003         struct ErrorInfo *ei;
3004
3005         c = cmd_alloc(h);
3006         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3007                         page, scsi3addr, TYPE_CMD)) {
3008                 rc = -1;
3009                 goto out;
3010         }
3011         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3012                         NO_TIMEOUT);
3013         if (rc)
3014                 goto out;
3015         ei = c->err_info;
3016         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3017                 hpsa_scsi_interpret_error(h, c);
3018                 rc = -1;
3019         }
3020 out:
3021         cmd_free(h, c);
3022         return rc;
3023 }
3024
3025 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3026                                                 u8 *scsi3addr)
3027 {
3028         u8 *buf;
3029         u64 sa = 0;
3030         int rc = 0;
3031
3032         buf = kzalloc(1024, GFP_KERNEL);
3033         if (!buf)
3034                 return 0;
3035
3036         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3037                                         buf, 1024);
3038
3039         if (rc)
3040                 goto out;
3041
3042         sa = get_unaligned_be64(buf+12);
3043
3044 out:
3045         kfree(buf);
3046         return sa;
3047 }
3048
3049 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3050                         u16 page, unsigned char *buf,
3051                         unsigned char bufsize)
3052 {
3053         int rc = IO_OK;
3054         struct CommandList *c;
3055         struct ErrorInfo *ei;
3056
3057         c = cmd_alloc(h);
3058
3059         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3060                         page, scsi3addr, TYPE_CMD)) {
3061                 rc = -1;
3062                 goto out;
3063         }
3064         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3065                         NO_TIMEOUT);
3066         if (rc)
3067                 goto out;
3068         ei = c->err_info;
3069         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3070                 hpsa_scsi_interpret_error(h, c);
3071                 rc = -1;
3072         }
3073 out:
3074         cmd_free(h, c);
3075         return rc;
3076 }
3077
3078 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3079         u8 reset_type, int reply_queue)
3080 {
3081         int rc = IO_OK;
3082         struct CommandList *c;
3083         struct ErrorInfo *ei;
3084
3085         c = cmd_alloc(h);
3086         c->device = dev;
3087
3088         /* fill_cmd can't fail here, no data buffer to map. */
3089         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3090         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3091         if (rc) {
3092                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3093                 goto out;
3094         }
3095         /* no unmap needed here because no data xfer. */
3096
3097         ei = c->err_info;
3098         if (ei->CommandStatus != 0) {
3099                 hpsa_scsi_interpret_error(h, c);
3100                 rc = -1;
3101         }
3102 out:
3103         cmd_free(h, c);
3104         return rc;
3105 }
3106
3107 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3108                                struct hpsa_scsi_dev_t *dev,
3109                                unsigned char *scsi3addr)
3110 {
3111         int i;
3112         bool match = false;
3113         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3114         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3115
3116         if (hpsa_is_cmd_idle(c))
3117                 return false;
3118
3119         switch (c->cmd_type) {
3120         case CMD_SCSI:
3121         case CMD_IOCTL_PEND:
3122                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3123                                 sizeof(c->Header.LUN.LunAddrBytes));
3124                 break;
3125
3126         case CMD_IOACCEL1:
3127         case CMD_IOACCEL2:
3128                 if (c->phys_disk == dev) {
3129                         /* HBA mode match */
3130                         match = true;
3131                 } else {
3132                         /* Possible RAID mode -- check each phys dev. */
3133                         /* FIXME:  Do we need to take out a lock here?  If
3134                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3135                          * instead. */
3136                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3137                                 /* FIXME: an alternate test might be
3138                                  *
3139                                  * match = dev->phys_disk[i]->ioaccel_handle
3140                                  *              == c2->scsi_nexus;      */
3141                                 match = dev->phys_disk[i] == c->phys_disk;
3142                         }
3143                 }
3144                 break;
3145
3146         case IOACCEL2_TMF:
3147                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3148                         match = dev->phys_disk[i]->ioaccel_handle ==
3149                                         le32_to_cpu(ac->it_nexus);
3150                 }
3151                 break;
3152
3153         case 0:         /* The command is in the middle of being initialized. */
3154                 match = false;
3155                 break;
3156
3157         default:
3158                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3159                         c->cmd_type);
3160                 BUG();
3161         }
3162
3163         return match;
3164 }
3165
3166 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3167         u8 reset_type, int reply_queue)
3168 {
3169         int rc = 0;
3170
3171         /* We can really only handle one reset at a time */
3172         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3173                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3174                 return -EINTR;
3175         }
3176
3177         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3178         if (!rc) {
3179                 /* incremented by sending the reset request */
3180                 atomic_dec(&dev->commands_outstanding);
3181                 wait_event(h->event_sync_wait_queue,
3182                         atomic_read(&dev->commands_outstanding) <= 0 ||
3183                         lockup_detected(h));
3184         }
3185
3186         if (unlikely(lockup_detected(h))) {
3187                 dev_warn(&h->pdev->dev,
3188                          "Controller lockup detected during reset wait\n");
3189                 rc = -ENODEV;
3190         }
3191
3192         if (!rc)
3193                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3194
3195         mutex_unlock(&h->reset_mutex);
3196         return rc;
3197 }
3198
3199 static void hpsa_get_raid_level(struct ctlr_info *h,
3200         unsigned char *scsi3addr, unsigned char *raid_level)
3201 {
3202         int rc;
3203         unsigned char *buf;
3204
3205         *raid_level = RAID_UNKNOWN;
3206         buf = kzalloc(64, GFP_KERNEL);
3207         if (!buf)
3208                 return;
3209
3210         if (!hpsa_vpd_page_supported(h, scsi3addr,
3211                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3212                 goto exit;
3213
3214         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3215                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3216
3217         if (rc == 0)
3218                 *raid_level = buf[8];
3219         if (*raid_level > RAID_UNKNOWN)
3220                 *raid_level = RAID_UNKNOWN;
3221 exit:
3222         kfree(buf);
3223         return;
3224 }
3225
3226 #define HPSA_MAP_DEBUG
3227 #ifdef HPSA_MAP_DEBUG
3228 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3229                                 struct raid_map_data *map_buff)
3230 {
3231         struct raid_map_disk_data *dd = &map_buff->data[0];
3232         int map, row, col;
3233         u16 map_cnt, row_cnt, disks_per_row;
3234
3235         if (rc != 0)
3236                 return;
3237
3238         /* Show details only if debugging has been activated. */
3239         if (h->raid_offload_debug < 2)
3240                 return;
3241
3242         dev_info(&h->pdev->dev, "structure_size = %u\n",
3243                                 le32_to_cpu(map_buff->structure_size));
3244         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3245                         le32_to_cpu(map_buff->volume_blk_size));
3246         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3247                         le64_to_cpu(map_buff->volume_blk_cnt));
3248         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3249                         map_buff->phys_blk_shift);
3250         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3251                         map_buff->parity_rotation_shift);
3252         dev_info(&h->pdev->dev, "strip_size = %u\n",
3253                         le16_to_cpu(map_buff->strip_size));
3254         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3255                         le64_to_cpu(map_buff->disk_starting_blk));
3256         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3257                         le64_to_cpu(map_buff->disk_blk_cnt));
3258         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3259                         le16_to_cpu(map_buff->data_disks_per_row));
3260         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3261                         le16_to_cpu(map_buff->metadata_disks_per_row));
3262         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3263                         le16_to_cpu(map_buff->row_cnt));
3264         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3265                         le16_to_cpu(map_buff->layout_map_count));
3266         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3267                         le16_to_cpu(map_buff->flags));
3268         dev_info(&h->pdev->dev, "encryption = %s\n",
3269                         le16_to_cpu(map_buff->flags) &
3270                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3271         dev_info(&h->pdev->dev, "dekindex = %u\n",
3272                         le16_to_cpu(map_buff->dekindex));
3273         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3274         for (map = 0; map < map_cnt; map++) {
3275                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3276                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3277                 for (row = 0; row < row_cnt; row++) {
3278                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3279                         disks_per_row =
3280                                 le16_to_cpu(map_buff->data_disks_per_row);
3281                         for (col = 0; col < disks_per_row; col++, dd++)
3282                                 dev_info(&h->pdev->dev,
3283                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3284                                         col, dd->ioaccel_handle,
3285                                         dd->xor_mult[0], dd->xor_mult[1]);
3286                         disks_per_row =
3287                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3288                         for (col = 0; col < disks_per_row; col++, dd++)
3289                                 dev_info(&h->pdev->dev,
3290                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3291                                         col, dd->ioaccel_handle,
3292                                         dd->xor_mult[0], dd->xor_mult[1]);
3293                 }
3294         }
3295 }
3296 #else
3297 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3298                         __attribute__((unused)) int rc,
3299                         __attribute__((unused)) struct raid_map_data *map_buff)
3300 {
3301 }
3302 #endif
3303
3304 static int hpsa_get_raid_map(struct ctlr_info *h,
3305         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3306 {
3307         int rc = 0;
3308         struct CommandList *c;
3309         struct ErrorInfo *ei;
3310
3311         c = cmd_alloc(h);
3312
3313         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3314                         sizeof(this_device->raid_map), 0,
3315                         scsi3addr, TYPE_CMD)) {
3316                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3317                 cmd_free(h, c);
3318                 return -1;
3319         }
3320         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3321                         NO_TIMEOUT);
3322         if (rc)
3323                 goto out;
3324         ei = c->err_info;
3325         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3326                 hpsa_scsi_interpret_error(h, c);
3327                 rc = -1;
3328                 goto out;
3329         }
3330         cmd_free(h, c);
3331
3332         /* @todo in the future, dynamically allocate RAID map memory */
3333         if (le32_to_cpu(this_device->raid_map.structure_size) >
3334                                 sizeof(this_device->raid_map)) {
3335                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3336                 rc = -1;
3337         }
3338         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3339         return rc;
3340 out:
3341         cmd_free(h, c);
3342         return rc;
3343 }
3344
3345 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3346                 unsigned char scsi3addr[], u16 bmic_device_index,
3347                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3348 {
3349         int rc = IO_OK;
3350         struct CommandList *c;
3351         struct ErrorInfo *ei;
3352
3353         c = cmd_alloc(h);
3354
3355         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3356                 0, RAID_CTLR_LUNID, TYPE_CMD);
3357         if (rc)
3358                 goto out;
3359
3360         c->Request.CDB[2] = bmic_device_index & 0xff;
3361         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3362
3363         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3364                         NO_TIMEOUT);
3365         if (rc)
3366                 goto out;
3367         ei = c->err_info;
3368         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3369                 hpsa_scsi_interpret_error(h, c);
3370                 rc = -1;
3371         }
3372 out:
3373         cmd_free(h, c);
3374         return rc;
3375 }
3376
3377 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3378         struct bmic_identify_controller *buf, size_t bufsize)
3379 {
3380         int rc = IO_OK;
3381         struct CommandList *c;
3382         struct ErrorInfo *ei;
3383
3384         c = cmd_alloc(h);
3385
3386         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3387                 0, RAID_CTLR_LUNID, TYPE_CMD);
3388         if (rc)
3389                 goto out;
3390
3391         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3392                         NO_TIMEOUT);
3393         if (rc)
3394                 goto out;
3395         ei = c->err_info;
3396         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3397                 hpsa_scsi_interpret_error(h, c);
3398                 rc = -1;
3399         }
3400 out:
3401         cmd_free(h, c);
3402         return rc;
3403 }
3404
3405 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3406                 unsigned char scsi3addr[], u16 bmic_device_index,
3407                 struct bmic_identify_physical_device *buf, size_t bufsize)
3408 {
3409         int rc = IO_OK;
3410         struct CommandList *c;
3411         struct ErrorInfo *ei;
3412
3413         c = cmd_alloc(h);
3414         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3415                 0, RAID_CTLR_LUNID, TYPE_CMD);
3416         if (rc)
3417                 goto out;
3418
3419         c->Request.CDB[2] = bmic_device_index & 0xff;
3420         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3421
3422         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3423                                                 NO_TIMEOUT);
3424         ei = c->err_info;
3425         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3426                 hpsa_scsi_interpret_error(h, c);
3427                 rc = -1;
3428         }
3429 out:
3430         cmd_free(h, c);
3431
3432         return rc;
3433 }
3434
3435 /*
3436  * get enclosure information
3437  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3438  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3439  * Uses id_physical_device to determine the box_index.
3440  */
3441 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3442                         unsigned char *scsi3addr,
3443                         struct ReportExtendedLUNdata *rlep, int rle_index,
3444                         struct hpsa_scsi_dev_t *encl_dev)
3445 {
3446         int rc = -1;
3447         struct CommandList *c = NULL;
3448         struct ErrorInfo *ei = NULL;
3449         struct bmic_sense_storage_box_params *bssbp = NULL;
3450         struct bmic_identify_physical_device *id_phys = NULL;
3451         struct ext_report_lun_entry *rle;
3452         u16 bmic_device_index = 0;
3453
3454         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3455                 return;
3456
3457         rle = &rlep->LUN[rle_index];
3458
3459         encl_dev->eli =
3460                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3461
3462         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3463
3464         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3465                 rc = IO_OK;
3466                 goto out;
3467         }
3468
3469         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3470                 rc = IO_OK;
3471                 goto out;
3472         }
3473
3474         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3475         if (!bssbp)
3476                 goto out;
3477
3478         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3479         if (!id_phys)
3480                 goto out;
3481
3482         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3483                                                 id_phys, sizeof(*id_phys));
3484         if (rc) {
3485                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3486                         __func__, encl_dev->external, bmic_device_index);
3487                 goto out;
3488         }
3489
3490         c = cmd_alloc(h);
3491
3492         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3493                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3494
3495         if (rc)
3496                 goto out;
3497
3498         if (id_phys->phys_connector[1] == 'E')
3499                 c->Request.CDB[5] = id_phys->box_index;
3500         else
3501                 c->Request.CDB[5] = 0;
3502
3503         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3504                                                 NO_TIMEOUT);
3505         if (rc)
3506                 goto out;
3507
3508         ei = c->err_info;
3509         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3510                 rc = -1;
3511                 goto out;
3512         }
3513
3514         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3515         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3516                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3517
3518         rc = IO_OK;
3519 out:
3520         kfree(bssbp);
3521         kfree(id_phys);
3522
3523         if (c)
3524                 cmd_free(h, c);
3525
3526         if (rc != IO_OK)
3527                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3528                         "Error, could not get enclosure information");
3529 }
3530
3531 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3532                                                 unsigned char *scsi3addr)
3533 {
3534         struct ReportExtendedLUNdata *physdev;
3535         u32 nphysicals;
3536         u64 sa = 0;
3537         int i;
3538
3539         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3540         if (!physdev)
3541                 return 0;
3542
3543         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3544                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3545                 kfree(physdev);
3546                 return 0;
3547         }
3548         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3549
3550         for (i = 0; i < nphysicals; i++)
3551                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3552                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3553                         break;
3554                 }
3555
3556         kfree(physdev);
3557
3558         return sa;
3559 }
3560
3561 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3562                                         struct hpsa_scsi_dev_t *dev)
3563 {
3564         int rc;
3565         u64 sa = 0;
3566
3567         if (is_hba_lunid(scsi3addr)) {
3568                 struct bmic_sense_subsystem_info *ssi;
3569
3570                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3571                 if (!ssi)
3572                         return;
3573
3574                 rc = hpsa_bmic_sense_subsystem_information(h,
3575                                         scsi3addr, 0, ssi, sizeof(*ssi));
3576                 if (rc == 0) {
3577                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3578                         h->sas_address = sa;
3579                 }
3580
3581                 kfree(ssi);
3582         } else
3583                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3584
3585         dev->sas_address = sa;
3586 }
3587
3588 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3589         struct ReportExtendedLUNdata *physdev)
3590 {
3591         u32 nphysicals;
3592         int i;
3593
3594         if (h->discovery_polling)
3595                 return;
3596
3597         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3598
3599         for (i = 0; i < nphysicals; i++) {
3600                 if (physdev->LUN[i].device_type ==
3601                         BMIC_DEVICE_TYPE_CONTROLLER
3602                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3603                         dev_info(&h->pdev->dev,
3604                                 "External controller present, activate discovery polling and disable rld caching\n");
3605                         hpsa_disable_rld_caching(h);
3606                         h->discovery_polling = 1;
3607                         break;
3608                 }
3609         }
3610 }
3611
3612 /* Get a device id from inquiry page 0x83 */
3613 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3614         unsigned char scsi3addr[], u8 page)
3615 {
3616         int rc;
3617         int i;
3618         int pages;
3619         unsigned char *buf, bufsize;
3620
3621         buf = kzalloc(256, GFP_KERNEL);
3622         if (!buf)
3623                 return false;
3624
3625         /* Get the size of the page list first */
3626         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3627                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3628                                 buf, HPSA_VPD_HEADER_SZ);
3629         if (rc != 0)
3630                 goto exit_unsupported;
3631         pages = buf[3];
3632         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3633                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3634         else
3635                 bufsize = 255;
3636
3637         /* Get the whole VPD page list */
3638         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3639                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3640                                 buf, bufsize);
3641         if (rc != 0)
3642                 goto exit_unsupported;
3643
3644         pages = buf[3];
3645         for (i = 1; i <= pages; i++)
3646                 if (buf[3 + i] == page)
3647                         goto exit_supported;
3648 exit_unsupported:
3649         kfree(buf);
3650         return false;
3651 exit_supported:
3652         kfree(buf);
3653         return true;
3654 }
3655
3656 /*
3657  * Called during a scan operation.
3658  * Sets ioaccel status on the new device list, not the existing device list
3659  *
3660  * The device list used during I/O will be updated later in
3661  * adjust_hpsa_scsi_table.
3662  */
3663 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3664         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3665 {
3666         int rc;
3667         unsigned char *buf;
3668         u8 ioaccel_status;
3669
3670         this_device->offload_config = 0;
3671         this_device->offload_enabled = 0;
3672         this_device->offload_to_be_enabled = 0;
3673
3674         buf = kzalloc(64, GFP_KERNEL);
3675         if (!buf)
3676                 return;
3677         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3678                 goto out;
3679         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3680                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3681         if (rc != 0)
3682                 goto out;
3683
3684 #define IOACCEL_STATUS_BYTE 4
3685 #define OFFLOAD_CONFIGURED_BIT 0x01
3686 #define OFFLOAD_ENABLED_BIT 0x02
3687         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3688         this_device->offload_config =
3689                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3690         if (this_device->offload_config) {
3691                 bool offload_enabled =
3692                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3693                 /*
3694                  * Check to see if offload can be enabled.
3695                  */
3696                 if (offload_enabled) {
3697                         rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3698                         if (rc) /* could not load raid_map */
3699                                 goto out;
3700                         this_device->offload_to_be_enabled = 1;
3701                 }
3702         }
3703
3704 out:
3705         kfree(buf);
3706         return;
3707 }
3708
3709 /* Get the device id from inquiry page 0x83 */
3710 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3711         unsigned char *device_id, int index, int buflen)
3712 {
3713         int rc;
3714         unsigned char *buf;
3715
3716         /* Does controller have VPD for device id? */
3717         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3718                 return 1; /* not supported */
3719
3720         buf = kzalloc(64, GFP_KERNEL);
3721         if (!buf)
3722                 return -ENOMEM;
3723
3724         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3725                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3726         if (rc == 0) {
3727                 if (buflen > 16)
3728                         buflen = 16;
3729                 memcpy(device_id, &buf[8], buflen);
3730         }
3731
3732         kfree(buf);
3733
3734         return rc; /*0 - got id,  otherwise, didn't */
3735 }
3736
3737 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3738                 void *buf, int bufsize,
3739                 int extended_response)
3740 {
3741         int rc = IO_OK;
3742         struct CommandList *c;
3743         unsigned char scsi3addr[8];
3744         struct ErrorInfo *ei;
3745
3746         c = cmd_alloc(h);
3747
3748         /* address the controller */
3749         memset(scsi3addr, 0, sizeof(scsi3addr));
3750         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3751                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3752                 rc = -EAGAIN;
3753                 goto out;
3754         }
3755         if (extended_response)
3756                 c->Request.CDB[1] = extended_response;
3757         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3758                         NO_TIMEOUT);
3759         if (rc)
3760                 goto out;
3761         ei = c->err_info;
3762         if (ei->CommandStatus != 0 &&
3763             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3764                 hpsa_scsi_interpret_error(h, c);
3765                 rc = -EIO;
3766         } else {
3767                 struct ReportLUNdata *rld = buf;
3768
3769                 if (rld->extended_response_flag != extended_response) {
3770                         if (!h->legacy_board) {
3771                                 dev_err(&h->pdev->dev,
3772                                         "report luns requested format %u, got %u\n",
3773                                         extended_response,
3774                                         rld->extended_response_flag);
3775                                 rc = -EINVAL;
3776                         } else
3777                                 rc = -EOPNOTSUPP;
3778                 }
3779         }
3780 out:
3781         cmd_free(h, c);
3782         return rc;
3783 }
3784
3785 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3786                 struct ReportExtendedLUNdata *buf, int bufsize)
3787 {
3788         int rc;
3789         struct ReportLUNdata *lbuf;
3790
3791         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3792                                       HPSA_REPORT_PHYS_EXTENDED);
3793         if (!rc || rc != -EOPNOTSUPP)
3794                 return rc;
3795
3796         /* REPORT PHYS EXTENDED is not supported */
3797         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3798         if (!lbuf)
3799                 return -ENOMEM;
3800
3801         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3802         if (!rc) {
3803                 int i;
3804                 u32 nphys;
3805
3806                 /* Copy ReportLUNdata header */
3807                 memcpy(buf, lbuf, 8);
3808                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3809                 for (i = 0; i < nphys; i++)
3810                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3811         }
3812         kfree(lbuf);
3813         return rc;
3814 }
3815
3816 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3817                 struct ReportLUNdata *buf, int bufsize)
3818 {
3819         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3820 }
3821
3822 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3823         int bus, int target, int lun)
3824 {
3825         device->bus = bus;
3826         device->target = target;
3827         device->lun = lun;
3828 }
3829
3830 /* Use VPD inquiry to get details of volume status */
3831 static int hpsa_get_volume_status(struct ctlr_info *h,
3832                                         unsigned char scsi3addr[])
3833 {
3834         int rc;
3835         int status;
3836         int size;
3837         unsigned char *buf;
3838
3839         buf = kzalloc(64, GFP_KERNEL);
3840         if (!buf)
3841                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3842
3843         /* Does controller have VPD for logical volume status? */
3844         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3845                 goto exit_failed;
3846
3847         /* Get the size of the VPD return buffer */
3848         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3849                                         buf, HPSA_VPD_HEADER_SZ);
3850         if (rc != 0)
3851                 goto exit_failed;
3852         size = buf[3];
3853
3854         /* Now get the whole VPD buffer */
3855         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3856                                         buf, size + HPSA_VPD_HEADER_SZ);
3857         if (rc != 0)
3858                 goto exit_failed;
3859         status = buf[4]; /* status byte */
3860
3861         kfree(buf);
3862         return status;
3863 exit_failed:
3864         kfree(buf);
3865         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3866 }
3867
3868 /* Determine offline status of a volume.
3869  * Return either:
3870  *  0 (not offline)
3871  *  0xff (offline for unknown reasons)
3872  *  # (integer code indicating one of several NOT READY states
3873  *     describing why a volume is to be kept offline)
3874  */
3875 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3876                                         unsigned char scsi3addr[])
3877 {
3878         struct CommandList *c;
3879         unsigned char *sense;
3880         u8 sense_key, asc, ascq;
3881         int sense_len;
3882         int rc, ldstat = 0;
3883         u16 cmd_status;
3884         u8 scsi_status;
3885 #define ASC_LUN_NOT_READY 0x04
3886 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3887 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3888
3889         c = cmd_alloc(h);
3890
3891         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3892         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3893                                         NO_TIMEOUT);
3894         if (rc) {
3895                 cmd_free(h, c);
3896                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3897         }
3898         sense = c->err_info->SenseInfo;
3899         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3900                 sense_len = sizeof(c->err_info->SenseInfo);
3901         else
3902                 sense_len = c->err_info->SenseLen;
3903         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3904         cmd_status = c->err_info->CommandStatus;
3905         scsi_status = c->err_info->ScsiStatus;
3906         cmd_free(h, c);
3907
3908         /* Determine the reason for not ready state */
3909         ldstat = hpsa_get_volume_status(h, scsi3addr);
3910
3911         /* Keep volume offline in certain cases: */
3912         switch (ldstat) {
3913         case HPSA_LV_FAILED:
3914         case HPSA_LV_UNDERGOING_ERASE:
3915         case HPSA_LV_NOT_AVAILABLE:
3916         case HPSA_LV_UNDERGOING_RPI:
3917         case HPSA_LV_PENDING_RPI:
3918         case HPSA_LV_ENCRYPTED_NO_KEY:
3919         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3920         case HPSA_LV_UNDERGOING_ENCRYPTION:
3921         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3922         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3923                 return ldstat;
3924         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3925                 /* If VPD status page isn't available,
3926                  * use ASC/ASCQ to determine state
3927                  */
3928                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3929                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3930                         return ldstat;
3931                 break;
3932         default:
3933                 break;
3934         }
3935         return HPSA_LV_OK;
3936 }
3937
3938 static int hpsa_update_device_info(struct ctlr_info *h,
3939         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3940         unsigned char *is_OBDR_device)
3941 {
3942
3943 #define OBDR_SIG_OFFSET 43
3944 #define OBDR_TAPE_SIG "$DR-10"
3945 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3946 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3947
3948         unsigned char *inq_buff;
3949         unsigned char *obdr_sig;
3950         int rc = 0;
3951
3952         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3953         if (!inq_buff) {
3954                 rc = -ENOMEM;
3955                 goto bail_out;
3956         }
3957
3958         /* Do an inquiry to the device to see what it is. */
3959         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3960                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3961                 dev_err(&h->pdev->dev,
3962                         "%s: inquiry failed, device will be skipped.\n",
3963                         __func__);
3964                 rc = HPSA_INQUIRY_FAILED;
3965                 goto bail_out;
3966         }
3967
3968         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3969         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3970
3971         this_device->devtype = (inq_buff[0] & 0x1f);
3972         memcpy(this_device->scsi3addr, scsi3addr, 8);
3973         memcpy(this_device->vendor, &inq_buff[8],
3974                 sizeof(this_device->vendor));
3975         memcpy(this_device->model, &inq_buff[16],
3976                 sizeof(this_device->model));
3977         this_device->rev = inq_buff[2];
3978         memset(this_device->device_id, 0,
3979                 sizeof(this_device->device_id));
3980         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3981                 sizeof(this_device->device_id)) < 0) {
3982                 dev_err(&h->pdev->dev,
3983                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3984                         h->ctlr, __func__,
3985                         h->scsi_host->host_no,
3986                         this_device->bus, this_device->target,
3987                         this_device->lun,
3988                         scsi_device_type(this_device->devtype),
3989                         this_device->model);
3990                 rc = HPSA_LV_FAILED;
3991                 goto bail_out;
3992         }
3993
3994         if ((this_device->devtype == TYPE_DISK ||
3995                 this_device->devtype == TYPE_ZBC) &&
3996                 is_logical_dev_addr_mode(scsi3addr)) {
3997                 unsigned char volume_offline;
3998
3999                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4000                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4001                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4002                 volume_offline = hpsa_volume_offline(h, scsi3addr);
4003                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4004                     h->legacy_board) {
4005                         /*
4006                          * Legacy boards might not support volume status
4007                          */
4008                         dev_info(&h->pdev->dev,
4009                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
4010                                  this_device->target, this_device->lun);
4011                         volume_offline = 0;
4012                 }
4013                 this_device->volume_offline = volume_offline;
4014                 if (volume_offline == HPSA_LV_FAILED) {
4015                         rc = HPSA_LV_FAILED;
4016                         dev_err(&h->pdev->dev,
4017                                 "%s: LV failed, device will be skipped.\n",
4018                                 __func__);
4019                         goto bail_out;
4020                 }
4021         } else {
4022                 this_device->raid_level = RAID_UNKNOWN;
4023                 this_device->offload_config = 0;
4024                 hpsa_turn_off_ioaccel_for_device(this_device);
4025                 this_device->hba_ioaccel_enabled = 0;
4026                 this_device->volume_offline = 0;
4027                 this_device->queue_depth = h->nr_cmds;
4028         }
4029
4030         if (this_device->external)
4031                 this_device->queue_depth = EXTERNAL_QD;
4032
4033         if (is_OBDR_device) {
4034                 /* See if this is a One-Button-Disaster-Recovery device
4035                  * by looking for "$DR-10" at offset 43 in inquiry data.
4036                  */
4037                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4038                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4039                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4040                                                 OBDR_SIG_LEN) == 0);
4041         }
4042         kfree(inq_buff);
4043         return 0;
4044
4045 bail_out:
4046         kfree(inq_buff);
4047         return rc;
4048 }
4049
4050 /*
4051  * Helper function to assign bus, target, lun mapping of devices.
4052  * Logical drive target and lun are assigned at this time, but
4053  * physical device lun and target assignment are deferred (assigned
4054  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4055 */
4056 static void figure_bus_target_lun(struct ctlr_info *h,
4057         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4058 {
4059         u32 lunid = get_unaligned_le32(lunaddrbytes);
4060
4061         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4062                 /* physical device, target and lun filled in later */
4063                 if (is_hba_lunid(lunaddrbytes)) {
4064                         int bus = HPSA_HBA_BUS;
4065
4066                         if (!device->rev)
4067                                 bus = HPSA_LEGACY_HBA_BUS;
4068                         hpsa_set_bus_target_lun(device,
4069                                         bus, 0, lunid & 0x3fff);
4070                 } else
4071                         /* defer target, lun assignment for physical devices */
4072                         hpsa_set_bus_target_lun(device,
4073                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4074                 return;
4075         }
4076         /* It's a logical device */
4077         if (device->external) {
4078                 hpsa_set_bus_target_lun(device,
4079                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4080                         lunid & 0x00ff);
4081                 return;
4082         }
4083         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4084                                 0, lunid & 0x3fff);
4085 }
4086
4087 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4088         int i, int nphysicals, int nlocal_logicals)
4089 {
4090         /* In report logicals, local logicals are listed first,
4091         * then any externals.
4092         */
4093         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4094
4095         if (i == raid_ctlr_position)
4096                 return 0;
4097
4098         if (i < logicals_start)
4099                 return 0;
4100
4101         /* i is in logicals range, but still within local logicals */
4102         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4103                 return 0;
4104
4105         return 1; /* it's an external lun */
4106 }
4107
4108 /*
4109  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4110  * logdev.  The number of luns in physdev and logdev are returned in
4111  * *nphysicals and *nlogicals, respectively.
4112  * Returns 0 on success, -1 otherwise.
4113  */
4114 static int hpsa_gather_lun_info(struct ctlr_info *h,
4115         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4116         struct ReportLUNdata *logdev, u32 *nlogicals)
4117 {
4118         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4119                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4120                 return -1;
4121         }
4122         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4123         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4124                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4125                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4126                 *nphysicals = HPSA_MAX_PHYS_LUN;
4127         }
4128         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4129                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4130                 return -1;
4131         }
4132         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4133         /* Reject Logicals in excess of our max capability. */
4134         if (*nlogicals > HPSA_MAX_LUN) {
4135                 dev_warn(&h->pdev->dev,
4136                         "maximum logical LUNs (%d) exceeded.  "
4137                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4138                         *nlogicals - HPSA_MAX_LUN);
4139                 *nlogicals = HPSA_MAX_LUN;
4140         }
4141         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4142                 dev_warn(&h->pdev->dev,
4143                         "maximum logical + physical LUNs (%d) exceeded. "
4144                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4145                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4146                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4147         }
4148         return 0;
4149 }
4150
4151 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4152         int i, int nphysicals, int nlogicals,
4153         struct ReportExtendedLUNdata *physdev_list,
4154         struct ReportLUNdata *logdev_list)
4155 {
4156         /* Helper function, figure out where the LUN ID info is coming from
4157          * given index i, lists of physical and logical devices, where in
4158          * the list the raid controller is supposed to appear (first or last)
4159          */
4160
4161         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4162         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4163
4164         if (i == raid_ctlr_position)
4165                 return RAID_CTLR_LUNID;
4166
4167         if (i < logicals_start)
4168                 return &physdev_list->LUN[i -
4169                                 (raid_ctlr_position == 0)].lunid[0];
4170
4171         if (i < last_device)
4172                 return &logdev_list->LUN[i - nphysicals -
4173                         (raid_ctlr_position == 0)][0];
4174         BUG();
4175         return NULL;
4176 }
4177
4178 /* get physical drive ioaccel handle and queue depth */
4179 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4180                 struct hpsa_scsi_dev_t *dev,
4181                 struct ReportExtendedLUNdata *rlep, int rle_index,
4182                 struct bmic_identify_physical_device *id_phys)
4183 {
4184         int rc;
4185         struct ext_report_lun_entry *rle;
4186
4187         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4188                 return;
4189
4190         rle = &rlep->LUN[rle_index];
4191
4192         dev->ioaccel_handle = rle->ioaccel_handle;
4193         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4194                 dev->hba_ioaccel_enabled = 1;
4195         memset(id_phys, 0, sizeof(*id_phys));
4196         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4197                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4198                         sizeof(*id_phys));
4199         if (!rc)
4200                 /* Reserve space for FW operations */
4201 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4202 #define DRIVE_QUEUE_DEPTH 7
4203                 dev->queue_depth =
4204                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4205                                 DRIVE_CMDS_RESERVED_FOR_FW;
4206         else
4207                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4208 }
4209
4210 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4211         struct ReportExtendedLUNdata *rlep, int rle_index,
4212         struct bmic_identify_physical_device *id_phys)
4213 {
4214         struct ext_report_lun_entry *rle;
4215
4216         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4217                 return;
4218
4219         rle = &rlep->LUN[rle_index];
4220
4221         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4222                 this_device->hba_ioaccel_enabled = 1;
4223
4224         memcpy(&this_device->active_path_index,
4225                 &id_phys->active_path_number,
4226                 sizeof(this_device->active_path_index));
4227         memcpy(&this_device->path_map,
4228                 &id_phys->redundant_path_present_map,
4229                 sizeof(this_device->path_map));
4230         memcpy(&this_device->box,
4231                 &id_phys->alternate_paths_phys_box_on_port,
4232                 sizeof(this_device->box));
4233         memcpy(&this_device->phys_connector,
4234                 &id_phys->alternate_paths_phys_connector,
4235                 sizeof(this_device->phys_connector));
4236         memcpy(&this_device->bay,
4237                 &id_phys->phys_bay_in_box,
4238                 sizeof(this_device->bay));
4239 }
4240
4241 /* get number of local logical disks. */
4242 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4243         struct bmic_identify_controller *id_ctlr,
4244         u32 *nlocals)
4245 {
4246         int rc;
4247
4248         if (!id_ctlr) {
4249                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4250                         __func__);
4251                 return -ENOMEM;
4252         }
4253         memset(id_ctlr, 0, sizeof(*id_ctlr));
4254         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4255         if (!rc)
4256                 if (id_ctlr->configured_logical_drive_count < 255)
4257                         *nlocals = id_ctlr->configured_logical_drive_count;
4258                 else
4259                         *nlocals = le16_to_cpu(
4260                                         id_ctlr->extended_logical_unit_count);
4261         else
4262                 *nlocals = -1;
4263         return rc;
4264 }
4265
4266 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4267 {
4268         struct bmic_identify_physical_device *id_phys;
4269         bool is_spare = false;
4270         int rc;
4271
4272         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4273         if (!id_phys)
4274                 return false;
4275
4276         rc = hpsa_bmic_id_physical_device(h,
4277                                         lunaddrbytes,
4278                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4279                                         id_phys, sizeof(*id_phys));
4280         if (rc == 0)
4281                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4282
4283         kfree(id_phys);
4284         return is_spare;
4285 }
4286
4287 #define RPL_DEV_FLAG_NON_DISK                           0x1
4288 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4289 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4290
4291 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4292
4293 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4294                                 struct ext_report_lun_entry *rle)
4295 {
4296         u8 device_flags;
4297         u8 device_type;
4298
4299         if (!MASKED_DEVICE(lunaddrbytes))
4300                 return false;
4301
4302         device_flags = rle->device_flags;
4303         device_type = rle->device_type;
4304
4305         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4306                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4307                         return false;
4308                 return true;
4309         }
4310
4311         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4312                 return false;
4313
4314         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4315                 return false;
4316
4317         /*
4318          * Spares may be spun down, we do not want to
4319          * do an Inquiry to a RAID set spare drive as
4320          * that would have them spun up, that is a
4321          * performance hit because I/O to the RAID device
4322          * stops while the spin up occurs which can take
4323          * over 50 seconds.
4324          */
4325         if (hpsa_is_disk_spare(h, lunaddrbytes))
4326                 return true;
4327
4328         return false;
4329 }
4330
4331 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4332 {
4333         /* the idea here is we could get notified
4334          * that some devices have changed, so we do a report
4335          * physical luns and report logical luns cmd, and adjust
4336          * our list of devices accordingly.
4337          *
4338          * The scsi3addr's of devices won't change so long as the
4339          * adapter is not reset.  That means we can rescan and
4340          * tell which devices we already know about, vs. new
4341          * devices, vs.  disappearing devices.
4342          */
4343         struct ReportExtendedLUNdata *physdev_list = NULL;
4344         struct ReportLUNdata *logdev_list = NULL;
4345         struct bmic_identify_physical_device *id_phys = NULL;
4346         struct bmic_identify_controller *id_ctlr = NULL;
4347         u32 nphysicals = 0;
4348         u32 nlogicals = 0;
4349         u32 nlocal_logicals = 0;
4350         u32 ndev_allocated = 0;
4351         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4352         int ncurrent = 0;
4353         int i, n_ext_target_devs, ndevs_to_allocate;
4354         int raid_ctlr_position;
4355         bool physical_device;
4356         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4357
4358         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4359         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4360         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4361         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4362         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4363         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4364
4365         if (!currentsd || !physdev_list || !logdev_list ||
4366                 !tmpdevice || !id_phys || !id_ctlr) {
4367                 dev_err(&h->pdev->dev, "out of memory\n");
4368                 goto out;
4369         }
4370         memset(lunzerobits, 0, sizeof(lunzerobits));
4371
4372         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4373
4374         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4375                         logdev_list, &nlogicals)) {
4376                 h->drv_req_rescan = 1;
4377                 goto out;
4378         }
4379
4380         /* Set number of local logicals (non PTRAID) */
4381         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4382                 dev_warn(&h->pdev->dev,
4383                         "%s: Can't determine number of local logical devices.\n",
4384                         __func__);
4385         }
4386
4387         /* We might see up to the maximum number of logical and physical disks
4388          * plus external target devices, and a device for the local RAID
4389          * controller.
4390          */
4391         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4392
4393         hpsa_ext_ctrl_present(h, physdev_list);
4394
4395         /* Allocate the per device structures */
4396         for (i = 0; i < ndevs_to_allocate; i++) {
4397                 if (i >= HPSA_MAX_DEVICES) {
4398                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4399                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4400                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4401                         break;
4402                 }
4403
4404                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4405                 if (!currentsd[i]) {
4406                         h->drv_req_rescan = 1;
4407                         goto out;
4408                 }
4409                 ndev_allocated++;
4410         }
4411
4412         if (is_scsi_rev_5(h))
4413                 raid_ctlr_position = 0;
4414         else
4415                 raid_ctlr_position = nphysicals + nlogicals;
4416
4417         /* adjust our table of devices */
4418         n_ext_target_devs = 0;
4419         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4420                 u8 *lunaddrbytes, is_OBDR = 0;
4421                 int rc = 0;
4422                 int phys_dev_index = i - (raid_ctlr_position == 0);
4423                 bool skip_device = false;
4424
4425                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4426
4427                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4428
4429                 /* Figure out where the LUN ID info is coming from */
4430                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4431                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4432
4433                 /* Determine if this is a lun from an external target array */
4434                 tmpdevice->external =
4435                         figure_external_status(h, raid_ctlr_position, i,
4436                                                 nphysicals, nlocal_logicals);
4437
4438                 /*
4439                  * Skip over some devices such as a spare.
4440                  */
4441                 if (phys_dev_index >= 0 && !tmpdevice->external &&
4442                         physical_device) {
4443                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4444                                         &physdev_list->LUN[phys_dev_index]);
4445                         if (skip_device)
4446                                 continue;
4447                 }
4448
4449                 /* Get device type, vendor, model, device id, raid_map */
4450                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4451                                                         &is_OBDR);
4452                 if (rc == -ENOMEM) {
4453                         dev_warn(&h->pdev->dev,
4454                                 "Out of memory, rescan deferred.\n");
4455                         h->drv_req_rescan = 1;
4456                         goto out;
4457                 }
4458                 if (rc) {
4459                         h->drv_req_rescan = 1;
4460                         continue;
4461                 }
4462
4463                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4464                 this_device = currentsd[ncurrent];
4465
4466                 *this_device = *tmpdevice;
4467                 this_device->physical_device = physical_device;
4468
4469                 /*
4470                  * Expose all devices except for physical devices that
4471                  * are masked.
4472                  */
4473                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4474                         this_device->expose_device = 0;
4475                 else
4476                         this_device->expose_device = 1;
4477
4478
4479                 /*
4480                  * Get the SAS address for physical devices that are exposed.
4481                  */
4482                 if (this_device->physical_device && this_device->expose_device)
4483                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4484
4485                 switch (this_device->devtype) {
4486                 case TYPE_ROM:
4487                         /* We don't *really* support actual CD-ROM devices,
4488                          * just "One Button Disaster Recovery" tape drive
4489                          * which temporarily pretends to be a CD-ROM drive.
4490                          * So we check that the device is really an OBDR tape
4491                          * device by checking for "$DR-10" in bytes 43-48 of
4492                          * the inquiry data.
4493                          */
4494                         if (is_OBDR)
4495                                 ncurrent++;
4496                         break;
4497                 case TYPE_DISK:
4498                 case TYPE_ZBC:
4499                         if (this_device->physical_device) {
4500                                 /* The disk is in HBA mode. */
4501                                 /* Never use RAID mapper in HBA mode. */
4502                                 this_device->offload_enabled = 0;
4503                                 hpsa_get_ioaccel_drive_info(h, this_device,
4504                                         physdev_list, phys_dev_index, id_phys);
4505                                 hpsa_get_path_info(this_device,
4506                                         physdev_list, phys_dev_index, id_phys);
4507                         }
4508                         ncurrent++;
4509                         break;
4510                 case TYPE_TAPE:
4511                 case TYPE_MEDIUM_CHANGER:
4512                         ncurrent++;
4513                         break;
4514                 case TYPE_ENCLOSURE:
4515                         if (!this_device->external)
4516                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4517                                                 physdev_list, phys_dev_index,
4518                                                 this_device);
4519                         ncurrent++;
4520                         break;
4521                 case TYPE_RAID:
4522                         /* Only present the Smartarray HBA as a RAID controller.
4523                          * If it's a RAID controller other than the HBA itself
4524                          * (an external RAID controller, MSA500 or similar)
4525                          * don't present it.
4526                          */
4527                         if (!is_hba_lunid(lunaddrbytes))
4528                                 break;
4529                         ncurrent++;
4530                         break;
4531                 default:
4532                         break;
4533                 }
4534                 if (ncurrent >= HPSA_MAX_DEVICES)
4535                         break;
4536         }
4537
4538         if (h->sas_host == NULL) {
4539                 int rc = 0;
4540
4541                 rc = hpsa_add_sas_host(h);
4542                 if (rc) {
4543                         dev_warn(&h->pdev->dev,
4544                                 "Could not add sas host %d\n", rc);
4545                         goto out;
4546                 }
4547         }
4548
4549         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4550 out:
4551         kfree(tmpdevice);
4552         for (i = 0; i < ndev_allocated; i++)
4553                 kfree(currentsd[i]);
4554         kfree(currentsd);
4555         kfree(physdev_list);
4556         kfree(logdev_list);
4557         kfree(id_ctlr);
4558         kfree(id_phys);
4559 }
4560
4561 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4562                                    struct scatterlist *sg)
4563 {
4564         u64 addr64 = (u64) sg_dma_address(sg);
4565         unsigned int len = sg_dma_len(sg);
4566
4567         desc->Addr = cpu_to_le64(addr64);
4568         desc->Len = cpu_to_le32(len);
4569         desc->Ext = 0;
4570 }
4571
4572 /*
4573  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4574  * dma mapping  and fills in the scatter gather entries of the
4575  * hpsa command, cp.
4576  */
4577 static int hpsa_scatter_gather(struct ctlr_info *h,
4578                 struct CommandList *cp,
4579                 struct scsi_cmnd *cmd)
4580 {
4581         struct scatterlist *sg;
4582         int use_sg, i, sg_limit, chained, last_sg;
4583         struct SGDescriptor *curr_sg;
4584
4585         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4586
4587         use_sg = scsi_dma_map(cmd);
4588         if (use_sg < 0)
4589                 return use_sg;
4590
4591         if (!use_sg)
4592                 goto sglist_finished;
4593
4594         /*
4595          * If the number of entries is greater than the max for a single list,
4596          * then we have a chained list; we will set up all but one entry in the
4597          * first list (the last entry is saved for link information);
4598          * otherwise, we don't have a chained list and we'll set up at each of
4599          * the entries in the one list.
4600          */
4601         curr_sg = cp->SG;
4602         chained = use_sg > h->max_cmd_sg_entries;
4603         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4604         last_sg = scsi_sg_count(cmd) - 1;
4605         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4606                 hpsa_set_sg_descriptor(curr_sg, sg);
4607                 curr_sg++;
4608         }
4609
4610         if (chained) {
4611                 /*
4612                  * Continue with the chained list.  Set curr_sg to the chained
4613                  * list.  Modify the limit to the total count less the entries
4614                  * we've already set up.  Resume the scan at the list entry
4615                  * where the previous loop left off.
4616                  */
4617                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4618                 sg_limit = use_sg - sg_limit;
4619                 for_each_sg(sg, sg, sg_limit, i) {
4620                         hpsa_set_sg_descriptor(curr_sg, sg);
4621                         curr_sg++;
4622                 }
4623         }
4624
4625         /* Back the pointer up to the last entry and mark it as "last". */
4626         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4627
4628         if (use_sg + chained > h->maxSG)
4629                 h->maxSG = use_sg + chained;
4630
4631         if (chained) {
4632                 cp->Header.SGList = h->max_cmd_sg_entries;
4633                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4634                 if (hpsa_map_sg_chain_block(h, cp)) {
4635                         scsi_dma_unmap(cmd);
4636                         return -1;
4637                 }
4638                 return 0;
4639         }
4640
4641 sglist_finished:
4642
4643         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4644         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4645         return 0;
4646 }
4647
4648 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4649                                                 u8 *cdb, int cdb_len,
4650                                                 const char *func)
4651 {
4652         dev_warn(&h->pdev->dev,
4653                  "%s: Blocking zero-length request: CDB:%*phN\n",
4654                  func, cdb_len, cdb);
4655 }
4656
4657 #define IO_ACCEL_INELIGIBLE 1
4658 /* zero-length transfers trigger hardware errors. */
4659 static bool is_zero_length_transfer(u8 *cdb)
4660 {
4661         u32 block_cnt;
4662
4663         /* Block zero-length transfer sizes on certain commands. */
4664         switch (cdb[0]) {
4665         case READ_10:
4666         case WRITE_10:
4667         case VERIFY:            /* 0x2F */
4668         case WRITE_VERIFY:      /* 0x2E */
4669                 block_cnt = get_unaligned_be16(&cdb[7]);
4670                 break;
4671         case READ_12:
4672         case WRITE_12:
4673         case VERIFY_12: /* 0xAF */
4674         case WRITE_VERIFY_12:   /* 0xAE */
4675                 block_cnt = get_unaligned_be32(&cdb[6]);
4676                 break;
4677         case READ_16:
4678         case WRITE_16:
4679         case VERIFY_16:         /* 0x8F */
4680                 block_cnt = get_unaligned_be32(&cdb[10]);
4681                 break;
4682         default:
4683                 return false;
4684         }
4685
4686         return block_cnt == 0;
4687 }
4688
4689 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4690 {
4691         int is_write = 0;
4692         u32 block;
4693         u32 block_cnt;
4694
4695         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4696         switch (cdb[0]) {
4697         case WRITE_6:
4698         case WRITE_12:
4699                 is_write = 1;
4700                 /* fall through */
4701         case READ_6:
4702         case READ_12:
4703                 if (*cdb_len == 6) {
4704                         block = (((cdb[1] & 0x1F) << 16) |
4705                                 (cdb[2] << 8) |
4706                                 cdb[3]);
4707                         block_cnt = cdb[4];
4708                         if (block_cnt == 0)
4709                                 block_cnt = 256;
4710                 } else {
4711                         BUG_ON(*cdb_len != 12);
4712                         block = get_unaligned_be32(&cdb[2]);
4713                         block_cnt = get_unaligned_be32(&cdb[6]);
4714                 }
4715                 if (block_cnt > 0xffff)
4716                         return IO_ACCEL_INELIGIBLE;
4717
4718                 cdb[0] = is_write ? WRITE_10 : READ_10;
4719                 cdb[1] = 0;
4720                 cdb[2] = (u8) (block >> 24);
4721                 cdb[3] = (u8) (block >> 16);
4722                 cdb[4] = (u8) (block >> 8);
4723                 cdb[5] = (u8) (block);
4724                 cdb[6] = 0;
4725                 cdb[7] = (u8) (block_cnt >> 8);
4726                 cdb[8] = (u8) (block_cnt);
4727                 cdb[9] = 0;
4728                 *cdb_len = 10;
4729                 break;
4730         }
4731         return 0;
4732 }
4733
4734 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4735         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4736         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4737 {
4738         struct scsi_cmnd *cmd = c->scsi_cmd;
4739         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4740         unsigned int len;
4741         unsigned int total_len = 0;
4742         struct scatterlist *sg;
4743         u64 addr64;
4744         int use_sg, i;
4745         struct SGDescriptor *curr_sg;
4746         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4747
4748         /* TODO: implement chaining support */
4749         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4750                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4751                 return IO_ACCEL_INELIGIBLE;
4752         }
4753
4754         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4755
4756         if (is_zero_length_transfer(cdb)) {
4757                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4758                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4759                 return IO_ACCEL_INELIGIBLE;
4760         }
4761
4762         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4763                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4764                 return IO_ACCEL_INELIGIBLE;
4765         }
4766
4767         c->cmd_type = CMD_IOACCEL1;
4768
4769         /* Adjust the DMA address to point to the accelerated command buffer */
4770         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4771                                 (c->cmdindex * sizeof(*cp));
4772         BUG_ON(c->busaddr & 0x0000007F);
4773
4774         use_sg = scsi_dma_map(cmd);
4775         if (use_sg < 0) {
4776                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4777                 return use_sg;
4778         }
4779
4780         if (use_sg) {
4781                 curr_sg = cp->SG;
4782                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4783                         addr64 = (u64) sg_dma_address(sg);
4784                         len  = sg_dma_len(sg);
4785                         total_len += len;
4786                         curr_sg->Addr = cpu_to_le64(addr64);
4787                         curr_sg->Len = cpu_to_le32(len);
4788                         curr_sg->Ext = cpu_to_le32(0);
4789                         curr_sg++;
4790                 }
4791                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4792
4793                 switch (cmd->sc_data_direction) {
4794                 case DMA_TO_DEVICE:
4795                         control |= IOACCEL1_CONTROL_DATA_OUT;
4796                         break;
4797                 case DMA_FROM_DEVICE:
4798                         control |= IOACCEL1_CONTROL_DATA_IN;
4799                         break;
4800                 case DMA_NONE:
4801                         control |= IOACCEL1_CONTROL_NODATAXFER;
4802                         break;
4803                 default:
4804                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4805                         cmd->sc_data_direction);
4806                         BUG();
4807                         break;
4808                 }
4809         } else {
4810                 control |= IOACCEL1_CONTROL_NODATAXFER;
4811         }
4812
4813         c->Header.SGList = use_sg;
4814         /* Fill out the command structure to submit */
4815         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4816         cp->transfer_len = cpu_to_le32(total_len);
4817         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4818                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4819         cp->control = cpu_to_le32(control);
4820         memcpy(cp->CDB, cdb, cdb_len);
4821         memcpy(cp->CISS_LUN, scsi3addr, 8);
4822         /* Tag was already set at init time. */
4823         enqueue_cmd_and_start_io(h, c);
4824         return 0;
4825 }
4826
4827 /*
4828  * Queue a command directly to a device behind the controller using the
4829  * I/O accelerator path.
4830  */
4831 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4832         struct CommandList *c)
4833 {
4834         struct scsi_cmnd *cmd = c->scsi_cmd;
4835         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4836
4837         if (!dev)
4838                 return -1;
4839
4840         c->phys_disk = dev;
4841
4842         if (dev->in_reset)
4843                 return -1;
4844
4845         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4846                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4847 }
4848
4849 /*
4850  * Set encryption parameters for the ioaccel2 request
4851  */
4852 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4853         struct CommandList *c, struct io_accel2_cmd *cp)
4854 {
4855         struct scsi_cmnd *cmd = c->scsi_cmd;
4856         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4857         struct raid_map_data *map = &dev->raid_map;
4858         u64 first_block;
4859
4860         /* Are we doing encryption on this device */
4861         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4862                 return;
4863         /* Set the data encryption key index. */
4864         cp->dekindex = map->dekindex;
4865
4866         /* Set the encryption enable flag, encoded into direction field. */
4867         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4868
4869         /* Set encryption tweak values based on logical block address
4870          * If block size is 512, tweak value is LBA.
4871          * For other block sizes, tweak is (LBA * block size)/ 512)
4872          */
4873         switch (cmd->cmnd[0]) {
4874         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4875         case READ_6:
4876         case WRITE_6:
4877                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4878                                 (cmd->cmnd[2] << 8) |
4879                                 cmd->cmnd[3]);
4880                 break;
4881         case WRITE_10:
4882         case READ_10:
4883         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4884         case WRITE_12:
4885         case READ_12:
4886                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4887                 break;
4888         case WRITE_16:
4889         case READ_16:
4890                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4891                 break;
4892         default:
4893                 dev_err(&h->pdev->dev,
4894                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4895                         __func__, cmd->cmnd[0]);
4896                 BUG();
4897                 break;
4898         }
4899
4900         if (le32_to_cpu(map->volume_blk_size) != 512)
4901                 first_block = first_block *
4902                                 le32_to_cpu(map->volume_blk_size)/512;
4903
4904         cp->tweak_lower = cpu_to_le32(first_block);
4905         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4906 }
4907
4908 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4909         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4910         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4911 {
4912         struct scsi_cmnd *cmd = c->scsi_cmd;
4913         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4914         struct ioaccel2_sg_element *curr_sg;
4915         int use_sg, i;
4916         struct scatterlist *sg;
4917         u64 addr64;
4918         u32 len;
4919         u32 total_len = 0;
4920
4921         if (!cmd->device)
4922                 return -1;
4923
4924         if (!cmd->device->hostdata)
4925                 return -1;
4926
4927         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4928
4929         if (is_zero_length_transfer(cdb)) {
4930                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4931                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4932                 return IO_ACCEL_INELIGIBLE;
4933         }
4934
4935         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4936                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4937                 return IO_ACCEL_INELIGIBLE;
4938         }
4939
4940         c->cmd_type = CMD_IOACCEL2;
4941         /* Adjust the DMA address to point to the accelerated command buffer */
4942         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4943                                 (c->cmdindex * sizeof(*cp));
4944         BUG_ON(c->busaddr & 0x0000007F);
4945
4946         memset(cp, 0, sizeof(*cp));
4947         cp->IU_type = IOACCEL2_IU_TYPE;
4948
4949         use_sg = scsi_dma_map(cmd);
4950         if (use_sg < 0) {
4951                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4952                 return use_sg;
4953         }
4954
4955         if (use_sg) {
4956                 curr_sg = cp->sg;
4957                 if (use_sg > h->ioaccel_maxsg) {
4958                         addr64 = le64_to_cpu(
4959                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4960                         curr_sg->address = cpu_to_le64(addr64);
4961                         curr_sg->length = 0;
4962                         curr_sg->reserved[0] = 0;
4963                         curr_sg->reserved[1] = 0;
4964                         curr_sg->reserved[2] = 0;
4965                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4966
4967                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4968                 }
4969                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4970                         addr64 = (u64) sg_dma_address(sg);
4971                         len  = sg_dma_len(sg);
4972                         total_len += len;
4973                         curr_sg->address = cpu_to_le64(addr64);
4974                         curr_sg->length = cpu_to_le32(len);
4975                         curr_sg->reserved[0] = 0;
4976                         curr_sg->reserved[1] = 0;
4977                         curr_sg->reserved[2] = 0;
4978                         curr_sg->chain_indicator = 0;
4979                         curr_sg++;
4980                 }
4981
4982                 /*
4983                  * Set the last s/g element bit
4984                  */
4985                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4986
4987                 switch (cmd->sc_data_direction) {
4988                 case DMA_TO_DEVICE:
4989                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4990                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4991                         break;
4992                 case DMA_FROM_DEVICE:
4993                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4994                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4995                         break;
4996                 case DMA_NONE:
4997                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4998                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4999                         break;
5000                 default:
5001                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5002                                 cmd->sc_data_direction);
5003                         BUG();
5004                         break;
5005                 }
5006         } else {
5007                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5008                 cp->direction |= IOACCEL2_DIR_NO_DATA;
5009         }
5010
5011         /* Set encryption parameters, if necessary */
5012         set_encrypt_ioaccel2(h, c, cp);
5013
5014         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5015         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5016         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5017
5018         cp->data_len = cpu_to_le32(total_len);
5019         cp->err_ptr = cpu_to_le64(c->busaddr +
5020                         offsetof(struct io_accel2_cmd, error_data));
5021         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5022
5023         /* fill in sg elements */
5024         if (use_sg > h->ioaccel_maxsg) {
5025                 cp->sg_count = 1;
5026                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5027                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5028                         atomic_dec(&phys_disk->ioaccel_cmds_out);
5029                         scsi_dma_unmap(cmd);
5030                         return -1;
5031                 }
5032         } else
5033                 cp->sg_count = (u8) use_sg;
5034
5035         if (phys_disk->in_reset) {
5036                 cmd->result = DID_RESET << 16;
5037                 return -1;
5038         }
5039
5040         enqueue_cmd_and_start_io(h, c);
5041         return 0;
5042 }
5043
5044 /*
5045  * Queue a command to the correct I/O accelerator path.
5046  */
5047 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5048         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5049         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5050 {
5051         if (!c->scsi_cmd->device)
5052                 return -1;
5053
5054         if (!c->scsi_cmd->device->hostdata)
5055                 return -1;
5056
5057         if (phys_disk->in_reset)
5058                 return -1;
5059
5060         /* Try to honor the device's queue depth */
5061         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5062                                         phys_disk->queue_depth) {
5063                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5064                 return IO_ACCEL_INELIGIBLE;
5065         }
5066         if (h->transMethod & CFGTBL_Trans_io_accel1)
5067                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5068                                                 cdb, cdb_len, scsi3addr,
5069                                                 phys_disk);
5070         else
5071                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5072                                                 cdb, cdb_len, scsi3addr,
5073                                                 phys_disk);
5074 }
5075
5076 static void raid_map_helper(struct raid_map_data *map,
5077                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5078 {
5079         if (offload_to_mirror == 0)  {
5080                 /* use physical disk in the first mirrored group. */
5081                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5082                 return;
5083         }
5084         do {
5085                 /* determine mirror group that *map_index indicates */
5086                 *current_group = *map_index /
5087                         le16_to_cpu(map->data_disks_per_row);
5088                 if (offload_to_mirror == *current_group)
5089                         continue;
5090                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5091                         /* select map index from next group */
5092                         *map_index += le16_to_cpu(map->data_disks_per_row);
5093                         (*current_group)++;
5094                 } else {
5095                         /* select map index from first group */
5096                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5097                         *current_group = 0;
5098                 }
5099         } while (offload_to_mirror != *current_group);
5100 }
5101
5102 /*
5103  * Attempt to perform offload RAID mapping for a logical volume I/O.
5104  */
5105 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5106         struct CommandList *c)
5107 {
5108         struct scsi_cmnd *cmd = c->scsi_cmd;
5109         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5110         struct raid_map_data *map = &dev->raid_map;
5111         struct raid_map_disk_data *dd = &map->data[0];
5112         int is_write = 0;
5113         u32 map_index;
5114         u64 first_block, last_block;
5115         u32 block_cnt;
5116         u32 blocks_per_row;
5117         u64 first_row, last_row;
5118         u32 first_row_offset, last_row_offset;
5119         u32 first_column, last_column;
5120         u64 r0_first_row, r0_last_row;
5121         u32 r5or6_blocks_per_row;
5122         u64 r5or6_first_row, r5or6_last_row;
5123         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5124         u32 r5or6_first_column, r5or6_last_column;
5125         u32 total_disks_per_row;
5126         u32 stripesize;
5127         u32 first_group, last_group, current_group;
5128         u32 map_row;
5129         u32 disk_handle;
5130         u64 disk_block;
5131         u32 disk_block_cnt;
5132         u8 cdb[16];
5133         u8 cdb_len;
5134         u16 strip_size;
5135 #if BITS_PER_LONG == 32
5136         u64 tmpdiv;
5137 #endif
5138         int offload_to_mirror;
5139
5140         if (!dev)
5141                 return -1;
5142
5143         if (dev->in_reset)
5144                 return -1;
5145
5146         /* check for valid opcode, get LBA and block count */
5147         switch (cmd->cmnd[0]) {
5148         case WRITE_6:
5149                 is_write = 1;
5150                 /* fall through */
5151         case READ_6:
5152                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5153                                 (cmd->cmnd[2] << 8) |
5154                                 cmd->cmnd[3]);
5155                 block_cnt = cmd->cmnd[4];
5156                 if (block_cnt == 0)
5157                         block_cnt = 256;
5158                 break;
5159         case WRITE_10:
5160                 is_write = 1;
5161                 /* fall through */
5162         case READ_10:
5163                 first_block =
5164                         (((u64) cmd->cmnd[2]) << 24) |
5165                         (((u64) cmd->cmnd[3]) << 16) |
5166                         (((u64) cmd->cmnd[4]) << 8) |
5167                         cmd->cmnd[5];
5168                 block_cnt =
5169                         (((u32) cmd->cmnd[7]) << 8) |
5170                         cmd->cmnd[8];
5171                 break;
5172         case WRITE_12:
5173                 is_write = 1;
5174                 /* fall through */
5175         case READ_12:
5176                 first_block =
5177                         (((u64) cmd->cmnd[2]) << 24) |
5178                         (((u64) cmd->cmnd[3]) << 16) |
5179                         (((u64) cmd->cmnd[4]) << 8) |
5180                         cmd->cmnd[5];
5181                 block_cnt =
5182                         (((u32) cmd->cmnd[6]) << 24) |
5183                         (((u32) cmd->cmnd[7]) << 16) |
5184                         (((u32) cmd->cmnd[8]) << 8) |
5185                 cmd->cmnd[9];
5186                 break;
5187         case WRITE_16:
5188                 is_write = 1;
5189                 /* fall through */
5190         case READ_16:
5191                 first_block =
5192                         (((u64) cmd->cmnd[2]) << 56) |
5193                         (((u64) cmd->cmnd[3]) << 48) |
5194                         (((u64) cmd->cmnd[4]) << 40) |
5195                         (((u64) cmd->cmnd[5]) << 32) |
5196                         (((u64) cmd->cmnd[6]) << 24) |
5197                         (((u64) cmd->cmnd[7]) << 16) |
5198                         (((u64) cmd->cmnd[8]) << 8) |
5199                         cmd->cmnd[9];
5200                 block_cnt =
5201                         (((u32) cmd->cmnd[10]) << 24) |
5202                         (((u32) cmd->cmnd[11]) << 16) |
5203                         (((u32) cmd->cmnd[12]) << 8) |
5204                         cmd->cmnd[13];
5205                 break;
5206         default:
5207                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5208         }
5209         last_block = first_block + block_cnt - 1;
5210
5211         /* check for write to non-RAID-0 */
5212         if (is_write && dev->raid_level != 0)
5213                 return IO_ACCEL_INELIGIBLE;
5214
5215         /* check for invalid block or wraparound */
5216         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5217                 last_block < first_block)
5218                 return IO_ACCEL_INELIGIBLE;
5219
5220         /* calculate stripe information for the request */
5221         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5222                                 le16_to_cpu(map->strip_size);
5223         strip_size = le16_to_cpu(map->strip_size);
5224 #if BITS_PER_LONG == 32
5225         tmpdiv = first_block;
5226         (void) do_div(tmpdiv, blocks_per_row);
5227         first_row = tmpdiv;
5228         tmpdiv = last_block;
5229         (void) do_div(tmpdiv, blocks_per_row);
5230         last_row = tmpdiv;
5231         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5232         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5233         tmpdiv = first_row_offset;
5234         (void) do_div(tmpdiv, strip_size);
5235         first_column = tmpdiv;
5236         tmpdiv = last_row_offset;
5237         (void) do_div(tmpdiv, strip_size);
5238         last_column = tmpdiv;
5239 #else
5240         first_row = first_block / blocks_per_row;
5241         last_row = last_block / blocks_per_row;
5242         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5243         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5244         first_column = first_row_offset / strip_size;
5245         last_column = last_row_offset / strip_size;
5246 #endif
5247
5248         /* if this isn't a single row/column then give to the controller */
5249         if ((first_row != last_row) || (first_column != last_column))
5250                 return IO_ACCEL_INELIGIBLE;
5251
5252         /* proceeding with driver mapping */
5253         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5254                                 le16_to_cpu(map->metadata_disks_per_row);
5255         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5256                                 le16_to_cpu(map->row_cnt);
5257         map_index = (map_row * total_disks_per_row) + first_column;
5258
5259         switch (dev->raid_level) {
5260         case HPSA_RAID_0:
5261                 break; /* nothing special to do */
5262         case HPSA_RAID_1:
5263                 /* Handles load balance across RAID 1 members.
5264                  * (2-drive R1 and R10 with even # of drives.)
5265                  * Appropriate for SSDs, not optimal for HDDs
5266                  * Ensure we have the correct raid_map.
5267                  */
5268                 if (le16_to_cpu(map->layout_map_count) != 2) {
5269                         hpsa_turn_off_ioaccel_for_device(dev);
5270                         return IO_ACCEL_INELIGIBLE;
5271                 }
5272                 if (dev->offload_to_mirror)
5273                         map_index += le16_to_cpu(map->data_disks_per_row);
5274                 dev->offload_to_mirror = !dev->offload_to_mirror;
5275                 break;
5276         case HPSA_RAID_ADM:
5277                 /* Handles N-way mirrors  (R1-ADM)
5278                  * and R10 with # of drives divisible by 3.)
5279                  * Ensure we have the correct raid_map.
5280                  */
5281                 if (le16_to_cpu(map->layout_map_count) != 3) {
5282                         hpsa_turn_off_ioaccel_for_device(dev);
5283                         return IO_ACCEL_INELIGIBLE;
5284                 }
5285
5286                 offload_to_mirror = dev->offload_to_mirror;
5287                 raid_map_helper(map, offload_to_mirror,
5288                                 &map_index, &current_group);
5289                 /* set mirror group to use next time */
5290                 offload_to_mirror =
5291                         (offload_to_mirror >=
5292                         le16_to_cpu(map->layout_map_count) - 1)
5293                         ? 0 : offload_to_mirror + 1;
5294                 dev->offload_to_mirror = offload_to_mirror;
5295                 /* Avoid direct use of dev->offload_to_mirror within this
5296                  * function since multiple threads might simultaneously
5297                  * increment it beyond the range of dev->layout_map_count -1.
5298                  */
5299                 break;
5300         case HPSA_RAID_5:
5301         case HPSA_RAID_6:
5302                 if (le16_to_cpu(map->layout_map_count) <= 1)
5303                         break;
5304
5305                 /* Verify first and last block are in same RAID group */
5306                 r5or6_blocks_per_row =
5307                         le16_to_cpu(map->strip_size) *
5308                         le16_to_cpu(map->data_disks_per_row);
5309                 if (r5or6_blocks_per_row == 0) {
5310                         hpsa_turn_off_ioaccel_for_device(dev);
5311                         return IO_ACCEL_INELIGIBLE;
5312                 }
5313                 stripesize = r5or6_blocks_per_row *
5314                         le16_to_cpu(map->layout_map_count);
5315 #if BITS_PER_LONG == 32
5316                 tmpdiv = first_block;
5317                 first_group = do_div(tmpdiv, stripesize);
5318                 tmpdiv = first_group;
5319                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5320                 first_group = tmpdiv;
5321                 tmpdiv = last_block;
5322                 last_group = do_div(tmpdiv, stripesize);
5323                 tmpdiv = last_group;
5324                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5325                 last_group = tmpdiv;
5326 #else
5327                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5328                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5329 #endif
5330                 if (first_group != last_group)
5331                         return IO_ACCEL_INELIGIBLE;
5332
5333                 /* Verify request is in a single row of RAID 5/6 */
5334 #if BITS_PER_LONG == 32
5335                 tmpdiv = first_block;
5336                 (void) do_div(tmpdiv, stripesize);
5337                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5338                 tmpdiv = last_block;
5339                 (void) do_div(tmpdiv, stripesize);
5340                 r5or6_last_row = r0_last_row = tmpdiv;
5341 #else
5342                 first_row = r5or6_first_row = r0_first_row =
5343                                                 first_block / stripesize;
5344                 r5or6_last_row = r0_last_row = last_block / stripesize;
5345 #endif
5346                 if (r5or6_first_row != r5or6_last_row)
5347                         return IO_ACCEL_INELIGIBLE;
5348
5349
5350                 /* Verify request is in a single column */
5351 #if BITS_PER_LONG == 32
5352                 tmpdiv = first_block;
5353                 first_row_offset = do_div(tmpdiv, stripesize);
5354                 tmpdiv = first_row_offset;
5355                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5356                 r5or6_first_row_offset = first_row_offset;
5357                 tmpdiv = last_block;
5358                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5359                 tmpdiv = r5or6_last_row_offset;
5360                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5361                 tmpdiv = r5or6_first_row_offset;
5362                 (void) do_div(tmpdiv, map->strip_size);
5363                 first_column = r5or6_first_column = tmpdiv;
5364                 tmpdiv = r5or6_last_row_offset;
5365                 (void) do_div(tmpdiv, map->strip_size);
5366                 r5or6_last_column = tmpdiv;
5367 #else
5368                 first_row_offset = r5or6_first_row_offset =
5369                         (u32)((first_block % stripesize) %
5370                                                 r5or6_blocks_per_row);
5371
5372                 r5or6_last_row_offset =
5373                         (u32)((last_block % stripesize) %
5374                                                 r5or6_blocks_per_row);
5375
5376                 first_column = r5or6_first_column =
5377                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5378                 r5or6_last_column =
5379                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5380 #endif
5381                 if (r5or6_first_column != r5or6_last_column)
5382                         return IO_ACCEL_INELIGIBLE;
5383
5384                 /* Request is eligible */
5385                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5386                         le16_to_cpu(map->row_cnt);
5387
5388                 map_index = (first_group *
5389                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5390                         (map_row * total_disks_per_row) + first_column;
5391                 break;
5392         default:
5393                 return IO_ACCEL_INELIGIBLE;
5394         }
5395
5396         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5397                 return IO_ACCEL_INELIGIBLE;
5398
5399         c->phys_disk = dev->phys_disk[map_index];
5400         if (!c->phys_disk)
5401                 return IO_ACCEL_INELIGIBLE;
5402
5403         disk_handle = dd[map_index].ioaccel_handle;
5404         disk_block = le64_to_cpu(map->disk_starting_blk) +
5405                         first_row * le16_to_cpu(map->strip_size) +
5406                         (first_row_offset - first_column *
5407                         le16_to_cpu(map->strip_size));
5408         disk_block_cnt = block_cnt;
5409
5410         /* handle differing logical/physical block sizes */
5411         if (map->phys_blk_shift) {
5412                 disk_block <<= map->phys_blk_shift;
5413                 disk_block_cnt <<= map->phys_blk_shift;
5414         }
5415         BUG_ON(disk_block_cnt > 0xffff);
5416
5417         /* build the new CDB for the physical disk I/O */
5418         if (disk_block > 0xffffffff) {
5419                 cdb[0] = is_write ? WRITE_16 : READ_16;
5420                 cdb[1] = 0;
5421                 cdb[2] = (u8) (disk_block >> 56);
5422                 cdb[3] = (u8) (disk_block >> 48);
5423                 cdb[4] = (u8) (disk_block >> 40);
5424                 cdb[5] = (u8) (disk_block >> 32);
5425                 cdb[6] = (u8) (disk_block >> 24);
5426                 cdb[7] = (u8) (disk_block >> 16);
5427                 cdb[8] = (u8) (disk_block >> 8);
5428                 cdb[9] = (u8) (disk_block);
5429                 cdb[10] = (u8) (disk_block_cnt >> 24);
5430                 cdb[11] = (u8) (disk_block_cnt >> 16);
5431                 cdb[12] = (u8) (disk_block_cnt >> 8);
5432                 cdb[13] = (u8) (disk_block_cnt);
5433                 cdb[14] = 0;
5434                 cdb[15] = 0;
5435                 cdb_len = 16;
5436         } else {
5437                 cdb[0] = is_write ? WRITE_10 : READ_10;
5438                 cdb[1] = 0;
5439                 cdb[2] = (u8) (disk_block >> 24);
5440                 cdb[3] = (u8) (disk_block >> 16);
5441                 cdb[4] = (u8) (disk_block >> 8);
5442                 cdb[5] = (u8) (disk_block);
5443                 cdb[6] = 0;
5444                 cdb[7] = (u8) (disk_block_cnt >> 8);
5445                 cdb[8] = (u8) (disk_block_cnt);
5446                 cdb[9] = 0;
5447                 cdb_len = 10;
5448         }
5449         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5450                                                 dev->scsi3addr,
5451                                                 dev->phys_disk[map_index]);
5452 }
5453
5454 /*
5455  * Submit commands down the "normal" RAID stack path
5456  * All callers to hpsa_ciss_submit must check lockup_detected
5457  * beforehand, before (opt.) and after calling cmd_alloc
5458  */
5459 static int hpsa_ciss_submit(struct ctlr_info *h,
5460         struct CommandList *c, struct scsi_cmnd *cmd,
5461         struct hpsa_scsi_dev_t *dev)
5462 {
5463         cmd->host_scribble = (unsigned char *) c;
5464         c->cmd_type = CMD_SCSI;
5465         c->scsi_cmd = cmd;
5466         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5467         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5468         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5469
5470         /* Fill in the request block... */
5471
5472         c->Request.Timeout = 0;
5473         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5474         c->Request.CDBLen = cmd->cmd_len;
5475         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5476         switch (cmd->sc_data_direction) {
5477         case DMA_TO_DEVICE:
5478                 c->Request.type_attr_dir =
5479                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5480                 break;
5481         case DMA_FROM_DEVICE:
5482                 c->Request.type_attr_dir =
5483                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5484                 break;
5485         case DMA_NONE:
5486                 c->Request.type_attr_dir =
5487                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5488                 break;
5489         case DMA_BIDIRECTIONAL:
5490                 /* This can happen if a buggy application does a scsi passthru
5491                  * and sets both inlen and outlen to non-zero. ( see
5492                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5493                  */
5494
5495                 c->Request.type_attr_dir =
5496                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5497                 /* This is technically wrong, and hpsa controllers should
5498                  * reject it with CMD_INVALID, which is the most correct
5499                  * response, but non-fibre backends appear to let it
5500                  * slide by, and give the same results as if this field
5501                  * were set correctly.  Either way is acceptable for
5502                  * our purposes here.
5503                  */
5504
5505                 break;
5506
5507         default:
5508                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5509                         cmd->sc_data_direction);
5510                 BUG();
5511                 break;
5512         }
5513
5514         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5515                 hpsa_cmd_resolve_and_free(h, c);
5516                 return SCSI_MLQUEUE_HOST_BUSY;
5517         }
5518
5519         if (dev->in_reset) {
5520                 hpsa_cmd_resolve_and_free(h, c);
5521                 return SCSI_MLQUEUE_HOST_BUSY;
5522         }
5523
5524         c->device = dev;
5525
5526         enqueue_cmd_and_start_io(h, c);
5527         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5528         return 0;
5529 }
5530
5531 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5532                                 struct CommandList *c)
5533 {
5534         dma_addr_t cmd_dma_handle, err_dma_handle;
5535
5536         /* Zero out all of commandlist except the last field, refcount */
5537         memset(c, 0, offsetof(struct CommandList, refcount));
5538         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5539         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5540         c->err_info = h->errinfo_pool + index;
5541         memset(c->err_info, 0, sizeof(*c->err_info));
5542         err_dma_handle = h->errinfo_pool_dhandle
5543             + index * sizeof(*c->err_info);
5544         c->cmdindex = index;
5545         c->busaddr = (u32) cmd_dma_handle;
5546         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5547         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5548         c->h = h;
5549         c->scsi_cmd = SCSI_CMD_IDLE;
5550 }
5551
5552 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5553 {
5554         int i;
5555
5556         for (i = 0; i < h->nr_cmds; i++) {
5557                 struct CommandList *c = h->cmd_pool + i;
5558
5559                 hpsa_cmd_init(h, i, c);
5560                 atomic_set(&c->refcount, 0);
5561         }
5562 }
5563
5564 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5565                                 struct CommandList *c)
5566 {
5567         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5568
5569         BUG_ON(c->cmdindex != index);
5570
5571         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5572         memset(c->err_info, 0, sizeof(*c->err_info));
5573         c->busaddr = (u32) cmd_dma_handle;
5574 }
5575
5576 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5577                 struct CommandList *c, struct scsi_cmnd *cmd)
5578 {
5579         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5580         int rc = IO_ACCEL_INELIGIBLE;
5581
5582         if (!dev)
5583                 return SCSI_MLQUEUE_HOST_BUSY;
5584
5585         if (dev->in_reset)
5586                 return SCSI_MLQUEUE_HOST_BUSY;
5587
5588         if (hpsa_simple_mode)
5589                 return IO_ACCEL_INELIGIBLE;
5590
5591         cmd->host_scribble = (unsigned char *) c;
5592
5593         if (dev->offload_enabled) {
5594                 hpsa_cmd_init(h, c->cmdindex, c);
5595                 c->cmd_type = CMD_SCSI;
5596                 c->scsi_cmd = cmd;
5597                 c->device = dev;
5598                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5599                 if (rc < 0)     /* scsi_dma_map failed. */
5600                         rc = SCSI_MLQUEUE_HOST_BUSY;
5601         } else if (dev->hba_ioaccel_enabled) {
5602                 hpsa_cmd_init(h, c->cmdindex, c);
5603                 c->cmd_type = CMD_SCSI;
5604                 c->scsi_cmd = cmd;
5605                 c->device = dev;
5606                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5607                 if (rc < 0)     /* scsi_dma_map failed. */
5608                         rc = SCSI_MLQUEUE_HOST_BUSY;
5609         }
5610         return rc;
5611 }
5612
5613 static void hpsa_command_resubmit_worker(struct work_struct *work)
5614 {
5615         struct scsi_cmnd *cmd;
5616         struct hpsa_scsi_dev_t *dev;
5617         struct CommandList *c = container_of(work, struct CommandList, work);
5618
5619         cmd = c->scsi_cmd;
5620         dev = cmd->device->hostdata;
5621         if (!dev) {
5622                 cmd->result = DID_NO_CONNECT << 16;
5623                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5624         }
5625
5626         if (dev->in_reset) {
5627                 cmd->result = DID_RESET << 16;
5628                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5629         }
5630
5631         if (c->cmd_type == CMD_IOACCEL2) {
5632                 struct ctlr_info *h = c->h;
5633                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5634                 int rc;
5635
5636                 if (c2->error_data.serv_response ==
5637                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5638                         rc = hpsa_ioaccel_submit(h, c, cmd);
5639                         if (rc == 0)
5640                                 return;
5641                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5642                                 /*
5643                                  * If we get here, it means dma mapping failed.
5644                                  * Try again via scsi mid layer, which will
5645                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5646                                  */
5647                                 cmd->result = DID_IMM_RETRY << 16;
5648                                 return hpsa_cmd_free_and_done(h, c, cmd);
5649                         }
5650                         /* else, fall thru and resubmit down CISS path */
5651                 }
5652         }
5653         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5654         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5655                 /*
5656                  * If we get here, it means dma mapping failed. Try
5657                  * again via scsi mid layer, which will then get
5658                  * SCSI_MLQUEUE_HOST_BUSY.
5659                  *
5660                  * hpsa_ciss_submit will have already freed c
5661                  * if it encountered a dma mapping failure.
5662                  */
5663                 cmd->result = DID_IMM_RETRY << 16;
5664                 cmd->scsi_done(cmd);
5665         }
5666 }
5667
5668 /* Running in struct Scsi_Host->host_lock less mode */
5669 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5670 {
5671         struct ctlr_info *h;
5672         struct hpsa_scsi_dev_t *dev;
5673         struct CommandList *c;
5674         int rc = 0;
5675
5676         /* Get the ptr to our adapter structure out of cmd->host. */
5677         h = sdev_to_hba(cmd->device);
5678
5679         BUG_ON(cmd->request->tag < 0);
5680
5681         dev = cmd->device->hostdata;
5682         if (!dev) {
5683                 cmd->result = DID_NO_CONNECT << 16;
5684                 cmd->scsi_done(cmd);
5685                 return 0;
5686         }
5687
5688         if (dev->removed) {
5689                 cmd->result = DID_NO_CONNECT << 16;
5690                 cmd->scsi_done(cmd);
5691                 return 0;
5692         }
5693
5694         if (unlikely(lockup_detected(h))) {
5695                 cmd->result = DID_NO_CONNECT << 16;
5696                 cmd->scsi_done(cmd);
5697                 return 0;
5698         }
5699
5700         if (dev->in_reset)
5701                 return SCSI_MLQUEUE_DEVICE_BUSY;
5702
5703         c = cmd_tagged_alloc(h, cmd);
5704         if (c == NULL)
5705                 return SCSI_MLQUEUE_DEVICE_BUSY;
5706
5707         /*
5708          * This is necessary because the SML doesn't zero out this field during
5709          * error recovery.
5710          */
5711         cmd->result = 0;
5712
5713         /*
5714          * Call alternate submit routine for I/O accelerated commands.
5715          * Retries always go down the normal I/O path.
5716          */
5717         if (likely(cmd->retries == 0 &&
5718                         !blk_rq_is_passthrough(cmd->request) &&
5719                         h->acciopath_status)) {
5720                 rc = hpsa_ioaccel_submit(h, c, cmd);
5721                 if (rc == 0)
5722                         return 0;
5723                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5724                         hpsa_cmd_resolve_and_free(h, c);
5725                         return SCSI_MLQUEUE_HOST_BUSY;
5726                 }
5727         }
5728         return hpsa_ciss_submit(h, c, cmd, dev);
5729 }
5730
5731 static void hpsa_scan_complete(struct ctlr_info *h)
5732 {
5733         unsigned long flags;
5734
5735         spin_lock_irqsave(&h->scan_lock, flags);
5736         h->scan_finished = 1;
5737         wake_up(&h->scan_wait_queue);
5738         spin_unlock_irqrestore(&h->scan_lock, flags);
5739 }
5740
5741 static void hpsa_scan_start(struct Scsi_Host *sh)
5742 {
5743         struct ctlr_info *h = shost_to_hba(sh);
5744         unsigned long flags;
5745
5746         /*
5747          * Don't let rescans be initiated on a controller known to be locked
5748          * up.  If the controller locks up *during* a rescan, that thread is
5749          * probably hosed, but at least we can prevent new rescan threads from
5750          * piling up on a locked up controller.
5751          */
5752         if (unlikely(lockup_detected(h)))
5753                 return hpsa_scan_complete(h);
5754
5755         /*
5756          * If a scan is already waiting to run, no need to add another
5757          */
5758         spin_lock_irqsave(&h->scan_lock, flags);
5759         if (h->scan_waiting) {
5760                 spin_unlock_irqrestore(&h->scan_lock, flags);
5761                 return;
5762         }
5763
5764         spin_unlock_irqrestore(&h->scan_lock, flags);
5765
5766         /* wait until any scan already in progress is finished. */
5767         while (1) {
5768                 spin_lock_irqsave(&h->scan_lock, flags);
5769                 if (h->scan_finished)
5770                         break;
5771                 h->scan_waiting = 1;
5772                 spin_unlock_irqrestore(&h->scan_lock, flags);
5773                 wait_event(h->scan_wait_queue, h->scan_finished);
5774                 /* Note: We don't need to worry about a race between this
5775                  * thread and driver unload because the midlayer will
5776                  * have incremented the reference count, so unload won't
5777                  * happen if we're in here.
5778                  */
5779         }
5780         h->scan_finished = 0; /* mark scan as in progress */
5781         h->scan_waiting = 0;
5782         spin_unlock_irqrestore(&h->scan_lock, flags);
5783
5784         if (unlikely(lockup_detected(h)))
5785                 return hpsa_scan_complete(h);
5786
5787         /*
5788          * Do the scan after a reset completion
5789          */
5790         spin_lock_irqsave(&h->reset_lock, flags);
5791         if (h->reset_in_progress) {
5792                 h->drv_req_rescan = 1;
5793                 spin_unlock_irqrestore(&h->reset_lock, flags);
5794                 hpsa_scan_complete(h);
5795                 return;
5796         }
5797         spin_unlock_irqrestore(&h->reset_lock, flags);
5798
5799         hpsa_update_scsi_devices(h);
5800
5801         hpsa_scan_complete(h);
5802 }
5803
5804 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5805 {
5806         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5807
5808         if (!logical_drive)
5809                 return -ENODEV;
5810
5811         if (qdepth < 1)
5812                 qdepth = 1;
5813         else if (qdepth > logical_drive->queue_depth)
5814                 qdepth = logical_drive->queue_depth;
5815
5816         return scsi_change_queue_depth(sdev, qdepth);
5817 }
5818
5819 static int hpsa_scan_finished(struct Scsi_Host *sh,
5820         unsigned long elapsed_time)
5821 {
5822         struct ctlr_info *h = shost_to_hba(sh);
5823         unsigned long flags;
5824         int finished;
5825
5826         spin_lock_irqsave(&h->scan_lock, flags);
5827         finished = h->scan_finished;
5828         spin_unlock_irqrestore(&h->scan_lock, flags);
5829         return finished;
5830 }
5831
5832 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5833 {
5834         struct Scsi_Host *sh;
5835
5836         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5837         if (sh == NULL) {
5838                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5839                 return -ENOMEM;
5840         }
5841
5842         sh->io_port = 0;
5843         sh->n_io_port = 0;
5844         sh->this_id = -1;
5845         sh->max_channel = 3;
5846         sh->max_cmd_len = MAX_COMMAND_SIZE;
5847         sh->max_lun = HPSA_MAX_LUN;
5848         sh->max_id = HPSA_MAX_LUN;
5849         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5850         sh->cmd_per_lun = sh->can_queue;
5851         sh->sg_tablesize = h->maxsgentries;
5852         sh->transportt = hpsa_sas_transport_template;
5853         sh->hostdata[0] = (unsigned long) h;
5854         sh->irq = pci_irq_vector(h->pdev, 0);
5855         sh->unique_id = sh->irq;
5856
5857         h->scsi_host = sh;
5858         return 0;
5859 }
5860
5861 static int hpsa_scsi_add_host(struct ctlr_info *h)
5862 {
5863         int rv;
5864
5865         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5866         if (rv) {
5867                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5868                 return rv;
5869         }
5870         scsi_scan_host(h->scsi_host);
5871         return 0;
5872 }
5873
5874 /*
5875  * The block layer has already gone to the trouble of picking out a unique,
5876  * small-integer tag for this request.  We use an offset from that value as
5877  * an index to select our command block.  (The offset allows us to reserve the
5878  * low-numbered entries for our own uses.)
5879  */
5880 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5881 {
5882         int idx = scmd->request->tag;
5883
5884         if (idx < 0)
5885                 return idx;
5886
5887         /* Offset to leave space for internal cmds. */
5888         return idx += HPSA_NRESERVED_CMDS;
5889 }
5890
5891 /*
5892  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5893  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5894  */
5895 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5896                                 struct CommandList *c, unsigned char lunaddr[],
5897                                 int reply_queue)
5898 {
5899         int rc;
5900
5901         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5902         (void) fill_cmd(c, TEST_UNIT_READY, h,
5903                         NULL, 0, 0, lunaddr, TYPE_CMD);
5904         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5905         if (rc)
5906                 return rc;
5907         /* no unmap needed here because no data xfer. */
5908
5909         /* Check if the unit is already ready. */
5910         if (c->err_info->CommandStatus == CMD_SUCCESS)
5911                 return 0;
5912
5913         /*
5914          * The first command sent after reset will receive "unit attention" to
5915          * indicate that the LUN has been reset...this is actually what we're
5916          * looking for (but, success is good too).
5917          */
5918         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5919                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5920                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5921                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5922                 return 0;
5923
5924         return 1;
5925 }
5926
5927 /*
5928  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5929  * returns zero when the unit is ready, and non-zero when giving up.
5930  */
5931 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5932                                 struct CommandList *c,
5933                                 unsigned char lunaddr[], int reply_queue)
5934 {
5935         int rc;
5936         int count = 0;
5937         int waittime = 1; /* seconds */
5938
5939         /* Send test unit ready until device ready, or give up. */
5940         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5941
5942                 /*
5943                  * Wait for a bit.  do this first, because if we send
5944                  * the TUR right away, the reset will just abort it.
5945                  */
5946                 msleep(1000 * waittime);
5947
5948                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5949                 if (!rc)
5950                         break;
5951
5952                 /* Increase wait time with each try, up to a point. */
5953                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5954                         waittime *= 2;
5955
5956                 dev_warn(&h->pdev->dev,
5957                          "waiting %d secs for device to become ready.\n",
5958                          waittime);
5959         }
5960
5961         return rc;
5962 }
5963
5964 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5965                                            unsigned char lunaddr[],
5966                                            int reply_queue)
5967 {
5968         int first_queue;
5969         int last_queue;
5970         int rq;
5971         int rc = 0;
5972         struct CommandList *c;
5973
5974         c = cmd_alloc(h);
5975
5976         /*
5977          * If no specific reply queue was requested, then send the TUR
5978          * repeatedly, requesting a reply on each reply queue; otherwise execute
5979          * the loop exactly once using only the specified queue.
5980          */
5981         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5982                 first_queue = 0;
5983                 last_queue = h->nreply_queues - 1;
5984         } else {
5985                 first_queue = reply_queue;
5986                 last_queue = reply_queue;
5987         }
5988
5989         for (rq = first_queue; rq <= last_queue; rq++) {
5990                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5991                 if (rc)
5992                         break;
5993         }
5994
5995         if (rc)
5996                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5997         else
5998                 dev_warn(&h->pdev->dev, "device is ready.\n");
5999
6000         cmd_free(h, c);
6001         return rc;
6002 }
6003
6004 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6005  * complaining.  Doing a host- or bus-reset can't do anything good here.
6006  */
6007 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6008 {
6009         int rc = SUCCESS;
6010         int i;
6011         struct ctlr_info *h;
6012         struct hpsa_scsi_dev_t *dev = NULL;
6013         u8 reset_type;
6014         char msg[48];
6015         unsigned long flags;
6016
6017         /* find the controller to which the command to be aborted was sent */
6018         h = sdev_to_hba(scsicmd->device);
6019         if (h == NULL) /* paranoia */
6020                 return FAILED;
6021
6022         spin_lock_irqsave(&h->reset_lock, flags);
6023         h->reset_in_progress = 1;
6024         spin_unlock_irqrestore(&h->reset_lock, flags);
6025
6026         if (lockup_detected(h)) {
6027                 rc = FAILED;
6028                 goto return_reset_status;
6029         }
6030
6031         dev = scsicmd->device->hostdata;
6032         if (!dev) {
6033                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6034                 rc = FAILED;
6035                 goto return_reset_status;
6036         }
6037
6038         if (dev->devtype == TYPE_ENCLOSURE) {
6039                 rc = SUCCESS;
6040                 goto return_reset_status;
6041         }
6042
6043         /* if controller locked up, we can guarantee command won't complete */
6044         if (lockup_detected(h)) {
6045                 snprintf(msg, sizeof(msg),
6046                          "cmd %d RESET FAILED, lockup detected",
6047                          hpsa_get_cmd_index(scsicmd));
6048                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6049                 rc = FAILED;
6050                 goto return_reset_status;
6051         }
6052
6053         /* this reset request might be the result of a lockup; check */
6054         if (detect_controller_lockup(h)) {
6055                 snprintf(msg, sizeof(msg),
6056                          "cmd %d RESET FAILED, new lockup detected",
6057                          hpsa_get_cmd_index(scsicmd));
6058                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6059                 rc = FAILED;
6060                 goto return_reset_status;
6061         }
6062
6063         /* Do not attempt on controller */
6064         if (is_hba_lunid(dev->scsi3addr)) {
6065                 rc = SUCCESS;
6066                 goto return_reset_status;
6067         }
6068
6069         if (is_logical_dev_addr_mode(dev->scsi3addr))
6070                 reset_type = HPSA_DEVICE_RESET_MSG;
6071         else
6072                 reset_type = HPSA_PHYS_TARGET_RESET;
6073
6074         sprintf(msg, "resetting %s",
6075                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6076         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6077
6078         /*
6079          * wait to see if any commands will complete before sending reset
6080          */
6081         dev->in_reset = true; /* block any new cmds from OS for this device */
6082         for (i = 0; i < 10; i++) {
6083                 if (atomic_read(&dev->commands_outstanding) > 0)
6084                         msleep(1000);
6085                 else
6086                         break;
6087         }
6088
6089         /* send a reset to the SCSI LUN which the command was sent to */
6090         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6091         if (rc == 0)
6092                 rc = SUCCESS;
6093         else
6094                 rc = FAILED;
6095
6096         sprintf(msg, "reset %s %s",
6097                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6098                 rc == SUCCESS ? "completed successfully" : "failed");
6099         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6100
6101 return_reset_status:
6102         spin_lock_irqsave(&h->reset_lock, flags);
6103         h->reset_in_progress = 0;
6104         if (dev)
6105                 dev->in_reset = false;
6106         spin_unlock_irqrestore(&h->reset_lock, flags);
6107         return rc;
6108 }
6109
6110 /*
6111  * For operations with an associated SCSI command, a command block is allocated
6112  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6113  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6114  * the complement, although cmd_free() may be called instead.
6115  */
6116 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6117                                             struct scsi_cmnd *scmd)
6118 {
6119         int idx = hpsa_get_cmd_index(scmd);
6120         struct CommandList *c = h->cmd_pool + idx;
6121
6122         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6123                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6124                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6125                 /* The index value comes from the block layer, so if it's out of
6126                  * bounds, it's probably not our bug.
6127                  */
6128                 BUG();
6129         }
6130
6131         if (unlikely(!hpsa_is_cmd_idle(c))) {
6132                 /*
6133                  * We expect that the SCSI layer will hand us a unique tag
6134                  * value.  Thus, there should never be a collision here between
6135                  * two requests...because if the selected command isn't idle
6136                  * then someone is going to be very disappointed.
6137                  */
6138                 if (idx != h->last_collision_tag) { /* Print once per tag */
6139                         dev_warn(&h->pdev->dev,
6140                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6141                         if (scmd)
6142                                 scsi_print_command(scmd);
6143                         h->last_collision_tag = idx;
6144                 }
6145                 return NULL;
6146         }
6147
6148         atomic_inc(&c->refcount);
6149
6150         hpsa_cmd_partial_init(h, idx, c);
6151         return c;
6152 }
6153
6154 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6155 {
6156         /*
6157          * Release our reference to the block.  We don't need to do anything
6158          * else to free it, because it is accessed by index.
6159          */
6160         (void)atomic_dec(&c->refcount);
6161 }
6162
6163 /*
6164  * For operations that cannot sleep, a command block is allocated at init,
6165  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6166  * which ones are free or in use.  Lock must be held when calling this.
6167  * cmd_free() is the complement.
6168  * This function never gives up and returns NULL.  If it hangs,
6169  * another thread must call cmd_free() to free some tags.
6170  */
6171
6172 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6173 {
6174         struct CommandList *c;
6175         int refcount, i;
6176         int offset = 0;
6177
6178         /*
6179          * There is some *extremely* small but non-zero chance that that
6180          * multiple threads could get in here, and one thread could
6181          * be scanning through the list of bits looking for a free
6182          * one, but the free ones are always behind him, and other
6183          * threads sneak in behind him and eat them before he can
6184          * get to them, so that while there is always a free one, a
6185          * very unlucky thread might be starved anyway, never able to
6186          * beat the other threads.  In reality, this happens so
6187          * infrequently as to be indistinguishable from never.
6188          *
6189          * Note that we start allocating commands before the SCSI host structure
6190          * is initialized.  Since the search starts at bit zero, this
6191          * all works, since we have at least one command structure available;
6192          * however, it means that the structures with the low indexes have to be
6193          * reserved for driver-initiated requests, while requests from the block
6194          * layer will use the higher indexes.
6195          */
6196
6197         for (;;) {
6198                 i = find_next_zero_bit(h->cmd_pool_bits,
6199                                         HPSA_NRESERVED_CMDS,
6200                                         offset);
6201                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6202                         offset = 0;
6203                         continue;
6204                 }
6205                 c = h->cmd_pool + i;
6206                 refcount = atomic_inc_return(&c->refcount);
6207                 if (unlikely(refcount > 1)) {
6208                         cmd_free(h, c); /* already in use */
6209                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6210                         continue;
6211                 }
6212                 set_bit(i & (BITS_PER_LONG - 1),
6213                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6214                 break; /* it's ours now. */
6215         }
6216         hpsa_cmd_partial_init(h, i, c);
6217         c->device = NULL;
6218         return c;
6219 }
6220
6221 /*
6222  * This is the complementary operation to cmd_alloc().  Note, however, in some
6223  * corner cases it may also be used to free blocks allocated by
6224  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6225  * the clear-bit is harmless.
6226  */
6227 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6228 {
6229         if (atomic_dec_and_test(&c->refcount)) {
6230                 int i;
6231
6232                 i = c - h->cmd_pool;
6233                 clear_bit(i & (BITS_PER_LONG - 1),
6234                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6235         }
6236 }
6237
6238 #ifdef CONFIG_COMPAT
6239
6240 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6241         void __user *arg)
6242 {
6243         struct ctlr_info *h = sdev_to_hba(dev);
6244         IOCTL32_Command_struct __user *arg32 = arg;
6245         IOCTL_Command_struct arg64;
6246         int err;
6247         u32 cp;
6248
6249         if (!arg)
6250                 return -EINVAL;
6251
6252         memset(&arg64, 0, sizeof(arg64));
6253         if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6254                 return -EFAULT;
6255         if (get_user(cp, &arg32->buf))
6256                 return -EFAULT;
6257         arg64.buf = compat_ptr(cp);
6258
6259         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6260                 return -EAGAIN;
6261         err = hpsa_passthru_ioctl(h, &arg64);
6262         atomic_inc(&h->passthru_cmds_avail);
6263         if (err)
6264                 return err;
6265         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6266                          sizeof(arg32->error_info)))
6267                 return -EFAULT;
6268         return 0;
6269 }
6270
6271 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6272         unsigned int cmd, void __user *arg)
6273 {
6274         struct ctlr_info *h = sdev_to_hba(dev);
6275         BIG_IOCTL32_Command_struct __user *arg32 = arg;
6276         BIG_IOCTL_Command_struct arg64;
6277         int err;
6278         u32 cp;
6279
6280         if (!arg)
6281                 return -EINVAL;
6282         memset(&arg64, 0, sizeof(arg64));
6283         if (copy_from_user(&arg64, arg32,
6284                            offsetof(BIG_IOCTL32_Command_struct, buf)))
6285                 return -EFAULT;
6286         if (get_user(cp, &arg32->buf))
6287                 return -EFAULT;
6288         arg64.buf = compat_ptr(cp);
6289
6290         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6291                 return -EAGAIN;
6292         err = hpsa_big_passthru_ioctl(h, &arg64);
6293         atomic_inc(&h->passthru_cmds_avail);
6294         if (err)
6295                 return err;
6296         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6297                          sizeof(arg32->error_info)))
6298                 return -EFAULT;
6299         return 0;
6300 }
6301
6302 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6303                              void __user *arg)
6304 {
6305         switch (cmd) {
6306         case CCISS_GETPCIINFO:
6307         case CCISS_GETINTINFO:
6308         case CCISS_SETINTINFO:
6309         case CCISS_GETNODENAME:
6310         case CCISS_SETNODENAME:
6311         case CCISS_GETHEARTBEAT:
6312         case CCISS_GETBUSTYPES:
6313         case CCISS_GETFIRMVER:
6314         case CCISS_GETDRIVVER:
6315         case CCISS_REVALIDVOLS:
6316         case CCISS_DEREGDISK:
6317         case CCISS_REGNEWDISK:
6318         case CCISS_REGNEWD:
6319         case CCISS_RESCANDISK:
6320         case CCISS_GETLUNINFO:
6321                 return hpsa_ioctl(dev, cmd, arg);
6322
6323         case CCISS_PASSTHRU32:
6324                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6325         case CCISS_BIG_PASSTHRU32:
6326                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6327
6328         default:
6329                 return -ENOIOCTLCMD;
6330         }
6331 }
6332 #endif
6333
6334 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6335 {
6336         struct hpsa_pci_info pciinfo;
6337
6338         if (!argp)
6339                 return -EINVAL;
6340         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6341         pciinfo.bus = h->pdev->bus->number;
6342         pciinfo.dev_fn = h->pdev->devfn;
6343         pciinfo.board_id = h->board_id;
6344         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6345                 return -EFAULT;
6346         return 0;
6347 }
6348
6349 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6350 {
6351         DriverVer_type DriverVer;
6352         unsigned char vmaj, vmin, vsubmin;
6353         int rc;
6354
6355         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6356                 &vmaj, &vmin, &vsubmin);
6357         if (rc != 3) {
6358                 dev_info(&h->pdev->dev, "driver version string '%s' "
6359                         "unrecognized.", HPSA_DRIVER_VERSION);
6360                 vmaj = 0;
6361                 vmin = 0;
6362                 vsubmin = 0;
6363         }
6364         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6365         if (!argp)
6366                 return -EINVAL;
6367         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6368                 return -EFAULT;
6369         return 0;
6370 }
6371
6372 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6373                                IOCTL_Command_struct *iocommand)
6374 {
6375         struct CommandList *c;
6376         char *buff = NULL;
6377         u64 temp64;
6378         int rc = 0;
6379
6380         if (!capable(CAP_SYS_RAWIO))
6381                 return -EPERM;
6382         if ((iocommand->buf_size < 1) &&
6383             (iocommand->Request.Type.Direction != XFER_NONE)) {
6384                 return -EINVAL;
6385         }
6386         if (iocommand->buf_size > 0) {
6387                 buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6388                 if (buff == NULL)
6389                         return -ENOMEM;
6390                 if (iocommand->Request.Type.Direction & XFER_WRITE) {
6391                         /* Copy the data into the buffer we created */
6392                         if (copy_from_user(buff, iocommand->buf,
6393                                 iocommand->buf_size)) {
6394                                 rc = -EFAULT;
6395                                 goto out_kfree;
6396                         }
6397                 } else {
6398                         memset(buff, 0, iocommand->buf_size);
6399                 }
6400         }
6401         c = cmd_alloc(h);
6402
6403         /* Fill in the command type */
6404         c->cmd_type = CMD_IOCTL_PEND;
6405         c->scsi_cmd = SCSI_CMD_BUSY;
6406         /* Fill in Command Header */
6407         c->Header.ReplyQueue = 0; /* unused in simple mode */
6408         if (iocommand->buf_size > 0) {  /* buffer to fill */
6409                 c->Header.SGList = 1;
6410                 c->Header.SGTotal = cpu_to_le16(1);
6411         } else  { /* no buffers to fill */
6412                 c->Header.SGList = 0;
6413                 c->Header.SGTotal = cpu_to_le16(0);
6414         }
6415         memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6416
6417         /* Fill in Request block */
6418         memcpy(&c->Request, &iocommand->Request,
6419                 sizeof(c->Request));
6420
6421         /* Fill in the scatter gather information */
6422         if (iocommand->buf_size > 0) {
6423                 temp64 = dma_map_single(&h->pdev->dev, buff,
6424                         iocommand->buf_size, DMA_BIDIRECTIONAL);
6425                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6426                         c->SG[0].Addr = cpu_to_le64(0);
6427                         c->SG[0].Len = cpu_to_le32(0);
6428                         rc = -ENOMEM;
6429                         goto out;
6430                 }
6431                 c->SG[0].Addr = cpu_to_le64(temp64);
6432                 c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6433                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6434         }
6435         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6436                                         NO_TIMEOUT);
6437         if (iocommand->buf_size > 0)
6438                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6439         check_ioctl_unit_attention(h, c);
6440         if (rc) {
6441                 rc = -EIO;
6442                 goto out;
6443         }
6444
6445         /* Copy the error information out */
6446         memcpy(&iocommand->error_info, c->err_info,
6447                 sizeof(iocommand->error_info));
6448         if ((iocommand->Request.Type.Direction & XFER_READ) &&
6449                 iocommand->buf_size > 0) {
6450                 /* Copy the data out of the buffer we created */
6451                 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6452                         rc = -EFAULT;
6453                         goto out;
6454                 }
6455         }
6456 out:
6457         cmd_free(h, c);
6458 out_kfree:
6459         kfree(buff);
6460         return rc;
6461 }
6462
6463 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6464                                    BIG_IOCTL_Command_struct *ioc)
6465 {
6466         struct CommandList *c;
6467         unsigned char **buff = NULL;
6468         int *buff_size = NULL;
6469         u64 temp64;
6470         BYTE sg_used = 0;
6471         int status = 0;
6472         u32 left;
6473         u32 sz;
6474         BYTE __user *data_ptr;
6475
6476         if (!capable(CAP_SYS_RAWIO))
6477                 return -EPERM;
6478
6479         if ((ioc->buf_size < 1) &&
6480             (ioc->Request.Type.Direction != XFER_NONE))
6481                 return -EINVAL;
6482         /* Check kmalloc limits  using all SGs */
6483         if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6484                 return -EINVAL;
6485         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6486                 return -EINVAL;
6487         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6488         if (!buff) {
6489                 status = -ENOMEM;
6490                 goto cleanup1;
6491         }
6492         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6493         if (!buff_size) {
6494                 status = -ENOMEM;
6495                 goto cleanup1;
6496         }
6497         left = ioc->buf_size;
6498         data_ptr = ioc->buf;
6499         while (left) {
6500                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6501                 buff_size[sg_used] = sz;
6502                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6503                 if (buff[sg_used] == NULL) {
6504                         status = -ENOMEM;
6505                         goto cleanup1;
6506                 }
6507                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6508                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6509                                 status = -EFAULT;
6510                                 goto cleanup1;
6511                         }
6512                 } else
6513                         memset(buff[sg_used], 0, sz);
6514                 left -= sz;
6515                 data_ptr += sz;
6516                 sg_used++;
6517         }
6518         c = cmd_alloc(h);
6519
6520         c->cmd_type = CMD_IOCTL_PEND;
6521         c->scsi_cmd = SCSI_CMD_BUSY;
6522         c->Header.ReplyQueue = 0;
6523         c->Header.SGList = (u8) sg_used;
6524         c->Header.SGTotal = cpu_to_le16(sg_used);
6525         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6526         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6527         if (ioc->buf_size > 0) {
6528                 int i;
6529                 for (i = 0; i < sg_used; i++) {
6530                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6531                                     buff_size[i], DMA_BIDIRECTIONAL);
6532                         if (dma_mapping_error(&h->pdev->dev,
6533                                                         (dma_addr_t) temp64)) {
6534                                 c->SG[i].Addr = cpu_to_le64(0);
6535                                 c->SG[i].Len = cpu_to_le32(0);
6536                                 hpsa_pci_unmap(h->pdev, c, i,
6537                                         DMA_BIDIRECTIONAL);
6538                                 status = -ENOMEM;
6539                                 goto cleanup0;
6540                         }
6541                         c->SG[i].Addr = cpu_to_le64(temp64);
6542                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6543                         c->SG[i].Ext = cpu_to_le32(0);
6544                 }
6545                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6546         }
6547         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6548                                                 NO_TIMEOUT);
6549         if (sg_used)
6550                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6551         check_ioctl_unit_attention(h, c);
6552         if (status) {
6553                 status = -EIO;
6554                 goto cleanup0;
6555         }
6556
6557         /* Copy the error information out */
6558         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6559         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6560                 int i;
6561
6562                 /* Copy the data out of the buffer we created */
6563                 BYTE __user *ptr = ioc->buf;
6564                 for (i = 0; i < sg_used; i++) {
6565                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6566                                 status = -EFAULT;
6567                                 goto cleanup0;
6568                         }
6569                         ptr += buff_size[i];
6570                 }
6571         }
6572         status = 0;
6573 cleanup0:
6574         cmd_free(h, c);
6575 cleanup1:
6576         if (buff) {
6577                 int i;
6578
6579                 for (i = 0; i < sg_used; i++)
6580                         kfree(buff[i]);
6581                 kfree(buff);
6582         }
6583         kfree(buff_size);
6584         return status;
6585 }
6586
6587 static void check_ioctl_unit_attention(struct ctlr_info *h,
6588         struct CommandList *c)
6589 {
6590         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6591                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6592                 (void) check_for_unit_attention(h, c);
6593 }
6594
6595 /*
6596  * ioctl
6597  */
6598 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6599                       void __user *argp)
6600 {
6601         struct ctlr_info *h = sdev_to_hba(dev);
6602         int rc;
6603
6604         switch (cmd) {
6605         case CCISS_DEREGDISK:
6606         case CCISS_REGNEWDISK:
6607         case CCISS_REGNEWD:
6608                 hpsa_scan_start(h->scsi_host);
6609                 return 0;
6610         case CCISS_GETPCIINFO:
6611                 return hpsa_getpciinfo_ioctl(h, argp);
6612         case CCISS_GETDRIVVER:
6613                 return hpsa_getdrivver_ioctl(h, argp);
6614         case CCISS_PASSTHRU: {
6615                 IOCTL_Command_struct iocommand;
6616
6617                 if (!argp)
6618                         return -EINVAL;
6619                 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6620                         return -EFAULT;
6621                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6622                         return -EAGAIN;
6623                 rc = hpsa_passthru_ioctl(h, &iocommand);
6624                 atomic_inc(&h->passthru_cmds_avail);
6625                 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6626                         rc = -EFAULT;
6627                 return rc;
6628         }
6629         case CCISS_BIG_PASSTHRU: {
6630                 BIG_IOCTL_Command_struct ioc;
6631                 if (!argp)
6632                         return -EINVAL;
6633                 if (copy_from_user(&ioc, argp, sizeof(ioc)))
6634                         return -EFAULT;
6635                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6636                         return -EAGAIN;
6637                 rc = hpsa_big_passthru_ioctl(h, &ioc);
6638                 atomic_inc(&h->passthru_cmds_avail);
6639                 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6640                         rc = -EFAULT;
6641                 return rc;
6642         }
6643         default:
6644                 return -ENOTTY;
6645         }
6646 }
6647
6648 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6649 {
6650         struct CommandList *c;
6651
6652         c = cmd_alloc(h);
6653
6654         /* fill_cmd can't fail here, no data buffer to map */
6655         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6656                 RAID_CTLR_LUNID, TYPE_MSG);
6657         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6658         c->waiting = NULL;
6659         enqueue_cmd_and_start_io(h, c);
6660         /* Don't wait for completion, the reset won't complete.  Don't free
6661          * the command either.  This is the last command we will send before
6662          * re-initializing everything, so it doesn't matter and won't leak.
6663          */
6664         return;
6665 }
6666
6667 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6668         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6669         int cmd_type)
6670 {
6671         enum dma_data_direction dir = DMA_NONE;
6672
6673         c->cmd_type = CMD_IOCTL_PEND;
6674         c->scsi_cmd = SCSI_CMD_BUSY;
6675         c->Header.ReplyQueue = 0;
6676         if (buff != NULL && size > 0) {
6677                 c->Header.SGList = 1;
6678                 c->Header.SGTotal = cpu_to_le16(1);
6679         } else {
6680                 c->Header.SGList = 0;
6681                 c->Header.SGTotal = cpu_to_le16(0);
6682         }
6683         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6684
6685         if (cmd_type == TYPE_CMD) {
6686                 switch (cmd) {
6687                 case HPSA_INQUIRY:
6688                         /* are we trying to read a vital product page */
6689                         if (page_code & VPD_PAGE) {
6690                                 c->Request.CDB[1] = 0x01;
6691                                 c->Request.CDB[2] = (page_code & 0xff);
6692                         }
6693                         c->Request.CDBLen = 6;
6694                         c->Request.type_attr_dir =
6695                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696                         c->Request.Timeout = 0;
6697                         c->Request.CDB[0] = HPSA_INQUIRY;
6698                         c->Request.CDB[4] = size & 0xFF;
6699                         break;
6700                 case RECEIVE_DIAGNOSTIC:
6701                         c->Request.CDBLen = 6;
6702                         c->Request.type_attr_dir =
6703                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6704                         c->Request.Timeout = 0;
6705                         c->Request.CDB[0] = cmd;
6706                         c->Request.CDB[1] = 1;
6707                         c->Request.CDB[2] = 1;
6708                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6709                         c->Request.CDB[4] = size & 0xFF;
6710                         break;
6711                 case HPSA_REPORT_LOG:
6712                 case HPSA_REPORT_PHYS:
6713                         /* Talking to controller so It's a physical command
6714                            mode = 00 target = 0.  Nothing to write.
6715                          */
6716                         c->Request.CDBLen = 12;
6717                         c->Request.type_attr_dir =
6718                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719                         c->Request.Timeout = 0;
6720                         c->Request.CDB[0] = cmd;
6721                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6722                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6723                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6724                         c->Request.CDB[9] = size & 0xFF;
6725                         break;
6726                 case BMIC_SENSE_DIAG_OPTIONS:
6727                         c->Request.CDBLen = 16;
6728                         c->Request.type_attr_dir =
6729                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6730                         c->Request.Timeout = 0;
6731                         /* Spec says this should be BMIC_WRITE */
6732                         c->Request.CDB[0] = BMIC_READ;
6733                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6734                         break;
6735                 case BMIC_SET_DIAG_OPTIONS:
6736                         c->Request.CDBLen = 16;
6737                         c->Request.type_attr_dir =
6738                                         TYPE_ATTR_DIR(cmd_type,
6739                                                 ATTR_SIMPLE, XFER_WRITE);
6740                         c->Request.Timeout = 0;
6741                         c->Request.CDB[0] = BMIC_WRITE;
6742                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6743                         break;
6744                 case HPSA_CACHE_FLUSH:
6745                         c->Request.CDBLen = 12;
6746                         c->Request.type_attr_dir =
6747                                         TYPE_ATTR_DIR(cmd_type,
6748                                                 ATTR_SIMPLE, XFER_WRITE);
6749                         c->Request.Timeout = 0;
6750                         c->Request.CDB[0] = BMIC_WRITE;
6751                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6752                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6753                         c->Request.CDB[8] = size & 0xFF;
6754                         break;
6755                 case TEST_UNIT_READY:
6756                         c->Request.CDBLen = 6;
6757                         c->Request.type_attr_dir =
6758                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6759                         c->Request.Timeout = 0;
6760                         break;
6761                 case HPSA_GET_RAID_MAP:
6762                         c->Request.CDBLen = 12;
6763                         c->Request.type_attr_dir =
6764                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6765                         c->Request.Timeout = 0;
6766                         c->Request.CDB[0] = HPSA_CISS_READ;
6767                         c->Request.CDB[1] = cmd;
6768                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6769                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6770                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6771                         c->Request.CDB[9] = size & 0xFF;
6772                         break;
6773                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6774                         c->Request.CDBLen = 10;
6775                         c->Request.type_attr_dir =
6776                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6777                         c->Request.Timeout = 0;
6778                         c->Request.CDB[0] = BMIC_READ;
6779                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6780                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6781                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6782                         break;
6783                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6784                         c->Request.CDBLen = 10;
6785                         c->Request.type_attr_dir =
6786                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6787                         c->Request.Timeout = 0;
6788                         c->Request.CDB[0] = BMIC_READ;
6789                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6790                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6791                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6792                         break;
6793                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6794                         c->Request.CDBLen = 10;
6795                         c->Request.type_attr_dir =
6796                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6797                         c->Request.Timeout = 0;
6798                         c->Request.CDB[0] = BMIC_READ;
6799                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6800                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6801                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6802                         break;
6803                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6804                         c->Request.CDBLen = 10;
6805                         c->Request.type_attr_dir =
6806                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6807                         c->Request.Timeout = 0;
6808                         c->Request.CDB[0] = BMIC_READ;
6809                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6810                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6811                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6812                         break;
6813                 case BMIC_IDENTIFY_CONTROLLER:
6814                         c->Request.CDBLen = 10;
6815                         c->Request.type_attr_dir =
6816                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6817                         c->Request.Timeout = 0;
6818                         c->Request.CDB[0] = BMIC_READ;
6819                         c->Request.CDB[1] = 0;
6820                         c->Request.CDB[2] = 0;
6821                         c->Request.CDB[3] = 0;
6822                         c->Request.CDB[4] = 0;
6823                         c->Request.CDB[5] = 0;
6824                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6825                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6826                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6827                         c->Request.CDB[9] = 0;
6828                         break;
6829                 default:
6830                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6831                         BUG();
6832                 }
6833         } else if (cmd_type == TYPE_MSG) {
6834                 switch (cmd) {
6835
6836                 case  HPSA_PHYS_TARGET_RESET:
6837                         c->Request.CDBLen = 16;
6838                         c->Request.type_attr_dir =
6839                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6840                         c->Request.Timeout = 0; /* Don't time out */
6841                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6842                         c->Request.CDB[0] = HPSA_RESET;
6843                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6844                         /* Physical target reset needs no control bytes 4-7*/
6845                         c->Request.CDB[4] = 0x00;
6846                         c->Request.CDB[5] = 0x00;
6847                         c->Request.CDB[6] = 0x00;
6848                         c->Request.CDB[7] = 0x00;
6849                         break;
6850                 case  HPSA_DEVICE_RESET_MSG:
6851                         c->Request.CDBLen = 16;
6852                         c->Request.type_attr_dir =
6853                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6854                         c->Request.Timeout = 0; /* Don't time out */
6855                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6856                         c->Request.CDB[0] =  cmd;
6857                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6858                         /* If bytes 4-7 are zero, it means reset the */
6859                         /* LunID device */
6860                         c->Request.CDB[4] = 0x00;
6861                         c->Request.CDB[5] = 0x00;
6862                         c->Request.CDB[6] = 0x00;
6863                         c->Request.CDB[7] = 0x00;
6864                         break;
6865                 default:
6866                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6867                                 cmd);
6868                         BUG();
6869                 }
6870         } else {
6871                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6872                 BUG();
6873         }
6874
6875         switch (GET_DIR(c->Request.type_attr_dir)) {
6876         case XFER_READ:
6877                 dir = DMA_FROM_DEVICE;
6878                 break;
6879         case XFER_WRITE:
6880                 dir = DMA_TO_DEVICE;
6881                 break;
6882         case XFER_NONE:
6883                 dir = DMA_NONE;
6884                 break;
6885         default:
6886                 dir = DMA_BIDIRECTIONAL;
6887         }
6888         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6889                 return -1;
6890         return 0;
6891 }
6892
6893 /*
6894  * Map (physical) PCI mem into (virtual) kernel space
6895  */
6896 static void __iomem *remap_pci_mem(ulong base, ulong size)
6897 {
6898         ulong page_base = ((ulong) base) & PAGE_MASK;
6899         ulong page_offs = ((ulong) base) - page_base;
6900         void __iomem *page_remapped = ioremap(page_base,
6901                 page_offs + size);
6902
6903         return page_remapped ? (page_remapped + page_offs) : NULL;
6904 }
6905
6906 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6907 {
6908         return h->access.command_completed(h, q);
6909 }
6910
6911 static inline bool interrupt_pending(struct ctlr_info *h)
6912 {
6913         return h->access.intr_pending(h);
6914 }
6915
6916 static inline long interrupt_not_for_us(struct ctlr_info *h)
6917 {
6918         return (h->access.intr_pending(h) == 0) ||
6919                 (h->interrupts_enabled == 0);
6920 }
6921
6922 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6923         u32 raw_tag)
6924 {
6925         if (unlikely(tag_index >= h->nr_cmds)) {
6926                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6927                 return 1;
6928         }
6929         return 0;
6930 }
6931
6932 static inline void finish_cmd(struct CommandList *c)
6933 {
6934         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6935         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6936                         || c->cmd_type == CMD_IOACCEL2))
6937                 complete_scsi_command(c);
6938         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6939                 complete(c->waiting);
6940 }
6941
6942 /* process completion of an indexed ("direct lookup") command */
6943 static inline void process_indexed_cmd(struct ctlr_info *h,
6944         u32 raw_tag)
6945 {
6946         u32 tag_index;
6947         struct CommandList *c;
6948
6949         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6950         if (!bad_tag(h, tag_index, raw_tag)) {
6951                 c = h->cmd_pool + tag_index;
6952                 finish_cmd(c);
6953         }
6954 }
6955
6956 /* Some controllers, like p400, will give us one interrupt
6957  * after a soft reset, even if we turned interrupts off.
6958  * Only need to check for this in the hpsa_xxx_discard_completions
6959  * functions.
6960  */
6961 static int ignore_bogus_interrupt(struct ctlr_info *h)
6962 {
6963         if (likely(!reset_devices))
6964                 return 0;
6965
6966         if (likely(h->interrupts_enabled))
6967                 return 0;
6968
6969         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6970                 "(known firmware bug.)  Ignoring.\n");
6971
6972         return 1;
6973 }
6974
6975 /*
6976  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6977  * Relies on (h-q[x] == x) being true for x such that
6978  * 0 <= x < MAX_REPLY_QUEUES.
6979  */
6980 static struct ctlr_info *queue_to_hba(u8 *queue)
6981 {
6982         return container_of((queue - *queue), struct ctlr_info, q[0]);
6983 }
6984
6985 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6986 {
6987         struct ctlr_info *h = queue_to_hba(queue);
6988         u8 q = *(u8 *) queue;
6989         u32 raw_tag;
6990
6991         if (ignore_bogus_interrupt(h))
6992                 return IRQ_NONE;
6993
6994         if (interrupt_not_for_us(h))
6995                 return IRQ_NONE;
6996         h->last_intr_timestamp = get_jiffies_64();
6997         while (interrupt_pending(h)) {
6998                 raw_tag = get_next_completion(h, q);
6999                 while (raw_tag != FIFO_EMPTY)
7000                         raw_tag = next_command(h, q);
7001         }
7002         return IRQ_HANDLED;
7003 }
7004
7005 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7006 {
7007         struct ctlr_info *h = queue_to_hba(queue);
7008         u32 raw_tag;
7009         u8 q = *(u8 *) queue;
7010
7011         if (ignore_bogus_interrupt(h))
7012                 return IRQ_NONE;
7013
7014         h->last_intr_timestamp = get_jiffies_64();
7015         raw_tag = get_next_completion(h, q);
7016         while (raw_tag != FIFO_EMPTY)
7017                 raw_tag = next_command(h, q);
7018         return IRQ_HANDLED;
7019 }
7020
7021 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7022 {
7023         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7024         u32 raw_tag;
7025         u8 q = *(u8 *) queue;
7026
7027         if (interrupt_not_for_us(h))
7028                 return IRQ_NONE;
7029         h->last_intr_timestamp = get_jiffies_64();
7030         while (interrupt_pending(h)) {
7031                 raw_tag = get_next_completion(h, q);
7032                 while (raw_tag != FIFO_EMPTY) {
7033                         process_indexed_cmd(h, raw_tag);
7034                         raw_tag = next_command(h, q);
7035                 }
7036         }
7037         return IRQ_HANDLED;
7038 }
7039
7040 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7041 {
7042         struct ctlr_info *h = queue_to_hba(queue);
7043         u32 raw_tag;
7044         u8 q = *(u8 *) queue;
7045
7046         h->last_intr_timestamp = get_jiffies_64();
7047         raw_tag = get_next_completion(h, q);
7048         while (raw_tag != FIFO_EMPTY) {
7049                 process_indexed_cmd(h, raw_tag);
7050                 raw_tag = next_command(h, q);
7051         }
7052         return IRQ_HANDLED;
7053 }
7054
7055 /* Send a message CDB to the firmware. Careful, this only works
7056  * in simple mode, not performant mode due to the tag lookup.
7057  * We only ever use this immediately after a controller reset.
7058  */
7059 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7060                         unsigned char type)
7061 {
7062         struct Command {
7063                 struct CommandListHeader CommandHeader;
7064                 struct RequestBlock Request;
7065                 struct ErrDescriptor ErrorDescriptor;
7066         };
7067         struct Command *cmd;
7068         static const size_t cmd_sz = sizeof(*cmd) +
7069                                         sizeof(cmd->ErrorDescriptor);
7070         dma_addr_t paddr64;
7071         __le32 paddr32;
7072         u32 tag;
7073         void __iomem *vaddr;
7074         int i, err;
7075
7076         vaddr = pci_ioremap_bar(pdev, 0);
7077         if (vaddr == NULL)
7078                 return -ENOMEM;
7079
7080         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7081          * CCISS commands, so they must be allocated from the lower 4GiB of
7082          * memory.
7083          */
7084         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7085         if (err) {
7086                 iounmap(vaddr);
7087                 return err;
7088         }
7089
7090         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7091         if (cmd == NULL) {
7092                 iounmap(vaddr);
7093                 return -ENOMEM;
7094         }
7095
7096         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7097          * although there's no guarantee, we assume that the address is at
7098          * least 4-byte aligned (most likely, it's page-aligned).
7099          */
7100         paddr32 = cpu_to_le32(paddr64);
7101
7102         cmd->CommandHeader.ReplyQueue = 0;
7103         cmd->CommandHeader.SGList = 0;
7104         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7105         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7106         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7107
7108         cmd->Request.CDBLen = 16;
7109         cmd->Request.type_attr_dir =
7110                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7111         cmd->Request.Timeout = 0; /* Don't time out */
7112         cmd->Request.CDB[0] = opcode;
7113         cmd->Request.CDB[1] = type;
7114         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7115         cmd->ErrorDescriptor.Addr =
7116                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7117         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7118
7119         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7120
7121         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7122                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7123                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7124                         break;
7125                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7126         }
7127
7128         iounmap(vaddr);
7129
7130         /* we leak the DMA buffer here ... no choice since the controller could
7131          *  still complete the command.
7132          */
7133         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7134                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7135                         opcode, type);
7136                 return -ETIMEDOUT;
7137         }
7138
7139         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7140
7141         if (tag & HPSA_ERROR_BIT) {
7142                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7143                         opcode, type);
7144                 return -EIO;
7145         }
7146
7147         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7148                 opcode, type);
7149         return 0;
7150 }
7151
7152 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7153
7154 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7155         void __iomem *vaddr, u32 use_doorbell)
7156 {
7157
7158         if (use_doorbell) {
7159                 /* For everything after the P600, the PCI power state method
7160                  * of resetting the controller doesn't work, so we have this
7161                  * other way using the doorbell register.
7162                  */
7163                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7164                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7165
7166                 /* PMC hardware guys tell us we need a 10 second delay after
7167                  * doorbell reset and before any attempt to talk to the board
7168                  * at all to ensure that this actually works and doesn't fall
7169                  * over in some weird corner cases.
7170                  */
7171                 msleep(10000);
7172         } else { /* Try to do it the PCI power state way */
7173
7174                 /* Quoting from the Open CISS Specification: "The Power
7175                  * Management Control/Status Register (CSR) controls the power
7176                  * state of the device.  The normal operating state is D0,
7177                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7178                  * the controller, place the interface device in D3 then to D0,
7179                  * this causes a secondary PCI reset which will reset the
7180                  * controller." */
7181
7182                 int rc = 0;
7183
7184                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7185
7186                 /* enter the D3hot power management state */
7187                 rc = pci_set_power_state(pdev, PCI_D3hot);
7188                 if (rc)
7189                         return rc;
7190
7191                 msleep(500);
7192
7193                 /* enter the D0 power management state */
7194                 rc = pci_set_power_state(pdev, PCI_D0);
7195                 if (rc)
7196                         return rc;
7197
7198                 /*
7199                  * The P600 requires a small delay when changing states.
7200                  * Otherwise we may think the board did not reset and we bail.
7201                  * This for kdump only and is particular to the P600.
7202                  */
7203                 msleep(500);
7204         }
7205         return 0;
7206 }
7207
7208 static void init_driver_version(char *driver_version, int len)
7209 {
7210         memset(driver_version, 0, len);
7211         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7212 }
7213
7214 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7215 {
7216         char *driver_version;
7217         int i, size = sizeof(cfgtable->driver_version);
7218
7219         driver_version = kmalloc(size, GFP_KERNEL);
7220         if (!driver_version)
7221                 return -ENOMEM;
7222
7223         init_driver_version(driver_version, size);
7224         for (i = 0; i < size; i++)
7225                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7226         kfree(driver_version);
7227         return 0;
7228 }
7229
7230 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7231                                           unsigned char *driver_ver)
7232 {
7233         int i;
7234
7235         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7236                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7237 }
7238
7239 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7240 {
7241
7242         char *driver_ver, *old_driver_ver;
7243         int rc, size = sizeof(cfgtable->driver_version);
7244
7245         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7246         if (!old_driver_ver)
7247                 return -ENOMEM;
7248         driver_ver = old_driver_ver + size;
7249
7250         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7251          * should have been changed, otherwise we know the reset failed.
7252          */
7253         init_driver_version(old_driver_ver, size);
7254         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7255         rc = !memcmp(driver_ver, old_driver_ver, size);
7256         kfree(old_driver_ver);
7257         return rc;
7258 }
7259 /* This does a hard reset of the controller using PCI power management
7260  * states or the using the doorbell register.
7261  */
7262 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7263 {
7264         u64 cfg_offset;
7265         u32 cfg_base_addr;
7266         u64 cfg_base_addr_index;
7267         void __iomem *vaddr;
7268         unsigned long paddr;
7269         u32 misc_fw_support;
7270         int rc;
7271         struct CfgTable __iomem *cfgtable;
7272         u32 use_doorbell;
7273         u16 command_register;
7274
7275         /* For controllers as old as the P600, this is very nearly
7276          * the same thing as
7277          *
7278          * pci_save_state(pci_dev);
7279          * pci_set_power_state(pci_dev, PCI_D3hot);
7280          * pci_set_power_state(pci_dev, PCI_D0);
7281          * pci_restore_state(pci_dev);
7282          *
7283          * For controllers newer than the P600, the pci power state
7284          * method of resetting doesn't work so we have another way
7285          * using the doorbell register.
7286          */
7287
7288         if (!ctlr_is_resettable(board_id)) {
7289                 dev_warn(&pdev->dev, "Controller not resettable\n");
7290                 return -ENODEV;
7291         }
7292
7293         /* if controller is soft- but not hard resettable... */
7294         if (!ctlr_is_hard_resettable(board_id))
7295                 return -ENOTSUPP; /* try soft reset later. */
7296
7297         /* Save the PCI command register */
7298         pci_read_config_word(pdev, 4, &command_register);
7299         pci_save_state(pdev);
7300
7301         /* find the first memory BAR, so we can find the cfg table */
7302         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7303         if (rc)
7304                 return rc;
7305         vaddr = remap_pci_mem(paddr, 0x250);
7306         if (!vaddr)
7307                 return -ENOMEM;
7308
7309         /* find cfgtable in order to check if reset via doorbell is supported */
7310         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7311                                         &cfg_base_addr_index, &cfg_offset);
7312         if (rc)
7313                 goto unmap_vaddr;
7314         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7315                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7316         if (!cfgtable) {
7317                 rc = -ENOMEM;
7318                 goto unmap_vaddr;
7319         }
7320         rc = write_driver_ver_to_cfgtable(cfgtable);
7321         if (rc)
7322                 goto unmap_cfgtable;
7323
7324         /* If reset via doorbell register is supported, use that.
7325          * There are two such methods.  Favor the newest method.
7326          */
7327         misc_fw_support = readl(&cfgtable->misc_fw_support);
7328         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7329         if (use_doorbell) {
7330                 use_doorbell = DOORBELL_CTLR_RESET2;
7331         } else {
7332                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7333                 if (use_doorbell) {
7334                         dev_warn(&pdev->dev,
7335                                 "Soft reset not supported. Firmware update is required.\n");
7336                         rc = -ENOTSUPP; /* try soft reset */
7337                         goto unmap_cfgtable;
7338                 }
7339         }
7340
7341         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7342         if (rc)
7343                 goto unmap_cfgtable;
7344
7345         pci_restore_state(pdev);
7346         pci_write_config_word(pdev, 4, command_register);
7347
7348         /* Some devices (notably the HP Smart Array 5i Controller)
7349            need a little pause here */
7350         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7351
7352         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7353         if (rc) {
7354                 dev_warn(&pdev->dev,
7355                         "Failed waiting for board to become ready after hard reset\n");
7356                 goto unmap_cfgtable;
7357         }
7358
7359         rc = controller_reset_failed(vaddr);
7360         if (rc < 0)
7361                 goto unmap_cfgtable;
7362         if (rc) {
7363                 dev_warn(&pdev->dev, "Unable to successfully reset "
7364                         "controller. Will try soft reset.\n");
7365                 rc = -ENOTSUPP;
7366         } else {
7367                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7368         }
7369
7370 unmap_cfgtable:
7371         iounmap(cfgtable);
7372
7373 unmap_vaddr:
7374         iounmap(vaddr);
7375         return rc;
7376 }
7377
7378 /*
7379  *  We cannot read the structure directly, for portability we must use
7380  *   the io functions.
7381  *   This is for debug only.
7382  */
7383 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7384 {
7385 #ifdef HPSA_DEBUG
7386         int i;
7387         char temp_name[17];
7388
7389         dev_info(dev, "Controller Configuration information\n");
7390         dev_info(dev, "------------------------------------\n");
7391         for (i = 0; i < 4; i++)
7392                 temp_name[i] = readb(&(tb->Signature[i]));
7393         temp_name[4] = '\0';
7394         dev_info(dev, "   Signature = %s\n", temp_name);
7395         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7396         dev_info(dev, "   Transport methods supported = 0x%x\n",
7397                readl(&(tb->TransportSupport)));
7398         dev_info(dev, "   Transport methods active = 0x%x\n",
7399                readl(&(tb->TransportActive)));
7400         dev_info(dev, "   Requested transport Method = 0x%x\n",
7401                readl(&(tb->HostWrite.TransportRequest)));
7402         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7403                readl(&(tb->HostWrite.CoalIntDelay)));
7404         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7405                readl(&(tb->HostWrite.CoalIntCount)));
7406         dev_info(dev, "   Max outstanding commands = %d\n",
7407                readl(&(tb->CmdsOutMax)));
7408         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7409         for (i = 0; i < 16; i++)
7410                 temp_name[i] = readb(&(tb->ServerName[i]));
7411         temp_name[16] = '\0';
7412         dev_info(dev, "   Server Name = %s\n", temp_name);
7413         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7414                 readl(&(tb->HeartBeat)));
7415 #endif                          /* HPSA_DEBUG */
7416 }
7417
7418 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7419 {
7420         int i, offset, mem_type, bar_type;
7421
7422         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7423                 return 0;
7424         offset = 0;
7425         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7426                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7427                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7428                         offset += 4;
7429                 else {
7430                         mem_type = pci_resource_flags(pdev, i) &
7431                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7432                         switch (mem_type) {
7433                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7434                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7435                                 offset += 4;    /* 32 bit */
7436                                 break;
7437                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7438                                 offset += 8;
7439                                 break;
7440                         default:        /* reserved in PCI 2.2 */
7441                                 dev_warn(&pdev->dev,
7442                                        "base address is invalid\n");
7443                                 return -1;
7444                                 break;
7445                         }
7446                 }
7447                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7448                         return i + 1;
7449         }
7450         return -1;
7451 }
7452
7453 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7454 {
7455         pci_free_irq_vectors(h->pdev);
7456         h->msix_vectors = 0;
7457 }
7458
7459 static void hpsa_setup_reply_map(struct ctlr_info *h)
7460 {
7461         const struct cpumask *mask;
7462         unsigned int queue, cpu;
7463
7464         for (queue = 0; queue < h->msix_vectors; queue++) {
7465                 mask = pci_irq_get_affinity(h->pdev, queue);
7466                 if (!mask)
7467                         goto fallback;
7468
7469                 for_each_cpu(cpu, mask)
7470                         h->reply_map[cpu] = queue;
7471         }
7472         return;
7473
7474 fallback:
7475         for_each_possible_cpu(cpu)
7476                 h->reply_map[cpu] = 0;
7477 }
7478
7479 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7480  * controllers that are capable. If not, we use legacy INTx mode.
7481  */
7482 static int hpsa_interrupt_mode(struct ctlr_info *h)
7483 {
7484         unsigned int flags = PCI_IRQ_LEGACY;
7485         int ret;
7486
7487         /* Some boards advertise MSI but don't really support it */
7488         switch (h->board_id) {
7489         case 0x40700E11:
7490         case 0x40800E11:
7491         case 0x40820E11:
7492         case 0x40830E11:
7493                 break;
7494         default:
7495                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7496                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7497                 if (ret > 0) {
7498                         h->msix_vectors = ret;
7499                         return 0;
7500                 }
7501
7502                 flags |= PCI_IRQ_MSI;
7503                 break;
7504         }
7505
7506         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7507         if (ret < 0)
7508                 return ret;
7509         return 0;
7510 }
7511
7512 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7513                                 bool *legacy_board)
7514 {
7515         int i;
7516         u32 subsystem_vendor_id, subsystem_device_id;
7517
7518         subsystem_vendor_id = pdev->subsystem_vendor;
7519         subsystem_device_id = pdev->subsystem_device;
7520         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7521                     subsystem_vendor_id;
7522
7523         if (legacy_board)
7524                 *legacy_board = false;
7525         for (i = 0; i < ARRAY_SIZE(products); i++)
7526                 if (*board_id == products[i].board_id) {
7527                         if (products[i].access != &SA5A_access &&
7528                             products[i].access != &SA5B_access)
7529                                 return i;
7530                         dev_warn(&pdev->dev,
7531                                  "legacy board ID: 0x%08x\n",
7532                                  *board_id);
7533                         if (legacy_board)
7534                             *legacy_board = true;
7535                         return i;
7536                 }
7537
7538         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7539         if (legacy_board)
7540                 *legacy_board = true;
7541         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7542 }
7543
7544 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7545                                     unsigned long *memory_bar)
7546 {
7547         int i;
7548
7549         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7550                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7551                         /* addressing mode bits already removed */
7552                         *memory_bar = pci_resource_start(pdev, i);
7553                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7554                                 *memory_bar);
7555                         return 0;
7556                 }
7557         dev_warn(&pdev->dev, "no memory BAR found\n");
7558         return -ENODEV;
7559 }
7560
7561 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7562                                      int wait_for_ready)
7563 {
7564         int i, iterations;
7565         u32 scratchpad;
7566         if (wait_for_ready)
7567                 iterations = HPSA_BOARD_READY_ITERATIONS;
7568         else
7569                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7570
7571         for (i = 0; i < iterations; i++) {
7572                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7573                 if (wait_for_ready) {
7574                         if (scratchpad == HPSA_FIRMWARE_READY)
7575                                 return 0;
7576                 } else {
7577                         if (scratchpad != HPSA_FIRMWARE_READY)
7578                                 return 0;
7579                 }
7580                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7581         }
7582         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7583         return -ENODEV;
7584 }
7585
7586 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7587                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7588                                u64 *cfg_offset)
7589 {
7590         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7591         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7592         *cfg_base_addr &= (u32) 0x0000ffff;
7593         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7594         if (*cfg_base_addr_index == -1) {
7595                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7596                 return -ENODEV;
7597         }
7598         return 0;
7599 }
7600
7601 static void hpsa_free_cfgtables(struct ctlr_info *h)
7602 {
7603         if (h->transtable) {
7604                 iounmap(h->transtable);
7605                 h->transtable = NULL;
7606         }
7607         if (h->cfgtable) {
7608                 iounmap(h->cfgtable);
7609                 h->cfgtable = NULL;
7610         }
7611 }
7612
7613 /* Find and map CISS config table and transfer table
7614 + * several items must be unmapped (freed) later
7615 + * */
7616 static int hpsa_find_cfgtables(struct ctlr_info *h)
7617 {
7618         u64 cfg_offset;
7619         u32 cfg_base_addr;
7620         u64 cfg_base_addr_index;
7621         u32 trans_offset;
7622         int rc;
7623
7624         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7625                 &cfg_base_addr_index, &cfg_offset);
7626         if (rc)
7627                 return rc;
7628         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7629                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7630         if (!h->cfgtable) {
7631                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7632                 return -ENOMEM;
7633         }
7634         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7635         if (rc)
7636                 return rc;
7637         /* Find performant mode table. */
7638         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7639         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7640                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7641                                 sizeof(*h->transtable));
7642         if (!h->transtable) {
7643                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7644                 hpsa_free_cfgtables(h);
7645                 return -ENOMEM;
7646         }
7647         return 0;
7648 }
7649
7650 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7651 {
7652 #define MIN_MAX_COMMANDS 16
7653         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7654
7655         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7656
7657         /* Limit commands in memory limited kdump scenario. */
7658         if (reset_devices && h->max_commands > 32)
7659                 h->max_commands = 32;
7660
7661         if (h->max_commands < MIN_MAX_COMMANDS) {
7662                 dev_warn(&h->pdev->dev,
7663                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7664                         h->max_commands,
7665                         MIN_MAX_COMMANDS);
7666                 h->max_commands = MIN_MAX_COMMANDS;
7667         }
7668 }
7669
7670 /* If the controller reports that the total max sg entries is greater than 512,
7671  * then we know that chained SG blocks work.  (Original smart arrays did not
7672  * support chained SG blocks and would return zero for max sg entries.)
7673  */
7674 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7675 {
7676         return h->maxsgentries > 512;
7677 }
7678
7679 /* Interrogate the hardware for some limits:
7680  * max commands, max SG elements without chaining, and with chaining,
7681  * SG chain block size, etc.
7682  */
7683 static void hpsa_find_board_params(struct ctlr_info *h)
7684 {
7685         hpsa_get_max_perf_mode_cmds(h);
7686         h->nr_cmds = h->max_commands;
7687         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7688         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7689         if (hpsa_supports_chained_sg_blocks(h)) {
7690                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7691                 h->max_cmd_sg_entries = 32;
7692                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7693                 h->maxsgentries--; /* save one for chain pointer */
7694         } else {
7695                 /*
7696                  * Original smart arrays supported at most 31 s/g entries
7697                  * embedded inline in the command (trying to use more
7698                  * would lock up the controller)
7699                  */
7700                 h->max_cmd_sg_entries = 31;
7701                 h->maxsgentries = 31; /* default to traditional values */
7702                 h->chainsize = 0;
7703         }
7704
7705         /* Find out what task management functions are supported and cache */
7706         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7707         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7708                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7709         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7710                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7711         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7712                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7713 }
7714
7715 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7716 {
7717         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7718                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7719                 return false;
7720         }
7721         return true;
7722 }
7723
7724 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7725 {
7726         u32 driver_support;
7727
7728         driver_support = readl(&(h->cfgtable->driver_support));
7729         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7730 #ifdef CONFIG_X86
7731         driver_support |= ENABLE_SCSI_PREFETCH;
7732 #endif
7733         driver_support |= ENABLE_UNIT_ATTN;
7734         writel(driver_support, &(h->cfgtable->driver_support));
7735 }
7736
7737 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7738  * in a prefetch beyond physical memory.
7739  */
7740 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7741 {
7742         u32 dma_prefetch;
7743
7744         if (h->board_id != 0x3225103C)
7745                 return;
7746         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7747         dma_prefetch |= 0x8000;
7748         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7749 }
7750
7751 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7752 {
7753         int i;
7754         u32 doorbell_value;
7755         unsigned long flags;
7756         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7757         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7758                 spin_lock_irqsave(&h->lock, flags);
7759                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7760                 spin_unlock_irqrestore(&h->lock, flags);
7761                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7762                         goto done;
7763                 /* delay and try again */
7764                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7765         }
7766         return -ENODEV;
7767 done:
7768         return 0;
7769 }
7770
7771 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7772 {
7773         int i;
7774         u32 doorbell_value;
7775         unsigned long flags;
7776
7777         /* under certain very rare conditions, this can take awhile.
7778          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7779          * as we enter this code.)
7780          */
7781         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7782                 if (h->remove_in_progress)
7783                         goto done;
7784                 spin_lock_irqsave(&h->lock, flags);
7785                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7786                 spin_unlock_irqrestore(&h->lock, flags);
7787                 if (!(doorbell_value & CFGTBL_ChangeReq))
7788                         goto done;
7789                 /* delay and try again */
7790                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7791         }
7792         return -ENODEV;
7793 done:
7794         return 0;
7795 }
7796
7797 /* return -ENODEV or other reason on error, 0 on success */
7798 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7799 {
7800         u32 trans_support;
7801
7802         trans_support = readl(&(h->cfgtable->TransportSupport));
7803         if (!(trans_support & SIMPLE_MODE))
7804                 return -ENOTSUPP;
7805
7806         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7807
7808         /* Update the field, and then ring the doorbell */
7809         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7810         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7811         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7812         if (hpsa_wait_for_mode_change_ack(h))
7813                 goto error;
7814         print_cfg_table(&h->pdev->dev, h->cfgtable);
7815         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7816                 goto error;
7817         h->transMethod = CFGTBL_Trans_Simple;
7818         return 0;
7819 error:
7820         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7821         return -ENODEV;
7822 }
7823
7824 /* free items allocated or mapped by hpsa_pci_init */
7825 static void hpsa_free_pci_init(struct ctlr_info *h)
7826 {
7827         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7828         iounmap(h->vaddr);                      /* pci_init 3 */
7829         h->vaddr = NULL;
7830         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7831         /*
7832          * call pci_disable_device before pci_release_regions per
7833          * Documentation/driver-api/pci/pci.rst
7834          */
7835         pci_disable_device(h->pdev);            /* pci_init 1 */
7836         pci_release_regions(h->pdev);           /* pci_init 2 */
7837 }
7838
7839 /* several items must be freed later */
7840 static int hpsa_pci_init(struct ctlr_info *h)
7841 {
7842         int prod_index, err;
7843         bool legacy_board;
7844
7845         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7846         if (prod_index < 0)
7847                 return prod_index;
7848         h->product_name = products[prod_index].product_name;
7849         h->access = *(products[prod_index].access);
7850         h->legacy_board = legacy_board;
7851         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7852                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7853
7854         err = pci_enable_device(h->pdev);
7855         if (err) {
7856                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7857                 pci_disable_device(h->pdev);
7858                 return err;
7859         }
7860
7861         err = pci_request_regions(h->pdev, HPSA);
7862         if (err) {
7863                 dev_err(&h->pdev->dev,
7864                         "failed to obtain PCI resources\n");
7865                 pci_disable_device(h->pdev);
7866                 return err;
7867         }
7868
7869         pci_set_master(h->pdev);
7870
7871         err = hpsa_interrupt_mode(h);
7872         if (err)
7873                 goto clean1;
7874
7875         /* setup mapping between CPU and reply queue */
7876         hpsa_setup_reply_map(h);
7877
7878         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7879         if (err)
7880                 goto clean2;    /* intmode+region, pci */
7881         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7882         if (!h->vaddr) {
7883                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7884                 err = -ENOMEM;
7885                 goto clean2;    /* intmode+region, pci */
7886         }
7887         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7888         if (err)
7889                 goto clean3;    /* vaddr, intmode+region, pci */
7890         err = hpsa_find_cfgtables(h);
7891         if (err)
7892                 goto clean3;    /* vaddr, intmode+region, pci */
7893         hpsa_find_board_params(h);
7894
7895         if (!hpsa_CISS_signature_present(h)) {
7896                 err = -ENODEV;
7897                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7898         }
7899         hpsa_set_driver_support_bits(h);
7900         hpsa_p600_dma_prefetch_quirk(h);
7901         err = hpsa_enter_simple_mode(h);
7902         if (err)
7903                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7904         return 0;
7905
7906 clean4: /* cfgtables, vaddr, intmode+region, pci */
7907         hpsa_free_cfgtables(h);
7908 clean3: /* vaddr, intmode+region, pci */
7909         iounmap(h->vaddr);
7910         h->vaddr = NULL;
7911 clean2: /* intmode+region, pci */
7912         hpsa_disable_interrupt_mode(h);
7913 clean1:
7914         /*
7915          * call pci_disable_device before pci_release_regions per
7916          * Documentation/driver-api/pci/pci.rst
7917          */
7918         pci_disable_device(h->pdev);
7919         pci_release_regions(h->pdev);
7920         return err;
7921 }
7922
7923 static void hpsa_hba_inquiry(struct ctlr_info *h)
7924 {
7925         int rc;
7926
7927 #define HBA_INQUIRY_BYTE_COUNT 64
7928         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7929         if (!h->hba_inquiry_data)
7930                 return;
7931         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7932                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7933         if (rc != 0) {
7934                 kfree(h->hba_inquiry_data);
7935                 h->hba_inquiry_data = NULL;
7936         }
7937 }
7938
7939 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7940 {
7941         int rc, i;
7942         void __iomem *vaddr;
7943
7944         if (!reset_devices)
7945                 return 0;
7946
7947         /* kdump kernel is loading, we don't know in which state is
7948          * the pci interface. The dev->enable_cnt is equal zero
7949          * so we call enable+disable, wait a while and switch it on.
7950          */
7951         rc = pci_enable_device(pdev);
7952         if (rc) {
7953                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7954                 return -ENODEV;
7955         }
7956         pci_disable_device(pdev);
7957         msleep(260);                    /* a randomly chosen number */
7958         rc = pci_enable_device(pdev);
7959         if (rc) {
7960                 dev_warn(&pdev->dev, "failed to enable device.\n");
7961                 return -ENODEV;
7962         }
7963
7964         pci_set_master(pdev);
7965
7966         vaddr = pci_ioremap_bar(pdev, 0);
7967         if (vaddr == NULL) {
7968                 rc = -ENOMEM;
7969                 goto out_disable;
7970         }
7971         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7972         iounmap(vaddr);
7973
7974         /* Reset the controller with a PCI power-cycle or via doorbell */
7975         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7976
7977         /* -ENOTSUPP here means we cannot reset the controller
7978          * but it's already (and still) up and running in
7979          * "performant mode".  Or, it might be 640x, which can't reset
7980          * due to concerns about shared bbwc between 6402/6404 pair.
7981          */
7982         if (rc)
7983                 goto out_disable;
7984
7985         /* Now try to get the controller to respond to a no-op */
7986         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7987         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7988                 if (hpsa_noop(pdev) == 0)
7989                         break;
7990                 else
7991                         dev_warn(&pdev->dev, "no-op failed%s\n",
7992                                         (i < 11 ? "; re-trying" : ""));
7993         }
7994
7995 out_disable:
7996
7997         pci_disable_device(pdev);
7998         return rc;
7999 }
8000
8001 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8002 {
8003         kfree(h->cmd_pool_bits);
8004         h->cmd_pool_bits = NULL;
8005         if (h->cmd_pool) {
8006                 dma_free_coherent(&h->pdev->dev,
8007                                 h->nr_cmds * sizeof(struct CommandList),
8008                                 h->cmd_pool,
8009                                 h->cmd_pool_dhandle);
8010                 h->cmd_pool = NULL;
8011                 h->cmd_pool_dhandle = 0;
8012         }
8013         if (h->errinfo_pool) {
8014                 dma_free_coherent(&h->pdev->dev,
8015                                 h->nr_cmds * sizeof(struct ErrorInfo),
8016                                 h->errinfo_pool,
8017                                 h->errinfo_pool_dhandle);
8018                 h->errinfo_pool = NULL;
8019                 h->errinfo_pool_dhandle = 0;
8020         }
8021 }
8022
8023 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8024 {
8025         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8026                                    sizeof(unsigned long),
8027                                    GFP_KERNEL);
8028         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8029                     h->nr_cmds * sizeof(*h->cmd_pool),
8030                     &h->cmd_pool_dhandle, GFP_KERNEL);
8031         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8032                     h->nr_cmds * sizeof(*h->errinfo_pool),
8033                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8034         if ((h->cmd_pool_bits == NULL)
8035             || (h->cmd_pool == NULL)
8036             || (h->errinfo_pool == NULL)) {
8037                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8038                 goto clean_up;
8039         }
8040         hpsa_preinitialize_commands(h);
8041         return 0;
8042 clean_up:
8043         hpsa_free_cmd_pool(h);
8044         return -ENOMEM;
8045 }
8046
8047 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8048 static void hpsa_free_irqs(struct ctlr_info *h)
8049 {
8050         int i;
8051         int irq_vector = 0;
8052
8053         if (hpsa_simple_mode)
8054                 irq_vector = h->intr_mode;
8055
8056         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8057                 /* Single reply queue, only one irq to free */
8058                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8059                                 &h->q[h->intr_mode]);
8060                 h->q[h->intr_mode] = 0;
8061                 return;
8062         }
8063
8064         for (i = 0; i < h->msix_vectors; i++) {
8065                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8066                 h->q[i] = 0;
8067         }
8068         for (; i < MAX_REPLY_QUEUES; i++)
8069                 h->q[i] = 0;
8070 }
8071
8072 /* returns 0 on success; cleans up and returns -Enn on error */
8073 static int hpsa_request_irqs(struct ctlr_info *h,
8074         irqreturn_t (*msixhandler)(int, void *),
8075         irqreturn_t (*intxhandler)(int, void *))
8076 {
8077         int rc, i;
8078         int irq_vector = 0;
8079
8080         if (hpsa_simple_mode)
8081                 irq_vector = h->intr_mode;
8082
8083         /*
8084          * initialize h->q[x] = x so that interrupt handlers know which
8085          * queue to process.
8086          */
8087         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8088                 h->q[i] = (u8) i;
8089
8090         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8091                 /* If performant mode and MSI-X, use multiple reply queues */
8092                 for (i = 0; i < h->msix_vectors; i++) {
8093                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8094                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8095                                         0, h->intrname[i],
8096                                         &h->q[i]);
8097                         if (rc) {
8098                                 int j;
8099
8100                                 dev_err(&h->pdev->dev,
8101                                         "failed to get irq %d for %s\n",
8102                                        pci_irq_vector(h->pdev, i), h->devname);
8103                                 for (j = 0; j < i; j++) {
8104                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8105                                         h->q[j] = 0;
8106                                 }
8107                                 for (; j < MAX_REPLY_QUEUES; j++)
8108                                         h->q[j] = 0;
8109                                 return rc;
8110                         }
8111                 }
8112         } else {
8113                 /* Use single reply pool */
8114                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8115                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8116                                 h->msix_vectors ? "x" : "");
8117                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8118                                 msixhandler, 0,
8119                                 h->intrname[0],
8120                                 &h->q[h->intr_mode]);
8121                 } else {
8122                         sprintf(h->intrname[h->intr_mode],
8123                                 "%s-intx", h->devname);
8124                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8125                                 intxhandler, IRQF_SHARED,
8126                                 h->intrname[0],
8127                                 &h->q[h->intr_mode]);
8128                 }
8129         }
8130         if (rc) {
8131                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8132                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8133                 hpsa_free_irqs(h);
8134                 return -ENODEV;
8135         }
8136         return 0;
8137 }
8138
8139 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8140 {
8141         int rc;
8142         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8143
8144         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8145         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8146         if (rc) {
8147                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8148                 return rc;
8149         }
8150
8151         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8152         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8153         if (rc) {
8154                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8155                         "after soft reset.\n");
8156                 return rc;
8157         }
8158
8159         return 0;
8160 }
8161
8162 static void hpsa_free_reply_queues(struct ctlr_info *h)
8163 {
8164         int i;
8165
8166         for (i = 0; i < h->nreply_queues; i++) {
8167                 if (!h->reply_queue[i].head)
8168                         continue;
8169                 dma_free_coherent(&h->pdev->dev,
8170                                         h->reply_queue_size,
8171                                         h->reply_queue[i].head,
8172                                         h->reply_queue[i].busaddr);
8173                 h->reply_queue[i].head = NULL;
8174                 h->reply_queue[i].busaddr = 0;
8175         }
8176         h->reply_queue_size = 0;
8177 }
8178
8179 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8180 {
8181         hpsa_free_performant_mode(h);           /* init_one 7 */
8182         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8183         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8184         hpsa_free_irqs(h);                      /* init_one 4 */
8185         scsi_host_put(h->scsi_host);            /* init_one 3 */
8186         h->scsi_host = NULL;                    /* init_one 3 */
8187         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8188         free_percpu(h->lockup_detected);        /* init_one 2 */
8189         h->lockup_detected = NULL;              /* init_one 2 */
8190         if (h->resubmit_wq) {
8191                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8192                 h->resubmit_wq = NULL;
8193         }
8194         if (h->rescan_ctlr_wq) {
8195                 destroy_workqueue(h->rescan_ctlr_wq);
8196                 h->rescan_ctlr_wq = NULL;
8197         }
8198         if (h->monitor_ctlr_wq) {
8199                 destroy_workqueue(h->monitor_ctlr_wq);
8200                 h->monitor_ctlr_wq = NULL;
8201         }
8202
8203         kfree(h);                               /* init_one 1 */
8204 }
8205
8206 /* Called when controller lockup detected. */
8207 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8208 {
8209         int i, refcount;
8210         struct CommandList *c;
8211         int failcount = 0;
8212
8213         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8214         for (i = 0; i < h->nr_cmds; i++) {
8215                 c = h->cmd_pool + i;
8216                 refcount = atomic_inc_return(&c->refcount);
8217                 if (refcount > 1) {
8218                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8219                         finish_cmd(c);
8220                         atomic_dec(&h->commands_outstanding);
8221                         failcount++;
8222                 }
8223                 cmd_free(h, c);
8224         }
8225         dev_warn(&h->pdev->dev,
8226                 "failed %d commands in fail_all\n", failcount);
8227 }
8228
8229 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8230 {
8231         int cpu;
8232
8233         for_each_online_cpu(cpu) {
8234                 u32 *lockup_detected;
8235                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8236                 *lockup_detected = value;
8237         }
8238         wmb(); /* be sure the per-cpu variables are out to memory */
8239 }
8240
8241 static void controller_lockup_detected(struct ctlr_info *h)
8242 {
8243         unsigned long flags;
8244         u32 lockup_detected;
8245
8246         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8247         spin_lock_irqsave(&h->lock, flags);
8248         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8249         if (!lockup_detected) {
8250                 /* no heartbeat, but controller gave us a zero. */
8251                 dev_warn(&h->pdev->dev,
8252                         "lockup detected after %d but scratchpad register is zero\n",
8253                         h->heartbeat_sample_interval / HZ);
8254                 lockup_detected = 0xffffffff;
8255         }
8256         set_lockup_detected_for_all_cpus(h, lockup_detected);
8257         spin_unlock_irqrestore(&h->lock, flags);
8258         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8259                         lockup_detected, h->heartbeat_sample_interval / HZ);
8260         if (lockup_detected == 0xffff0000) {
8261                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8262                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8263         }
8264         pci_disable_device(h->pdev);
8265         fail_all_outstanding_cmds(h);
8266 }
8267
8268 static int detect_controller_lockup(struct ctlr_info *h)
8269 {
8270         u64 now;
8271         u32 heartbeat;
8272         unsigned long flags;
8273
8274         now = get_jiffies_64();
8275         /* If we've received an interrupt recently, we're ok. */
8276         if (time_after64(h->last_intr_timestamp +
8277                                 (h->heartbeat_sample_interval), now))
8278                 return false;
8279
8280         /*
8281          * If we've already checked the heartbeat recently, we're ok.
8282          * This could happen if someone sends us a signal. We
8283          * otherwise don't care about signals in this thread.
8284          */
8285         if (time_after64(h->last_heartbeat_timestamp +
8286                                 (h->heartbeat_sample_interval), now))
8287                 return false;
8288
8289         /* If heartbeat has not changed since we last looked, we're not ok. */
8290         spin_lock_irqsave(&h->lock, flags);
8291         heartbeat = readl(&h->cfgtable->HeartBeat);
8292         spin_unlock_irqrestore(&h->lock, flags);
8293         if (h->last_heartbeat == heartbeat) {
8294                 controller_lockup_detected(h);
8295                 return true;
8296         }
8297
8298         /* We're ok. */
8299         h->last_heartbeat = heartbeat;
8300         h->last_heartbeat_timestamp = now;
8301         return false;
8302 }
8303
8304 /*
8305  * Set ioaccel status for all ioaccel volumes.
8306  *
8307  * Called from monitor controller worker (hpsa_event_monitor_worker)
8308  *
8309  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8310  * transformation, so we will be turning off ioaccel for all volumes that
8311  * make up the Array.
8312  */
8313 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8314 {
8315         int rc;
8316         int i;
8317         u8 ioaccel_status;
8318         unsigned char *buf;
8319         struct hpsa_scsi_dev_t *device;
8320
8321         if (!h)
8322                 return;
8323
8324         buf = kmalloc(64, GFP_KERNEL);
8325         if (!buf)
8326                 return;
8327
8328         /*
8329          * Run through current device list used during I/O requests.
8330          */
8331         for (i = 0; i < h->ndevices; i++) {
8332                 int offload_to_be_enabled = 0;
8333                 int offload_config = 0;
8334
8335                 device = h->dev[i];
8336
8337                 if (!device)
8338                         continue;
8339                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8340                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8341                         continue;
8342
8343                 memset(buf, 0, 64);
8344
8345                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8346                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8347                                         buf, 64);
8348                 if (rc != 0)
8349                         continue;
8350
8351                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8352
8353                 /*
8354                  * Check if offload is still configured on
8355                  */
8356                 offload_config =
8357                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8358                 /*
8359                  * If offload is configured on, check to see if ioaccel
8360                  * needs to be enabled.
8361                  */
8362                 if (offload_config)
8363                         offload_to_be_enabled =
8364                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8365
8366                 /*
8367                  * If ioaccel is to be re-enabled, re-enable later during the
8368                  * scan operation so the driver can get a fresh raidmap
8369                  * before turning ioaccel back on.
8370                  */
8371                 if (offload_to_be_enabled)
8372                         continue;
8373
8374                 /*
8375                  * Immediately turn off ioaccel for any volume the
8376                  * controller tells us to. Some of the reasons could be:
8377                  *    transformation - change to the LVs of an Array.
8378                  *    degraded volume - component failure
8379                  */
8380                 hpsa_turn_off_ioaccel_for_device(device);
8381         }
8382
8383         kfree(buf);
8384 }
8385
8386 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8387 {
8388         char *event_type;
8389
8390         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8391                 return;
8392
8393         /* Ask the controller to clear the events we're handling. */
8394         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8395                         | CFGTBL_Trans_io_accel2)) &&
8396                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8397                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8398
8399                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8400                         event_type = "state change";
8401                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8402                         event_type = "configuration change";
8403                 /* Stop sending new RAID offload reqs via the IO accelerator */
8404                 scsi_block_requests(h->scsi_host);
8405                 hpsa_set_ioaccel_status(h);
8406                 hpsa_drain_accel_commands(h);
8407                 /* Set 'accelerator path config change' bit */
8408                 dev_warn(&h->pdev->dev,
8409                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8410                         h->events, event_type);
8411                 writel(h->events, &(h->cfgtable->clear_event_notify));
8412                 /* Set the "clear event notify field update" bit 6 */
8413                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8414                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8415                 hpsa_wait_for_clear_event_notify_ack(h);
8416                 scsi_unblock_requests(h->scsi_host);
8417         } else {
8418                 /* Acknowledge controller notification events. */
8419                 writel(h->events, &(h->cfgtable->clear_event_notify));
8420                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8421                 hpsa_wait_for_clear_event_notify_ack(h);
8422         }
8423         return;
8424 }
8425
8426 /* Check a register on the controller to see if there are configuration
8427  * changes (added/changed/removed logical drives, etc.) which mean that
8428  * we should rescan the controller for devices.
8429  * Also check flag for driver-initiated rescan.
8430  */
8431 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8432 {
8433         if (h->drv_req_rescan) {
8434                 h->drv_req_rescan = 0;
8435                 return 1;
8436         }
8437
8438         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8439                 return 0;
8440
8441         h->events = readl(&(h->cfgtable->event_notify));
8442         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8443 }
8444
8445 /*
8446  * Check if any of the offline devices have become ready
8447  */
8448 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8449 {
8450         unsigned long flags;
8451         struct offline_device_entry *d;
8452         struct list_head *this, *tmp;
8453
8454         spin_lock_irqsave(&h->offline_device_lock, flags);
8455         list_for_each_safe(this, tmp, &h->offline_device_list) {
8456                 d = list_entry(this, struct offline_device_entry,
8457                                 offline_list);
8458                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8459                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8460                         spin_lock_irqsave(&h->offline_device_lock, flags);
8461                         list_del(&d->offline_list);
8462                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8463                         return 1;
8464                 }
8465                 spin_lock_irqsave(&h->offline_device_lock, flags);
8466         }
8467         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8468         return 0;
8469 }
8470
8471 static int hpsa_luns_changed(struct ctlr_info *h)
8472 {
8473         int rc = 1; /* assume there are changes */
8474         struct ReportLUNdata *logdev = NULL;
8475
8476         /* if we can't find out if lun data has changed,
8477          * assume that it has.
8478          */
8479
8480         if (!h->lastlogicals)
8481                 return rc;
8482
8483         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8484         if (!logdev)
8485                 return rc;
8486
8487         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8488                 dev_warn(&h->pdev->dev,
8489                         "report luns failed, can't track lun changes.\n");
8490                 goto out;
8491         }
8492         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8493                 dev_info(&h->pdev->dev,
8494                         "Lun changes detected.\n");
8495                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8496                 goto out;
8497         } else
8498                 rc = 0; /* no changes detected. */
8499 out:
8500         kfree(logdev);
8501         return rc;
8502 }
8503
8504 static void hpsa_perform_rescan(struct ctlr_info *h)
8505 {
8506         struct Scsi_Host *sh = NULL;
8507         unsigned long flags;
8508
8509         /*
8510          * Do the scan after the reset
8511          */
8512         spin_lock_irqsave(&h->reset_lock, flags);
8513         if (h->reset_in_progress) {
8514                 h->drv_req_rescan = 1;
8515                 spin_unlock_irqrestore(&h->reset_lock, flags);
8516                 return;
8517         }
8518         spin_unlock_irqrestore(&h->reset_lock, flags);
8519
8520         sh = scsi_host_get(h->scsi_host);
8521         if (sh != NULL) {
8522                 hpsa_scan_start(sh);
8523                 scsi_host_put(sh);
8524                 h->drv_req_rescan = 0;
8525         }
8526 }
8527
8528 /*
8529  * watch for controller events
8530  */
8531 static void hpsa_event_monitor_worker(struct work_struct *work)
8532 {
8533         struct ctlr_info *h = container_of(to_delayed_work(work),
8534                                         struct ctlr_info, event_monitor_work);
8535         unsigned long flags;
8536
8537         spin_lock_irqsave(&h->lock, flags);
8538         if (h->remove_in_progress) {
8539                 spin_unlock_irqrestore(&h->lock, flags);
8540                 return;
8541         }
8542         spin_unlock_irqrestore(&h->lock, flags);
8543
8544         if (hpsa_ctlr_needs_rescan(h)) {
8545                 hpsa_ack_ctlr_events(h);
8546                 hpsa_perform_rescan(h);
8547         }
8548
8549         spin_lock_irqsave(&h->lock, flags);
8550         if (!h->remove_in_progress)
8551                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8552                                 HPSA_EVENT_MONITOR_INTERVAL);
8553         spin_unlock_irqrestore(&h->lock, flags);
8554 }
8555
8556 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8557 {
8558         unsigned long flags;
8559         struct ctlr_info *h = container_of(to_delayed_work(work),
8560                                         struct ctlr_info, rescan_ctlr_work);
8561
8562         spin_lock_irqsave(&h->lock, flags);
8563         if (h->remove_in_progress) {
8564                 spin_unlock_irqrestore(&h->lock, flags);
8565                 return;
8566         }
8567         spin_unlock_irqrestore(&h->lock, flags);
8568
8569         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8570                 hpsa_perform_rescan(h);
8571         } else if (h->discovery_polling) {
8572                 if (hpsa_luns_changed(h)) {
8573                         dev_info(&h->pdev->dev,
8574                                 "driver discovery polling rescan.\n");
8575                         hpsa_perform_rescan(h);
8576                 }
8577         }
8578         spin_lock_irqsave(&h->lock, flags);
8579         if (!h->remove_in_progress)
8580                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8581                                 h->heartbeat_sample_interval);
8582         spin_unlock_irqrestore(&h->lock, flags);
8583 }
8584
8585 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8586 {
8587         unsigned long flags;
8588         struct ctlr_info *h = container_of(to_delayed_work(work),
8589                                         struct ctlr_info, monitor_ctlr_work);
8590
8591         detect_controller_lockup(h);
8592         if (lockup_detected(h))
8593                 return;
8594
8595         spin_lock_irqsave(&h->lock, flags);
8596         if (!h->remove_in_progress)
8597                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8598                                 h->heartbeat_sample_interval);
8599         spin_unlock_irqrestore(&h->lock, flags);
8600 }
8601
8602 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8603                                                 char *name)
8604 {
8605         struct workqueue_struct *wq = NULL;
8606
8607         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8608         if (!wq)
8609                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8610
8611         return wq;
8612 }
8613
8614 static void hpda_free_ctlr_info(struct ctlr_info *h)
8615 {
8616         kfree(h->reply_map);
8617         kfree(h);
8618 }
8619
8620 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8621 {
8622         struct ctlr_info *h;
8623
8624         h = kzalloc(sizeof(*h), GFP_KERNEL);
8625         if (!h)
8626                 return NULL;
8627
8628         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8629         if (!h->reply_map) {
8630                 kfree(h);
8631                 return NULL;
8632         }
8633         return h;
8634 }
8635
8636 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8637 {
8638         int dac, rc;
8639         struct ctlr_info *h;
8640         int try_soft_reset = 0;
8641         unsigned long flags;
8642         u32 board_id;
8643
8644         if (number_of_controllers == 0)
8645                 printk(KERN_INFO DRIVER_NAME "\n");
8646
8647         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8648         if (rc < 0) {
8649                 dev_warn(&pdev->dev, "Board ID not found\n");
8650                 return rc;
8651         }
8652
8653         rc = hpsa_init_reset_devices(pdev, board_id);
8654         if (rc) {
8655                 if (rc != -ENOTSUPP)
8656                         return rc;
8657                 /* If the reset fails in a particular way (it has no way to do
8658                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8659                  * a soft reset once we get the controller configured up to the
8660                  * point that it can accept a command.
8661                  */
8662                 try_soft_reset = 1;
8663                 rc = 0;
8664         }
8665
8666 reinit_after_soft_reset:
8667
8668         /* Command structures must be aligned on a 32-byte boundary because
8669          * the 5 lower bits of the address are used by the hardware. and by
8670          * the driver.  See comments in hpsa.h for more info.
8671          */
8672         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8673         h = hpda_alloc_ctlr_info();
8674         if (!h) {
8675                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8676                 return -ENOMEM;
8677         }
8678
8679         h->pdev = pdev;
8680
8681         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8682         INIT_LIST_HEAD(&h->offline_device_list);
8683         spin_lock_init(&h->lock);
8684         spin_lock_init(&h->offline_device_lock);
8685         spin_lock_init(&h->scan_lock);
8686         spin_lock_init(&h->reset_lock);
8687         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8688
8689         /* Allocate and clear per-cpu variable lockup_detected */
8690         h->lockup_detected = alloc_percpu(u32);
8691         if (!h->lockup_detected) {
8692                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8693                 rc = -ENOMEM;
8694                 goto clean1;    /* aer/h */
8695         }
8696         set_lockup_detected_for_all_cpus(h, 0);
8697
8698         rc = hpsa_pci_init(h);
8699         if (rc)
8700                 goto clean2;    /* lu, aer/h */
8701
8702         /* relies on h-> settings made by hpsa_pci_init, including
8703          * interrupt_mode h->intr */
8704         rc = hpsa_scsi_host_alloc(h);
8705         if (rc)
8706                 goto clean2_5;  /* pci, lu, aer/h */
8707
8708         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8709         h->ctlr = number_of_controllers;
8710         number_of_controllers++;
8711
8712         /* configure PCI DMA stuff */
8713         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8714         if (rc == 0) {
8715                 dac = 1;
8716         } else {
8717                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8718                 if (rc == 0) {
8719                         dac = 0;
8720                 } else {
8721                         dev_err(&pdev->dev, "no suitable DMA available\n");
8722                         goto clean3;    /* shost, pci, lu, aer/h */
8723                 }
8724         }
8725
8726         /* make sure the board interrupts are off */
8727         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8728
8729         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8730         if (rc)
8731                 goto clean3;    /* shost, pci, lu, aer/h */
8732         rc = hpsa_alloc_cmd_pool(h);
8733         if (rc)
8734                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8735         rc = hpsa_alloc_sg_chain_blocks(h);
8736         if (rc)
8737                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8738         init_waitqueue_head(&h->scan_wait_queue);
8739         init_waitqueue_head(&h->event_sync_wait_queue);
8740         mutex_init(&h->reset_mutex);
8741         h->scan_finished = 1; /* no scan currently in progress */
8742         h->scan_waiting = 0;
8743
8744         pci_set_drvdata(pdev, h);
8745         h->ndevices = 0;
8746
8747         spin_lock_init(&h->devlock);
8748         rc = hpsa_put_ctlr_into_performant_mode(h);
8749         if (rc)
8750                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8751
8752         /* create the resubmit workqueue */
8753         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8754         if (!h->rescan_ctlr_wq) {
8755                 rc = -ENOMEM;
8756                 goto clean7;
8757         }
8758
8759         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8760         if (!h->resubmit_wq) {
8761                 rc = -ENOMEM;
8762                 goto clean7;    /* aer/h */
8763         }
8764
8765         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8766         if (!h->monitor_ctlr_wq) {
8767                 rc = -ENOMEM;
8768                 goto clean7;
8769         }
8770
8771         /*
8772          * At this point, the controller is ready to take commands.
8773          * Now, if reset_devices and the hard reset didn't work, try
8774          * the soft reset and see if that works.
8775          */
8776         if (try_soft_reset) {
8777
8778                 /* This is kind of gross.  We may or may not get a completion
8779                  * from the soft reset command, and if we do, then the value
8780                  * from the fifo may or may not be valid.  So, we wait 10 secs
8781                  * after the reset throwing away any completions we get during
8782                  * that time.  Unregister the interrupt handler and register
8783                  * fake ones to scoop up any residual completions.
8784                  */
8785                 spin_lock_irqsave(&h->lock, flags);
8786                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8787                 spin_unlock_irqrestore(&h->lock, flags);
8788                 hpsa_free_irqs(h);
8789                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8790                                         hpsa_intx_discard_completions);
8791                 if (rc) {
8792                         dev_warn(&h->pdev->dev,
8793                                 "Failed to request_irq after soft reset.\n");
8794                         /*
8795                          * cannot goto clean7 or free_irqs will be called
8796                          * again. Instead, do its work
8797                          */
8798                         hpsa_free_performant_mode(h);   /* clean7 */
8799                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8800                         hpsa_free_cmd_pool(h);          /* clean5 */
8801                         /*
8802                          * skip hpsa_free_irqs(h) clean4 since that
8803                          * was just called before request_irqs failed
8804                          */
8805                         goto clean3;
8806                 }
8807
8808                 rc = hpsa_kdump_soft_reset(h);
8809                 if (rc)
8810                         /* Neither hard nor soft reset worked, we're hosed. */
8811                         goto clean7;
8812
8813                 dev_info(&h->pdev->dev, "Board READY.\n");
8814                 dev_info(&h->pdev->dev,
8815                         "Waiting for stale completions to drain.\n");
8816                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8817                 msleep(10000);
8818                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8819
8820                 rc = controller_reset_failed(h->cfgtable);
8821                 if (rc)
8822                         dev_info(&h->pdev->dev,
8823                                 "Soft reset appears to have failed.\n");
8824
8825                 /* since the controller's reset, we have to go back and re-init
8826                  * everything.  Easiest to just forget what we've done and do it
8827                  * all over again.
8828                  */
8829                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8830                 try_soft_reset = 0;
8831                 if (rc)
8832                         /* don't goto clean, we already unallocated */
8833                         return -ENODEV;
8834
8835                 goto reinit_after_soft_reset;
8836         }
8837
8838         /* Enable Accelerated IO path at driver layer */
8839         h->acciopath_status = 1;
8840         /* Disable discovery polling.*/
8841         h->discovery_polling = 0;
8842
8843
8844         /* Turn the interrupts on so we can service requests */
8845         h->access.set_intr_mask(h, HPSA_INTR_ON);
8846
8847         hpsa_hba_inquiry(h);
8848
8849         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8850         if (!h->lastlogicals)
8851                 dev_info(&h->pdev->dev,
8852                         "Can't track change to report lun data\n");
8853
8854         /* hook into SCSI subsystem */
8855         rc = hpsa_scsi_add_host(h);
8856         if (rc)
8857                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8858
8859         /* Monitor the controller for firmware lockups */
8860         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8861         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8862         schedule_delayed_work(&h->monitor_ctlr_work,
8863                                 h->heartbeat_sample_interval);
8864         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8865         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8866                                 h->heartbeat_sample_interval);
8867         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8868         schedule_delayed_work(&h->event_monitor_work,
8869                                 HPSA_EVENT_MONITOR_INTERVAL);
8870         return 0;
8871
8872 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8873         hpsa_free_performant_mode(h);
8874         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8875 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8876         hpsa_free_sg_chain_blocks(h);
8877 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8878         hpsa_free_cmd_pool(h);
8879 clean4: /* irq, shost, pci, lu, aer/h */
8880         hpsa_free_irqs(h);
8881 clean3: /* shost, pci, lu, aer/h */
8882         scsi_host_put(h->scsi_host);
8883         h->scsi_host = NULL;
8884 clean2_5: /* pci, lu, aer/h */
8885         hpsa_free_pci_init(h);
8886 clean2: /* lu, aer/h */
8887         if (h->lockup_detected) {
8888                 free_percpu(h->lockup_detected);
8889                 h->lockup_detected = NULL;
8890         }
8891 clean1: /* wq/aer/h */
8892         if (h->resubmit_wq) {
8893                 destroy_workqueue(h->resubmit_wq);
8894                 h->resubmit_wq = NULL;
8895         }
8896         if (h->rescan_ctlr_wq) {
8897                 destroy_workqueue(h->rescan_ctlr_wq);
8898                 h->rescan_ctlr_wq = NULL;
8899         }
8900         if (h->monitor_ctlr_wq) {
8901                 destroy_workqueue(h->monitor_ctlr_wq);
8902                 h->monitor_ctlr_wq = NULL;
8903         }
8904         kfree(h);
8905         return rc;
8906 }
8907
8908 static void hpsa_flush_cache(struct ctlr_info *h)
8909 {
8910         char *flush_buf;
8911         struct CommandList *c;
8912         int rc;
8913
8914         if (unlikely(lockup_detected(h)))
8915                 return;
8916         flush_buf = kzalloc(4, GFP_KERNEL);
8917         if (!flush_buf)
8918                 return;
8919
8920         c = cmd_alloc(h);
8921
8922         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8923                 RAID_CTLR_LUNID, TYPE_CMD)) {
8924                 goto out;
8925         }
8926         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8927                         DEFAULT_TIMEOUT);
8928         if (rc)
8929                 goto out;
8930         if (c->err_info->CommandStatus != 0)
8931 out:
8932                 dev_warn(&h->pdev->dev,
8933                         "error flushing cache on controller\n");
8934         cmd_free(h, c);
8935         kfree(flush_buf);
8936 }
8937
8938 /* Make controller gather fresh report lun data each time we
8939  * send down a report luns request
8940  */
8941 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8942 {
8943         u32 *options;
8944         struct CommandList *c;
8945         int rc;
8946
8947         /* Don't bother trying to set diag options if locked up */
8948         if (unlikely(h->lockup_detected))
8949                 return;
8950
8951         options = kzalloc(sizeof(*options), GFP_KERNEL);
8952         if (!options)
8953                 return;
8954
8955         c = cmd_alloc(h);
8956
8957         /* first, get the current diag options settings */
8958         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8959                 RAID_CTLR_LUNID, TYPE_CMD))
8960                 goto errout;
8961
8962         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8963                         NO_TIMEOUT);
8964         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8965                 goto errout;
8966
8967         /* Now, set the bit for disabling the RLD caching */
8968         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8969
8970         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8971                 RAID_CTLR_LUNID, TYPE_CMD))
8972                 goto errout;
8973
8974         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8975                         NO_TIMEOUT);
8976         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8977                 goto errout;
8978
8979         /* Now verify that it got set: */
8980         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8981                 RAID_CTLR_LUNID, TYPE_CMD))
8982                 goto errout;
8983
8984         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8985                         NO_TIMEOUT);
8986         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8987                 goto errout;
8988
8989         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8990                 goto out;
8991
8992 errout:
8993         dev_err(&h->pdev->dev,
8994                         "Error: failed to disable report lun data caching.\n");
8995 out:
8996         cmd_free(h, c);
8997         kfree(options);
8998 }
8999
9000 static void __hpsa_shutdown(struct pci_dev *pdev)
9001 {
9002         struct ctlr_info *h;
9003
9004         h = pci_get_drvdata(pdev);
9005         /* Turn board interrupts off  and send the flush cache command
9006          * sendcmd will turn off interrupt, and send the flush...
9007          * To write all data in the battery backed cache to disks
9008          */
9009         hpsa_flush_cache(h);
9010         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9011         hpsa_free_irqs(h);                      /* init_one 4 */
9012         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9013 }
9014
9015 static void hpsa_shutdown(struct pci_dev *pdev)
9016 {
9017         __hpsa_shutdown(pdev);
9018         pci_disable_device(pdev);
9019 }
9020
9021 static void hpsa_free_device_info(struct ctlr_info *h)
9022 {
9023         int i;
9024
9025         for (i = 0; i < h->ndevices; i++) {
9026                 kfree(h->dev[i]);
9027                 h->dev[i] = NULL;
9028         }
9029 }
9030
9031 static void hpsa_remove_one(struct pci_dev *pdev)
9032 {
9033         struct ctlr_info *h;
9034         unsigned long flags;
9035
9036         if (pci_get_drvdata(pdev) == NULL) {
9037                 dev_err(&pdev->dev, "unable to remove device\n");
9038                 return;
9039         }
9040         h = pci_get_drvdata(pdev);
9041
9042         /* Get rid of any controller monitoring work items */
9043         spin_lock_irqsave(&h->lock, flags);
9044         h->remove_in_progress = 1;
9045         spin_unlock_irqrestore(&h->lock, flags);
9046         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9047         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9048         cancel_delayed_work_sync(&h->event_monitor_work);
9049         destroy_workqueue(h->rescan_ctlr_wq);
9050         destroy_workqueue(h->resubmit_wq);
9051         destroy_workqueue(h->monitor_ctlr_wq);
9052
9053         hpsa_delete_sas_host(h);
9054
9055         /*
9056          * Call before disabling interrupts.
9057          * scsi_remove_host can trigger I/O operations especially
9058          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9059          * operations which cannot complete and will hang the system.
9060          */
9061         if (h->scsi_host)
9062                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9063         /* includes hpsa_free_irqs - init_one 4 */
9064         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9065         __hpsa_shutdown(pdev);
9066
9067         hpsa_free_device_info(h);               /* scan */
9068
9069         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9070         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9071         hpsa_free_ioaccel2_sg_chain_blocks(h);
9072         hpsa_free_performant_mode(h);                   /* init_one 7 */
9073         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9074         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9075         kfree(h->lastlogicals);
9076
9077         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9078
9079         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9080         h->scsi_host = NULL;                            /* init_one 3 */
9081
9082         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9083         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9084
9085         free_percpu(h->lockup_detected);                /* init_one 2 */
9086         h->lockup_detected = NULL;                      /* init_one 2 */
9087         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9088
9089         hpda_free_ctlr_info(h);                         /* init_one 1 */
9090 }
9091
9092 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9093         __attribute__((unused)) pm_message_t state)
9094 {
9095         return -ENOSYS;
9096 }
9097
9098 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9099 {
9100         return -ENOSYS;
9101 }
9102
9103 static struct pci_driver hpsa_pci_driver = {
9104         .name = HPSA,
9105         .probe = hpsa_init_one,
9106         .remove = hpsa_remove_one,
9107         .id_table = hpsa_pci_device_id, /* id_table */
9108         .shutdown = hpsa_shutdown,
9109         .suspend = hpsa_suspend,
9110         .resume = hpsa_resume,
9111 };
9112
9113 /* Fill in bucket_map[], given nsgs (the max number of
9114  * scatter gather elements supported) and bucket[],
9115  * which is an array of 8 integers.  The bucket[] array
9116  * contains 8 different DMA transfer sizes (in 16
9117  * byte increments) which the controller uses to fetch
9118  * commands.  This function fills in bucket_map[], which
9119  * maps a given number of scatter gather elements to one of
9120  * the 8 DMA transfer sizes.  The point of it is to allow the
9121  * controller to only do as much DMA as needed to fetch the
9122  * command, with the DMA transfer size encoded in the lower
9123  * bits of the command address.
9124  */
9125 static void  calc_bucket_map(int bucket[], int num_buckets,
9126         int nsgs, int min_blocks, u32 *bucket_map)
9127 {
9128         int i, j, b, size;
9129
9130         /* Note, bucket_map must have nsgs+1 entries. */
9131         for (i = 0; i <= nsgs; i++) {
9132                 /* Compute size of a command with i SG entries */
9133                 size = i + min_blocks;
9134                 b = num_buckets; /* Assume the biggest bucket */
9135                 /* Find the bucket that is just big enough */
9136                 for (j = 0; j < num_buckets; j++) {
9137                         if (bucket[j] >= size) {
9138                                 b = j;
9139                                 break;
9140                         }
9141                 }
9142                 /* for a command with i SG entries, use bucket b. */
9143                 bucket_map[i] = b;
9144         }
9145 }
9146
9147 /*
9148  * return -ENODEV on err, 0 on success (or no action)
9149  * allocates numerous items that must be freed later
9150  */
9151 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9152 {
9153         int i;
9154         unsigned long register_value;
9155         unsigned long transMethod = CFGTBL_Trans_Performant |
9156                         (trans_support & CFGTBL_Trans_use_short_tags) |
9157                                 CFGTBL_Trans_enable_directed_msix |
9158                         (trans_support & (CFGTBL_Trans_io_accel1 |
9159                                 CFGTBL_Trans_io_accel2));
9160         struct access_method access = SA5_performant_access;
9161
9162         /* This is a bit complicated.  There are 8 registers on
9163          * the controller which we write to to tell it 8 different
9164          * sizes of commands which there may be.  It's a way of
9165          * reducing the DMA done to fetch each command.  Encoded into
9166          * each command's tag are 3 bits which communicate to the controller
9167          * which of the eight sizes that command fits within.  The size of
9168          * each command depends on how many scatter gather entries there are.
9169          * Each SG entry requires 16 bytes.  The eight registers are programmed
9170          * with the number of 16-byte blocks a command of that size requires.
9171          * The smallest command possible requires 5 such 16 byte blocks.
9172          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9173          * blocks.  Note, this only extends to the SG entries contained
9174          * within the command block, and does not extend to chained blocks
9175          * of SG elements.   bft[] contains the eight values we write to
9176          * the registers.  They are not evenly distributed, but have more
9177          * sizes for small commands, and fewer sizes for larger commands.
9178          */
9179         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9180 #define MIN_IOACCEL2_BFT_ENTRY 5
9181 #define HPSA_IOACCEL2_HEADER_SZ 4
9182         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9183                         13, 14, 15, 16, 17, 18, 19,
9184                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9185         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9186         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9187         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9188                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9189         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9190         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9191         /*  5 = 1 s/g entry or 4k
9192          *  6 = 2 s/g entry or 8k
9193          *  8 = 4 s/g entry or 16k
9194          * 10 = 6 s/g entry or 24k
9195          */
9196
9197         /* If the controller supports either ioaccel method then
9198          * we can also use the RAID stack submit path that does not
9199          * perform the superfluous readl() after each command submission.
9200          */
9201         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9202                 access = SA5_performant_access_no_read;
9203
9204         /* Controller spec: zero out this buffer. */
9205         for (i = 0; i < h->nreply_queues; i++)
9206                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9207
9208         bft[7] = SG_ENTRIES_IN_CMD + 4;
9209         calc_bucket_map(bft, ARRAY_SIZE(bft),
9210                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9211         for (i = 0; i < 8; i++)
9212                 writel(bft[i], &h->transtable->BlockFetch[i]);
9213
9214         /* size of controller ring buffer */
9215         writel(h->max_commands, &h->transtable->RepQSize);
9216         writel(h->nreply_queues, &h->transtable->RepQCount);
9217         writel(0, &h->transtable->RepQCtrAddrLow32);
9218         writel(0, &h->transtable->RepQCtrAddrHigh32);
9219
9220         for (i = 0; i < h->nreply_queues; i++) {
9221                 writel(0, &h->transtable->RepQAddr[i].upper);
9222                 writel(h->reply_queue[i].busaddr,
9223                         &h->transtable->RepQAddr[i].lower);
9224         }
9225
9226         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9227         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9228         /*
9229          * enable outbound interrupt coalescing in accelerator mode;
9230          */
9231         if (trans_support & CFGTBL_Trans_io_accel1) {
9232                 access = SA5_ioaccel_mode1_access;
9233                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9234                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9235         } else
9236                 if (trans_support & CFGTBL_Trans_io_accel2)
9237                         access = SA5_ioaccel_mode2_access;
9238         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9239         if (hpsa_wait_for_mode_change_ack(h)) {
9240                 dev_err(&h->pdev->dev,
9241                         "performant mode problem - doorbell timeout\n");
9242                 return -ENODEV;
9243         }
9244         register_value = readl(&(h->cfgtable->TransportActive));
9245         if (!(register_value & CFGTBL_Trans_Performant)) {
9246                 dev_err(&h->pdev->dev,
9247                         "performant mode problem - transport not active\n");
9248                 return -ENODEV;
9249         }
9250         /* Change the access methods to the performant access methods */
9251         h->access = access;
9252         h->transMethod = transMethod;
9253
9254         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9255                 (trans_support & CFGTBL_Trans_io_accel2)))
9256                 return 0;
9257
9258         if (trans_support & CFGTBL_Trans_io_accel1) {
9259                 /* Set up I/O accelerator mode */
9260                 for (i = 0; i < h->nreply_queues; i++) {
9261                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9262                         h->reply_queue[i].current_entry =
9263                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9264                 }
9265                 bft[7] = h->ioaccel_maxsg + 8;
9266                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9267                                 h->ioaccel1_blockFetchTable);
9268
9269                 /* initialize all reply queue entries to unused */
9270                 for (i = 0; i < h->nreply_queues; i++)
9271                         memset(h->reply_queue[i].head,
9272                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9273                                 h->reply_queue_size);
9274
9275                 /* set all the constant fields in the accelerator command
9276                  * frames once at init time to save CPU cycles later.
9277                  */
9278                 for (i = 0; i < h->nr_cmds; i++) {
9279                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9280
9281                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9282                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9283                                         (i * sizeof(struct ErrorInfo)));
9284                         cp->err_info_len = sizeof(struct ErrorInfo);
9285                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9286                         cp->host_context_flags =
9287                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9288                         cp->timeout_sec = 0;
9289                         cp->ReplyQueue = 0;
9290                         cp->tag =
9291                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9292                         cp->host_addr =
9293                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9294                                         (i * sizeof(struct io_accel1_cmd)));
9295                 }
9296         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9297                 u64 cfg_offset, cfg_base_addr_index;
9298                 u32 bft2_offset, cfg_base_addr;
9299                 int rc;
9300
9301                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9302                         &cfg_base_addr_index, &cfg_offset);
9303                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9304                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9305                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9306                                 4, h->ioaccel2_blockFetchTable);
9307                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9308                 BUILD_BUG_ON(offsetof(struct CfgTable,
9309                                 io_accel_request_size_offset) != 0xb8);
9310                 h->ioaccel2_bft2_regs =
9311                         remap_pci_mem(pci_resource_start(h->pdev,
9312                                         cfg_base_addr_index) +
9313                                         cfg_offset + bft2_offset,
9314                                         ARRAY_SIZE(bft2) *
9315                                         sizeof(*h->ioaccel2_bft2_regs));
9316                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9317                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9318         }
9319         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9320         if (hpsa_wait_for_mode_change_ack(h)) {
9321                 dev_err(&h->pdev->dev,
9322                         "performant mode problem - enabling ioaccel mode\n");
9323                 return -ENODEV;
9324         }
9325         return 0;
9326 }
9327
9328 /* Free ioaccel1 mode command blocks and block fetch table */
9329 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9330 {
9331         if (h->ioaccel_cmd_pool) {
9332                 pci_free_consistent(h->pdev,
9333                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9334                         h->ioaccel_cmd_pool,
9335                         h->ioaccel_cmd_pool_dhandle);
9336                 h->ioaccel_cmd_pool = NULL;
9337                 h->ioaccel_cmd_pool_dhandle = 0;
9338         }
9339         kfree(h->ioaccel1_blockFetchTable);
9340         h->ioaccel1_blockFetchTable = NULL;
9341 }
9342
9343 /* Allocate ioaccel1 mode command blocks and block fetch table */
9344 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9345 {
9346         h->ioaccel_maxsg =
9347                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9348         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9349                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9350
9351         /* Command structures must be aligned on a 128-byte boundary
9352          * because the 7 lower bits of the address are used by the
9353          * hardware.
9354          */
9355         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9356                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9357         h->ioaccel_cmd_pool =
9358                 dma_alloc_coherent(&h->pdev->dev,
9359                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9360                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9361
9362         h->ioaccel1_blockFetchTable =
9363                 kmalloc(((h->ioaccel_maxsg + 1) *
9364                                 sizeof(u32)), GFP_KERNEL);
9365
9366         if ((h->ioaccel_cmd_pool == NULL) ||
9367                 (h->ioaccel1_blockFetchTable == NULL))
9368                 goto clean_up;
9369
9370         memset(h->ioaccel_cmd_pool, 0,
9371                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9372         return 0;
9373
9374 clean_up:
9375         hpsa_free_ioaccel1_cmd_and_bft(h);
9376         return -ENOMEM;
9377 }
9378
9379 /* Free ioaccel2 mode command blocks and block fetch table */
9380 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9381 {
9382         hpsa_free_ioaccel2_sg_chain_blocks(h);
9383
9384         if (h->ioaccel2_cmd_pool) {
9385                 pci_free_consistent(h->pdev,
9386                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9387                         h->ioaccel2_cmd_pool,
9388                         h->ioaccel2_cmd_pool_dhandle);
9389                 h->ioaccel2_cmd_pool = NULL;
9390                 h->ioaccel2_cmd_pool_dhandle = 0;
9391         }
9392         kfree(h->ioaccel2_blockFetchTable);
9393         h->ioaccel2_blockFetchTable = NULL;
9394 }
9395
9396 /* Allocate ioaccel2 mode command blocks and block fetch table */
9397 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9398 {
9399         int rc;
9400
9401         /* Allocate ioaccel2 mode command blocks and block fetch table */
9402
9403         h->ioaccel_maxsg =
9404                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9405         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9406                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9407
9408         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9409                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9410         h->ioaccel2_cmd_pool =
9411                 dma_alloc_coherent(&h->pdev->dev,
9412                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9413                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9414
9415         h->ioaccel2_blockFetchTable =
9416                 kmalloc(((h->ioaccel_maxsg + 1) *
9417                                 sizeof(u32)), GFP_KERNEL);
9418
9419         if ((h->ioaccel2_cmd_pool == NULL) ||
9420                 (h->ioaccel2_blockFetchTable == NULL)) {
9421                 rc = -ENOMEM;
9422                 goto clean_up;
9423         }
9424
9425         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9426         if (rc)
9427                 goto clean_up;
9428
9429         memset(h->ioaccel2_cmd_pool, 0,
9430                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9431         return 0;
9432
9433 clean_up:
9434         hpsa_free_ioaccel2_cmd_and_bft(h);
9435         return rc;
9436 }
9437
9438 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9439 static void hpsa_free_performant_mode(struct ctlr_info *h)
9440 {
9441         kfree(h->blockFetchTable);
9442         h->blockFetchTable = NULL;
9443         hpsa_free_reply_queues(h);
9444         hpsa_free_ioaccel1_cmd_and_bft(h);
9445         hpsa_free_ioaccel2_cmd_and_bft(h);
9446 }
9447
9448 /* return -ENODEV on error, 0 on success (or no action)
9449  * allocates numerous items that must be freed later
9450  */
9451 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9452 {
9453         u32 trans_support;
9454         unsigned long transMethod = CFGTBL_Trans_Performant |
9455                                         CFGTBL_Trans_use_short_tags;
9456         int i, rc;
9457
9458         if (hpsa_simple_mode)
9459                 return 0;
9460
9461         trans_support = readl(&(h->cfgtable->TransportSupport));
9462         if (!(trans_support & PERFORMANT_MODE))
9463                 return 0;
9464
9465         /* Check for I/O accelerator mode support */
9466         if (trans_support & CFGTBL_Trans_io_accel1) {
9467                 transMethod |= CFGTBL_Trans_io_accel1 |
9468                                 CFGTBL_Trans_enable_directed_msix;
9469                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9470                 if (rc)
9471                         return rc;
9472         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9473                 transMethod |= CFGTBL_Trans_io_accel2 |
9474                                 CFGTBL_Trans_enable_directed_msix;
9475                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9476                 if (rc)
9477                         return rc;
9478         }
9479
9480         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9481         hpsa_get_max_perf_mode_cmds(h);
9482         /* Performant mode ring buffer and supporting data structures */
9483         h->reply_queue_size = h->max_commands * sizeof(u64);
9484
9485         for (i = 0; i < h->nreply_queues; i++) {
9486                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9487                                                 h->reply_queue_size,
9488                                                 &h->reply_queue[i].busaddr,
9489                                                 GFP_KERNEL);
9490                 if (!h->reply_queue[i].head) {
9491                         rc = -ENOMEM;
9492                         goto clean1;    /* rq, ioaccel */
9493                 }
9494                 h->reply_queue[i].size = h->max_commands;
9495                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9496                 h->reply_queue[i].current_entry = 0;
9497         }
9498
9499         /* Need a block fetch table for performant mode */
9500         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9501                                 sizeof(u32)), GFP_KERNEL);
9502         if (!h->blockFetchTable) {
9503                 rc = -ENOMEM;
9504                 goto clean1;    /* rq, ioaccel */
9505         }
9506
9507         rc = hpsa_enter_performant_mode(h, trans_support);
9508         if (rc)
9509                 goto clean2;    /* bft, rq, ioaccel */
9510         return 0;
9511
9512 clean2: /* bft, rq, ioaccel */
9513         kfree(h->blockFetchTable);
9514         h->blockFetchTable = NULL;
9515 clean1: /* rq, ioaccel */
9516         hpsa_free_reply_queues(h);
9517         hpsa_free_ioaccel1_cmd_and_bft(h);
9518         hpsa_free_ioaccel2_cmd_and_bft(h);
9519         return rc;
9520 }
9521
9522 static int is_accelerated_cmd(struct CommandList *c)
9523 {
9524         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9525 }
9526
9527 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9528 {
9529         struct CommandList *c = NULL;
9530         int i, accel_cmds_out;
9531         int refcount;
9532
9533         do { /* wait for all outstanding ioaccel commands to drain out */
9534                 accel_cmds_out = 0;
9535                 for (i = 0; i < h->nr_cmds; i++) {
9536                         c = h->cmd_pool + i;
9537                         refcount = atomic_inc_return(&c->refcount);
9538                         if (refcount > 1) /* Command is allocated */
9539                                 accel_cmds_out += is_accelerated_cmd(c);
9540                         cmd_free(h, c);
9541                 }
9542                 if (accel_cmds_out <= 0)
9543                         break;
9544                 msleep(100);
9545         } while (1);
9546 }
9547
9548 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9549                                 struct hpsa_sas_port *hpsa_sas_port)
9550 {
9551         struct hpsa_sas_phy *hpsa_sas_phy;
9552         struct sas_phy *phy;
9553
9554         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9555         if (!hpsa_sas_phy)
9556                 return NULL;
9557
9558         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9559                 hpsa_sas_port->next_phy_index);
9560         if (!phy) {
9561                 kfree(hpsa_sas_phy);
9562                 return NULL;
9563         }
9564
9565         hpsa_sas_port->next_phy_index++;
9566         hpsa_sas_phy->phy = phy;
9567         hpsa_sas_phy->parent_port = hpsa_sas_port;
9568
9569         return hpsa_sas_phy;
9570 }
9571
9572 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9573 {
9574         struct sas_phy *phy = hpsa_sas_phy->phy;
9575
9576         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9577         if (hpsa_sas_phy->added_to_port)
9578                 list_del(&hpsa_sas_phy->phy_list_entry);
9579         sas_phy_delete(phy);
9580         kfree(hpsa_sas_phy);
9581 }
9582
9583 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9584 {
9585         int rc;
9586         struct hpsa_sas_port *hpsa_sas_port;
9587         struct sas_phy *phy;
9588         struct sas_identify *identify;
9589
9590         hpsa_sas_port = hpsa_sas_phy->parent_port;
9591         phy = hpsa_sas_phy->phy;
9592
9593         identify = &phy->identify;
9594         memset(identify, 0, sizeof(*identify));
9595         identify->sas_address = hpsa_sas_port->sas_address;
9596         identify->device_type = SAS_END_DEVICE;
9597         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9598         identify->target_port_protocols = SAS_PROTOCOL_STP;
9599         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9600         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9601         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9602         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9603         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9604
9605         rc = sas_phy_add(hpsa_sas_phy->phy);
9606         if (rc)
9607                 return rc;
9608
9609         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9610         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9611                         &hpsa_sas_port->phy_list_head);
9612         hpsa_sas_phy->added_to_port = true;
9613
9614         return 0;
9615 }
9616
9617 static int
9618         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9619                                 struct sas_rphy *rphy)
9620 {
9621         struct sas_identify *identify;
9622
9623         identify = &rphy->identify;
9624         identify->sas_address = hpsa_sas_port->sas_address;
9625         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9626         identify->target_port_protocols = SAS_PROTOCOL_STP;
9627
9628         return sas_rphy_add(rphy);
9629 }
9630
9631 static struct hpsa_sas_port
9632         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9633                                 u64 sas_address)
9634 {
9635         int rc;
9636         struct hpsa_sas_port *hpsa_sas_port;
9637         struct sas_port *port;
9638
9639         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9640         if (!hpsa_sas_port)
9641                 return NULL;
9642
9643         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9644         hpsa_sas_port->parent_node = hpsa_sas_node;
9645
9646         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9647         if (!port)
9648                 goto free_hpsa_port;
9649
9650         rc = sas_port_add(port);
9651         if (rc)
9652                 goto free_sas_port;
9653
9654         hpsa_sas_port->port = port;
9655         hpsa_sas_port->sas_address = sas_address;
9656         list_add_tail(&hpsa_sas_port->port_list_entry,
9657                         &hpsa_sas_node->port_list_head);
9658
9659         return hpsa_sas_port;
9660
9661 free_sas_port:
9662         sas_port_free(port);
9663 free_hpsa_port:
9664         kfree(hpsa_sas_port);
9665
9666         return NULL;
9667 }
9668
9669 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9670 {
9671         struct hpsa_sas_phy *hpsa_sas_phy;
9672         struct hpsa_sas_phy *next;
9673
9674         list_for_each_entry_safe(hpsa_sas_phy, next,
9675                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9676                 hpsa_free_sas_phy(hpsa_sas_phy);
9677
9678         sas_port_delete(hpsa_sas_port->port);
9679         list_del(&hpsa_sas_port->port_list_entry);
9680         kfree(hpsa_sas_port);
9681 }
9682
9683 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9684 {
9685         struct hpsa_sas_node *hpsa_sas_node;
9686
9687         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9688         if (hpsa_sas_node) {
9689                 hpsa_sas_node->parent_dev = parent_dev;
9690                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9691         }
9692
9693         return hpsa_sas_node;
9694 }
9695
9696 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9697 {
9698         struct hpsa_sas_port *hpsa_sas_port;
9699         struct hpsa_sas_port *next;
9700
9701         if (!hpsa_sas_node)
9702                 return;
9703
9704         list_for_each_entry_safe(hpsa_sas_port, next,
9705                         &hpsa_sas_node->port_list_head, port_list_entry)
9706                 hpsa_free_sas_port(hpsa_sas_port);
9707
9708         kfree(hpsa_sas_node);
9709 }
9710
9711 static struct hpsa_scsi_dev_t
9712         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9713                                         struct sas_rphy *rphy)
9714 {
9715         int i;
9716         struct hpsa_scsi_dev_t *device;
9717
9718         for (i = 0; i < h->ndevices; i++) {
9719                 device = h->dev[i];
9720                 if (!device->sas_port)
9721                         continue;
9722                 if (device->sas_port->rphy == rphy)
9723                         return device;
9724         }
9725
9726         return NULL;
9727 }
9728
9729 static int hpsa_add_sas_host(struct ctlr_info *h)
9730 {
9731         int rc;
9732         struct device *parent_dev;
9733         struct hpsa_sas_node *hpsa_sas_node;
9734         struct hpsa_sas_port *hpsa_sas_port;
9735         struct hpsa_sas_phy *hpsa_sas_phy;
9736
9737         parent_dev = &h->scsi_host->shost_dev;
9738
9739         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9740         if (!hpsa_sas_node)
9741                 return -ENOMEM;
9742
9743         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9744         if (!hpsa_sas_port) {
9745                 rc = -ENODEV;
9746                 goto free_sas_node;
9747         }
9748
9749         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9750         if (!hpsa_sas_phy) {
9751                 rc = -ENODEV;
9752                 goto free_sas_port;
9753         }
9754
9755         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9756         if (rc)
9757                 goto free_sas_phy;
9758
9759         h->sas_host = hpsa_sas_node;
9760
9761         return 0;
9762
9763 free_sas_phy:
9764         hpsa_free_sas_phy(hpsa_sas_phy);
9765 free_sas_port:
9766         hpsa_free_sas_port(hpsa_sas_port);
9767 free_sas_node:
9768         hpsa_free_sas_node(hpsa_sas_node);
9769
9770         return rc;
9771 }
9772
9773 static void hpsa_delete_sas_host(struct ctlr_info *h)
9774 {
9775         hpsa_free_sas_node(h->sas_host);
9776 }
9777
9778 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9779                                 struct hpsa_scsi_dev_t *device)
9780 {
9781         int rc;
9782         struct hpsa_sas_port *hpsa_sas_port;
9783         struct sas_rphy *rphy;
9784
9785         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9786         if (!hpsa_sas_port)
9787                 return -ENOMEM;
9788
9789         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9790         if (!rphy) {
9791                 rc = -ENODEV;
9792                 goto free_sas_port;
9793         }
9794
9795         hpsa_sas_port->rphy = rphy;
9796         device->sas_port = hpsa_sas_port;
9797
9798         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9799         if (rc)
9800                 goto free_sas_port;
9801
9802         return 0;
9803
9804 free_sas_port:
9805         hpsa_free_sas_port(hpsa_sas_port);
9806         device->sas_port = NULL;
9807
9808         return rc;
9809 }
9810
9811 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9812 {
9813         if (device->sas_port) {
9814                 hpsa_free_sas_port(device->sas_port);
9815                 device->sas_port = NULL;
9816         }
9817 }
9818
9819 static int
9820 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9821 {
9822         return 0;
9823 }
9824
9825 static int
9826 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9827 {
9828         struct Scsi_Host *shost = phy_to_shost(rphy);
9829         struct ctlr_info *h;
9830         struct hpsa_scsi_dev_t *sd;
9831
9832         if (!shost)
9833                 return -ENXIO;
9834
9835         h = shost_to_hba(shost);
9836
9837         if (!h)
9838                 return -ENXIO;
9839
9840         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9841         if (!sd)
9842                 return -ENXIO;
9843
9844         *identifier = sd->eli;
9845
9846         return 0;
9847 }
9848
9849 static int
9850 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9851 {
9852         return -ENXIO;
9853 }
9854
9855 static int
9856 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9857 {
9858         return 0;
9859 }
9860
9861 static int
9862 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9863 {
9864         return 0;
9865 }
9866
9867 static int
9868 hpsa_sas_phy_setup(struct sas_phy *phy)
9869 {
9870         return 0;
9871 }
9872
9873 static void
9874 hpsa_sas_phy_release(struct sas_phy *phy)
9875 {
9876 }
9877
9878 static int
9879 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9880 {
9881         return -EINVAL;
9882 }
9883
9884 static struct sas_function_template hpsa_sas_transport_functions = {
9885         .get_linkerrors = hpsa_sas_get_linkerrors,
9886         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9887         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9888         .phy_reset = hpsa_sas_phy_reset,
9889         .phy_enable = hpsa_sas_phy_enable,
9890         .phy_setup = hpsa_sas_phy_setup,
9891         .phy_release = hpsa_sas_phy_release,
9892         .set_phy_speed = hpsa_sas_phy_speed,
9893 };
9894
9895 /*
9896  *  This is it.  Register the PCI driver information for the cards we control
9897  *  the OS will call our registered routines when it finds one of our cards.
9898  */
9899 static int __init hpsa_init(void)
9900 {
9901         int rc;
9902
9903         hpsa_sas_transport_template =
9904                 sas_attach_transport(&hpsa_sas_transport_functions);
9905         if (!hpsa_sas_transport_template)
9906                 return -ENODEV;
9907
9908         rc = pci_register_driver(&hpsa_pci_driver);
9909
9910         if (rc)
9911                 sas_release_transport(hpsa_sas_transport_template);
9912
9913         return rc;
9914 }
9915
9916 static void __exit hpsa_cleanup(void)
9917 {
9918         pci_unregister_driver(&hpsa_pci_driver);
9919         sas_release_transport(hpsa_sas_transport_template);
9920 }
9921
9922 static void __attribute__((unused)) verify_offsets(void)
9923 {
9924 #define VERIFY_OFFSET(member, offset) \
9925         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9926
9927         VERIFY_OFFSET(structure_size, 0);
9928         VERIFY_OFFSET(volume_blk_size, 4);
9929         VERIFY_OFFSET(volume_blk_cnt, 8);
9930         VERIFY_OFFSET(phys_blk_shift, 16);
9931         VERIFY_OFFSET(parity_rotation_shift, 17);
9932         VERIFY_OFFSET(strip_size, 18);
9933         VERIFY_OFFSET(disk_starting_blk, 20);
9934         VERIFY_OFFSET(disk_blk_cnt, 28);
9935         VERIFY_OFFSET(data_disks_per_row, 36);
9936         VERIFY_OFFSET(metadata_disks_per_row, 38);
9937         VERIFY_OFFSET(row_cnt, 40);
9938         VERIFY_OFFSET(layout_map_count, 42);
9939         VERIFY_OFFSET(flags, 44);
9940         VERIFY_OFFSET(dekindex, 46);
9941         /* VERIFY_OFFSET(reserved, 48 */
9942         VERIFY_OFFSET(data, 64);
9943
9944 #undef VERIFY_OFFSET
9945
9946 #define VERIFY_OFFSET(member, offset) \
9947         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9948
9949         VERIFY_OFFSET(IU_type, 0);
9950         VERIFY_OFFSET(direction, 1);
9951         VERIFY_OFFSET(reply_queue, 2);
9952         /* VERIFY_OFFSET(reserved1, 3);  */
9953         VERIFY_OFFSET(scsi_nexus, 4);
9954         VERIFY_OFFSET(Tag, 8);
9955         VERIFY_OFFSET(cdb, 16);
9956         VERIFY_OFFSET(cciss_lun, 32);
9957         VERIFY_OFFSET(data_len, 40);
9958         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9959         VERIFY_OFFSET(sg_count, 45);
9960         /* VERIFY_OFFSET(reserved3 */
9961         VERIFY_OFFSET(err_ptr, 48);
9962         VERIFY_OFFSET(err_len, 56);
9963         /* VERIFY_OFFSET(reserved4  */
9964         VERIFY_OFFSET(sg, 64);
9965
9966 #undef VERIFY_OFFSET
9967
9968 #define VERIFY_OFFSET(member, offset) \
9969         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9970
9971         VERIFY_OFFSET(dev_handle, 0x00);
9972         VERIFY_OFFSET(reserved1, 0x02);
9973         VERIFY_OFFSET(function, 0x03);
9974         VERIFY_OFFSET(reserved2, 0x04);
9975         VERIFY_OFFSET(err_info, 0x0C);
9976         VERIFY_OFFSET(reserved3, 0x10);
9977         VERIFY_OFFSET(err_info_len, 0x12);
9978         VERIFY_OFFSET(reserved4, 0x13);
9979         VERIFY_OFFSET(sgl_offset, 0x14);
9980         VERIFY_OFFSET(reserved5, 0x15);
9981         VERIFY_OFFSET(transfer_len, 0x1C);
9982         VERIFY_OFFSET(reserved6, 0x20);
9983         VERIFY_OFFSET(io_flags, 0x24);
9984         VERIFY_OFFSET(reserved7, 0x26);
9985         VERIFY_OFFSET(LUN, 0x34);
9986         VERIFY_OFFSET(control, 0x3C);
9987         VERIFY_OFFSET(CDB, 0x40);
9988         VERIFY_OFFSET(reserved8, 0x50);
9989         VERIFY_OFFSET(host_context_flags, 0x60);
9990         VERIFY_OFFSET(timeout_sec, 0x62);
9991         VERIFY_OFFSET(ReplyQueue, 0x64);
9992         VERIFY_OFFSET(reserved9, 0x65);
9993         VERIFY_OFFSET(tag, 0x68);
9994         VERIFY_OFFSET(host_addr, 0x70);
9995         VERIFY_OFFSET(CISS_LUN, 0x78);
9996         VERIFY_OFFSET(SG, 0x78 + 8);
9997 #undef VERIFY_OFFSET
9998 }
9999
10000 module_init(hpsa_init);
10001 module_exit(hpsa_cleanup);