Merge tag 'ntb-4.6' of git://github.com/jonmason/ntb
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.14-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159         {0x3241103C, "Smart Array P212", &SA5_access},
160         {0x3243103C, "Smart Array P410", &SA5_access},
161         {0x3245103C, "Smart Array P410i", &SA5_access},
162         {0x3247103C, "Smart Array P411", &SA5_access},
163         {0x3249103C, "Smart Array P812", &SA5_access},
164         {0x324A103C, "Smart Array P712m", &SA5_access},
165         {0x324B103C, "Smart Array P711m", &SA5_access},
166         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167         {0x3350103C, "Smart Array P222", &SA5_access},
168         {0x3351103C, "Smart Array P420", &SA5_access},
169         {0x3352103C, "Smart Array P421", &SA5_access},
170         {0x3353103C, "Smart Array P822", &SA5_access},
171         {0x3354103C, "Smart Array P420i", &SA5_access},
172         {0x3355103C, "Smart Array P220i", &SA5_access},
173         {0x3356103C, "Smart Array P721m", &SA5_access},
174         {0x1921103C, "Smart Array P830i", &SA5_access},
175         {0x1922103C, "Smart Array P430", &SA5_access},
176         {0x1923103C, "Smart Array P431", &SA5_access},
177         {0x1924103C, "Smart Array P830", &SA5_access},
178         {0x1926103C, "Smart Array P731m", &SA5_access},
179         {0x1928103C, "Smart Array P230i", &SA5_access},
180         {0x1929103C, "Smart Array P530", &SA5_access},
181         {0x21BD103C, "Smart Array P244br", &SA5_access},
182         {0x21BE103C, "Smart Array P741m", &SA5_access},
183         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184         {0x21C0103C, "Smart Array P440ar", &SA5_access},
185         {0x21C1103C, "Smart Array P840ar", &SA5_access},
186         {0x21C2103C, "Smart Array P440", &SA5_access},
187         {0x21C3103C, "Smart Array P441", &SA5_access},
188         {0x21C4103C, "Smart Array", &SA5_access},
189         {0x21C5103C, "Smart Array P841", &SA5_access},
190         {0x21C6103C, "Smart HBA H244br", &SA5_access},
191         {0x21C7103C, "Smart HBA H240", &SA5_access},
192         {0x21C8103C, "Smart HBA H241", &SA5_access},
193         {0x21C9103C, "Smart Array", &SA5_access},
194         {0x21CA103C, "Smart Array P246br", &SA5_access},
195         {0x21CB103C, "Smart Array P840", &SA5_access},
196         {0x21CC103C, "Smart Array", &SA5_access},
197         {0x21CD103C, "Smart Array", &SA5_access},
198         {0x21CE103C, "Smart HBA", &SA5_access},
199         {0x05809005, "SmartHBA-SA", &SA5_access},
200         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217                         struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221                 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235         void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242                                             struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245         int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253         unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264         struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266         struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269         int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275                                u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277                                     unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280                                      int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295         struct ReportExtendedLUNdata *buf, int bufsize);
296 static int hpsa_luns_changed(struct ctlr_info *h);
297
298 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
299 {
300         unsigned long *priv = shost_priv(sdev->host);
301         return (struct ctlr_info *) *priv;
302 }
303
304 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
305 {
306         unsigned long *priv = shost_priv(sh);
307         return (struct ctlr_info *) *priv;
308 }
309
310 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
311 {
312         return c->scsi_cmd == SCSI_CMD_IDLE;
313 }
314
315 static inline bool hpsa_is_pending_event(struct CommandList *c)
316 {
317         return c->abort_pending || c->reset_pending;
318 }
319
320 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
321 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
322                         u8 *sense_key, u8 *asc, u8 *ascq)
323 {
324         struct scsi_sense_hdr sshdr;
325         bool rc;
326
327         *sense_key = -1;
328         *asc = -1;
329         *ascq = -1;
330
331         if (sense_data_len < 1)
332                 return;
333
334         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
335         if (rc) {
336                 *sense_key = sshdr.sense_key;
337                 *asc = sshdr.asc;
338                 *ascq = sshdr.ascq;
339         }
340 }
341
342 static int check_for_unit_attention(struct ctlr_info *h,
343         struct CommandList *c)
344 {
345         u8 sense_key, asc, ascq;
346         int sense_len;
347
348         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
349                 sense_len = sizeof(c->err_info->SenseInfo);
350         else
351                 sense_len = c->err_info->SenseLen;
352
353         decode_sense_data(c->err_info->SenseInfo, sense_len,
354                                 &sense_key, &asc, &ascq);
355         if (sense_key != UNIT_ATTENTION || asc == 0xff)
356                 return 0;
357
358         switch (asc) {
359         case STATE_CHANGED:
360                 dev_warn(&h->pdev->dev,
361                         "%s: a state change detected, command retried\n",
362                         h->devname);
363                 break;
364         case LUN_FAILED:
365                 dev_warn(&h->pdev->dev,
366                         "%s: LUN failure detected\n", h->devname);
367                 break;
368         case REPORT_LUNS_CHANGED:
369                 dev_warn(&h->pdev->dev,
370                         "%s: report LUN data changed\n", h->devname);
371         /*
372          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
373          * target (array) devices.
374          */
375                 break;
376         case POWER_OR_RESET:
377                 dev_warn(&h->pdev->dev,
378                         "%s: a power on or device reset detected\n",
379                         h->devname);
380                 break;
381         case UNIT_ATTENTION_CLEARED:
382                 dev_warn(&h->pdev->dev,
383                         "%s: unit attention cleared by another initiator\n",
384                         h->devname);
385                 break;
386         default:
387                 dev_warn(&h->pdev->dev,
388                         "%s: unknown unit attention detected\n",
389                         h->devname);
390                 break;
391         }
392         return 1;
393 }
394
395 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
396 {
397         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
398                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
399                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
400                 return 0;
401         dev_warn(&h->pdev->dev, HPSA "device busy");
402         return 1;
403 }
404
405 static u32 lockup_detected(struct ctlr_info *h);
406 static ssize_t host_show_lockup_detected(struct device *dev,
407                 struct device_attribute *attr, char *buf)
408 {
409         int ld;
410         struct ctlr_info *h;
411         struct Scsi_Host *shost = class_to_shost(dev);
412
413         h = shost_to_hba(shost);
414         ld = lockup_detected(h);
415
416         return sprintf(buf, "ld=%d\n", ld);
417 }
418
419 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
420                                          struct device_attribute *attr,
421                                          const char *buf, size_t count)
422 {
423         int status, len;
424         struct ctlr_info *h;
425         struct Scsi_Host *shost = class_to_shost(dev);
426         char tmpbuf[10];
427
428         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
429                 return -EACCES;
430         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
431         strncpy(tmpbuf, buf, len);
432         tmpbuf[len] = '\0';
433         if (sscanf(tmpbuf, "%d", &status) != 1)
434                 return -EINVAL;
435         h = shost_to_hba(shost);
436         h->acciopath_status = !!status;
437         dev_warn(&h->pdev->dev,
438                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
439                 h->acciopath_status ? "enabled" : "disabled");
440         return count;
441 }
442
443 static ssize_t host_store_raid_offload_debug(struct device *dev,
444                                          struct device_attribute *attr,
445                                          const char *buf, size_t count)
446 {
447         int debug_level, len;
448         struct ctlr_info *h;
449         struct Scsi_Host *shost = class_to_shost(dev);
450         char tmpbuf[10];
451
452         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
453                 return -EACCES;
454         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
455         strncpy(tmpbuf, buf, len);
456         tmpbuf[len] = '\0';
457         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
458                 return -EINVAL;
459         if (debug_level < 0)
460                 debug_level = 0;
461         h = shost_to_hba(shost);
462         h->raid_offload_debug = debug_level;
463         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
464                 h->raid_offload_debug);
465         return count;
466 }
467
468 static ssize_t host_store_rescan(struct device *dev,
469                                  struct device_attribute *attr,
470                                  const char *buf, size_t count)
471 {
472         struct ctlr_info *h;
473         struct Scsi_Host *shost = class_to_shost(dev);
474         h = shost_to_hba(shost);
475         hpsa_scan_start(h->scsi_host);
476         return count;
477 }
478
479 static ssize_t host_show_firmware_revision(struct device *dev,
480              struct device_attribute *attr, char *buf)
481 {
482         struct ctlr_info *h;
483         struct Scsi_Host *shost = class_to_shost(dev);
484         unsigned char *fwrev;
485
486         h = shost_to_hba(shost);
487         if (!h->hba_inquiry_data)
488                 return 0;
489         fwrev = &h->hba_inquiry_data[32];
490         return snprintf(buf, 20, "%c%c%c%c\n",
491                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
492 }
493
494 static ssize_t host_show_commands_outstanding(struct device *dev,
495              struct device_attribute *attr, char *buf)
496 {
497         struct Scsi_Host *shost = class_to_shost(dev);
498         struct ctlr_info *h = shost_to_hba(shost);
499
500         return snprintf(buf, 20, "%d\n",
501                         atomic_read(&h->commands_outstanding));
502 }
503
504 static ssize_t host_show_transport_mode(struct device *dev,
505         struct device_attribute *attr, char *buf)
506 {
507         struct ctlr_info *h;
508         struct Scsi_Host *shost = class_to_shost(dev);
509
510         h = shost_to_hba(shost);
511         return snprintf(buf, 20, "%s\n",
512                 h->transMethod & CFGTBL_Trans_Performant ?
513                         "performant" : "simple");
514 }
515
516 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
517         struct device_attribute *attr, char *buf)
518 {
519         struct ctlr_info *h;
520         struct Scsi_Host *shost = class_to_shost(dev);
521
522         h = shost_to_hba(shost);
523         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
524                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
525 }
526
527 /* List of controllers which cannot be hard reset on kexec with reset_devices */
528 static u32 unresettable_controller[] = {
529         0x324a103C, /* Smart Array P712m */
530         0x324b103C, /* Smart Array P711m */
531         0x3223103C, /* Smart Array P800 */
532         0x3234103C, /* Smart Array P400 */
533         0x3235103C, /* Smart Array P400i */
534         0x3211103C, /* Smart Array E200i */
535         0x3212103C, /* Smart Array E200 */
536         0x3213103C, /* Smart Array E200i */
537         0x3214103C, /* Smart Array E200i */
538         0x3215103C, /* Smart Array E200i */
539         0x3237103C, /* Smart Array E500 */
540         0x323D103C, /* Smart Array P700m */
541         0x40800E11, /* Smart Array 5i */
542         0x409C0E11, /* Smart Array 6400 */
543         0x409D0E11, /* Smart Array 6400 EM */
544         0x40700E11, /* Smart Array 5300 */
545         0x40820E11, /* Smart Array 532 */
546         0x40830E11, /* Smart Array 5312 */
547         0x409A0E11, /* Smart Array 641 */
548         0x409B0E11, /* Smart Array 642 */
549         0x40910E11, /* Smart Array 6i */
550 };
551
552 /* List of controllers which cannot even be soft reset */
553 static u32 soft_unresettable_controller[] = {
554         0x40800E11, /* Smart Array 5i */
555         0x40700E11, /* Smart Array 5300 */
556         0x40820E11, /* Smart Array 532 */
557         0x40830E11, /* Smart Array 5312 */
558         0x409A0E11, /* Smart Array 641 */
559         0x409B0E11, /* Smart Array 642 */
560         0x40910E11, /* Smart Array 6i */
561         /* Exclude 640x boards.  These are two pci devices in one slot
562          * which share a battery backed cache module.  One controls the
563          * cache, the other accesses the cache through the one that controls
564          * it.  If we reset the one controlling the cache, the other will
565          * likely not be happy.  Just forbid resetting this conjoined mess.
566          * The 640x isn't really supported by hpsa anyway.
567          */
568         0x409C0E11, /* Smart Array 6400 */
569         0x409D0E11, /* Smart Array 6400 EM */
570 };
571
572 static u32 needs_abort_tags_swizzled[] = {
573         0x323D103C, /* Smart Array P700m */
574         0x324a103C, /* Smart Array P712m */
575         0x324b103C, /* SmartArray P711m */
576 };
577
578 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
579 {
580         int i;
581
582         for (i = 0; i < nelems; i++)
583                 if (a[i] == board_id)
584                         return 1;
585         return 0;
586 }
587
588 static int ctlr_is_hard_resettable(u32 board_id)
589 {
590         return !board_id_in_array(unresettable_controller,
591                         ARRAY_SIZE(unresettable_controller), board_id);
592 }
593
594 static int ctlr_is_soft_resettable(u32 board_id)
595 {
596         return !board_id_in_array(soft_unresettable_controller,
597                         ARRAY_SIZE(soft_unresettable_controller), board_id);
598 }
599
600 static int ctlr_is_resettable(u32 board_id)
601 {
602         return ctlr_is_hard_resettable(board_id) ||
603                 ctlr_is_soft_resettable(board_id);
604 }
605
606 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
607 {
608         return board_id_in_array(needs_abort_tags_swizzled,
609                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
610 }
611
612 static ssize_t host_show_resettable(struct device *dev,
613         struct device_attribute *attr, char *buf)
614 {
615         struct ctlr_info *h;
616         struct Scsi_Host *shost = class_to_shost(dev);
617
618         h = shost_to_hba(shost);
619         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
620 }
621
622 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
623 {
624         return (scsi3addr[3] & 0xC0) == 0x40;
625 }
626
627 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
628         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
629 };
630 #define HPSA_RAID_0     0
631 #define HPSA_RAID_4     1
632 #define HPSA_RAID_1     2       /* also used for RAID 10 */
633 #define HPSA_RAID_5     3       /* also used for RAID 50 */
634 #define HPSA_RAID_51    4
635 #define HPSA_RAID_6     5       /* also used for RAID 60 */
636 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
637 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
638 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
639
640 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
641 {
642         return !device->physical_device;
643 }
644
645 static ssize_t raid_level_show(struct device *dev,
646              struct device_attribute *attr, char *buf)
647 {
648         ssize_t l = 0;
649         unsigned char rlevel;
650         struct ctlr_info *h;
651         struct scsi_device *sdev;
652         struct hpsa_scsi_dev_t *hdev;
653         unsigned long flags;
654
655         sdev = to_scsi_device(dev);
656         h = sdev_to_hba(sdev);
657         spin_lock_irqsave(&h->lock, flags);
658         hdev = sdev->hostdata;
659         if (!hdev) {
660                 spin_unlock_irqrestore(&h->lock, flags);
661                 return -ENODEV;
662         }
663
664         /* Is this even a logical drive? */
665         if (!is_logical_device(hdev)) {
666                 spin_unlock_irqrestore(&h->lock, flags);
667                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
668                 return l;
669         }
670
671         rlevel = hdev->raid_level;
672         spin_unlock_irqrestore(&h->lock, flags);
673         if (rlevel > RAID_UNKNOWN)
674                 rlevel = RAID_UNKNOWN;
675         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
676         return l;
677 }
678
679 static ssize_t lunid_show(struct device *dev,
680              struct device_attribute *attr, char *buf)
681 {
682         struct ctlr_info *h;
683         struct scsi_device *sdev;
684         struct hpsa_scsi_dev_t *hdev;
685         unsigned long flags;
686         unsigned char lunid[8];
687
688         sdev = to_scsi_device(dev);
689         h = sdev_to_hba(sdev);
690         spin_lock_irqsave(&h->lock, flags);
691         hdev = sdev->hostdata;
692         if (!hdev) {
693                 spin_unlock_irqrestore(&h->lock, flags);
694                 return -ENODEV;
695         }
696         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
697         spin_unlock_irqrestore(&h->lock, flags);
698         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
699                 lunid[0], lunid[1], lunid[2], lunid[3],
700                 lunid[4], lunid[5], lunid[6], lunid[7]);
701 }
702
703 static ssize_t unique_id_show(struct device *dev,
704              struct device_attribute *attr, char *buf)
705 {
706         struct ctlr_info *h;
707         struct scsi_device *sdev;
708         struct hpsa_scsi_dev_t *hdev;
709         unsigned long flags;
710         unsigned char sn[16];
711
712         sdev = to_scsi_device(dev);
713         h = sdev_to_hba(sdev);
714         spin_lock_irqsave(&h->lock, flags);
715         hdev = sdev->hostdata;
716         if (!hdev) {
717                 spin_unlock_irqrestore(&h->lock, flags);
718                 return -ENODEV;
719         }
720         memcpy(sn, hdev->device_id, sizeof(sn));
721         spin_unlock_irqrestore(&h->lock, flags);
722         return snprintf(buf, 16 * 2 + 2,
723                         "%02X%02X%02X%02X%02X%02X%02X%02X"
724                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
725                         sn[0], sn[1], sn[2], sn[3],
726                         sn[4], sn[5], sn[6], sn[7],
727                         sn[8], sn[9], sn[10], sn[11],
728                         sn[12], sn[13], sn[14], sn[15]);
729 }
730
731 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
732              struct device_attribute *attr, char *buf)
733 {
734         struct ctlr_info *h;
735         struct scsi_device *sdev;
736         struct hpsa_scsi_dev_t *hdev;
737         unsigned long flags;
738         int offload_enabled;
739
740         sdev = to_scsi_device(dev);
741         h = sdev_to_hba(sdev);
742         spin_lock_irqsave(&h->lock, flags);
743         hdev = sdev->hostdata;
744         if (!hdev) {
745                 spin_unlock_irqrestore(&h->lock, flags);
746                 return -ENODEV;
747         }
748         offload_enabled = hdev->offload_enabled;
749         spin_unlock_irqrestore(&h->lock, flags);
750         return snprintf(buf, 20, "%d\n", offload_enabled);
751 }
752
753 #define MAX_PATHS 8
754 static ssize_t path_info_show(struct device *dev,
755              struct device_attribute *attr, char *buf)
756 {
757         struct ctlr_info *h;
758         struct scsi_device *sdev;
759         struct hpsa_scsi_dev_t *hdev;
760         unsigned long flags;
761         int i;
762         int output_len = 0;
763         u8 box;
764         u8 bay;
765         u8 path_map_index = 0;
766         char *active;
767         unsigned char phys_connector[2];
768
769         sdev = to_scsi_device(dev);
770         h = sdev_to_hba(sdev);
771         spin_lock_irqsave(&h->devlock, flags);
772         hdev = sdev->hostdata;
773         if (!hdev) {
774                 spin_unlock_irqrestore(&h->devlock, flags);
775                 return -ENODEV;
776         }
777
778         bay = hdev->bay;
779         for (i = 0; i < MAX_PATHS; i++) {
780                 path_map_index = 1<<i;
781                 if (i == hdev->active_path_index)
782                         active = "Active";
783                 else if (hdev->path_map & path_map_index)
784                         active = "Inactive";
785                 else
786                         continue;
787
788                 output_len += scnprintf(buf + output_len,
789                                 PAGE_SIZE - output_len,
790                                 "[%d:%d:%d:%d] %20.20s ",
791                                 h->scsi_host->host_no,
792                                 hdev->bus, hdev->target, hdev->lun,
793                                 scsi_device_type(hdev->devtype));
794
795                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
796                         output_len += scnprintf(buf + output_len,
797                                                 PAGE_SIZE - output_len,
798                                                 "%s\n", active);
799                         continue;
800                 }
801
802                 box = hdev->box[i];
803                 memcpy(&phys_connector, &hdev->phys_connector[i],
804                         sizeof(phys_connector));
805                 if (phys_connector[0] < '0')
806                         phys_connector[0] = '0';
807                 if (phys_connector[1] < '0')
808                         phys_connector[1] = '0';
809                 output_len += scnprintf(buf + output_len,
810                                 PAGE_SIZE - output_len,
811                                 "PORT: %.2s ",
812                                 phys_connector);
813                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
814                         hdev->expose_device) {
815                         if (box == 0 || box == 0xFF) {
816                                 output_len += scnprintf(buf + output_len,
817                                         PAGE_SIZE - output_len,
818                                         "BAY: %hhu %s\n",
819                                         bay, active);
820                         } else {
821                                 output_len += scnprintf(buf + output_len,
822                                         PAGE_SIZE - output_len,
823                                         "BOX: %hhu BAY: %hhu %s\n",
824                                         box, bay, active);
825                         }
826                 } else if (box != 0 && box != 0xFF) {
827                         output_len += scnprintf(buf + output_len,
828                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
829                                 box, active);
830                 } else
831                         output_len += scnprintf(buf + output_len,
832                                 PAGE_SIZE - output_len, "%s\n", active);
833         }
834
835         spin_unlock_irqrestore(&h->devlock, flags);
836         return output_len;
837 }
838
839 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
840 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
841 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
842 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
843 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
844                         host_show_hp_ssd_smart_path_enabled, NULL);
845 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
846 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
847                 host_show_hp_ssd_smart_path_status,
848                 host_store_hp_ssd_smart_path_status);
849 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
850                         host_store_raid_offload_debug);
851 static DEVICE_ATTR(firmware_revision, S_IRUGO,
852         host_show_firmware_revision, NULL);
853 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
854         host_show_commands_outstanding, NULL);
855 static DEVICE_ATTR(transport_mode, S_IRUGO,
856         host_show_transport_mode, NULL);
857 static DEVICE_ATTR(resettable, S_IRUGO,
858         host_show_resettable, NULL);
859 static DEVICE_ATTR(lockup_detected, S_IRUGO,
860         host_show_lockup_detected, NULL);
861
862 static struct device_attribute *hpsa_sdev_attrs[] = {
863         &dev_attr_raid_level,
864         &dev_attr_lunid,
865         &dev_attr_unique_id,
866         &dev_attr_hp_ssd_smart_path_enabled,
867         &dev_attr_path_info,
868         NULL,
869 };
870
871 static struct device_attribute *hpsa_shost_attrs[] = {
872         &dev_attr_rescan,
873         &dev_attr_firmware_revision,
874         &dev_attr_commands_outstanding,
875         &dev_attr_transport_mode,
876         &dev_attr_resettable,
877         &dev_attr_hp_ssd_smart_path_status,
878         &dev_attr_raid_offload_debug,
879         &dev_attr_lockup_detected,
880         NULL,
881 };
882
883 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
884                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
885
886 static struct scsi_host_template hpsa_driver_template = {
887         .module                 = THIS_MODULE,
888         .name                   = HPSA,
889         .proc_name              = HPSA,
890         .queuecommand           = hpsa_scsi_queue_command,
891         .scan_start             = hpsa_scan_start,
892         .scan_finished          = hpsa_scan_finished,
893         .change_queue_depth     = hpsa_change_queue_depth,
894         .this_id                = -1,
895         .use_clustering         = ENABLE_CLUSTERING,
896         .eh_abort_handler       = hpsa_eh_abort_handler,
897         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
898         .ioctl                  = hpsa_ioctl,
899         .slave_alloc            = hpsa_slave_alloc,
900         .slave_configure        = hpsa_slave_configure,
901         .slave_destroy          = hpsa_slave_destroy,
902 #ifdef CONFIG_COMPAT
903         .compat_ioctl           = hpsa_compat_ioctl,
904 #endif
905         .sdev_attrs = hpsa_sdev_attrs,
906         .shost_attrs = hpsa_shost_attrs,
907         .max_sectors = 8192,
908         .no_write_same = 1,
909 };
910
911 static inline u32 next_command(struct ctlr_info *h, u8 q)
912 {
913         u32 a;
914         struct reply_queue_buffer *rq = &h->reply_queue[q];
915
916         if (h->transMethod & CFGTBL_Trans_io_accel1)
917                 return h->access.command_completed(h, q);
918
919         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
920                 return h->access.command_completed(h, q);
921
922         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
923                 a = rq->head[rq->current_entry];
924                 rq->current_entry++;
925                 atomic_dec(&h->commands_outstanding);
926         } else {
927                 a = FIFO_EMPTY;
928         }
929         /* Check for wraparound */
930         if (rq->current_entry == h->max_commands) {
931                 rq->current_entry = 0;
932                 rq->wraparound ^= 1;
933         }
934         return a;
935 }
936
937 /*
938  * There are some special bits in the bus address of the
939  * command that we have to set for the controller to know
940  * how to process the command:
941  *
942  * Normal performant mode:
943  * bit 0: 1 means performant mode, 0 means simple mode.
944  * bits 1-3 = block fetch table entry
945  * bits 4-6 = command type (== 0)
946  *
947  * ioaccel1 mode:
948  * bit 0 = "performant mode" bit.
949  * bits 1-3 = block fetch table entry
950  * bits 4-6 = command type (== 110)
951  * (command type is needed because ioaccel1 mode
952  * commands are submitted through the same register as normal
953  * mode commands, so this is how the controller knows whether
954  * the command is normal mode or ioaccel1 mode.)
955  *
956  * ioaccel2 mode:
957  * bit 0 = "performant mode" bit.
958  * bits 1-4 = block fetch table entry (note extra bit)
959  * bits 4-6 = not needed, because ioaccel2 mode has
960  * a separate special register for submitting commands.
961  */
962
963 /*
964  * set_performant_mode: Modify the tag for cciss performant
965  * set bit 0 for pull model, bits 3-1 for block fetch
966  * register number
967  */
968 #define DEFAULT_REPLY_QUEUE (-1)
969 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
970                                         int reply_queue)
971 {
972         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
973                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
974                 if (unlikely(!h->msix_vector))
975                         return;
976                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
977                         c->Header.ReplyQueue =
978                                 raw_smp_processor_id() % h->nreply_queues;
979                 else
980                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
981         }
982 }
983
984 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
985                                                 struct CommandList *c,
986                                                 int reply_queue)
987 {
988         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
989
990         /*
991          * Tell the controller to post the reply to the queue for this
992          * processor.  This seems to give the best I/O throughput.
993          */
994         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
995                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
996         else
997                 cp->ReplyQueue = reply_queue % h->nreply_queues;
998         /*
999          * Set the bits in the address sent down to include:
1000          *  - performant mode bit (bit 0)
1001          *  - pull count (bits 1-3)
1002          *  - command type (bits 4-6)
1003          */
1004         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1005                                         IOACCEL1_BUSADDR_CMDTYPE;
1006 }
1007
1008 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1009                                                 struct CommandList *c,
1010                                                 int reply_queue)
1011 {
1012         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1013                 &h->ioaccel2_cmd_pool[c->cmdindex];
1014
1015         /* Tell the controller to post the reply to the queue for this
1016          * processor.  This seems to give the best I/O throughput.
1017          */
1018         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1019                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1020         else
1021                 cp->reply_queue = reply_queue % h->nreply_queues;
1022         /* Set the bits in the address sent down to include:
1023          *  - performant mode bit not used in ioaccel mode 2
1024          *  - pull count (bits 0-3)
1025          *  - command type isn't needed for ioaccel2
1026          */
1027         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1028 }
1029
1030 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1031                                                 struct CommandList *c,
1032                                                 int reply_queue)
1033 {
1034         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1035
1036         /*
1037          * Tell the controller to post the reply to the queue for this
1038          * processor.  This seems to give the best I/O throughput.
1039          */
1040         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1041                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1042         else
1043                 cp->reply_queue = reply_queue % h->nreply_queues;
1044         /*
1045          * Set the bits in the address sent down to include:
1046          *  - performant mode bit not used in ioaccel mode 2
1047          *  - pull count (bits 0-3)
1048          *  - command type isn't needed for ioaccel2
1049          */
1050         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1051 }
1052
1053 static int is_firmware_flash_cmd(u8 *cdb)
1054 {
1055         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1056 }
1057
1058 /*
1059  * During firmware flash, the heartbeat register may not update as frequently
1060  * as it should.  So we dial down lockup detection during firmware flash. and
1061  * dial it back up when firmware flash completes.
1062  */
1063 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1064 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1065 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1066                 struct CommandList *c)
1067 {
1068         if (!is_firmware_flash_cmd(c->Request.CDB))
1069                 return;
1070         atomic_inc(&h->firmware_flash_in_progress);
1071         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1072 }
1073
1074 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1075                 struct CommandList *c)
1076 {
1077         if (is_firmware_flash_cmd(c->Request.CDB) &&
1078                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1079                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1080 }
1081
1082 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1083         struct CommandList *c, int reply_queue)
1084 {
1085         dial_down_lockup_detection_during_fw_flash(h, c);
1086         atomic_inc(&h->commands_outstanding);
1087         switch (c->cmd_type) {
1088         case CMD_IOACCEL1:
1089                 set_ioaccel1_performant_mode(h, c, reply_queue);
1090                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1091                 break;
1092         case CMD_IOACCEL2:
1093                 set_ioaccel2_performant_mode(h, c, reply_queue);
1094                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1095                 break;
1096         case IOACCEL2_TMF:
1097                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1098                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1099                 break;
1100         default:
1101                 set_performant_mode(h, c, reply_queue);
1102                 h->access.submit_command(h, c);
1103         }
1104 }
1105
1106 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1107 {
1108         if (unlikely(hpsa_is_pending_event(c)))
1109                 return finish_cmd(c);
1110
1111         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1112 }
1113
1114 static inline int is_hba_lunid(unsigned char scsi3addr[])
1115 {
1116         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1117 }
1118
1119 static inline int is_scsi_rev_5(struct ctlr_info *h)
1120 {
1121         if (!h->hba_inquiry_data)
1122                 return 0;
1123         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1124                 return 1;
1125         return 0;
1126 }
1127
1128 static int hpsa_find_target_lun(struct ctlr_info *h,
1129         unsigned char scsi3addr[], int bus, int *target, int *lun)
1130 {
1131         /* finds an unused bus, target, lun for a new physical device
1132          * assumes h->devlock is held
1133          */
1134         int i, found = 0;
1135         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1136
1137         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1138
1139         for (i = 0; i < h->ndevices; i++) {
1140                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1141                         __set_bit(h->dev[i]->target, lun_taken);
1142         }
1143
1144         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1145         if (i < HPSA_MAX_DEVICES) {
1146                 /* *bus = 1; */
1147                 *target = i;
1148                 *lun = 0;
1149                 found = 1;
1150         }
1151         return !found;
1152 }
1153
1154 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1155         struct hpsa_scsi_dev_t *dev, char *description)
1156 {
1157 #define LABEL_SIZE 25
1158         char label[LABEL_SIZE];
1159
1160         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1161                 return;
1162
1163         switch (dev->devtype) {
1164         case TYPE_RAID:
1165                 snprintf(label, LABEL_SIZE, "controller");
1166                 break;
1167         case TYPE_ENCLOSURE:
1168                 snprintf(label, LABEL_SIZE, "enclosure");
1169                 break;
1170         case TYPE_DISK:
1171         case TYPE_ZBC:
1172                 if (dev->external)
1173                         snprintf(label, LABEL_SIZE, "external");
1174                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1175                         snprintf(label, LABEL_SIZE, "%s",
1176                                 raid_label[PHYSICAL_DRIVE]);
1177                 else
1178                         snprintf(label, LABEL_SIZE, "RAID-%s",
1179                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1180                                 raid_label[dev->raid_level]);
1181                 break;
1182         case TYPE_ROM:
1183                 snprintf(label, LABEL_SIZE, "rom");
1184                 break;
1185         case TYPE_TAPE:
1186                 snprintf(label, LABEL_SIZE, "tape");
1187                 break;
1188         case TYPE_MEDIUM_CHANGER:
1189                 snprintf(label, LABEL_SIZE, "changer");
1190                 break;
1191         default:
1192                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1193                 break;
1194         }
1195
1196         dev_printk(level, &h->pdev->dev,
1197                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1198                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1199                         description,
1200                         scsi_device_type(dev->devtype),
1201                         dev->vendor,
1202                         dev->model,
1203                         label,
1204                         dev->offload_config ? '+' : '-',
1205                         dev->offload_enabled ? '+' : '-',
1206                         dev->expose_device);
1207 }
1208
1209 /* Add an entry into h->dev[] array. */
1210 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1211                 struct hpsa_scsi_dev_t *device,
1212                 struct hpsa_scsi_dev_t *added[], int *nadded)
1213 {
1214         /* assumes h->devlock is held */
1215         int n = h->ndevices;
1216         int i;
1217         unsigned char addr1[8], addr2[8];
1218         struct hpsa_scsi_dev_t *sd;
1219
1220         if (n >= HPSA_MAX_DEVICES) {
1221                 dev_err(&h->pdev->dev, "too many devices, some will be "
1222                         "inaccessible.\n");
1223                 return -1;
1224         }
1225
1226         /* physical devices do not have lun or target assigned until now. */
1227         if (device->lun != -1)
1228                 /* Logical device, lun is already assigned. */
1229                 goto lun_assigned;
1230
1231         /* If this device a non-zero lun of a multi-lun device
1232          * byte 4 of the 8-byte LUN addr will contain the logical
1233          * unit no, zero otherwise.
1234          */
1235         if (device->scsi3addr[4] == 0) {
1236                 /* This is not a non-zero lun of a multi-lun device */
1237                 if (hpsa_find_target_lun(h, device->scsi3addr,
1238                         device->bus, &device->target, &device->lun) != 0)
1239                         return -1;
1240                 goto lun_assigned;
1241         }
1242
1243         /* This is a non-zero lun of a multi-lun device.
1244          * Search through our list and find the device which
1245          * has the same 8 byte LUN address, excepting byte 4 and 5.
1246          * Assign the same bus and target for this new LUN.
1247          * Use the logical unit number from the firmware.
1248          */
1249         memcpy(addr1, device->scsi3addr, 8);
1250         addr1[4] = 0;
1251         addr1[5] = 0;
1252         for (i = 0; i < n; i++) {
1253                 sd = h->dev[i];
1254                 memcpy(addr2, sd->scsi3addr, 8);
1255                 addr2[4] = 0;
1256                 addr2[5] = 0;
1257                 /* differ only in byte 4 and 5? */
1258                 if (memcmp(addr1, addr2, 8) == 0) {
1259                         device->bus = sd->bus;
1260                         device->target = sd->target;
1261                         device->lun = device->scsi3addr[4];
1262                         break;
1263                 }
1264         }
1265         if (device->lun == -1) {
1266                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1267                         " suspect firmware bug or unsupported hardware "
1268                         "configuration.\n");
1269                         return -1;
1270         }
1271
1272 lun_assigned:
1273
1274         h->dev[n] = device;
1275         h->ndevices++;
1276         added[*nadded] = device;
1277         (*nadded)++;
1278         hpsa_show_dev_msg(KERN_INFO, h, device,
1279                 device->expose_device ? "added" : "masked");
1280         device->offload_to_be_enabled = device->offload_enabled;
1281         device->offload_enabled = 0;
1282         return 0;
1283 }
1284
1285 /* Update an entry in h->dev[] array. */
1286 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1287         int entry, struct hpsa_scsi_dev_t *new_entry)
1288 {
1289         int offload_enabled;
1290         /* assumes h->devlock is held */
1291         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1292
1293         /* Raid level changed. */
1294         h->dev[entry]->raid_level = new_entry->raid_level;
1295
1296         /* Raid offload parameters changed.  Careful about the ordering. */
1297         if (new_entry->offload_config && new_entry->offload_enabled) {
1298                 /*
1299                  * if drive is newly offload_enabled, we want to copy the
1300                  * raid map data first.  If previously offload_enabled and
1301                  * offload_config were set, raid map data had better be
1302                  * the same as it was before.  if raid map data is changed
1303                  * then it had better be the case that
1304                  * h->dev[entry]->offload_enabled is currently 0.
1305                  */
1306                 h->dev[entry]->raid_map = new_entry->raid_map;
1307                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1308         }
1309         if (new_entry->hba_ioaccel_enabled) {
1310                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1311                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1312         }
1313         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1314         h->dev[entry]->offload_config = new_entry->offload_config;
1315         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1316         h->dev[entry]->queue_depth = new_entry->queue_depth;
1317
1318         /*
1319          * We can turn off ioaccel offload now, but need to delay turning
1320          * it on until we can update h->dev[entry]->phys_disk[], but we
1321          * can't do that until all the devices are updated.
1322          */
1323         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1324         if (!new_entry->offload_enabled)
1325                 h->dev[entry]->offload_enabled = 0;
1326
1327         offload_enabled = h->dev[entry]->offload_enabled;
1328         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1329         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1330         h->dev[entry]->offload_enabled = offload_enabled;
1331 }
1332
1333 /* Replace an entry from h->dev[] array. */
1334 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1335         int entry, struct hpsa_scsi_dev_t *new_entry,
1336         struct hpsa_scsi_dev_t *added[], int *nadded,
1337         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1338 {
1339         /* assumes h->devlock is held */
1340         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1341         removed[*nremoved] = h->dev[entry];
1342         (*nremoved)++;
1343
1344         /*
1345          * New physical devices won't have target/lun assigned yet
1346          * so we need to preserve the values in the slot we are replacing.
1347          */
1348         if (new_entry->target == -1) {
1349                 new_entry->target = h->dev[entry]->target;
1350                 new_entry->lun = h->dev[entry]->lun;
1351         }
1352
1353         h->dev[entry] = new_entry;
1354         added[*nadded] = new_entry;
1355         (*nadded)++;
1356         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1357         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1358         new_entry->offload_enabled = 0;
1359 }
1360
1361 /* Remove an entry from h->dev[] array. */
1362 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1363         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1364 {
1365         /* assumes h->devlock is held */
1366         int i;
1367         struct hpsa_scsi_dev_t *sd;
1368
1369         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1370
1371         sd = h->dev[entry];
1372         removed[*nremoved] = h->dev[entry];
1373         (*nremoved)++;
1374
1375         for (i = entry; i < h->ndevices-1; i++)
1376                 h->dev[i] = h->dev[i+1];
1377         h->ndevices--;
1378         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1379 }
1380
1381 #define SCSI3ADDR_EQ(a, b) ( \
1382         (a)[7] == (b)[7] && \
1383         (a)[6] == (b)[6] && \
1384         (a)[5] == (b)[5] && \
1385         (a)[4] == (b)[4] && \
1386         (a)[3] == (b)[3] && \
1387         (a)[2] == (b)[2] && \
1388         (a)[1] == (b)[1] && \
1389         (a)[0] == (b)[0])
1390
1391 static void fixup_botched_add(struct ctlr_info *h,
1392         struct hpsa_scsi_dev_t *added)
1393 {
1394         /* called when scsi_add_device fails in order to re-adjust
1395          * h->dev[] to match the mid layer's view.
1396          */
1397         unsigned long flags;
1398         int i, j;
1399
1400         spin_lock_irqsave(&h->lock, flags);
1401         for (i = 0; i < h->ndevices; i++) {
1402                 if (h->dev[i] == added) {
1403                         for (j = i; j < h->ndevices-1; j++)
1404                                 h->dev[j] = h->dev[j+1];
1405                         h->ndevices--;
1406                         break;
1407                 }
1408         }
1409         spin_unlock_irqrestore(&h->lock, flags);
1410         kfree(added);
1411 }
1412
1413 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1414         struct hpsa_scsi_dev_t *dev2)
1415 {
1416         /* we compare everything except lun and target as these
1417          * are not yet assigned.  Compare parts likely
1418          * to differ first
1419          */
1420         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1421                 sizeof(dev1->scsi3addr)) != 0)
1422                 return 0;
1423         if (memcmp(dev1->device_id, dev2->device_id,
1424                 sizeof(dev1->device_id)) != 0)
1425                 return 0;
1426         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1427                 return 0;
1428         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1429                 return 0;
1430         if (dev1->devtype != dev2->devtype)
1431                 return 0;
1432         if (dev1->bus != dev2->bus)
1433                 return 0;
1434         return 1;
1435 }
1436
1437 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1438         struct hpsa_scsi_dev_t *dev2)
1439 {
1440         /* Device attributes that can change, but don't mean
1441          * that the device is a different device, nor that the OS
1442          * needs to be told anything about the change.
1443          */
1444         if (dev1->raid_level != dev2->raid_level)
1445                 return 1;
1446         if (dev1->offload_config != dev2->offload_config)
1447                 return 1;
1448         if (dev1->offload_enabled != dev2->offload_enabled)
1449                 return 1;
1450         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1451                 if (dev1->queue_depth != dev2->queue_depth)
1452                         return 1;
1453         return 0;
1454 }
1455
1456 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1457  * and return needle location in *index.  If scsi3addr matches, but not
1458  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1459  * location in *index.
1460  * In the case of a minor device attribute change, such as RAID level, just
1461  * return DEVICE_UPDATED, along with the updated device's location in index.
1462  * If needle not found, return DEVICE_NOT_FOUND.
1463  */
1464 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1465         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1466         int *index)
1467 {
1468         int i;
1469 #define DEVICE_NOT_FOUND 0
1470 #define DEVICE_CHANGED 1
1471 #define DEVICE_SAME 2
1472 #define DEVICE_UPDATED 3
1473         if (needle == NULL)
1474                 return DEVICE_NOT_FOUND;
1475
1476         for (i = 0; i < haystack_size; i++) {
1477                 if (haystack[i] == NULL) /* previously removed. */
1478                         continue;
1479                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1480                         *index = i;
1481                         if (device_is_the_same(needle, haystack[i])) {
1482                                 if (device_updated(needle, haystack[i]))
1483                                         return DEVICE_UPDATED;
1484                                 return DEVICE_SAME;
1485                         } else {
1486                                 /* Keep offline devices offline */
1487                                 if (needle->volume_offline)
1488                                         return DEVICE_NOT_FOUND;
1489                                 return DEVICE_CHANGED;
1490                         }
1491                 }
1492         }
1493         *index = -1;
1494         return DEVICE_NOT_FOUND;
1495 }
1496
1497 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1498                                         unsigned char scsi3addr[])
1499 {
1500         struct offline_device_entry *device;
1501         unsigned long flags;
1502
1503         /* Check to see if device is already on the list */
1504         spin_lock_irqsave(&h->offline_device_lock, flags);
1505         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1506                 if (memcmp(device->scsi3addr, scsi3addr,
1507                         sizeof(device->scsi3addr)) == 0) {
1508                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1509                         return;
1510                 }
1511         }
1512         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1513
1514         /* Device is not on the list, add it. */
1515         device = kmalloc(sizeof(*device), GFP_KERNEL);
1516         if (!device) {
1517                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1518                 return;
1519         }
1520         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1521         spin_lock_irqsave(&h->offline_device_lock, flags);
1522         list_add_tail(&device->offline_list, &h->offline_device_list);
1523         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1524 }
1525
1526 /* Print a message explaining various offline volume states */
1527 static void hpsa_show_volume_status(struct ctlr_info *h,
1528         struct hpsa_scsi_dev_t *sd)
1529 {
1530         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1531                 dev_info(&h->pdev->dev,
1532                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1533                         h->scsi_host->host_no,
1534                         sd->bus, sd->target, sd->lun);
1535         switch (sd->volume_offline) {
1536         case HPSA_LV_OK:
1537                 break;
1538         case HPSA_LV_UNDERGOING_ERASE:
1539                 dev_info(&h->pdev->dev,
1540                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1541                         h->scsi_host->host_no,
1542                         sd->bus, sd->target, sd->lun);
1543                 break;
1544         case HPSA_LV_NOT_AVAILABLE:
1545                 dev_info(&h->pdev->dev,
1546                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1547                         h->scsi_host->host_no,
1548                         sd->bus, sd->target, sd->lun);
1549                 break;
1550         case HPSA_LV_UNDERGOING_RPI:
1551                 dev_info(&h->pdev->dev,
1552                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1553                         h->scsi_host->host_no,
1554                         sd->bus, sd->target, sd->lun);
1555                 break;
1556         case HPSA_LV_PENDING_RPI:
1557                 dev_info(&h->pdev->dev,
1558                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1559                         h->scsi_host->host_no,
1560                         sd->bus, sd->target, sd->lun);
1561                 break;
1562         case HPSA_LV_ENCRYPTED_NO_KEY:
1563                 dev_info(&h->pdev->dev,
1564                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1565                         h->scsi_host->host_no,
1566                         sd->bus, sd->target, sd->lun);
1567                 break;
1568         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1569                 dev_info(&h->pdev->dev,
1570                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1571                         h->scsi_host->host_no,
1572                         sd->bus, sd->target, sd->lun);
1573                 break;
1574         case HPSA_LV_UNDERGOING_ENCRYPTION:
1575                 dev_info(&h->pdev->dev,
1576                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1577                         h->scsi_host->host_no,
1578                         sd->bus, sd->target, sd->lun);
1579                 break;
1580         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1581                 dev_info(&h->pdev->dev,
1582                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1583                         h->scsi_host->host_no,
1584                         sd->bus, sd->target, sd->lun);
1585                 break;
1586         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1587                 dev_info(&h->pdev->dev,
1588                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1589                         h->scsi_host->host_no,
1590                         sd->bus, sd->target, sd->lun);
1591                 break;
1592         case HPSA_LV_PENDING_ENCRYPTION:
1593                 dev_info(&h->pdev->dev,
1594                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1595                         h->scsi_host->host_no,
1596                         sd->bus, sd->target, sd->lun);
1597                 break;
1598         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1599                 dev_info(&h->pdev->dev,
1600                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1601                         h->scsi_host->host_no,
1602                         sd->bus, sd->target, sd->lun);
1603                 break;
1604         }
1605 }
1606
1607 /*
1608  * Figure the list of physical drive pointers for a logical drive with
1609  * raid offload configured.
1610  */
1611 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1612                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1613                                 struct hpsa_scsi_dev_t *logical_drive)
1614 {
1615         struct raid_map_data *map = &logical_drive->raid_map;
1616         struct raid_map_disk_data *dd = &map->data[0];
1617         int i, j;
1618         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1619                                 le16_to_cpu(map->metadata_disks_per_row);
1620         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1621                                 le16_to_cpu(map->layout_map_count) *
1622                                 total_disks_per_row;
1623         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1624                                 total_disks_per_row;
1625         int qdepth;
1626
1627         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1628                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1629
1630         logical_drive->nphysical_disks = nraid_map_entries;
1631
1632         qdepth = 0;
1633         for (i = 0; i < nraid_map_entries; i++) {
1634                 logical_drive->phys_disk[i] = NULL;
1635                 if (!logical_drive->offload_config)
1636                         continue;
1637                 for (j = 0; j < ndevices; j++) {
1638                         if (dev[j] == NULL)
1639                                 continue;
1640                         if (dev[j]->devtype != TYPE_DISK)
1641                                 continue;
1642                         if (dev[j]->devtype != TYPE_ZBC)
1643                                 continue;
1644                         if (is_logical_device(dev[j]))
1645                                 continue;
1646                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1647                                 continue;
1648
1649                         logical_drive->phys_disk[i] = dev[j];
1650                         if (i < nphys_disk)
1651                                 qdepth = min(h->nr_cmds, qdepth +
1652                                     logical_drive->phys_disk[i]->queue_depth);
1653                         break;
1654                 }
1655
1656                 /*
1657                  * This can happen if a physical drive is removed and
1658                  * the logical drive is degraded.  In that case, the RAID
1659                  * map data will refer to a physical disk which isn't actually
1660                  * present.  And in that case offload_enabled should already
1661                  * be 0, but we'll turn it off here just in case
1662                  */
1663                 if (!logical_drive->phys_disk[i]) {
1664                         logical_drive->offload_enabled = 0;
1665                         logical_drive->offload_to_be_enabled = 0;
1666                         logical_drive->queue_depth = 8;
1667                 }
1668         }
1669         if (nraid_map_entries)
1670                 /*
1671                  * This is correct for reads, too high for full stripe writes,
1672                  * way too high for partial stripe writes
1673                  */
1674                 logical_drive->queue_depth = qdepth;
1675         else
1676                 logical_drive->queue_depth = h->nr_cmds;
1677 }
1678
1679 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1680                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1681 {
1682         int i;
1683
1684         for (i = 0; i < ndevices; i++) {
1685                 if (dev[i] == NULL)
1686                         continue;
1687                 if (dev[i]->devtype != TYPE_DISK)
1688                         continue;
1689                 if (dev[i]->devtype != TYPE_ZBC)
1690                         continue;
1691                 if (!is_logical_device(dev[i]))
1692                         continue;
1693
1694                 /*
1695                  * If offload is currently enabled, the RAID map and
1696                  * phys_disk[] assignment *better* not be changing
1697                  * and since it isn't changing, we do not need to
1698                  * update it.
1699                  */
1700                 if (dev[i]->offload_enabled)
1701                         continue;
1702
1703                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1704         }
1705 }
1706
1707 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1708 {
1709         int rc = 0;
1710
1711         if (!h->scsi_host)
1712                 return 1;
1713
1714         if (is_logical_device(device)) /* RAID */
1715                 rc = scsi_add_device(h->scsi_host, device->bus,
1716                                         device->target, device->lun);
1717         else /* HBA */
1718                 rc = hpsa_add_sas_device(h->sas_host, device);
1719
1720         return rc;
1721 }
1722
1723 static void hpsa_remove_device(struct ctlr_info *h,
1724                         struct hpsa_scsi_dev_t *device)
1725 {
1726         struct scsi_device *sdev = NULL;
1727
1728         if (!h->scsi_host)
1729                 return;
1730
1731         if (is_logical_device(device)) { /* RAID */
1732                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1733                                                 device->target, device->lun);
1734                 if (sdev) {
1735                         scsi_remove_device(sdev);
1736                         scsi_device_put(sdev);
1737                 } else {
1738                         /*
1739                          * We don't expect to get here.  Future commands
1740                          * to this device will get a selection timeout as
1741                          * if the device were gone.
1742                          */
1743                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1744                                         "didn't find device for removal.");
1745                 }
1746         } else /* HBA */
1747                 hpsa_remove_sas_device(device);
1748 }
1749
1750 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1751         struct hpsa_scsi_dev_t *sd[], int nsds)
1752 {
1753         /* sd contains scsi3 addresses and devtypes, and inquiry
1754          * data.  This function takes what's in sd to be the current
1755          * reality and updates h->dev[] to reflect that reality.
1756          */
1757         int i, entry, device_change, changes = 0;
1758         struct hpsa_scsi_dev_t *csd;
1759         unsigned long flags;
1760         struct hpsa_scsi_dev_t **added, **removed;
1761         int nadded, nremoved;
1762
1763         /*
1764          * A reset can cause a device status to change
1765          * re-schedule the scan to see what happened.
1766          */
1767         if (h->reset_in_progress) {
1768                 h->drv_req_rescan = 1;
1769                 return;
1770         }
1771
1772         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1773         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1774
1775         if (!added || !removed) {
1776                 dev_warn(&h->pdev->dev, "out of memory in "
1777                         "adjust_hpsa_scsi_table\n");
1778                 goto free_and_out;
1779         }
1780
1781         spin_lock_irqsave(&h->devlock, flags);
1782
1783         /* find any devices in h->dev[] that are not in
1784          * sd[] and remove them from h->dev[], and for any
1785          * devices which have changed, remove the old device
1786          * info and add the new device info.
1787          * If minor device attributes change, just update
1788          * the existing device structure.
1789          */
1790         i = 0;
1791         nremoved = 0;
1792         nadded = 0;
1793         while (i < h->ndevices) {
1794                 csd = h->dev[i];
1795                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1796                 if (device_change == DEVICE_NOT_FOUND) {
1797                         changes++;
1798                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1799                         continue; /* remove ^^^, hence i not incremented */
1800                 } else if (device_change == DEVICE_CHANGED) {
1801                         changes++;
1802                         hpsa_scsi_replace_entry(h, i, sd[entry],
1803                                 added, &nadded, removed, &nremoved);
1804                         /* Set it to NULL to prevent it from being freed
1805                          * at the bottom of hpsa_update_scsi_devices()
1806                          */
1807                         sd[entry] = NULL;
1808                 } else if (device_change == DEVICE_UPDATED) {
1809                         hpsa_scsi_update_entry(h, i, sd[entry]);
1810                 }
1811                 i++;
1812         }
1813
1814         /* Now, make sure every device listed in sd[] is also
1815          * listed in h->dev[], adding them if they aren't found
1816          */
1817
1818         for (i = 0; i < nsds; i++) {
1819                 if (!sd[i]) /* if already added above. */
1820                         continue;
1821
1822                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1823                  * as the SCSI mid-layer does not handle such devices well.
1824                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1825                  * at 160Hz, and prevents the system from coming up.
1826                  */
1827                 if (sd[i]->volume_offline) {
1828                         hpsa_show_volume_status(h, sd[i]);
1829                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1830                         continue;
1831                 }
1832
1833                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1834                                         h->ndevices, &entry);
1835                 if (device_change == DEVICE_NOT_FOUND) {
1836                         changes++;
1837                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1838                                 break;
1839                         sd[i] = NULL; /* prevent from being freed later. */
1840                 } else if (device_change == DEVICE_CHANGED) {
1841                         /* should never happen... */
1842                         changes++;
1843                         dev_warn(&h->pdev->dev,
1844                                 "device unexpectedly changed.\n");
1845                         /* but if it does happen, we just ignore that device */
1846                 }
1847         }
1848         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1849
1850         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1851          * any logical drives that need it enabled.
1852          */
1853         for (i = 0; i < h->ndevices; i++) {
1854                 if (h->dev[i] == NULL)
1855                         continue;
1856                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1857         }
1858
1859         spin_unlock_irqrestore(&h->devlock, flags);
1860
1861         /* Monitor devices which are in one of several NOT READY states to be
1862          * brought online later. This must be done without holding h->devlock,
1863          * so don't touch h->dev[]
1864          */
1865         for (i = 0; i < nsds; i++) {
1866                 if (!sd[i]) /* if already added above. */
1867                         continue;
1868                 if (sd[i]->volume_offline)
1869                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1870         }
1871
1872         /* Don't notify scsi mid layer of any changes the first time through
1873          * (or if there are no changes) scsi_scan_host will do it later the
1874          * first time through.
1875          */
1876         if (!changes)
1877                 goto free_and_out;
1878
1879         /* Notify scsi mid layer of any removed devices */
1880         for (i = 0; i < nremoved; i++) {
1881                 if (removed[i] == NULL)
1882                         continue;
1883                 if (removed[i]->expose_device)
1884                         hpsa_remove_device(h, removed[i]);
1885                 kfree(removed[i]);
1886                 removed[i] = NULL;
1887         }
1888
1889         /* Notify scsi mid layer of any added devices */
1890         for (i = 0; i < nadded; i++) {
1891                 int rc = 0;
1892
1893                 if (added[i] == NULL)
1894                         continue;
1895                 if (!(added[i]->expose_device))
1896                         continue;
1897                 rc = hpsa_add_device(h, added[i]);
1898                 if (!rc)
1899                         continue;
1900                 dev_warn(&h->pdev->dev,
1901                         "addition failed %d, device not added.", rc);
1902                 /* now we have to remove it from h->dev,
1903                  * since it didn't get added to scsi mid layer
1904                  */
1905                 fixup_botched_add(h, added[i]);
1906                 h->drv_req_rescan = 1;
1907         }
1908
1909 free_and_out:
1910         kfree(added);
1911         kfree(removed);
1912 }
1913
1914 /*
1915  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1916  * Assume's h->devlock is held.
1917  */
1918 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1919         int bus, int target, int lun)
1920 {
1921         int i;
1922         struct hpsa_scsi_dev_t *sd;
1923
1924         for (i = 0; i < h->ndevices; i++) {
1925                 sd = h->dev[i];
1926                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1927                         return sd;
1928         }
1929         return NULL;
1930 }
1931
1932 static int hpsa_slave_alloc(struct scsi_device *sdev)
1933 {
1934         struct hpsa_scsi_dev_t *sd;
1935         unsigned long flags;
1936         struct ctlr_info *h;
1937
1938         h = sdev_to_hba(sdev);
1939         spin_lock_irqsave(&h->devlock, flags);
1940         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1941                 struct scsi_target *starget;
1942                 struct sas_rphy *rphy;
1943
1944                 starget = scsi_target(sdev);
1945                 rphy = target_to_rphy(starget);
1946                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1947                 if (sd) {
1948                         sd->target = sdev_id(sdev);
1949                         sd->lun = sdev->lun;
1950                 }
1951         } else
1952                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1953                                         sdev_id(sdev), sdev->lun);
1954
1955         if (sd && sd->expose_device) {
1956                 atomic_set(&sd->ioaccel_cmds_out, 0);
1957                 sdev->hostdata = sd;
1958         } else
1959                 sdev->hostdata = NULL;
1960         spin_unlock_irqrestore(&h->devlock, flags);
1961         return 0;
1962 }
1963
1964 /* configure scsi device based on internal per-device structure */
1965 static int hpsa_slave_configure(struct scsi_device *sdev)
1966 {
1967         struct hpsa_scsi_dev_t *sd;
1968         int queue_depth;
1969
1970         sd = sdev->hostdata;
1971         sdev->no_uld_attach = !sd || !sd->expose_device;
1972
1973         if (sd)
1974                 queue_depth = sd->queue_depth != 0 ?
1975                         sd->queue_depth : sdev->host->can_queue;
1976         else
1977                 queue_depth = sdev->host->can_queue;
1978
1979         scsi_change_queue_depth(sdev, queue_depth);
1980
1981         return 0;
1982 }
1983
1984 static void hpsa_slave_destroy(struct scsi_device *sdev)
1985 {
1986         /* nothing to do. */
1987 }
1988
1989 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1990 {
1991         int i;
1992
1993         if (!h->ioaccel2_cmd_sg_list)
1994                 return;
1995         for (i = 0; i < h->nr_cmds; i++) {
1996                 kfree(h->ioaccel2_cmd_sg_list[i]);
1997                 h->ioaccel2_cmd_sg_list[i] = NULL;
1998         }
1999         kfree(h->ioaccel2_cmd_sg_list);
2000         h->ioaccel2_cmd_sg_list = NULL;
2001 }
2002
2003 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2004 {
2005         int i;
2006
2007         if (h->chainsize <= 0)
2008                 return 0;
2009
2010         h->ioaccel2_cmd_sg_list =
2011                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2012                                         GFP_KERNEL);
2013         if (!h->ioaccel2_cmd_sg_list)
2014                 return -ENOMEM;
2015         for (i = 0; i < h->nr_cmds; i++) {
2016                 h->ioaccel2_cmd_sg_list[i] =
2017                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2018                                         h->maxsgentries, GFP_KERNEL);
2019                 if (!h->ioaccel2_cmd_sg_list[i])
2020                         goto clean;
2021         }
2022         return 0;
2023
2024 clean:
2025         hpsa_free_ioaccel2_sg_chain_blocks(h);
2026         return -ENOMEM;
2027 }
2028
2029 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2030 {
2031         int i;
2032
2033         if (!h->cmd_sg_list)
2034                 return;
2035         for (i = 0; i < h->nr_cmds; i++) {
2036                 kfree(h->cmd_sg_list[i]);
2037                 h->cmd_sg_list[i] = NULL;
2038         }
2039         kfree(h->cmd_sg_list);
2040         h->cmd_sg_list = NULL;
2041 }
2042
2043 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2044 {
2045         int i;
2046
2047         if (h->chainsize <= 0)
2048                 return 0;
2049
2050         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2051                                 GFP_KERNEL);
2052         if (!h->cmd_sg_list) {
2053                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2054                 return -ENOMEM;
2055         }
2056         for (i = 0; i < h->nr_cmds; i++) {
2057                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2058                                                 h->chainsize, GFP_KERNEL);
2059                 if (!h->cmd_sg_list[i]) {
2060                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2061                         goto clean;
2062                 }
2063         }
2064         return 0;
2065
2066 clean:
2067         hpsa_free_sg_chain_blocks(h);
2068         return -ENOMEM;
2069 }
2070
2071 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2072         struct io_accel2_cmd *cp, struct CommandList *c)
2073 {
2074         struct ioaccel2_sg_element *chain_block;
2075         u64 temp64;
2076         u32 chain_size;
2077
2078         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2079         chain_size = le32_to_cpu(cp->sg[0].length);
2080         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2081                                 PCI_DMA_TODEVICE);
2082         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2083                 /* prevent subsequent unmapping */
2084                 cp->sg->address = 0;
2085                 return -1;
2086         }
2087         cp->sg->address = cpu_to_le64(temp64);
2088         return 0;
2089 }
2090
2091 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2092         struct io_accel2_cmd *cp)
2093 {
2094         struct ioaccel2_sg_element *chain_sg;
2095         u64 temp64;
2096         u32 chain_size;
2097
2098         chain_sg = cp->sg;
2099         temp64 = le64_to_cpu(chain_sg->address);
2100         chain_size = le32_to_cpu(cp->sg[0].length);
2101         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2102 }
2103
2104 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2105         struct CommandList *c)
2106 {
2107         struct SGDescriptor *chain_sg, *chain_block;
2108         u64 temp64;
2109         u32 chain_len;
2110
2111         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2112         chain_block = h->cmd_sg_list[c->cmdindex];
2113         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2114         chain_len = sizeof(*chain_sg) *
2115                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2116         chain_sg->Len = cpu_to_le32(chain_len);
2117         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2118                                 PCI_DMA_TODEVICE);
2119         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2120                 /* prevent subsequent unmapping */
2121                 chain_sg->Addr = cpu_to_le64(0);
2122                 return -1;
2123         }
2124         chain_sg->Addr = cpu_to_le64(temp64);
2125         return 0;
2126 }
2127
2128 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2129         struct CommandList *c)
2130 {
2131         struct SGDescriptor *chain_sg;
2132
2133         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2134                 return;
2135
2136         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2137         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2138                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2139 }
2140
2141
2142 /* Decode the various types of errors on ioaccel2 path.
2143  * Return 1 for any error that should generate a RAID path retry.
2144  * Return 0 for errors that don't require a RAID path retry.
2145  */
2146 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2147                                         struct CommandList *c,
2148                                         struct scsi_cmnd *cmd,
2149                                         struct io_accel2_cmd *c2)
2150 {
2151         int data_len;
2152         int retry = 0;
2153         u32 ioaccel2_resid = 0;
2154
2155         switch (c2->error_data.serv_response) {
2156         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2157                 switch (c2->error_data.status) {
2158                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2159                         break;
2160                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2161                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2162                         if (c2->error_data.data_present !=
2163                                         IOACCEL2_SENSE_DATA_PRESENT) {
2164                                 memset(cmd->sense_buffer, 0,
2165                                         SCSI_SENSE_BUFFERSIZE);
2166                                 break;
2167                         }
2168                         /* copy the sense data */
2169                         data_len = c2->error_data.sense_data_len;
2170                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2171                                 data_len = SCSI_SENSE_BUFFERSIZE;
2172                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2173                                 data_len =
2174                                         sizeof(c2->error_data.sense_data_buff);
2175                         memcpy(cmd->sense_buffer,
2176                                 c2->error_data.sense_data_buff, data_len);
2177                         retry = 1;
2178                         break;
2179                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2180                         retry = 1;
2181                         break;
2182                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2183                         retry = 1;
2184                         break;
2185                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2186                         retry = 1;
2187                         break;
2188                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2189                         retry = 1;
2190                         break;
2191                 default:
2192                         retry = 1;
2193                         break;
2194                 }
2195                 break;
2196         case IOACCEL2_SERV_RESPONSE_FAILURE:
2197                 switch (c2->error_data.status) {
2198                 case IOACCEL2_STATUS_SR_IO_ERROR:
2199                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2200                 case IOACCEL2_STATUS_SR_OVERRUN:
2201                         retry = 1;
2202                         break;
2203                 case IOACCEL2_STATUS_SR_UNDERRUN:
2204                         cmd->result = (DID_OK << 16);           /* host byte */
2205                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2206                         ioaccel2_resid = get_unaligned_le32(
2207                                                 &c2->error_data.resid_cnt[0]);
2208                         scsi_set_resid(cmd, ioaccel2_resid);
2209                         break;
2210                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2211                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2212                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2213                         /* We will get an event from ctlr to trigger rescan */
2214                         retry = 1;
2215                         break;
2216                 default:
2217                         retry = 1;
2218                 }
2219                 break;
2220         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2221                 break;
2222         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2223                 break;
2224         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2225                 retry = 1;
2226                 break;
2227         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2228                 break;
2229         default:
2230                 retry = 1;
2231                 break;
2232         }
2233
2234         return retry;   /* retry on raid path? */
2235 }
2236
2237 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2238                 struct CommandList *c)
2239 {
2240         bool do_wake = false;
2241
2242         /*
2243          * Prevent the following race in the abort handler:
2244          *
2245          * 1. LLD is requested to abort a SCSI command
2246          * 2. The SCSI command completes
2247          * 3. The struct CommandList associated with step 2 is made available
2248          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2249          * 5. Abort handler follows scsi_cmnd->host_scribble and
2250          *    finds struct CommandList and tries to aborts it
2251          * Now we have aborted the wrong command.
2252          *
2253          * Reset c->scsi_cmd here so that the abort or reset handler will know
2254          * this command has completed.  Then, check to see if the handler is
2255          * waiting for this command, and, if so, wake it.
2256          */
2257         c->scsi_cmd = SCSI_CMD_IDLE;
2258         mb();   /* Declare command idle before checking for pending events. */
2259         if (c->abort_pending) {
2260                 do_wake = true;
2261                 c->abort_pending = false;
2262         }
2263         if (c->reset_pending) {
2264                 unsigned long flags;
2265                 struct hpsa_scsi_dev_t *dev;
2266
2267                 /*
2268                  * There appears to be a reset pending; lock the lock and
2269                  * reconfirm.  If so, then decrement the count of outstanding
2270                  * commands and wake the reset command if this is the last one.
2271                  */
2272                 spin_lock_irqsave(&h->lock, flags);
2273                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2274                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2275                         do_wake = true;
2276                 c->reset_pending = NULL;
2277                 spin_unlock_irqrestore(&h->lock, flags);
2278         }
2279
2280         if (do_wake)
2281                 wake_up_all(&h->event_sync_wait_queue);
2282 }
2283
2284 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2285                                       struct CommandList *c)
2286 {
2287         hpsa_cmd_resolve_events(h, c);
2288         cmd_tagged_free(h, c);
2289 }
2290
2291 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2292                 struct CommandList *c, struct scsi_cmnd *cmd)
2293 {
2294         hpsa_cmd_resolve_and_free(h, c);
2295         cmd->scsi_done(cmd);
2296 }
2297
2298 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2299 {
2300         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2301         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2302 }
2303
2304 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2305 {
2306         cmd->result = DID_ABORT << 16;
2307 }
2308
2309 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2310                                     struct scsi_cmnd *cmd)
2311 {
2312         hpsa_set_scsi_cmd_aborted(cmd);
2313         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2314                          c->Request.CDB, c->err_info->ScsiStatus);
2315         hpsa_cmd_resolve_and_free(h, c);
2316 }
2317
2318 static void process_ioaccel2_completion(struct ctlr_info *h,
2319                 struct CommandList *c, struct scsi_cmnd *cmd,
2320                 struct hpsa_scsi_dev_t *dev)
2321 {
2322         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2323
2324         /* check for good status */
2325         if (likely(c2->error_data.serv_response == 0 &&
2326                         c2->error_data.status == 0))
2327                 return hpsa_cmd_free_and_done(h, c, cmd);
2328
2329         /*
2330          * Any RAID offload error results in retry which will use
2331          * the normal I/O path so the controller can handle whatever's
2332          * wrong.
2333          */
2334         if (is_logical_device(dev) &&
2335                 c2->error_data.serv_response ==
2336                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2337                 if (c2->error_data.status ==
2338                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2339                         dev->offload_enabled = 0;
2340
2341                 return hpsa_retry_cmd(h, c);
2342         }
2343
2344         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2345                 return hpsa_retry_cmd(h, c);
2346
2347         return hpsa_cmd_free_and_done(h, c, cmd);
2348 }
2349
2350 /* Returns 0 on success, < 0 otherwise. */
2351 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2352                                         struct CommandList *cp)
2353 {
2354         u8 tmf_status = cp->err_info->ScsiStatus;
2355
2356         switch (tmf_status) {
2357         case CISS_TMF_COMPLETE:
2358                 /*
2359                  * CISS_TMF_COMPLETE never happens, instead,
2360                  * ei->CommandStatus == 0 for this case.
2361                  */
2362         case CISS_TMF_SUCCESS:
2363                 return 0;
2364         case CISS_TMF_INVALID_FRAME:
2365         case CISS_TMF_NOT_SUPPORTED:
2366         case CISS_TMF_FAILED:
2367         case CISS_TMF_WRONG_LUN:
2368         case CISS_TMF_OVERLAPPED_TAG:
2369                 break;
2370         default:
2371                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2372                                 tmf_status);
2373                 break;
2374         }
2375         return -tmf_status;
2376 }
2377
2378 static void complete_scsi_command(struct CommandList *cp)
2379 {
2380         struct scsi_cmnd *cmd;
2381         struct ctlr_info *h;
2382         struct ErrorInfo *ei;
2383         struct hpsa_scsi_dev_t *dev;
2384         struct io_accel2_cmd *c2;
2385
2386         u8 sense_key;
2387         u8 asc;      /* additional sense code */
2388         u8 ascq;     /* additional sense code qualifier */
2389         unsigned long sense_data_size;
2390
2391         ei = cp->err_info;
2392         cmd = cp->scsi_cmd;
2393         h = cp->h;
2394         dev = cmd->device->hostdata;
2395         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2396
2397         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2398         if ((cp->cmd_type == CMD_SCSI) &&
2399                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2400                 hpsa_unmap_sg_chain_block(h, cp);
2401
2402         if ((cp->cmd_type == CMD_IOACCEL2) &&
2403                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2404                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2405
2406         cmd->result = (DID_OK << 16);           /* host byte */
2407         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2408
2409         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2410                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2411
2412         /*
2413          * We check for lockup status here as it may be set for
2414          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2415          * fail_all_oustanding_cmds()
2416          */
2417         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2418                 /* DID_NO_CONNECT will prevent a retry */
2419                 cmd->result = DID_NO_CONNECT << 16;
2420                 return hpsa_cmd_free_and_done(h, cp, cmd);
2421         }
2422
2423         if ((unlikely(hpsa_is_pending_event(cp)))) {
2424                 if (cp->reset_pending)
2425                         return hpsa_cmd_resolve_and_free(h, cp);
2426                 if (cp->abort_pending)
2427                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2428         }
2429
2430         if (cp->cmd_type == CMD_IOACCEL2)
2431                 return process_ioaccel2_completion(h, cp, cmd, dev);
2432
2433         scsi_set_resid(cmd, ei->ResidualCnt);
2434         if (ei->CommandStatus == 0)
2435                 return hpsa_cmd_free_and_done(h, cp, cmd);
2436
2437         /* For I/O accelerator commands, copy over some fields to the normal
2438          * CISS header used below for error handling.
2439          */
2440         if (cp->cmd_type == CMD_IOACCEL1) {
2441                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2442                 cp->Header.SGList = scsi_sg_count(cmd);
2443                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2444                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2445                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2446                 cp->Header.tag = c->tag;
2447                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2448                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2449
2450                 /* Any RAID offload error results in retry which will use
2451                  * the normal I/O path so the controller can handle whatever's
2452                  * wrong.
2453                  */
2454                 if (is_logical_device(dev)) {
2455                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2456                                 dev->offload_enabled = 0;
2457                         return hpsa_retry_cmd(h, cp);
2458                 }
2459         }
2460
2461         /* an error has occurred */
2462         switch (ei->CommandStatus) {
2463
2464         case CMD_TARGET_STATUS:
2465                 cmd->result |= ei->ScsiStatus;
2466                 /* copy the sense data */
2467                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2468                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2469                 else
2470                         sense_data_size = sizeof(ei->SenseInfo);
2471                 if (ei->SenseLen < sense_data_size)
2472                         sense_data_size = ei->SenseLen;
2473                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2474                 if (ei->ScsiStatus)
2475                         decode_sense_data(ei->SenseInfo, sense_data_size,
2476                                 &sense_key, &asc, &ascq);
2477                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2478                         if (sense_key == ABORTED_COMMAND) {
2479                                 cmd->result |= DID_SOFT_ERROR << 16;
2480                                 break;
2481                         }
2482                         break;
2483                 }
2484                 /* Problem was not a check condition
2485                  * Pass it up to the upper layers...
2486                  */
2487                 if (ei->ScsiStatus) {
2488                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2489                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2490                                 "Returning result: 0x%x\n",
2491                                 cp, ei->ScsiStatus,
2492                                 sense_key, asc, ascq,
2493                                 cmd->result);
2494                 } else {  /* scsi status is zero??? How??? */
2495                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2496                                 "Returning no connection.\n", cp),
2497
2498                         /* Ordinarily, this case should never happen,
2499                          * but there is a bug in some released firmware
2500                          * revisions that allows it to happen if, for
2501                          * example, a 4100 backplane loses power and
2502                          * the tape drive is in it.  We assume that
2503                          * it's a fatal error of some kind because we
2504                          * can't show that it wasn't. We will make it
2505                          * look like selection timeout since that is
2506                          * the most common reason for this to occur,
2507                          * and it's severe enough.
2508                          */
2509
2510                         cmd->result = DID_NO_CONNECT << 16;
2511                 }
2512                 break;
2513
2514         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2515                 break;
2516         case CMD_DATA_OVERRUN:
2517                 dev_warn(&h->pdev->dev,
2518                         "CDB %16phN data overrun\n", cp->Request.CDB);
2519                 break;
2520         case CMD_INVALID: {
2521                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2522                 print_cmd(cp); */
2523                 /* We get CMD_INVALID if you address a non-existent device
2524                  * instead of a selection timeout (no response).  You will
2525                  * see this if you yank out a drive, then try to access it.
2526                  * This is kind of a shame because it means that any other
2527                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2528                  * missing target. */
2529                 cmd->result = DID_NO_CONNECT << 16;
2530         }
2531                 break;
2532         case CMD_PROTOCOL_ERR:
2533                 cmd->result = DID_ERROR << 16;
2534                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2535                                 cp->Request.CDB);
2536                 break;
2537         case CMD_HARDWARE_ERR:
2538                 cmd->result = DID_ERROR << 16;
2539                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2540                         cp->Request.CDB);
2541                 break;
2542         case CMD_CONNECTION_LOST:
2543                 cmd->result = DID_ERROR << 16;
2544                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2545                         cp->Request.CDB);
2546                 break;
2547         case CMD_ABORTED:
2548                 /* Return now to avoid calling scsi_done(). */
2549                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2550         case CMD_ABORT_FAILED:
2551                 cmd->result = DID_ERROR << 16;
2552                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2553                         cp->Request.CDB);
2554                 break;
2555         case CMD_UNSOLICITED_ABORT:
2556                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2557                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2558                         cp->Request.CDB);
2559                 break;
2560         case CMD_TIMEOUT:
2561                 cmd->result = DID_TIME_OUT << 16;
2562                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2563                         cp->Request.CDB);
2564                 break;
2565         case CMD_UNABORTABLE:
2566                 cmd->result = DID_ERROR << 16;
2567                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2568                 break;
2569         case CMD_TMF_STATUS:
2570                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2571                         cmd->result = DID_ERROR << 16;
2572                 break;
2573         case CMD_IOACCEL_DISABLED:
2574                 /* This only handles the direct pass-through case since RAID
2575                  * offload is handled above.  Just attempt a retry.
2576                  */
2577                 cmd->result = DID_SOFT_ERROR << 16;
2578                 dev_warn(&h->pdev->dev,
2579                                 "cp %p had HP SSD Smart Path error\n", cp);
2580                 break;
2581         default:
2582                 cmd->result = DID_ERROR << 16;
2583                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2584                                 cp, ei->CommandStatus);
2585         }
2586
2587         return hpsa_cmd_free_and_done(h, cp, cmd);
2588 }
2589
2590 static void hpsa_pci_unmap(struct pci_dev *pdev,
2591         struct CommandList *c, int sg_used, int data_direction)
2592 {
2593         int i;
2594
2595         for (i = 0; i < sg_used; i++)
2596                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2597                                 le32_to_cpu(c->SG[i].Len),
2598                                 data_direction);
2599 }
2600
2601 static int hpsa_map_one(struct pci_dev *pdev,
2602                 struct CommandList *cp,
2603                 unsigned char *buf,
2604                 size_t buflen,
2605                 int data_direction)
2606 {
2607         u64 addr64;
2608
2609         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2610                 cp->Header.SGList = 0;
2611                 cp->Header.SGTotal = cpu_to_le16(0);
2612                 return 0;
2613         }
2614
2615         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2616         if (dma_mapping_error(&pdev->dev, addr64)) {
2617                 /* Prevent subsequent unmap of something never mapped */
2618                 cp->Header.SGList = 0;
2619                 cp->Header.SGTotal = cpu_to_le16(0);
2620                 return -1;
2621         }
2622         cp->SG[0].Addr = cpu_to_le64(addr64);
2623         cp->SG[0].Len = cpu_to_le32(buflen);
2624         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2625         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2626         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2627         return 0;
2628 }
2629
2630 #define NO_TIMEOUT ((unsigned long) -1)
2631 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2632 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2633         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2634 {
2635         DECLARE_COMPLETION_ONSTACK(wait);
2636
2637         c->waiting = &wait;
2638         __enqueue_cmd_and_start_io(h, c, reply_queue);
2639         if (timeout_msecs == NO_TIMEOUT) {
2640                 /* TODO: get rid of this no-timeout thing */
2641                 wait_for_completion_io(&wait);
2642                 return IO_OK;
2643         }
2644         if (!wait_for_completion_io_timeout(&wait,
2645                                         msecs_to_jiffies(timeout_msecs))) {
2646                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2647                 return -ETIMEDOUT;
2648         }
2649         return IO_OK;
2650 }
2651
2652 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2653                                    int reply_queue, unsigned long timeout_msecs)
2654 {
2655         if (unlikely(lockup_detected(h))) {
2656                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2657                 return IO_OK;
2658         }
2659         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2660 }
2661
2662 static u32 lockup_detected(struct ctlr_info *h)
2663 {
2664         int cpu;
2665         u32 rc, *lockup_detected;
2666
2667         cpu = get_cpu();
2668         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2669         rc = *lockup_detected;
2670         put_cpu();
2671         return rc;
2672 }
2673
2674 #define MAX_DRIVER_CMD_RETRIES 25
2675 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2676         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2677 {
2678         int backoff_time = 10, retry_count = 0;
2679         int rc;
2680
2681         do {
2682                 memset(c->err_info, 0, sizeof(*c->err_info));
2683                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2684                                                   timeout_msecs);
2685                 if (rc)
2686                         break;
2687                 retry_count++;
2688                 if (retry_count > 3) {
2689                         msleep(backoff_time);
2690                         if (backoff_time < 1000)
2691                                 backoff_time *= 2;
2692                 }
2693         } while ((check_for_unit_attention(h, c) ||
2694                         check_for_busy(h, c)) &&
2695                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2696         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2697         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2698                 rc = -EIO;
2699         return rc;
2700 }
2701
2702 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2703                                 struct CommandList *c)
2704 {
2705         const u8 *cdb = c->Request.CDB;
2706         const u8 *lun = c->Header.LUN.LunAddrBytes;
2707
2708         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2709         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2710                 txt, lun[0], lun[1], lun[2], lun[3],
2711                 lun[4], lun[5], lun[6], lun[7],
2712                 cdb[0], cdb[1], cdb[2], cdb[3],
2713                 cdb[4], cdb[5], cdb[6], cdb[7],
2714                 cdb[8], cdb[9], cdb[10], cdb[11],
2715                 cdb[12], cdb[13], cdb[14], cdb[15]);
2716 }
2717
2718 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2719                         struct CommandList *cp)
2720 {
2721         const struct ErrorInfo *ei = cp->err_info;
2722         struct device *d = &cp->h->pdev->dev;
2723         u8 sense_key, asc, ascq;
2724         int sense_len;
2725
2726         switch (ei->CommandStatus) {
2727         case CMD_TARGET_STATUS:
2728                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2729                         sense_len = sizeof(ei->SenseInfo);
2730                 else
2731                         sense_len = ei->SenseLen;
2732                 decode_sense_data(ei->SenseInfo, sense_len,
2733                                         &sense_key, &asc, &ascq);
2734                 hpsa_print_cmd(h, "SCSI status", cp);
2735                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2736                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2737                                 sense_key, asc, ascq);
2738                 else
2739                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2740                 if (ei->ScsiStatus == 0)
2741                         dev_warn(d, "SCSI status is abnormally zero.  "
2742                         "(probably indicates selection timeout "
2743                         "reported incorrectly due to a known "
2744                         "firmware bug, circa July, 2001.)\n");
2745                 break;
2746         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2747                 break;
2748         case CMD_DATA_OVERRUN:
2749                 hpsa_print_cmd(h, "overrun condition", cp);
2750                 break;
2751         case CMD_INVALID: {
2752                 /* controller unfortunately reports SCSI passthru's
2753                  * to non-existent targets as invalid commands.
2754                  */
2755                 hpsa_print_cmd(h, "invalid command", cp);
2756                 dev_warn(d, "probably means device no longer present\n");
2757                 }
2758                 break;
2759         case CMD_PROTOCOL_ERR:
2760                 hpsa_print_cmd(h, "protocol error", cp);
2761                 break;
2762         case CMD_HARDWARE_ERR:
2763                 hpsa_print_cmd(h, "hardware error", cp);
2764                 break;
2765         case CMD_CONNECTION_LOST:
2766                 hpsa_print_cmd(h, "connection lost", cp);
2767                 break;
2768         case CMD_ABORTED:
2769                 hpsa_print_cmd(h, "aborted", cp);
2770                 break;
2771         case CMD_ABORT_FAILED:
2772                 hpsa_print_cmd(h, "abort failed", cp);
2773                 break;
2774         case CMD_UNSOLICITED_ABORT:
2775                 hpsa_print_cmd(h, "unsolicited abort", cp);
2776                 break;
2777         case CMD_TIMEOUT:
2778                 hpsa_print_cmd(h, "timed out", cp);
2779                 break;
2780         case CMD_UNABORTABLE:
2781                 hpsa_print_cmd(h, "unabortable", cp);
2782                 break;
2783         case CMD_CTLR_LOCKUP:
2784                 hpsa_print_cmd(h, "controller lockup detected", cp);
2785                 break;
2786         default:
2787                 hpsa_print_cmd(h, "unknown status", cp);
2788                 dev_warn(d, "Unknown command status %x\n",
2789                                 ei->CommandStatus);
2790         }
2791 }
2792
2793 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2794                         u16 page, unsigned char *buf,
2795                         unsigned char bufsize)
2796 {
2797         int rc = IO_OK;
2798         struct CommandList *c;
2799         struct ErrorInfo *ei;
2800
2801         c = cmd_alloc(h);
2802
2803         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2804                         page, scsi3addr, TYPE_CMD)) {
2805                 rc = -1;
2806                 goto out;
2807         }
2808         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2809                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2810         if (rc)
2811                 goto out;
2812         ei = c->err_info;
2813         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2814                 hpsa_scsi_interpret_error(h, c);
2815                 rc = -1;
2816         }
2817 out:
2818         cmd_free(h, c);
2819         return rc;
2820 }
2821
2822 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2823         u8 reset_type, int reply_queue)
2824 {
2825         int rc = IO_OK;
2826         struct CommandList *c;
2827         struct ErrorInfo *ei;
2828
2829         c = cmd_alloc(h);
2830
2831
2832         /* fill_cmd can't fail here, no data buffer to map. */
2833         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2834                         scsi3addr, TYPE_MSG);
2835         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2836         if (rc) {
2837                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2838                 goto out;
2839         }
2840         /* no unmap needed here because no data xfer. */
2841
2842         ei = c->err_info;
2843         if (ei->CommandStatus != 0) {
2844                 hpsa_scsi_interpret_error(h, c);
2845                 rc = -1;
2846         }
2847 out:
2848         cmd_free(h, c);
2849         return rc;
2850 }
2851
2852 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2853                                struct hpsa_scsi_dev_t *dev,
2854                                unsigned char *scsi3addr)
2855 {
2856         int i;
2857         bool match = false;
2858         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2859         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2860
2861         if (hpsa_is_cmd_idle(c))
2862                 return false;
2863
2864         switch (c->cmd_type) {
2865         case CMD_SCSI:
2866         case CMD_IOCTL_PEND:
2867                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2868                                 sizeof(c->Header.LUN.LunAddrBytes));
2869                 break;
2870
2871         case CMD_IOACCEL1:
2872         case CMD_IOACCEL2:
2873                 if (c->phys_disk == dev) {
2874                         /* HBA mode match */
2875                         match = true;
2876                 } else {
2877                         /* Possible RAID mode -- check each phys dev. */
2878                         /* FIXME:  Do we need to take out a lock here?  If
2879                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2880                          * instead. */
2881                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2882                                 /* FIXME: an alternate test might be
2883                                  *
2884                                  * match = dev->phys_disk[i]->ioaccel_handle
2885                                  *              == c2->scsi_nexus;      */
2886                                 match = dev->phys_disk[i] == c->phys_disk;
2887                         }
2888                 }
2889                 break;
2890
2891         case IOACCEL2_TMF:
2892                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2893                         match = dev->phys_disk[i]->ioaccel_handle ==
2894                                         le32_to_cpu(ac->it_nexus);
2895                 }
2896                 break;
2897
2898         case 0:         /* The command is in the middle of being initialized. */
2899                 match = false;
2900                 break;
2901
2902         default:
2903                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2904                         c->cmd_type);
2905                 BUG();
2906         }
2907
2908         return match;
2909 }
2910
2911 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2912         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2913 {
2914         int i;
2915         int rc = 0;
2916
2917         /* We can really only handle one reset at a time */
2918         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2919                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2920                 return -EINTR;
2921         }
2922
2923         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2924
2925         for (i = 0; i < h->nr_cmds; i++) {
2926                 struct CommandList *c = h->cmd_pool + i;
2927                 int refcount = atomic_inc_return(&c->refcount);
2928
2929                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2930                         unsigned long flags;
2931
2932                         /*
2933                          * Mark the target command as having a reset pending,
2934                          * then lock a lock so that the command cannot complete
2935                          * while we're considering it.  If the command is not
2936                          * idle then count it; otherwise revoke the event.
2937                          */
2938                         c->reset_pending = dev;
2939                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2940                         if (!hpsa_is_cmd_idle(c))
2941                                 atomic_inc(&dev->reset_cmds_out);
2942                         else
2943                                 c->reset_pending = NULL;
2944                         spin_unlock_irqrestore(&h->lock, flags);
2945                 }
2946
2947                 cmd_free(h, c);
2948         }
2949
2950         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2951         if (!rc)
2952                 wait_event(h->event_sync_wait_queue,
2953                         atomic_read(&dev->reset_cmds_out) == 0 ||
2954                         lockup_detected(h));
2955
2956         if (unlikely(lockup_detected(h))) {
2957                 dev_warn(&h->pdev->dev,
2958                          "Controller lockup detected during reset wait\n");
2959                 rc = -ENODEV;
2960         }
2961
2962         if (unlikely(rc))
2963                 atomic_set(&dev->reset_cmds_out, 0);
2964
2965         mutex_unlock(&h->reset_mutex);
2966         return rc;
2967 }
2968
2969 static void hpsa_get_raid_level(struct ctlr_info *h,
2970         unsigned char *scsi3addr, unsigned char *raid_level)
2971 {
2972         int rc;
2973         unsigned char *buf;
2974
2975         *raid_level = RAID_UNKNOWN;
2976         buf = kzalloc(64, GFP_KERNEL);
2977         if (!buf)
2978                 return;
2979         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2980         if (rc == 0)
2981                 *raid_level = buf[8];
2982         if (*raid_level > RAID_UNKNOWN)
2983                 *raid_level = RAID_UNKNOWN;
2984         kfree(buf);
2985         return;
2986 }
2987
2988 #define HPSA_MAP_DEBUG
2989 #ifdef HPSA_MAP_DEBUG
2990 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2991                                 struct raid_map_data *map_buff)
2992 {
2993         struct raid_map_disk_data *dd = &map_buff->data[0];
2994         int map, row, col;
2995         u16 map_cnt, row_cnt, disks_per_row;
2996
2997         if (rc != 0)
2998                 return;
2999
3000         /* Show details only if debugging has been activated. */
3001         if (h->raid_offload_debug < 2)
3002                 return;
3003
3004         dev_info(&h->pdev->dev, "structure_size = %u\n",
3005                                 le32_to_cpu(map_buff->structure_size));
3006         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3007                         le32_to_cpu(map_buff->volume_blk_size));
3008         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3009                         le64_to_cpu(map_buff->volume_blk_cnt));
3010         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3011                         map_buff->phys_blk_shift);
3012         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3013                         map_buff->parity_rotation_shift);
3014         dev_info(&h->pdev->dev, "strip_size = %u\n",
3015                         le16_to_cpu(map_buff->strip_size));
3016         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3017                         le64_to_cpu(map_buff->disk_starting_blk));
3018         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3019                         le64_to_cpu(map_buff->disk_blk_cnt));
3020         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3021                         le16_to_cpu(map_buff->data_disks_per_row));
3022         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3023                         le16_to_cpu(map_buff->metadata_disks_per_row));
3024         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3025                         le16_to_cpu(map_buff->row_cnt));
3026         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3027                         le16_to_cpu(map_buff->layout_map_count));
3028         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3029                         le16_to_cpu(map_buff->flags));
3030         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3031                         le16_to_cpu(map_buff->flags) &
3032                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3033         dev_info(&h->pdev->dev, "dekindex = %u\n",
3034                         le16_to_cpu(map_buff->dekindex));
3035         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3036         for (map = 0; map < map_cnt; map++) {
3037                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3038                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3039                 for (row = 0; row < row_cnt; row++) {
3040                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3041                         disks_per_row =
3042                                 le16_to_cpu(map_buff->data_disks_per_row);
3043                         for (col = 0; col < disks_per_row; col++, dd++)
3044                                 dev_info(&h->pdev->dev,
3045                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3046                                         col, dd->ioaccel_handle,
3047                                         dd->xor_mult[0], dd->xor_mult[1]);
3048                         disks_per_row =
3049                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3050                         for (col = 0; col < disks_per_row; col++, dd++)
3051                                 dev_info(&h->pdev->dev,
3052                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3053                                         col, dd->ioaccel_handle,
3054                                         dd->xor_mult[0], dd->xor_mult[1]);
3055                 }
3056         }
3057 }
3058 #else
3059 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3060                         __attribute__((unused)) int rc,
3061                         __attribute__((unused)) struct raid_map_data *map_buff)
3062 {
3063 }
3064 #endif
3065
3066 static int hpsa_get_raid_map(struct ctlr_info *h,
3067         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3068 {
3069         int rc = 0;
3070         struct CommandList *c;
3071         struct ErrorInfo *ei;
3072
3073         c = cmd_alloc(h);
3074
3075         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3076                         sizeof(this_device->raid_map), 0,
3077                         scsi3addr, TYPE_CMD)) {
3078                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3079                 cmd_free(h, c);
3080                 return -1;
3081         }
3082         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3083                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3084         if (rc)
3085                 goto out;
3086         ei = c->err_info;
3087         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3088                 hpsa_scsi_interpret_error(h, c);
3089                 rc = -1;
3090                 goto out;
3091         }
3092         cmd_free(h, c);
3093
3094         /* @todo in the future, dynamically allocate RAID map memory */
3095         if (le32_to_cpu(this_device->raid_map.structure_size) >
3096                                 sizeof(this_device->raid_map)) {
3097                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3098                 rc = -1;
3099         }
3100         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3101         return rc;
3102 out:
3103         cmd_free(h, c);
3104         return rc;
3105 }
3106
3107 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3108                 unsigned char scsi3addr[], u16 bmic_device_index,
3109                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3110 {
3111         int rc = IO_OK;
3112         struct CommandList *c;
3113         struct ErrorInfo *ei;
3114
3115         c = cmd_alloc(h);
3116
3117         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3118                 0, RAID_CTLR_LUNID, TYPE_CMD);
3119         if (rc)
3120                 goto out;
3121
3122         c->Request.CDB[2] = bmic_device_index & 0xff;
3123         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3124
3125         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3126                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3127         if (rc)
3128                 goto out;
3129         ei = c->err_info;
3130         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3131                 hpsa_scsi_interpret_error(h, c);
3132                 rc = -1;
3133         }
3134 out:
3135         cmd_free(h, c);
3136         return rc;
3137 }
3138
3139 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3140         struct bmic_identify_controller *buf, size_t bufsize)
3141 {
3142         int rc = IO_OK;
3143         struct CommandList *c;
3144         struct ErrorInfo *ei;
3145
3146         c = cmd_alloc(h);
3147
3148         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3149                 0, RAID_CTLR_LUNID, TYPE_CMD);
3150         if (rc)
3151                 goto out;
3152
3153         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3154                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3155         if (rc)
3156                 goto out;
3157         ei = c->err_info;
3158         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3159                 hpsa_scsi_interpret_error(h, c);
3160                 rc = -1;
3161         }
3162 out:
3163         cmd_free(h, c);
3164         return rc;
3165 }
3166
3167 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3168                 unsigned char scsi3addr[], u16 bmic_device_index,
3169                 struct bmic_identify_physical_device *buf, size_t bufsize)
3170 {
3171         int rc = IO_OK;
3172         struct CommandList *c;
3173         struct ErrorInfo *ei;
3174
3175         c = cmd_alloc(h);
3176         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3177                 0, RAID_CTLR_LUNID, TYPE_CMD);
3178         if (rc)
3179                 goto out;
3180
3181         c->Request.CDB[2] = bmic_device_index & 0xff;
3182         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3183
3184         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3185                                                 NO_TIMEOUT);
3186         ei = c->err_info;
3187         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3188                 hpsa_scsi_interpret_error(h, c);
3189                 rc = -1;
3190         }
3191 out:
3192         cmd_free(h, c);
3193
3194         return rc;
3195 }
3196
3197 /*
3198  * get enclosure information
3199  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3200  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3201  * Uses id_physical_device to determine the box_index.
3202  */
3203 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3204                         unsigned char *scsi3addr,
3205                         struct ReportExtendedLUNdata *rlep, int rle_index,
3206                         struct hpsa_scsi_dev_t *encl_dev)
3207 {
3208         int rc = -1;
3209         struct CommandList *c = NULL;
3210         struct ErrorInfo *ei = NULL;
3211         struct bmic_sense_storage_box_params *bssbp = NULL;
3212         struct bmic_identify_physical_device *id_phys = NULL;
3213         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3214         u16 bmic_device_index = 0;
3215
3216         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3217
3218         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3219                 rc = IO_OK;
3220                 goto out;
3221         }
3222
3223         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3224         if (!bssbp)
3225                 goto out;
3226
3227         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3228         if (!id_phys)
3229                 goto out;
3230
3231         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3232                                                 id_phys, sizeof(*id_phys));
3233         if (rc) {
3234                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3235                         __func__, encl_dev->external, bmic_device_index);
3236                 goto out;
3237         }
3238
3239         c = cmd_alloc(h);
3240
3241         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3242                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3243
3244         if (rc)
3245                 goto out;
3246
3247         if (id_phys->phys_connector[1] == 'E')
3248                 c->Request.CDB[5] = id_phys->box_index;
3249         else
3250                 c->Request.CDB[5] = 0;
3251
3252         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3253                                                 NO_TIMEOUT);
3254         if (rc)
3255                 goto out;
3256
3257         ei = c->err_info;
3258         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3259                 rc = -1;
3260                 goto out;
3261         }
3262
3263         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3264         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3265                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3266
3267         rc = IO_OK;
3268 out:
3269         kfree(bssbp);
3270         kfree(id_phys);
3271
3272         if (c)
3273                 cmd_free(h, c);
3274
3275         if (rc != IO_OK)
3276                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3277                         "Error, could not get enclosure information\n");
3278 }
3279
3280 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3281                                                 unsigned char *scsi3addr)
3282 {
3283         struct ReportExtendedLUNdata *physdev;
3284         u32 nphysicals;
3285         u64 sa = 0;
3286         int i;
3287
3288         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3289         if (!physdev)
3290                 return 0;
3291
3292         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3293                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3294                 kfree(physdev);
3295                 return 0;
3296         }
3297         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3298
3299         for (i = 0; i < nphysicals; i++)
3300                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3301                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3302                         break;
3303                 }
3304
3305         kfree(physdev);
3306
3307         return sa;
3308 }
3309
3310 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3311                                         struct hpsa_scsi_dev_t *dev)
3312 {
3313         int rc;
3314         u64 sa = 0;
3315
3316         if (is_hba_lunid(scsi3addr)) {
3317                 struct bmic_sense_subsystem_info *ssi;
3318
3319                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3320                 if (ssi == NULL) {
3321                         dev_warn(&h->pdev->dev,
3322                                 "%s: out of memory\n", __func__);
3323                         return;
3324                 }
3325
3326                 rc = hpsa_bmic_sense_subsystem_information(h,
3327                                         scsi3addr, 0, ssi, sizeof(*ssi));
3328                 if (rc == 0) {
3329                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3330                         h->sas_address = sa;
3331                 }
3332
3333                 kfree(ssi);
3334         } else
3335                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3336
3337         dev->sas_address = sa;
3338 }
3339
3340 /* Get a device id from inquiry page 0x83 */
3341 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3342         unsigned char scsi3addr[], u8 page)
3343 {
3344         int rc;
3345         int i;
3346         int pages;
3347         unsigned char *buf, bufsize;
3348
3349         buf = kzalloc(256, GFP_KERNEL);
3350         if (!buf)
3351                 return 0;
3352
3353         /* Get the size of the page list first */
3354         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3355                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3356                                 buf, HPSA_VPD_HEADER_SZ);
3357         if (rc != 0)
3358                 goto exit_unsupported;
3359         pages = buf[3];
3360         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3361                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3362         else
3363                 bufsize = 255;
3364
3365         /* Get the whole VPD page list */
3366         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3367                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3368                                 buf, bufsize);
3369         if (rc != 0)
3370                 goto exit_unsupported;
3371
3372         pages = buf[3];
3373         for (i = 1; i <= pages; i++)
3374                 if (buf[3 + i] == page)
3375                         goto exit_supported;
3376 exit_unsupported:
3377         kfree(buf);
3378         return 0;
3379 exit_supported:
3380         kfree(buf);
3381         return 1;
3382 }
3383
3384 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3385         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3386 {
3387         int rc;
3388         unsigned char *buf;
3389         u8 ioaccel_status;
3390
3391         this_device->offload_config = 0;
3392         this_device->offload_enabled = 0;
3393         this_device->offload_to_be_enabled = 0;
3394
3395         buf = kzalloc(64, GFP_KERNEL);
3396         if (!buf)
3397                 return;
3398         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3399                 goto out;
3400         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3401                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3402         if (rc != 0)
3403                 goto out;
3404
3405 #define IOACCEL_STATUS_BYTE 4
3406 #define OFFLOAD_CONFIGURED_BIT 0x01
3407 #define OFFLOAD_ENABLED_BIT 0x02
3408         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3409         this_device->offload_config =
3410                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3411         if (this_device->offload_config) {
3412                 this_device->offload_enabled =
3413                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3414                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3415                         this_device->offload_enabled = 0;
3416         }
3417         this_device->offload_to_be_enabled = this_device->offload_enabled;
3418 out:
3419         kfree(buf);
3420         return;
3421 }
3422
3423 /* Get the device id from inquiry page 0x83 */
3424 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3425         unsigned char *device_id, int index, int buflen)
3426 {
3427         int rc;
3428         unsigned char *buf;
3429
3430         if (buflen > 16)
3431                 buflen = 16;
3432         buf = kzalloc(64, GFP_KERNEL);
3433         if (!buf)
3434                 return -ENOMEM;
3435         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3436         if (rc == 0)
3437                 memcpy(device_id, &buf[index], buflen);
3438
3439         kfree(buf);
3440
3441         return rc != 0;
3442 }
3443
3444 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3445                 void *buf, int bufsize,
3446                 int extended_response)
3447 {
3448         int rc = IO_OK;
3449         struct CommandList *c;
3450         unsigned char scsi3addr[8];
3451         struct ErrorInfo *ei;
3452
3453         c = cmd_alloc(h);
3454
3455         /* address the controller */
3456         memset(scsi3addr, 0, sizeof(scsi3addr));
3457         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3458                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3459                 rc = -1;
3460                 goto out;
3461         }
3462         if (extended_response)
3463                 c->Request.CDB[1] = extended_response;
3464         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3465                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3466         if (rc)
3467                 goto out;
3468         ei = c->err_info;
3469         if (ei->CommandStatus != 0 &&
3470             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3471                 hpsa_scsi_interpret_error(h, c);
3472                 rc = -1;
3473         } else {
3474                 struct ReportLUNdata *rld = buf;
3475
3476                 if (rld->extended_response_flag != extended_response) {
3477                         dev_err(&h->pdev->dev,
3478                                 "report luns requested format %u, got %u\n",
3479                                 extended_response,
3480                                 rld->extended_response_flag);
3481                         rc = -1;
3482                 }
3483         }
3484 out:
3485         cmd_free(h, c);
3486         return rc;
3487 }
3488
3489 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3490                 struct ReportExtendedLUNdata *buf, int bufsize)
3491 {
3492         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3493                                                 HPSA_REPORT_PHYS_EXTENDED);
3494 }
3495
3496 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3497                 struct ReportLUNdata *buf, int bufsize)
3498 {
3499         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3500 }
3501
3502 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3503         int bus, int target, int lun)
3504 {
3505         device->bus = bus;
3506         device->target = target;
3507         device->lun = lun;
3508 }
3509
3510 /* Use VPD inquiry to get details of volume status */
3511 static int hpsa_get_volume_status(struct ctlr_info *h,
3512                                         unsigned char scsi3addr[])
3513 {
3514         int rc;
3515         int status;
3516         int size;
3517         unsigned char *buf;
3518
3519         buf = kzalloc(64, GFP_KERNEL);
3520         if (!buf)
3521                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3522
3523         /* Does controller have VPD for logical volume status? */
3524         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3525                 goto exit_failed;
3526
3527         /* Get the size of the VPD return buffer */
3528         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3529                                         buf, HPSA_VPD_HEADER_SZ);
3530         if (rc != 0)
3531                 goto exit_failed;
3532         size = buf[3];
3533
3534         /* Now get the whole VPD buffer */
3535         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3536                                         buf, size + HPSA_VPD_HEADER_SZ);
3537         if (rc != 0)
3538                 goto exit_failed;
3539         status = buf[4]; /* status byte */
3540
3541         kfree(buf);
3542         return status;
3543 exit_failed:
3544         kfree(buf);
3545         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3546 }
3547
3548 /* Determine offline status of a volume.
3549  * Return either:
3550  *  0 (not offline)
3551  *  0xff (offline for unknown reasons)
3552  *  # (integer code indicating one of several NOT READY states
3553  *     describing why a volume is to be kept offline)
3554  */
3555 static int hpsa_volume_offline(struct ctlr_info *h,
3556                                         unsigned char scsi3addr[])
3557 {
3558         struct CommandList *c;
3559         unsigned char *sense;
3560         u8 sense_key, asc, ascq;
3561         int sense_len;
3562         int rc, ldstat = 0;
3563         u16 cmd_status;
3564         u8 scsi_status;
3565 #define ASC_LUN_NOT_READY 0x04
3566 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3567 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3568
3569         c = cmd_alloc(h);
3570
3571         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3572         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3573         if (rc) {
3574                 cmd_free(h, c);
3575                 return 0;
3576         }
3577         sense = c->err_info->SenseInfo;
3578         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3579                 sense_len = sizeof(c->err_info->SenseInfo);
3580         else
3581                 sense_len = c->err_info->SenseLen;
3582         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3583         cmd_status = c->err_info->CommandStatus;
3584         scsi_status = c->err_info->ScsiStatus;
3585         cmd_free(h, c);
3586         /* Is the volume 'not ready'? */
3587         if (cmd_status != CMD_TARGET_STATUS ||
3588                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3589                 sense_key != NOT_READY ||
3590                 asc != ASC_LUN_NOT_READY)  {
3591                 return 0;
3592         }
3593
3594         /* Determine the reason for not ready state */
3595         ldstat = hpsa_get_volume_status(h, scsi3addr);
3596
3597         /* Keep volume offline in certain cases: */
3598         switch (ldstat) {
3599         case HPSA_LV_UNDERGOING_ERASE:
3600         case HPSA_LV_NOT_AVAILABLE:
3601         case HPSA_LV_UNDERGOING_RPI:
3602         case HPSA_LV_PENDING_RPI:
3603         case HPSA_LV_ENCRYPTED_NO_KEY:
3604         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3605         case HPSA_LV_UNDERGOING_ENCRYPTION:
3606         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3607         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3608                 return ldstat;
3609         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3610                 /* If VPD status page isn't available,
3611                  * use ASC/ASCQ to determine state
3612                  */
3613                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3614                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3615                         return ldstat;
3616                 break;
3617         default:
3618                 break;
3619         }
3620         return 0;
3621 }
3622
3623 /*
3624  * Find out if a logical device supports aborts by simply trying one.
3625  * Smart Array may claim not to support aborts on logical drives, but
3626  * if a MSA2000 * is connected, the drives on that will be presented
3627  * by the Smart Array as logical drives, and aborts may be sent to
3628  * those devices successfully.  So the simplest way to find out is
3629  * to simply try an abort and see how the device responds.
3630  */
3631 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3632                                         unsigned char *scsi3addr)
3633 {
3634         struct CommandList *c;
3635         struct ErrorInfo *ei;
3636         int rc = 0;
3637
3638         u64 tag = (u64) -1; /* bogus tag */
3639
3640         /* Assume that physical devices support aborts */
3641         if (!is_logical_dev_addr_mode(scsi3addr))
3642                 return 1;
3643
3644         c = cmd_alloc(h);
3645
3646         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3647         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3648         /* no unmap needed here because no data xfer. */
3649         ei = c->err_info;
3650         switch (ei->CommandStatus) {
3651         case CMD_INVALID:
3652                 rc = 0;
3653                 break;
3654         case CMD_UNABORTABLE:
3655         case CMD_ABORT_FAILED:
3656                 rc = 1;
3657                 break;
3658         case CMD_TMF_STATUS:
3659                 rc = hpsa_evaluate_tmf_status(h, c);
3660                 break;
3661         default:
3662                 rc = 0;
3663                 break;
3664         }
3665         cmd_free(h, c);
3666         return rc;
3667 }
3668
3669 static int hpsa_update_device_info(struct ctlr_info *h,
3670         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3671         unsigned char *is_OBDR_device)
3672 {
3673
3674 #define OBDR_SIG_OFFSET 43
3675 #define OBDR_TAPE_SIG "$DR-10"
3676 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3677 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3678
3679         unsigned char *inq_buff;
3680         unsigned char *obdr_sig;
3681         int rc = 0;
3682
3683         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3684         if (!inq_buff) {
3685                 rc = -ENOMEM;
3686                 goto bail_out;
3687         }
3688
3689         /* Do an inquiry to the device to see what it is. */
3690         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3691                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3692                 /* Inquiry failed (msg printed already) */
3693                 dev_err(&h->pdev->dev,
3694                         "hpsa_update_device_info: inquiry failed\n");
3695                 rc = -EIO;
3696                 goto bail_out;
3697         }
3698
3699         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3700         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3701
3702         this_device->devtype = (inq_buff[0] & 0x1f);
3703         memcpy(this_device->scsi3addr, scsi3addr, 8);
3704         memcpy(this_device->vendor, &inq_buff[8],
3705                 sizeof(this_device->vendor));
3706         memcpy(this_device->model, &inq_buff[16],
3707                 sizeof(this_device->model));
3708         memset(this_device->device_id, 0,
3709                 sizeof(this_device->device_id));
3710         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3711                 sizeof(this_device->device_id));
3712
3713         if ((this_device->devtype == TYPE_DISK ||
3714                 this_device->devtype == TYPE_ZBC) &&
3715                 is_logical_dev_addr_mode(scsi3addr)) {
3716                 int volume_offline;
3717
3718                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3719                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3720                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3721                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3722                 if (volume_offline < 0 || volume_offline > 0xff)
3723                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3724                 this_device->volume_offline = volume_offline & 0xff;
3725         } else {
3726                 this_device->raid_level = RAID_UNKNOWN;
3727                 this_device->offload_config = 0;
3728                 this_device->offload_enabled = 0;
3729                 this_device->offload_to_be_enabled = 0;
3730                 this_device->hba_ioaccel_enabled = 0;
3731                 this_device->volume_offline = 0;
3732                 this_device->queue_depth = h->nr_cmds;
3733         }
3734
3735         if (is_OBDR_device) {
3736                 /* See if this is a One-Button-Disaster-Recovery device
3737                  * by looking for "$DR-10" at offset 43 in inquiry data.
3738                  */
3739                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3740                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3741                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3742                                                 OBDR_SIG_LEN) == 0);
3743         }
3744         kfree(inq_buff);
3745         return 0;
3746
3747 bail_out:
3748         kfree(inq_buff);
3749         return rc;
3750 }
3751
3752 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3753                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3754 {
3755         unsigned long flags;
3756         int rc, entry;
3757         /*
3758          * See if this device supports aborts.  If we already know
3759          * the device, we already know if it supports aborts, otherwise
3760          * we have to find out if it supports aborts by trying one.
3761          */
3762         spin_lock_irqsave(&h->devlock, flags);
3763         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3764         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3765                 entry >= 0 && entry < h->ndevices) {
3766                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3767                 spin_unlock_irqrestore(&h->devlock, flags);
3768         } else {
3769                 spin_unlock_irqrestore(&h->devlock, flags);
3770                 dev->supports_aborts =
3771                                 hpsa_device_supports_aborts(h, scsi3addr);
3772                 if (dev->supports_aborts < 0)
3773                         dev->supports_aborts = 0;
3774         }
3775 }
3776
3777 /*
3778  * Helper function to assign bus, target, lun mapping of devices.
3779  * Logical drive target and lun are assigned at this time, but
3780  * physical device lun and target assignment are deferred (assigned
3781  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3782 */
3783 static void figure_bus_target_lun(struct ctlr_info *h,
3784         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3785 {
3786         u32 lunid = get_unaligned_le32(lunaddrbytes);
3787
3788         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3789                 /* physical device, target and lun filled in later */
3790                 if (is_hba_lunid(lunaddrbytes))
3791                         hpsa_set_bus_target_lun(device,
3792                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3793                 else
3794                         /* defer target, lun assignment for physical devices */
3795                         hpsa_set_bus_target_lun(device,
3796                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3797                 return;
3798         }
3799         /* It's a logical device */
3800         if (device->external) {
3801                 hpsa_set_bus_target_lun(device,
3802                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3803                         lunid & 0x00ff);
3804                 return;
3805         }
3806         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3807                                 0, lunid & 0x3fff);
3808 }
3809
3810
3811 /*
3812  * Get address of physical disk used for an ioaccel2 mode command:
3813  *      1. Extract ioaccel2 handle from the command.
3814  *      2. Find a matching ioaccel2 handle from list of physical disks.
3815  *      3. Return:
3816  *              1 and set scsi3addr to address of matching physical
3817  *              0 if no matching physical disk was found.
3818  */
3819 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3820         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3821 {
3822         struct io_accel2_cmd *c2 =
3823                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3824         unsigned long flags;
3825         int i;
3826
3827         spin_lock_irqsave(&h->devlock, flags);
3828         for (i = 0; i < h->ndevices; i++)
3829                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3830                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3831                                 sizeof(h->dev[i]->scsi3addr));
3832                         spin_unlock_irqrestore(&h->devlock, flags);
3833                         return 1;
3834                 }
3835         spin_unlock_irqrestore(&h->devlock, flags);
3836         return 0;
3837 }
3838
3839 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3840         int i, int nphysicals, int nlocal_logicals)
3841 {
3842         /* In report logicals, local logicals are listed first,
3843         * then any externals.
3844         */
3845         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3846
3847         if (i == raid_ctlr_position)
3848                 return 0;
3849
3850         if (i < logicals_start)
3851                 return 0;
3852
3853         /* i is in logicals range, but still within local logicals */
3854         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3855                 return 0;
3856
3857         return 1; /* it's an external lun */
3858 }
3859
3860 /*
3861  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3862  * logdev.  The number of luns in physdev and logdev are returned in
3863  * *nphysicals and *nlogicals, respectively.
3864  * Returns 0 on success, -1 otherwise.
3865  */
3866 static int hpsa_gather_lun_info(struct ctlr_info *h,
3867         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3868         struct ReportLUNdata *logdev, u32 *nlogicals)
3869 {
3870         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3871                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3872                 return -1;
3873         }
3874         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3875         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3876                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3877                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3878                 *nphysicals = HPSA_MAX_PHYS_LUN;
3879         }
3880         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3881                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3882                 return -1;
3883         }
3884         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3885         /* Reject Logicals in excess of our max capability. */
3886         if (*nlogicals > HPSA_MAX_LUN) {
3887                 dev_warn(&h->pdev->dev,
3888                         "maximum logical LUNs (%d) exceeded.  "
3889                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3890                         *nlogicals - HPSA_MAX_LUN);
3891                         *nlogicals = HPSA_MAX_LUN;
3892         }
3893         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3894                 dev_warn(&h->pdev->dev,
3895                         "maximum logical + physical LUNs (%d) exceeded. "
3896                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3897                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3898                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3899         }
3900         return 0;
3901 }
3902
3903 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3904         int i, int nphysicals, int nlogicals,
3905         struct ReportExtendedLUNdata *physdev_list,
3906         struct ReportLUNdata *logdev_list)
3907 {
3908         /* Helper function, figure out where the LUN ID info is coming from
3909          * given index i, lists of physical and logical devices, where in
3910          * the list the raid controller is supposed to appear (first or last)
3911          */
3912
3913         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3914         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3915
3916         if (i == raid_ctlr_position)
3917                 return RAID_CTLR_LUNID;
3918
3919         if (i < logicals_start)
3920                 return &physdev_list->LUN[i -
3921                                 (raid_ctlr_position == 0)].lunid[0];
3922
3923         if (i < last_device)
3924                 return &logdev_list->LUN[i - nphysicals -
3925                         (raid_ctlr_position == 0)][0];
3926         BUG();
3927         return NULL;
3928 }
3929
3930 /* get physical drive ioaccel handle and queue depth */
3931 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3932                 struct hpsa_scsi_dev_t *dev,
3933                 struct ReportExtendedLUNdata *rlep, int rle_index,
3934                 struct bmic_identify_physical_device *id_phys)
3935 {
3936         int rc;
3937         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3938
3939         dev->ioaccel_handle = rle->ioaccel_handle;
3940         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3941                 dev->hba_ioaccel_enabled = 1;
3942         memset(id_phys, 0, sizeof(*id_phys));
3943         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3944                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3945                         sizeof(*id_phys));
3946         if (!rc)
3947                 /* Reserve space for FW operations */
3948 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3949 #define DRIVE_QUEUE_DEPTH 7
3950                 dev->queue_depth =
3951                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3952                                 DRIVE_CMDS_RESERVED_FOR_FW;
3953         else
3954                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3955 }
3956
3957 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3958         struct ReportExtendedLUNdata *rlep, int rle_index,
3959         struct bmic_identify_physical_device *id_phys)
3960 {
3961         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3962
3963         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3964                 this_device->hba_ioaccel_enabled = 1;
3965
3966         memcpy(&this_device->active_path_index,
3967                 &id_phys->active_path_number,
3968                 sizeof(this_device->active_path_index));
3969         memcpy(&this_device->path_map,
3970                 &id_phys->redundant_path_present_map,
3971                 sizeof(this_device->path_map));
3972         memcpy(&this_device->box,
3973                 &id_phys->alternate_paths_phys_box_on_port,
3974                 sizeof(this_device->box));
3975         memcpy(&this_device->phys_connector,
3976                 &id_phys->alternate_paths_phys_connector,
3977                 sizeof(this_device->phys_connector));
3978         memcpy(&this_device->bay,
3979                 &id_phys->phys_bay_in_box,
3980                 sizeof(this_device->bay));
3981 }
3982
3983 /* get number of local logical disks. */
3984 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3985         struct bmic_identify_controller *id_ctlr,
3986         u32 *nlocals)
3987 {
3988         int rc;
3989
3990         if (!id_ctlr) {
3991                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3992                         __func__);
3993                 return -ENOMEM;
3994         }
3995         memset(id_ctlr, 0, sizeof(*id_ctlr));
3996         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3997         if (!rc)
3998                 if (id_ctlr->configured_logical_drive_count < 256)
3999                         *nlocals = id_ctlr->configured_logical_drive_count;
4000                 else
4001                         *nlocals = le16_to_cpu(
4002                                         id_ctlr->extended_logical_unit_count);
4003         else
4004                 *nlocals = -1;
4005         return rc;
4006 }
4007
4008
4009 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4010 {
4011         /* the idea here is we could get notified
4012          * that some devices have changed, so we do a report
4013          * physical luns and report logical luns cmd, and adjust
4014          * our list of devices accordingly.
4015          *
4016          * The scsi3addr's of devices won't change so long as the
4017          * adapter is not reset.  That means we can rescan and
4018          * tell which devices we already know about, vs. new
4019          * devices, vs.  disappearing devices.
4020          */
4021         struct ReportExtendedLUNdata *physdev_list = NULL;
4022         struct ReportLUNdata *logdev_list = NULL;
4023         struct bmic_identify_physical_device *id_phys = NULL;
4024         struct bmic_identify_controller *id_ctlr = NULL;
4025         u32 nphysicals = 0;
4026         u32 nlogicals = 0;
4027         u32 nlocal_logicals = 0;
4028         u32 ndev_allocated = 0;
4029         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4030         int ncurrent = 0;
4031         int i, n_ext_target_devs, ndevs_to_allocate;
4032         int raid_ctlr_position;
4033         bool physical_device;
4034         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4035
4036         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4037         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4038         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4039         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4040         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4041         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4042
4043         if (!currentsd || !physdev_list || !logdev_list ||
4044                 !tmpdevice || !id_phys || !id_ctlr) {
4045                 dev_err(&h->pdev->dev, "out of memory\n");
4046                 goto out;
4047         }
4048         memset(lunzerobits, 0, sizeof(lunzerobits));
4049
4050         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4051
4052         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4053                         logdev_list, &nlogicals)) {
4054                 h->drv_req_rescan = 1;
4055                 goto out;
4056         }
4057
4058         /* Set number of local logicals (non PTRAID) */
4059         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4060                 dev_warn(&h->pdev->dev,
4061                         "%s: Can't determine number of local logical devices.\n",
4062                         __func__);
4063         }
4064
4065         /* We might see up to the maximum number of logical and physical disks
4066          * plus external target devices, and a device for the local RAID
4067          * controller.
4068          */
4069         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4070
4071         /* Allocate the per device structures */
4072         for (i = 0; i < ndevs_to_allocate; i++) {
4073                 if (i >= HPSA_MAX_DEVICES) {
4074                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4075                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4076                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4077                         break;
4078                 }
4079
4080                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4081                 if (!currentsd[i]) {
4082                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4083                                 __FILE__, __LINE__);
4084                         h->drv_req_rescan = 1;
4085                         goto out;
4086                 }
4087                 ndev_allocated++;
4088         }
4089
4090         if (is_scsi_rev_5(h))
4091                 raid_ctlr_position = 0;
4092         else
4093                 raid_ctlr_position = nphysicals + nlogicals;
4094
4095         /* adjust our table of devices */
4096         n_ext_target_devs = 0;
4097         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4098                 u8 *lunaddrbytes, is_OBDR = 0;
4099                 int rc = 0;
4100                 int phys_dev_index = i - (raid_ctlr_position == 0);
4101
4102                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4103
4104                 /* Figure out where the LUN ID info is coming from */
4105                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4106                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4107
4108                 /* skip masked non-disk devices */
4109                 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4110                    (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4111                    (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4112                         continue;
4113
4114                 /* Get device type, vendor, model, device id */
4115                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4116                                                         &is_OBDR);
4117                 if (rc == -ENOMEM) {
4118                         dev_warn(&h->pdev->dev,
4119                                 "Out of memory, rescan deferred.\n");
4120                         h->drv_req_rescan = 1;
4121                         goto out;
4122                 }
4123                 if (rc) {
4124                         dev_warn(&h->pdev->dev,
4125                                 "Inquiry failed, skipping device.\n");
4126                         continue;
4127                 }
4128
4129                 /* Determine if this is a lun from an external target array */
4130                 tmpdevice->external =
4131                         figure_external_status(h, raid_ctlr_position, i,
4132                                                 nphysicals, nlocal_logicals);
4133
4134                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4135                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4136                 this_device = currentsd[ncurrent];
4137
4138                 /* Turn on discovery_polling if there are ext target devices.
4139                  * Event-based change notification is unreliable for those.
4140                  */
4141                 if (!h->discovery_polling) {
4142                         if (tmpdevice->external) {
4143                                 h->discovery_polling = 1;
4144                                 dev_info(&h->pdev->dev,
4145                                         "External target, activate discovery polling.\n");
4146                         }
4147                 }
4148
4149
4150                 *this_device = *tmpdevice;
4151                 this_device->physical_device = physical_device;
4152
4153                 /*
4154                  * Expose all devices except for physical devices that
4155                  * are masked.
4156                  */
4157                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4158                         this_device->expose_device = 0;
4159                 else
4160                         this_device->expose_device = 1;
4161
4162
4163                 /*
4164                  * Get the SAS address for physical devices that are exposed.
4165                  */
4166                 if (this_device->physical_device && this_device->expose_device)
4167                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4168
4169                 switch (this_device->devtype) {
4170                 case TYPE_ROM:
4171                         /* We don't *really* support actual CD-ROM devices,
4172                          * just "One Button Disaster Recovery" tape drive
4173                          * which temporarily pretends to be a CD-ROM drive.
4174                          * So we check that the device is really an OBDR tape
4175                          * device by checking for "$DR-10" in bytes 43-48 of
4176                          * the inquiry data.
4177                          */
4178                         if (is_OBDR)
4179                                 ncurrent++;
4180                         break;
4181                 case TYPE_DISK:
4182                 case TYPE_ZBC:
4183                         if (this_device->physical_device) {
4184                                 /* The disk is in HBA mode. */
4185                                 /* Never use RAID mapper in HBA mode. */
4186                                 this_device->offload_enabled = 0;
4187                                 hpsa_get_ioaccel_drive_info(h, this_device,
4188                                         physdev_list, phys_dev_index, id_phys);
4189                                 hpsa_get_path_info(this_device,
4190                                         physdev_list, phys_dev_index, id_phys);
4191                         }
4192                         ncurrent++;
4193                         break;
4194                 case TYPE_TAPE:
4195                 case TYPE_MEDIUM_CHANGER:
4196                         ncurrent++;
4197                         break;
4198                 case TYPE_ENCLOSURE:
4199                         if (!this_device->external)
4200                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4201                                                 physdev_list, phys_dev_index,
4202                                                 this_device);
4203                         ncurrent++;
4204                         break;
4205                 case TYPE_RAID:
4206                         /* Only present the Smartarray HBA as a RAID controller.
4207                          * If it's a RAID controller other than the HBA itself
4208                          * (an external RAID controller, MSA500 or similar)
4209                          * don't present it.
4210                          */
4211                         if (!is_hba_lunid(lunaddrbytes))
4212                                 break;
4213                         ncurrent++;
4214                         break;
4215                 default:
4216                         break;
4217                 }
4218                 if (ncurrent >= HPSA_MAX_DEVICES)
4219                         break;
4220         }
4221
4222         if (h->sas_host == NULL) {
4223                 int rc = 0;
4224
4225                 rc = hpsa_add_sas_host(h);
4226                 if (rc) {
4227                         dev_warn(&h->pdev->dev,
4228                                 "Could not add sas host %d\n", rc);
4229                         goto out;
4230                 }
4231         }
4232
4233         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4234 out:
4235         kfree(tmpdevice);
4236         for (i = 0; i < ndev_allocated; i++)
4237                 kfree(currentsd[i]);
4238         kfree(currentsd);
4239         kfree(physdev_list);
4240         kfree(logdev_list);
4241         kfree(id_ctlr);
4242         kfree(id_phys);
4243 }
4244
4245 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4246                                    struct scatterlist *sg)
4247 {
4248         u64 addr64 = (u64) sg_dma_address(sg);
4249         unsigned int len = sg_dma_len(sg);
4250
4251         desc->Addr = cpu_to_le64(addr64);
4252         desc->Len = cpu_to_le32(len);
4253         desc->Ext = 0;
4254 }
4255
4256 /*
4257  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4258  * dma mapping  and fills in the scatter gather entries of the
4259  * hpsa command, cp.
4260  */
4261 static int hpsa_scatter_gather(struct ctlr_info *h,
4262                 struct CommandList *cp,
4263                 struct scsi_cmnd *cmd)
4264 {
4265         struct scatterlist *sg;
4266         int use_sg, i, sg_limit, chained, last_sg;
4267         struct SGDescriptor *curr_sg;
4268
4269         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4270
4271         use_sg = scsi_dma_map(cmd);
4272         if (use_sg < 0)
4273                 return use_sg;
4274
4275         if (!use_sg)
4276                 goto sglist_finished;
4277
4278         /*
4279          * If the number of entries is greater than the max for a single list,
4280          * then we have a chained list; we will set up all but one entry in the
4281          * first list (the last entry is saved for link information);
4282          * otherwise, we don't have a chained list and we'll set up at each of
4283          * the entries in the one list.
4284          */
4285         curr_sg = cp->SG;
4286         chained = use_sg > h->max_cmd_sg_entries;
4287         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4288         last_sg = scsi_sg_count(cmd) - 1;
4289         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4290                 hpsa_set_sg_descriptor(curr_sg, sg);
4291                 curr_sg++;
4292         }
4293
4294         if (chained) {
4295                 /*
4296                  * Continue with the chained list.  Set curr_sg to the chained
4297                  * list.  Modify the limit to the total count less the entries
4298                  * we've already set up.  Resume the scan at the list entry
4299                  * where the previous loop left off.
4300                  */
4301                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4302                 sg_limit = use_sg - sg_limit;
4303                 for_each_sg(sg, sg, sg_limit, i) {
4304                         hpsa_set_sg_descriptor(curr_sg, sg);
4305                         curr_sg++;
4306                 }
4307         }
4308
4309         /* Back the pointer up to the last entry and mark it as "last". */
4310         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4311
4312         if (use_sg + chained > h->maxSG)
4313                 h->maxSG = use_sg + chained;
4314
4315         if (chained) {
4316                 cp->Header.SGList = h->max_cmd_sg_entries;
4317                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4318                 if (hpsa_map_sg_chain_block(h, cp)) {
4319                         scsi_dma_unmap(cmd);
4320                         return -1;
4321                 }
4322                 return 0;
4323         }
4324
4325 sglist_finished:
4326
4327         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4328         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4329         return 0;
4330 }
4331
4332 #define IO_ACCEL_INELIGIBLE (1)
4333 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4334 {
4335         int is_write = 0;
4336         u32 block;
4337         u32 block_cnt;
4338
4339         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4340         switch (cdb[0]) {
4341         case WRITE_6:
4342         case WRITE_12:
4343                 is_write = 1;
4344         case READ_6:
4345         case READ_12:
4346                 if (*cdb_len == 6) {
4347                         block = get_unaligned_be16(&cdb[2]);
4348                         block_cnt = cdb[4];
4349                         if (block_cnt == 0)
4350                                 block_cnt = 256;
4351                 } else {
4352                         BUG_ON(*cdb_len != 12);
4353                         block = get_unaligned_be32(&cdb[2]);
4354                         block_cnt = get_unaligned_be32(&cdb[6]);
4355                 }
4356                 if (block_cnt > 0xffff)
4357                         return IO_ACCEL_INELIGIBLE;
4358
4359                 cdb[0] = is_write ? WRITE_10 : READ_10;
4360                 cdb[1] = 0;
4361                 cdb[2] = (u8) (block >> 24);
4362                 cdb[3] = (u8) (block >> 16);
4363                 cdb[4] = (u8) (block >> 8);
4364                 cdb[5] = (u8) (block);
4365                 cdb[6] = 0;
4366                 cdb[7] = (u8) (block_cnt >> 8);
4367                 cdb[8] = (u8) (block_cnt);
4368                 cdb[9] = 0;
4369                 *cdb_len = 10;
4370                 break;
4371         }
4372         return 0;
4373 }
4374
4375 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4376         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4377         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4378 {
4379         struct scsi_cmnd *cmd = c->scsi_cmd;
4380         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4381         unsigned int len;
4382         unsigned int total_len = 0;
4383         struct scatterlist *sg;
4384         u64 addr64;
4385         int use_sg, i;
4386         struct SGDescriptor *curr_sg;
4387         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4388
4389         /* TODO: implement chaining support */
4390         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4391                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4392                 return IO_ACCEL_INELIGIBLE;
4393         }
4394
4395         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4396
4397         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4398                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4399                 return IO_ACCEL_INELIGIBLE;
4400         }
4401
4402         c->cmd_type = CMD_IOACCEL1;
4403
4404         /* Adjust the DMA address to point to the accelerated command buffer */
4405         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4406                                 (c->cmdindex * sizeof(*cp));
4407         BUG_ON(c->busaddr & 0x0000007F);
4408
4409         use_sg = scsi_dma_map(cmd);
4410         if (use_sg < 0) {
4411                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4412                 return use_sg;
4413         }
4414
4415         if (use_sg) {
4416                 curr_sg = cp->SG;
4417                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4418                         addr64 = (u64) sg_dma_address(sg);
4419                         len  = sg_dma_len(sg);
4420                         total_len += len;
4421                         curr_sg->Addr = cpu_to_le64(addr64);
4422                         curr_sg->Len = cpu_to_le32(len);
4423                         curr_sg->Ext = cpu_to_le32(0);
4424                         curr_sg++;
4425                 }
4426                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4427
4428                 switch (cmd->sc_data_direction) {
4429                 case DMA_TO_DEVICE:
4430                         control |= IOACCEL1_CONTROL_DATA_OUT;
4431                         break;
4432                 case DMA_FROM_DEVICE:
4433                         control |= IOACCEL1_CONTROL_DATA_IN;
4434                         break;
4435                 case DMA_NONE:
4436                         control |= IOACCEL1_CONTROL_NODATAXFER;
4437                         break;
4438                 default:
4439                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4440                         cmd->sc_data_direction);
4441                         BUG();
4442                         break;
4443                 }
4444         } else {
4445                 control |= IOACCEL1_CONTROL_NODATAXFER;
4446         }
4447
4448         c->Header.SGList = use_sg;
4449         /* Fill out the command structure to submit */
4450         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4451         cp->transfer_len = cpu_to_le32(total_len);
4452         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4453                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4454         cp->control = cpu_to_le32(control);
4455         memcpy(cp->CDB, cdb, cdb_len);
4456         memcpy(cp->CISS_LUN, scsi3addr, 8);
4457         /* Tag was already set at init time. */
4458         enqueue_cmd_and_start_io(h, c);
4459         return 0;
4460 }
4461
4462 /*
4463  * Queue a command directly to a device behind the controller using the
4464  * I/O accelerator path.
4465  */
4466 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4467         struct CommandList *c)
4468 {
4469         struct scsi_cmnd *cmd = c->scsi_cmd;
4470         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4471
4472         c->phys_disk = dev;
4473
4474         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4475                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4476 }
4477
4478 /*
4479  * Set encryption parameters for the ioaccel2 request
4480  */
4481 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4482         struct CommandList *c, struct io_accel2_cmd *cp)
4483 {
4484         struct scsi_cmnd *cmd = c->scsi_cmd;
4485         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4486         struct raid_map_data *map = &dev->raid_map;
4487         u64 first_block;
4488
4489         /* Are we doing encryption on this device */
4490         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4491                 return;
4492         /* Set the data encryption key index. */
4493         cp->dekindex = map->dekindex;
4494
4495         /* Set the encryption enable flag, encoded into direction field. */
4496         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4497
4498         /* Set encryption tweak values based on logical block address
4499          * If block size is 512, tweak value is LBA.
4500          * For other block sizes, tweak is (LBA * block size)/ 512)
4501          */
4502         switch (cmd->cmnd[0]) {
4503         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4504         case WRITE_6:
4505         case READ_6:
4506                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4507                 break;
4508         case WRITE_10:
4509         case READ_10:
4510         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4511         case WRITE_12:
4512         case READ_12:
4513                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4514                 break;
4515         case WRITE_16:
4516         case READ_16:
4517                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4518                 break;
4519         default:
4520                 dev_err(&h->pdev->dev,
4521                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4522                         __func__, cmd->cmnd[0]);
4523                 BUG();
4524                 break;
4525         }
4526
4527         if (le32_to_cpu(map->volume_blk_size) != 512)
4528                 first_block = first_block *
4529                                 le32_to_cpu(map->volume_blk_size)/512;
4530
4531         cp->tweak_lower = cpu_to_le32(first_block);
4532         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4533 }
4534
4535 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4536         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4537         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4538 {
4539         struct scsi_cmnd *cmd = c->scsi_cmd;
4540         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4541         struct ioaccel2_sg_element *curr_sg;
4542         int use_sg, i;
4543         struct scatterlist *sg;
4544         u64 addr64;
4545         u32 len;
4546         u32 total_len = 0;
4547
4548         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549
4550         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4551                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4552                 return IO_ACCEL_INELIGIBLE;
4553         }
4554
4555         c->cmd_type = CMD_IOACCEL2;
4556         /* Adjust the DMA address to point to the accelerated command buffer */
4557         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4558                                 (c->cmdindex * sizeof(*cp));
4559         BUG_ON(c->busaddr & 0x0000007F);
4560
4561         memset(cp, 0, sizeof(*cp));
4562         cp->IU_type = IOACCEL2_IU_TYPE;
4563
4564         use_sg = scsi_dma_map(cmd);
4565         if (use_sg < 0) {
4566                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4567                 return use_sg;
4568         }
4569
4570         if (use_sg) {
4571                 curr_sg = cp->sg;
4572                 if (use_sg > h->ioaccel_maxsg) {
4573                         addr64 = le64_to_cpu(
4574                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4575                         curr_sg->address = cpu_to_le64(addr64);
4576                         curr_sg->length = 0;
4577                         curr_sg->reserved[0] = 0;
4578                         curr_sg->reserved[1] = 0;
4579                         curr_sg->reserved[2] = 0;
4580                         curr_sg->chain_indicator = 0x80;
4581
4582                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4583                 }
4584                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4585                         addr64 = (u64) sg_dma_address(sg);
4586                         len  = sg_dma_len(sg);
4587                         total_len += len;
4588                         curr_sg->address = cpu_to_le64(addr64);
4589                         curr_sg->length = cpu_to_le32(len);
4590                         curr_sg->reserved[0] = 0;
4591                         curr_sg->reserved[1] = 0;
4592                         curr_sg->reserved[2] = 0;
4593                         curr_sg->chain_indicator = 0;
4594                         curr_sg++;
4595                 }
4596
4597                 switch (cmd->sc_data_direction) {
4598                 case DMA_TO_DEVICE:
4599                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4600                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4601                         break;
4602                 case DMA_FROM_DEVICE:
4603                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4604                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4605                         break;
4606                 case DMA_NONE:
4607                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4608                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4609                         break;
4610                 default:
4611                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4612                                 cmd->sc_data_direction);
4613                         BUG();
4614                         break;
4615                 }
4616         } else {
4617                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4618                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4619         }
4620
4621         /* Set encryption parameters, if necessary */
4622         set_encrypt_ioaccel2(h, c, cp);
4623
4624         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4625         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4626         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4627
4628         cp->data_len = cpu_to_le32(total_len);
4629         cp->err_ptr = cpu_to_le64(c->busaddr +
4630                         offsetof(struct io_accel2_cmd, error_data));
4631         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4632
4633         /* fill in sg elements */
4634         if (use_sg > h->ioaccel_maxsg) {
4635                 cp->sg_count = 1;
4636                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4637                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4638                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4639                         scsi_dma_unmap(cmd);
4640                         return -1;
4641                 }
4642         } else
4643                 cp->sg_count = (u8) use_sg;
4644
4645         enqueue_cmd_and_start_io(h, c);
4646         return 0;
4647 }
4648
4649 /*
4650  * Queue a command to the correct I/O accelerator path.
4651  */
4652 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4653         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4654         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4655 {
4656         /* Try to honor the device's queue depth */
4657         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4658                                         phys_disk->queue_depth) {
4659                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4660                 return IO_ACCEL_INELIGIBLE;
4661         }
4662         if (h->transMethod & CFGTBL_Trans_io_accel1)
4663                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4664                                                 cdb, cdb_len, scsi3addr,
4665                                                 phys_disk);
4666         else
4667                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4668                                                 cdb, cdb_len, scsi3addr,
4669                                                 phys_disk);
4670 }
4671
4672 static void raid_map_helper(struct raid_map_data *map,
4673                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4674 {
4675         if (offload_to_mirror == 0)  {
4676                 /* use physical disk in the first mirrored group. */
4677                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4678                 return;
4679         }
4680         do {
4681                 /* determine mirror group that *map_index indicates */
4682                 *current_group = *map_index /
4683                         le16_to_cpu(map->data_disks_per_row);
4684                 if (offload_to_mirror == *current_group)
4685                         continue;
4686                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4687                         /* select map index from next group */
4688                         *map_index += le16_to_cpu(map->data_disks_per_row);
4689                         (*current_group)++;
4690                 } else {
4691                         /* select map index from first group */
4692                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4693                         *current_group = 0;
4694                 }
4695         } while (offload_to_mirror != *current_group);
4696 }
4697
4698 /*
4699  * Attempt to perform offload RAID mapping for a logical volume I/O.
4700  */
4701 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4702         struct CommandList *c)
4703 {
4704         struct scsi_cmnd *cmd = c->scsi_cmd;
4705         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4706         struct raid_map_data *map = &dev->raid_map;
4707         struct raid_map_disk_data *dd = &map->data[0];
4708         int is_write = 0;
4709         u32 map_index;
4710         u64 first_block, last_block;
4711         u32 block_cnt;
4712         u32 blocks_per_row;
4713         u64 first_row, last_row;
4714         u32 first_row_offset, last_row_offset;
4715         u32 first_column, last_column;
4716         u64 r0_first_row, r0_last_row;
4717         u32 r5or6_blocks_per_row;
4718         u64 r5or6_first_row, r5or6_last_row;
4719         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4720         u32 r5or6_first_column, r5or6_last_column;
4721         u32 total_disks_per_row;
4722         u32 stripesize;
4723         u32 first_group, last_group, current_group;
4724         u32 map_row;
4725         u32 disk_handle;
4726         u64 disk_block;
4727         u32 disk_block_cnt;
4728         u8 cdb[16];
4729         u8 cdb_len;
4730         u16 strip_size;
4731 #if BITS_PER_LONG == 32
4732         u64 tmpdiv;
4733 #endif
4734         int offload_to_mirror;
4735
4736         /* check for valid opcode, get LBA and block count */
4737         switch (cmd->cmnd[0]) {
4738         case WRITE_6:
4739                 is_write = 1;
4740         case READ_6:
4741                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4742                 block_cnt = cmd->cmnd[4];
4743                 if (block_cnt == 0)
4744                         block_cnt = 256;
4745                 break;
4746         case WRITE_10:
4747                 is_write = 1;
4748         case READ_10:
4749                 first_block =
4750                         (((u64) cmd->cmnd[2]) << 24) |
4751                         (((u64) cmd->cmnd[3]) << 16) |
4752                         (((u64) cmd->cmnd[4]) << 8) |
4753                         cmd->cmnd[5];
4754                 block_cnt =
4755                         (((u32) cmd->cmnd[7]) << 8) |
4756                         cmd->cmnd[8];
4757                 break;
4758         case WRITE_12:
4759                 is_write = 1;
4760         case READ_12:
4761                 first_block =
4762                         (((u64) cmd->cmnd[2]) << 24) |
4763                         (((u64) cmd->cmnd[3]) << 16) |
4764                         (((u64) cmd->cmnd[4]) << 8) |
4765                         cmd->cmnd[5];
4766                 block_cnt =
4767                         (((u32) cmd->cmnd[6]) << 24) |
4768                         (((u32) cmd->cmnd[7]) << 16) |
4769                         (((u32) cmd->cmnd[8]) << 8) |
4770                 cmd->cmnd[9];
4771                 break;
4772         case WRITE_16:
4773                 is_write = 1;
4774         case READ_16:
4775                 first_block =
4776                         (((u64) cmd->cmnd[2]) << 56) |
4777                         (((u64) cmd->cmnd[3]) << 48) |
4778                         (((u64) cmd->cmnd[4]) << 40) |
4779                         (((u64) cmd->cmnd[5]) << 32) |
4780                         (((u64) cmd->cmnd[6]) << 24) |
4781                         (((u64) cmd->cmnd[7]) << 16) |
4782                         (((u64) cmd->cmnd[8]) << 8) |
4783                         cmd->cmnd[9];
4784                 block_cnt =
4785                         (((u32) cmd->cmnd[10]) << 24) |
4786                         (((u32) cmd->cmnd[11]) << 16) |
4787                         (((u32) cmd->cmnd[12]) << 8) |
4788                         cmd->cmnd[13];
4789                 break;
4790         default:
4791                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4792         }
4793         last_block = first_block + block_cnt - 1;
4794
4795         /* check for write to non-RAID-0 */
4796         if (is_write && dev->raid_level != 0)
4797                 return IO_ACCEL_INELIGIBLE;
4798
4799         /* check for invalid block or wraparound */
4800         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4801                 last_block < first_block)
4802                 return IO_ACCEL_INELIGIBLE;
4803
4804         /* calculate stripe information for the request */
4805         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4806                                 le16_to_cpu(map->strip_size);
4807         strip_size = le16_to_cpu(map->strip_size);
4808 #if BITS_PER_LONG == 32
4809         tmpdiv = first_block;
4810         (void) do_div(tmpdiv, blocks_per_row);
4811         first_row = tmpdiv;
4812         tmpdiv = last_block;
4813         (void) do_div(tmpdiv, blocks_per_row);
4814         last_row = tmpdiv;
4815         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4816         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4817         tmpdiv = first_row_offset;
4818         (void) do_div(tmpdiv, strip_size);
4819         first_column = tmpdiv;
4820         tmpdiv = last_row_offset;
4821         (void) do_div(tmpdiv, strip_size);
4822         last_column = tmpdiv;
4823 #else
4824         first_row = first_block / blocks_per_row;
4825         last_row = last_block / blocks_per_row;
4826         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4827         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4828         first_column = first_row_offset / strip_size;
4829         last_column = last_row_offset / strip_size;
4830 #endif
4831
4832         /* if this isn't a single row/column then give to the controller */
4833         if ((first_row != last_row) || (first_column != last_column))
4834                 return IO_ACCEL_INELIGIBLE;
4835
4836         /* proceeding with driver mapping */
4837         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4838                                 le16_to_cpu(map->metadata_disks_per_row);
4839         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4840                                 le16_to_cpu(map->row_cnt);
4841         map_index = (map_row * total_disks_per_row) + first_column;
4842
4843         switch (dev->raid_level) {
4844         case HPSA_RAID_0:
4845                 break; /* nothing special to do */
4846         case HPSA_RAID_1:
4847                 /* Handles load balance across RAID 1 members.
4848                  * (2-drive R1 and R10 with even # of drives.)
4849                  * Appropriate for SSDs, not optimal for HDDs
4850                  */
4851                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4852                 if (dev->offload_to_mirror)
4853                         map_index += le16_to_cpu(map->data_disks_per_row);
4854                 dev->offload_to_mirror = !dev->offload_to_mirror;
4855                 break;
4856         case HPSA_RAID_ADM:
4857                 /* Handles N-way mirrors  (R1-ADM)
4858                  * and R10 with # of drives divisible by 3.)
4859                  */
4860                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4861
4862                 offload_to_mirror = dev->offload_to_mirror;
4863                 raid_map_helper(map, offload_to_mirror,
4864                                 &map_index, &current_group);
4865                 /* set mirror group to use next time */
4866                 offload_to_mirror =
4867                         (offload_to_mirror >=
4868                         le16_to_cpu(map->layout_map_count) - 1)
4869                         ? 0 : offload_to_mirror + 1;
4870                 dev->offload_to_mirror = offload_to_mirror;
4871                 /* Avoid direct use of dev->offload_to_mirror within this
4872                  * function since multiple threads might simultaneously
4873                  * increment it beyond the range of dev->layout_map_count -1.
4874                  */
4875                 break;
4876         case HPSA_RAID_5:
4877         case HPSA_RAID_6:
4878                 if (le16_to_cpu(map->layout_map_count) <= 1)
4879                         break;
4880
4881                 /* Verify first and last block are in same RAID group */
4882                 r5or6_blocks_per_row =
4883                         le16_to_cpu(map->strip_size) *
4884                         le16_to_cpu(map->data_disks_per_row);
4885                 BUG_ON(r5or6_blocks_per_row == 0);
4886                 stripesize = r5or6_blocks_per_row *
4887                         le16_to_cpu(map->layout_map_count);
4888 #if BITS_PER_LONG == 32
4889                 tmpdiv = first_block;
4890                 first_group = do_div(tmpdiv, stripesize);
4891                 tmpdiv = first_group;
4892                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4893                 first_group = tmpdiv;
4894                 tmpdiv = last_block;
4895                 last_group = do_div(tmpdiv, stripesize);
4896                 tmpdiv = last_group;
4897                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4898                 last_group = tmpdiv;
4899 #else
4900                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4901                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4902 #endif
4903                 if (first_group != last_group)
4904                         return IO_ACCEL_INELIGIBLE;
4905
4906                 /* Verify request is in a single row of RAID 5/6 */
4907 #if BITS_PER_LONG == 32
4908                 tmpdiv = first_block;
4909                 (void) do_div(tmpdiv, stripesize);
4910                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4911                 tmpdiv = last_block;
4912                 (void) do_div(tmpdiv, stripesize);
4913                 r5or6_last_row = r0_last_row = tmpdiv;
4914 #else
4915                 first_row = r5or6_first_row = r0_first_row =
4916                                                 first_block / stripesize;
4917                 r5or6_last_row = r0_last_row = last_block / stripesize;
4918 #endif
4919                 if (r5or6_first_row != r5or6_last_row)
4920                         return IO_ACCEL_INELIGIBLE;
4921
4922
4923                 /* Verify request is in a single column */
4924 #if BITS_PER_LONG == 32
4925                 tmpdiv = first_block;
4926                 first_row_offset = do_div(tmpdiv, stripesize);
4927                 tmpdiv = first_row_offset;
4928                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4929                 r5or6_first_row_offset = first_row_offset;
4930                 tmpdiv = last_block;
4931                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4932                 tmpdiv = r5or6_last_row_offset;
4933                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4934                 tmpdiv = r5or6_first_row_offset;
4935                 (void) do_div(tmpdiv, map->strip_size);
4936                 first_column = r5or6_first_column = tmpdiv;
4937                 tmpdiv = r5or6_last_row_offset;
4938                 (void) do_div(tmpdiv, map->strip_size);
4939                 r5or6_last_column = tmpdiv;
4940 #else
4941                 first_row_offset = r5or6_first_row_offset =
4942                         (u32)((first_block % stripesize) %
4943                                                 r5or6_blocks_per_row);
4944
4945                 r5or6_last_row_offset =
4946                         (u32)((last_block % stripesize) %
4947                                                 r5or6_blocks_per_row);
4948
4949                 first_column = r5or6_first_column =
4950                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4951                 r5or6_last_column =
4952                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4953 #endif
4954                 if (r5or6_first_column != r5or6_last_column)
4955                         return IO_ACCEL_INELIGIBLE;
4956
4957                 /* Request is eligible */
4958                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4959                         le16_to_cpu(map->row_cnt);
4960
4961                 map_index = (first_group *
4962                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4963                         (map_row * total_disks_per_row) + first_column;
4964                 break;
4965         default:
4966                 return IO_ACCEL_INELIGIBLE;
4967         }
4968
4969         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4970                 return IO_ACCEL_INELIGIBLE;
4971
4972         c->phys_disk = dev->phys_disk[map_index];
4973         if (!c->phys_disk)
4974                 return IO_ACCEL_INELIGIBLE;
4975
4976         disk_handle = dd[map_index].ioaccel_handle;
4977         disk_block = le64_to_cpu(map->disk_starting_blk) +
4978                         first_row * le16_to_cpu(map->strip_size) +
4979                         (first_row_offset - first_column *
4980                         le16_to_cpu(map->strip_size));
4981         disk_block_cnt = block_cnt;
4982
4983         /* handle differing logical/physical block sizes */
4984         if (map->phys_blk_shift) {
4985                 disk_block <<= map->phys_blk_shift;
4986                 disk_block_cnt <<= map->phys_blk_shift;
4987         }
4988         BUG_ON(disk_block_cnt > 0xffff);
4989
4990         /* build the new CDB for the physical disk I/O */
4991         if (disk_block > 0xffffffff) {
4992                 cdb[0] = is_write ? WRITE_16 : READ_16;
4993                 cdb[1] = 0;
4994                 cdb[2] = (u8) (disk_block >> 56);
4995                 cdb[3] = (u8) (disk_block >> 48);
4996                 cdb[4] = (u8) (disk_block >> 40);
4997                 cdb[5] = (u8) (disk_block >> 32);
4998                 cdb[6] = (u8) (disk_block >> 24);
4999                 cdb[7] = (u8) (disk_block >> 16);
5000                 cdb[8] = (u8) (disk_block >> 8);
5001                 cdb[9] = (u8) (disk_block);
5002                 cdb[10] = (u8) (disk_block_cnt >> 24);
5003                 cdb[11] = (u8) (disk_block_cnt >> 16);
5004                 cdb[12] = (u8) (disk_block_cnt >> 8);
5005                 cdb[13] = (u8) (disk_block_cnt);
5006                 cdb[14] = 0;
5007                 cdb[15] = 0;
5008                 cdb_len = 16;
5009         } else {
5010                 cdb[0] = is_write ? WRITE_10 : READ_10;
5011                 cdb[1] = 0;
5012                 cdb[2] = (u8) (disk_block >> 24);
5013                 cdb[3] = (u8) (disk_block >> 16);
5014                 cdb[4] = (u8) (disk_block >> 8);
5015                 cdb[5] = (u8) (disk_block);
5016                 cdb[6] = 0;
5017                 cdb[7] = (u8) (disk_block_cnt >> 8);
5018                 cdb[8] = (u8) (disk_block_cnt);
5019                 cdb[9] = 0;
5020                 cdb_len = 10;
5021         }
5022         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5023                                                 dev->scsi3addr,
5024                                                 dev->phys_disk[map_index]);
5025 }
5026
5027 /*
5028  * Submit commands down the "normal" RAID stack path
5029  * All callers to hpsa_ciss_submit must check lockup_detected
5030  * beforehand, before (opt.) and after calling cmd_alloc
5031  */
5032 static int hpsa_ciss_submit(struct ctlr_info *h,
5033         struct CommandList *c, struct scsi_cmnd *cmd,
5034         unsigned char scsi3addr[])
5035 {
5036         cmd->host_scribble = (unsigned char *) c;
5037         c->cmd_type = CMD_SCSI;
5038         c->scsi_cmd = cmd;
5039         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5040         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5041         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5042
5043         /* Fill in the request block... */
5044
5045         c->Request.Timeout = 0;
5046         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5047         c->Request.CDBLen = cmd->cmd_len;
5048         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5049         switch (cmd->sc_data_direction) {
5050         case DMA_TO_DEVICE:
5051                 c->Request.type_attr_dir =
5052                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5053                 break;
5054         case DMA_FROM_DEVICE:
5055                 c->Request.type_attr_dir =
5056                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5057                 break;
5058         case DMA_NONE:
5059                 c->Request.type_attr_dir =
5060                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5061                 break;
5062         case DMA_BIDIRECTIONAL:
5063                 /* This can happen if a buggy application does a scsi passthru
5064                  * and sets both inlen and outlen to non-zero. ( see
5065                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5066                  */
5067
5068                 c->Request.type_attr_dir =
5069                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5070                 /* This is technically wrong, and hpsa controllers should
5071                  * reject it with CMD_INVALID, which is the most correct
5072                  * response, but non-fibre backends appear to let it
5073                  * slide by, and give the same results as if this field
5074                  * were set correctly.  Either way is acceptable for
5075                  * our purposes here.
5076                  */
5077
5078                 break;
5079
5080         default:
5081                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5082                         cmd->sc_data_direction);
5083                 BUG();
5084                 break;
5085         }
5086
5087         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5088                 hpsa_cmd_resolve_and_free(h, c);
5089                 return SCSI_MLQUEUE_HOST_BUSY;
5090         }
5091         enqueue_cmd_and_start_io(h, c);
5092         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5093         return 0;
5094 }
5095
5096 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5097                                 struct CommandList *c)
5098 {
5099         dma_addr_t cmd_dma_handle, err_dma_handle;
5100
5101         /* Zero out all of commandlist except the last field, refcount */
5102         memset(c, 0, offsetof(struct CommandList, refcount));
5103         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5104         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5105         c->err_info = h->errinfo_pool + index;
5106         memset(c->err_info, 0, sizeof(*c->err_info));
5107         err_dma_handle = h->errinfo_pool_dhandle
5108             + index * sizeof(*c->err_info);
5109         c->cmdindex = index;
5110         c->busaddr = (u32) cmd_dma_handle;
5111         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5112         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5113         c->h = h;
5114         c->scsi_cmd = SCSI_CMD_IDLE;
5115 }
5116
5117 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5118 {
5119         int i;
5120
5121         for (i = 0; i < h->nr_cmds; i++) {
5122                 struct CommandList *c = h->cmd_pool + i;
5123
5124                 hpsa_cmd_init(h, i, c);
5125                 atomic_set(&c->refcount, 0);
5126         }
5127 }
5128
5129 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5130                                 struct CommandList *c)
5131 {
5132         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5133
5134         BUG_ON(c->cmdindex != index);
5135
5136         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5137         memset(c->err_info, 0, sizeof(*c->err_info));
5138         c->busaddr = (u32) cmd_dma_handle;
5139 }
5140
5141 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5142                 struct CommandList *c, struct scsi_cmnd *cmd,
5143                 unsigned char *scsi3addr)
5144 {
5145         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5146         int rc = IO_ACCEL_INELIGIBLE;
5147
5148         cmd->host_scribble = (unsigned char *) c;
5149
5150         if (dev->offload_enabled) {
5151                 hpsa_cmd_init(h, c->cmdindex, c);
5152                 c->cmd_type = CMD_SCSI;
5153                 c->scsi_cmd = cmd;
5154                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5155                 if (rc < 0)     /* scsi_dma_map failed. */
5156                         rc = SCSI_MLQUEUE_HOST_BUSY;
5157         } else if (dev->hba_ioaccel_enabled) {
5158                 hpsa_cmd_init(h, c->cmdindex, c);
5159                 c->cmd_type = CMD_SCSI;
5160                 c->scsi_cmd = cmd;
5161                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5162                 if (rc < 0)     /* scsi_dma_map failed. */
5163                         rc = SCSI_MLQUEUE_HOST_BUSY;
5164         }
5165         return rc;
5166 }
5167
5168 static void hpsa_command_resubmit_worker(struct work_struct *work)
5169 {
5170         struct scsi_cmnd *cmd;
5171         struct hpsa_scsi_dev_t *dev;
5172         struct CommandList *c = container_of(work, struct CommandList, work);
5173
5174         cmd = c->scsi_cmd;
5175         dev = cmd->device->hostdata;
5176         if (!dev) {
5177                 cmd->result = DID_NO_CONNECT << 16;
5178                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5179         }
5180         if (c->reset_pending)
5181                 return hpsa_cmd_resolve_and_free(c->h, c);
5182         if (c->abort_pending)
5183                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5184         if (c->cmd_type == CMD_IOACCEL2) {
5185                 struct ctlr_info *h = c->h;
5186                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5187                 int rc;
5188
5189                 if (c2->error_data.serv_response ==
5190                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5191                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5192                         if (rc == 0)
5193                                 return;
5194                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5195                                 /*
5196                                  * If we get here, it means dma mapping failed.
5197                                  * Try again via scsi mid layer, which will
5198                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5199                                  */
5200                                 cmd->result = DID_IMM_RETRY << 16;
5201                                 return hpsa_cmd_free_and_done(h, c, cmd);
5202                         }
5203                         /* else, fall thru and resubmit down CISS path */
5204                 }
5205         }
5206         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5207         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5208                 /*
5209                  * If we get here, it means dma mapping failed. Try
5210                  * again via scsi mid layer, which will then get
5211                  * SCSI_MLQUEUE_HOST_BUSY.
5212                  *
5213                  * hpsa_ciss_submit will have already freed c
5214                  * if it encountered a dma mapping failure.
5215                  */
5216                 cmd->result = DID_IMM_RETRY << 16;
5217                 cmd->scsi_done(cmd);
5218         }
5219 }
5220
5221 /* Running in struct Scsi_Host->host_lock less mode */
5222 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5223 {
5224         struct ctlr_info *h;
5225         struct hpsa_scsi_dev_t *dev;
5226         unsigned char scsi3addr[8];
5227         struct CommandList *c;
5228         int rc = 0;
5229
5230         /* Get the ptr to our adapter structure out of cmd->host. */
5231         h = sdev_to_hba(cmd->device);
5232
5233         BUG_ON(cmd->request->tag < 0);
5234
5235         dev = cmd->device->hostdata;
5236         if (!dev) {
5237                 cmd->result = DID_NO_CONNECT << 16;
5238                 cmd->scsi_done(cmd);
5239                 return 0;
5240         }
5241
5242         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5243
5244         if (unlikely(lockup_detected(h))) {
5245                 cmd->result = DID_NO_CONNECT << 16;
5246                 cmd->scsi_done(cmd);
5247                 return 0;
5248         }
5249         c = cmd_tagged_alloc(h, cmd);
5250
5251         /*
5252          * Call alternate submit routine for I/O accelerated commands.
5253          * Retries always go down the normal I/O path.
5254          */
5255         if (likely(cmd->retries == 0 &&
5256                 cmd->request->cmd_type == REQ_TYPE_FS &&
5257                 h->acciopath_status)) {
5258                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5259                 if (rc == 0)
5260                         return 0;
5261                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5262                         hpsa_cmd_resolve_and_free(h, c);
5263                         return SCSI_MLQUEUE_HOST_BUSY;
5264                 }
5265         }
5266         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5267 }
5268
5269 static void hpsa_scan_complete(struct ctlr_info *h)
5270 {
5271         unsigned long flags;
5272
5273         spin_lock_irqsave(&h->scan_lock, flags);
5274         h->scan_finished = 1;
5275         wake_up_all(&h->scan_wait_queue);
5276         spin_unlock_irqrestore(&h->scan_lock, flags);
5277 }
5278
5279 static void hpsa_scan_start(struct Scsi_Host *sh)
5280 {
5281         struct ctlr_info *h = shost_to_hba(sh);
5282         unsigned long flags;
5283
5284         /*
5285          * Don't let rescans be initiated on a controller known to be locked
5286          * up.  If the controller locks up *during* a rescan, that thread is
5287          * probably hosed, but at least we can prevent new rescan threads from
5288          * piling up on a locked up controller.
5289          */
5290         if (unlikely(lockup_detected(h)))
5291                 return hpsa_scan_complete(h);
5292
5293         /* wait until any scan already in progress is finished. */
5294         while (1) {
5295                 spin_lock_irqsave(&h->scan_lock, flags);
5296                 if (h->scan_finished)
5297                         break;
5298                 spin_unlock_irqrestore(&h->scan_lock, flags);
5299                 wait_event(h->scan_wait_queue, h->scan_finished);
5300                 /* Note: We don't need to worry about a race between this
5301                  * thread and driver unload because the midlayer will
5302                  * have incremented the reference count, so unload won't
5303                  * happen if we're in here.
5304                  */
5305         }
5306         h->scan_finished = 0; /* mark scan as in progress */
5307         spin_unlock_irqrestore(&h->scan_lock, flags);
5308
5309         if (unlikely(lockup_detected(h)))
5310                 return hpsa_scan_complete(h);
5311
5312         hpsa_update_scsi_devices(h);
5313
5314         hpsa_scan_complete(h);
5315 }
5316
5317 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5318 {
5319         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5320
5321         if (!logical_drive)
5322                 return -ENODEV;
5323
5324         if (qdepth < 1)
5325                 qdepth = 1;
5326         else if (qdepth > logical_drive->queue_depth)
5327                 qdepth = logical_drive->queue_depth;
5328
5329         return scsi_change_queue_depth(sdev, qdepth);
5330 }
5331
5332 static int hpsa_scan_finished(struct Scsi_Host *sh,
5333         unsigned long elapsed_time)
5334 {
5335         struct ctlr_info *h = shost_to_hba(sh);
5336         unsigned long flags;
5337         int finished;
5338
5339         spin_lock_irqsave(&h->scan_lock, flags);
5340         finished = h->scan_finished;
5341         spin_unlock_irqrestore(&h->scan_lock, flags);
5342         return finished;
5343 }
5344
5345 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5346 {
5347         struct Scsi_Host *sh;
5348
5349         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5350         if (sh == NULL) {
5351                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5352                 return -ENOMEM;
5353         }
5354
5355         sh->io_port = 0;
5356         sh->n_io_port = 0;
5357         sh->this_id = -1;
5358         sh->max_channel = 3;
5359         sh->max_cmd_len = MAX_COMMAND_SIZE;
5360         sh->max_lun = HPSA_MAX_LUN;
5361         sh->max_id = HPSA_MAX_LUN;
5362         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5363         sh->cmd_per_lun = sh->can_queue;
5364         sh->sg_tablesize = h->maxsgentries;
5365         sh->transportt = hpsa_sas_transport_template;
5366         sh->hostdata[0] = (unsigned long) h;
5367         sh->irq = h->intr[h->intr_mode];
5368         sh->unique_id = sh->irq;
5369
5370         h->scsi_host = sh;
5371         return 0;
5372 }
5373
5374 static int hpsa_scsi_add_host(struct ctlr_info *h)
5375 {
5376         int rv;
5377
5378         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5379         if (rv) {
5380                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5381                 return rv;
5382         }
5383         scsi_scan_host(h->scsi_host);
5384         return 0;
5385 }
5386
5387 /*
5388  * The block layer has already gone to the trouble of picking out a unique,
5389  * small-integer tag for this request.  We use an offset from that value as
5390  * an index to select our command block.  (The offset allows us to reserve the
5391  * low-numbered entries for our own uses.)
5392  */
5393 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5394 {
5395         int idx = scmd->request->tag;
5396
5397         if (idx < 0)
5398                 return idx;
5399
5400         /* Offset to leave space for internal cmds. */
5401         return idx += HPSA_NRESERVED_CMDS;
5402 }
5403
5404 /*
5405  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5406  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5407  */
5408 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5409                                 struct CommandList *c, unsigned char lunaddr[],
5410                                 int reply_queue)
5411 {
5412         int rc;
5413
5414         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5415         (void) fill_cmd(c, TEST_UNIT_READY, h,
5416                         NULL, 0, 0, lunaddr, TYPE_CMD);
5417         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5418         if (rc)
5419                 return rc;
5420         /* no unmap needed here because no data xfer. */
5421
5422         /* Check if the unit is already ready. */
5423         if (c->err_info->CommandStatus == CMD_SUCCESS)
5424                 return 0;
5425
5426         /*
5427          * The first command sent after reset will receive "unit attention" to
5428          * indicate that the LUN has been reset...this is actually what we're
5429          * looking for (but, success is good too).
5430          */
5431         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5432                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5433                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5434                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5435                 return 0;
5436
5437         return 1;
5438 }
5439
5440 /*
5441  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5442  * returns zero when the unit is ready, and non-zero when giving up.
5443  */
5444 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5445                                 struct CommandList *c,
5446                                 unsigned char lunaddr[], int reply_queue)
5447 {
5448         int rc;
5449         int count = 0;
5450         int waittime = 1; /* seconds */
5451
5452         /* Send test unit ready until device ready, or give up. */
5453         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5454
5455                 /*
5456                  * Wait for a bit.  do this first, because if we send
5457                  * the TUR right away, the reset will just abort it.
5458                  */
5459                 msleep(1000 * waittime);
5460
5461                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5462                 if (!rc)
5463                         break;
5464
5465                 /* Increase wait time with each try, up to a point. */
5466                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5467                         waittime *= 2;
5468
5469                 dev_warn(&h->pdev->dev,
5470                          "waiting %d secs for device to become ready.\n",
5471                          waittime);
5472         }
5473
5474         return rc;
5475 }
5476
5477 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5478                                            unsigned char lunaddr[],
5479                                            int reply_queue)
5480 {
5481         int first_queue;
5482         int last_queue;
5483         int rq;
5484         int rc = 0;
5485         struct CommandList *c;
5486
5487         c = cmd_alloc(h);
5488
5489         /*
5490          * If no specific reply queue was requested, then send the TUR
5491          * repeatedly, requesting a reply on each reply queue; otherwise execute
5492          * the loop exactly once using only the specified queue.
5493          */
5494         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5495                 first_queue = 0;
5496                 last_queue = h->nreply_queues - 1;
5497         } else {
5498                 first_queue = reply_queue;
5499                 last_queue = reply_queue;
5500         }
5501
5502         for (rq = first_queue; rq <= last_queue; rq++) {
5503                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5504                 if (rc)
5505                         break;
5506         }
5507
5508         if (rc)
5509                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5510         else
5511                 dev_warn(&h->pdev->dev, "device is ready.\n");
5512
5513         cmd_free(h, c);
5514         return rc;
5515 }
5516
5517 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5518  * complaining.  Doing a host- or bus-reset can't do anything good here.
5519  */
5520 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5521 {
5522         int rc;
5523         struct ctlr_info *h;
5524         struct hpsa_scsi_dev_t *dev;
5525         u8 reset_type;
5526         char msg[48];
5527
5528         /* find the controller to which the command to be aborted was sent */
5529         h = sdev_to_hba(scsicmd->device);
5530         if (h == NULL) /* paranoia */
5531                 return FAILED;
5532
5533         if (lockup_detected(h))
5534                 return FAILED;
5535
5536         dev = scsicmd->device->hostdata;
5537         if (!dev) {
5538                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5539                 return FAILED;
5540         }
5541
5542         /* if controller locked up, we can guarantee command won't complete */
5543         if (lockup_detected(h)) {
5544                 snprintf(msg, sizeof(msg),
5545                          "cmd %d RESET FAILED, lockup detected",
5546                          hpsa_get_cmd_index(scsicmd));
5547                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5548                 return FAILED;
5549         }
5550
5551         /* this reset request might be the result of a lockup; check */
5552         if (detect_controller_lockup(h)) {
5553                 snprintf(msg, sizeof(msg),
5554                          "cmd %d RESET FAILED, new lockup detected",
5555                          hpsa_get_cmd_index(scsicmd));
5556                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5557                 return FAILED;
5558         }
5559
5560         /* Do not attempt on controller */
5561         if (is_hba_lunid(dev->scsi3addr))
5562                 return SUCCESS;
5563
5564         if (is_logical_dev_addr_mode(dev->scsi3addr))
5565                 reset_type = HPSA_DEVICE_RESET_MSG;
5566         else
5567                 reset_type = HPSA_PHYS_TARGET_RESET;
5568
5569         sprintf(msg, "resetting %s",
5570                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5571         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5572
5573         h->reset_in_progress = 1;
5574
5575         /* send a reset to the SCSI LUN which the command was sent to */
5576         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5577                            DEFAULT_REPLY_QUEUE);
5578         sprintf(msg, "reset %s %s",
5579                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5580                 rc == 0 ? "completed successfully" : "failed");
5581         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5582         h->reset_in_progress = 0;
5583         return rc == 0 ? SUCCESS : FAILED;
5584 }
5585
5586 static void swizzle_abort_tag(u8 *tag)
5587 {
5588         u8 original_tag[8];
5589
5590         memcpy(original_tag, tag, 8);
5591         tag[0] = original_tag[3];
5592         tag[1] = original_tag[2];
5593         tag[2] = original_tag[1];
5594         tag[3] = original_tag[0];
5595         tag[4] = original_tag[7];
5596         tag[5] = original_tag[6];
5597         tag[6] = original_tag[5];
5598         tag[7] = original_tag[4];
5599 }
5600
5601 static void hpsa_get_tag(struct ctlr_info *h,
5602         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5603 {
5604         u64 tag;
5605         if (c->cmd_type == CMD_IOACCEL1) {
5606                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5607                         &h->ioaccel_cmd_pool[c->cmdindex];
5608                 tag = le64_to_cpu(cm1->tag);
5609                 *tagupper = cpu_to_le32(tag >> 32);
5610                 *taglower = cpu_to_le32(tag);
5611                 return;
5612         }
5613         if (c->cmd_type == CMD_IOACCEL2) {
5614                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5615                         &h->ioaccel2_cmd_pool[c->cmdindex];
5616                 /* upper tag not used in ioaccel2 mode */
5617                 memset(tagupper, 0, sizeof(*tagupper));
5618                 *taglower = cm2->Tag;
5619                 return;
5620         }
5621         tag = le64_to_cpu(c->Header.tag);
5622         *tagupper = cpu_to_le32(tag >> 32);
5623         *taglower = cpu_to_le32(tag);
5624 }
5625
5626 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5627         struct CommandList *abort, int reply_queue)
5628 {
5629         int rc = IO_OK;
5630         struct CommandList *c;
5631         struct ErrorInfo *ei;
5632         __le32 tagupper, taglower;
5633
5634         c = cmd_alloc(h);
5635
5636         /* fill_cmd can't fail here, no buffer to map */
5637         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5638                 0, 0, scsi3addr, TYPE_MSG);
5639         if (h->needs_abort_tags_swizzled)
5640                 swizzle_abort_tag(&c->Request.CDB[4]);
5641         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5642         hpsa_get_tag(h, abort, &taglower, &tagupper);
5643         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5644                 __func__, tagupper, taglower);
5645         /* no unmap needed here because no data xfer. */
5646
5647         ei = c->err_info;
5648         switch (ei->CommandStatus) {
5649         case CMD_SUCCESS:
5650                 break;
5651         case CMD_TMF_STATUS:
5652                 rc = hpsa_evaluate_tmf_status(h, c);
5653                 break;
5654         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5655                 rc = -1;
5656                 break;
5657         default:
5658                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5659                         __func__, tagupper, taglower);
5660                 hpsa_scsi_interpret_error(h, c);
5661                 rc = -1;
5662                 break;
5663         }
5664         cmd_free(h, c);
5665         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5666                 __func__, tagupper, taglower);
5667         return rc;
5668 }
5669
5670 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5671         struct CommandList *command_to_abort, int reply_queue)
5672 {
5673         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5674         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5675         struct io_accel2_cmd *c2a =
5676                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5677         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5678         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5679
5680         /*
5681          * We're overlaying struct hpsa_tmf_struct on top of something which
5682          * was allocated as a struct io_accel2_cmd, so we better be sure it
5683          * actually fits, and doesn't overrun the error info space.
5684          */
5685         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5686                         sizeof(struct io_accel2_cmd));
5687         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5688                         offsetof(struct hpsa_tmf_struct, error_len) +
5689                                 sizeof(ac->error_len));
5690
5691         c->cmd_type = IOACCEL2_TMF;
5692         c->scsi_cmd = SCSI_CMD_BUSY;
5693
5694         /* Adjust the DMA address to point to the accelerated command buffer */
5695         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5696                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5697         BUG_ON(c->busaddr & 0x0000007F);
5698
5699         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5700         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5701         ac->reply_queue = reply_queue;
5702         ac->tmf = IOACCEL2_TMF_ABORT;
5703         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5704         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5705         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5706         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5707         ac->error_ptr = cpu_to_le64(c->busaddr +
5708                         offsetof(struct io_accel2_cmd, error_data));
5709         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5710 }
5711
5712 /* ioaccel2 path firmware cannot handle abort task requests.
5713  * Change abort requests to physical target reset, and send to the
5714  * address of the physical disk used for the ioaccel 2 command.
5715  * Return 0 on success (IO_OK)
5716  *       -1 on failure
5717  */
5718
5719 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5720         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5721 {
5722         int rc = IO_OK;
5723         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5724         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5725         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5726         unsigned char *psa = &phys_scsi3addr[0];
5727
5728         /* Get a pointer to the hpsa logical device. */
5729         scmd = abort->scsi_cmd;
5730         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5731         if (dev == NULL) {
5732                 dev_warn(&h->pdev->dev,
5733                         "Cannot abort: no device pointer for command.\n");
5734                         return -1; /* not abortable */
5735         }
5736
5737         if (h->raid_offload_debug > 0)
5738                 dev_info(&h->pdev->dev,
5739                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5740                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5741                         "Reset as abort",
5742                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5743                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5744
5745         if (!dev->offload_enabled) {
5746                 dev_warn(&h->pdev->dev,
5747                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5748                 return -1; /* not abortable */
5749         }
5750
5751         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5752         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5753                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5754                 return -1; /* not abortable */
5755         }
5756
5757         /* send the reset */
5758         if (h->raid_offload_debug > 0)
5759                 dev_info(&h->pdev->dev,
5760                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5761                         psa[0], psa[1], psa[2], psa[3],
5762                         psa[4], psa[5], psa[6], psa[7]);
5763         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5764         if (rc != 0) {
5765                 dev_warn(&h->pdev->dev,
5766                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5767                         psa[0], psa[1], psa[2], psa[3],
5768                         psa[4], psa[5], psa[6], psa[7]);
5769                 return rc; /* failed to reset */
5770         }
5771
5772         /* wait for device to recover */
5773         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5774                 dev_warn(&h->pdev->dev,
5775                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5776                         psa[0], psa[1], psa[2], psa[3],
5777                         psa[4], psa[5], psa[6], psa[7]);
5778                 return -1;  /* failed to recover */
5779         }
5780
5781         /* device recovered */
5782         dev_info(&h->pdev->dev,
5783                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5784                 psa[0], psa[1], psa[2], psa[3],
5785                 psa[4], psa[5], psa[6], psa[7]);
5786
5787         return rc; /* success */
5788 }
5789
5790 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5791         struct CommandList *abort, int reply_queue)
5792 {
5793         int rc = IO_OK;
5794         struct CommandList *c;
5795         __le32 taglower, tagupper;
5796         struct hpsa_scsi_dev_t *dev;
5797         struct io_accel2_cmd *c2;
5798
5799         dev = abort->scsi_cmd->device->hostdata;
5800         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5801                 return -1;
5802
5803         c = cmd_alloc(h);
5804         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5805         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5806         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5807         hpsa_get_tag(h, abort, &taglower, &tagupper);
5808         dev_dbg(&h->pdev->dev,
5809                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5810                 __func__, tagupper, taglower);
5811         /* no unmap needed here because no data xfer. */
5812
5813         dev_dbg(&h->pdev->dev,
5814                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5815                 __func__, tagupper, taglower, c2->error_data.serv_response);
5816         switch (c2->error_data.serv_response) {
5817         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5818         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5819                 rc = 0;
5820                 break;
5821         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5822         case IOACCEL2_SERV_RESPONSE_FAILURE:
5823         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5824                 rc = -1;
5825                 break;
5826         default:
5827                 dev_warn(&h->pdev->dev,
5828                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5829                         __func__, tagupper, taglower,
5830                         c2->error_data.serv_response);
5831                 rc = -1;
5832         }
5833         cmd_free(h, c);
5834         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5835                 tagupper, taglower);
5836         return rc;
5837 }
5838
5839 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5840         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
5841 {
5842         /*
5843          * ioccelerator mode 2 commands should be aborted via the
5844          * accelerated path, since RAID path is unaware of these commands,
5845          * but not all underlying firmware can handle abort TMF.
5846          * Change abort to physical device reset when abort TMF is unsupported.
5847          */
5848         if (abort->cmd_type == CMD_IOACCEL2) {
5849                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
5850                         dev->physical_device)
5851                         return hpsa_send_abort_ioaccel2(h, abort,
5852                                                 reply_queue);
5853                 else
5854                         return hpsa_send_reset_as_abort_ioaccel2(h,
5855                                                         dev->scsi3addr,
5856                                                         abort, reply_queue);
5857         }
5858         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
5859 }
5860
5861 /* Find out which reply queue a command was meant to return on */
5862 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5863                                         struct CommandList *c)
5864 {
5865         if (c->cmd_type == CMD_IOACCEL2)
5866                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5867         return c->Header.ReplyQueue;
5868 }
5869
5870 /*
5871  * Limit concurrency of abort commands to prevent
5872  * over-subscription of commands
5873  */
5874 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5875 {
5876 #define ABORT_CMD_WAIT_MSECS 5000
5877         return !wait_event_timeout(h->abort_cmd_wait_queue,
5878                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5879                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5880 }
5881
5882 /* Send an abort for the specified command.
5883  *      If the device and controller support it,
5884  *              send a task abort request.
5885  */
5886 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5887 {
5888
5889         int rc;
5890         struct ctlr_info *h;
5891         struct hpsa_scsi_dev_t *dev;
5892         struct CommandList *abort; /* pointer to command to be aborted */
5893         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5894         char msg[256];          /* For debug messaging. */
5895         int ml = 0;
5896         __le32 tagupper, taglower;
5897         int refcount, reply_queue;
5898
5899         if (sc == NULL)
5900                 return FAILED;
5901
5902         if (sc->device == NULL)
5903                 return FAILED;
5904
5905         /* Find the controller of the command to be aborted */
5906         h = sdev_to_hba(sc->device);
5907         if (h == NULL)
5908                 return FAILED;
5909
5910         /* Find the device of the command to be aborted */
5911         dev = sc->device->hostdata;
5912         if (!dev) {
5913                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5914                                 msg);
5915                 return FAILED;
5916         }
5917
5918         /* If controller locked up, we can guarantee command won't complete */
5919         if (lockup_detected(h)) {
5920                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5921                                         "ABORT FAILED, lockup detected");
5922                 return FAILED;
5923         }
5924
5925         /* This is a good time to check if controller lockup has occurred */
5926         if (detect_controller_lockup(h)) {
5927                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5928                                         "ABORT FAILED, new lockup detected");
5929                 return FAILED;
5930         }
5931
5932         /* Check that controller supports some kind of task abort */
5933         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5934                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5935                 return FAILED;
5936
5937         memset(msg, 0, sizeof(msg));
5938         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5939                 h->scsi_host->host_no, sc->device->channel,
5940                 sc->device->id, sc->device->lun,
5941                 "Aborting command", sc);
5942
5943         /* Get SCSI command to be aborted */
5944         abort = (struct CommandList *) sc->host_scribble;
5945         if (abort == NULL) {
5946                 /* This can happen if the command already completed. */
5947                 return SUCCESS;
5948         }
5949         refcount = atomic_inc_return(&abort->refcount);
5950         if (refcount == 1) { /* Command is done already. */
5951                 cmd_free(h, abort);
5952                 return SUCCESS;
5953         }
5954
5955         /* Don't bother trying the abort if we know it won't work. */
5956         if (abort->cmd_type != CMD_IOACCEL2 &&
5957                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5958                 cmd_free(h, abort);
5959                 return FAILED;
5960         }
5961
5962         /*
5963          * Check that we're aborting the right command.
5964          * It's possible the CommandList already completed and got re-used.
5965          */
5966         if (abort->scsi_cmd != sc) {
5967                 cmd_free(h, abort);
5968                 return SUCCESS;
5969         }
5970
5971         abort->abort_pending = true;
5972         hpsa_get_tag(h, abort, &taglower, &tagupper);
5973         reply_queue = hpsa_extract_reply_queue(h, abort);
5974         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5975         as  = abort->scsi_cmd;
5976         if (as != NULL)
5977                 ml += sprintf(msg+ml,
5978                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5979                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5980                         as->serial_number);
5981         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5982         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5983
5984         /*
5985          * Command is in flight, or possibly already completed
5986          * by the firmware (but not to the scsi mid layer) but we can't
5987          * distinguish which.  Send the abort down.
5988          */
5989         if (wait_for_available_abort_cmd(h)) {
5990                 dev_warn(&h->pdev->dev,
5991                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5992                         msg);
5993                 cmd_free(h, abort);
5994                 return FAILED;
5995         }
5996         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
5997         atomic_inc(&h->abort_cmds_available);
5998         wake_up_all(&h->abort_cmd_wait_queue);
5999         if (rc != 0) {
6000                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6001                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6002                                 "FAILED to abort command");
6003                 cmd_free(h, abort);
6004                 return FAILED;
6005         }
6006         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6007         wait_event(h->event_sync_wait_queue,
6008                    abort->scsi_cmd != sc || lockup_detected(h));
6009         cmd_free(h, abort);
6010         return !lockup_detected(h) ? SUCCESS : FAILED;
6011 }
6012
6013 /*
6014  * For operations with an associated SCSI command, a command block is allocated
6015  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6016  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6017  * the complement, although cmd_free() may be called instead.
6018  */
6019 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6020                                             struct scsi_cmnd *scmd)
6021 {
6022         int idx = hpsa_get_cmd_index(scmd);
6023         struct CommandList *c = h->cmd_pool + idx;
6024
6025         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6026                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6027                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6028                 /* The index value comes from the block layer, so if it's out of
6029                  * bounds, it's probably not our bug.
6030                  */
6031                 BUG();
6032         }
6033
6034         atomic_inc(&c->refcount);
6035         if (unlikely(!hpsa_is_cmd_idle(c))) {
6036                 /*
6037                  * We expect that the SCSI layer will hand us a unique tag
6038                  * value.  Thus, there should never be a collision here between
6039                  * two requests...because if the selected command isn't idle
6040                  * then someone is going to be very disappointed.
6041                  */
6042                 dev_err(&h->pdev->dev,
6043                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6044                         idx);
6045                 if (c->scsi_cmd != NULL)
6046                         scsi_print_command(c->scsi_cmd);
6047                 scsi_print_command(scmd);
6048         }
6049
6050         hpsa_cmd_partial_init(h, idx, c);
6051         return c;
6052 }
6053
6054 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6055 {
6056         /*
6057          * Release our reference to the block.  We don't need to do anything
6058          * else to free it, because it is accessed by index.  (There's no point
6059          * in checking the result of the decrement, since we cannot guarantee
6060          * that there isn't a concurrent abort which is also accessing it.)
6061          */
6062         (void)atomic_dec(&c->refcount);
6063 }
6064
6065 /*
6066  * For operations that cannot sleep, a command block is allocated at init,
6067  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6068  * which ones are free or in use.  Lock must be held when calling this.
6069  * cmd_free() is the complement.
6070  * This function never gives up and returns NULL.  If it hangs,
6071  * another thread must call cmd_free() to free some tags.
6072  */
6073
6074 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6075 {
6076         struct CommandList *c;
6077         int refcount, i;
6078         int offset = 0;
6079
6080         /*
6081          * There is some *extremely* small but non-zero chance that that
6082          * multiple threads could get in here, and one thread could
6083          * be scanning through the list of bits looking for a free
6084          * one, but the free ones are always behind him, and other
6085          * threads sneak in behind him and eat them before he can
6086          * get to them, so that while there is always a free one, a
6087          * very unlucky thread might be starved anyway, never able to
6088          * beat the other threads.  In reality, this happens so
6089          * infrequently as to be indistinguishable from never.
6090          *
6091          * Note that we start allocating commands before the SCSI host structure
6092          * is initialized.  Since the search starts at bit zero, this
6093          * all works, since we have at least one command structure available;
6094          * however, it means that the structures with the low indexes have to be
6095          * reserved for driver-initiated requests, while requests from the block
6096          * layer will use the higher indexes.
6097          */
6098
6099         for (;;) {
6100                 i = find_next_zero_bit(h->cmd_pool_bits,
6101                                         HPSA_NRESERVED_CMDS,
6102                                         offset);
6103                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6104                         offset = 0;
6105                         continue;
6106                 }
6107                 c = h->cmd_pool + i;
6108                 refcount = atomic_inc_return(&c->refcount);
6109                 if (unlikely(refcount > 1)) {
6110                         cmd_free(h, c); /* already in use */
6111                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6112                         continue;
6113                 }
6114                 set_bit(i & (BITS_PER_LONG - 1),
6115                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6116                 break; /* it's ours now. */
6117         }
6118         hpsa_cmd_partial_init(h, i, c);
6119         return c;
6120 }
6121
6122 /*
6123  * This is the complementary operation to cmd_alloc().  Note, however, in some
6124  * corner cases it may also be used to free blocks allocated by
6125  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6126  * the clear-bit is harmless.
6127  */
6128 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6129 {
6130         if (atomic_dec_and_test(&c->refcount)) {
6131                 int i;
6132
6133                 i = c - h->cmd_pool;
6134                 clear_bit(i & (BITS_PER_LONG - 1),
6135                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6136         }
6137 }
6138
6139 #ifdef CONFIG_COMPAT
6140
6141 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6142         void __user *arg)
6143 {
6144         IOCTL32_Command_struct __user *arg32 =
6145             (IOCTL32_Command_struct __user *) arg;
6146         IOCTL_Command_struct arg64;
6147         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6148         int err;
6149         u32 cp;
6150
6151         memset(&arg64, 0, sizeof(arg64));
6152         err = 0;
6153         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6154                            sizeof(arg64.LUN_info));
6155         err |= copy_from_user(&arg64.Request, &arg32->Request,
6156                            sizeof(arg64.Request));
6157         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6158                            sizeof(arg64.error_info));
6159         err |= get_user(arg64.buf_size, &arg32->buf_size);
6160         err |= get_user(cp, &arg32->buf);
6161         arg64.buf = compat_ptr(cp);
6162         err |= copy_to_user(p, &arg64, sizeof(arg64));
6163
6164         if (err)
6165                 return -EFAULT;
6166
6167         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6168         if (err)
6169                 return err;
6170         err |= copy_in_user(&arg32->error_info, &p->error_info,
6171                          sizeof(arg32->error_info));
6172         if (err)
6173                 return -EFAULT;
6174         return err;
6175 }
6176
6177 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6178         int cmd, void __user *arg)
6179 {
6180         BIG_IOCTL32_Command_struct __user *arg32 =
6181             (BIG_IOCTL32_Command_struct __user *) arg;
6182         BIG_IOCTL_Command_struct arg64;
6183         BIG_IOCTL_Command_struct __user *p =
6184             compat_alloc_user_space(sizeof(arg64));
6185         int err;
6186         u32 cp;
6187
6188         memset(&arg64, 0, sizeof(arg64));
6189         err = 0;
6190         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6191                            sizeof(arg64.LUN_info));
6192         err |= copy_from_user(&arg64.Request, &arg32->Request,
6193                            sizeof(arg64.Request));
6194         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6195                            sizeof(arg64.error_info));
6196         err |= get_user(arg64.buf_size, &arg32->buf_size);
6197         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6198         err |= get_user(cp, &arg32->buf);
6199         arg64.buf = compat_ptr(cp);
6200         err |= copy_to_user(p, &arg64, sizeof(arg64));
6201
6202         if (err)
6203                 return -EFAULT;
6204
6205         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6206         if (err)
6207                 return err;
6208         err |= copy_in_user(&arg32->error_info, &p->error_info,
6209                          sizeof(arg32->error_info));
6210         if (err)
6211                 return -EFAULT;
6212         return err;
6213 }
6214
6215 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6216 {
6217         switch (cmd) {
6218         case CCISS_GETPCIINFO:
6219         case CCISS_GETINTINFO:
6220         case CCISS_SETINTINFO:
6221         case CCISS_GETNODENAME:
6222         case CCISS_SETNODENAME:
6223         case CCISS_GETHEARTBEAT:
6224         case CCISS_GETBUSTYPES:
6225         case CCISS_GETFIRMVER:
6226         case CCISS_GETDRIVVER:
6227         case CCISS_REVALIDVOLS:
6228         case CCISS_DEREGDISK:
6229         case CCISS_REGNEWDISK:
6230         case CCISS_REGNEWD:
6231         case CCISS_RESCANDISK:
6232         case CCISS_GETLUNINFO:
6233                 return hpsa_ioctl(dev, cmd, arg);
6234
6235         case CCISS_PASSTHRU32:
6236                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6237         case CCISS_BIG_PASSTHRU32:
6238                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6239
6240         default:
6241                 return -ENOIOCTLCMD;
6242         }
6243 }
6244 #endif
6245
6246 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6247 {
6248         struct hpsa_pci_info pciinfo;
6249
6250         if (!argp)
6251                 return -EINVAL;
6252         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6253         pciinfo.bus = h->pdev->bus->number;
6254         pciinfo.dev_fn = h->pdev->devfn;
6255         pciinfo.board_id = h->board_id;
6256         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6257                 return -EFAULT;
6258         return 0;
6259 }
6260
6261 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6262 {
6263         DriverVer_type DriverVer;
6264         unsigned char vmaj, vmin, vsubmin;
6265         int rc;
6266
6267         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6268                 &vmaj, &vmin, &vsubmin);
6269         if (rc != 3) {
6270                 dev_info(&h->pdev->dev, "driver version string '%s' "
6271                         "unrecognized.", HPSA_DRIVER_VERSION);
6272                 vmaj = 0;
6273                 vmin = 0;
6274                 vsubmin = 0;
6275         }
6276         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6277         if (!argp)
6278                 return -EINVAL;
6279         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6280                 return -EFAULT;
6281         return 0;
6282 }
6283
6284 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6285 {
6286         IOCTL_Command_struct iocommand;
6287         struct CommandList *c;
6288         char *buff = NULL;
6289         u64 temp64;
6290         int rc = 0;
6291
6292         if (!argp)
6293                 return -EINVAL;
6294         if (!capable(CAP_SYS_RAWIO))
6295                 return -EPERM;
6296         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6297                 return -EFAULT;
6298         if ((iocommand.buf_size < 1) &&
6299             (iocommand.Request.Type.Direction != XFER_NONE)) {
6300                 return -EINVAL;
6301         }
6302         if (iocommand.buf_size > 0) {
6303                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6304                 if (buff == NULL)
6305                         return -ENOMEM;
6306                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6307                         /* Copy the data into the buffer we created */
6308                         if (copy_from_user(buff, iocommand.buf,
6309                                 iocommand.buf_size)) {
6310                                 rc = -EFAULT;
6311                                 goto out_kfree;
6312                         }
6313                 } else {
6314                         memset(buff, 0, iocommand.buf_size);
6315                 }
6316         }
6317         c = cmd_alloc(h);
6318
6319         /* Fill in the command type */
6320         c->cmd_type = CMD_IOCTL_PEND;
6321         c->scsi_cmd = SCSI_CMD_BUSY;
6322         /* Fill in Command Header */
6323         c->Header.ReplyQueue = 0; /* unused in simple mode */
6324         if (iocommand.buf_size > 0) {   /* buffer to fill */
6325                 c->Header.SGList = 1;
6326                 c->Header.SGTotal = cpu_to_le16(1);
6327         } else  { /* no buffers to fill */
6328                 c->Header.SGList = 0;
6329                 c->Header.SGTotal = cpu_to_le16(0);
6330         }
6331         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6332
6333         /* Fill in Request block */
6334         memcpy(&c->Request, &iocommand.Request,
6335                 sizeof(c->Request));
6336
6337         /* Fill in the scatter gather information */
6338         if (iocommand.buf_size > 0) {
6339                 temp64 = pci_map_single(h->pdev, buff,
6340                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6341                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6342                         c->SG[0].Addr = cpu_to_le64(0);
6343                         c->SG[0].Len = cpu_to_le32(0);
6344                         rc = -ENOMEM;
6345                         goto out;
6346                 }
6347                 c->SG[0].Addr = cpu_to_le64(temp64);
6348                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6349                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6350         }
6351         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6352         if (iocommand.buf_size > 0)
6353                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6354         check_ioctl_unit_attention(h, c);
6355         if (rc) {
6356                 rc = -EIO;
6357                 goto out;
6358         }
6359
6360         /* Copy the error information out */
6361         memcpy(&iocommand.error_info, c->err_info,
6362                 sizeof(iocommand.error_info));
6363         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6364                 rc = -EFAULT;
6365                 goto out;
6366         }
6367         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6368                 iocommand.buf_size > 0) {
6369                 /* Copy the data out of the buffer we created */
6370                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6371                         rc = -EFAULT;
6372                         goto out;
6373                 }
6374         }
6375 out:
6376         cmd_free(h, c);
6377 out_kfree:
6378         kfree(buff);
6379         return rc;
6380 }
6381
6382 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6383 {
6384         BIG_IOCTL_Command_struct *ioc;
6385         struct CommandList *c;
6386         unsigned char **buff = NULL;
6387         int *buff_size = NULL;
6388         u64 temp64;
6389         BYTE sg_used = 0;
6390         int status = 0;
6391         u32 left;
6392         u32 sz;
6393         BYTE __user *data_ptr;
6394
6395         if (!argp)
6396                 return -EINVAL;
6397         if (!capable(CAP_SYS_RAWIO))
6398                 return -EPERM;
6399         ioc = (BIG_IOCTL_Command_struct *)
6400             kmalloc(sizeof(*ioc), GFP_KERNEL);
6401         if (!ioc) {
6402                 status = -ENOMEM;
6403                 goto cleanup1;
6404         }
6405         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6406                 status = -EFAULT;
6407                 goto cleanup1;
6408         }
6409         if ((ioc->buf_size < 1) &&
6410             (ioc->Request.Type.Direction != XFER_NONE)) {
6411                 status = -EINVAL;
6412                 goto cleanup1;
6413         }
6414         /* Check kmalloc limits  using all SGs */
6415         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6416                 status = -EINVAL;
6417                 goto cleanup1;
6418         }
6419         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6420                 status = -EINVAL;
6421                 goto cleanup1;
6422         }
6423         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6424         if (!buff) {
6425                 status = -ENOMEM;
6426                 goto cleanup1;
6427         }
6428         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6429         if (!buff_size) {
6430                 status = -ENOMEM;
6431                 goto cleanup1;
6432         }
6433         left = ioc->buf_size;
6434         data_ptr = ioc->buf;
6435         while (left) {
6436                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6437                 buff_size[sg_used] = sz;
6438                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6439                 if (buff[sg_used] == NULL) {
6440                         status = -ENOMEM;
6441                         goto cleanup1;
6442                 }
6443                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6444                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6445                                 status = -EFAULT;
6446                                 goto cleanup1;
6447                         }
6448                 } else
6449                         memset(buff[sg_used], 0, sz);
6450                 left -= sz;
6451                 data_ptr += sz;
6452                 sg_used++;
6453         }
6454         c = cmd_alloc(h);
6455
6456         c->cmd_type = CMD_IOCTL_PEND;
6457         c->scsi_cmd = SCSI_CMD_BUSY;
6458         c->Header.ReplyQueue = 0;
6459         c->Header.SGList = (u8) sg_used;
6460         c->Header.SGTotal = cpu_to_le16(sg_used);
6461         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6462         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6463         if (ioc->buf_size > 0) {
6464                 int i;
6465                 for (i = 0; i < sg_used; i++) {
6466                         temp64 = pci_map_single(h->pdev, buff[i],
6467                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6468                         if (dma_mapping_error(&h->pdev->dev,
6469                                                         (dma_addr_t) temp64)) {
6470                                 c->SG[i].Addr = cpu_to_le64(0);
6471                                 c->SG[i].Len = cpu_to_le32(0);
6472                                 hpsa_pci_unmap(h->pdev, c, i,
6473                                         PCI_DMA_BIDIRECTIONAL);
6474                                 status = -ENOMEM;
6475                                 goto cleanup0;
6476                         }
6477                         c->SG[i].Addr = cpu_to_le64(temp64);
6478                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6479                         c->SG[i].Ext = cpu_to_le32(0);
6480                 }
6481                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6482         }
6483         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6484         if (sg_used)
6485                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6486         check_ioctl_unit_attention(h, c);
6487         if (status) {
6488                 status = -EIO;
6489                 goto cleanup0;
6490         }
6491
6492         /* Copy the error information out */
6493         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6494         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6495                 status = -EFAULT;
6496                 goto cleanup0;
6497         }
6498         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6499                 int i;
6500
6501                 /* Copy the data out of the buffer we created */
6502                 BYTE __user *ptr = ioc->buf;
6503                 for (i = 0; i < sg_used; i++) {
6504                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6505                                 status = -EFAULT;
6506                                 goto cleanup0;
6507                         }
6508                         ptr += buff_size[i];
6509                 }
6510         }
6511         status = 0;
6512 cleanup0:
6513         cmd_free(h, c);
6514 cleanup1:
6515         if (buff) {
6516                 int i;
6517
6518                 for (i = 0; i < sg_used; i++)
6519                         kfree(buff[i]);
6520                 kfree(buff);
6521         }
6522         kfree(buff_size);
6523         kfree(ioc);
6524         return status;
6525 }
6526
6527 static void check_ioctl_unit_attention(struct ctlr_info *h,
6528         struct CommandList *c)
6529 {
6530         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6531                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6532                 (void) check_for_unit_attention(h, c);
6533 }
6534
6535 /*
6536  * ioctl
6537  */
6538 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6539 {
6540         struct ctlr_info *h;
6541         void __user *argp = (void __user *)arg;
6542         int rc;
6543
6544         h = sdev_to_hba(dev);
6545
6546         switch (cmd) {
6547         case CCISS_DEREGDISK:
6548         case CCISS_REGNEWDISK:
6549         case CCISS_REGNEWD:
6550                 hpsa_scan_start(h->scsi_host);
6551                 return 0;
6552         case CCISS_GETPCIINFO:
6553                 return hpsa_getpciinfo_ioctl(h, argp);
6554         case CCISS_GETDRIVVER:
6555                 return hpsa_getdrivver_ioctl(h, argp);
6556         case CCISS_PASSTHRU:
6557                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6558                         return -EAGAIN;
6559                 rc = hpsa_passthru_ioctl(h, argp);
6560                 atomic_inc(&h->passthru_cmds_avail);
6561                 return rc;
6562         case CCISS_BIG_PASSTHRU:
6563                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6564                         return -EAGAIN;
6565                 rc = hpsa_big_passthru_ioctl(h, argp);
6566                 atomic_inc(&h->passthru_cmds_avail);
6567                 return rc;
6568         default:
6569                 return -ENOTTY;
6570         }
6571 }
6572
6573 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6574                                 u8 reset_type)
6575 {
6576         struct CommandList *c;
6577
6578         c = cmd_alloc(h);
6579
6580         /* fill_cmd can't fail here, no data buffer to map */
6581         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6582                 RAID_CTLR_LUNID, TYPE_MSG);
6583         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6584         c->waiting = NULL;
6585         enqueue_cmd_and_start_io(h, c);
6586         /* Don't wait for completion, the reset won't complete.  Don't free
6587          * the command either.  This is the last command we will send before
6588          * re-initializing everything, so it doesn't matter and won't leak.
6589          */
6590         return;
6591 }
6592
6593 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6594         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6595         int cmd_type)
6596 {
6597         int pci_dir = XFER_NONE;
6598         u64 tag; /* for commands to be aborted */
6599
6600         c->cmd_type = CMD_IOCTL_PEND;
6601         c->scsi_cmd = SCSI_CMD_BUSY;
6602         c->Header.ReplyQueue = 0;
6603         if (buff != NULL && size > 0) {
6604                 c->Header.SGList = 1;
6605                 c->Header.SGTotal = cpu_to_le16(1);
6606         } else {
6607                 c->Header.SGList = 0;
6608                 c->Header.SGTotal = cpu_to_le16(0);
6609         }
6610         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6611
6612         if (cmd_type == TYPE_CMD) {
6613                 switch (cmd) {
6614                 case HPSA_INQUIRY:
6615                         /* are we trying to read a vital product page */
6616                         if (page_code & VPD_PAGE) {
6617                                 c->Request.CDB[1] = 0x01;
6618                                 c->Request.CDB[2] = (page_code & 0xff);
6619                         }
6620                         c->Request.CDBLen = 6;
6621                         c->Request.type_attr_dir =
6622                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6623                         c->Request.Timeout = 0;
6624                         c->Request.CDB[0] = HPSA_INQUIRY;
6625                         c->Request.CDB[4] = size & 0xFF;
6626                         break;
6627                 case HPSA_REPORT_LOG:
6628                 case HPSA_REPORT_PHYS:
6629                         /* Talking to controller so It's a physical command
6630                            mode = 00 target = 0.  Nothing to write.
6631                          */
6632                         c->Request.CDBLen = 12;
6633                         c->Request.type_attr_dir =
6634                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6635                         c->Request.Timeout = 0;
6636                         c->Request.CDB[0] = cmd;
6637                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6638                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6639                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6640                         c->Request.CDB[9] = size & 0xFF;
6641                         break;
6642                 case BMIC_SENSE_DIAG_OPTIONS:
6643                         c->Request.CDBLen = 16;
6644                         c->Request.type_attr_dir =
6645                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6646                         c->Request.Timeout = 0;
6647                         /* Spec says this should be BMIC_WRITE */
6648                         c->Request.CDB[0] = BMIC_READ;
6649                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6650                         break;
6651                 case BMIC_SET_DIAG_OPTIONS:
6652                         c->Request.CDBLen = 16;
6653                         c->Request.type_attr_dir =
6654                                         TYPE_ATTR_DIR(cmd_type,
6655                                                 ATTR_SIMPLE, XFER_WRITE);
6656                         c->Request.Timeout = 0;
6657                         c->Request.CDB[0] = BMIC_WRITE;
6658                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6659                         break;
6660                 case HPSA_CACHE_FLUSH:
6661                         c->Request.CDBLen = 12;
6662                         c->Request.type_attr_dir =
6663                                         TYPE_ATTR_DIR(cmd_type,
6664                                                 ATTR_SIMPLE, XFER_WRITE);
6665                         c->Request.Timeout = 0;
6666                         c->Request.CDB[0] = BMIC_WRITE;
6667                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6668                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6669                         c->Request.CDB[8] = size & 0xFF;
6670                         break;
6671                 case TEST_UNIT_READY:
6672                         c->Request.CDBLen = 6;
6673                         c->Request.type_attr_dir =
6674                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6675                         c->Request.Timeout = 0;
6676                         break;
6677                 case HPSA_GET_RAID_MAP:
6678                         c->Request.CDBLen = 12;
6679                         c->Request.type_attr_dir =
6680                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6681                         c->Request.Timeout = 0;
6682                         c->Request.CDB[0] = HPSA_CISS_READ;
6683                         c->Request.CDB[1] = cmd;
6684                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6685                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6686                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6687                         c->Request.CDB[9] = size & 0xFF;
6688                         break;
6689                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6690                         c->Request.CDBLen = 10;
6691                         c->Request.type_attr_dir =
6692                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6693                         c->Request.Timeout = 0;
6694                         c->Request.CDB[0] = BMIC_READ;
6695                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6696                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6697                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6698                         break;
6699                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6700                         c->Request.CDBLen = 10;
6701                         c->Request.type_attr_dir =
6702                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6703                         c->Request.Timeout = 0;
6704                         c->Request.CDB[0] = BMIC_READ;
6705                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6706                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6707                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6708                         break;
6709                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6710                         c->Request.CDBLen = 10;
6711                         c->Request.type_attr_dir =
6712                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6713                         c->Request.Timeout = 0;
6714                         c->Request.CDB[0] = BMIC_READ;
6715                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6716                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6717                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6718                         break;
6719                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6720                         c->Request.CDBLen = 10;
6721                         c->Request.type_attr_dir =
6722                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6723                         c->Request.Timeout = 0;
6724                         c->Request.CDB[0] = BMIC_READ;
6725                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6726                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6727                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6728                         break;
6729                 case BMIC_IDENTIFY_CONTROLLER:
6730                         c->Request.CDBLen = 10;
6731                         c->Request.type_attr_dir =
6732                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733                         c->Request.Timeout = 0;
6734                         c->Request.CDB[0] = BMIC_READ;
6735                         c->Request.CDB[1] = 0;
6736                         c->Request.CDB[2] = 0;
6737                         c->Request.CDB[3] = 0;
6738                         c->Request.CDB[4] = 0;
6739                         c->Request.CDB[5] = 0;
6740                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6741                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6742                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6743                         c->Request.CDB[9] = 0;
6744                         break;
6745                 default:
6746                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6747                         BUG();
6748                         return -1;
6749                 }
6750         } else if (cmd_type == TYPE_MSG) {
6751                 switch (cmd) {
6752
6753                 case  HPSA_PHYS_TARGET_RESET:
6754                         c->Request.CDBLen = 16;
6755                         c->Request.type_attr_dir =
6756                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6757                         c->Request.Timeout = 0; /* Don't time out */
6758                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6759                         c->Request.CDB[0] = HPSA_RESET;
6760                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6761                         /* Physical target reset needs no control bytes 4-7*/
6762                         c->Request.CDB[4] = 0x00;
6763                         c->Request.CDB[5] = 0x00;
6764                         c->Request.CDB[6] = 0x00;
6765                         c->Request.CDB[7] = 0x00;
6766                         break;
6767                 case  HPSA_DEVICE_RESET_MSG:
6768                         c->Request.CDBLen = 16;
6769                         c->Request.type_attr_dir =
6770                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6771                         c->Request.Timeout = 0; /* Don't time out */
6772                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6773                         c->Request.CDB[0] =  cmd;
6774                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6775                         /* If bytes 4-7 are zero, it means reset the */
6776                         /* LunID device */
6777                         c->Request.CDB[4] = 0x00;
6778                         c->Request.CDB[5] = 0x00;
6779                         c->Request.CDB[6] = 0x00;
6780                         c->Request.CDB[7] = 0x00;
6781                         break;
6782                 case  HPSA_ABORT_MSG:
6783                         memcpy(&tag, buff, sizeof(tag));
6784                         dev_dbg(&h->pdev->dev,
6785                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6786                                 tag, c->Header.tag);
6787                         c->Request.CDBLen = 16;
6788                         c->Request.type_attr_dir =
6789                                         TYPE_ATTR_DIR(cmd_type,
6790                                                 ATTR_SIMPLE, XFER_WRITE);
6791                         c->Request.Timeout = 0; /* Don't time out */
6792                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6793                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6794                         c->Request.CDB[2] = 0x00; /* reserved */
6795                         c->Request.CDB[3] = 0x00; /* reserved */
6796                         /* Tag to abort goes in CDB[4]-CDB[11] */
6797                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6798                         c->Request.CDB[12] = 0x00; /* reserved */
6799                         c->Request.CDB[13] = 0x00; /* reserved */
6800                         c->Request.CDB[14] = 0x00; /* reserved */
6801                         c->Request.CDB[15] = 0x00; /* reserved */
6802                 break;
6803                 default:
6804                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6805                                 cmd);
6806                         BUG();
6807                 }
6808         } else {
6809                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6810                 BUG();
6811         }
6812
6813         switch (GET_DIR(c->Request.type_attr_dir)) {
6814         case XFER_READ:
6815                 pci_dir = PCI_DMA_FROMDEVICE;
6816                 break;
6817         case XFER_WRITE:
6818                 pci_dir = PCI_DMA_TODEVICE;
6819                 break;
6820         case XFER_NONE:
6821                 pci_dir = PCI_DMA_NONE;
6822                 break;
6823         default:
6824                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6825         }
6826         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6827                 return -1;
6828         return 0;
6829 }
6830
6831 /*
6832  * Map (physical) PCI mem into (virtual) kernel space
6833  */
6834 static void __iomem *remap_pci_mem(ulong base, ulong size)
6835 {
6836         ulong page_base = ((ulong) base) & PAGE_MASK;
6837         ulong page_offs = ((ulong) base) - page_base;
6838         void __iomem *page_remapped = ioremap_nocache(page_base,
6839                 page_offs + size);
6840
6841         return page_remapped ? (page_remapped + page_offs) : NULL;
6842 }
6843
6844 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6845 {
6846         return h->access.command_completed(h, q);
6847 }
6848
6849 static inline bool interrupt_pending(struct ctlr_info *h)
6850 {
6851         return h->access.intr_pending(h);
6852 }
6853
6854 static inline long interrupt_not_for_us(struct ctlr_info *h)
6855 {
6856         return (h->access.intr_pending(h) == 0) ||
6857                 (h->interrupts_enabled == 0);
6858 }
6859
6860 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6861         u32 raw_tag)
6862 {
6863         if (unlikely(tag_index >= h->nr_cmds)) {
6864                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6865                 return 1;
6866         }
6867         return 0;
6868 }
6869
6870 static inline void finish_cmd(struct CommandList *c)
6871 {
6872         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6873         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6874                         || c->cmd_type == CMD_IOACCEL2))
6875                 complete_scsi_command(c);
6876         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6877                 complete(c->waiting);
6878 }
6879
6880 /* process completion of an indexed ("direct lookup") command */
6881 static inline void process_indexed_cmd(struct ctlr_info *h,
6882         u32 raw_tag)
6883 {
6884         u32 tag_index;
6885         struct CommandList *c;
6886
6887         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6888         if (!bad_tag(h, tag_index, raw_tag)) {
6889                 c = h->cmd_pool + tag_index;
6890                 finish_cmd(c);
6891         }
6892 }
6893
6894 /* Some controllers, like p400, will give us one interrupt
6895  * after a soft reset, even if we turned interrupts off.
6896  * Only need to check for this in the hpsa_xxx_discard_completions
6897  * functions.
6898  */
6899 static int ignore_bogus_interrupt(struct ctlr_info *h)
6900 {
6901         if (likely(!reset_devices))
6902                 return 0;
6903
6904         if (likely(h->interrupts_enabled))
6905                 return 0;
6906
6907         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6908                 "(known firmware bug.)  Ignoring.\n");
6909
6910         return 1;
6911 }
6912
6913 /*
6914  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6915  * Relies on (h-q[x] == x) being true for x such that
6916  * 0 <= x < MAX_REPLY_QUEUES.
6917  */
6918 static struct ctlr_info *queue_to_hba(u8 *queue)
6919 {
6920         return container_of((queue - *queue), struct ctlr_info, q[0]);
6921 }
6922
6923 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6924 {
6925         struct ctlr_info *h = queue_to_hba(queue);
6926         u8 q = *(u8 *) queue;
6927         u32 raw_tag;
6928
6929         if (ignore_bogus_interrupt(h))
6930                 return IRQ_NONE;
6931
6932         if (interrupt_not_for_us(h))
6933                 return IRQ_NONE;
6934         h->last_intr_timestamp = get_jiffies_64();
6935         while (interrupt_pending(h)) {
6936                 raw_tag = get_next_completion(h, q);
6937                 while (raw_tag != FIFO_EMPTY)
6938                         raw_tag = next_command(h, q);
6939         }
6940         return IRQ_HANDLED;
6941 }
6942
6943 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6944 {
6945         struct ctlr_info *h = queue_to_hba(queue);
6946         u32 raw_tag;
6947         u8 q = *(u8 *) queue;
6948
6949         if (ignore_bogus_interrupt(h))
6950                 return IRQ_NONE;
6951
6952         h->last_intr_timestamp = get_jiffies_64();
6953         raw_tag = get_next_completion(h, q);
6954         while (raw_tag != FIFO_EMPTY)
6955                 raw_tag = next_command(h, q);
6956         return IRQ_HANDLED;
6957 }
6958
6959 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6960 {
6961         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6962         u32 raw_tag;
6963         u8 q = *(u8 *) queue;
6964
6965         if (interrupt_not_for_us(h))
6966                 return IRQ_NONE;
6967         h->last_intr_timestamp = get_jiffies_64();
6968         while (interrupt_pending(h)) {
6969                 raw_tag = get_next_completion(h, q);
6970                 while (raw_tag != FIFO_EMPTY) {
6971                         process_indexed_cmd(h, raw_tag);
6972                         raw_tag = next_command(h, q);
6973                 }
6974         }
6975         return IRQ_HANDLED;
6976 }
6977
6978 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6979 {
6980         struct ctlr_info *h = queue_to_hba(queue);
6981         u32 raw_tag;
6982         u8 q = *(u8 *) queue;
6983
6984         h->last_intr_timestamp = get_jiffies_64();
6985         raw_tag = get_next_completion(h, q);
6986         while (raw_tag != FIFO_EMPTY) {
6987                 process_indexed_cmd(h, raw_tag);
6988                 raw_tag = next_command(h, q);
6989         }
6990         return IRQ_HANDLED;
6991 }
6992
6993 /* Send a message CDB to the firmware. Careful, this only works
6994  * in simple mode, not performant mode due to the tag lookup.
6995  * We only ever use this immediately after a controller reset.
6996  */
6997 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6998                         unsigned char type)
6999 {
7000         struct Command {
7001                 struct CommandListHeader CommandHeader;
7002                 struct RequestBlock Request;
7003                 struct ErrDescriptor ErrorDescriptor;
7004         };
7005         struct Command *cmd;
7006         static const size_t cmd_sz = sizeof(*cmd) +
7007                                         sizeof(cmd->ErrorDescriptor);
7008         dma_addr_t paddr64;
7009         __le32 paddr32;
7010         u32 tag;
7011         void __iomem *vaddr;
7012         int i, err;
7013
7014         vaddr = pci_ioremap_bar(pdev, 0);
7015         if (vaddr == NULL)
7016                 return -ENOMEM;
7017
7018         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7019          * CCISS commands, so they must be allocated from the lower 4GiB of
7020          * memory.
7021          */
7022         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7023         if (err) {
7024                 iounmap(vaddr);
7025                 return err;
7026         }
7027
7028         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7029         if (cmd == NULL) {
7030                 iounmap(vaddr);
7031                 return -ENOMEM;
7032         }
7033
7034         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7035          * although there's no guarantee, we assume that the address is at
7036          * least 4-byte aligned (most likely, it's page-aligned).
7037          */
7038         paddr32 = cpu_to_le32(paddr64);
7039
7040         cmd->CommandHeader.ReplyQueue = 0;
7041         cmd->CommandHeader.SGList = 0;
7042         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7043         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7044         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7045
7046         cmd->Request.CDBLen = 16;
7047         cmd->Request.type_attr_dir =
7048                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7049         cmd->Request.Timeout = 0; /* Don't time out */
7050         cmd->Request.CDB[0] = opcode;
7051         cmd->Request.CDB[1] = type;
7052         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7053         cmd->ErrorDescriptor.Addr =
7054                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7055         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7056
7057         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7058
7059         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7060                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7061                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7062                         break;
7063                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7064         }
7065
7066         iounmap(vaddr);
7067
7068         /* we leak the DMA buffer here ... no choice since the controller could
7069          *  still complete the command.
7070          */
7071         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7072                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7073                         opcode, type);
7074                 return -ETIMEDOUT;
7075         }
7076
7077         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7078
7079         if (tag & HPSA_ERROR_BIT) {
7080                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7081                         opcode, type);
7082                 return -EIO;
7083         }
7084
7085         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7086                 opcode, type);
7087         return 0;
7088 }
7089
7090 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7091
7092 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7093         void __iomem *vaddr, u32 use_doorbell)
7094 {
7095
7096         if (use_doorbell) {
7097                 /* For everything after the P600, the PCI power state method
7098                  * of resetting the controller doesn't work, so we have this
7099                  * other way using the doorbell register.
7100                  */
7101                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7102                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7103
7104                 /* PMC hardware guys tell us we need a 10 second delay after
7105                  * doorbell reset and before any attempt to talk to the board
7106                  * at all to ensure that this actually works and doesn't fall
7107                  * over in some weird corner cases.
7108                  */
7109                 msleep(10000);
7110         } else { /* Try to do it the PCI power state way */
7111
7112                 /* Quoting from the Open CISS Specification: "The Power
7113                  * Management Control/Status Register (CSR) controls the power
7114                  * state of the device.  The normal operating state is D0,
7115                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7116                  * the controller, place the interface device in D3 then to D0,
7117                  * this causes a secondary PCI reset which will reset the
7118                  * controller." */
7119
7120                 int rc = 0;
7121
7122                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7123
7124                 /* enter the D3hot power management state */
7125                 rc = pci_set_power_state(pdev, PCI_D3hot);
7126                 if (rc)
7127                         return rc;
7128
7129                 msleep(500);
7130
7131                 /* enter the D0 power management state */
7132                 rc = pci_set_power_state(pdev, PCI_D0);
7133                 if (rc)
7134                         return rc;
7135
7136                 /*
7137                  * The P600 requires a small delay when changing states.
7138                  * Otherwise we may think the board did not reset and we bail.
7139                  * This for kdump only and is particular to the P600.
7140                  */
7141                 msleep(500);
7142         }
7143         return 0;
7144 }
7145
7146 static void init_driver_version(char *driver_version, int len)
7147 {
7148         memset(driver_version, 0, len);
7149         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7150 }
7151
7152 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7153 {
7154         char *driver_version;
7155         int i, size = sizeof(cfgtable->driver_version);
7156
7157         driver_version = kmalloc(size, GFP_KERNEL);
7158         if (!driver_version)
7159                 return -ENOMEM;
7160
7161         init_driver_version(driver_version, size);
7162         for (i = 0; i < size; i++)
7163                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7164         kfree(driver_version);
7165         return 0;
7166 }
7167
7168 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7169                                           unsigned char *driver_ver)
7170 {
7171         int i;
7172
7173         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7174                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7175 }
7176
7177 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7178 {
7179
7180         char *driver_ver, *old_driver_ver;
7181         int rc, size = sizeof(cfgtable->driver_version);
7182
7183         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7184         if (!old_driver_ver)
7185                 return -ENOMEM;
7186         driver_ver = old_driver_ver + size;
7187
7188         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7189          * should have been changed, otherwise we know the reset failed.
7190          */
7191         init_driver_version(old_driver_ver, size);
7192         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7193         rc = !memcmp(driver_ver, old_driver_ver, size);
7194         kfree(old_driver_ver);
7195         return rc;
7196 }
7197 /* This does a hard reset of the controller using PCI power management
7198  * states or the using the doorbell register.
7199  */
7200 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7201 {
7202         u64 cfg_offset;
7203         u32 cfg_base_addr;
7204         u64 cfg_base_addr_index;
7205         void __iomem *vaddr;
7206         unsigned long paddr;
7207         u32 misc_fw_support;
7208         int rc;
7209         struct CfgTable __iomem *cfgtable;
7210         u32 use_doorbell;
7211         u16 command_register;
7212
7213         /* For controllers as old as the P600, this is very nearly
7214          * the same thing as
7215          *
7216          * pci_save_state(pci_dev);
7217          * pci_set_power_state(pci_dev, PCI_D3hot);
7218          * pci_set_power_state(pci_dev, PCI_D0);
7219          * pci_restore_state(pci_dev);
7220          *
7221          * For controllers newer than the P600, the pci power state
7222          * method of resetting doesn't work so we have another way
7223          * using the doorbell register.
7224          */
7225
7226         if (!ctlr_is_resettable(board_id)) {
7227                 dev_warn(&pdev->dev, "Controller not resettable\n");
7228                 return -ENODEV;
7229         }
7230
7231         /* if controller is soft- but not hard resettable... */
7232         if (!ctlr_is_hard_resettable(board_id))
7233                 return -ENOTSUPP; /* try soft reset later. */
7234
7235         /* Save the PCI command register */
7236         pci_read_config_word(pdev, 4, &command_register);
7237         pci_save_state(pdev);
7238
7239         /* find the first memory BAR, so we can find the cfg table */
7240         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7241         if (rc)
7242                 return rc;
7243         vaddr = remap_pci_mem(paddr, 0x250);
7244         if (!vaddr)
7245                 return -ENOMEM;
7246
7247         /* find cfgtable in order to check if reset via doorbell is supported */
7248         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7249                                         &cfg_base_addr_index, &cfg_offset);
7250         if (rc)
7251                 goto unmap_vaddr;
7252         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7253                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7254         if (!cfgtable) {
7255                 rc = -ENOMEM;
7256                 goto unmap_vaddr;
7257         }
7258         rc = write_driver_ver_to_cfgtable(cfgtable);
7259         if (rc)
7260                 goto unmap_cfgtable;
7261
7262         /* If reset via doorbell register is supported, use that.
7263          * There are two such methods.  Favor the newest method.
7264          */
7265         misc_fw_support = readl(&cfgtable->misc_fw_support);
7266         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7267         if (use_doorbell) {
7268                 use_doorbell = DOORBELL_CTLR_RESET2;
7269         } else {
7270                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7271                 if (use_doorbell) {
7272                         dev_warn(&pdev->dev,
7273                                 "Soft reset not supported. Firmware update is required.\n");
7274                         rc = -ENOTSUPP; /* try soft reset */
7275                         goto unmap_cfgtable;
7276                 }
7277         }
7278
7279         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7280         if (rc)
7281                 goto unmap_cfgtable;
7282
7283         pci_restore_state(pdev);
7284         pci_write_config_word(pdev, 4, command_register);
7285
7286         /* Some devices (notably the HP Smart Array 5i Controller)
7287            need a little pause here */
7288         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7289
7290         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7291         if (rc) {
7292                 dev_warn(&pdev->dev,
7293                         "Failed waiting for board to become ready after hard reset\n");
7294                 goto unmap_cfgtable;
7295         }
7296
7297         rc = controller_reset_failed(vaddr);
7298         if (rc < 0)
7299                 goto unmap_cfgtable;
7300         if (rc) {
7301                 dev_warn(&pdev->dev, "Unable to successfully reset "
7302                         "controller. Will try soft reset.\n");
7303                 rc = -ENOTSUPP;
7304         } else {
7305                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7306         }
7307
7308 unmap_cfgtable:
7309         iounmap(cfgtable);
7310
7311 unmap_vaddr:
7312         iounmap(vaddr);
7313         return rc;
7314 }
7315
7316 /*
7317  *  We cannot read the structure directly, for portability we must use
7318  *   the io functions.
7319  *   This is for debug only.
7320  */
7321 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7322 {
7323 #ifdef HPSA_DEBUG
7324         int i;
7325         char temp_name[17];
7326
7327         dev_info(dev, "Controller Configuration information\n");
7328         dev_info(dev, "------------------------------------\n");
7329         for (i = 0; i < 4; i++)
7330                 temp_name[i] = readb(&(tb->Signature[i]));
7331         temp_name[4] = '\0';
7332         dev_info(dev, "   Signature = %s\n", temp_name);
7333         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7334         dev_info(dev, "   Transport methods supported = 0x%x\n",
7335                readl(&(tb->TransportSupport)));
7336         dev_info(dev, "   Transport methods active = 0x%x\n",
7337                readl(&(tb->TransportActive)));
7338         dev_info(dev, "   Requested transport Method = 0x%x\n",
7339                readl(&(tb->HostWrite.TransportRequest)));
7340         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7341                readl(&(tb->HostWrite.CoalIntDelay)));
7342         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7343                readl(&(tb->HostWrite.CoalIntCount)));
7344         dev_info(dev, "   Max outstanding commands = %d\n",
7345                readl(&(tb->CmdsOutMax)));
7346         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7347         for (i = 0; i < 16; i++)
7348                 temp_name[i] = readb(&(tb->ServerName[i]));
7349         temp_name[16] = '\0';
7350         dev_info(dev, "   Server Name = %s\n", temp_name);
7351         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7352                 readl(&(tb->HeartBeat)));
7353 #endif                          /* HPSA_DEBUG */
7354 }
7355
7356 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7357 {
7358         int i, offset, mem_type, bar_type;
7359
7360         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7361                 return 0;
7362         offset = 0;
7363         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7364                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7365                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7366                         offset += 4;
7367                 else {
7368                         mem_type = pci_resource_flags(pdev, i) &
7369                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7370                         switch (mem_type) {
7371                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7372                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7373                                 offset += 4;    /* 32 bit */
7374                                 break;
7375                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7376                                 offset += 8;
7377                                 break;
7378                         default:        /* reserved in PCI 2.2 */
7379                                 dev_warn(&pdev->dev,
7380                                        "base address is invalid\n");
7381                                 return -1;
7382                                 break;
7383                         }
7384                 }
7385                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7386                         return i + 1;
7387         }
7388         return -1;
7389 }
7390
7391 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7392 {
7393         if (h->msix_vector) {
7394                 if (h->pdev->msix_enabled)
7395                         pci_disable_msix(h->pdev);
7396                 h->msix_vector = 0;
7397         } else if (h->msi_vector) {
7398                 if (h->pdev->msi_enabled)
7399                         pci_disable_msi(h->pdev);
7400                 h->msi_vector = 0;
7401         }
7402 }
7403
7404 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7405  * controllers that are capable. If not, we use legacy INTx mode.
7406  */
7407 static void hpsa_interrupt_mode(struct ctlr_info *h)
7408 {
7409 #ifdef CONFIG_PCI_MSI
7410         int err, i;
7411         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7412
7413         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7414                 hpsa_msix_entries[i].vector = 0;
7415                 hpsa_msix_entries[i].entry = i;
7416         }
7417
7418         /* Some boards advertise MSI but don't really support it */
7419         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7420             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7421                 goto default_int_mode;
7422         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7423                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7424                 h->msix_vector = MAX_REPLY_QUEUES;
7425                 if (h->msix_vector > num_online_cpus())
7426                         h->msix_vector = num_online_cpus();
7427                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7428                                             1, h->msix_vector);
7429                 if (err < 0) {
7430                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7431                         h->msix_vector = 0;
7432                         goto single_msi_mode;
7433                 } else if (err < h->msix_vector) {
7434                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7435                                "available\n", err);
7436                 }
7437                 h->msix_vector = err;
7438                 for (i = 0; i < h->msix_vector; i++)
7439                         h->intr[i] = hpsa_msix_entries[i].vector;
7440                 return;
7441         }
7442 single_msi_mode:
7443         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7444                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7445                 if (!pci_enable_msi(h->pdev))
7446                         h->msi_vector = 1;
7447                 else
7448                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7449         }
7450 default_int_mode:
7451 #endif                          /* CONFIG_PCI_MSI */
7452         /* if we get here we're going to use the default interrupt mode */
7453         h->intr[h->intr_mode] = h->pdev->irq;
7454 }
7455
7456 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7457 {
7458         int i;
7459         u32 subsystem_vendor_id, subsystem_device_id;
7460
7461         subsystem_vendor_id = pdev->subsystem_vendor;
7462         subsystem_device_id = pdev->subsystem_device;
7463         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7464                     subsystem_vendor_id;
7465
7466         for (i = 0; i < ARRAY_SIZE(products); i++)
7467                 if (*board_id == products[i].board_id)
7468                         return i;
7469
7470         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7471                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7472                 !hpsa_allow_any) {
7473                 dev_warn(&pdev->dev, "unrecognized board ID: "
7474                         "0x%08x, ignoring.\n", *board_id);
7475                         return -ENODEV;
7476         }
7477         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7478 }
7479
7480 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7481                                     unsigned long *memory_bar)
7482 {
7483         int i;
7484
7485         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7486                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7487                         /* addressing mode bits already removed */
7488                         *memory_bar = pci_resource_start(pdev, i);
7489                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7490                                 *memory_bar);
7491                         return 0;
7492                 }
7493         dev_warn(&pdev->dev, "no memory BAR found\n");
7494         return -ENODEV;
7495 }
7496
7497 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7498                                      int wait_for_ready)
7499 {
7500         int i, iterations;
7501         u32 scratchpad;
7502         if (wait_for_ready)
7503                 iterations = HPSA_BOARD_READY_ITERATIONS;
7504         else
7505                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7506
7507         for (i = 0; i < iterations; i++) {
7508                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7509                 if (wait_for_ready) {
7510                         if (scratchpad == HPSA_FIRMWARE_READY)
7511                                 return 0;
7512                 } else {
7513                         if (scratchpad != HPSA_FIRMWARE_READY)
7514                                 return 0;
7515                 }
7516                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7517         }
7518         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7519         return -ENODEV;
7520 }
7521
7522 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7523                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7524                                u64 *cfg_offset)
7525 {
7526         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7527         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7528         *cfg_base_addr &= (u32) 0x0000ffff;
7529         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7530         if (*cfg_base_addr_index == -1) {
7531                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7532                 return -ENODEV;
7533         }
7534         return 0;
7535 }
7536
7537 static void hpsa_free_cfgtables(struct ctlr_info *h)
7538 {
7539         if (h->transtable) {
7540                 iounmap(h->transtable);
7541                 h->transtable = NULL;
7542         }
7543         if (h->cfgtable) {
7544                 iounmap(h->cfgtable);
7545                 h->cfgtable = NULL;
7546         }
7547 }
7548
7549 /* Find and map CISS config table and transfer table
7550 + * several items must be unmapped (freed) later
7551 + * */
7552 static int hpsa_find_cfgtables(struct ctlr_info *h)
7553 {
7554         u64 cfg_offset;
7555         u32 cfg_base_addr;
7556         u64 cfg_base_addr_index;
7557         u32 trans_offset;
7558         int rc;
7559
7560         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7561                 &cfg_base_addr_index, &cfg_offset);
7562         if (rc)
7563                 return rc;
7564         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7565                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7566         if (!h->cfgtable) {
7567                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7568                 return -ENOMEM;
7569         }
7570         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7571         if (rc)
7572                 return rc;
7573         /* Find performant mode table. */
7574         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7575         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7576                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7577                                 sizeof(*h->transtable));
7578         if (!h->transtable) {
7579                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7580                 hpsa_free_cfgtables(h);
7581                 return -ENOMEM;
7582         }
7583         return 0;
7584 }
7585
7586 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7587 {
7588 #define MIN_MAX_COMMANDS 16
7589         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7590
7591         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7592
7593         /* Limit commands in memory limited kdump scenario. */
7594         if (reset_devices && h->max_commands > 32)
7595                 h->max_commands = 32;
7596
7597         if (h->max_commands < MIN_MAX_COMMANDS) {
7598                 dev_warn(&h->pdev->dev,
7599                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7600                         h->max_commands,
7601                         MIN_MAX_COMMANDS);
7602                 h->max_commands = MIN_MAX_COMMANDS;
7603         }
7604 }
7605
7606 /* If the controller reports that the total max sg entries is greater than 512,
7607  * then we know that chained SG blocks work.  (Original smart arrays did not
7608  * support chained SG blocks and would return zero for max sg entries.)
7609  */
7610 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7611 {
7612         return h->maxsgentries > 512;
7613 }
7614
7615 /* Interrogate the hardware for some limits:
7616  * max commands, max SG elements without chaining, and with chaining,
7617  * SG chain block size, etc.
7618  */
7619 static void hpsa_find_board_params(struct ctlr_info *h)
7620 {
7621         hpsa_get_max_perf_mode_cmds(h);
7622         h->nr_cmds = h->max_commands;
7623         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7624         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7625         if (hpsa_supports_chained_sg_blocks(h)) {
7626                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7627                 h->max_cmd_sg_entries = 32;
7628                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7629                 h->maxsgentries--; /* save one for chain pointer */
7630         } else {
7631                 /*
7632                  * Original smart arrays supported at most 31 s/g entries
7633                  * embedded inline in the command (trying to use more
7634                  * would lock up the controller)
7635                  */
7636                 h->max_cmd_sg_entries = 31;
7637                 h->maxsgentries = 31; /* default to traditional values */
7638                 h->chainsize = 0;
7639         }
7640
7641         /* Find out what task management functions are supported and cache */
7642         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7643         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7644                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7645         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7646                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7647         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7648                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7649 }
7650
7651 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7652 {
7653         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7654                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7655                 return false;
7656         }
7657         return true;
7658 }
7659
7660 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7661 {
7662         u32 driver_support;
7663
7664         driver_support = readl(&(h->cfgtable->driver_support));
7665         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7666 #ifdef CONFIG_X86
7667         driver_support |= ENABLE_SCSI_PREFETCH;
7668 #endif
7669         driver_support |= ENABLE_UNIT_ATTN;
7670         writel(driver_support, &(h->cfgtable->driver_support));
7671 }
7672
7673 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7674  * in a prefetch beyond physical memory.
7675  */
7676 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7677 {
7678         u32 dma_prefetch;
7679
7680         if (h->board_id != 0x3225103C)
7681                 return;
7682         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7683         dma_prefetch |= 0x8000;
7684         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7685 }
7686
7687 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7688 {
7689         int i;
7690         u32 doorbell_value;
7691         unsigned long flags;
7692         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7693         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7694                 spin_lock_irqsave(&h->lock, flags);
7695                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7696                 spin_unlock_irqrestore(&h->lock, flags);
7697                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7698                         goto done;
7699                 /* delay and try again */
7700                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7701         }
7702         return -ENODEV;
7703 done:
7704         return 0;
7705 }
7706
7707 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7708 {
7709         int i;
7710         u32 doorbell_value;
7711         unsigned long flags;
7712
7713         /* under certain very rare conditions, this can take awhile.
7714          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7715          * as we enter this code.)
7716          */
7717         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7718                 if (h->remove_in_progress)
7719                         goto done;
7720                 spin_lock_irqsave(&h->lock, flags);
7721                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7722                 spin_unlock_irqrestore(&h->lock, flags);
7723                 if (!(doorbell_value & CFGTBL_ChangeReq))
7724                         goto done;
7725                 /* delay and try again */
7726                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7727         }
7728         return -ENODEV;
7729 done:
7730         return 0;
7731 }
7732
7733 /* return -ENODEV or other reason on error, 0 on success */
7734 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7735 {
7736         u32 trans_support;
7737
7738         trans_support = readl(&(h->cfgtable->TransportSupport));
7739         if (!(trans_support & SIMPLE_MODE))
7740                 return -ENOTSUPP;
7741
7742         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7743
7744         /* Update the field, and then ring the doorbell */
7745         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7746         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7747         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7748         if (hpsa_wait_for_mode_change_ack(h))
7749                 goto error;
7750         print_cfg_table(&h->pdev->dev, h->cfgtable);
7751         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7752                 goto error;
7753         h->transMethod = CFGTBL_Trans_Simple;
7754         return 0;
7755 error:
7756         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7757         return -ENODEV;
7758 }
7759
7760 /* free items allocated or mapped by hpsa_pci_init */
7761 static void hpsa_free_pci_init(struct ctlr_info *h)
7762 {
7763         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7764         iounmap(h->vaddr);                      /* pci_init 3 */
7765         h->vaddr = NULL;
7766         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7767         /*
7768          * call pci_disable_device before pci_release_regions per
7769          * Documentation/PCI/pci.txt
7770          */
7771         pci_disable_device(h->pdev);            /* pci_init 1 */
7772         pci_release_regions(h->pdev);           /* pci_init 2 */
7773 }
7774
7775 /* several items must be freed later */
7776 static int hpsa_pci_init(struct ctlr_info *h)
7777 {
7778         int prod_index, err;
7779
7780         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7781         if (prod_index < 0)
7782                 return prod_index;
7783         h->product_name = products[prod_index].product_name;
7784         h->access = *(products[prod_index].access);
7785
7786         h->needs_abort_tags_swizzled =
7787                 ctlr_needs_abort_tags_swizzled(h->board_id);
7788
7789         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7790                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7791
7792         err = pci_enable_device(h->pdev);
7793         if (err) {
7794                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7795                 pci_disable_device(h->pdev);
7796                 return err;
7797         }
7798
7799         err = pci_request_regions(h->pdev, HPSA);
7800         if (err) {
7801                 dev_err(&h->pdev->dev,
7802                         "failed to obtain PCI resources\n");
7803                 pci_disable_device(h->pdev);
7804                 return err;
7805         }
7806
7807         pci_set_master(h->pdev);
7808
7809         hpsa_interrupt_mode(h);
7810         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7811         if (err)
7812                 goto clean2;    /* intmode+region, pci */
7813         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7814         if (!h->vaddr) {
7815                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7816                 err = -ENOMEM;
7817                 goto clean2;    /* intmode+region, pci */
7818         }
7819         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7820         if (err)
7821                 goto clean3;    /* vaddr, intmode+region, pci */
7822         err = hpsa_find_cfgtables(h);
7823         if (err)
7824                 goto clean3;    /* vaddr, intmode+region, pci */
7825         hpsa_find_board_params(h);
7826
7827         if (!hpsa_CISS_signature_present(h)) {
7828                 err = -ENODEV;
7829                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7830         }
7831         hpsa_set_driver_support_bits(h);
7832         hpsa_p600_dma_prefetch_quirk(h);
7833         err = hpsa_enter_simple_mode(h);
7834         if (err)
7835                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7836         return 0;
7837
7838 clean4: /* cfgtables, vaddr, intmode+region, pci */
7839         hpsa_free_cfgtables(h);
7840 clean3: /* vaddr, intmode+region, pci */
7841         iounmap(h->vaddr);
7842         h->vaddr = NULL;
7843 clean2: /* intmode+region, pci */
7844         hpsa_disable_interrupt_mode(h);
7845         /*
7846          * call pci_disable_device before pci_release_regions per
7847          * Documentation/PCI/pci.txt
7848          */
7849         pci_disable_device(h->pdev);
7850         pci_release_regions(h->pdev);
7851         return err;
7852 }
7853
7854 static void hpsa_hba_inquiry(struct ctlr_info *h)
7855 {
7856         int rc;
7857
7858 #define HBA_INQUIRY_BYTE_COUNT 64
7859         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7860         if (!h->hba_inquiry_data)
7861                 return;
7862         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7863                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7864         if (rc != 0) {
7865                 kfree(h->hba_inquiry_data);
7866                 h->hba_inquiry_data = NULL;
7867         }
7868 }
7869
7870 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7871 {
7872         int rc, i;
7873         void __iomem *vaddr;
7874
7875         if (!reset_devices)
7876                 return 0;
7877
7878         /* kdump kernel is loading, we don't know in which state is
7879          * the pci interface. The dev->enable_cnt is equal zero
7880          * so we call enable+disable, wait a while and switch it on.
7881          */
7882         rc = pci_enable_device(pdev);
7883         if (rc) {
7884                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7885                 return -ENODEV;
7886         }
7887         pci_disable_device(pdev);
7888         msleep(260);                    /* a randomly chosen number */
7889         rc = pci_enable_device(pdev);
7890         if (rc) {
7891                 dev_warn(&pdev->dev, "failed to enable device.\n");
7892                 return -ENODEV;
7893         }
7894
7895         pci_set_master(pdev);
7896
7897         vaddr = pci_ioremap_bar(pdev, 0);
7898         if (vaddr == NULL) {
7899                 rc = -ENOMEM;
7900                 goto out_disable;
7901         }
7902         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7903         iounmap(vaddr);
7904
7905         /* Reset the controller with a PCI power-cycle or via doorbell */
7906         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7907
7908         /* -ENOTSUPP here means we cannot reset the controller
7909          * but it's already (and still) up and running in
7910          * "performant mode".  Or, it might be 640x, which can't reset
7911          * due to concerns about shared bbwc between 6402/6404 pair.
7912          */
7913         if (rc)
7914                 goto out_disable;
7915
7916         /* Now try to get the controller to respond to a no-op */
7917         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7918         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7919                 if (hpsa_noop(pdev) == 0)
7920                         break;
7921                 else
7922                         dev_warn(&pdev->dev, "no-op failed%s\n",
7923                                         (i < 11 ? "; re-trying" : ""));
7924         }
7925
7926 out_disable:
7927
7928         pci_disable_device(pdev);
7929         return rc;
7930 }
7931
7932 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7933 {
7934         kfree(h->cmd_pool_bits);
7935         h->cmd_pool_bits = NULL;
7936         if (h->cmd_pool) {
7937                 pci_free_consistent(h->pdev,
7938                                 h->nr_cmds * sizeof(struct CommandList),
7939                                 h->cmd_pool,
7940                                 h->cmd_pool_dhandle);
7941                 h->cmd_pool = NULL;
7942                 h->cmd_pool_dhandle = 0;
7943         }
7944         if (h->errinfo_pool) {
7945                 pci_free_consistent(h->pdev,
7946                                 h->nr_cmds * sizeof(struct ErrorInfo),
7947                                 h->errinfo_pool,
7948                                 h->errinfo_pool_dhandle);
7949                 h->errinfo_pool = NULL;
7950                 h->errinfo_pool_dhandle = 0;
7951         }
7952 }
7953
7954 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7955 {
7956         h->cmd_pool_bits = kzalloc(
7957                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7958                 sizeof(unsigned long), GFP_KERNEL);
7959         h->cmd_pool = pci_alloc_consistent(h->pdev,
7960                     h->nr_cmds * sizeof(*h->cmd_pool),
7961                     &(h->cmd_pool_dhandle));
7962         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7963                     h->nr_cmds * sizeof(*h->errinfo_pool),
7964                     &(h->errinfo_pool_dhandle));
7965         if ((h->cmd_pool_bits == NULL)
7966             || (h->cmd_pool == NULL)
7967             || (h->errinfo_pool == NULL)) {
7968                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7969                 goto clean_up;
7970         }
7971         hpsa_preinitialize_commands(h);
7972         return 0;
7973 clean_up:
7974         hpsa_free_cmd_pool(h);
7975         return -ENOMEM;
7976 }
7977
7978 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7979 {
7980         int i, cpu;
7981
7982         cpu = cpumask_first(cpu_online_mask);
7983         for (i = 0; i < h->msix_vector; i++) {
7984                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7985                 cpu = cpumask_next(cpu, cpu_online_mask);
7986         }
7987 }
7988
7989 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7990 static void hpsa_free_irqs(struct ctlr_info *h)
7991 {
7992         int i;
7993
7994         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7995                 /* Single reply queue, only one irq to free */
7996                 i = h->intr_mode;
7997                 irq_set_affinity_hint(h->intr[i], NULL);
7998                 free_irq(h->intr[i], &h->q[i]);
7999                 h->q[i] = 0;
8000                 return;
8001         }
8002
8003         for (i = 0; i < h->msix_vector; i++) {
8004                 irq_set_affinity_hint(h->intr[i], NULL);
8005                 free_irq(h->intr[i], &h->q[i]);
8006                 h->q[i] = 0;
8007         }
8008         for (; i < MAX_REPLY_QUEUES; i++)
8009                 h->q[i] = 0;
8010 }
8011
8012 /* returns 0 on success; cleans up and returns -Enn on error */
8013 static int hpsa_request_irqs(struct ctlr_info *h,
8014         irqreturn_t (*msixhandler)(int, void *),
8015         irqreturn_t (*intxhandler)(int, void *))
8016 {
8017         int rc, i;
8018
8019         /*
8020          * initialize h->q[x] = x so that interrupt handlers know which
8021          * queue to process.
8022          */
8023         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8024                 h->q[i] = (u8) i;
8025
8026         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8027                 /* If performant mode and MSI-X, use multiple reply queues */
8028                 for (i = 0; i < h->msix_vector; i++) {
8029                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8030                         rc = request_irq(h->intr[i], msixhandler,
8031                                         0, h->intrname[i],
8032                                         &h->q[i]);
8033                         if (rc) {
8034                                 int j;
8035
8036                                 dev_err(&h->pdev->dev,
8037                                         "failed to get irq %d for %s\n",
8038                                        h->intr[i], h->devname);
8039                                 for (j = 0; j < i; j++) {
8040                                         free_irq(h->intr[j], &h->q[j]);
8041                                         h->q[j] = 0;
8042                                 }
8043                                 for (; j < MAX_REPLY_QUEUES; j++)
8044                                         h->q[j] = 0;
8045                                 return rc;
8046                         }
8047                 }
8048                 hpsa_irq_affinity_hints(h);
8049         } else {
8050                 /* Use single reply pool */
8051                 if (h->msix_vector > 0 || h->msi_vector) {
8052                         if (h->msix_vector)
8053                                 sprintf(h->intrname[h->intr_mode],
8054                                         "%s-msix", h->devname);
8055                         else
8056                                 sprintf(h->intrname[h->intr_mode],
8057                                         "%s-msi", h->devname);
8058                         rc = request_irq(h->intr[h->intr_mode],
8059                                 msixhandler, 0,
8060                                 h->intrname[h->intr_mode],
8061                                 &h->q[h->intr_mode]);
8062                 } else {
8063                         sprintf(h->intrname[h->intr_mode],
8064                                 "%s-intx", h->devname);
8065                         rc = request_irq(h->intr[h->intr_mode],
8066                                 intxhandler, IRQF_SHARED,
8067                                 h->intrname[h->intr_mode],
8068                                 &h->q[h->intr_mode]);
8069                 }
8070                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8071         }
8072         if (rc) {
8073                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8074                        h->intr[h->intr_mode], h->devname);
8075                 hpsa_free_irqs(h);
8076                 return -ENODEV;
8077         }
8078         return 0;
8079 }
8080
8081 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8082 {
8083         int rc;
8084         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8085
8086         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8087         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8088         if (rc) {
8089                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8090                 return rc;
8091         }
8092
8093         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8094         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8095         if (rc) {
8096                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8097                         "after soft reset.\n");
8098                 return rc;
8099         }
8100
8101         return 0;
8102 }
8103
8104 static void hpsa_free_reply_queues(struct ctlr_info *h)
8105 {
8106         int i;
8107
8108         for (i = 0; i < h->nreply_queues; i++) {
8109                 if (!h->reply_queue[i].head)
8110                         continue;
8111                 pci_free_consistent(h->pdev,
8112                                         h->reply_queue_size,
8113                                         h->reply_queue[i].head,
8114                                         h->reply_queue[i].busaddr);
8115                 h->reply_queue[i].head = NULL;
8116                 h->reply_queue[i].busaddr = 0;
8117         }
8118         h->reply_queue_size = 0;
8119 }
8120
8121 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8122 {
8123         hpsa_free_performant_mode(h);           /* init_one 7 */
8124         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8125         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8126         hpsa_free_irqs(h);                      /* init_one 4 */
8127         scsi_host_put(h->scsi_host);            /* init_one 3 */
8128         h->scsi_host = NULL;                    /* init_one 3 */
8129         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8130         free_percpu(h->lockup_detected);        /* init_one 2 */
8131         h->lockup_detected = NULL;              /* init_one 2 */
8132         if (h->resubmit_wq) {
8133                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8134                 h->resubmit_wq = NULL;
8135         }
8136         if (h->rescan_ctlr_wq) {
8137                 destroy_workqueue(h->rescan_ctlr_wq);
8138                 h->rescan_ctlr_wq = NULL;
8139         }
8140         kfree(h);                               /* init_one 1 */
8141 }
8142
8143 /* Called when controller lockup detected. */
8144 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8145 {
8146         int i, refcount;
8147         struct CommandList *c;
8148         int failcount = 0;
8149
8150         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8151         for (i = 0; i < h->nr_cmds; i++) {
8152                 c = h->cmd_pool + i;
8153                 refcount = atomic_inc_return(&c->refcount);
8154                 if (refcount > 1) {
8155                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8156                         finish_cmd(c);
8157                         atomic_dec(&h->commands_outstanding);
8158                         failcount++;
8159                 }
8160                 cmd_free(h, c);
8161         }
8162         dev_warn(&h->pdev->dev,
8163                 "failed %d commands in fail_all\n", failcount);
8164 }
8165
8166 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8167 {
8168         int cpu;
8169
8170         for_each_online_cpu(cpu) {
8171                 u32 *lockup_detected;
8172                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8173                 *lockup_detected = value;
8174         }
8175         wmb(); /* be sure the per-cpu variables are out to memory */
8176 }
8177
8178 static void controller_lockup_detected(struct ctlr_info *h)
8179 {
8180         unsigned long flags;
8181         u32 lockup_detected;
8182
8183         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8184         spin_lock_irqsave(&h->lock, flags);
8185         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8186         if (!lockup_detected) {
8187                 /* no heartbeat, but controller gave us a zero. */
8188                 dev_warn(&h->pdev->dev,
8189                         "lockup detected after %d but scratchpad register is zero\n",
8190                         h->heartbeat_sample_interval / HZ);
8191                 lockup_detected = 0xffffffff;
8192         }
8193         set_lockup_detected_for_all_cpus(h, lockup_detected);
8194         spin_unlock_irqrestore(&h->lock, flags);
8195         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8196                         lockup_detected, h->heartbeat_sample_interval / HZ);
8197         pci_disable_device(h->pdev);
8198         fail_all_outstanding_cmds(h);
8199 }
8200
8201 static int detect_controller_lockup(struct ctlr_info *h)
8202 {
8203         u64 now;
8204         u32 heartbeat;
8205         unsigned long flags;
8206
8207         now = get_jiffies_64();
8208         /* If we've received an interrupt recently, we're ok. */
8209         if (time_after64(h->last_intr_timestamp +
8210                                 (h->heartbeat_sample_interval), now))
8211                 return false;
8212
8213         /*
8214          * If we've already checked the heartbeat recently, we're ok.
8215          * This could happen if someone sends us a signal. We
8216          * otherwise don't care about signals in this thread.
8217          */
8218         if (time_after64(h->last_heartbeat_timestamp +
8219                                 (h->heartbeat_sample_interval), now))
8220                 return false;
8221
8222         /* If heartbeat has not changed since we last looked, we're not ok. */
8223         spin_lock_irqsave(&h->lock, flags);
8224         heartbeat = readl(&h->cfgtable->HeartBeat);
8225         spin_unlock_irqrestore(&h->lock, flags);
8226         if (h->last_heartbeat == heartbeat) {
8227                 controller_lockup_detected(h);
8228                 return true;
8229         }
8230
8231         /* We're ok. */
8232         h->last_heartbeat = heartbeat;
8233         h->last_heartbeat_timestamp = now;
8234         return false;
8235 }
8236
8237 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8238 {
8239         int i;
8240         char *event_type;
8241
8242         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8243                 return;
8244
8245         /* Ask the controller to clear the events we're handling. */
8246         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8247                         | CFGTBL_Trans_io_accel2)) &&
8248                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8249                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8250
8251                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8252                         event_type = "state change";
8253                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8254                         event_type = "configuration change";
8255                 /* Stop sending new RAID offload reqs via the IO accelerator */
8256                 scsi_block_requests(h->scsi_host);
8257                 for (i = 0; i < h->ndevices; i++)
8258                         h->dev[i]->offload_enabled = 0;
8259                 hpsa_drain_accel_commands(h);
8260                 /* Set 'accelerator path config change' bit */
8261                 dev_warn(&h->pdev->dev,
8262                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8263                         h->events, event_type);
8264                 writel(h->events, &(h->cfgtable->clear_event_notify));
8265                 /* Set the "clear event notify field update" bit 6 */
8266                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8267                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8268                 hpsa_wait_for_clear_event_notify_ack(h);
8269                 scsi_unblock_requests(h->scsi_host);
8270         } else {
8271                 /* Acknowledge controller notification events. */
8272                 writel(h->events, &(h->cfgtable->clear_event_notify));
8273                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8274                 hpsa_wait_for_clear_event_notify_ack(h);
8275 #if 0
8276                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8277                 hpsa_wait_for_mode_change_ack(h);
8278 #endif
8279         }
8280         return;
8281 }
8282
8283 /* Check a register on the controller to see if there are configuration
8284  * changes (added/changed/removed logical drives, etc.) which mean that
8285  * we should rescan the controller for devices.
8286  * Also check flag for driver-initiated rescan.
8287  */
8288 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8289 {
8290         if (h->drv_req_rescan) {
8291                 h->drv_req_rescan = 0;
8292                 return 1;
8293         }
8294
8295         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8296                 return 0;
8297
8298         h->events = readl(&(h->cfgtable->event_notify));
8299         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8300 }
8301
8302 /*
8303  * Check if any of the offline devices have become ready
8304  */
8305 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8306 {
8307         unsigned long flags;
8308         struct offline_device_entry *d;
8309         struct list_head *this, *tmp;
8310
8311         spin_lock_irqsave(&h->offline_device_lock, flags);
8312         list_for_each_safe(this, tmp, &h->offline_device_list) {
8313                 d = list_entry(this, struct offline_device_entry,
8314                                 offline_list);
8315                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8316                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8317                         spin_lock_irqsave(&h->offline_device_lock, flags);
8318                         list_del(&d->offline_list);
8319                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8320                         return 1;
8321                 }
8322                 spin_lock_irqsave(&h->offline_device_lock, flags);
8323         }
8324         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8325         return 0;
8326 }
8327
8328 static int hpsa_luns_changed(struct ctlr_info *h)
8329 {
8330         int rc = 1; /* assume there are changes */
8331         struct ReportLUNdata *logdev = NULL;
8332
8333         /* if we can't find out if lun data has changed,
8334          * assume that it has.
8335          */
8336
8337         if (!h->lastlogicals)
8338                 goto out;
8339
8340         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8341         if (!logdev) {
8342                 dev_warn(&h->pdev->dev,
8343                         "Out of memory, can't track lun changes.\n");
8344                 goto out;
8345         }
8346         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8347                 dev_warn(&h->pdev->dev,
8348                         "report luns failed, can't track lun changes.\n");
8349                 goto out;
8350         }
8351         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8352                 dev_info(&h->pdev->dev,
8353                         "Lun changes detected.\n");
8354                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8355                 goto out;
8356         } else
8357                 rc = 0; /* no changes detected. */
8358 out:
8359         kfree(logdev);
8360         return rc;
8361 }
8362
8363 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8364 {
8365         unsigned long flags;
8366         struct ctlr_info *h = container_of(to_delayed_work(work),
8367                                         struct ctlr_info, rescan_ctlr_work);
8368
8369
8370         if (h->remove_in_progress)
8371                 return;
8372
8373         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8374                 scsi_host_get(h->scsi_host);
8375                 hpsa_ack_ctlr_events(h);
8376                 hpsa_scan_start(h->scsi_host);
8377                 scsi_host_put(h->scsi_host);
8378         } else if (h->discovery_polling) {
8379                 hpsa_disable_rld_caching(h);
8380                 if (hpsa_luns_changed(h)) {
8381                         struct Scsi_Host *sh = NULL;
8382
8383                         dev_info(&h->pdev->dev,
8384                                 "driver discovery polling rescan.\n");
8385                         sh = scsi_host_get(h->scsi_host);
8386                         if (sh != NULL) {
8387                                 hpsa_scan_start(sh);
8388                                 scsi_host_put(sh);
8389                         }
8390                 }
8391         }
8392         spin_lock_irqsave(&h->lock, flags);
8393         if (!h->remove_in_progress)
8394                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8395                                 h->heartbeat_sample_interval);
8396         spin_unlock_irqrestore(&h->lock, flags);
8397 }
8398
8399 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8400 {
8401         unsigned long flags;
8402         struct ctlr_info *h = container_of(to_delayed_work(work),
8403                                         struct ctlr_info, monitor_ctlr_work);
8404
8405         detect_controller_lockup(h);
8406         if (lockup_detected(h))
8407                 return;
8408
8409         spin_lock_irqsave(&h->lock, flags);
8410         if (!h->remove_in_progress)
8411                 schedule_delayed_work(&h->monitor_ctlr_work,
8412                                 h->heartbeat_sample_interval);
8413         spin_unlock_irqrestore(&h->lock, flags);
8414 }
8415
8416 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8417                                                 char *name)
8418 {
8419         struct workqueue_struct *wq = NULL;
8420
8421         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8422         if (!wq)
8423                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8424
8425         return wq;
8426 }
8427
8428 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8429 {
8430         int dac, rc;
8431         struct ctlr_info *h;
8432         int try_soft_reset = 0;
8433         unsigned long flags;
8434         u32 board_id;
8435
8436         if (number_of_controllers == 0)
8437                 printk(KERN_INFO DRIVER_NAME "\n");
8438
8439         rc = hpsa_lookup_board_id(pdev, &board_id);
8440         if (rc < 0) {
8441                 dev_warn(&pdev->dev, "Board ID not found\n");
8442                 return rc;
8443         }
8444
8445         rc = hpsa_init_reset_devices(pdev, board_id);
8446         if (rc) {
8447                 if (rc != -ENOTSUPP)
8448                         return rc;
8449                 /* If the reset fails in a particular way (it has no way to do
8450                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8451                  * a soft reset once we get the controller configured up to the
8452                  * point that it can accept a command.
8453                  */
8454                 try_soft_reset = 1;
8455                 rc = 0;
8456         }
8457
8458 reinit_after_soft_reset:
8459
8460         /* Command structures must be aligned on a 32-byte boundary because
8461          * the 5 lower bits of the address are used by the hardware. and by
8462          * the driver.  See comments in hpsa.h for more info.
8463          */
8464         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8465         h = kzalloc(sizeof(*h), GFP_KERNEL);
8466         if (!h) {
8467                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8468                 return -ENOMEM;
8469         }
8470
8471         h->pdev = pdev;
8472
8473         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8474         INIT_LIST_HEAD(&h->offline_device_list);
8475         spin_lock_init(&h->lock);
8476         spin_lock_init(&h->offline_device_lock);
8477         spin_lock_init(&h->scan_lock);
8478         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8479         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8480
8481         /* Allocate and clear per-cpu variable lockup_detected */
8482         h->lockup_detected = alloc_percpu(u32);
8483         if (!h->lockup_detected) {
8484                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8485                 rc = -ENOMEM;
8486                 goto clean1;    /* aer/h */
8487         }
8488         set_lockup_detected_for_all_cpus(h, 0);
8489
8490         rc = hpsa_pci_init(h);
8491         if (rc)
8492                 goto clean2;    /* lu, aer/h */
8493
8494         /* relies on h-> settings made by hpsa_pci_init, including
8495          * interrupt_mode h->intr */
8496         rc = hpsa_scsi_host_alloc(h);
8497         if (rc)
8498                 goto clean2_5;  /* pci, lu, aer/h */
8499
8500         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8501         h->ctlr = number_of_controllers;
8502         number_of_controllers++;
8503
8504         /* configure PCI DMA stuff */
8505         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8506         if (rc == 0) {
8507                 dac = 1;
8508         } else {
8509                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8510                 if (rc == 0) {
8511                         dac = 0;
8512                 } else {
8513                         dev_err(&pdev->dev, "no suitable DMA available\n");
8514                         goto clean3;    /* shost, pci, lu, aer/h */
8515                 }
8516         }
8517
8518         /* make sure the board interrupts are off */
8519         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8520
8521         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8522         if (rc)
8523                 goto clean3;    /* shost, pci, lu, aer/h */
8524         rc = hpsa_alloc_cmd_pool(h);
8525         if (rc)
8526                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8527         rc = hpsa_alloc_sg_chain_blocks(h);
8528         if (rc)
8529                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8530         init_waitqueue_head(&h->scan_wait_queue);
8531         init_waitqueue_head(&h->abort_cmd_wait_queue);
8532         init_waitqueue_head(&h->event_sync_wait_queue);
8533         mutex_init(&h->reset_mutex);
8534         h->scan_finished = 1; /* no scan currently in progress */
8535
8536         pci_set_drvdata(pdev, h);
8537         h->ndevices = 0;
8538
8539         spin_lock_init(&h->devlock);
8540         rc = hpsa_put_ctlr_into_performant_mode(h);
8541         if (rc)
8542                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8543
8544         /* hook into SCSI subsystem */
8545         rc = hpsa_scsi_add_host(h);
8546         if (rc)
8547                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8548
8549         /* create the resubmit workqueue */
8550         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8551         if (!h->rescan_ctlr_wq) {
8552                 rc = -ENOMEM;
8553                 goto clean7;
8554         }
8555
8556         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8557         if (!h->resubmit_wq) {
8558                 rc = -ENOMEM;
8559                 goto clean7;    /* aer/h */
8560         }
8561
8562         /*
8563          * At this point, the controller is ready to take commands.
8564          * Now, if reset_devices and the hard reset didn't work, try
8565          * the soft reset and see if that works.
8566          */
8567         if (try_soft_reset) {
8568
8569                 /* This is kind of gross.  We may or may not get a completion
8570                  * from the soft reset command, and if we do, then the value
8571                  * from the fifo may or may not be valid.  So, we wait 10 secs
8572                  * after the reset throwing away any completions we get during
8573                  * that time.  Unregister the interrupt handler and register
8574                  * fake ones to scoop up any residual completions.
8575                  */
8576                 spin_lock_irqsave(&h->lock, flags);
8577                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8578                 spin_unlock_irqrestore(&h->lock, flags);
8579                 hpsa_free_irqs(h);
8580                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8581                                         hpsa_intx_discard_completions);
8582                 if (rc) {
8583                         dev_warn(&h->pdev->dev,
8584                                 "Failed to request_irq after soft reset.\n");
8585                         /*
8586                          * cannot goto clean7 or free_irqs will be called
8587                          * again. Instead, do its work
8588                          */
8589                         hpsa_free_performant_mode(h);   /* clean7 */
8590                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8591                         hpsa_free_cmd_pool(h);          /* clean5 */
8592                         /*
8593                          * skip hpsa_free_irqs(h) clean4 since that
8594                          * was just called before request_irqs failed
8595                          */
8596                         goto clean3;
8597                 }
8598
8599                 rc = hpsa_kdump_soft_reset(h);
8600                 if (rc)
8601                         /* Neither hard nor soft reset worked, we're hosed. */
8602                         goto clean7;
8603
8604                 dev_info(&h->pdev->dev, "Board READY.\n");
8605                 dev_info(&h->pdev->dev,
8606                         "Waiting for stale completions to drain.\n");
8607                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8608                 msleep(10000);
8609                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8610
8611                 rc = controller_reset_failed(h->cfgtable);
8612                 if (rc)
8613                         dev_info(&h->pdev->dev,
8614                                 "Soft reset appears to have failed.\n");
8615
8616                 /* since the controller's reset, we have to go back and re-init
8617                  * everything.  Easiest to just forget what we've done and do it
8618                  * all over again.
8619                  */
8620                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8621                 try_soft_reset = 0;
8622                 if (rc)
8623                         /* don't goto clean, we already unallocated */
8624                         return -ENODEV;
8625
8626                 goto reinit_after_soft_reset;
8627         }
8628
8629         /* Enable Accelerated IO path at driver layer */
8630         h->acciopath_status = 1;
8631         /* Disable discovery polling.*/
8632         h->discovery_polling = 0;
8633
8634
8635         /* Turn the interrupts on so we can service requests */
8636         h->access.set_intr_mask(h, HPSA_INTR_ON);
8637
8638         hpsa_hba_inquiry(h);
8639
8640         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8641         if (!h->lastlogicals)
8642                 dev_info(&h->pdev->dev,
8643                         "Can't track change to report lun data\n");
8644
8645         /* Monitor the controller for firmware lockups */
8646         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8647         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8648         schedule_delayed_work(&h->monitor_ctlr_work,
8649                                 h->heartbeat_sample_interval);
8650         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8651         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8652                                 h->heartbeat_sample_interval);
8653         return 0;
8654
8655 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8656         hpsa_free_performant_mode(h);
8657         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8658 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8659         hpsa_free_sg_chain_blocks(h);
8660 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8661         hpsa_free_cmd_pool(h);
8662 clean4: /* irq, shost, pci, lu, aer/h */
8663         hpsa_free_irqs(h);
8664 clean3: /* shost, pci, lu, aer/h */
8665         scsi_host_put(h->scsi_host);
8666         h->scsi_host = NULL;
8667 clean2_5: /* pci, lu, aer/h */
8668         hpsa_free_pci_init(h);
8669 clean2: /* lu, aer/h */
8670         if (h->lockup_detected) {
8671                 free_percpu(h->lockup_detected);
8672                 h->lockup_detected = NULL;
8673         }
8674 clean1: /* wq/aer/h */
8675         if (h->resubmit_wq) {
8676                 destroy_workqueue(h->resubmit_wq);
8677                 h->resubmit_wq = NULL;
8678         }
8679         if (h->rescan_ctlr_wq) {
8680                 destroy_workqueue(h->rescan_ctlr_wq);
8681                 h->rescan_ctlr_wq = NULL;
8682         }
8683         kfree(h);
8684         return rc;
8685 }
8686
8687 static void hpsa_flush_cache(struct ctlr_info *h)
8688 {
8689         char *flush_buf;
8690         struct CommandList *c;
8691         int rc;
8692
8693         if (unlikely(lockup_detected(h)))
8694                 return;
8695         flush_buf = kzalloc(4, GFP_KERNEL);
8696         if (!flush_buf)
8697                 return;
8698
8699         c = cmd_alloc(h);
8700
8701         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8702                 RAID_CTLR_LUNID, TYPE_CMD)) {
8703                 goto out;
8704         }
8705         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8706                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8707         if (rc)
8708                 goto out;
8709         if (c->err_info->CommandStatus != 0)
8710 out:
8711                 dev_warn(&h->pdev->dev,
8712                         "error flushing cache on controller\n");
8713         cmd_free(h, c);
8714         kfree(flush_buf);
8715 }
8716
8717 /* Make controller gather fresh report lun data each time we
8718  * send down a report luns request
8719  */
8720 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8721 {
8722         u32 *options;
8723         struct CommandList *c;
8724         int rc;
8725
8726         /* Don't bother trying to set diag options if locked up */
8727         if (unlikely(h->lockup_detected))
8728                 return;
8729
8730         options = kzalloc(sizeof(*options), GFP_KERNEL);
8731         if (!options) {
8732                 dev_err(&h->pdev->dev,
8733                         "Error: failed to disable rld caching, during alloc.\n");
8734                 return;
8735         }
8736
8737         c = cmd_alloc(h);
8738
8739         /* first, get the current diag options settings */
8740         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8741                 RAID_CTLR_LUNID, TYPE_CMD))
8742                 goto errout;
8743
8744         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8745                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8746         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8747                 goto errout;
8748
8749         /* Now, set the bit for disabling the RLD caching */
8750         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8751
8752         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8753                 RAID_CTLR_LUNID, TYPE_CMD))
8754                 goto errout;
8755
8756         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8757                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8758         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8759                 goto errout;
8760
8761         /* Now verify that it got set: */
8762         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8763                 RAID_CTLR_LUNID, TYPE_CMD))
8764                 goto errout;
8765
8766         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8767                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8768         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8769                 goto errout;
8770
8771         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8772                 goto out;
8773
8774 errout:
8775         dev_err(&h->pdev->dev,
8776                         "Error: failed to disable report lun data caching.\n");
8777 out:
8778         cmd_free(h, c);
8779         kfree(options);
8780 }
8781
8782 static void hpsa_shutdown(struct pci_dev *pdev)
8783 {
8784         struct ctlr_info *h;
8785
8786         h = pci_get_drvdata(pdev);
8787         /* Turn board interrupts off  and send the flush cache command
8788          * sendcmd will turn off interrupt, and send the flush...
8789          * To write all data in the battery backed cache to disks
8790          */
8791         hpsa_flush_cache(h);
8792         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8793         hpsa_free_irqs(h);                      /* init_one 4 */
8794         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8795 }
8796
8797 static void hpsa_free_device_info(struct ctlr_info *h)
8798 {
8799         int i;
8800
8801         for (i = 0; i < h->ndevices; i++) {
8802                 kfree(h->dev[i]);
8803                 h->dev[i] = NULL;
8804         }
8805 }
8806
8807 static void hpsa_remove_one(struct pci_dev *pdev)
8808 {
8809         struct ctlr_info *h;
8810         unsigned long flags;
8811
8812         if (pci_get_drvdata(pdev) == NULL) {
8813                 dev_err(&pdev->dev, "unable to remove device\n");
8814                 return;
8815         }
8816         h = pci_get_drvdata(pdev);
8817
8818         /* Get rid of any controller monitoring work items */
8819         spin_lock_irqsave(&h->lock, flags);
8820         h->remove_in_progress = 1;
8821         spin_unlock_irqrestore(&h->lock, flags);
8822         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8823         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8824         destroy_workqueue(h->rescan_ctlr_wq);
8825         destroy_workqueue(h->resubmit_wq);
8826
8827         /*
8828          * Call before disabling interrupts.
8829          * scsi_remove_host can trigger I/O operations especially
8830          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8831          * operations which cannot complete and will hang the system.
8832          */
8833         if (h->scsi_host)
8834                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8835         /* includes hpsa_free_irqs - init_one 4 */
8836         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8837         hpsa_shutdown(pdev);
8838
8839         hpsa_free_device_info(h);               /* scan */
8840
8841         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8842         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8843         hpsa_free_ioaccel2_sg_chain_blocks(h);
8844         hpsa_free_performant_mode(h);                   /* init_one 7 */
8845         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8846         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8847         kfree(h->lastlogicals);
8848
8849         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8850
8851         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8852         h->scsi_host = NULL;                            /* init_one 3 */
8853
8854         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8855         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8856
8857         free_percpu(h->lockup_detected);                /* init_one 2 */
8858         h->lockup_detected = NULL;                      /* init_one 2 */
8859         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8860
8861         hpsa_delete_sas_host(h);
8862
8863         kfree(h);                                       /* init_one 1 */
8864 }
8865
8866 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8867         __attribute__((unused)) pm_message_t state)
8868 {
8869         return -ENOSYS;
8870 }
8871
8872 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8873 {
8874         return -ENOSYS;
8875 }
8876
8877 static struct pci_driver hpsa_pci_driver = {
8878         .name = HPSA,
8879         .probe = hpsa_init_one,
8880         .remove = hpsa_remove_one,
8881         .id_table = hpsa_pci_device_id, /* id_table */
8882         .shutdown = hpsa_shutdown,
8883         .suspend = hpsa_suspend,
8884         .resume = hpsa_resume,
8885 };
8886
8887 /* Fill in bucket_map[], given nsgs (the max number of
8888  * scatter gather elements supported) and bucket[],
8889  * which is an array of 8 integers.  The bucket[] array
8890  * contains 8 different DMA transfer sizes (in 16
8891  * byte increments) which the controller uses to fetch
8892  * commands.  This function fills in bucket_map[], which
8893  * maps a given number of scatter gather elements to one of
8894  * the 8 DMA transfer sizes.  The point of it is to allow the
8895  * controller to only do as much DMA as needed to fetch the
8896  * command, with the DMA transfer size encoded in the lower
8897  * bits of the command address.
8898  */
8899 static void  calc_bucket_map(int bucket[], int num_buckets,
8900         int nsgs, int min_blocks, u32 *bucket_map)
8901 {
8902         int i, j, b, size;
8903
8904         /* Note, bucket_map must have nsgs+1 entries. */
8905         for (i = 0; i <= nsgs; i++) {
8906                 /* Compute size of a command with i SG entries */
8907                 size = i + min_blocks;
8908                 b = num_buckets; /* Assume the biggest bucket */
8909                 /* Find the bucket that is just big enough */
8910                 for (j = 0; j < num_buckets; j++) {
8911                         if (bucket[j] >= size) {
8912                                 b = j;
8913                                 break;
8914                         }
8915                 }
8916                 /* for a command with i SG entries, use bucket b. */
8917                 bucket_map[i] = b;
8918         }
8919 }
8920
8921 /*
8922  * return -ENODEV on err, 0 on success (or no action)
8923  * allocates numerous items that must be freed later
8924  */
8925 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8926 {
8927         int i;
8928         unsigned long register_value;
8929         unsigned long transMethod = CFGTBL_Trans_Performant |
8930                         (trans_support & CFGTBL_Trans_use_short_tags) |
8931                                 CFGTBL_Trans_enable_directed_msix |
8932                         (trans_support & (CFGTBL_Trans_io_accel1 |
8933                                 CFGTBL_Trans_io_accel2));
8934         struct access_method access = SA5_performant_access;
8935
8936         /* This is a bit complicated.  There are 8 registers on
8937          * the controller which we write to to tell it 8 different
8938          * sizes of commands which there may be.  It's a way of
8939          * reducing the DMA done to fetch each command.  Encoded into
8940          * each command's tag are 3 bits which communicate to the controller
8941          * which of the eight sizes that command fits within.  The size of
8942          * each command depends on how many scatter gather entries there are.
8943          * Each SG entry requires 16 bytes.  The eight registers are programmed
8944          * with the number of 16-byte blocks a command of that size requires.
8945          * The smallest command possible requires 5 such 16 byte blocks.
8946          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8947          * blocks.  Note, this only extends to the SG entries contained
8948          * within the command block, and does not extend to chained blocks
8949          * of SG elements.   bft[] contains the eight values we write to
8950          * the registers.  They are not evenly distributed, but have more
8951          * sizes for small commands, and fewer sizes for larger commands.
8952          */
8953         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8954 #define MIN_IOACCEL2_BFT_ENTRY 5
8955 #define HPSA_IOACCEL2_HEADER_SZ 4
8956         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8957                         13, 14, 15, 16, 17, 18, 19,
8958                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8959         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8960         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8961         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8962                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8963         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8964         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8965         /*  5 = 1 s/g entry or 4k
8966          *  6 = 2 s/g entry or 8k
8967          *  8 = 4 s/g entry or 16k
8968          * 10 = 6 s/g entry or 24k
8969          */
8970
8971         /* If the controller supports either ioaccel method then
8972          * we can also use the RAID stack submit path that does not
8973          * perform the superfluous readl() after each command submission.
8974          */
8975         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8976                 access = SA5_performant_access_no_read;
8977
8978         /* Controller spec: zero out this buffer. */
8979         for (i = 0; i < h->nreply_queues; i++)
8980                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8981
8982         bft[7] = SG_ENTRIES_IN_CMD + 4;
8983         calc_bucket_map(bft, ARRAY_SIZE(bft),
8984                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8985         for (i = 0; i < 8; i++)
8986                 writel(bft[i], &h->transtable->BlockFetch[i]);
8987
8988         /* size of controller ring buffer */
8989         writel(h->max_commands, &h->transtable->RepQSize);
8990         writel(h->nreply_queues, &h->transtable->RepQCount);
8991         writel(0, &h->transtable->RepQCtrAddrLow32);
8992         writel(0, &h->transtable->RepQCtrAddrHigh32);
8993
8994         for (i = 0; i < h->nreply_queues; i++) {
8995                 writel(0, &h->transtable->RepQAddr[i].upper);
8996                 writel(h->reply_queue[i].busaddr,
8997                         &h->transtable->RepQAddr[i].lower);
8998         }
8999
9000         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9001         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9002         /*
9003          * enable outbound interrupt coalescing in accelerator mode;
9004          */
9005         if (trans_support & CFGTBL_Trans_io_accel1) {
9006                 access = SA5_ioaccel_mode1_access;
9007                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9008                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9009         } else {
9010                 if (trans_support & CFGTBL_Trans_io_accel2) {
9011                         access = SA5_ioaccel_mode2_access;
9012                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9013                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9014                 }
9015         }
9016         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9017         if (hpsa_wait_for_mode_change_ack(h)) {
9018                 dev_err(&h->pdev->dev,
9019                         "performant mode problem - doorbell timeout\n");
9020                 return -ENODEV;
9021         }
9022         register_value = readl(&(h->cfgtable->TransportActive));
9023         if (!(register_value & CFGTBL_Trans_Performant)) {
9024                 dev_err(&h->pdev->dev,
9025                         "performant mode problem - transport not active\n");
9026                 return -ENODEV;
9027         }
9028         /* Change the access methods to the performant access methods */
9029         h->access = access;
9030         h->transMethod = transMethod;
9031
9032         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9033                 (trans_support & CFGTBL_Trans_io_accel2)))
9034                 return 0;
9035
9036         if (trans_support & CFGTBL_Trans_io_accel1) {
9037                 /* Set up I/O accelerator mode */
9038                 for (i = 0; i < h->nreply_queues; i++) {
9039                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9040                         h->reply_queue[i].current_entry =
9041                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9042                 }
9043                 bft[7] = h->ioaccel_maxsg + 8;
9044                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9045                                 h->ioaccel1_blockFetchTable);
9046
9047                 /* initialize all reply queue entries to unused */
9048                 for (i = 0; i < h->nreply_queues; i++)
9049                         memset(h->reply_queue[i].head,
9050                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9051                                 h->reply_queue_size);
9052
9053                 /* set all the constant fields in the accelerator command
9054                  * frames once at init time to save CPU cycles later.
9055                  */
9056                 for (i = 0; i < h->nr_cmds; i++) {
9057                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9058
9059                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9060                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9061                                         (i * sizeof(struct ErrorInfo)));
9062                         cp->err_info_len = sizeof(struct ErrorInfo);
9063                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9064                         cp->host_context_flags =
9065                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9066                         cp->timeout_sec = 0;
9067                         cp->ReplyQueue = 0;
9068                         cp->tag =
9069                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9070                         cp->host_addr =
9071                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9072                                         (i * sizeof(struct io_accel1_cmd)));
9073                 }
9074         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9075                 u64 cfg_offset, cfg_base_addr_index;
9076                 u32 bft2_offset, cfg_base_addr;
9077                 int rc;
9078
9079                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9080                         &cfg_base_addr_index, &cfg_offset);
9081                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9082                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9083                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9084                                 4, h->ioaccel2_blockFetchTable);
9085                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9086                 BUILD_BUG_ON(offsetof(struct CfgTable,
9087                                 io_accel_request_size_offset) != 0xb8);
9088                 h->ioaccel2_bft2_regs =
9089                         remap_pci_mem(pci_resource_start(h->pdev,
9090                                         cfg_base_addr_index) +
9091                                         cfg_offset + bft2_offset,
9092                                         ARRAY_SIZE(bft2) *
9093                                         sizeof(*h->ioaccel2_bft2_regs));
9094                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9095                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9096         }
9097         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9098         if (hpsa_wait_for_mode_change_ack(h)) {
9099                 dev_err(&h->pdev->dev,
9100                         "performant mode problem - enabling ioaccel mode\n");
9101                 return -ENODEV;
9102         }
9103         return 0;
9104 }
9105
9106 /* Free ioaccel1 mode command blocks and block fetch table */
9107 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9108 {
9109         if (h->ioaccel_cmd_pool) {
9110                 pci_free_consistent(h->pdev,
9111                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9112                         h->ioaccel_cmd_pool,
9113                         h->ioaccel_cmd_pool_dhandle);
9114                 h->ioaccel_cmd_pool = NULL;
9115                 h->ioaccel_cmd_pool_dhandle = 0;
9116         }
9117         kfree(h->ioaccel1_blockFetchTable);
9118         h->ioaccel1_blockFetchTable = NULL;
9119 }
9120
9121 /* Allocate ioaccel1 mode command blocks and block fetch table */
9122 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9123 {
9124         h->ioaccel_maxsg =
9125                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9126         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9127                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9128
9129         /* Command structures must be aligned on a 128-byte boundary
9130          * because the 7 lower bits of the address are used by the
9131          * hardware.
9132          */
9133         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9134                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9135         h->ioaccel_cmd_pool =
9136                 pci_alloc_consistent(h->pdev,
9137                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9138                         &(h->ioaccel_cmd_pool_dhandle));
9139
9140         h->ioaccel1_blockFetchTable =
9141                 kmalloc(((h->ioaccel_maxsg + 1) *
9142                                 sizeof(u32)), GFP_KERNEL);
9143
9144         if ((h->ioaccel_cmd_pool == NULL) ||
9145                 (h->ioaccel1_blockFetchTable == NULL))
9146                 goto clean_up;
9147
9148         memset(h->ioaccel_cmd_pool, 0,
9149                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9150         return 0;
9151
9152 clean_up:
9153         hpsa_free_ioaccel1_cmd_and_bft(h);
9154         return -ENOMEM;
9155 }
9156
9157 /* Free ioaccel2 mode command blocks and block fetch table */
9158 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9159 {
9160         hpsa_free_ioaccel2_sg_chain_blocks(h);
9161
9162         if (h->ioaccel2_cmd_pool) {
9163                 pci_free_consistent(h->pdev,
9164                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9165                         h->ioaccel2_cmd_pool,
9166                         h->ioaccel2_cmd_pool_dhandle);
9167                 h->ioaccel2_cmd_pool = NULL;
9168                 h->ioaccel2_cmd_pool_dhandle = 0;
9169         }
9170         kfree(h->ioaccel2_blockFetchTable);
9171         h->ioaccel2_blockFetchTable = NULL;
9172 }
9173
9174 /* Allocate ioaccel2 mode command blocks and block fetch table */
9175 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9176 {
9177         int rc;
9178
9179         /* Allocate ioaccel2 mode command blocks and block fetch table */
9180
9181         h->ioaccel_maxsg =
9182                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9183         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9184                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9185
9186         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9187                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9188         h->ioaccel2_cmd_pool =
9189                 pci_alloc_consistent(h->pdev,
9190                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9191                         &(h->ioaccel2_cmd_pool_dhandle));
9192
9193         h->ioaccel2_blockFetchTable =
9194                 kmalloc(((h->ioaccel_maxsg + 1) *
9195                                 sizeof(u32)), GFP_KERNEL);
9196
9197         if ((h->ioaccel2_cmd_pool == NULL) ||
9198                 (h->ioaccel2_blockFetchTable == NULL)) {
9199                 rc = -ENOMEM;
9200                 goto clean_up;
9201         }
9202
9203         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9204         if (rc)
9205                 goto clean_up;
9206
9207         memset(h->ioaccel2_cmd_pool, 0,
9208                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9209         return 0;
9210
9211 clean_up:
9212         hpsa_free_ioaccel2_cmd_and_bft(h);
9213         return rc;
9214 }
9215
9216 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9217 static void hpsa_free_performant_mode(struct ctlr_info *h)
9218 {
9219         kfree(h->blockFetchTable);
9220         h->blockFetchTable = NULL;
9221         hpsa_free_reply_queues(h);
9222         hpsa_free_ioaccel1_cmd_and_bft(h);
9223         hpsa_free_ioaccel2_cmd_and_bft(h);
9224 }
9225
9226 /* return -ENODEV on error, 0 on success (or no action)
9227  * allocates numerous items that must be freed later
9228  */
9229 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9230 {
9231         u32 trans_support;
9232         unsigned long transMethod = CFGTBL_Trans_Performant |
9233                                         CFGTBL_Trans_use_short_tags;
9234         int i, rc;
9235
9236         if (hpsa_simple_mode)
9237                 return 0;
9238
9239         trans_support = readl(&(h->cfgtable->TransportSupport));
9240         if (!(trans_support & PERFORMANT_MODE))
9241                 return 0;
9242
9243         /* Check for I/O accelerator mode support */
9244         if (trans_support & CFGTBL_Trans_io_accel1) {
9245                 transMethod |= CFGTBL_Trans_io_accel1 |
9246                                 CFGTBL_Trans_enable_directed_msix;
9247                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9248                 if (rc)
9249                         return rc;
9250         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9251                 transMethod |= CFGTBL_Trans_io_accel2 |
9252                                 CFGTBL_Trans_enable_directed_msix;
9253                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9254                 if (rc)
9255                         return rc;
9256         }
9257
9258         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9259         hpsa_get_max_perf_mode_cmds(h);
9260         /* Performant mode ring buffer and supporting data structures */
9261         h->reply_queue_size = h->max_commands * sizeof(u64);
9262
9263         for (i = 0; i < h->nreply_queues; i++) {
9264                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9265                                                 h->reply_queue_size,
9266                                                 &(h->reply_queue[i].busaddr));
9267                 if (!h->reply_queue[i].head) {
9268                         rc = -ENOMEM;
9269                         goto clean1;    /* rq, ioaccel */
9270                 }
9271                 h->reply_queue[i].size = h->max_commands;
9272                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9273                 h->reply_queue[i].current_entry = 0;
9274         }
9275
9276         /* Need a block fetch table for performant mode */
9277         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9278                                 sizeof(u32)), GFP_KERNEL);
9279         if (!h->blockFetchTable) {
9280                 rc = -ENOMEM;
9281                 goto clean1;    /* rq, ioaccel */
9282         }
9283
9284         rc = hpsa_enter_performant_mode(h, trans_support);
9285         if (rc)
9286                 goto clean2;    /* bft, rq, ioaccel */
9287         return 0;
9288
9289 clean2: /* bft, rq, ioaccel */
9290         kfree(h->blockFetchTable);
9291         h->blockFetchTable = NULL;
9292 clean1: /* rq, ioaccel */
9293         hpsa_free_reply_queues(h);
9294         hpsa_free_ioaccel1_cmd_and_bft(h);
9295         hpsa_free_ioaccel2_cmd_and_bft(h);
9296         return rc;
9297 }
9298
9299 static int is_accelerated_cmd(struct CommandList *c)
9300 {
9301         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9302 }
9303
9304 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9305 {
9306         struct CommandList *c = NULL;
9307         int i, accel_cmds_out;
9308         int refcount;
9309
9310         do { /* wait for all outstanding ioaccel commands to drain out */
9311                 accel_cmds_out = 0;
9312                 for (i = 0; i < h->nr_cmds; i++) {
9313                         c = h->cmd_pool + i;
9314                         refcount = atomic_inc_return(&c->refcount);
9315                         if (refcount > 1) /* Command is allocated */
9316                                 accel_cmds_out += is_accelerated_cmd(c);
9317                         cmd_free(h, c);
9318                 }
9319                 if (accel_cmds_out <= 0)
9320                         break;
9321                 msleep(100);
9322         } while (1);
9323 }
9324
9325 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9326                                 struct hpsa_sas_port *hpsa_sas_port)
9327 {
9328         struct hpsa_sas_phy *hpsa_sas_phy;
9329         struct sas_phy *phy;
9330
9331         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9332         if (!hpsa_sas_phy)
9333                 return NULL;
9334
9335         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9336                 hpsa_sas_port->next_phy_index);
9337         if (!phy) {
9338                 kfree(hpsa_sas_phy);
9339                 return NULL;
9340         }
9341
9342         hpsa_sas_port->next_phy_index++;
9343         hpsa_sas_phy->phy = phy;
9344         hpsa_sas_phy->parent_port = hpsa_sas_port;
9345
9346         return hpsa_sas_phy;
9347 }
9348
9349 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9350 {
9351         struct sas_phy *phy = hpsa_sas_phy->phy;
9352
9353         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9354         sas_phy_free(phy);
9355         if (hpsa_sas_phy->added_to_port)
9356                 list_del(&hpsa_sas_phy->phy_list_entry);
9357         kfree(hpsa_sas_phy);
9358 }
9359
9360 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9361 {
9362         int rc;
9363         struct hpsa_sas_port *hpsa_sas_port;
9364         struct sas_phy *phy;
9365         struct sas_identify *identify;
9366
9367         hpsa_sas_port = hpsa_sas_phy->parent_port;
9368         phy = hpsa_sas_phy->phy;
9369
9370         identify = &phy->identify;
9371         memset(identify, 0, sizeof(*identify));
9372         identify->sas_address = hpsa_sas_port->sas_address;
9373         identify->device_type = SAS_END_DEVICE;
9374         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9375         identify->target_port_protocols = SAS_PROTOCOL_STP;
9376         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9377         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9378         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9379         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9380         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9381
9382         rc = sas_phy_add(hpsa_sas_phy->phy);
9383         if (rc)
9384                 return rc;
9385
9386         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9387         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9388                         &hpsa_sas_port->phy_list_head);
9389         hpsa_sas_phy->added_to_port = true;
9390
9391         return 0;
9392 }
9393
9394 static int
9395         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9396                                 struct sas_rphy *rphy)
9397 {
9398         struct sas_identify *identify;
9399
9400         identify = &rphy->identify;
9401         identify->sas_address = hpsa_sas_port->sas_address;
9402         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9403         identify->target_port_protocols = SAS_PROTOCOL_STP;
9404
9405         return sas_rphy_add(rphy);
9406 }
9407
9408 static struct hpsa_sas_port
9409         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9410                                 u64 sas_address)
9411 {
9412         int rc;
9413         struct hpsa_sas_port *hpsa_sas_port;
9414         struct sas_port *port;
9415
9416         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9417         if (!hpsa_sas_port)
9418                 return NULL;
9419
9420         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9421         hpsa_sas_port->parent_node = hpsa_sas_node;
9422
9423         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9424         if (!port)
9425                 goto free_hpsa_port;
9426
9427         rc = sas_port_add(port);
9428         if (rc)
9429                 goto free_sas_port;
9430
9431         hpsa_sas_port->port = port;
9432         hpsa_sas_port->sas_address = sas_address;
9433         list_add_tail(&hpsa_sas_port->port_list_entry,
9434                         &hpsa_sas_node->port_list_head);
9435
9436         return hpsa_sas_port;
9437
9438 free_sas_port:
9439         sas_port_free(port);
9440 free_hpsa_port:
9441         kfree(hpsa_sas_port);
9442
9443         return NULL;
9444 }
9445
9446 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9447 {
9448         struct hpsa_sas_phy *hpsa_sas_phy;
9449         struct hpsa_sas_phy *next;
9450
9451         list_for_each_entry_safe(hpsa_sas_phy, next,
9452                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9453                 hpsa_free_sas_phy(hpsa_sas_phy);
9454
9455         sas_port_delete(hpsa_sas_port->port);
9456         list_del(&hpsa_sas_port->port_list_entry);
9457         kfree(hpsa_sas_port);
9458 }
9459
9460 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9461 {
9462         struct hpsa_sas_node *hpsa_sas_node;
9463
9464         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9465         if (hpsa_sas_node) {
9466                 hpsa_sas_node->parent_dev = parent_dev;
9467                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9468         }
9469
9470         return hpsa_sas_node;
9471 }
9472
9473 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9474 {
9475         struct hpsa_sas_port *hpsa_sas_port;
9476         struct hpsa_sas_port *next;
9477
9478         if (!hpsa_sas_node)
9479                 return;
9480
9481         list_for_each_entry_safe(hpsa_sas_port, next,
9482                         &hpsa_sas_node->port_list_head, port_list_entry)
9483                 hpsa_free_sas_port(hpsa_sas_port);
9484
9485         kfree(hpsa_sas_node);
9486 }
9487
9488 static struct hpsa_scsi_dev_t
9489         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9490                                         struct sas_rphy *rphy)
9491 {
9492         int i;
9493         struct hpsa_scsi_dev_t *device;
9494
9495         for (i = 0; i < h->ndevices; i++) {
9496                 device = h->dev[i];
9497                 if (!device->sas_port)
9498                         continue;
9499                 if (device->sas_port->rphy == rphy)
9500                         return device;
9501         }
9502
9503         return NULL;
9504 }
9505
9506 static int hpsa_add_sas_host(struct ctlr_info *h)
9507 {
9508         int rc;
9509         struct device *parent_dev;
9510         struct hpsa_sas_node *hpsa_sas_node;
9511         struct hpsa_sas_port *hpsa_sas_port;
9512         struct hpsa_sas_phy *hpsa_sas_phy;
9513
9514         parent_dev = &h->scsi_host->shost_gendev;
9515
9516         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9517         if (!hpsa_sas_node)
9518                 return -ENOMEM;
9519
9520         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9521         if (!hpsa_sas_port) {
9522                 rc = -ENODEV;
9523                 goto free_sas_node;
9524         }
9525
9526         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9527         if (!hpsa_sas_phy) {
9528                 rc = -ENODEV;
9529                 goto free_sas_port;
9530         }
9531
9532         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9533         if (rc)
9534                 goto free_sas_phy;
9535
9536         h->sas_host = hpsa_sas_node;
9537
9538         return 0;
9539
9540 free_sas_phy:
9541         hpsa_free_sas_phy(hpsa_sas_phy);
9542 free_sas_port:
9543         hpsa_free_sas_port(hpsa_sas_port);
9544 free_sas_node:
9545         hpsa_free_sas_node(hpsa_sas_node);
9546
9547         return rc;
9548 }
9549
9550 static void hpsa_delete_sas_host(struct ctlr_info *h)
9551 {
9552         hpsa_free_sas_node(h->sas_host);
9553 }
9554
9555 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9556                                 struct hpsa_scsi_dev_t *device)
9557 {
9558         int rc;
9559         struct hpsa_sas_port *hpsa_sas_port;
9560         struct sas_rphy *rphy;
9561
9562         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9563         if (!hpsa_sas_port)
9564                 return -ENOMEM;
9565
9566         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9567         if (!rphy) {
9568                 rc = -ENODEV;
9569                 goto free_sas_port;
9570         }
9571
9572         hpsa_sas_port->rphy = rphy;
9573         device->sas_port = hpsa_sas_port;
9574
9575         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9576         if (rc)
9577                 goto free_sas_port;
9578
9579         return 0;
9580
9581 free_sas_port:
9582         hpsa_free_sas_port(hpsa_sas_port);
9583         device->sas_port = NULL;
9584
9585         return rc;
9586 }
9587
9588 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9589 {
9590         if (device->sas_port) {
9591                 hpsa_free_sas_port(device->sas_port);
9592                 device->sas_port = NULL;
9593         }
9594 }
9595
9596 static int
9597 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9598 {
9599         return 0;
9600 }
9601
9602 static int
9603 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9604 {
9605         return 0;
9606 }
9607
9608 static int
9609 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9610 {
9611         return -ENXIO;
9612 }
9613
9614 static int
9615 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9616 {
9617         return 0;
9618 }
9619
9620 static int
9621 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9622 {
9623         return 0;
9624 }
9625
9626 static int
9627 hpsa_sas_phy_setup(struct sas_phy *phy)
9628 {
9629         return 0;
9630 }
9631
9632 static void
9633 hpsa_sas_phy_release(struct sas_phy *phy)
9634 {
9635 }
9636
9637 static int
9638 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9639 {
9640         return -EINVAL;
9641 }
9642
9643 /* SMP = Serial Management Protocol */
9644 static int
9645 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9646 struct request *req)
9647 {
9648         return -EINVAL;
9649 }
9650
9651 static struct sas_function_template hpsa_sas_transport_functions = {
9652         .get_linkerrors = hpsa_sas_get_linkerrors,
9653         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9654         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9655         .phy_reset = hpsa_sas_phy_reset,
9656         .phy_enable = hpsa_sas_phy_enable,
9657         .phy_setup = hpsa_sas_phy_setup,
9658         .phy_release = hpsa_sas_phy_release,
9659         .set_phy_speed = hpsa_sas_phy_speed,
9660         .smp_handler = hpsa_sas_smp_handler,
9661 };
9662
9663 /*
9664  *  This is it.  Register the PCI driver information for the cards we control
9665  *  the OS will call our registered routines when it finds one of our cards.
9666  */
9667 static int __init hpsa_init(void)
9668 {
9669         int rc;
9670
9671         hpsa_sas_transport_template =
9672                 sas_attach_transport(&hpsa_sas_transport_functions);
9673         if (!hpsa_sas_transport_template)
9674                 return -ENODEV;
9675
9676         rc = pci_register_driver(&hpsa_pci_driver);
9677
9678         if (rc)
9679                 sas_release_transport(hpsa_sas_transport_template);
9680
9681         return rc;
9682 }
9683
9684 static void __exit hpsa_cleanup(void)
9685 {
9686         pci_unregister_driver(&hpsa_pci_driver);
9687         sas_release_transport(hpsa_sas_transport_template);
9688 }
9689
9690 static void __attribute__((unused)) verify_offsets(void)
9691 {
9692 #define VERIFY_OFFSET(member, offset) \
9693         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9694
9695         VERIFY_OFFSET(structure_size, 0);
9696         VERIFY_OFFSET(volume_blk_size, 4);
9697         VERIFY_OFFSET(volume_blk_cnt, 8);
9698         VERIFY_OFFSET(phys_blk_shift, 16);
9699         VERIFY_OFFSET(parity_rotation_shift, 17);
9700         VERIFY_OFFSET(strip_size, 18);
9701         VERIFY_OFFSET(disk_starting_blk, 20);
9702         VERIFY_OFFSET(disk_blk_cnt, 28);
9703         VERIFY_OFFSET(data_disks_per_row, 36);
9704         VERIFY_OFFSET(metadata_disks_per_row, 38);
9705         VERIFY_OFFSET(row_cnt, 40);
9706         VERIFY_OFFSET(layout_map_count, 42);
9707         VERIFY_OFFSET(flags, 44);
9708         VERIFY_OFFSET(dekindex, 46);
9709         /* VERIFY_OFFSET(reserved, 48 */
9710         VERIFY_OFFSET(data, 64);
9711
9712 #undef VERIFY_OFFSET
9713
9714 #define VERIFY_OFFSET(member, offset) \
9715         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9716
9717         VERIFY_OFFSET(IU_type, 0);
9718         VERIFY_OFFSET(direction, 1);
9719         VERIFY_OFFSET(reply_queue, 2);
9720         /* VERIFY_OFFSET(reserved1, 3);  */
9721         VERIFY_OFFSET(scsi_nexus, 4);
9722         VERIFY_OFFSET(Tag, 8);
9723         VERIFY_OFFSET(cdb, 16);
9724         VERIFY_OFFSET(cciss_lun, 32);
9725         VERIFY_OFFSET(data_len, 40);
9726         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9727         VERIFY_OFFSET(sg_count, 45);
9728         /* VERIFY_OFFSET(reserved3 */
9729         VERIFY_OFFSET(err_ptr, 48);
9730         VERIFY_OFFSET(err_len, 56);
9731         /* VERIFY_OFFSET(reserved4  */
9732         VERIFY_OFFSET(sg, 64);
9733
9734 #undef VERIFY_OFFSET
9735
9736 #define VERIFY_OFFSET(member, offset) \
9737         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9738
9739         VERIFY_OFFSET(dev_handle, 0x00);
9740         VERIFY_OFFSET(reserved1, 0x02);
9741         VERIFY_OFFSET(function, 0x03);
9742         VERIFY_OFFSET(reserved2, 0x04);
9743         VERIFY_OFFSET(err_info, 0x0C);
9744         VERIFY_OFFSET(reserved3, 0x10);
9745         VERIFY_OFFSET(err_info_len, 0x12);
9746         VERIFY_OFFSET(reserved4, 0x13);
9747         VERIFY_OFFSET(sgl_offset, 0x14);
9748         VERIFY_OFFSET(reserved5, 0x15);
9749         VERIFY_OFFSET(transfer_len, 0x1C);
9750         VERIFY_OFFSET(reserved6, 0x20);
9751         VERIFY_OFFSET(io_flags, 0x24);
9752         VERIFY_OFFSET(reserved7, 0x26);
9753         VERIFY_OFFSET(LUN, 0x34);
9754         VERIFY_OFFSET(control, 0x3C);
9755         VERIFY_OFFSET(CDB, 0x40);
9756         VERIFY_OFFSET(reserved8, 0x50);
9757         VERIFY_OFFSET(host_context_flags, 0x60);
9758         VERIFY_OFFSET(timeout_sec, 0x62);
9759         VERIFY_OFFSET(ReplyQueue, 0x64);
9760         VERIFY_OFFSET(reserved9, 0x65);
9761         VERIFY_OFFSET(tag, 0x68);
9762         VERIFY_OFFSET(host_addr, 0x70);
9763         VERIFY_OFFSET(CISS_LUN, 0x78);
9764         VERIFY_OFFSET(SG, 0x78 + 8);
9765 #undef VERIFY_OFFSET
9766 }
9767
9768 module_init(hpsa_init);
9769 module_exit(hpsa_cleanup);