arm64: dts: uniphier: fix gpio-ranges property of PXs3 SoC
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160         {0x40700E11, "Smart Array 5300", &SA5A_access},
161         {0x40800E11, "Smart Array 5i", &SA5B_access},
162         {0x40820E11, "Smart Array 532", &SA5B_access},
163         {0x40830E11, "Smart Array 5312", &SA5B_access},
164         {0x409A0E11, "Smart Array 641", &SA5A_access},
165         {0x409B0E11, "Smart Array 642", &SA5A_access},
166         {0x409C0E11, "Smart Array 6400", &SA5A_access},
167         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168         {0x40910E11, "Smart Array 6i", &SA5A_access},
169         {0x3225103C, "Smart Array P600", &SA5A_access},
170         {0x3223103C, "Smart Array P800", &SA5A_access},
171         {0x3234103C, "Smart Array P400", &SA5A_access},
172         {0x3235103C, "Smart Array P400i", &SA5A_access},
173         {0x3211103C, "Smart Array E200i", &SA5A_access},
174         {0x3212103C, "Smart Array E200", &SA5A_access},
175         {0x3213103C, "Smart Array E200i", &SA5A_access},
176         {0x3214103C, "Smart Array E200i", &SA5A_access},
177         {0x3215103C, "Smart Array E200i", &SA5A_access},
178         {0x3237103C, "Smart Array E500", &SA5A_access},
179         {0x323D103C, "Smart Array P700m", &SA5A_access},
180         {0x3241103C, "Smart Array P212", &SA5_access},
181         {0x3243103C, "Smart Array P410", &SA5_access},
182         {0x3245103C, "Smart Array P410i", &SA5_access},
183         {0x3247103C, "Smart Array P411", &SA5_access},
184         {0x3249103C, "Smart Array P812", &SA5_access},
185         {0x324A103C, "Smart Array P712m", &SA5_access},
186         {0x324B103C, "Smart Array P711m", &SA5_access},
187         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188         {0x3350103C, "Smart Array P222", &SA5_access},
189         {0x3351103C, "Smart Array P420", &SA5_access},
190         {0x3352103C, "Smart Array P421", &SA5_access},
191         {0x3353103C, "Smart Array P822", &SA5_access},
192         {0x3354103C, "Smart Array P420i", &SA5_access},
193         {0x3355103C, "Smart Array P220i", &SA5_access},
194         {0x3356103C, "Smart Array P721m", &SA5_access},
195         {0x1920103C, "Smart Array P430i", &SA5_access},
196         {0x1921103C, "Smart Array P830i", &SA5_access},
197         {0x1922103C, "Smart Array P430", &SA5_access},
198         {0x1923103C, "Smart Array P431", &SA5_access},
199         {0x1924103C, "Smart Array P830", &SA5_access},
200         {0x1925103C, "Smart Array P831", &SA5_access},
201         {0x1926103C, "Smart Array P731m", &SA5_access},
202         {0x1928103C, "Smart Array P230i", &SA5_access},
203         {0x1929103C, "Smart Array P530", &SA5_access},
204         {0x21BD103C, "Smart Array P244br", &SA5_access},
205         {0x21BE103C, "Smart Array P741m", &SA5_access},
206         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207         {0x21C0103C, "Smart Array P440ar", &SA5_access},
208         {0x21C1103C, "Smart Array P840ar", &SA5_access},
209         {0x21C2103C, "Smart Array P440", &SA5_access},
210         {0x21C3103C, "Smart Array P441", &SA5_access},
211         {0x21C4103C, "Smart Array", &SA5_access},
212         {0x21C5103C, "Smart Array P841", &SA5_access},
213         {0x21C6103C, "Smart HBA H244br", &SA5_access},
214         {0x21C7103C, "Smart HBA H240", &SA5_access},
215         {0x21C8103C, "Smart HBA H241", &SA5_access},
216         {0x21C9103C, "Smart Array", &SA5_access},
217         {0x21CA103C, "Smart Array P246br", &SA5_access},
218         {0x21CB103C, "Smart Array P840", &SA5_access},
219         {0x21CC103C, "Smart Array", &SA5_access},
220         {0x21CD103C, "Smart Array", &SA5_access},
221         {0x21CE103C, "Smart HBA", &SA5_access},
222         {0x05809005, "SmartHBA-SA", &SA5_access},
223         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240                         struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244                 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258         void __user *arg);
259 #endif
260
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265                                             struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268         int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276         unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286         struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291         int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297                                u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299                                     unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301                                 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303                                            unsigned char lunaddr[],
304                                            int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306                                      int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321         struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323         unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326                                struct hpsa_scsi_dev_t *dev,
327                                unsigned char *scsi3addr);
328
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331         unsigned long *priv = shost_priv(sdev->host);
332         return (struct ctlr_info *) *priv;
333 }
334
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337         unsigned long *priv = shost_priv(sh);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343         return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348         return c->reset_pending;
349 }
350
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353                         u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355         struct scsi_sense_hdr sshdr;
356         bool rc;
357
358         *sense_key = -1;
359         *asc = -1;
360         *ascq = -1;
361
362         if (sense_data_len < 1)
363                 return;
364
365         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366         if (rc) {
367                 *sense_key = sshdr.sense_key;
368                 *asc = sshdr.asc;
369                 *ascq = sshdr.ascq;
370         }
371 }
372
373 static int check_for_unit_attention(struct ctlr_info *h,
374         struct CommandList *c)
375 {
376         u8 sense_key, asc, ascq;
377         int sense_len;
378
379         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380                 sense_len = sizeof(c->err_info->SenseInfo);
381         else
382                 sense_len = c->err_info->SenseLen;
383
384         decode_sense_data(c->err_info->SenseInfo, sense_len,
385                                 &sense_key, &asc, &ascq);
386         if (sense_key != UNIT_ATTENTION || asc == 0xff)
387                 return 0;
388
389         switch (asc) {
390         case STATE_CHANGED:
391                 dev_warn(&h->pdev->dev,
392                         "%s: a state change detected, command retried\n",
393                         h->devname);
394                 break;
395         case LUN_FAILED:
396                 dev_warn(&h->pdev->dev,
397                         "%s: LUN failure detected\n", h->devname);
398                 break;
399         case REPORT_LUNS_CHANGED:
400                 dev_warn(&h->pdev->dev,
401                         "%s: report LUN data changed\n", h->devname);
402         /*
403          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404          * target (array) devices.
405          */
406                 break;
407         case POWER_OR_RESET:
408                 dev_warn(&h->pdev->dev,
409                         "%s: a power on or device reset detected\n",
410                         h->devname);
411                 break;
412         case UNIT_ATTENTION_CLEARED:
413                 dev_warn(&h->pdev->dev,
414                         "%s: unit attention cleared by another initiator\n",
415                         h->devname);
416                 break;
417         default:
418                 dev_warn(&h->pdev->dev,
419                         "%s: unknown unit attention detected\n",
420                         h->devname);
421                 break;
422         }
423         return 1;
424 }
425
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431                 return 0;
432         dev_warn(&h->pdev->dev, HPSA "device busy");
433         return 1;
434 }
435
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438                 struct device_attribute *attr, char *buf)
439 {
440         int ld;
441         struct ctlr_info *h;
442         struct Scsi_Host *shost = class_to_shost(dev);
443
444         h = shost_to_hba(shost);
445         ld = lockup_detected(h);
446
447         return sprintf(buf, "ld=%d\n", ld);
448 }
449
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451                                          struct device_attribute *attr,
452                                          const char *buf, size_t count)
453 {
454         int status, len;
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         char tmpbuf[10];
458
459         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460                 return -EACCES;
461         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462         strncpy(tmpbuf, buf, len);
463         tmpbuf[len] = '\0';
464         if (sscanf(tmpbuf, "%d", &status) != 1)
465                 return -EINVAL;
466         h = shost_to_hba(shost);
467         h->acciopath_status = !!status;
468         dev_warn(&h->pdev->dev,
469                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470                 h->acciopath_status ? "enabled" : "disabled");
471         return count;
472 }
473
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475                                          struct device_attribute *attr,
476                                          const char *buf, size_t count)
477 {
478         int debug_level, len;
479         struct ctlr_info *h;
480         struct Scsi_Host *shost = class_to_shost(dev);
481         char tmpbuf[10];
482
483         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484                 return -EACCES;
485         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486         strncpy(tmpbuf, buf, len);
487         tmpbuf[len] = '\0';
488         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489                 return -EINVAL;
490         if (debug_level < 0)
491                 debug_level = 0;
492         h = shost_to_hba(shost);
493         h->raid_offload_debug = debug_level;
494         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495                 h->raid_offload_debug);
496         return count;
497 }
498
499 static ssize_t host_store_rescan(struct device *dev,
500                                  struct device_attribute *attr,
501                                  const char *buf, size_t count)
502 {
503         struct ctlr_info *h;
504         struct Scsi_Host *shost = class_to_shost(dev);
505         h = shost_to_hba(shost);
506         hpsa_scan_start(h->scsi_host);
507         return count;
508 }
509
510 static ssize_t host_show_firmware_revision(struct device *dev,
511              struct device_attribute *attr, char *buf)
512 {
513         struct ctlr_info *h;
514         struct Scsi_Host *shost = class_to_shost(dev);
515         unsigned char *fwrev;
516
517         h = shost_to_hba(shost);
518         if (!h->hba_inquiry_data)
519                 return 0;
520         fwrev = &h->hba_inquiry_data[32];
521         return snprintf(buf, 20, "%c%c%c%c\n",
522                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526              struct device_attribute *attr, char *buf)
527 {
528         struct Scsi_Host *shost = class_to_shost(dev);
529         struct ctlr_info *h = shost_to_hba(shost);
530
531         return snprintf(buf, 20, "%d\n",
532                         atomic_read(&h->commands_outstanding));
533 }
534
535 static ssize_t host_show_transport_mode(struct device *dev,
536         struct device_attribute *attr, char *buf)
537 {
538         struct ctlr_info *h;
539         struct Scsi_Host *shost = class_to_shost(dev);
540
541         h = shost_to_hba(shost);
542         return snprintf(buf, 20, "%s\n",
543                 h->transMethod & CFGTBL_Trans_Performant ?
544                         "performant" : "simple");
545 }
546
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548         struct device_attribute *attr, char *buf)
549 {
550         struct ctlr_info *h;
551         struct Scsi_Host *shost = class_to_shost(dev);
552
553         h = shost_to_hba(shost);
554         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560         0x324a103C, /* Smart Array P712m */
561         0x324b103C, /* Smart Array P711m */
562         0x3223103C, /* Smart Array P800 */
563         0x3234103C, /* Smart Array P400 */
564         0x3235103C, /* Smart Array P400i */
565         0x3211103C, /* Smart Array E200i */
566         0x3212103C, /* Smart Array E200 */
567         0x3213103C, /* Smart Array E200i */
568         0x3214103C, /* Smart Array E200i */
569         0x3215103C, /* Smart Array E200i */
570         0x3237103C, /* Smart Array E500 */
571         0x323D103C, /* Smart Array P700m */
572         0x40800E11, /* Smart Array 5i */
573         0x409C0E11, /* Smart Array 6400 */
574         0x409D0E11, /* Smart Array 6400 EM */
575         0x40700E11, /* Smart Array 5300 */
576         0x40820E11, /* Smart Array 532 */
577         0x40830E11, /* Smart Array 5312 */
578         0x409A0E11, /* Smart Array 641 */
579         0x409B0E11, /* Smart Array 642 */
580         0x40910E11, /* Smart Array 6i */
581 };
582
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585         0x40800E11, /* Smart Array 5i */
586         0x40700E11, /* Smart Array 5300 */
587         0x40820E11, /* Smart Array 532 */
588         0x40830E11, /* Smart Array 5312 */
589         0x409A0E11, /* Smart Array 641 */
590         0x409B0E11, /* Smart Array 642 */
591         0x40910E11, /* Smart Array 6i */
592         /* Exclude 640x boards.  These are two pci devices in one slot
593          * which share a battery backed cache module.  One controls the
594          * cache, the other accesses the cache through the one that controls
595          * it.  If we reset the one controlling the cache, the other will
596          * likely not be happy.  Just forbid resetting this conjoined mess.
597          * The 640x isn't really supported by hpsa anyway.
598          */
599         0x409C0E11, /* Smart Array 6400 */
600         0x409D0E11, /* Smart Array 6400 EM */
601 };
602
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605         int i;
606
607         for (i = 0; i < nelems; i++)
608                 if (a[i] == board_id)
609                         return 1;
610         return 0;
611 }
612
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615         return !board_id_in_array(unresettable_controller,
616                         ARRAY_SIZE(unresettable_controller), board_id);
617 }
618
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621         return !board_id_in_array(soft_unresettable_controller,
622                         ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624
625 static int ctlr_is_resettable(u32 board_id)
626 {
627         return ctlr_is_hard_resettable(board_id) ||
628                 ctlr_is_soft_resettable(board_id);
629 }
630
631 static ssize_t host_show_resettable(struct device *dev,
632         struct device_attribute *attr, char *buf)
633 {
634         struct ctlr_info *h;
635         struct Scsi_Host *shost = class_to_shost(dev);
636
637         h = shost_to_hba(shost);
638         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643         return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0     0
650 #define HPSA_RAID_4     1
651 #define HPSA_RAID_1     2       /* also used for RAID 10 */
652 #define HPSA_RAID_5     3       /* also used for RAID 50 */
653 #define HPSA_RAID_51    4
654 #define HPSA_RAID_6     5       /* also used for RAID 60 */
655 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661         return !device->physical_device;
662 }
663
664 static ssize_t raid_level_show(struct device *dev,
665              struct device_attribute *attr, char *buf)
666 {
667         ssize_t l = 0;
668         unsigned char rlevel;
669         struct ctlr_info *h;
670         struct scsi_device *sdev;
671         struct hpsa_scsi_dev_t *hdev;
672         unsigned long flags;
673
674         sdev = to_scsi_device(dev);
675         h = sdev_to_hba(sdev);
676         spin_lock_irqsave(&h->lock, flags);
677         hdev = sdev->hostdata;
678         if (!hdev) {
679                 spin_unlock_irqrestore(&h->lock, flags);
680                 return -ENODEV;
681         }
682
683         /* Is this even a logical drive? */
684         if (!is_logical_device(hdev)) {
685                 spin_unlock_irqrestore(&h->lock, flags);
686                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687                 return l;
688         }
689
690         rlevel = hdev->raid_level;
691         spin_unlock_irqrestore(&h->lock, flags);
692         if (rlevel > RAID_UNKNOWN)
693                 rlevel = RAID_UNKNOWN;
694         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695         return l;
696 }
697
698 static ssize_t lunid_show(struct device *dev,
699              struct device_attribute *attr, char *buf)
700 {
701         struct ctlr_info *h;
702         struct scsi_device *sdev;
703         struct hpsa_scsi_dev_t *hdev;
704         unsigned long flags;
705         unsigned char lunid[8];
706
707         sdev = to_scsi_device(dev);
708         h = sdev_to_hba(sdev);
709         spin_lock_irqsave(&h->lock, flags);
710         hdev = sdev->hostdata;
711         if (!hdev) {
712                 spin_unlock_irqrestore(&h->lock, flags);
713                 return -ENODEV;
714         }
715         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716         spin_unlock_irqrestore(&h->lock, flags);
717         return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719
720 static ssize_t unique_id_show(struct device *dev,
721              struct device_attribute *attr, char *buf)
722 {
723         struct ctlr_info *h;
724         struct scsi_device *sdev;
725         struct hpsa_scsi_dev_t *hdev;
726         unsigned long flags;
727         unsigned char sn[16];
728
729         sdev = to_scsi_device(dev);
730         h = sdev_to_hba(sdev);
731         spin_lock_irqsave(&h->lock, flags);
732         hdev = sdev->hostdata;
733         if (!hdev) {
734                 spin_unlock_irqrestore(&h->lock, flags);
735                 return -ENODEV;
736         }
737         memcpy(sn, hdev->device_id, sizeof(sn));
738         spin_unlock_irqrestore(&h->lock, flags);
739         return snprintf(buf, 16 * 2 + 2,
740                         "%02X%02X%02X%02X%02X%02X%02X%02X"
741                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742                         sn[0], sn[1], sn[2], sn[3],
743                         sn[4], sn[5], sn[6], sn[7],
744                         sn[8], sn[9], sn[10], sn[11],
745                         sn[12], sn[13], sn[14], sn[15]);
746 }
747
748 static ssize_t sas_address_show(struct device *dev,
749               struct device_attribute *attr, char *buf)
750 {
751         struct ctlr_info *h;
752         struct scsi_device *sdev;
753         struct hpsa_scsi_dev_t *hdev;
754         unsigned long flags;
755         u64 sas_address;
756
757         sdev = to_scsi_device(dev);
758         h = sdev_to_hba(sdev);
759         spin_lock_irqsave(&h->lock, flags);
760         hdev = sdev->hostdata;
761         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762                 spin_unlock_irqrestore(&h->lock, flags);
763                 return -ENODEV;
764         }
765         sas_address = hdev->sas_address;
766         spin_unlock_irqrestore(&h->lock, flags);
767
768         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772              struct device_attribute *attr, char *buf)
773 {
774         struct ctlr_info *h;
775         struct scsi_device *sdev;
776         struct hpsa_scsi_dev_t *hdev;
777         unsigned long flags;
778         int offload_enabled;
779
780         sdev = to_scsi_device(dev);
781         h = sdev_to_hba(sdev);
782         spin_lock_irqsave(&h->lock, flags);
783         hdev = sdev->hostdata;
784         if (!hdev) {
785                 spin_unlock_irqrestore(&h->lock, flags);
786                 return -ENODEV;
787         }
788         offload_enabled = hdev->offload_enabled;
789         spin_unlock_irqrestore(&h->lock, flags);
790
791         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792                 return snprintf(buf, 20, "%d\n", offload_enabled);
793         else
794                 return snprintf(buf, 40, "%s\n",
795                                 "Not applicable for a controller");
796 }
797
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800              struct device_attribute *attr, char *buf)
801 {
802         struct ctlr_info *h;
803         struct scsi_device *sdev;
804         struct hpsa_scsi_dev_t *hdev;
805         unsigned long flags;
806         int i;
807         int output_len = 0;
808         u8 box;
809         u8 bay;
810         u8 path_map_index = 0;
811         char *active;
812         unsigned char phys_connector[2];
813
814         sdev = to_scsi_device(dev);
815         h = sdev_to_hba(sdev);
816         spin_lock_irqsave(&h->devlock, flags);
817         hdev = sdev->hostdata;
818         if (!hdev) {
819                 spin_unlock_irqrestore(&h->devlock, flags);
820                 return -ENODEV;
821         }
822
823         bay = hdev->bay;
824         for (i = 0; i < MAX_PATHS; i++) {
825                 path_map_index = 1<<i;
826                 if (i == hdev->active_path_index)
827                         active = "Active";
828                 else if (hdev->path_map & path_map_index)
829                         active = "Inactive";
830                 else
831                         continue;
832
833                 output_len += scnprintf(buf + output_len,
834                                 PAGE_SIZE - output_len,
835                                 "[%d:%d:%d:%d] %20.20s ",
836                                 h->scsi_host->host_no,
837                                 hdev->bus, hdev->target, hdev->lun,
838                                 scsi_device_type(hdev->devtype));
839
840                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841                         output_len += scnprintf(buf + output_len,
842                                                 PAGE_SIZE - output_len,
843                                                 "%s\n", active);
844                         continue;
845                 }
846
847                 box = hdev->box[i];
848                 memcpy(&phys_connector, &hdev->phys_connector[i],
849                         sizeof(phys_connector));
850                 if (phys_connector[0] < '0')
851                         phys_connector[0] = '0';
852                 if (phys_connector[1] < '0')
853                         phys_connector[1] = '0';
854                 output_len += scnprintf(buf + output_len,
855                                 PAGE_SIZE - output_len,
856                                 "PORT: %.2s ",
857                                 phys_connector);
858                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859                         hdev->expose_device) {
860                         if (box == 0 || box == 0xFF) {
861                                 output_len += scnprintf(buf + output_len,
862                                         PAGE_SIZE - output_len,
863                                         "BAY: %hhu %s\n",
864                                         bay, active);
865                         } else {
866                                 output_len += scnprintf(buf + output_len,
867                                         PAGE_SIZE - output_len,
868                                         "BOX: %hhu BAY: %hhu %s\n",
869                                         box, bay, active);
870                         }
871                 } else if (box != 0 && box != 0xFF) {
872                         output_len += scnprintf(buf + output_len,
873                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874                                 box, active);
875                 } else
876                         output_len += scnprintf(buf + output_len,
877                                 PAGE_SIZE - output_len, "%s\n", active);
878         }
879
880         spin_unlock_irqrestore(&h->devlock, flags);
881         return output_len;
882 }
883
884 static ssize_t host_show_ctlr_num(struct device *dev,
885         struct device_attribute *attr, char *buf)
886 {
887         struct ctlr_info *h;
888         struct Scsi_Host *shost = class_to_shost(dev);
889
890         h = shost_to_hba(shost);
891         return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893
894 static ssize_t host_show_legacy_board(struct device *dev,
895         struct device_attribute *attr, char *buf)
896 {
897         struct ctlr_info *h;
898         struct Scsi_Host *shost = class_to_shost(dev);
899
900         h = shost_to_hba(shost);
901         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903
904 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
905 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
906 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910                         host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913                 host_show_hp_ssd_smart_path_status,
914                 host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916                         host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918         host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920         host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922         host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924         host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926         host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928         host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930         host_show_legacy_board, NULL);
931
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933         &dev_attr_raid_level,
934         &dev_attr_lunid,
935         &dev_attr_unique_id,
936         &dev_attr_hp_ssd_smart_path_enabled,
937         &dev_attr_path_info,
938         &dev_attr_sas_address,
939         NULL,
940 };
941
942 static struct device_attribute *hpsa_shost_attrs[] = {
943         &dev_attr_rescan,
944         &dev_attr_firmware_revision,
945         &dev_attr_commands_outstanding,
946         &dev_attr_transport_mode,
947         &dev_attr_resettable,
948         &dev_attr_hp_ssd_smart_path_status,
949         &dev_attr_raid_offload_debug,
950         &dev_attr_lockup_detected,
951         &dev_attr_ctlr_num,
952         &dev_attr_legacy_board,
953         NULL,
954 };
955
956 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
957                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
958
959 static struct scsi_host_template hpsa_driver_template = {
960         .module                 = THIS_MODULE,
961         .name                   = HPSA,
962         .proc_name              = HPSA,
963         .queuecommand           = hpsa_scsi_queue_command,
964         .scan_start             = hpsa_scan_start,
965         .scan_finished          = hpsa_scan_finished,
966         .change_queue_depth     = hpsa_change_queue_depth,
967         .this_id                = -1,
968         .use_clustering         = ENABLE_CLUSTERING,
969         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970         .ioctl                  = hpsa_ioctl,
971         .slave_alloc            = hpsa_slave_alloc,
972         .slave_configure        = hpsa_slave_configure,
973         .slave_destroy          = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975         .compat_ioctl           = hpsa_compat_ioctl,
976 #endif
977         .sdev_attrs = hpsa_sdev_attrs,
978         .shost_attrs = hpsa_shost_attrs,
979         .max_sectors = 1024,
980         .no_write_same = 1,
981 };
982
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985         u32 a;
986         struct reply_queue_buffer *rq = &h->reply_queue[q];
987
988         if (h->transMethod & CFGTBL_Trans_io_accel1)
989                 return h->access.command_completed(h, q);
990
991         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992                 return h->access.command_completed(h, q);
993
994         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995                 a = rq->head[rq->current_entry];
996                 rq->current_entry++;
997                 atomic_dec(&h->commands_outstanding);
998         } else {
999                 a = FIFO_EMPTY;
1000         }
1001         /* Check for wraparound */
1002         if (rq->current_entry == h->max_commands) {
1003                 rq->current_entry = 0;
1004                 rq->wraparound ^= 1;
1005         }
1006         return a;
1007 }
1008
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042                                         int reply_queue)
1043 {
1044         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046                 if (unlikely(!h->msix_vectors))
1047                         return;
1048                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1049                         c->Header.ReplyQueue =
1050                                 raw_smp_processor_id() % h->nreply_queues;
1051                 else
1052                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1053         }
1054 }
1055
1056 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1057                                                 struct CommandList *c,
1058                                                 int reply_queue)
1059 {
1060         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1061
1062         /*
1063          * Tell the controller to post the reply to the queue for this
1064          * processor.  This seems to give the best I/O throughput.
1065          */
1066         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1068         else
1069                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1070         /*
1071          * Set the bits in the address sent down to include:
1072          *  - performant mode bit (bit 0)
1073          *  - pull count (bits 1-3)
1074          *  - command type (bits 4-6)
1075          */
1076         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077                                         IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081                                                 struct CommandList *c,
1082                                                 int reply_queue)
1083 {
1084         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085                 &h->ioaccel2_cmd_pool[c->cmdindex];
1086
1087         /* Tell the controller to post the reply to the queue for this
1088          * processor.  This seems to give the best I/O throughput.
1089          */
1090         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1091                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1092         else
1093                 cp->reply_queue = reply_queue % h->nreply_queues;
1094         /* Set the bits in the address sent down to include:
1095          *  - performant mode bit not used in ioaccel mode 2
1096          *  - pull count (bits 0-3)
1097          *  - command type isn't needed for ioaccel2
1098          */
1099         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1100 }
1101
1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103                                                 struct CommandList *c,
1104                                                 int reply_queue)
1105 {
1106         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1107
1108         /*
1109          * Tell the controller to post the reply to the queue for this
1110          * processor.  This seems to give the best I/O throughput.
1111          */
1112         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1113                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1114         else
1115                 cp->reply_queue = reply_queue % h->nreply_queues;
1116         /*
1117          * Set the bits in the address sent down to include:
1118          *  - performant mode bit not used in ioaccel mode 2
1119          *  - pull count (bits 0-3)
1120          *  - command type isn't needed for ioaccel2
1121          */
1122         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1123 }
1124
1125 static int is_firmware_flash_cmd(u8 *cdb)
1126 {
1127         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1128 }
1129
1130 /*
1131  * During firmware flash, the heartbeat register may not update as frequently
1132  * as it should.  So we dial down lockup detection during firmware flash. and
1133  * dial it back up when firmware flash completes.
1134  */
1135 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1136 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1137 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1138 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1139                 struct CommandList *c)
1140 {
1141         if (!is_firmware_flash_cmd(c->Request.CDB))
1142                 return;
1143         atomic_inc(&h->firmware_flash_in_progress);
1144         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1145 }
1146
1147 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1148                 struct CommandList *c)
1149 {
1150         if (is_firmware_flash_cmd(c->Request.CDB) &&
1151                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1152                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1153 }
1154
1155 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1156         struct CommandList *c, int reply_queue)
1157 {
1158         dial_down_lockup_detection_during_fw_flash(h, c);
1159         atomic_inc(&h->commands_outstanding);
1160         switch (c->cmd_type) {
1161         case CMD_IOACCEL1:
1162                 set_ioaccel1_performant_mode(h, c, reply_queue);
1163                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1164                 break;
1165         case CMD_IOACCEL2:
1166                 set_ioaccel2_performant_mode(h, c, reply_queue);
1167                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1168                 break;
1169         case IOACCEL2_TMF:
1170                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1171                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172                 break;
1173         default:
1174                 set_performant_mode(h, c, reply_queue);
1175                 h->access.submit_command(h, c);
1176         }
1177 }
1178
1179 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1180 {
1181         if (unlikely(hpsa_is_pending_event(c)))
1182                 return finish_cmd(c);
1183
1184         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1185 }
1186
1187 static inline int is_hba_lunid(unsigned char scsi3addr[])
1188 {
1189         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1190 }
1191
1192 static inline int is_scsi_rev_5(struct ctlr_info *h)
1193 {
1194         if (!h->hba_inquiry_data)
1195                 return 0;
1196         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1197                 return 1;
1198         return 0;
1199 }
1200
1201 static int hpsa_find_target_lun(struct ctlr_info *h,
1202         unsigned char scsi3addr[], int bus, int *target, int *lun)
1203 {
1204         /* finds an unused bus, target, lun for a new physical device
1205          * assumes h->devlock is held
1206          */
1207         int i, found = 0;
1208         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1209
1210         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1211
1212         for (i = 0; i < h->ndevices; i++) {
1213                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1214                         __set_bit(h->dev[i]->target, lun_taken);
1215         }
1216
1217         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1218         if (i < HPSA_MAX_DEVICES) {
1219                 /* *bus = 1; */
1220                 *target = i;
1221                 *lun = 0;
1222                 found = 1;
1223         }
1224         return !found;
1225 }
1226
1227 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1228         struct hpsa_scsi_dev_t *dev, char *description)
1229 {
1230 #define LABEL_SIZE 25
1231         char label[LABEL_SIZE];
1232
1233         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1234                 return;
1235
1236         switch (dev->devtype) {
1237         case TYPE_RAID:
1238                 snprintf(label, LABEL_SIZE, "controller");
1239                 break;
1240         case TYPE_ENCLOSURE:
1241                 snprintf(label, LABEL_SIZE, "enclosure");
1242                 break;
1243         case TYPE_DISK:
1244         case TYPE_ZBC:
1245                 if (dev->external)
1246                         snprintf(label, LABEL_SIZE, "external");
1247                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1248                         snprintf(label, LABEL_SIZE, "%s",
1249                                 raid_label[PHYSICAL_DRIVE]);
1250                 else
1251                         snprintf(label, LABEL_SIZE, "RAID-%s",
1252                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1253                                 raid_label[dev->raid_level]);
1254                 break;
1255         case TYPE_ROM:
1256                 snprintf(label, LABEL_SIZE, "rom");
1257                 break;
1258         case TYPE_TAPE:
1259                 snprintf(label, LABEL_SIZE, "tape");
1260                 break;
1261         case TYPE_MEDIUM_CHANGER:
1262                 snprintf(label, LABEL_SIZE, "changer");
1263                 break;
1264         default:
1265                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1266                 break;
1267         }
1268
1269         dev_printk(level, &h->pdev->dev,
1270                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1271                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1272                         description,
1273                         scsi_device_type(dev->devtype),
1274                         dev->vendor,
1275                         dev->model,
1276                         label,
1277                         dev->offload_config ? '+' : '-',
1278                         dev->offload_to_be_enabled ? '+' : '-',
1279                         dev->expose_device);
1280 }
1281
1282 /* Add an entry into h->dev[] array. */
1283 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1284                 struct hpsa_scsi_dev_t *device,
1285                 struct hpsa_scsi_dev_t *added[], int *nadded)
1286 {
1287         /* assumes h->devlock is held */
1288         int n = h->ndevices;
1289         int i;
1290         unsigned char addr1[8], addr2[8];
1291         struct hpsa_scsi_dev_t *sd;
1292
1293         if (n >= HPSA_MAX_DEVICES) {
1294                 dev_err(&h->pdev->dev, "too many devices, some will be "
1295                         "inaccessible.\n");
1296                 return -1;
1297         }
1298
1299         /* physical devices do not have lun or target assigned until now. */
1300         if (device->lun != -1)
1301                 /* Logical device, lun is already assigned. */
1302                 goto lun_assigned;
1303
1304         /* If this device a non-zero lun of a multi-lun device
1305          * byte 4 of the 8-byte LUN addr will contain the logical
1306          * unit no, zero otherwise.
1307          */
1308         if (device->scsi3addr[4] == 0) {
1309                 /* This is not a non-zero lun of a multi-lun device */
1310                 if (hpsa_find_target_lun(h, device->scsi3addr,
1311                         device->bus, &device->target, &device->lun) != 0)
1312                         return -1;
1313                 goto lun_assigned;
1314         }
1315
1316         /* This is a non-zero lun of a multi-lun device.
1317          * Search through our list and find the device which
1318          * has the same 8 byte LUN address, excepting byte 4 and 5.
1319          * Assign the same bus and target for this new LUN.
1320          * Use the logical unit number from the firmware.
1321          */
1322         memcpy(addr1, device->scsi3addr, 8);
1323         addr1[4] = 0;
1324         addr1[5] = 0;
1325         for (i = 0; i < n; i++) {
1326                 sd = h->dev[i];
1327                 memcpy(addr2, sd->scsi3addr, 8);
1328                 addr2[4] = 0;
1329                 addr2[5] = 0;
1330                 /* differ only in byte 4 and 5? */
1331                 if (memcmp(addr1, addr2, 8) == 0) {
1332                         device->bus = sd->bus;
1333                         device->target = sd->target;
1334                         device->lun = device->scsi3addr[4];
1335                         break;
1336                 }
1337         }
1338         if (device->lun == -1) {
1339                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1340                         " suspect firmware bug or unsupported hardware "
1341                         "configuration.\n");
1342                         return -1;
1343         }
1344
1345 lun_assigned:
1346
1347         h->dev[n] = device;
1348         h->ndevices++;
1349         added[*nadded] = device;
1350         (*nadded)++;
1351         hpsa_show_dev_msg(KERN_INFO, h, device,
1352                 device->expose_device ? "added" : "masked");
1353         return 0;
1354 }
1355
1356 /*
1357  * Called during a scan operation.
1358  *
1359  * Update an entry in h->dev[] array.
1360  */
1361 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1362         int entry, struct hpsa_scsi_dev_t *new_entry)
1363 {
1364         /* assumes h->devlock is held */
1365         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1366
1367         /* Raid level changed. */
1368         h->dev[entry]->raid_level = new_entry->raid_level;
1369
1370         /*
1371          * ioacccel_handle may have changed for a dual domain disk
1372          */
1373         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1374
1375         /* Raid offload parameters changed.  Careful about the ordering. */
1376         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1377                 /*
1378                  * if drive is newly offload_enabled, we want to copy the
1379                  * raid map data first.  If previously offload_enabled and
1380                  * offload_config were set, raid map data had better be
1381                  * the same as it was before. If raid map data has changed
1382                  * then it had better be the case that
1383                  * h->dev[entry]->offload_enabled is currently 0.
1384                  */
1385                 h->dev[entry]->raid_map = new_entry->raid_map;
1386                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1387         }
1388         if (new_entry->offload_to_be_enabled) {
1389                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1390                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1391         }
1392         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1393         h->dev[entry]->offload_config = new_entry->offload_config;
1394         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1395         h->dev[entry]->queue_depth = new_entry->queue_depth;
1396
1397         /*
1398          * We can turn off ioaccel offload now, but need to delay turning
1399          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1400          * can't do that until all the devices are updated.
1401          */
1402         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1403
1404         /*
1405          * turn ioaccel off immediately if told to do so.
1406          */
1407         if (!new_entry->offload_to_be_enabled)
1408                 h->dev[entry]->offload_enabled = 0;
1409
1410         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1411 }
1412
1413 /* Replace an entry from h->dev[] array. */
1414 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1415         int entry, struct hpsa_scsi_dev_t *new_entry,
1416         struct hpsa_scsi_dev_t *added[], int *nadded,
1417         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1418 {
1419         /* assumes h->devlock is held */
1420         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1421         removed[*nremoved] = h->dev[entry];
1422         (*nremoved)++;
1423
1424         /*
1425          * New physical devices won't have target/lun assigned yet
1426          * so we need to preserve the values in the slot we are replacing.
1427          */
1428         if (new_entry->target == -1) {
1429                 new_entry->target = h->dev[entry]->target;
1430                 new_entry->lun = h->dev[entry]->lun;
1431         }
1432
1433         h->dev[entry] = new_entry;
1434         added[*nadded] = new_entry;
1435         (*nadded)++;
1436
1437         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1438 }
1439
1440 /* Remove an entry from h->dev[] array. */
1441 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1442         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1443 {
1444         /* assumes h->devlock is held */
1445         int i;
1446         struct hpsa_scsi_dev_t *sd;
1447
1448         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1449
1450         sd = h->dev[entry];
1451         removed[*nremoved] = h->dev[entry];
1452         (*nremoved)++;
1453
1454         for (i = entry; i < h->ndevices-1; i++)
1455                 h->dev[i] = h->dev[i+1];
1456         h->ndevices--;
1457         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1458 }
1459
1460 #define SCSI3ADDR_EQ(a, b) ( \
1461         (a)[7] == (b)[7] && \
1462         (a)[6] == (b)[6] && \
1463         (a)[5] == (b)[5] && \
1464         (a)[4] == (b)[4] && \
1465         (a)[3] == (b)[3] && \
1466         (a)[2] == (b)[2] && \
1467         (a)[1] == (b)[1] && \
1468         (a)[0] == (b)[0])
1469
1470 static void fixup_botched_add(struct ctlr_info *h,
1471         struct hpsa_scsi_dev_t *added)
1472 {
1473         /* called when scsi_add_device fails in order to re-adjust
1474          * h->dev[] to match the mid layer's view.
1475          */
1476         unsigned long flags;
1477         int i, j;
1478
1479         spin_lock_irqsave(&h->lock, flags);
1480         for (i = 0; i < h->ndevices; i++) {
1481                 if (h->dev[i] == added) {
1482                         for (j = i; j < h->ndevices-1; j++)
1483                                 h->dev[j] = h->dev[j+1];
1484                         h->ndevices--;
1485                         break;
1486                 }
1487         }
1488         spin_unlock_irqrestore(&h->lock, flags);
1489         kfree(added);
1490 }
1491
1492 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1493         struct hpsa_scsi_dev_t *dev2)
1494 {
1495         /* we compare everything except lun and target as these
1496          * are not yet assigned.  Compare parts likely
1497          * to differ first
1498          */
1499         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1500                 sizeof(dev1->scsi3addr)) != 0)
1501                 return 0;
1502         if (memcmp(dev1->device_id, dev2->device_id,
1503                 sizeof(dev1->device_id)) != 0)
1504                 return 0;
1505         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1506                 return 0;
1507         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1508                 return 0;
1509         if (dev1->devtype != dev2->devtype)
1510                 return 0;
1511         if (dev1->bus != dev2->bus)
1512                 return 0;
1513         return 1;
1514 }
1515
1516 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1517         struct hpsa_scsi_dev_t *dev2)
1518 {
1519         /* Device attributes that can change, but don't mean
1520          * that the device is a different device, nor that the OS
1521          * needs to be told anything about the change.
1522          */
1523         if (dev1->raid_level != dev2->raid_level)
1524                 return 1;
1525         if (dev1->offload_config != dev2->offload_config)
1526                 return 1;
1527         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1528                 return 1;
1529         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1530                 if (dev1->queue_depth != dev2->queue_depth)
1531                         return 1;
1532         /*
1533          * This can happen for dual domain devices. An active
1534          * path change causes the ioaccel handle to change
1535          *
1536          * for example note the handle differences between p0 and p1
1537          * Device                    WWN               ,WWN hash,Handle
1538          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1539          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1540          */
1541         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1542                 return 1;
1543         return 0;
1544 }
1545
1546 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1547  * and return needle location in *index.  If scsi3addr matches, but not
1548  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1549  * location in *index.
1550  * In the case of a minor device attribute change, such as RAID level, just
1551  * return DEVICE_UPDATED, along with the updated device's location in index.
1552  * If needle not found, return DEVICE_NOT_FOUND.
1553  */
1554 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1555         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1556         int *index)
1557 {
1558         int i;
1559 #define DEVICE_NOT_FOUND 0
1560 #define DEVICE_CHANGED 1
1561 #define DEVICE_SAME 2
1562 #define DEVICE_UPDATED 3
1563         if (needle == NULL)
1564                 return DEVICE_NOT_FOUND;
1565
1566         for (i = 0; i < haystack_size; i++) {
1567                 if (haystack[i] == NULL) /* previously removed. */
1568                         continue;
1569                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1570                         *index = i;
1571                         if (device_is_the_same(needle, haystack[i])) {
1572                                 if (device_updated(needle, haystack[i]))
1573                                         return DEVICE_UPDATED;
1574                                 return DEVICE_SAME;
1575                         } else {
1576                                 /* Keep offline devices offline */
1577                                 if (needle->volume_offline)
1578                                         return DEVICE_NOT_FOUND;
1579                                 return DEVICE_CHANGED;
1580                         }
1581                 }
1582         }
1583         *index = -1;
1584         return DEVICE_NOT_FOUND;
1585 }
1586
1587 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1588                                         unsigned char scsi3addr[])
1589 {
1590         struct offline_device_entry *device;
1591         unsigned long flags;
1592
1593         /* Check to see if device is already on the list */
1594         spin_lock_irqsave(&h->offline_device_lock, flags);
1595         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1596                 if (memcmp(device->scsi3addr, scsi3addr,
1597                         sizeof(device->scsi3addr)) == 0) {
1598                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1599                         return;
1600                 }
1601         }
1602         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1603
1604         /* Device is not on the list, add it. */
1605         device = kmalloc(sizeof(*device), GFP_KERNEL);
1606         if (!device)
1607                 return;
1608
1609         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1610         spin_lock_irqsave(&h->offline_device_lock, flags);
1611         list_add_tail(&device->offline_list, &h->offline_device_list);
1612         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1613 }
1614
1615 /* Print a message explaining various offline volume states */
1616 static void hpsa_show_volume_status(struct ctlr_info *h,
1617         struct hpsa_scsi_dev_t *sd)
1618 {
1619         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1620                 dev_info(&h->pdev->dev,
1621                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1622                         h->scsi_host->host_no,
1623                         sd->bus, sd->target, sd->lun);
1624         switch (sd->volume_offline) {
1625         case HPSA_LV_OK:
1626                 break;
1627         case HPSA_LV_UNDERGOING_ERASE:
1628                 dev_info(&h->pdev->dev,
1629                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1630                         h->scsi_host->host_no,
1631                         sd->bus, sd->target, sd->lun);
1632                 break;
1633         case HPSA_LV_NOT_AVAILABLE:
1634                 dev_info(&h->pdev->dev,
1635                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1636                         h->scsi_host->host_no,
1637                         sd->bus, sd->target, sd->lun);
1638                 break;
1639         case HPSA_LV_UNDERGOING_RPI:
1640                 dev_info(&h->pdev->dev,
1641                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1642                         h->scsi_host->host_no,
1643                         sd->bus, sd->target, sd->lun);
1644                 break;
1645         case HPSA_LV_PENDING_RPI:
1646                 dev_info(&h->pdev->dev,
1647                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1648                         h->scsi_host->host_no,
1649                         sd->bus, sd->target, sd->lun);
1650                 break;
1651         case HPSA_LV_ENCRYPTED_NO_KEY:
1652                 dev_info(&h->pdev->dev,
1653                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1654                         h->scsi_host->host_no,
1655                         sd->bus, sd->target, sd->lun);
1656                 break;
1657         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1658                 dev_info(&h->pdev->dev,
1659                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1660                         h->scsi_host->host_no,
1661                         sd->bus, sd->target, sd->lun);
1662                 break;
1663         case HPSA_LV_UNDERGOING_ENCRYPTION:
1664                 dev_info(&h->pdev->dev,
1665                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1666                         h->scsi_host->host_no,
1667                         sd->bus, sd->target, sd->lun);
1668                 break;
1669         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1670                 dev_info(&h->pdev->dev,
1671                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1672                         h->scsi_host->host_no,
1673                         sd->bus, sd->target, sd->lun);
1674                 break;
1675         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1676                 dev_info(&h->pdev->dev,
1677                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1678                         h->scsi_host->host_no,
1679                         sd->bus, sd->target, sd->lun);
1680                 break;
1681         case HPSA_LV_PENDING_ENCRYPTION:
1682                 dev_info(&h->pdev->dev,
1683                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1684                         h->scsi_host->host_no,
1685                         sd->bus, sd->target, sd->lun);
1686                 break;
1687         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1688                 dev_info(&h->pdev->dev,
1689                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1690                         h->scsi_host->host_no,
1691                         sd->bus, sd->target, sd->lun);
1692                 break;
1693         }
1694 }
1695
1696 /*
1697  * Figure the list of physical drive pointers for a logical drive with
1698  * raid offload configured.
1699  */
1700 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1701                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1702                                 struct hpsa_scsi_dev_t *logical_drive)
1703 {
1704         struct raid_map_data *map = &logical_drive->raid_map;
1705         struct raid_map_disk_data *dd = &map->data[0];
1706         int i, j;
1707         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1708                                 le16_to_cpu(map->metadata_disks_per_row);
1709         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1710                                 le16_to_cpu(map->layout_map_count) *
1711                                 total_disks_per_row;
1712         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1713                                 total_disks_per_row;
1714         int qdepth;
1715
1716         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1717                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1718
1719         logical_drive->nphysical_disks = nraid_map_entries;
1720
1721         qdepth = 0;
1722         for (i = 0; i < nraid_map_entries; i++) {
1723                 logical_drive->phys_disk[i] = NULL;
1724                 if (!logical_drive->offload_config)
1725                         continue;
1726                 for (j = 0; j < ndevices; j++) {
1727                         if (dev[j] == NULL)
1728                                 continue;
1729                         if (dev[j]->devtype != TYPE_DISK &&
1730                             dev[j]->devtype != TYPE_ZBC)
1731                                 continue;
1732                         if (is_logical_device(dev[j]))
1733                                 continue;
1734                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1735                                 continue;
1736
1737                         logical_drive->phys_disk[i] = dev[j];
1738                         if (i < nphys_disk)
1739                                 qdepth = min(h->nr_cmds, qdepth +
1740                                     logical_drive->phys_disk[i]->queue_depth);
1741                         break;
1742                 }
1743
1744                 /*
1745                  * This can happen if a physical drive is removed and
1746                  * the logical drive is degraded.  In that case, the RAID
1747                  * map data will refer to a physical disk which isn't actually
1748                  * present.  And in that case offload_enabled should already
1749                  * be 0, but we'll turn it off here just in case
1750                  */
1751                 if (!logical_drive->phys_disk[i]) {
1752                         dev_warn(&h->pdev->dev,
1753                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1754                                 __func__,
1755                                 h->scsi_host->host_no, logical_drive->bus,
1756                                 logical_drive->target, logical_drive->lun);
1757                         logical_drive->offload_enabled = 0;
1758                         logical_drive->offload_to_be_enabled = 0;
1759                         logical_drive->queue_depth = 8;
1760                 }
1761         }
1762         if (nraid_map_entries)
1763                 /*
1764                  * This is correct for reads, too high for full stripe writes,
1765                  * way too high for partial stripe writes
1766                  */
1767                 logical_drive->queue_depth = qdepth;
1768         else {
1769                 if (logical_drive->external)
1770                         logical_drive->queue_depth = EXTERNAL_QD;
1771                 else
1772                         logical_drive->queue_depth = h->nr_cmds;
1773         }
1774 }
1775
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1778 {
1779         int i;
1780
1781         for (i = 0; i < ndevices; i++) {
1782                 if (dev[i] == NULL)
1783                         continue;
1784                 if (dev[i]->devtype != TYPE_DISK &&
1785                     dev[i]->devtype != TYPE_ZBC)
1786                         continue;
1787                 if (!is_logical_device(dev[i]))
1788                         continue;
1789
1790                 /*
1791                  * If offload is currently enabled, the RAID map and
1792                  * phys_disk[] assignment *better* not be changing
1793                  * because we would be changing ioaccel phsy_disk[] pointers
1794                  * on a ioaccel volume processing I/O requests.
1795                  *
1796                  * If an ioaccel volume status changed, initially because it was
1797                  * re-configured and thus underwent a transformation, or
1798                  * a drive failed, we would have received a state change
1799                  * request and ioaccel should have been turned off. When the
1800                  * transformation completes, we get another state change
1801                  * request to turn ioaccel back on. In this case, we need
1802                  * to update the ioaccel information.
1803                  *
1804                  * Thus: If it is not currently enabled, but will be after
1805                  * the scan completes, make sure the ioaccel pointers
1806                  * are up to date.
1807                  */
1808
1809                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811         }
1812 }
1813
1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1815 {
1816         int rc = 0;
1817
1818         if (!h->scsi_host)
1819                 return 1;
1820
1821         if (is_logical_device(device)) /* RAID */
1822                 rc = scsi_add_device(h->scsi_host, device->bus,
1823                                         device->target, device->lun);
1824         else /* HBA */
1825                 rc = hpsa_add_sas_device(h->sas_host, device);
1826
1827         return rc;
1828 }
1829
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831                                                 struct hpsa_scsi_dev_t *dev)
1832 {
1833         int i;
1834         int count = 0;
1835
1836         for (i = 0; i < h->nr_cmds; i++) {
1837                 struct CommandList *c = h->cmd_pool + i;
1838                 int refcount = atomic_inc_return(&c->refcount);
1839
1840                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841                                 dev->scsi3addr)) {
1842                         unsigned long flags;
1843
1844                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1845                         if (!hpsa_is_cmd_idle(c))
1846                                 ++count;
1847                         spin_unlock_irqrestore(&h->lock, flags);
1848                 }
1849
1850                 cmd_free(h, c);
1851         }
1852
1853         return count;
1854 }
1855
1856 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1857                                                 struct hpsa_scsi_dev_t *device)
1858 {
1859         int cmds = 0;
1860         int waits = 0;
1861
1862         while (1) {
1863                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1864                 if (cmds == 0)
1865                         break;
1866                 if (++waits > 20)
1867                         break;
1868                 msleep(1000);
1869         }
1870
1871         if (waits > 20)
1872                 dev_warn(&h->pdev->dev,
1873                         "%s: removing device with %d outstanding commands!\n",
1874                         __func__, cmds);
1875 }
1876
1877 static void hpsa_remove_device(struct ctlr_info *h,
1878                         struct hpsa_scsi_dev_t *device)
1879 {
1880         struct scsi_device *sdev = NULL;
1881
1882         if (!h->scsi_host)
1883                 return;
1884
1885         /*
1886          * Allow for commands to drain
1887          */
1888         device->removed = 1;
1889         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1890
1891         if (is_logical_device(device)) { /* RAID */
1892                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1893                                                 device->target, device->lun);
1894                 if (sdev) {
1895                         scsi_remove_device(sdev);
1896                         scsi_device_put(sdev);
1897                 } else {
1898                         /*
1899                          * We don't expect to get here.  Future commands
1900                          * to this device will get a selection timeout as
1901                          * if the device were gone.
1902                          */
1903                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1904                                         "didn't find device for removal.");
1905                 }
1906         } else { /* HBA */
1907
1908                 hpsa_remove_sas_device(device);
1909         }
1910 }
1911
1912 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1913         struct hpsa_scsi_dev_t *sd[], int nsds)
1914 {
1915         /* sd contains scsi3 addresses and devtypes, and inquiry
1916          * data.  This function takes what's in sd to be the current
1917          * reality and updates h->dev[] to reflect that reality.
1918          */
1919         int i, entry, device_change, changes = 0;
1920         struct hpsa_scsi_dev_t *csd;
1921         unsigned long flags;
1922         struct hpsa_scsi_dev_t **added, **removed;
1923         int nadded, nremoved;
1924
1925         /*
1926          * A reset can cause a device status to change
1927          * re-schedule the scan to see what happened.
1928          */
1929         spin_lock_irqsave(&h->reset_lock, flags);
1930         if (h->reset_in_progress) {
1931                 h->drv_req_rescan = 1;
1932                 spin_unlock_irqrestore(&h->reset_lock, flags);
1933                 return;
1934         }
1935         spin_unlock_irqrestore(&h->reset_lock, flags);
1936
1937         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1938         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1939
1940         if (!added || !removed) {
1941                 dev_warn(&h->pdev->dev, "out of memory in "
1942                         "adjust_hpsa_scsi_table\n");
1943                 goto free_and_out;
1944         }
1945
1946         spin_lock_irqsave(&h->devlock, flags);
1947
1948         /* find any devices in h->dev[] that are not in
1949          * sd[] and remove them from h->dev[], and for any
1950          * devices which have changed, remove the old device
1951          * info and add the new device info.
1952          * If minor device attributes change, just update
1953          * the existing device structure.
1954          */
1955         i = 0;
1956         nremoved = 0;
1957         nadded = 0;
1958         while (i < h->ndevices) {
1959                 csd = h->dev[i];
1960                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1961                 if (device_change == DEVICE_NOT_FOUND) {
1962                         changes++;
1963                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1964                         continue; /* remove ^^^, hence i not incremented */
1965                 } else if (device_change == DEVICE_CHANGED) {
1966                         changes++;
1967                         hpsa_scsi_replace_entry(h, i, sd[entry],
1968                                 added, &nadded, removed, &nremoved);
1969                         /* Set it to NULL to prevent it from being freed
1970                          * at the bottom of hpsa_update_scsi_devices()
1971                          */
1972                         sd[entry] = NULL;
1973                 } else if (device_change == DEVICE_UPDATED) {
1974                         hpsa_scsi_update_entry(h, i, sd[entry]);
1975                 }
1976                 i++;
1977         }
1978
1979         /* Now, make sure every device listed in sd[] is also
1980          * listed in h->dev[], adding them if they aren't found
1981          */
1982
1983         for (i = 0; i < nsds; i++) {
1984                 if (!sd[i]) /* if already added above. */
1985                         continue;
1986
1987                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1988                  * as the SCSI mid-layer does not handle such devices well.
1989                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1990                  * at 160Hz, and prevents the system from coming up.
1991                  */
1992                 if (sd[i]->volume_offline) {
1993                         hpsa_show_volume_status(h, sd[i]);
1994                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1995                         continue;
1996                 }
1997
1998                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1999                                         h->ndevices, &entry);
2000                 if (device_change == DEVICE_NOT_FOUND) {
2001                         changes++;
2002                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2003                                 break;
2004                         sd[i] = NULL; /* prevent from being freed later. */
2005                 } else if (device_change == DEVICE_CHANGED) {
2006                         /* should never happen... */
2007                         changes++;
2008                         dev_warn(&h->pdev->dev,
2009                                 "device unexpectedly changed.\n");
2010                         /* but if it does happen, we just ignore that device */
2011                 }
2012         }
2013         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2014
2015         /*
2016          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2017          * any logical drives that need it enabled.
2018          *
2019          * The raid map should be current by now.
2020          *
2021          * We are updating the device list used for I/O requests.
2022          */
2023         for (i = 0; i < h->ndevices; i++) {
2024                 if (h->dev[i] == NULL)
2025                         continue;
2026                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2027         }
2028
2029         spin_unlock_irqrestore(&h->devlock, flags);
2030
2031         /* Monitor devices which are in one of several NOT READY states to be
2032          * brought online later. This must be done without holding h->devlock,
2033          * so don't touch h->dev[]
2034          */
2035         for (i = 0; i < nsds; i++) {
2036                 if (!sd[i]) /* if already added above. */
2037                         continue;
2038                 if (sd[i]->volume_offline)
2039                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2040         }
2041
2042         /* Don't notify scsi mid layer of any changes the first time through
2043          * (or if there are no changes) scsi_scan_host will do it later the
2044          * first time through.
2045          */
2046         if (!changes)
2047                 goto free_and_out;
2048
2049         /* Notify scsi mid layer of any removed devices */
2050         for (i = 0; i < nremoved; i++) {
2051                 if (removed[i] == NULL)
2052                         continue;
2053                 if (removed[i]->expose_device)
2054                         hpsa_remove_device(h, removed[i]);
2055                 kfree(removed[i]);
2056                 removed[i] = NULL;
2057         }
2058
2059         /* Notify scsi mid layer of any added devices */
2060         for (i = 0; i < nadded; i++) {
2061                 int rc = 0;
2062
2063                 if (added[i] == NULL)
2064                         continue;
2065                 if (!(added[i]->expose_device))
2066                         continue;
2067                 rc = hpsa_add_device(h, added[i]);
2068                 if (!rc)
2069                         continue;
2070                 dev_warn(&h->pdev->dev,
2071                         "addition failed %d, device not added.", rc);
2072                 /* now we have to remove it from h->dev,
2073                  * since it didn't get added to scsi mid layer
2074                  */
2075                 fixup_botched_add(h, added[i]);
2076                 h->drv_req_rescan = 1;
2077         }
2078
2079 free_and_out:
2080         kfree(added);
2081         kfree(removed);
2082 }
2083
2084 /*
2085  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2086  * Assume's h->devlock is held.
2087  */
2088 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2089         int bus, int target, int lun)
2090 {
2091         int i;
2092         struct hpsa_scsi_dev_t *sd;
2093
2094         for (i = 0; i < h->ndevices; i++) {
2095                 sd = h->dev[i];
2096                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2097                         return sd;
2098         }
2099         return NULL;
2100 }
2101
2102 static int hpsa_slave_alloc(struct scsi_device *sdev)
2103 {
2104         struct hpsa_scsi_dev_t *sd = NULL;
2105         unsigned long flags;
2106         struct ctlr_info *h;
2107
2108         h = sdev_to_hba(sdev);
2109         spin_lock_irqsave(&h->devlock, flags);
2110         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2111                 struct scsi_target *starget;
2112                 struct sas_rphy *rphy;
2113
2114                 starget = scsi_target(sdev);
2115                 rphy = target_to_rphy(starget);
2116                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2117                 if (sd) {
2118                         sd->target = sdev_id(sdev);
2119                         sd->lun = sdev->lun;
2120                 }
2121         }
2122         if (!sd)
2123                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2124                                         sdev_id(sdev), sdev->lun);
2125
2126         if (sd && sd->expose_device) {
2127                 atomic_set(&sd->ioaccel_cmds_out, 0);
2128                 sdev->hostdata = sd;
2129         } else
2130                 sdev->hostdata = NULL;
2131         spin_unlock_irqrestore(&h->devlock, flags);
2132         return 0;
2133 }
2134
2135 /* configure scsi device based on internal per-device structure */
2136 static int hpsa_slave_configure(struct scsi_device *sdev)
2137 {
2138         struct hpsa_scsi_dev_t *sd;
2139         int queue_depth;
2140
2141         sd = sdev->hostdata;
2142         sdev->no_uld_attach = !sd || !sd->expose_device;
2143
2144         if (sd) {
2145                 if (sd->external)
2146                         queue_depth = EXTERNAL_QD;
2147                 else
2148                         queue_depth = sd->queue_depth != 0 ?
2149                                         sd->queue_depth : sdev->host->can_queue;
2150         } else
2151                 queue_depth = sdev->host->can_queue;
2152
2153         scsi_change_queue_depth(sdev, queue_depth);
2154
2155         return 0;
2156 }
2157
2158 static void hpsa_slave_destroy(struct scsi_device *sdev)
2159 {
2160         /* nothing to do. */
2161 }
2162
2163 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2164 {
2165         int i;
2166
2167         if (!h->ioaccel2_cmd_sg_list)
2168                 return;
2169         for (i = 0; i < h->nr_cmds; i++) {
2170                 kfree(h->ioaccel2_cmd_sg_list[i]);
2171                 h->ioaccel2_cmd_sg_list[i] = NULL;
2172         }
2173         kfree(h->ioaccel2_cmd_sg_list);
2174         h->ioaccel2_cmd_sg_list = NULL;
2175 }
2176
2177 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2178 {
2179         int i;
2180
2181         if (h->chainsize <= 0)
2182                 return 0;
2183
2184         h->ioaccel2_cmd_sg_list =
2185                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2186                                         GFP_KERNEL);
2187         if (!h->ioaccel2_cmd_sg_list)
2188                 return -ENOMEM;
2189         for (i = 0; i < h->nr_cmds; i++) {
2190                 h->ioaccel2_cmd_sg_list[i] =
2191                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2192                                         h->maxsgentries, GFP_KERNEL);
2193                 if (!h->ioaccel2_cmd_sg_list[i])
2194                         goto clean;
2195         }
2196         return 0;
2197
2198 clean:
2199         hpsa_free_ioaccel2_sg_chain_blocks(h);
2200         return -ENOMEM;
2201 }
2202
2203 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2204 {
2205         int i;
2206
2207         if (!h->cmd_sg_list)
2208                 return;
2209         for (i = 0; i < h->nr_cmds; i++) {
2210                 kfree(h->cmd_sg_list[i]);
2211                 h->cmd_sg_list[i] = NULL;
2212         }
2213         kfree(h->cmd_sg_list);
2214         h->cmd_sg_list = NULL;
2215 }
2216
2217 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2218 {
2219         int i;
2220
2221         if (h->chainsize <= 0)
2222                 return 0;
2223
2224         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2225                                 GFP_KERNEL);
2226         if (!h->cmd_sg_list)
2227                 return -ENOMEM;
2228
2229         for (i = 0; i < h->nr_cmds; i++) {
2230                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2231                                                 h->chainsize, GFP_KERNEL);
2232                 if (!h->cmd_sg_list[i])
2233                         goto clean;
2234
2235         }
2236         return 0;
2237
2238 clean:
2239         hpsa_free_sg_chain_blocks(h);
2240         return -ENOMEM;
2241 }
2242
2243 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2244         struct io_accel2_cmd *cp, struct CommandList *c)
2245 {
2246         struct ioaccel2_sg_element *chain_block;
2247         u64 temp64;
2248         u32 chain_size;
2249
2250         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2251         chain_size = le32_to_cpu(cp->sg[0].length);
2252         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2253                                 PCI_DMA_TODEVICE);
2254         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2255                 /* prevent subsequent unmapping */
2256                 cp->sg->address = 0;
2257                 return -1;
2258         }
2259         cp->sg->address = cpu_to_le64(temp64);
2260         return 0;
2261 }
2262
2263 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2264         struct io_accel2_cmd *cp)
2265 {
2266         struct ioaccel2_sg_element *chain_sg;
2267         u64 temp64;
2268         u32 chain_size;
2269
2270         chain_sg = cp->sg;
2271         temp64 = le64_to_cpu(chain_sg->address);
2272         chain_size = le32_to_cpu(cp->sg[0].length);
2273         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2274 }
2275
2276 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2277         struct CommandList *c)
2278 {
2279         struct SGDescriptor *chain_sg, *chain_block;
2280         u64 temp64;
2281         u32 chain_len;
2282
2283         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2284         chain_block = h->cmd_sg_list[c->cmdindex];
2285         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2286         chain_len = sizeof(*chain_sg) *
2287                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2288         chain_sg->Len = cpu_to_le32(chain_len);
2289         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2290                                 PCI_DMA_TODEVICE);
2291         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2292                 /* prevent subsequent unmapping */
2293                 chain_sg->Addr = cpu_to_le64(0);
2294                 return -1;
2295         }
2296         chain_sg->Addr = cpu_to_le64(temp64);
2297         return 0;
2298 }
2299
2300 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2301         struct CommandList *c)
2302 {
2303         struct SGDescriptor *chain_sg;
2304
2305         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2306                 return;
2307
2308         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2310                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2311 }
2312
2313
2314 /* Decode the various types of errors on ioaccel2 path.
2315  * Return 1 for any error that should generate a RAID path retry.
2316  * Return 0 for errors that don't require a RAID path retry.
2317  */
2318 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2319                                         struct CommandList *c,
2320                                         struct scsi_cmnd *cmd,
2321                                         struct io_accel2_cmd *c2,
2322                                         struct hpsa_scsi_dev_t *dev)
2323 {
2324         int data_len;
2325         int retry = 0;
2326         u32 ioaccel2_resid = 0;
2327
2328         switch (c2->error_data.serv_response) {
2329         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2330                 switch (c2->error_data.status) {
2331                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2332                         break;
2333                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2334                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2335                         if (c2->error_data.data_present !=
2336                                         IOACCEL2_SENSE_DATA_PRESENT) {
2337                                 memset(cmd->sense_buffer, 0,
2338                                         SCSI_SENSE_BUFFERSIZE);
2339                                 break;
2340                         }
2341                         /* copy the sense data */
2342                         data_len = c2->error_data.sense_data_len;
2343                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2344                                 data_len = SCSI_SENSE_BUFFERSIZE;
2345                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2346                                 data_len =
2347                                         sizeof(c2->error_data.sense_data_buff);
2348                         memcpy(cmd->sense_buffer,
2349                                 c2->error_data.sense_data_buff, data_len);
2350                         retry = 1;
2351                         break;
2352                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2353                         retry = 1;
2354                         break;
2355                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2356                         retry = 1;
2357                         break;
2358                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2359                         retry = 1;
2360                         break;
2361                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2362                         retry = 1;
2363                         break;
2364                 default:
2365                         retry = 1;
2366                         break;
2367                 }
2368                 break;
2369         case IOACCEL2_SERV_RESPONSE_FAILURE:
2370                 switch (c2->error_data.status) {
2371                 case IOACCEL2_STATUS_SR_IO_ERROR:
2372                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2373                 case IOACCEL2_STATUS_SR_OVERRUN:
2374                         retry = 1;
2375                         break;
2376                 case IOACCEL2_STATUS_SR_UNDERRUN:
2377                         cmd->result = (DID_OK << 16);           /* host byte */
2378                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2379                         ioaccel2_resid = get_unaligned_le32(
2380                                                 &c2->error_data.resid_cnt[0]);
2381                         scsi_set_resid(cmd, ioaccel2_resid);
2382                         break;
2383                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2384                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2385                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2386                         /*
2387                          * Did an HBA disk disappear? We will eventually
2388                          * get a state change event from the controller but
2389                          * in the meantime, we need to tell the OS that the
2390                          * HBA disk is no longer there and stop I/O
2391                          * from going down. This allows the potential re-insert
2392                          * of the disk to get the same device node.
2393                          */
2394                         if (dev->physical_device && dev->expose_device) {
2395                                 cmd->result = DID_NO_CONNECT << 16;
2396                                 dev->removed = 1;
2397                                 h->drv_req_rescan = 1;
2398                                 dev_warn(&h->pdev->dev,
2399                                         "%s: device is gone!\n", __func__);
2400                         } else
2401                                 /*
2402                                  * Retry by sending down the RAID path.
2403                                  * We will get an event from ctlr to
2404                                  * trigger rescan regardless.
2405                                  */
2406                                 retry = 1;
2407                         break;
2408                 default:
2409                         retry = 1;
2410                 }
2411                 break;
2412         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2413                 break;
2414         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2415                 break;
2416         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2417                 retry = 1;
2418                 break;
2419         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2420                 break;
2421         default:
2422                 retry = 1;
2423                 break;
2424         }
2425
2426         return retry;   /* retry on raid path? */
2427 }
2428
2429 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2430                 struct CommandList *c)
2431 {
2432         bool do_wake = false;
2433
2434         /*
2435          * Reset c->scsi_cmd here so that the reset handler will know
2436          * this command has completed.  Then, check to see if the handler is
2437          * waiting for this command, and, if so, wake it.
2438          */
2439         c->scsi_cmd = SCSI_CMD_IDLE;
2440         mb();   /* Declare command idle before checking for pending events. */
2441         if (c->reset_pending) {
2442                 unsigned long flags;
2443                 struct hpsa_scsi_dev_t *dev;
2444
2445                 /*
2446                  * There appears to be a reset pending; lock the lock and
2447                  * reconfirm.  If so, then decrement the count of outstanding
2448                  * commands and wake the reset command if this is the last one.
2449                  */
2450                 spin_lock_irqsave(&h->lock, flags);
2451                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2452                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2453                         do_wake = true;
2454                 c->reset_pending = NULL;
2455                 spin_unlock_irqrestore(&h->lock, flags);
2456         }
2457
2458         if (do_wake)
2459                 wake_up_all(&h->event_sync_wait_queue);
2460 }
2461
2462 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2463                                       struct CommandList *c)
2464 {
2465         hpsa_cmd_resolve_events(h, c);
2466         cmd_tagged_free(h, c);
2467 }
2468
2469 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2470                 struct CommandList *c, struct scsi_cmnd *cmd)
2471 {
2472         hpsa_cmd_resolve_and_free(h, c);
2473         if (cmd && cmd->scsi_done)
2474                 cmd->scsi_done(cmd);
2475 }
2476
2477 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2478 {
2479         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2480         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2481 }
2482
2483 static void process_ioaccel2_completion(struct ctlr_info *h,
2484                 struct CommandList *c, struct scsi_cmnd *cmd,
2485                 struct hpsa_scsi_dev_t *dev)
2486 {
2487         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2488
2489         /* check for good status */
2490         if (likely(c2->error_data.serv_response == 0 &&
2491                         c2->error_data.status == 0))
2492                 return hpsa_cmd_free_and_done(h, c, cmd);
2493
2494         /*
2495          * Any RAID offload error results in retry which will use
2496          * the normal I/O path so the controller can handle whatever is
2497          * wrong.
2498          */
2499         if (is_logical_device(dev) &&
2500                 c2->error_data.serv_response ==
2501                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2502                 if (c2->error_data.status ==
2503                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2504                         dev->offload_enabled = 0;
2505                         dev->offload_to_be_enabled = 0;
2506                 }
2507
2508                 return hpsa_retry_cmd(h, c);
2509         }
2510
2511         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2512                 return hpsa_retry_cmd(h, c);
2513
2514         return hpsa_cmd_free_and_done(h, c, cmd);
2515 }
2516
2517 /* Returns 0 on success, < 0 otherwise. */
2518 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2519                                         struct CommandList *cp)
2520 {
2521         u8 tmf_status = cp->err_info->ScsiStatus;
2522
2523         switch (tmf_status) {
2524         case CISS_TMF_COMPLETE:
2525                 /*
2526                  * CISS_TMF_COMPLETE never happens, instead,
2527                  * ei->CommandStatus == 0 for this case.
2528                  */
2529         case CISS_TMF_SUCCESS:
2530                 return 0;
2531         case CISS_TMF_INVALID_FRAME:
2532         case CISS_TMF_NOT_SUPPORTED:
2533         case CISS_TMF_FAILED:
2534         case CISS_TMF_WRONG_LUN:
2535         case CISS_TMF_OVERLAPPED_TAG:
2536                 break;
2537         default:
2538                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2539                                 tmf_status);
2540                 break;
2541         }
2542         return -tmf_status;
2543 }
2544
2545 static void complete_scsi_command(struct CommandList *cp)
2546 {
2547         struct scsi_cmnd *cmd;
2548         struct ctlr_info *h;
2549         struct ErrorInfo *ei;
2550         struct hpsa_scsi_dev_t *dev;
2551         struct io_accel2_cmd *c2;
2552
2553         u8 sense_key;
2554         u8 asc;      /* additional sense code */
2555         u8 ascq;     /* additional sense code qualifier */
2556         unsigned long sense_data_size;
2557
2558         ei = cp->err_info;
2559         cmd = cp->scsi_cmd;
2560         h = cp->h;
2561
2562         if (!cmd->device) {
2563                 cmd->result = DID_NO_CONNECT << 16;
2564                 return hpsa_cmd_free_and_done(h, cp, cmd);
2565         }
2566
2567         dev = cmd->device->hostdata;
2568         if (!dev) {
2569                 cmd->result = DID_NO_CONNECT << 16;
2570                 return hpsa_cmd_free_and_done(h, cp, cmd);
2571         }
2572         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2573
2574         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2575         if ((cp->cmd_type == CMD_SCSI) &&
2576                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2577                 hpsa_unmap_sg_chain_block(h, cp);
2578
2579         if ((cp->cmd_type == CMD_IOACCEL2) &&
2580                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2581                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2582
2583         cmd->result = (DID_OK << 16);           /* host byte */
2584         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2585
2586         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2587                 if (dev->physical_device && dev->expose_device &&
2588                         dev->removed) {
2589                         cmd->result = DID_NO_CONNECT << 16;
2590                         return hpsa_cmd_free_and_done(h, cp, cmd);
2591                 }
2592                 if (likely(cp->phys_disk != NULL))
2593                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2594         }
2595
2596         /*
2597          * We check for lockup status here as it may be set for
2598          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2599          * fail_all_oustanding_cmds()
2600          */
2601         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2602                 /* DID_NO_CONNECT will prevent a retry */
2603                 cmd->result = DID_NO_CONNECT << 16;
2604                 return hpsa_cmd_free_and_done(h, cp, cmd);
2605         }
2606
2607         if ((unlikely(hpsa_is_pending_event(cp))))
2608                 if (cp->reset_pending)
2609                         return hpsa_cmd_free_and_done(h, cp, cmd);
2610
2611         if (cp->cmd_type == CMD_IOACCEL2)
2612                 return process_ioaccel2_completion(h, cp, cmd, dev);
2613
2614         scsi_set_resid(cmd, ei->ResidualCnt);
2615         if (ei->CommandStatus == 0)
2616                 return hpsa_cmd_free_and_done(h, cp, cmd);
2617
2618         /* For I/O accelerator commands, copy over some fields to the normal
2619          * CISS header used below for error handling.
2620          */
2621         if (cp->cmd_type == CMD_IOACCEL1) {
2622                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2623                 cp->Header.SGList = scsi_sg_count(cmd);
2624                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2625                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2626                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2627                 cp->Header.tag = c->tag;
2628                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2629                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2630
2631                 /* Any RAID offload error results in retry which will use
2632                  * the normal I/O path so the controller can handle whatever's
2633                  * wrong.
2634                  */
2635                 if (is_logical_device(dev)) {
2636                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2637                                 dev->offload_enabled = 0;
2638                         return hpsa_retry_cmd(h, cp);
2639                 }
2640         }
2641
2642         /* an error has occurred */
2643         switch (ei->CommandStatus) {
2644
2645         case CMD_TARGET_STATUS:
2646                 cmd->result |= ei->ScsiStatus;
2647                 /* copy the sense data */
2648                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2649                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2650                 else
2651                         sense_data_size = sizeof(ei->SenseInfo);
2652                 if (ei->SenseLen < sense_data_size)
2653                         sense_data_size = ei->SenseLen;
2654                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2655                 if (ei->ScsiStatus)
2656                         decode_sense_data(ei->SenseInfo, sense_data_size,
2657                                 &sense_key, &asc, &ascq);
2658                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2659                         if (sense_key == ABORTED_COMMAND) {
2660                                 cmd->result |= DID_SOFT_ERROR << 16;
2661                                 break;
2662                         }
2663                         break;
2664                 }
2665                 /* Problem was not a check condition
2666                  * Pass it up to the upper layers...
2667                  */
2668                 if (ei->ScsiStatus) {
2669                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2670                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2671                                 "Returning result: 0x%x\n",
2672                                 cp, ei->ScsiStatus,
2673                                 sense_key, asc, ascq,
2674                                 cmd->result);
2675                 } else {  /* scsi status is zero??? How??? */
2676                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2677                                 "Returning no connection.\n", cp),
2678
2679                         /* Ordinarily, this case should never happen,
2680                          * but there is a bug in some released firmware
2681                          * revisions that allows it to happen if, for
2682                          * example, a 4100 backplane loses power and
2683                          * the tape drive is in it.  We assume that
2684                          * it's a fatal error of some kind because we
2685                          * can't show that it wasn't. We will make it
2686                          * look like selection timeout since that is
2687                          * the most common reason for this to occur,
2688                          * and it's severe enough.
2689                          */
2690
2691                         cmd->result = DID_NO_CONNECT << 16;
2692                 }
2693                 break;
2694
2695         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2696                 break;
2697         case CMD_DATA_OVERRUN:
2698                 dev_warn(&h->pdev->dev,
2699                         "CDB %16phN data overrun\n", cp->Request.CDB);
2700                 break;
2701         case CMD_INVALID: {
2702                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2703                 print_cmd(cp); */
2704                 /* We get CMD_INVALID if you address a non-existent device
2705                  * instead of a selection timeout (no response).  You will
2706                  * see this if you yank out a drive, then try to access it.
2707                  * This is kind of a shame because it means that any other
2708                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2709                  * missing target. */
2710                 cmd->result = DID_NO_CONNECT << 16;
2711         }
2712                 break;
2713         case CMD_PROTOCOL_ERR:
2714                 cmd->result = DID_ERROR << 16;
2715                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2716                                 cp->Request.CDB);
2717                 break;
2718         case CMD_HARDWARE_ERR:
2719                 cmd->result = DID_ERROR << 16;
2720                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2721                         cp->Request.CDB);
2722                 break;
2723         case CMD_CONNECTION_LOST:
2724                 cmd->result = DID_ERROR << 16;
2725                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2726                         cp->Request.CDB);
2727                 break;
2728         case CMD_ABORTED:
2729                 cmd->result = DID_ABORT << 16;
2730                 break;
2731         case CMD_ABORT_FAILED:
2732                 cmd->result = DID_ERROR << 16;
2733                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2734                         cp->Request.CDB);
2735                 break;
2736         case CMD_UNSOLICITED_ABORT:
2737                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2738                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2739                         cp->Request.CDB);
2740                 break;
2741         case CMD_TIMEOUT:
2742                 cmd->result = DID_TIME_OUT << 16;
2743                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2744                         cp->Request.CDB);
2745                 break;
2746         case CMD_UNABORTABLE:
2747                 cmd->result = DID_ERROR << 16;
2748                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2749                 break;
2750         case CMD_TMF_STATUS:
2751                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2752                         cmd->result = DID_ERROR << 16;
2753                 break;
2754         case CMD_IOACCEL_DISABLED:
2755                 /* This only handles the direct pass-through case since RAID
2756                  * offload is handled above.  Just attempt a retry.
2757                  */
2758                 cmd->result = DID_SOFT_ERROR << 16;
2759                 dev_warn(&h->pdev->dev,
2760                                 "cp %p had HP SSD Smart Path error\n", cp);
2761                 break;
2762         default:
2763                 cmd->result = DID_ERROR << 16;
2764                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2765                                 cp, ei->CommandStatus);
2766         }
2767
2768         return hpsa_cmd_free_and_done(h, cp, cmd);
2769 }
2770
2771 static void hpsa_pci_unmap(struct pci_dev *pdev,
2772         struct CommandList *c, int sg_used, int data_direction)
2773 {
2774         int i;
2775
2776         for (i = 0; i < sg_used; i++)
2777                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2778                                 le32_to_cpu(c->SG[i].Len),
2779                                 data_direction);
2780 }
2781
2782 static int hpsa_map_one(struct pci_dev *pdev,
2783                 struct CommandList *cp,
2784                 unsigned char *buf,
2785                 size_t buflen,
2786                 int data_direction)
2787 {
2788         u64 addr64;
2789
2790         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2791                 cp->Header.SGList = 0;
2792                 cp->Header.SGTotal = cpu_to_le16(0);
2793                 return 0;
2794         }
2795
2796         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2797         if (dma_mapping_error(&pdev->dev, addr64)) {
2798                 /* Prevent subsequent unmap of something never mapped */
2799                 cp->Header.SGList = 0;
2800                 cp->Header.SGTotal = cpu_to_le16(0);
2801                 return -1;
2802         }
2803         cp->SG[0].Addr = cpu_to_le64(addr64);
2804         cp->SG[0].Len = cpu_to_le32(buflen);
2805         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2806         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2807         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2808         return 0;
2809 }
2810
2811 #define NO_TIMEOUT ((unsigned long) -1)
2812 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2813 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2814         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2815 {
2816         DECLARE_COMPLETION_ONSTACK(wait);
2817
2818         c->waiting = &wait;
2819         __enqueue_cmd_and_start_io(h, c, reply_queue);
2820         if (timeout_msecs == NO_TIMEOUT) {
2821                 /* TODO: get rid of this no-timeout thing */
2822                 wait_for_completion_io(&wait);
2823                 return IO_OK;
2824         }
2825         if (!wait_for_completion_io_timeout(&wait,
2826                                         msecs_to_jiffies(timeout_msecs))) {
2827                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2828                 return -ETIMEDOUT;
2829         }
2830         return IO_OK;
2831 }
2832
2833 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2834                                    int reply_queue, unsigned long timeout_msecs)
2835 {
2836         if (unlikely(lockup_detected(h))) {
2837                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2838                 return IO_OK;
2839         }
2840         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2841 }
2842
2843 static u32 lockup_detected(struct ctlr_info *h)
2844 {
2845         int cpu;
2846         u32 rc, *lockup_detected;
2847
2848         cpu = get_cpu();
2849         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2850         rc = *lockup_detected;
2851         put_cpu();
2852         return rc;
2853 }
2854
2855 #define MAX_DRIVER_CMD_RETRIES 25
2856 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2857         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2858 {
2859         int backoff_time = 10, retry_count = 0;
2860         int rc;
2861
2862         do {
2863                 memset(c->err_info, 0, sizeof(*c->err_info));
2864                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2865                                                   timeout_msecs);
2866                 if (rc)
2867                         break;
2868                 retry_count++;
2869                 if (retry_count > 3) {
2870                         msleep(backoff_time);
2871                         if (backoff_time < 1000)
2872                                 backoff_time *= 2;
2873                 }
2874         } while ((check_for_unit_attention(h, c) ||
2875                         check_for_busy(h, c)) &&
2876                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2877         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2878         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2879                 rc = -EIO;
2880         return rc;
2881 }
2882
2883 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2884                                 struct CommandList *c)
2885 {
2886         const u8 *cdb = c->Request.CDB;
2887         const u8 *lun = c->Header.LUN.LunAddrBytes;
2888
2889         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2890                  txt, lun, cdb);
2891 }
2892
2893 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2894                         struct CommandList *cp)
2895 {
2896         const struct ErrorInfo *ei = cp->err_info;
2897         struct device *d = &cp->h->pdev->dev;
2898         u8 sense_key, asc, ascq;
2899         int sense_len;
2900
2901         switch (ei->CommandStatus) {
2902         case CMD_TARGET_STATUS:
2903                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2904                         sense_len = sizeof(ei->SenseInfo);
2905                 else
2906                         sense_len = ei->SenseLen;
2907                 decode_sense_data(ei->SenseInfo, sense_len,
2908                                         &sense_key, &asc, &ascq);
2909                 hpsa_print_cmd(h, "SCSI status", cp);
2910                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2911                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2912                                 sense_key, asc, ascq);
2913                 else
2914                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2915                 if (ei->ScsiStatus == 0)
2916                         dev_warn(d, "SCSI status is abnormally zero.  "
2917                         "(probably indicates selection timeout "
2918                         "reported incorrectly due to a known "
2919                         "firmware bug, circa July, 2001.)\n");
2920                 break;
2921         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2922                 break;
2923         case CMD_DATA_OVERRUN:
2924                 hpsa_print_cmd(h, "overrun condition", cp);
2925                 break;
2926         case CMD_INVALID: {
2927                 /* controller unfortunately reports SCSI passthru's
2928                  * to non-existent targets as invalid commands.
2929                  */
2930                 hpsa_print_cmd(h, "invalid command", cp);
2931                 dev_warn(d, "probably means device no longer present\n");
2932                 }
2933                 break;
2934         case CMD_PROTOCOL_ERR:
2935                 hpsa_print_cmd(h, "protocol error", cp);
2936                 break;
2937         case CMD_HARDWARE_ERR:
2938                 hpsa_print_cmd(h, "hardware error", cp);
2939                 break;
2940         case CMD_CONNECTION_LOST:
2941                 hpsa_print_cmd(h, "connection lost", cp);
2942                 break;
2943         case CMD_ABORTED:
2944                 hpsa_print_cmd(h, "aborted", cp);
2945                 break;
2946         case CMD_ABORT_FAILED:
2947                 hpsa_print_cmd(h, "abort failed", cp);
2948                 break;
2949         case CMD_UNSOLICITED_ABORT:
2950                 hpsa_print_cmd(h, "unsolicited abort", cp);
2951                 break;
2952         case CMD_TIMEOUT:
2953                 hpsa_print_cmd(h, "timed out", cp);
2954                 break;
2955         case CMD_UNABORTABLE:
2956                 hpsa_print_cmd(h, "unabortable", cp);
2957                 break;
2958         case CMD_CTLR_LOCKUP:
2959                 hpsa_print_cmd(h, "controller lockup detected", cp);
2960                 break;
2961         default:
2962                 hpsa_print_cmd(h, "unknown status", cp);
2963                 dev_warn(d, "Unknown command status %x\n",
2964                                 ei->CommandStatus);
2965         }
2966 }
2967
2968 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2969                                         u8 page, u8 *buf, size_t bufsize)
2970 {
2971         int rc = IO_OK;
2972         struct CommandList *c;
2973         struct ErrorInfo *ei;
2974
2975         c = cmd_alloc(h);
2976         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2977                         page, scsi3addr, TYPE_CMD)) {
2978                 rc = -1;
2979                 goto out;
2980         }
2981         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2982                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2983         if (rc)
2984                 goto out;
2985         ei = c->err_info;
2986         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2987                 hpsa_scsi_interpret_error(h, c);
2988                 rc = -1;
2989         }
2990 out:
2991         cmd_free(h, c);
2992         return rc;
2993 }
2994
2995 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2996                                                 u8 *scsi3addr)
2997 {
2998         u8 *buf;
2999         u64 sa = 0;
3000         int rc = 0;
3001
3002         buf = kzalloc(1024, GFP_KERNEL);
3003         if (!buf)
3004                 return 0;
3005
3006         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3007                                         buf, 1024);
3008
3009         if (rc)
3010                 goto out;
3011
3012         sa = get_unaligned_be64(buf+12);
3013
3014 out:
3015         kfree(buf);
3016         return sa;
3017 }
3018
3019 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3020                         u16 page, unsigned char *buf,
3021                         unsigned char bufsize)
3022 {
3023         int rc = IO_OK;
3024         struct CommandList *c;
3025         struct ErrorInfo *ei;
3026
3027         c = cmd_alloc(h);
3028
3029         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3030                         page, scsi3addr, TYPE_CMD)) {
3031                 rc = -1;
3032                 goto out;
3033         }
3034         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3035                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3036         if (rc)
3037                 goto out;
3038         ei = c->err_info;
3039         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3040                 hpsa_scsi_interpret_error(h, c);
3041                 rc = -1;
3042         }
3043 out:
3044         cmd_free(h, c);
3045         return rc;
3046 }
3047
3048 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3049         u8 reset_type, int reply_queue)
3050 {
3051         int rc = IO_OK;
3052         struct CommandList *c;
3053         struct ErrorInfo *ei;
3054
3055         c = cmd_alloc(h);
3056
3057
3058         /* fill_cmd can't fail here, no data buffer to map. */
3059         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3060                         scsi3addr, TYPE_MSG);
3061         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3062         if (rc) {
3063                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3064                 goto out;
3065         }
3066         /* no unmap needed here because no data xfer. */
3067
3068         ei = c->err_info;
3069         if (ei->CommandStatus != 0) {
3070                 hpsa_scsi_interpret_error(h, c);
3071                 rc = -1;
3072         }
3073 out:
3074         cmd_free(h, c);
3075         return rc;
3076 }
3077
3078 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3079                                struct hpsa_scsi_dev_t *dev,
3080                                unsigned char *scsi3addr)
3081 {
3082         int i;
3083         bool match = false;
3084         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3085         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3086
3087         if (hpsa_is_cmd_idle(c))
3088                 return false;
3089
3090         switch (c->cmd_type) {
3091         case CMD_SCSI:
3092         case CMD_IOCTL_PEND:
3093                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3094                                 sizeof(c->Header.LUN.LunAddrBytes));
3095                 break;
3096
3097         case CMD_IOACCEL1:
3098         case CMD_IOACCEL2:
3099                 if (c->phys_disk == dev) {
3100                         /* HBA mode match */
3101                         match = true;
3102                 } else {
3103                         /* Possible RAID mode -- check each phys dev. */
3104                         /* FIXME:  Do we need to take out a lock here?  If
3105                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3106                          * instead. */
3107                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108                                 /* FIXME: an alternate test might be
3109                                  *
3110                                  * match = dev->phys_disk[i]->ioaccel_handle
3111                                  *              == c2->scsi_nexus;      */
3112                                 match = dev->phys_disk[i] == c->phys_disk;
3113                         }
3114                 }
3115                 break;
3116
3117         case IOACCEL2_TMF:
3118                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3119                         match = dev->phys_disk[i]->ioaccel_handle ==
3120                                         le32_to_cpu(ac->it_nexus);
3121                 }
3122                 break;
3123
3124         case 0:         /* The command is in the middle of being initialized. */
3125                 match = false;
3126                 break;
3127
3128         default:
3129                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3130                         c->cmd_type);
3131                 BUG();
3132         }
3133
3134         return match;
3135 }
3136
3137 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3138         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3139 {
3140         int i;
3141         int rc = 0;
3142
3143         /* We can really only handle one reset at a time */
3144         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3145                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3146                 return -EINTR;
3147         }
3148
3149         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3150
3151         for (i = 0; i < h->nr_cmds; i++) {
3152                 struct CommandList *c = h->cmd_pool + i;
3153                 int refcount = atomic_inc_return(&c->refcount);
3154
3155                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3156                         unsigned long flags;
3157
3158                         /*
3159                          * Mark the target command as having a reset pending,
3160                          * then lock a lock so that the command cannot complete
3161                          * while we're considering it.  If the command is not
3162                          * idle then count it; otherwise revoke the event.
3163                          */
3164                         c->reset_pending = dev;
3165                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3166                         if (!hpsa_is_cmd_idle(c))
3167                                 atomic_inc(&dev->reset_cmds_out);
3168                         else
3169                                 c->reset_pending = NULL;
3170                         spin_unlock_irqrestore(&h->lock, flags);
3171                 }
3172
3173                 cmd_free(h, c);
3174         }
3175
3176         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3177         if (!rc)
3178                 wait_event(h->event_sync_wait_queue,
3179                         atomic_read(&dev->reset_cmds_out) == 0 ||
3180                         lockup_detected(h));
3181
3182         if (unlikely(lockup_detected(h))) {
3183                 dev_warn(&h->pdev->dev,
3184                          "Controller lockup detected during reset wait\n");
3185                 rc = -ENODEV;
3186         }
3187
3188         if (unlikely(rc))
3189                 atomic_set(&dev->reset_cmds_out, 0);
3190         else
3191                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3192
3193         mutex_unlock(&h->reset_mutex);
3194         return rc;
3195 }
3196
3197 static void hpsa_get_raid_level(struct ctlr_info *h,
3198         unsigned char *scsi3addr, unsigned char *raid_level)
3199 {
3200         int rc;
3201         unsigned char *buf;
3202
3203         *raid_level = RAID_UNKNOWN;
3204         buf = kzalloc(64, GFP_KERNEL);
3205         if (!buf)
3206                 return;
3207
3208         if (!hpsa_vpd_page_supported(h, scsi3addr,
3209                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3210                 goto exit;
3211
3212         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3213                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3214
3215         if (rc == 0)
3216                 *raid_level = buf[8];
3217         if (*raid_level > RAID_UNKNOWN)
3218                 *raid_level = RAID_UNKNOWN;
3219 exit:
3220         kfree(buf);
3221         return;
3222 }
3223
3224 #define HPSA_MAP_DEBUG
3225 #ifdef HPSA_MAP_DEBUG
3226 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3227                                 struct raid_map_data *map_buff)
3228 {
3229         struct raid_map_disk_data *dd = &map_buff->data[0];
3230         int map, row, col;
3231         u16 map_cnt, row_cnt, disks_per_row;
3232
3233         if (rc != 0)
3234                 return;
3235
3236         /* Show details only if debugging has been activated. */
3237         if (h->raid_offload_debug < 2)
3238                 return;
3239
3240         dev_info(&h->pdev->dev, "structure_size = %u\n",
3241                                 le32_to_cpu(map_buff->structure_size));
3242         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3243                         le32_to_cpu(map_buff->volume_blk_size));
3244         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3245                         le64_to_cpu(map_buff->volume_blk_cnt));
3246         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3247                         map_buff->phys_blk_shift);
3248         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3249                         map_buff->parity_rotation_shift);
3250         dev_info(&h->pdev->dev, "strip_size = %u\n",
3251                         le16_to_cpu(map_buff->strip_size));
3252         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3253                         le64_to_cpu(map_buff->disk_starting_blk));
3254         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3255                         le64_to_cpu(map_buff->disk_blk_cnt));
3256         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3257                         le16_to_cpu(map_buff->data_disks_per_row));
3258         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3259                         le16_to_cpu(map_buff->metadata_disks_per_row));
3260         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3261                         le16_to_cpu(map_buff->row_cnt));
3262         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3263                         le16_to_cpu(map_buff->layout_map_count));
3264         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3265                         le16_to_cpu(map_buff->flags));
3266         dev_info(&h->pdev->dev, "encryption = %s\n",
3267                         le16_to_cpu(map_buff->flags) &
3268                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3269         dev_info(&h->pdev->dev, "dekindex = %u\n",
3270                         le16_to_cpu(map_buff->dekindex));
3271         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3272         for (map = 0; map < map_cnt; map++) {
3273                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3274                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3275                 for (row = 0; row < row_cnt; row++) {
3276                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3277                         disks_per_row =
3278                                 le16_to_cpu(map_buff->data_disks_per_row);
3279                         for (col = 0; col < disks_per_row; col++, dd++)
3280                                 dev_info(&h->pdev->dev,
3281                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3282                                         col, dd->ioaccel_handle,
3283                                         dd->xor_mult[0], dd->xor_mult[1]);
3284                         disks_per_row =
3285                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3286                         for (col = 0; col < disks_per_row; col++, dd++)
3287                                 dev_info(&h->pdev->dev,
3288                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3289                                         col, dd->ioaccel_handle,
3290                                         dd->xor_mult[0], dd->xor_mult[1]);
3291                 }
3292         }
3293 }
3294 #else
3295 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3296                         __attribute__((unused)) int rc,
3297                         __attribute__((unused)) struct raid_map_data *map_buff)
3298 {
3299 }
3300 #endif
3301
3302 static int hpsa_get_raid_map(struct ctlr_info *h,
3303         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3304 {
3305         int rc = 0;
3306         struct CommandList *c;
3307         struct ErrorInfo *ei;
3308
3309         c = cmd_alloc(h);
3310
3311         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3312                         sizeof(this_device->raid_map), 0,
3313                         scsi3addr, TYPE_CMD)) {
3314                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3315                 cmd_free(h, c);
3316                 return -1;
3317         }
3318         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3319                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3320         if (rc)
3321                 goto out;
3322         ei = c->err_info;
3323         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3324                 hpsa_scsi_interpret_error(h, c);
3325                 rc = -1;
3326                 goto out;
3327         }
3328         cmd_free(h, c);
3329
3330         /* @todo in the future, dynamically allocate RAID map memory */
3331         if (le32_to_cpu(this_device->raid_map.structure_size) >
3332                                 sizeof(this_device->raid_map)) {
3333                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3334                 rc = -1;
3335         }
3336         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3337         return rc;
3338 out:
3339         cmd_free(h, c);
3340         return rc;
3341 }
3342
3343 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3344                 unsigned char scsi3addr[], u16 bmic_device_index,
3345                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3346 {
3347         int rc = IO_OK;
3348         struct CommandList *c;
3349         struct ErrorInfo *ei;
3350
3351         c = cmd_alloc(h);
3352
3353         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3354                 0, RAID_CTLR_LUNID, TYPE_CMD);
3355         if (rc)
3356                 goto out;
3357
3358         c->Request.CDB[2] = bmic_device_index & 0xff;
3359         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3360
3361         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3362                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3363         if (rc)
3364                 goto out;
3365         ei = c->err_info;
3366         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3367                 hpsa_scsi_interpret_error(h, c);
3368                 rc = -1;
3369         }
3370 out:
3371         cmd_free(h, c);
3372         return rc;
3373 }
3374
3375 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3376         struct bmic_identify_controller *buf, size_t bufsize)
3377 {
3378         int rc = IO_OK;
3379         struct CommandList *c;
3380         struct ErrorInfo *ei;
3381
3382         c = cmd_alloc(h);
3383
3384         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3385                 0, RAID_CTLR_LUNID, TYPE_CMD);
3386         if (rc)
3387                 goto out;
3388
3389         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3390                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3391         if (rc)
3392                 goto out;
3393         ei = c->err_info;
3394         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3395                 hpsa_scsi_interpret_error(h, c);
3396                 rc = -1;
3397         }
3398 out:
3399         cmd_free(h, c);
3400         return rc;
3401 }
3402
3403 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3404                 unsigned char scsi3addr[], u16 bmic_device_index,
3405                 struct bmic_identify_physical_device *buf, size_t bufsize)
3406 {
3407         int rc = IO_OK;
3408         struct CommandList *c;
3409         struct ErrorInfo *ei;
3410
3411         c = cmd_alloc(h);
3412         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3413                 0, RAID_CTLR_LUNID, TYPE_CMD);
3414         if (rc)
3415                 goto out;
3416
3417         c->Request.CDB[2] = bmic_device_index & 0xff;
3418         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3419
3420         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3421                                                 NO_TIMEOUT);
3422         ei = c->err_info;
3423         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3424                 hpsa_scsi_interpret_error(h, c);
3425                 rc = -1;
3426         }
3427 out:
3428         cmd_free(h, c);
3429
3430         return rc;
3431 }
3432
3433 /*
3434  * get enclosure information
3435  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3436  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3437  * Uses id_physical_device to determine the box_index.
3438  */
3439 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3440                         unsigned char *scsi3addr,
3441                         struct ReportExtendedLUNdata *rlep, int rle_index,
3442                         struct hpsa_scsi_dev_t *encl_dev)
3443 {
3444         int rc = -1;
3445         struct CommandList *c = NULL;
3446         struct ErrorInfo *ei = NULL;
3447         struct bmic_sense_storage_box_params *bssbp = NULL;
3448         struct bmic_identify_physical_device *id_phys = NULL;
3449         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3450         u16 bmic_device_index = 0;
3451
3452         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3453
3454         encl_dev->sas_address =
3455                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3456
3457         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3458                 rc = IO_OK;
3459                 goto out;
3460         }
3461
3462         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3463                 rc = IO_OK;
3464                 goto out;
3465         }
3466
3467         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3468         if (!bssbp)
3469                 goto out;
3470
3471         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3472         if (!id_phys)
3473                 goto out;
3474
3475         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3476                                                 id_phys, sizeof(*id_phys));
3477         if (rc) {
3478                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3479                         __func__, encl_dev->external, bmic_device_index);
3480                 goto out;
3481         }
3482
3483         c = cmd_alloc(h);
3484
3485         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3486                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3487
3488         if (rc)
3489                 goto out;
3490
3491         if (id_phys->phys_connector[1] == 'E')
3492                 c->Request.CDB[5] = id_phys->box_index;
3493         else
3494                 c->Request.CDB[5] = 0;
3495
3496         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3497                                                 NO_TIMEOUT);
3498         if (rc)
3499                 goto out;
3500
3501         ei = c->err_info;
3502         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3503                 rc = -1;
3504                 goto out;
3505         }
3506
3507         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3508         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3509                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3510
3511         rc = IO_OK;
3512 out:
3513         kfree(bssbp);
3514         kfree(id_phys);
3515
3516         if (c)
3517                 cmd_free(h, c);
3518
3519         if (rc != IO_OK)
3520                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3521                         "Error, could not get enclosure information\n");
3522 }
3523
3524 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3525                                                 unsigned char *scsi3addr)
3526 {
3527         struct ReportExtendedLUNdata *physdev;
3528         u32 nphysicals;
3529         u64 sa = 0;
3530         int i;
3531
3532         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3533         if (!physdev)
3534                 return 0;
3535
3536         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3537                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3538                 kfree(physdev);
3539                 return 0;
3540         }
3541         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3542
3543         for (i = 0; i < nphysicals; i++)
3544                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3545                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3546                         break;
3547                 }
3548
3549         kfree(physdev);
3550
3551         return sa;
3552 }
3553
3554 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3555                                         struct hpsa_scsi_dev_t *dev)
3556 {
3557         int rc;
3558         u64 sa = 0;
3559
3560         if (is_hba_lunid(scsi3addr)) {
3561                 struct bmic_sense_subsystem_info *ssi;
3562
3563                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3564                 if (!ssi)
3565                         return;
3566
3567                 rc = hpsa_bmic_sense_subsystem_information(h,
3568                                         scsi3addr, 0, ssi, sizeof(*ssi));
3569                 if (rc == 0) {
3570                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3571                         h->sas_address = sa;
3572                 }
3573
3574                 kfree(ssi);
3575         } else
3576                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3577
3578         dev->sas_address = sa;
3579 }
3580
3581 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3582         struct ReportExtendedLUNdata *physdev)
3583 {
3584         u32 nphysicals;
3585         int i;
3586
3587         if (h->discovery_polling)
3588                 return;
3589
3590         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3591
3592         for (i = 0; i < nphysicals; i++) {
3593                 if (physdev->LUN[i].device_type ==
3594                         BMIC_DEVICE_TYPE_CONTROLLER
3595                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3596                         dev_info(&h->pdev->dev,
3597                                 "External controller present, activate discovery polling and disable rld caching\n");
3598                         hpsa_disable_rld_caching(h);
3599                         h->discovery_polling = 1;
3600                         break;
3601                 }
3602         }
3603 }
3604
3605 /* Get a device id from inquiry page 0x83 */
3606 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3607         unsigned char scsi3addr[], u8 page)
3608 {
3609         int rc;
3610         int i;
3611         int pages;
3612         unsigned char *buf, bufsize;
3613
3614         buf = kzalloc(256, GFP_KERNEL);
3615         if (!buf)
3616                 return false;
3617
3618         /* Get the size of the page list first */
3619         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3620                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3621                                 buf, HPSA_VPD_HEADER_SZ);
3622         if (rc != 0)
3623                 goto exit_unsupported;
3624         pages = buf[3];
3625         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3626                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3627         else
3628                 bufsize = 255;
3629
3630         /* Get the whole VPD page list */
3631         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633                                 buf, bufsize);
3634         if (rc != 0)
3635                 goto exit_unsupported;
3636
3637         pages = buf[3];
3638         for (i = 1; i <= pages; i++)
3639                 if (buf[3 + i] == page)
3640                         goto exit_supported;
3641 exit_unsupported:
3642         kfree(buf);
3643         return false;
3644 exit_supported:
3645         kfree(buf);
3646         return true;
3647 }
3648
3649 /*
3650  * Called during a scan operation.
3651  * Sets ioaccel status on the new device list, not the existing device list
3652  *
3653  * The device list used during I/O will be updated later in
3654  * adjust_hpsa_scsi_table.
3655  */
3656 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3657         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3658 {
3659         int rc;
3660         unsigned char *buf;
3661         u8 ioaccel_status;
3662
3663         this_device->offload_config = 0;
3664         this_device->offload_enabled = 0;
3665         this_device->offload_to_be_enabled = 0;
3666
3667         buf = kzalloc(64, GFP_KERNEL);
3668         if (!buf)
3669                 return;
3670         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3671                 goto out;
3672         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3673                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3674         if (rc != 0)
3675                 goto out;
3676
3677 #define IOACCEL_STATUS_BYTE 4
3678 #define OFFLOAD_CONFIGURED_BIT 0x01
3679 #define OFFLOAD_ENABLED_BIT 0x02
3680         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3681         this_device->offload_config =
3682                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3683         if (this_device->offload_config) {
3684                 this_device->offload_to_be_enabled =
3685                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3686                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3687                         this_device->offload_to_be_enabled = 0;
3688         }
3689
3690 out:
3691         kfree(buf);
3692         return;
3693 }
3694
3695 /* Get the device id from inquiry page 0x83 */
3696 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3697         unsigned char *device_id, int index, int buflen)
3698 {
3699         int rc;
3700         unsigned char *buf;
3701
3702         /* Does controller have VPD for device id? */
3703         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3704                 return 1; /* not supported */
3705
3706         buf = kzalloc(64, GFP_KERNEL);
3707         if (!buf)
3708                 return -ENOMEM;
3709
3710         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3711                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3712         if (rc == 0) {
3713                 if (buflen > 16)
3714                         buflen = 16;
3715                 memcpy(device_id, &buf[8], buflen);
3716         }
3717
3718         kfree(buf);
3719
3720         return rc; /*0 - got id,  otherwise, didn't */
3721 }
3722
3723 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3724                 void *buf, int bufsize,
3725                 int extended_response)
3726 {
3727         int rc = IO_OK;
3728         struct CommandList *c;
3729         unsigned char scsi3addr[8];
3730         struct ErrorInfo *ei;
3731
3732         c = cmd_alloc(h);
3733
3734         /* address the controller */
3735         memset(scsi3addr, 0, sizeof(scsi3addr));
3736         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3737                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3738                 rc = -EAGAIN;
3739                 goto out;
3740         }
3741         if (extended_response)
3742                 c->Request.CDB[1] = extended_response;
3743         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3744                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3745         if (rc)
3746                 goto out;
3747         ei = c->err_info;
3748         if (ei->CommandStatus != 0 &&
3749             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3750                 hpsa_scsi_interpret_error(h, c);
3751                 rc = -EIO;
3752         } else {
3753                 struct ReportLUNdata *rld = buf;
3754
3755                 if (rld->extended_response_flag != extended_response) {
3756                         if (!h->legacy_board) {
3757                                 dev_err(&h->pdev->dev,
3758                                         "report luns requested format %u, got %u\n",
3759                                         extended_response,
3760                                         rld->extended_response_flag);
3761                                 rc = -EINVAL;
3762                         } else
3763                                 rc = -EOPNOTSUPP;
3764                 }
3765         }
3766 out:
3767         cmd_free(h, c);
3768         return rc;
3769 }
3770
3771 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3772                 struct ReportExtendedLUNdata *buf, int bufsize)
3773 {
3774         int rc;
3775         struct ReportLUNdata *lbuf;
3776
3777         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3778                                       HPSA_REPORT_PHYS_EXTENDED);
3779         if (!rc || rc != -EOPNOTSUPP)
3780                 return rc;
3781
3782         /* REPORT PHYS EXTENDED is not supported */
3783         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3784         if (!lbuf)
3785                 return -ENOMEM;
3786
3787         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3788         if (!rc) {
3789                 int i;
3790                 u32 nphys;
3791
3792                 /* Copy ReportLUNdata header */
3793                 memcpy(buf, lbuf, 8);
3794                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3795                 for (i = 0; i < nphys; i++)
3796                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3797         }
3798         kfree(lbuf);
3799         return rc;
3800 }
3801
3802 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3803                 struct ReportLUNdata *buf, int bufsize)
3804 {
3805         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3806 }
3807
3808 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3809         int bus, int target, int lun)
3810 {
3811         device->bus = bus;
3812         device->target = target;
3813         device->lun = lun;
3814 }
3815
3816 /* Use VPD inquiry to get details of volume status */
3817 static int hpsa_get_volume_status(struct ctlr_info *h,
3818                                         unsigned char scsi3addr[])
3819 {
3820         int rc;
3821         int status;
3822         int size;
3823         unsigned char *buf;
3824
3825         buf = kzalloc(64, GFP_KERNEL);
3826         if (!buf)
3827                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3828
3829         /* Does controller have VPD for logical volume status? */
3830         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3831                 goto exit_failed;
3832
3833         /* Get the size of the VPD return buffer */
3834         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3835                                         buf, HPSA_VPD_HEADER_SZ);
3836         if (rc != 0)
3837                 goto exit_failed;
3838         size = buf[3];
3839
3840         /* Now get the whole VPD buffer */
3841         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3842                                         buf, size + HPSA_VPD_HEADER_SZ);
3843         if (rc != 0)
3844                 goto exit_failed;
3845         status = buf[4]; /* status byte */
3846
3847         kfree(buf);
3848         return status;
3849 exit_failed:
3850         kfree(buf);
3851         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3852 }
3853
3854 /* Determine offline status of a volume.
3855  * Return either:
3856  *  0 (not offline)
3857  *  0xff (offline for unknown reasons)
3858  *  # (integer code indicating one of several NOT READY states
3859  *     describing why a volume is to be kept offline)
3860  */
3861 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3862                                         unsigned char scsi3addr[])
3863 {
3864         struct CommandList *c;
3865         unsigned char *sense;
3866         u8 sense_key, asc, ascq;
3867         int sense_len;
3868         int rc, ldstat = 0;
3869         u16 cmd_status;
3870         u8 scsi_status;
3871 #define ASC_LUN_NOT_READY 0x04
3872 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3873 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3874
3875         c = cmd_alloc(h);
3876
3877         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3878         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3879                                         NO_TIMEOUT);
3880         if (rc) {
3881                 cmd_free(h, c);
3882                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3883         }
3884         sense = c->err_info->SenseInfo;
3885         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3886                 sense_len = sizeof(c->err_info->SenseInfo);
3887         else
3888                 sense_len = c->err_info->SenseLen;
3889         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3890         cmd_status = c->err_info->CommandStatus;
3891         scsi_status = c->err_info->ScsiStatus;
3892         cmd_free(h, c);
3893
3894         /* Determine the reason for not ready state */
3895         ldstat = hpsa_get_volume_status(h, scsi3addr);
3896
3897         /* Keep volume offline in certain cases: */
3898         switch (ldstat) {
3899         case HPSA_LV_FAILED:
3900         case HPSA_LV_UNDERGOING_ERASE:
3901         case HPSA_LV_NOT_AVAILABLE:
3902         case HPSA_LV_UNDERGOING_RPI:
3903         case HPSA_LV_PENDING_RPI:
3904         case HPSA_LV_ENCRYPTED_NO_KEY:
3905         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3906         case HPSA_LV_UNDERGOING_ENCRYPTION:
3907         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3908         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3909                 return ldstat;
3910         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3911                 /* If VPD status page isn't available,
3912                  * use ASC/ASCQ to determine state
3913                  */
3914                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3915                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3916                         return ldstat;
3917                 break;
3918         default:
3919                 break;
3920         }
3921         return HPSA_LV_OK;
3922 }
3923
3924 static int hpsa_update_device_info(struct ctlr_info *h,
3925         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3926         unsigned char *is_OBDR_device)
3927 {
3928
3929 #define OBDR_SIG_OFFSET 43
3930 #define OBDR_TAPE_SIG "$DR-10"
3931 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3932 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3933
3934         unsigned char *inq_buff;
3935         unsigned char *obdr_sig;
3936         int rc = 0;
3937
3938         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3939         if (!inq_buff) {
3940                 rc = -ENOMEM;
3941                 goto bail_out;
3942         }
3943
3944         /* Do an inquiry to the device to see what it is. */
3945         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3946                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3947                 dev_err(&h->pdev->dev,
3948                         "%s: inquiry failed, device will be skipped.\n",
3949                         __func__);
3950                 rc = HPSA_INQUIRY_FAILED;
3951                 goto bail_out;
3952         }
3953
3954         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3955         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3956
3957         this_device->devtype = (inq_buff[0] & 0x1f);
3958         memcpy(this_device->scsi3addr, scsi3addr, 8);
3959         memcpy(this_device->vendor, &inq_buff[8],
3960                 sizeof(this_device->vendor));
3961         memcpy(this_device->model, &inq_buff[16],
3962                 sizeof(this_device->model));
3963         this_device->rev = inq_buff[2];
3964         memset(this_device->device_id, 0,
3965                 sizeof(this_device->device_id));
3966         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3967                 sizeof(this_device->device_id)) < 0)
3968                 dev_err(&h->pdev->dev,
3969                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3970                         h->ctlr, __func__,
3971                         h->scsi_host->host_no,
3972                         this_device->target, this_device->lun,
3973                         scsi_device_type(this_device->devtype),
3974                         this_device->model);
3975
3976         if ((this_device->devtype == TYPE_DISK ||
3977                 this_device->devtype == TYPE_ZBC) &&
3978                 is_logical_dev_addr_mode(scsi3addr)) {
3979                 unsigned char volume_offline;
3980
3981                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3982                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3983                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3984                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3985                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3986                     h->legacy_board) {
3987                         /*
3988                          * Legacy boards might not support volume status
3989                          */
3990                         dev_info(&h->pdev->dev,
3991                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3992                                  this_device->target, this_device->lun);
3993                         volume_offline = 0;
3994                 }
3995                 this_device->volume_offline = volume_offline;
3996                 if (volume_offline == HPSA_LV_FAILED) {
3997                         rc = HPSA_LV_FAILED;
3998                         dev_err(&h->pdev->dev,
3999                                 "%s: LV failed, device will be skipped.\n",
4000                                 __func__);
4001                         goto bail_out;
4002                 }
4003         } else {
4004                 this_device->raid_level = RAID_UNKNOWN;
4005                 this_device->offload_config = 0;
4006                 this_device->offload_enabled = 0;
4007                 this_device->offload_to_be_enabled = 0;
4008                 this_device->hba_ioaccel_enabled = 0;
4009                 this_device->volume_offline = 0;
4010                 this_device->queue_depth = h->nr_cmds;
4011         }
4012
4013         if (this_device->external)
4014                 this_device->queue_depth = EXTERNAL_QD;
4015
4016         if (is_OBDR_device) {
4017                 /* See if this is a One-Button-Disaster-Recovery device
4018                  * by looking for "$DR-10" at offset 43 in inquiry data.
4019                  */
4020                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4021                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4022                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4023                                                 OBDR_SIG_LEN) == 0);
4024         }
4025         kfree(inq_buff);
4026         return 0;
4027
4028 bail_out:
4029         kfree(inq_buff);
4030         return rc;
4031 }
4032
4033 /*
4034  * Helper function to assign bus, target, lun mapping of devices.
4035  * Logical drive target and lun are assigned at this time, but
4036  * physical device lun and target assignment are deferred (assigned
4037  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4038 */
4039 static void figure_bus_target_lun(struct ctlr_info *h,
4040         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4041 {
4042         u32 lunid = get_unaligned_le32(lunaddrbytes);
4043
4044         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4045                 /* physical device, target and lun filled in later */
4046                 if (is_hba_lunid(lunaddrbytes)) {
4047                         int bus = HPSA_HBA_BUS;
4048
4049                         if (!device->rev)
4050                                 bus = HPSA_LEGACY_HBA_BUS;
4051                         hpsa_set_bus_target_lun(device,
4052                                         bus, 0, lunid & 0x3fff);
4053                 } else
4054                         /* defer target, lun assignment for physical devices */
4055                         hpsa_set_bus_target_lun(device,
4056                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4057                 return;
4058         }
4059         /* It's a logical device */
4060         if (device->external) {
4061                 hpsa_set_bus_target_lun(device,
4062                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4063                         lunid & 0x00ff);
4064                 return;
4065         }
4066         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4067                                 0, lunid & 0x3fff);
4068 }
4069
4070 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4071         int i, int nphysicals, int nlocal_logicals)
4072 {
4073         /* In report logicals, local logicals are listed first,
4074         * then any externals.
4075         */
4076         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4077
4078         if (i == raid_ctlr_position)
4079                 return 0;
4080
4081         if (i < logicals_start)
4082                 return 0;
4083
4084         /* i is in logicals range, but still within local logicals */
4085         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4086                 return 0;
4087
4088         return 1; /* it's an external lun */
4089 }
4090
4091 /*
4092  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4093  * logdev.  The number of luns in physdev and logdev are returned in
4094  * *nphysicals and *nlogicals, respectively.
4095  * Returns 0 on success, -1 otherwise.
4096  */
4097 static int hpsa_gather_lun_info(struct ctlr_info *h,
4098         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4099         struct ReportLUNdata *logdev, u32 *nlogicals)
4100 {
4101         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4102                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4103                 return -1;
4104         }
4105         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4106         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4107                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4108                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4109                 *nphysicals = HPSA_MAX_PHYS_LUN;
4110         }
4111         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4112                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4113                 return -1;
4114         }
4115         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4116         /* Reject Logicals in excess of our max capability. */
4117         if (*nlogicals > HPSA_MAX_LUN) {
4118                 dev_warn(&h->pdev->dev,
4119                         "maximum logical LUNs (%d) exceeded.  "
4120                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4121                         *nlogicals - HPSA_MAX_LUN);
4122                         *nlogicals = HPSA_MAX_LUN;
4123         }
4124         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4125                 dev_warn(&h->pdev->dev,
4126                         "maximum logical + physical LUNs (%d) exceeded. "
4127                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4128                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4129                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4130         }
4131         return 0;
4132 }
4133
4134 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4135         int i, int nphysicals, int nlogicals,
4136         struct ReportExtendedLUNdata *physdev_list,
4137         struct ReportLUNdata *logdev_list)
4138 {
4139         /* Helper function, figure out where the LUN ID info is coming from
4140          * given index i, lists of physical and logical devices, where in
4141          * the list the raid controller is supposed to appear (first or last)
4142          */
4143
4144         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4145         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4146
4147         if (i == raid_ctlr_position)
4148                 return RAID_CTLR_LUNID;
4149
4150         if (i < logicals_start)
4151                 return &physdev_list->LUN[i -
4152                                 (raid_ctlr_position == 0)].lunid[0];
4153
4154         if (i < last_device)
4155                 return &logdev_list->LUN[i - nphysicals -
4156                         (raid_ctlr_position == 0)][0];
4157         BUG();
4158         return NULL;
4159 }
4160
4161 /* get physical drive ioaccel handle and queue depth */
4162 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4163                 struct hpsa_scsi_dev_t *dev,
4164                 struct ReportExtendedLUNdata *rlep, int rle_index,
4165                 struct bmic_identify_physical_device *id_phys)
4166 {
4167         int rc;
4168         struct ext_report_lun_entry *rle;
4169
4170         rle = &rlep->LUN[rle_index];
4171
4172         dev->ioaccel_handle = rle->ioaccel_handle;
4173         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4174                 dev->hba_ioaccel_enabled = 1;
4175         memset(id_phys, 0, sizeof(*id_phys));
4176         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4177                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4178                         sizeof(*id_phys));
4179         if (!rc)
4180                 /* Reserve space for FW operations */
4181 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4182 #define DRIVE_QUEUE_DEPTH 7
4183                 dev->queue_depth =
4184                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4185                                 DRIVE_CMDS_RESERVED_FOR_FW;
4186         else
4187                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4188 }
4189
4190 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4191         struct ReportExtendedLUNdata *rlep, int rle_index,
4192         struct bmic_identify_physical_device *id_phys)
4193 {
4194         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4195
4196         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4197                 this_device->hba_ioaccel_enabled = 1;
4198
4199         memcpy(&this_device->active_path_index,
4200                 &id_phys->active_path_number,
4201                 sizeof(this_device->active_path_index));
4202         memcpy(&this_device->path_map,
4203                 &id_phys->redundant_path_present_map,
4204                 sizeof(this_device->path_map));
4205         memcpy(&this_device->box,
4206                 &id_phys->alternate_paths_phys_box_on_port,
4207                 sizeof(this_device->box));
4208         memcpy(&this_device->phys_connector,
4209                 &id_phys->alternate_paths_phys_connector,
4210                 sizeof(this_device->phys_connector));
4211         memcpy(&this_device->bay,
4212                 &id_phys->phys_bay_in_box,
4213                 sizeof(this_device->bay));
4214 }
4215
4216 /* get number of local logical disks. */
4217 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4218         struct bmic_identify_controller *id_ctlr,
4219         u32 *nlocals)
4220 {
4221         int rc;
4222
4223         if (!id_ctlr) {
4224                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4225                         __func__);
4226                 return -ENOMEM;
4227         }
4228         memset(id_ctlr, 0, sizeof(*id_ctlr));
4229         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4230         if (!rc)
4231                 if (id_ctlr->configured_logical_drive_count < 255)
4232                         *nlocals = id_ctlr->configured_logical_drive_count;
4233                 else
4234                         *nlocals = le16_to_cpu(
4235                                         id_ctlr->extended_logical_unit_count);
4236         else
4237                 *nlocals = -1;
4238         return rc;
4239 }
4240
4241 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4242 {
4243         struct bmic_identify_physical_device *id_phys;
4244         bool is_spare = false;
4245         int rc;
4246
4247         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4248         if (!id_phys)
4249                 return false;
4250
4251         rc = hpsa_bmic_id_physical_device(h,
4252                                         lunaddrbytes,
4253                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4254                                         id_phys, sizeof(*id_phys));
4255         if (rc == 0)
4256                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4257
4258         kfree(id_phys);
4259         return is_spare;
4260 }
4261
4262 #define RPL_DEV_FLAG_NON_DISK                           0x1
4263 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4264 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4265
4266 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4267
4268 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4269                                 struct ext_report_lun_entry *rle)
4270 {
4271         u8 device_flags;
4272         u8 device_type;
4273
4274         if (!MASKED_DEVICE(lunaddrbytes))
4275                 return false;
4276
4277         device_flags = rle->device_flags;
4278         device_type = rle->device_type;
4279
4280         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4281                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4282                         return false;
4283                 return true;
4284         }
4285
4286         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4287                 return false;
4288
4289         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4290                 return false;
4291
4292         /*
4293          * Spares may be spun down, we do not want to
4294          * do an Inquiry to a RAID set spare drive as
4295          * that would have them spun up, that is a
4296          * performance hit because I/O to the RAID device
4297          * stops while the spin up occurs which can take
4298          * over 50 seconds.
4299          */
4300         if (hpsa_is_disk_spare(h, lunaddrbytes))
4301                 return true;
4302
4303         return false;
4304 }
4305
4306 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4307 {
4308         /* the idea here is we could get notified
4309          * that some devices have changed, so we do a report
4310          * physical luns and report logical luns cmd, and adjust
4311          * our list of devices accordingly.
4312          *
4313          * The scsi3addr's of devices won't change so long as the
4314          * adapter is not reset.  That means we can rescan and
4315          * tell which devices we already know about, vs. new
4316          * devices, vs.  disappearing devices.
4317          */
4318         struct ReportExtendedLUNdata *physdev_list = NULL;
4319         struct ReportLUNdata *logdev_list = NULL;
4320         struct bmic_identify_physical_device *id_phys = NULL;
4321         struct bmic_identify_controller *id_ctlr = NULL;
4322         u32 nphysicals = 0;
4323         u32 nlogicals = 0;
4324         u32 nlocal_logicals = 0;
4325         u32 ndev_allocated = 0;
4326         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4327         int ncurrent = 0;
4328         int i, n_ext_target_devs, ndevs_to_allocate;
4329         int raid_ctlr_position;
4330         bool physical_device;
4331         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4332
4333         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4334         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4335         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4336         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4337         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4338         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4339
4340         if (!currentsd || !physdev_list || !logdev_list ||
4341                 !tmpdevice || !id_phys || !id_ctlr) {
4342                 dev_err(&h->pdev->dev, "out of memory\n");
4343                 goto out;
4344         }
4345         memset(lunzerobits, 0, sizeof(lunzerobits));
4346
4347         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4348
4349         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4350                         logdev_list, &nlogicals)) {
4351                 h->drv_req_rescan = 1;
4352                 goto out;
4353         }
4354
4355         /* Set number of local logicals (non PTRAID) */
4356         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4357                 dev_warn(&h->pdev->dev,
4358                         "%s: Can't determine number of local logical devices.\n",
4359                         __func__);
4360         }
4361
4362         /* We might see up to the maximum number of logical and physical disks
4363          * plus external target devices, and a device for the local RAID
4364          * controller.
4365          */
4366         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4367
4368         hpsa_ext_ctrl_present(h, physdev_list);
4369
4370         /* Allocate the per device structures */
4371         for (i = 0; i < ndevs_to_allocate; i++) {
4372                 if (i >= HPSA_MAX_DEVICES) {
4373                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4374                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4375                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4376                         break;
4377                 }
4378
4379                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4380                 if (!currentsd[i]) {
4381                         h->drv_req_rescan = 1;
4382                         goto out;
4383                 }
4384                 ndev_allocated++;
4385         }
4386
4387         if (is_scsi_rev_5(h))
4388                 raid_ctlr_position = 0;
4389         else
4390                 raid_ctlr_position = nphysicals + nlogicals;
4391
4392         /* adjust our table of devices */
4393         n_ext_target_devs = 0;
4394         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4395                 u8 *lunaddrbytes, is_OBDR = 0;
4396                 int rc = 0;
4397                 int phys_dev_index = i - (raid_ctlr_position == 0);
4398                 bool skip_device = false;
4399
4400                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4401
4402                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4403
4404                 /* Figure out where the LUN ID info is coming from */
4405                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4406                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4407
4408                 /* Determine if this is a lun from an external target array */
4409                 tmpdevice->external =
4410                         figure_external_status(h, raid_ctlr_position, i,
4411                                                 nphysicals, nlocal_logicals);
4412
4413                 /*
4414                  * Skip over some devices such as a spare.
4415                  */
4416                 if (!tmpdevice->external && physical_device) {
4417                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4418                                         &physdev_list->LUN[phys_dev_index]);
4419                         if (skip_device)
4420                                 continue;
4421                 }
4422
4423                 /* Get device type, vendor, model, device id, raid_map */
4424                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4425                                                         &is_OBDR);
4426                 if (rc == -ENOMEM) {
4427                         dev_warn(&h->pdev->dev,
4428                                 "Out of memory, rescan deferred.\n");
4429                         h->drv_req_rescan = 1;
4430                         goto out;
4431                 }
4432                 if (rc) {
4433                         h->drv_req_rescan = 1;
4434                         continue;
4435                 }
4436
4437                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4438                 this_device = currentsd[ncurrent];
4439
4440                 *this_device = *tmpdevice;
4441                 this_device->physical_device = physical_device;
4442
4443                 /*
4444                  * Expose all devices except for physical devices that
4445                  * are masked.
4446                  */
4447                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4448                         this_device->expose_device = 0;
4449                 else
4450                         this_device->expose_device = 1;
4451
4452
4453                 /*
4454                  * Get the SAS address for physical devices that are exposed.
4455                  */
4456                 if (this_device->physical_device && this_device->expose_device)
4457                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4458
4459                 switch (this_device->devtype) {
4460                 case TYPE_ROM:
4461                         /* We don't *really* support actual CD-ROM devices,
4462                          * just "One Button Disaster Recovery" tape drive
4463                          * which temporarily pretends to be a CD-ROM drive.
4464                          * So we check that the device is really an OBDR tape
4465                          * device by checking for "$DR-10" in bytes 43-48 of
4466                          * the inquiry data.
4467                          */
4468                         if (is_OBDR)
4469                                 ncurrent++;
4470                         break;
4471                 case TYPE_DISK:
4472                 case TYPE_ZBC:
4473                         if (this_device->physical_device) {
4474                                 /* The disk is in HBA mode. */
4475                                 /* Never use RAID mapper in HBA mode. */
4476                                 this_device->offload_enabled = 0;
4477                                 hpsa_get_ioaccel_drive_info(h, this_device,
4478                                         physdev_list, phys_dev_index, id_phys);
4479                                 hpsa_get_path_info(this_device,
4480                                         physdev_list, phys_dev_index, id_phys);
4481                         }
4482                         ncurrent++;
4483                         break;
4484                 case TYPE_TAPE:
4485                 case TYPE_MEDIUM_CHANGER:
4486                         ncurrent++;
4487                         break;
4488                 case TYPE_ENCLOSURE:
4489                         if (!this_device->external)
4490                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4491                                                 physdev_list, phys_dev_index,
4492                                                 this_device);
4493                         ncurrent++;
4494                         break;
4495                 case TYPE_RAID:
4496                         /* Only present the Smartarray HBA as a RAID controller.
4497                          * If it's a RAID controller other than the HBA itself
4498                          * (an external RAID controller, MSA500 or similar)
4499                          * don't present it.
4500                          */
4501                         if (!is_hba_lunid(lunaddrbytes))
4502                                 break;
4503                         ncurrent++;
4504                         break;
4505                 default:
4506                         break;
4507                 }
4508                 if (ncurrent >= HPSA_MAX_DEVICES)
4509                         break;
4510         }
4511
4512         if (h->sas_host == NULL) {
4513                 int rc = 0;
4514
4515                 rc = hpsa_add_sas_host(h);
4516                 if (rc) {
4517                         dev_warn(&h->pdev->dev,
4518                                 "Could not add sas host %d\n", rc);
4519                         goto out;
4520                 }
4521         }
4522
4523         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4524 out:
4525         kfree(tmpdevice);
4526         for (i = 0; i < ndev_allocated; i++)
4527                 kfree(currentsd[i]);
4528         kfree(currentsd);
4529         kfree(physdev_list);
4530         kfree(logdev_list);
4531         kfree(id_ctlr);
4532         kfree(id_phys);
4533 }
4534
4535 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4536                                    struct scatterlist *sg)
4537 {
4538         u64 addr64 = (u64) sg_dma_address(sg);
4539         unsigned int len = sg_dma_len(sg);
4540
4541         desc->Addr = cpu_to_le64(addr64);
4542         desc->Len = cpu_to_le32(len);
4543         desc->Ext = 0;
4544 }
4545
4546 /*
4547  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4548  * dma mapping  and fills in the scatter gather entries of the
4549  * hpsa command, cp.
4550  */
4551 static int hpsa_scatter_gather(struct ctlr_info *h,
4552                 struct CommandList *cp,
4553                 struct scsi_cmnd *cmd)
4554 {
4555         struct scatterlist *sg;
4556         int use_sg, i, sg_limit, chained, last_sg;
4557         struct SGDescriptor *curr_sg;
4558
4559         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4560
4561         use_sg = scsi_dma_map(cmd);
4562         if (use_sg < 0)
4563                 return use_sg;
4564
4565         if (!use_sg)
4566                 goto sglist_finished;
4567
4568         /*
4569          * If the number of entries is greater than the max for a single list,
4570          * then we have a chained list; we will set up all but one entry in the
4571          * first list (the last entry is saved for link information);
4572          * otherwise, we don't have a chained list and we'll set up at each of
4573          * the entries in the one list.
4574          */
4575         curr_sg = cp->SG;
4576         chained = use_sg > h->max_cmd_sg_entries;
4577         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4578         last_sg = scsi_sg_count(cmd) - 1;
4579         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4580                 hpsa_set_sg_descriptor(curr_sg, sg);
4581                 curr_sg++;
4582         }
4583
4584         if (chained) {
4585                 /*
4586                  * Continue with the chained list.  Set curr_sg to the chained
4587                  * list.  Modify the limit to the total count less the entries
4588                  * we've already set up.  Resume the scan at the list entry
4589                  * where the previous loop left off.
4590                  */
4591                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4592                 sg_limit = use_sg - sg_limit;
4593                 for_each_sg(sg, sg, sg_limit, i) {
4594                         hpsa_set_sg_descriptor(curr_sg, sg);
4595                         curr_sg++;
4596                 }
4597         }
4598
4599         /* Back the pointer up to the last entry and mark it as "last". */
4600         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4601
4602         if (use_sg + chained > h->maxSG)
4603                 h->maxSG = use_sg + chained;
4604
4605         if (chained) {
4606                 cp->Header.SGList = h->max_cmd_sg_entries;
4607                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4608                 if (hpsa_map_sg_chain_block(h, cp)) {
4609                         scsi_dma_unmap(cmd);
4610                         return -1;
4611                 }
4612                 return 0;
4613         }
4614
4615 sglist_finished:
4616
4617         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4618         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4619         return 0;
4620 }
4621
4622 #define BUFLEN 128
4623 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4624                                                 u8 *cdb, int cdb_len,
4625                                                 const char *func)
4626 {
4627         char buf[BUFLEN];
4628         int outlen;
4629         int i;
4630
4631         outlen = scnprintf(buf, BUFLEN,
4632                                 "%s: Blocking zero-length request: CDB:", func);
4633         for (i = 0; i < cdb_len; i++)
4634                 outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4635                                         "%02hhx", cdb[i]);
4636         dev_warn(&h->pdev->dev, "%s\n", buf);
4637 }
4638
4639 #define IO_ACCEL_INELIGIBLE 1
4640 /* zero-length transfers trigger hardware errors. */
4641 static bool is_zero_length_transfer(u8 *cdb)
4642 {
4643         u32 block_cnt;
4644
4645         /* Block zero-length transfer sizes on certain commands. */
4646         switch (cdb[0]) {
4647         case READ_10:
4648         case WRITE_10:
4649         case VERIFY:            /* 0x2F */
4650         case WRITE_VERIFY:      /* 0x2E */
4651                 block_cnt = get_unaligned_be16(&cdb[7]);
4652                 break;
4653         case READ_12:
4654         case WRITE_12:
4655         case VERIFY_12: /* 0xAF */
4656         case WRITE_VERIFY_12:   /* 0xAE */
4657                 block_cnt = get_unaligned_be32(&cdb[6]);
4658                 break;
4659         case READ_16:
4660         case WRITE_16:
4661         case VERIFY_16:         /* 0x8F */
4662                 block_cnt = get_unaligned_be32(&cdb[10]);
4663                 break;
4664         default:
4665                 return false;
4666         }
4667
4668         return block_cnt == 0;
4669 }
4670
4671 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4672 {
4673         int is_write = 0;
4674         u32 block;
4675         u32 block_cnt;
4676
4677         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4678         switch (cdb[0]) {
4679         case WRITE_6:
4680         case WRITE_12:
4681                 is_write = 1;
4682         case READ_6:
4683         case READ_12:
4684                 if (*cdb_len == 6) {
4685                         block = (((cdb[1] & 0x1F) << 16) |
4686                                 (cdb[2] << 8) |
4687                                 cdb[3]);
4688                         block_cnt = cdb[4];
4689                         if (block_cnt == 0)
4690                                 block_cnt = 256;
4691                 } else {
4692                         BUG_ON(*cdb_len != 12);
4693                         block = get_unaligned_be32(&cdb[2]);
4694                         block_cnt = get_unaligned_be32(&cdb[6]);
4695                 }
4696                 if (block_cnt > 0xffff)
4697                         return IO_ACCEL_INELIGIBLE;
4698
4699                 cdb[0] = is_write ? WRITE_10 : READ_10;
4700                 cdb[1] = 0;
4701                 cdb[2] = (u8) (block >> 24);
4702                 cdb[3] = (u8) (block >> 16);
4703                 cdb[4] = (u8) (block >> 8);
4704                 cdb[5] = (u8) (block);
4705                 cdb[6] = 0;
4706                 cdb[7] = (u8) (block_cnt >> 8);
4707                 cdb[8] = (u8) (block_cnt);
4708                 cdb[9] = 0;
4709                 *cdb_len = 10;
4710                 break;
4711         }
4712         return 0;
4713 }
4714
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4716         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4717         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4718 {
4719         struct scsi_cmnd *cmd = c->scsi_cmd;
4720         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4721         unsigned int len;
4722         unsigned int total_len = 0;
4723         struct scatterlist *sg;
4724         u64 addr64;
4725         int use_sg, i;
4726         struct SGDescriptor *curr_sg;
4727         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4728
4729         /* TODO: implement chaining support */
4730         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4731                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4732                 return IO_ACCEL_INELIGIBLE;
4733         }
4734
4735         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4736
4737         if (is_zero_length_transfer(cdb)) {
4738                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4739                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4740                 return IO_ACCEL_INELIGIBLE;
4741         }
4742
4743         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4744                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4745                 return IO_ACCEL_INELIGIBLE;
4746         }
4747
4748         c->cmd_type = CMD_IOACCEL1;
4749
4750         /* Adjust the DMA address to point to the accelerated command buffer */
4751         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4752                                 (c->cmdindex * sizeof(*cp));
4753         BUG_ON(c->busaddr & 0x0000007F);
4754
4755         use_sg = scsi_dma_map(cmd);
4756         if (use_sg < 0) {
4757                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4758                 return use_sg;
4759         }
4760
4761         if (use_sg) {
4762                 curr_sg = cp->SG;
4763                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4764                         addr64 = (u64) sg_dma_address(sg);
4765                         len  = sg_dma_len(sg);
4766                         total_len += len;
4767                         curr_sg->Addr = cpu_to_le64(addr64);
4768                         curr_sg->Len = cpu_to_le32(len);
4769                         curr_sg->Ext = cpu_to_le32(0);
4770                         curr_sg++;
4771                 }
4772                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4773
4774                 switch (cmd->sc_data_direction) {
4775                 case DMA_TO_DEVICE:
4776                         control |= IOACCEL1_CONTROL_DATA_OUT;
4777                         break;
4778                 case DMA_FROM_DEVICE:
4779                         control |= IOACCEL1_CONTROL_DATA_IN;
4780                         break;
4781                 case DMA_NONE:
4782                         control |= IOACCEL1_CONTROL_NODATAXFER;
4783                         break;
4784                 default:
4785                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4786                         cmd->sc_data_direction);
4787                         BUG();
4788                         break;
4789                 }
4790         } else {
4791                 control |= IOACCEL1_CONTROL_NODATAXFER;
4792         }
4793
4794         c->Header.SGList = use_sg;
4795         /* Fill out the command structure to submit */
4796         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4797         cp->transfer_len = cpu_to_le32(total_len);
4798         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4799                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4800         cp->control = cpu_to_le32(control);
4801         memcpy(cp->CDB, cdb, cdb_len);
4802         memcpy(cp->CISS_LUN, scsi3addr, 8);
4803         /* Tag was already set at init time. */
4804         enqueue_cmd_and_start_io(h, c);
4805         return 0;
4806 }
4807
4808 /*
4809  * Queue a command directly to a device behind the controller using the
4810  * I/O accelerator path.
4811  */
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4813         struct CommandList *c)
4814 {
4815         struct scsi_cmnd *cmd = c->scsi_cmd;
4816         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4817
4818         if (!dev)
4819                 return -1;
4820
4821         c->phys_disk = dev;
4822
4823         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4824                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4825 }
4826
4827 /*
4828  * Set encryption parameters for the ioaccel2 request
4829  */
4830 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4831         struct CommandList *c, struct io_accel2_cmd *cp)
4832 {
4833         struct scsi_cmnd *cmd = c->scsi_cmd;
4834         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4835         struct raid_map_data *map = &dev->raid_map;
4836         u64 first_block;
4837
4838         /* Are we doing encryption on this device */
4839         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4840                 return;
4841         /* Set the data encryption key index. */
4842         cp->dekindex = map->dekindex;
4843
4844         /* Set the encryption enable flag, encoded into direction field. */
4845         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4846
4847         /* Set encryption tweak values based on logical block address
4848          * If block size is 512, tweak value is LBA.
4849          * For other block sizes, tweak is (LBA * block size)/ 512)
4850          */
4851         switch (cmd->cmnd[0]) {
4852         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4853         case READ_6:
4854         case WRITE_6:
4855                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4856                                 (cmd->cmnd[2] << 8) |
4857                                 cmd->cmnd[3]);
4858                 break;
4859         case WRITE_10:
4860         case READ_10:
4861         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4862         case WRITE_12:
4863         case READ_12:
4864                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4865                 break;
4866         case WRITE_16:
4867         case READ_16:
4868                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4869                 break;
4870         default:
4871                 dev_err(&h->pdev->dev,
4872                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4873                         __func__, cmd->cmnd[0]);
4874                 BUG();
4875                 break;
4876         }
4877
4878         if (le32_to_cpu(map->volume_blk_size) != 512)
4879                 first_block = first_block *
4880                                 le32_to_cpu(map->volume_blk_size)/512;
4881
4882         cp->tweak_lower = cpu_to_le32(first_block);
4883         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4884 }
4885
4886 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4887         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890         struct scsi_cmnd *cmd = c->scsi_cmd;
4891         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4892         struct ioaccel2_sg_element *curr_sg;
4893         int use_sg, i;
4894         struct scatterlist *sg;
4895         u64 addr64;
4896         u32 len;
4897         u32 total_len = 0;
4898
4899         if (!cmd->device)
4900                 return -1;
4901
4902         if (!cmd->device->hostdata)
4903                 return -1;
4904
4905         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4906
4907         if (is_zero_length_transfer(cdb)) {
4908                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4909                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4910                 return IO_ACCEL_INELIGIBLE;
4911         }
4912
4913         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4914                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4915                 return IO_ACCEL_INELIGIBLE;
4916         }
4917
4918         c->cmd_type = CMD_IOACCEL2;
4919         /* Adjust the DMA address to point to the accelerated command buffer */
4920         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4921                                 (c->cmdindex * sizeof(*cp));
4922         BUG_ON(c->busaddr & 0x0000007F);
4923
4924         memset(cp, 0, sizeof(*cp));
4925         cp->IU_type = IOACCEL2_IU_TYPE;
4926
4927         use_sg = scsi_dma_map(cmd);
4928         if (use_sg < 0) {
4929                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4930                 return use_sg;
4931         }
4932
4933         if (use_sg) {
4934                 curr_sg = cp->sg;
4935                 if (use_sg > h->ioaccel_maxsg) {
4936                         addr64 = le64_to_cpu(
4937                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4938                         curr_sg->address = cpu_to_le64(addr64);
4939                         curr_sg->length = 0;
4940                         curr_sg->reserved[0] = 0;
4941                         curr_sg->reserved[1] = 0;
4942                         curr_sg->reserved[2] = 0;
4943                         curr_sg->chain_indicator = 0x80;
4944
4945                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4946                 }
4947                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4948                         addr64 = (u64) sg_dma_address(sg);
4949                         len  = sg_dma_len(sg);
4950                         total_len += len;
4951                         curr_sg->address = cpu_to_le64(addr64);
4952                         curr_sg->length = cpu_to_le32(len);
4953                         curr_sg->reserved[0] = 0;
4954                         curr_sg->reserved[1] = 0;
4955                         curr_sg->reserved[2] = 0;
4956                         curr_sg->chain_indicator = 0;
4957                         curr_sg++;
4958                 }
4959
4960                 switch (cmd->sc_data_direction) {
4961                 case DMA_TO_DEVICE:
4962                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4963                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4964                         break;
4965                 case DMA_FROM_DEVICE:
4966                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4967                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4968                         break;
4969                 case DMA_NONE:
4970                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4971                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4972                         break;
4973                 default:
4974                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4975                                 cmd->sc_data_direction);
4976                         BUG();
4977                         break;
4978                 }
4979         } else {
4980                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4981                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4982         }
4983
4984         /* Set encryption parameters, if necessary */
4985         set_encrypt_ioaccel2(h, c, cp);
4986
4987         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4988         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4989         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4990
4991         cp->data_len = cpu_to_le32(total_len);
4992         cp->err_ptr = cpu_to_le64(c->busaddr +
4993                         offsetof(struct io_accel2_cmd, error_data));
4994         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4995
4996         /* fill in sg elements */
4997         if (use_sg > h->ioaccel_maxsg) {
4998                 cp->sg_count = 1;
4999                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5000                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5001                         atomic_dec(&phys_disk->ioaccel_cmds_out);
5002                         scsi_dma_unmap(cmd);
5003                         return -1;
5004                 }
5005         } else
5006                 cp->sg_count = (u8) use_sg;
5007
5008         enqueue_cmd_and_start_io(h, c);
5009         return 0;
5010 }
5011
5012 /*
5013  * Queue a command to the correct I/O accelerator path.
5014  */
5015 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5016         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5017         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5018 {
5019         if (!c->scsi_cmd->device)
5020                 return -1;
5021
5022         if (!c->scsi_cmd->device->hostdata)
5023                 return -1;
5024
5025         /* Try to honor the device's queue depth */
5026         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5027                                         phys_disk->queue_depth) {
5028                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5029                 return IO_ACCEL_INELIGIBLE;
5030         }
5031         if (h->transMethod & CFGTBL_Trans_io_accel1)
5032                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5033                                                 cdb, cdb_len, scsi3addr,
5034                                                 phys_disk);
5035         else
5036                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5037                                                 cdb, cdb_len, scsi3addr,
5038                                                 phys_disk);
5039 }
5040
5041 static void raid_map_helper(struct raid_map_data *map,
5042                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5043 {
5044         if (offload_to_mirror == 0)  {
5045                 /* use physical disk in the first mirrored group. */
5046                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5047                 return;
5048         }
5049         do {
5050                 /* determine mirror group that *map_index indicates */
5051                 *current_group = *map_index /
5052                         le16_to_cpu(map->data_disks_per_row);
5053                 if (offload_to_mirror == *current_group)
5054                         continue;
5055                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5056                         /* select map index from next group */
5057                         *map_index += le16_to_cpu(map->data_disks_per_row);
5058                         (*current_group)++;
5059                 } else {
5060                         /* select map index from first group */
5061                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5062                         *current_group = 0;
5063                 }
5064         } while (offload_to_mirror != *current_group);
5065 }
5066
5067 /*
5068  * Attempt to perform offload RAID mapping for a logical volume I/O.
5069  */
5070 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5071         struct CommandList *c)
5072 {
5073         struct scsi_cmnd *cmd = c->scsi_cmd;
5074         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5075         struct raid_map_data *map = &dev->raid_map;
5076         struct raid_map_disk_data *dd = &map->data[0];
5077         int is_write = 0;
5078         u32 map_index;
5079         u64 first_block, last_block;
5080         u32 block_cnt;
5081         u32 blocks_per_row;
5082         u64 first_row, last_row;
5083         u32 first_row_offset, last_row_offset;
5084         u32 first_column, last_column;
5085         u64 r0_first_row, r0_last_row;
5086         u32 r5or6_blocks_per_row;
5087         u64 r5or6_first_row, r5or6_last_row;
5088         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5089         u32 r5or6_first_column, r5or6_last_column;
5090         u32 total_disks_per_row;
5091         u32 stripesize;
5092         u32 first_group, last_group, current_group;
5093         u32 map_row;
5094         u32 disk_handle;
5095         u64 disk_block;
5096         u32 disk_block_cnt;
5097         u8 cdb[16];
5098         u8 cdb_len;
5099         u16 strip_size;
5100 #if BITS_PER_LONG == 32
5101         u64 tmpdiv;
5102 #endif
5103         int offload_to_mirror;
5104
5105         if (!dev)
5106                 return -1;
5107
5108         /* check for valid opcode, get LBA and block count */
5109         switch (cmd->cmnd[0]) {
5110         case WRITE_6:
5111                 is_write = 1;
5112         case READ_6:
5113                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5114                                 (cmd->cmnd[2] << 8) |
5115                                 cmd->cmnd[3]);
5116                 block_cnt = cmd->cmnd[4];
5117                 if (block_cnt == 0)
5118                         block_cnt = 256;
5119                 break;
5120         case WRITE_10:
5121                 is_write = 1;
5122         case READ_10:
5123                 first_block =
5124                         (((u64) cmd->cmnd[2]) << 24) |
5125                         (((u64) cmd->cmnd[3]) << 16) |
5126                         (((u64) cmd->cmnd[4]) << 8) |
5127                         cmd->cmnd[5];
5128                 block_cnt =
5129                         (((u32) cmd->cmnd[7]) << 8) |
5130                         cmd->cmnd[8];
5131                 break;
5132         case WRITE_12:
5133                 is_write = 1;
5134         case READ_12:
5135                 first_block =
5136                         (((u64) cmd->cmnd[2]) << 24) |
5137                         (((u64) cmd->cmnd[3]) << 16) |
5138                         (((u64) cmd->cmnd[4]) << 8) |
5139                         cmd->cmnd[5];
5140                 block_cnt =
5141                         (((u32) cmd->cmnd[6]) << 24) |
5142                         (((u32) cmd->cmnd[7]) << 16) |
5143                         (((u32) cmd->cmnd[8]) << 8) |
5144                 cmd->cmnd[9];
5145                 break;
5146         case WRITE_16:
5147                 is_write = 1;
5148         case READ_16:
5149                 first_block =
5150                         (((u64) cmd->cmnd[2]) << 56) |
5151                         (((u64) cmd->cmnd[3]) << 48) |
5152                         (((u64) cmd->cmnd[4]) << 40) |
5153                         (((u64) cmd->cmnd[5]) << 32) |
5154                         (((u64) cmd->cmnd[6]) << 24) |
5155                         (((u64) cmd->cmnd[7]) << 16) |
5156                         (((u64) cmd->cmnd[8]) << 8) |
5157                         cmd->cmnd[9];
5158                 block_cnt =
5159                         (((u32) cmd->cmnd[10]) << 24) |
5160                         (((u32) cmd->cmnd[11]) << 16) |
5161                         (((u32) cmd->cmnd[12]) << 8) |
5162                         cmd->cmnd[13];
5163                 break;
5164         default:
5165                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5166         }
5167         last_block = first_block + block_cnt - 1;
5168
5169         /* check for write to non-RAID-0 */
5170         if (is_write && dev->raid_level != 0)
5171                 return IO_ACCEL_INELIGIBLE;
5172
5173         /* check for invalid block or wraparound */
5174         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5175                 last_block < first_block)
5176                 return IO_ACCEL_INELIGIBLE;
5177
5178         /* calculate stripe information for the request */
5179         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5180                                 le16_to_cpu(map->strip_size);
5181         strip_size = le16_to_cpu(map->strip_size);
5182 #if BITS_PER_LONG == 32
5183         tmpdiv = first_block;
5184         (void) do_div(tmpdiv, blocks_per_row);
5185         first_row = tmpdiv;
5186         tmpdiv = last_block;
5187         (void) do_div(tmpdiv, blocks_per_row);
5188         last_row = tmpdiv;
5189         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5190         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5191         tmpdiv = first_row_offset;
5192         (void) do_div(tmpdiv, strip_size);
5193         first_column = tmpdiv;
5194         tmpdiv = last_row_offset;
5195         (void) do_div(tmpdiv, strip_size);
5196         last_column = tmpdiv;
5197 #else
5198         first_row = first_block / blocks_per_row;
5199         last_row = last_block / blocks_per_row;
5200         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5201         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5202         first_column = first_row_offset / strip_size;
5203         last_column = last_row_offset / strip_size;
5204 #endif
5205
5206         /* if this isn't a single row/column then give to the controller */
5207         if ((first_row != last_row) || (first_column != last_column))
5208                 return IO_ACCEL_INELIGIBLE;
5209
5210         /* proceeding with driver mapping */
5211         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5212                                 le16_to_cpu(map->metadata_disks_per_row);
5213         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5214                                 le16_to_cpu(map->row_cnt);
5215         map_index = (map_row * total_disks_per_row) + first_column;
5216
5217         switch (dev->raid_level) {
5218         case HPSA_RAID_0:
5219                 break; /* nothing special to do */
5220         case HPSA_RAID_1:
5221                 /* Handles load balance across RAID 1 members.
5222                  * (2-drive R1 and R10 with even # of drives.)
5223                  * Appropriate for SSDs, not optimal for HDDs
5224                  */
5225                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5226                 if (dev->offload_to_mirror)
5227                         map_index += le16_to_cpu(map->data_disks_per_row);
5228                 dev->offload_to_mirror = !dev->offload_to_mirror;
5229                 break;
5230         case HPSA_RAID_ADM:
5231                 /* Handles N-way mirrors  (R1-ADM)
5232                  * and R10 with # of drives divisible by 3.)
5233                  */
5234                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5235
5236                 offload_to_mirror = dev->offload_to_mirror;
5237                 raid_map_helper(map, offload_to_mirror,
5238                                 &map_index, &current_group);
5239                 /* set mirror group to use next time */
5240                 offload_to_mirror =
5241                         (offload_to_mirror >=
5242                         le16_to_cpu(map->layout_map_count) - 1)
5243                         ? 0 : offload_to_mirror + 1;
5244                 dev->offload_to_mirror = offload_to_mirror;
5245                 /* Avoid direct use of dev->offload_to_mirror within this
5246                  * function since multiple threads might simultaneously
5247                  * increment it beyond the range of dev->layout_map_count -1.
5248                  */
5249                 break;
5250         case HPSA_RAID_5:
5251         case HPSA_RAID_6:
5252                 if (le16_to_cpu(map->layout_map_count) <= 1)
5253                         break;
5254
5255                 /* Verify first and last block are in same RAID group */
5256                 r5or6_blocks_per_row =
5257                         le16_to_cpu(map->strip_size) *
5258                         le16_to_cpu(map->data_disks_per_row);
5259                 BUG_ON(r5or6_blocks_per_row == 0);
5260                 stripesize = r5or6_blocks_per_row *
5261                         le16_to_cpu(map->layout_map_count);
5262 #if BITS_PER_LONG == 32
5263                 tmpdiv = first_block;
5264                 first_group = do_div(tmpdiv, stripesize);
5265                 tmpdiv = first_group;
5266                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5267                 first_group = tmpdiv;
5268                 tmpdiv = last_block;
5269                 last_group = do_div(tmpdiv, stripesize);
5270                 tmpdiv = last_group;
5271                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5272                 last_group = tmpdiv;
5273 #else
5274                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5275                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5276 #endif
5277                 if (first_group != last_group)
5278                         return IO_ACCEL_INELIGIBLE;
5279
5280                 /* Verify request is in a single row of RAID 5/6 */
5281 #if BITS_PER_LONG == 32
5282                 tmpdiv = first_block;
5283                 (void) do_div(tmpdiv, stripesize);
5284                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5285                 tmpdiv = last_block;
5286                 (void) do_div(tmpdiv, stripesize);
5287                 r5or6_last_row = r0_last_row = tmpdiv;
5288 #else
5289                 first_row = r5or6_first_row = r0_first_row =
5290                                                 first_block / stripesize;
5291                 r5or6_last_row = r0_last_row = last_block / stripesize;
5292 #endif
5293                 if (r5or6_first_row != r5or6_last_row)
5294                         return IO_ACCEL_INELIGIBLE;
5295
5296
5297                 /* Verify request is in a single column */
5298 #if BITS_PER_LONG == 32
5299                 tmpdiv = first_block;
5300                 first_row_offset = do_div(tmpdiv, stripesize);
5301                 tmpdiv = first_row_offset;
5302                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5303                 r5or6_first_row_offset = first_row_offset;
5304                 tmpdiv = last_block;
5305                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5306                 tmpdiv = r5or6_last_row_offset;
5307                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5308                 tmpdiv = r5or6_first_row_offset;
5309                 (void) do_div(tmpdiv, map->strip_size);
5310                 first_column = r5or6_first_column = tmpdiv;
5311                 tmpdiv = r5or6_last_row_offset;
5312                 (void) do_div(tmpdiv, map->strip_size);
5313                 r5or6_last_column = tmpdiv;
5314 #else
5315                 first_row_offset = r5or6_first_row_offset =
5316                         (u32)((first_block % stripesize) %
5317                                                 r5or6_blocks_per_row);
5318
5319                 r5or6_last_row_offset =
5320                         (u32)((last_block % stripesize) %
5321                                                 r5or6_blocks_per_row);
5322
5323                 first_column = r5or6_first_column =
5324                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5325                 r5or6_last_column =
5326                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5327 #endif
5328                 if (r5or6_first_column != r5or6_last_column)
5329                         return IO_ACCEL_INELIGIBLE;
5330
5331                 /* Request is eligible */
5332                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5333                         le16_to_cpu(map->row_cnt);
5334
5335                 map_index = (first_group *
5336                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5337                         (map_row * total_disks_per_row) + first_column;
5338                 break;
5339         default:
5340                 return IO_ACCEL_INELIGIBLE;
5341         }
5342
5343         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5344                 return IO_ACCEL_INELIGIBLE;
5345
5346         c->phys_disk = dev->phys_disk[map_index];
5347         if (!c->phys_disk)
5348                 return IO_ACCEL_INELIGIBLE;
5349
5350         disk_handle = dd[map_index].ioaccel_handle;
5351         disk_block = le64_to_cpu(map->disk_starting_blk) +
5352                         first_row * le16_to_cpu(map->strip_size) +
5353                         (first_row_offset - first_column *
5354                         le16_to_cpu(map->strip_size));
5355         disk_block_cnt = block_cnt;
5356
5357         /* handle differing logical/physical block sizes */
5358         if (map->phys_blk_shift) {
5359                 disk_block <<= map->phys_blk_shift;
5360                 disk_block_cnt <<= map->phys_blk_shift;
5361         }
5362         BUG_ON(disk_block_cnt > 0xffff);
5363
5364         /* build the new CDB for the physical disk I/O */
5365         if (disk_block > 0xffffffff) {
5366                 cdb[0] = is_write ? WRITE_16 : READ_16;
5367                 cdb[1] = 0;
5368                 cdb[2] = (u8) (disk_block >> 56);
5369                 cdb[3] = (u8) (disk_block >> 48);
5370                 cdb[4] = (u8) (disk_block >> 40);
5371                 cdb[5] = (u8) (disk_block >> 32);
5372                 cdb[6] = (u8) (disk_block >> 24);
5373                 cdb[7] = (u8) (disk_block >> 16);
5374                 cdb[8] = (u8) (disk_block >> 8);
5375                 cdb[9] = (u8) (disk_block);
5376                 cdb[10] = (u8) (disk_block_cnt >> 24);
5377                 cdb[11] = (u8) (disk_block_cnt >> 16);
5378                 cdb[12] = (u8) (disk_block_cnt >> 8);
5379                 cdb[13] = (u8) (disk_block_cnt);
5380                 cdb[14] = 0;
5381                 cdb[15] = 0;
5382                 cdb_len = 16;
5383         } else {
5384                 cdb[0] = is_write ? WRITE_10 : READ_10;
5385                 cdb[1] = 0;
5386                 cdb[2] = (u8) (disk_block >> 24);
5387                 cdb[3] = (u8) (disk_block >> 16);
5388                 cdb[4] = (u8) (disk_block >> 8);
5389                 cdb[5] = (u8) (disk_block);
5390                 cdb[6] = 0;
5391                 cdb[7] = (u8) (disk_block_cnt >> 8);
5392                 cdb[8] = (u8) (disk_block_cnt);
5393                 cdb[9] = 0;
5394                 cdb_len = 10;
5395         }
5396         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5397                                                 dev->scsi3addr,
5398                                                 dev->phys_disk[map_index]);
5399 }
5400
5401 /*
5402  * Submit commands down the "normal" RAID stack path
5403  * All callers to hpsa_ciss_submit must check lockup_detected
5404  * beforehand, before (opt.) and after calling cmd_alloc
5405  */
5406 static int hpsa_ciss_submit(struct ctlr_info *h,
5407         struct CommandList *c, struct scsi_cmnd *cmd,
5408         unsigned char scsi3addr[])
5409 {
5410         cmd->host_scribble = (unsigned char *) c;
5411         c->cmd_type = CMD_SCSI;
5412         c->scsi_cmd = cmd;
5413         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5414         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5415         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5416
5417         /* Fill in the request block... */
5418
5419         c->Request.Timeout = 0;
5420         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5421         c->Request.CDBLen = cmd->cmd_len;
5422         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5423         switch (cmd->sc_data_direction) {
5424         case DMA_TO_DEVICE:
5425                 c->Request.type_attr_dir =
5426                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5427                 break;
5428         case DMA_FROM_DEVICE:
5429                 c->Request.type_attr_dir =
5430                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5431                 break;
5432         case DMA_NONE:
5433                 c->Request.type_attr_dir =
5434                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5435                 break;
5436         case DMA_BIDIRECTIONAL:
5437                 /* This can happen if a buggy application does a scsi passthru
5438                  * and sets both inlen and outlen to non-zero. ( see
5439                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5440                  */
5441
5442                 c->Request.type_attr_dir =
5443                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5444                 /* This is technically wrong, and hpsa controllers should
5445                  * reject it with CMD_INVALID, which is the most correct
5446                  * response, but non-fibre backends appear to let it
5447                  * slide by, and give the same results as if this field
5448                  * were set correctly.  Either way is acceptable for
5449                  * our purposes here.
5450                  */
5451
5452                 break;
5453
5454         default:
5455                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5456                         cmd->sc_data_direction);
5457                 BUG();
5458                 break;
5459         }
5460
5461         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5462                 hpsa_cmd_resolve_and_free(h, c);
5463                 return SCSI_MLQUEUE_HOST_BUSY;
5464         }
5465         enqueue_cmd_and_start_io(h, c);
5466         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5467         return 0;
5468 }
5469
5470 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5471                                 struct CommandList *c)
5472 {
5473         dma_addr_t cmd_dma_handle, err_dma_handle;
5474
5475         /* Zero out all of commandlist except the last field, refcount */
5476         memset(c, 0, offsetof(struct CommandList, refcount));
5477         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5478         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5479         c->err_info = h->errinfo_pool + index;
5480         memset(c->err_info, 0, sizeof(*c->err_info));
5481         err_dma_handle = h->errinfo_pool_dhandle
5482             + index * sizeof(*c->err_info);
5483         c->cmdindex = index;
5484         c->busaddr = (u32) cmd_dma_handle;
5485         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5486         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5487         c->h = h;
5488         c->scsi_cmd = SCSI_CMD_IDLE;
5489 }
5490
5491 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5492 {
5493         int i;
5494
5495         for (i = 0; i < h->nr_cmds; i++) {
5496                 struct CommandList *c = h->cmd_pool + i;
5497
5498                 hpsa_cmd_init(h, i, c);
5499                 atomic_set(&c->refcount, 0);
5500         }
5501 }
5502
5503 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5504                                 struct CommandList *c)
5505 {
5506         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5507
5508         BUG_ON(c->cmdindex != index);
5509
5510         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5511         memset(c->err_info, 0, sizeof(*c->err_info));
5512         c->busaddr = (u32) cmd_dma_handle;
5513 }
5514
5515 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5516                 struct CommandList *c, struct scsi_cmnd *cmd,
5517                 unsigned char *scsi3addr)
5518 {
5519         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5520         int rc = IO_ACCEL_INELIGIBLE;
5521
5522         if (!dev)
5523                 return SCSI_MLQUEUE_HOST_BUSY;
5524
5525         cmd->host_scribble = (unsigned char *) c;
5526
5527         if (dev->offload_enabled) {
5528                 hpsa_cmd_init(h, c->cmdindex, c);
5529                 c->cmd_type = CMD_SCSI;
5530                 c->scsi_cmd = cmd;
5531                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5532                 if (rc < 0)     /* scsi_dma_map failed. */
5533                         rc = SCSI_MLQUEUE_HOST_BUSY;
5534         } else if (dev->hba_ioaccel_enabled) {
5535                 hpsa_cmd_init(h, c->cmdindex, c);
5536                 c->cmd_type = CMD_SCSI;
5537                 c->scsi_cmd = cmd;
5538                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5539                 if (rc < 0)     /* scsi_dma_map failed. */
5540                         rc = SCSI_MLQUEUE_HOST_BUSY;
5541         }
5542         return rc;
5543 }
5544
5545 static void hpsa_command_resubmit_worker(struct work_struct *work)
5546 {
5547         struct scsi_cmnd *cmd;
5548         struct hpsa_scsi_dev_t *dev;
5549         struct CommandList *c = container_of(work, struct CommandList, work);
5550
5551         cmd = c->scsi_cmd;
5552         dev = cmd->device->hostdata;
5553         if (!dev) {
5554                 cmd->result = DID_NO_CONNECT << 16;
5555                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5556         }
5557         if (c->reset_pending)
5558                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5559         if (c->cmd_type == CMD_IOACCEL2) {
5560                 struct ctlr_info *h = c->h;
5561                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5562                 int rc;
5563
5564                 if (c2->error_data.serv_response ==
5565                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5566                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5567                         if (rc == 0)
5568                                 return;
5569                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5570                                 /*
5571                                  * If we get here, it means dma mapping failed.
5572                                  * Try again via scsi mid layer, which will
5573                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5574                                  */
5575                                 cmd->result = DID_IMM_RETRY << 16;
5576                                 return hpsa_cmd_free_and_done(h, c, cmd);
5577                         }
5578                         /* else, fall thru and resubmit down CISS path */
5579                 }
5580         }
5581         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5582         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5583                 /*
5584                  * If we get here, it means dma mapping failed. Try
5585                  * again via scsi mid layer, which will then get
5586                  * SCSI_MLQUEUE_HOST_BUSY.
5587                  *
5588                  * hpsa_ciss_submit will have already freed c
5589                  * if it encountered a dma mapping failure.
5590                  */
5591                 cmd->result = DID_IMM_RETRY << 16;
5592                 cmd->scsi_done(cmd);
5593         }
5594 }
5595
5596 /* Running in struct Scsi_Host->host_lock less mode */
5597 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5598 {
5599         struct ctlr_info *h;
5600         struct hpsa_scsi_dev_t *dev;
5601         unsigned char scsi3addr[8];
5602         struct CommandList *c;
5603         int rc = 0;
5604
5605         /* Get the ptr to our adapter structure out of cmd->host. */
5606         h = sdev_to_hba(cmd->device);
5607
5608         BUG_ON(cmd->request->tag < 0);
5609
5610         dev = cmd->device->hostdata;
5611         if (!dev) {
5612                 cmd->result = DID_NO_CONNECT << 16;
5613                 cmd->scsi_done(cmd);
5614                 return 0;
5615         }
5616
5617         if (dev->removed) {
5618                 cmd->result = DID_NO_CONNECT << 16;
5619                 cmd->scsi_done(cmd);
5620                 return 0;
5621         }
5622
5623         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5624
5625         if (unlikely(lockup_detected(h))) {
5626                 cmd->result = DID_NO_CONNECT << 16;
5627                 cmd->scsi_done(cmd);
5628                 return 0;
5629         }
5630         c = cmd_tagged_alloc(h, cmd);
5631
5632         /*
5633          * Call alternate submit routine for I/O accelerated commands.
5634          * Retries always go down the normal I/O path.
5635          */
5636         if (likely(cmd->retries == 0 &&
5637                         !blk_rq_is_passthrough(cmd->request) &&
5638                         h->acciopath_status)) {
5639                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5640                 if (rc == 0)
5641                         return 0;
5642                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5643                         hpsa_cmd_resolve_and_free(h, c);
5644                         return SCSI_MLQUEUE_HOST_BUSY;
5645                 }
5646         }
5647         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5648 }
5649
5650 static void hpsa_scan_complete(struct ctlr_info *h)
5651 {
5652         unsigned long flags;
5653
5654         spin_lock_irqsave(&h->scan_lock, flags);
5655         h->scan_finished = 1;
5656         wake_up(&h->scan_wait_queue);
5657         spin_unlock_irqrestore(&h->scan_lock, flags);
5658 }
5659
5660 static void hpsa_scan_start(struct Scsi_Host *sh)
5661 {
5662         struct ctlr_info *h = shost_to_hba(sh);
5663         unsigned long flags;
5664
5665         /*
5666          * Don't let rescans be initiated on a controller known to be locked
5667          * up.  If the controller locks up *during* a rescan, that thread is
5668          * probably hosed, but at least we can prevent new rescan threads from
5669          * piling up on a locked up controller.
5670          */
5671         if (unlikely(lockup_detected(h)))
5672                 return hpsa_scan_complete(h);
5673
5674         /*
5675          * If a scan is already waiting to run, no need to add another
5676          */
5677         spin_lock_irqsave(&h->scan_lock, flags);
5678         if (h->scan_waiting) {
5679                 spin_unlock_irqrestore(&h->scan_lock, flags);
5680                 return;
5681         }
5682
5683         spin_unlock_irqrestore(&h->scan_lock, flags);
5684
5685         /* wait until any scan already in progress is finished. */
5686         while (1) {
5687                 spin_lock_irqsave(&h->scan_lock, flags);
5688                 if (h->scan_finished)
5689                         break;
5690                 h->scan_waiting = 1;
5691                 spin_unlock_irqrestore(&h->scan_lock, flags);
5692                 wait_event(h->scan_wait_queue, h->scan_finished);
5693                 /* Note: We don't need to worry about a race between this
5694                  * thread and driver unload because the midlayer will
5695                  * have incremented the reference count, so unload won't
5696                  * happen if we're in here.
5697                  */
5698         }
5699         h->scan_finished = 0; /* mark scan as in progress */
5700         h->scan_waiting = 0;
5701         spin_unlock_irqrestore(&h->scan_lock, flags);
5702
5703         if (unlikely(lockup_detected(h)))
5704                 return hpsa_scan_complete(h);
5705
5706         /*
5707          * Do the scan after a reset completion
5708          */
5709         spin_lock_irqsave(&h->reset_lock, flags);
5710         if (h->reset_in_progress) {
5711                 h->drv_req_rescan = 1;
5712                 spin_unlock_irqrestore(&h->reset_lock, flags);
5713                 hpsa_scan_complete(h);
5714                 return;
5715         }
5716         spin_unlock_irqrestore(&h->reset_lock, flags);
5717
5718         hpsa_update_scsi_devices(h);
5719
5720         hpsa_scan_complete(h);
5721 }
5722
5723 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5724 {
5725         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5726
5727         if (!logical_drive)
5728                 return -ENODEV;
5729
5730         if (qdepth < 1)
5731                 qdepth = 1;
5732         else if (qdepth > logical_drive->queue_depth)
5733                 qdepth = logical_drive->queue_depth;
5734
5735         return scsi_change_queue_depth(sdev, qdepth);
5736 }
5737
5738 static int hpsa_scan_finished(struct Scsi_Host *sh,
5739         unsigned long elapsed_time)
5740 {
5741         struct ctlr_info *h = shost_to_hba(sh);
5742         unsigned long flags;
5743         int finished;
5744
5745         spin_lock_irqsave(&h->scan_lock, flags);
5746         finished = h->scan_finished;
5747         spin_unlock_irqrestore(&h->scan_lock, flags);
5748         return finished;
5749 }
5750
5751 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5752 {
5753         struct Scsi_Host *sh;
5754
5755         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5756         if (sh == NULL) {
5757                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5758                 return -ENOMEM;
5759         }
5760
5761         sh->io_port = 0;
5762         sh->n_io_port = 0;
5763         sh->this_id = -1;
5764         sh->max_channel = 3;
5765         sh->max_cmd_len = MAX_COMMAND_SIZE;
5766         sh->max_lun = HPSA_MAX_LUN;
5767         sh->max_id = HPSA_MAX_LUN;
5768         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5769         sh->cmd_per_lun = sh->can_queue;
5770         sh->sg_tablesize = h->maxsgentries;
5771         sh->transportt = hpsa_sas_transport_template;
5772         sh->hostdata[0] = (unsigned long) h;
5773         sh->irq = pci_irq_vector(h->pdev, 0);
5774         sh->unique_id = sh->irq;
5775
5776         h->scsi_host = sh;
5777         return 0;
5778 }
5779
5780 static int hpsa_scsi_add_host(struct ctlr_info *h)
5781 {
5782         int rv;
5783
5784         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5785         if (rv) {
5786                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5787                 return rv;
5788         }
5789         scsi_scan_host(h->scsi_host);
5790         return 0;
5791 }
5792
5793 /*
5794  * The block layer has already gone to the trouble of picking out a unique,
5795  * small-integer tag for this request.  We use an offset from that value as
5796  * an index to select our command block.  (The offset allows us to reserve the
5797  * low-numbered entries for our own uses.)
5798  */
5799 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5800 {
5801         int idx = scmd->request->tag;
5802
5803         if (idx < 0)
5804                 return idx;
5805
5806         /* Offset to leave space for internal cmds. */
5807         return idx += HPSA_NRESERVED_CMDS;
5808 }
5809
5810 /*
5811  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5812  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5813  */
5814 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5815                                 struct CommandList *c, unsigned char lunaddr[],
5816                                 int reply_queue)
5817 {
5818         int rc;
5819
5820         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5821         (void) fill_cmd(c, TEST_UNIT_READY, h,
5822                         NULL, 0, 0, lunaddr, TYPE_CMD);
5823         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5824         if (rc)
5825                 return rc;
5826         /* no unmap needed here because no data xfer. */
5827
5828         /* Check if the unit is already ready. */
5829         if (c->err_info->CommandStatus == CMD_SUCCESS)
5830                 return 0;
5831
5832         /*
5833          * The first command sent after reset will receive "unit attention" to
5834          * indicate that the LUN has been reset...this is actually what we're
5835          * looking for (but, success is good too).
5836          */
5837         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5838                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5839                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5840                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5841                 return 0;
5842
5843         return 1;
5844 }
5845
5846 /*
5847  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5848  * returns zero when the unit is ready, and non-zero when giving up.
5849  */
5850 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5851                                 struct CommandList *c,
5852                                 unsigned char lunaddr[], int reply_queue)
5853 {
5854         int rc;
5855         int count = 0;
5856         int waittime = 1; /* seconds */
5857
5858         /* Send test unit ready until device ready, or give up. */
5859         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5860
5861                 /*
5862                  * Wait for a bit.  do this first, because if we send
5863                  * the TUR right away, the reset will just abort it.
5864                  */
5865                 msleep(1000 * waittime);
5866
5867                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5868                 if (!rc)
5869                         break;
5870
5871                 /* Increase wait time with each try, up to a point. */
5872                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5873                         waittime *= 2;
5874
5875                 dev_warn(&h->pdev->dev,
5876                          "waiting %d secs for device to become ready.\n",
5877                          waittime);
5878         }
5879
5880         return rc;
5881 }
5882
5883 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5884                                            unsigned char lunaddr[],
5885                                            int reply_queue)
5886 {
5887         int first_queue;
5888         int last_queue;
5889         int rq;
5890         int rc = 0;
5891         struct CommandList *c;
5892
5893         c = cmd_alloc(h);
5894
5895         /*
5896          * If no specific reply queue was requested, then send the TUR
5897          * repeatedly, requesting a reply on each reply queue; otherwise execute
5898          * the loop exactly once using only the specified queue.
5899          */
5900         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5901                 first_queue = 0;
5902                 last_queue = h->nreply_queues - 1;
5903         } else {
5904                 first_queue = reply_queue;
5905                 last_queue = reply_queue;
5906         }
5907
5908         for (rq = first_queue; rq <= last_queue; rq++) {
5909                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5910                 if (rc)
5911                         break;
5912         }
5913
5914         if (rc)
5915                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5916         else
5917                 dev_warn(&h->pdev->dev, "device is ready.\n");
5918
5919         cmd_free(h, c);
5920         return rc;
5921 }
5922
5923 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5924  * complaining.  Doing a host- or bus-reset can't do anything good here.
5925  */
5926 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5927 {
5928         int rc = SUCCESS;
5929         struct ctlr_info *h;
5930         struct hpsa_scsi_dev_t *dev;
5931         u8 reset_type;
5932         char msg[48];
5933         unsigned long flags;
5934
5935         /* find the controller to which the command to be aborted was sent */
5936         h = sdev_to_hba(scsicmd->device);
5937         if (h == NULL) /* paranoia */
5938                 return FAILED;
5939
5940         spin_lock_irqsave(&h->reset_lock, flags);
5941         h->reset_in_progress = 1;
5942         spin_unlock_irqrestore(&h->reset_lock, flags);
5943
5944         if (lockup_detected(h)) {
5945                 rc = FAILED;
5946                 goto return_reset_status;
5947         }
5948
5949         dev = scsicmd->device->hostdata;
5950         if (!dev) {
5951                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5952                 rc = FAILED;
5953                 goto return_reset_status;
5954         }
5955
5956         if (dev->devtype == TYPE_ENCLOSURE) {
5957                 rc = SUCCESS;
5958                 goto return_reset_status;
5959         }
5960
5961         /* if controller locked up, we can guarantee command won't complete */
5962         if (lockup_detected(h)) {
5963                 snprintf(msg, sizeof(msg),
5964                          "cmd %d RESET FAILED, lockup detected",
5965                          hpsa_get_cmd_index(scsicmd));
5966                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5967                 rc = FAILED;
5968                 goto return_reset_status;
5969         }
5970
5971         /* this reset request might be the result of a lockup; check */
5972         if (detect_controller_lockup(h)) {
5973                 snprintf(msg, sizeof(msg),
5974                          "cmd %d RESET FAILED, new lockup detected",
5975                          hpsa_get_cmd_index(scsicmd));
5976                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5977                 rc = FAILED;
5978                 goto return_reset_status;
5979         }
5980
5981         /* Do not attempt on controller */
5982         if (is_hba_lunid(dev->scsi3addr)) {
5983                 rc = SUCCESS;
5984                 goto return_reset_status;
5985         }
5986
5987         if (is_logical_dev_addr_mode(dev->scsi3addr))
5988                 reset_type = HPSA_DEVICE_RESET_MSG;
5989         else
5990                 reset_type = HPSA_PHYS_TARGET_RESET;
5991
5992         sprintf(msg, "resetting %s",
5993                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5994         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5995
5996         /* send a reset to the SCSI LUN which the command was sent to */
5997         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5998                            DEFAULT_REPLY_QUEUE);
5999         if (rc == 0)
6000                 rc = SUCCESS;
6001         else
6002                 rc = FAILED;
6003
6004         sprintf(msg, "reset %s %s",
6005                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6006                 rc == SUCCESS ? "completed successfully" : "failed");
6007         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6008
6009 return_reset_status:
6010         spin_lock_irqsave(&h->reset_lock, flags);
6011         h->reset_in_progress = 0;
6012         spin_unlock_irqrestore(&h->reset_lock, flags);
6013         return rc;
6014 }
6015
6016 /*
6017  * For operations with an associated SCSI command, a command block is allocated
6018  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6019  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6020  * the complement, although cmd_free() may be called instead.
6021  */
6022 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6023                                             struct scsi_cmnd *scmd)
6024 {
6025         int idx = hpsa_get_cmd_index(scmd);
6026         struct CommandList *c = h->cmd_pool + idx;
6027
6028         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6029                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6030                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6031                 /* The index value comes from the block layer, so if it's out of
6032                  * bounds, it's probably not our bug.
6033                  */
6034                 BUG();
6035         }
6036
6037         atomic_inc(&c->refcount);
6038         if (unlikely(!hpsa_is_cmd_idle(c))) {
6039                 /*
6040                  * We expect that the SCSI layer will hand us a unique tag
6041                  * value.  Thus, there should never be a collision here between
6042                  * two requests...because if the selected command isn't idle
6043                  * then someone is going to be very disappointed.
6044                  */
6045                 dev_err(&h->pdev->dev,
6046                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6047                         idx);
6048                 if (c->scsi_cmd != NULL)
6049                         scsi_print_command(c->scsi_cmd);
6050                 scsi_print_command(scmd);
6051         }
6052
6053         hpsa_cmd_partial_init(h, idx, c);
6054         return c;
6055 }
6056
6057 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6058 {
6059         /*
6060          * Release our reference to the block.  We don't need to do anything
6061          * else to free it, because it is accessed by index.
6062          */
6063         (void)atomic_dec(&c->refcount);
6064 }
6065
6066 /*
6067  * For operations that cannot sleep, a command block is allocated at init,
6068  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6069  * which ones are free or in use.  Lock must be held when calling this.
6070  * cmd_free() is the complement.
6071  * This function never gives up and returns NULL.  If it hangs,
6072  * another thread must call cmd_free() to free some tags.
6073  */
6074
6075 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6076 {
6077         struct CommandList *c;
6078         int refcount, i;
6079         int offset = 0;
6080
6081         /*
6082          * There is some *extremely* small but non-zero chance that that
6083          * multiple threads could get in here, and one thread could
6084          * be scanning through the list of bits looking for a free
6085          * one, but the free ones are always behind him, and other
6086          * threads sneak in behind him and eat them before he can
6087          * get to them, so that while there is always a free one, a
6088          * very unlucky thread might be starved anyway, never able to
6089          * beat the other threads.  In reality, this happens so
6090          * infrequently as to be indistinguishable from never.
6091          *
6092          * Note that we start allocating commands before the SCSI host structure
6093          * is initialized.  Since the search starts at bit zero, this
6094          * all works, since we have at least one command structure available;
6095          * however, it means that the structures with the low indexes have to be
6096          * reserved for driver-initiated requests, while requests from the block
6097          * layer will use the higher indexes.
6098          */
6099
6100         for (;;) {
6101                 i = find_next_zero_bit(h->cmd_pool_bits,
6102                                         HPSA_NRESERVED_CMDS,
6103                                         offset);
6104                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6105                         offset = 0;
6106                         continue;
6107                 }
6108                 c = h->cmd_pool + i;
6109                 refcount = atomic_inc_return(&c->refcount);
6110                 if (unlikely(refcount > 1)) {
6111                         cmd_free(h, c); /* already in use */
6112                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6113                         continue;
6114                 }
6115                 set_bit(i & (BITS_PER_LONG - 1),
6116                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6117                 break; /* it's ours now. */
6118         }
6119         hpsa_cmd_partial_init(h, i, c);
6120         return c;
6121 }
6122
6123 /*
6124  * This is the complementary operation to cmd_alloc().  Note, however, in some
6125  * corner cases it may also be used to free blocks allocated by
6126  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6127  * the clear-bit is harmless.
6128  */
6129 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6130 {
6131         if (atomic_dec_and_test(&c->refcount)) {
6132                 int i;
6133
6134                 i = c - h->cmd_pool;
6135                 clear_bit(i & (BITS_PER_LONG - 1),
6136                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6137         }
6138 }
6139
6140 #ifdef CONFIG_COMPAT
6141
6142 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6143         void __user *arg)
6144 {
6145         IOCTL32_Command_struct __user *arg32 =
6146             (IOCTL32_Command_struct __user *) arg;
6147         IOCTL_Command_struct arg64;
6148         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6149         int err;
6150         u32 cp;
6151
6152         memset(&arg64, 0, sizeof(arg64));
6153         err = 0;
6154         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6155                            sizeof(arg64.LUN_info));
6156         err |= copy_from_user(&arg64.Request, &arg32->Request,
6157                            sizeof(arg64.Request));
6158         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6159                            sizeof(arg64.error_info));
6160         err |= get_user(arg64.buf_size, &arg32->buf_size);
6161         err |= get_user(cp, &arg32->buf);
6162         arg64.buf = compat_ptr(cp);
6163         err |= copy_to_user(p, &arg64, sizeof(arg64));
6164
6165         if (err)
6166                 return -EFAULT;
6167
6168         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6169         if (err)
6170                 return err;
6171         err |= copy_in_user(&arg32->error_info, &p->error_info,
6172                          sizeof(arg32->error_info));
6173         if (err)
6174                 return -EFAULT;
6175         return err;
6176 }
6177
6178 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6179         int cmd, void __user *arg)
6180 {
6181         BIG_IOCTL32_Command_struct __user *arg32 =
6182             (BIG_IOCTL32_Command_struct __user *) arg;
6183         BIG_IOCTL_Command_struct arg64;
6184         BIG_IOCTL_Command_struct __user *p =
6185             compat_alloc_user_space(sizeof(arg64));
6186         int err;
6187         u32 cp;
6188
6189         memset(&arg64, 0, sizeof(arg64));
6190         err = 0;
6191         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6192                            sizeof(arg64.LUN_info));
6193         err |= copy_from_user(&arg64.Request, &arg32->Request,
6194                            sizeof(arg64.Request));
6195         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6196                            sizeof(arg64.error_info));
6197         err |= get_user(arg64.buf_size, &arg32->buf_size);
6198         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6199         err |= get_user(cp, &arg32->buf);
6200         arg64.buf = compat_ptr(cp);
6201         err |= copy_to_user(p, &arg64, sizeof(arg64));
6202
6203         if (err)
6204                 return -EFAULT;
6205
6206         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6207         if (err)
6208                 return err;
6209         err |= copy_in_user(&arg32->error_info, &p->error_info,
6210                          sizeof(arg32->error_info));
6211         if (err)
6212                 return -EFAULT;
6213         return err;
6214 }
6215
6216 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6217 {
6218         switch (cmd) {
6219         case CCISS_GETPCIINFO:
6220         case CCISS_GETINTINFO:
6221         case CCISS_SETINTINFO:
6222         case CCISS_GETNODENAME:
6223         case CCISS_SETNODENAME:
6224         case CCISS_GETHEARTBEAT:
6225         case CCISS_GETBUSTYPES:
6226         case CCISS_GETFIRMVER:
6227         case CCISS_GETDRIVVER:
6228         case CCISS_REVALIDVOLS:
6229         case CCISS_DEREGDISK:
6230         case CCISS_REGNEWDISK:
6231         case CCISS_REGNEWD:
6232         case CCISS_RESCANDISK:
6233         case CCISS_GETLUNINFO:
6234                 return hpsa_ioctl(dev, cmd, arg);
6235
6236         case CCISS_PASSTHRU32:
6237                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6238         case CCISS_BIG_PASSTHRU32:
6239                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6240
6241         default:
6242                 return -ENOIOCTLCMD;
6243         }
6244 }
6245 #endif
6246
6247 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6248 {
6249         struct hpsa_pci_info pciinfo;
6250
6251         if (!argp)
6252                 return -EINVAL;
6253         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6254         pciinfo.bus = h->pdev->bus->number;
6255         pciinfo.dev_fn = h->pdev->devfn;
6256         pciinfo.board_id = h->board_id;
6257         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6258                 return -EFAULT;
6259         return 0;
6260 }
6261
6262 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6263 {
6264         DriverVer_type DriverVer;
6265         unsigned char vmaj, vmin, vsubmin;
6266         int rc;
6267
6268         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6269                 &vmaj, &vmin, &vsubmin);
6270         if (rc != 3) {
6271                 dev_info(&h->pdev->dev, "driver version string '%s' "
6272                         "unrecognized.", HPSA_DRIVER_VERSION);
6273                 vmaj = 0;
6274                 vmin = 0;
6275                 vsubmin = 0;
6276         }
6277         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6278         if (!argp)
6279                 return -EINVAL;
6280         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6281                 return -EFAULT;
6282         return 0;
6283 }
6284
6285 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6286 {
6287         IOCTL_Command_struct iocommand;
6288         struct CommandList *c;
6289         char *buff = NULL;
6290         u64 temp64;
6291         int rc = 0;
6292
6293         if (!argp)
6294                 return -EINVAL;
6295         if (!capable(CAP_SYS_RAWIO))
6296                 return -EPERM;
6297         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6298                 return -EFAULT;
6299         if ((iocommand.buf_size < 1) &&
6300             (iocommand.Request.Type.Direction != XFER_NONE)) {
6301                 return -EINVAL;
6302         }
6303         if (iocommand.buf_size > 0) {
6304                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6305                 if (buff == NULL)
6306                         return -ENOMEM;
6307                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6308                         /* Copy the data into the buffer we created */
6309                         if (copy_from_user(buff, iocommand.buf,
6310                                 iocommand.buf_size)) {
6311                                 rc = -EFAULT;
6312                                 goto out_kfree;
6313                         }
6314                 } else {
6315                         memset(buff, 0, iocommand.buf_size);
6316                 }
6317         }
6318         c = cmd_alloc(h);
6319
6320         /* Fill in the command type */
6321         c->cmd_type = CMD_IOCTL_PEND;
6322         c->scsi_cmd = SCSI_CMD_BUSY;
6323         /* Fill in Command Header */
6324         c->Header.ReplyQueue = 0; /* unused in simple mode */
6325         if (iocommand.buf_size > 0) {   /* buffer to fill */
6326                 c->Header.SGList = 1;
6327                 c->Header.SGTotal = cpu_to_le16(1);
6328         } else  { /* no buffers to fill */
6329                 c->Header.SGList = 0;
6330                 c->Header.SGTotal = cpu_to_le16(0);
6331         }
6332         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6333
6334         /* Fill in Request block */
6335         memcpy(&c->Request, &iocommand.Request,
6336                 sizeof(c->Request));
6337
6338         /* Fill in the scatter gather information */
6339         if (iocommand.buf_size > 0) {
6340                 temp64 = pci_map_single(h->pdev, buff,
6341                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6342                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6343                         c->SG[0].Addr = cpu_to_le64(0);
6344                         c->SG[0].Len = cpu_to_le32(0);
6345                         rc = -ENOMEM;
6346                         goto out;
6347                 }
6348                 c->SG[0].Addr = cpu_to_le64(temp64);
6349                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6350                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6351         }
6352         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6353                                         NO_TIMEOUT);
6354         if (iocommand.buf_size > 0)
6355                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6356         check_ioctl_unit_attention(h, c);
6357         if (rc) {
6358                 rc = -EIO;
6359                 goto out;
6360         }
6361
6362         /* Copy the error information out */
6363         memcpy(&iocommand.error_info, c->err_info,
6364                 sizeof(iocommand.error_info));
6365         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6366                 rc = -EFAULT;
6367                 goto out;
6368         }
6369         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6370                 iocommand.buf_size > 0) {
6371                 /* Copy the data out of the buffer we created */
6372                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6373                         rc = -EFAULT;
6374                         goto out;
6375                 }
6376         }
6377 out:
6378         cmd_free(h, c);
6379 out_kfree:
6380         kfree(buff);
6381         return rc;
6382 }
6383
6384 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6385 {
6386         BIG_IOCTL_Command_struct *ioc;
6387         struct CommandList *c;
6388         unsigned char **buff = NULL;
6389         int *buff_size = NULL;
6390         u64 temp64;
6391         BYTE sg_used = 0;
6392         int status = 0;
6393         u32 left;
6394         u32 sz;
6395         BYTE __user *data_ptr;
6396
6397         if (!argp)
6398                 return -EINVAL;
6399         if (!capable(CAP_SYS_RAWIO))
6400                 return -EPERM;
6401         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6402         if (!ioc) {
6403                 status = -ENOMEM;
6404                 goto cleanup1;
6405         }
6406         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6407                 status = -EFAULT;
6408                 goto cleanup1;
6409         }
6410         if ((ioc->buf_size < 1) &&
6411             (ioc->Request.Type.Direction != XFER_NONE)) {
6412                 status = -EINVAL;
6413                 goto cleanup1;
6414         }
6415         /* Check kmalloc limits  using all SGs */
6416         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6417                 status = -EINVAL;
6418                 goto cleanup1;
6419         }
6420         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6421                 status = -EINVAL;
6422                 goto cleanup1;
6423         }
6424         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6425         if (!buff) {
6426                 status = -ENOMEM;
6427                 goto cleanup1;
6428         }
6429         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6430         if (!buff_size) {
6431                 status = -ENOMEM;
6432                 goto cleanup1;
6433         }
6434         left = ioc->buf_size;
6435         data_ptr = ioc->buf;
6436         while (left) {
6437                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6438                 buff_size[sg_used] = sz;
6439                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6440                 if (buff[sg_used] == NULL) {
6441                         status = -ENOMEM;
6442                         goto cleanup1;
6443                 }
6444                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6445                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6446                                 status = -EFAULT;
6447                                 goto cleanup1;
6448                         }
6449                 } else
6450                         memset(buff[sg_used], 0, sz);
6451                 left -= sz;
6452                 data_ptr += sz;
6453                 sg_used++;
6454         }
6455         c = cmd_alloc(h);
6456
6457         c->cmd_type = CMD_IOCTL_PEND;
6458         c->scsi_cmd = SCSI_CMD_BUSY;
6459         c->Header.ReplyQueue = 0;
6460         c->Header.SGList = (u8) sg_used;
6461         c->Header.SGTotal = cpu_to_le16(sg_used);
6462         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6463         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6464         if (ioc->buf_size > 0) {
6465                 int i;
6466                 for (i = 0; i < sg_used; i++) {
6467                         temp64 = pci_map_single(h->pdev, buff[i],
6468                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6469                         if (dma_mapping_error(&h->pdev->dev,
6470                                                         (dma_addr_t) temp64)) {
6471                                 c->SG[i].Addr = cpu_to_le64(0);
6472                                 c->SG[i].Len = cpu_to_le32(0);
6473                                 hpsa_pci_unmap(h->pdev, c, i,
6474                                         PCI_DMA_BIDIRECTIONAL);
6475                                 status = -ENOMEM;
6476                                 goto cleanup0;
6477                         }
6478                         c->SG[i].Addr = cpu_to_le64(temp64);
6479                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6480                         c->SG[i].Ext = cpu_to_le32(0);
6481                 }
6482                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6483         }
6484         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6485                                                 NO_TIMEOUT);
6486         if (sg_used)
6487                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6488         check_ioctl_unit_attention(h, c);
6489         if (status) {
6490                 status = -EIO;
6491                 goto cleanup0;
6492         }
6493
6494         /* Copy the error information out */
6495         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6496         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6497                 status = -EFAULT;
6498                 goto cleanup0;
6499         }
6500         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6501                 int i;
6502
6503                 /* Copy the data out of the buffer we created */
6504                 BYTE __user *ptr = ioc->buf;
6505                 for (i = 0; i < sg_used; i++) {
6506                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6507                                 status = -EFAULT;
6508                                 goto cleanup0;
6509                         }
6510                         ptr += buff_size[i];
6511                 }
6512         }
6513         status = 0;
6514 cleanup0:
6515         cmd_free(h, c);
6516 cleanup1:
6517         if (buff) {
6518                 int i;
6519
6520                 for (i = 0; i < sg_used; i++)
6521                         kfree(buff[i]);
6522                 kfree(buff);
6523         }
6524         kfree(buff_size);
6525         kfree(ioc);
6526         return status;
6527 }
6528
6529 static void check_ioctl_unit_attention(struct ctlr_info *h,
6530         struct CommandList *c)
6531 {
6532         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6533                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6534                 (void) check_for_unit_attention(h, c);
6535 }
6536
6537 /*
6538  * ioctl
6539  */
6540 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6541 {
6542         struct ctlr_info *h;
6543         void __user *argp = (void __user *)arg;
6544         int rc;
6545
6546         h = sdev_to_hba(dev);
6547
6548         switch (cmd) {
6549         case CCISS_DEREGDISK:
6550         case CCISS_REGNEWDISK:
6551         case CCISS_REGNEWD:
6552                 hpsa_scan_start(h->scsi_host);
6553                 return 0;
6554         case CCISS_GETPCIINFO:
6555                 return hpsa_getpciinfo_ioctl(h, argp);
6556         case CCISS_GETDRIVVER:
6557                 return hpsa_getdrivver_ioctl(h, argp);
6558         case CCISS_PASSTHRU:
6559                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6560                         return -EAGAIN;
6561                 rc = hpsa_passthru_ioctl(h, argp);
6562                 atomic_inc(&h->passthru_cmds_avail);
6563                 return rc;
6564         case CCISS_BIG_PASSTHRU:
6565                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6566                         return -EAGAIN;
6567                 rc = hpsa_big_passthru_ioctl(h, argp);
6568                 atomic_inc(&h->passthru_cmds_avail);
6569                 return rc;
6570         default:
6571                 return -ENOTTY;
6572         }
6573 }
6574
6575 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6576                                 u8 reset_type)
6577 {
6578         struct CommandList *c;
6579
6580         c = cmd_alloc(h);
6581
6582         /* fill_cmd can't fail here, no data buffer to map */
6583         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6584                 RAID_CTLR_LUNID, TYPE_MSG);
6585         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6586         c->waiting = NULL;
6587         enqueue_cmd_and_start_io(h, c);
6588         /* Don't wait for completion, the reset won't complete.  Don't free
6589          * the command either.  This is the last command we will send before
6590          * re-initializing everything, so it doesn't matter and won't leak.
6591          */
6592         return;
6593 }
6594
6595 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6596         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6597         int cmd_type)
6598 {
6599         int pci_dir = XFER_NONE;
6600
6601         c->cmd_type = CMD_IOCTL_PEND;
6602         c->scsi_cmd = SCSI_CMD_BUSY;
6603         c->Header.ReplyQueue = 0;
6604         if (buff != NULL && size > 0) {
6605                 c->Header.SGList = 1;
6606                 c->Header.SGTotal = cpu_to_le16(1);
6607         } else {
6608                 c->Header.SGList = 0;
6609                 c->Header.SGTotal = cpu_to_le16(0);
6610         }
6611         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6612
6613         if (cmd_type == TYPE_CMD) {
6614                 switch (cmd) {
6615                 case HPSA_INQUIRY:
6616                         /* are we trying to read a vital product page */
6617                         if (page_code & VPD_PAGE) {
6618                                 c->Request.CDB[1] = 0x01;
6619                                 c->Request.CDB[2] = (page_code & 0xff);
6620                         }
6621                         c->Request.CDBLen = 6;
6622                         c->Request.type_attr_dir =
6623                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6624                         c->Request.Timeout = 0;
6625                         c->Request.CDB[0] = HPSA_INQUIRY;
6626                         c->Request.CDB[4] = size & 0xFF;
6627                         break;
6628                 case RECEIVE_DIAGNOSTIC:
6629                         c->Request.CDBLen = 6;
6630                         c->Request.type_attr_dir =
6631                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6632                         c->Request.Timeout = 0;
6633                         c->Request.CDB[0] = cmd;
6634                         c->Request.CDB[1] = 1;
6635                         c->Request.CDB[2] = 1;
6636                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6637                         c->Request.CDB[4] = size & 0xFF;
6638                         break;
6639                 case HPSA_REPORT_LOG:
6640                 case HPSA_REPORT_PHYS:
6641                         /* Talking to controller so It's a physical command
6642                            mode = 00 target = 0.  Nothing to write.
6643                          */
6644                         c->Request.CDBLen = 12;
6645                         c->Request.type_attr_dir =
6646                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6647                         c->Request.Timeout = 0;
6648                         c->Request.CDB[0] = cmd;
6649                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6650                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6651                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6652                         c->Request.CDB[9] = size & 0xFF;
6653                         break;
6654                 case BMIC_SENSE_DIAG_OPTIONS:
6655                         c->Request.CDBLen = 16;
6656                         c->Request.type_attr_dir =
6657                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6658                         c->Request.Timeout = 0;
6659                         /* Spec says this should be BMIC_WRITE */
6660                         c->Request.CDB[0] = BMIC_READ;
6661                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6662                         break;
6663                 case BMIC_SET_DIAG_OPTIONS:
6664                         c->Request.CDBLen = 16;
6665                         c->Request.type_attr_dir =
6666                                         TYPE_ATTR_DIR(cmd_type,
6667                                                 ATTR_SIMPLE, XFER_WRITE);
6668                         c->Request.Timeout = 0;
6669                         c->Request.CDB[0] = BMIC_WRITE;
6670                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6671                         break;
6672                 case HPSA_CACHE_FLUSH:
6673                         c->Request.CDBLen = 12;
6674                         c->Request.type_attr_dir =
6675                                         TYPE_ATTR_DIR(cmd_type,
6676                                                 ATTR_SIMPLE, XFER_WRITE);
6677                         c->Request.Timeout = 0;
6678                         c->Request.CDB[0] = BMIC_WRITE;
6679                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6680                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6681                         c->Request.CDB[8] = size & 0xFF;
6682                         break;
6683                 case TEST_UNIT_READY:
6684                         c->Request.CDBLen = 6;
6685                         c->Request.type_attr_dir =
6686                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6687                         c->Request.Timeout = 0;
6688                         break;
6689                 case HPSA_GET_RAID_MAP:
6690                         c->Request.CDBLen = 12;
6691                         c->Request.type_attr_dir =
6692                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6693                         c->Request.Timeout = 0;
6694                         c->Request.CDB[0] = HPSA_CISS_READ;
6695                         c->Request.CDB[1] = cmd;
6696                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6697                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6698                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6699                         c->Request.CDB[9] = size & 0xFF;
6700                         break;
6701                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6702                         c->Request.CDBLen = 10;
6703                         c->Request.type_attr_dir =
6704                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6705                         c->Request.Timeout = 0;
6706                         c->Request.CDB[0] = BMIC_READ;
6707                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6708                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6709                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6710                         break;
6711                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6712                         c->Request.CDBLen = 10;
6713                         c->Request.type_attr_dir =
6714                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6715                         c->Request.Timeout = 0;
6716                         c->Request.CDB[0] = BMIC_READ;
6717                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6718                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6719                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6720                         break;
6721                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6722                         c->Request.CDBLen = 10;
6723                         c->Request.type_attr_dir =
6724                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725                         c->Request.Timeout = 0;
6726                         c->Request.CDB[0] = BMIC_READ;
6727                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6728                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6729                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6730                         break;
6731                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6732                         c->Request.CDBLen = 10;
6733                         c->Request.type_attr_dir =
6734                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6735                         c->Request.Timeout = 0;
6736                         c->Request.CDB[0] = BMIC_READ;
6737                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6738                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6739                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6740                         break;
6741                 case BMIC_IDENTIFY_CONTROLLER:
6742                         c->Request.CDBLen = 10;
6743                         c->Request.type_attr_dir =
6744                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6745                         c->Request.Timeout = 0;
6746                         c->Request.CDB[0] = BMIC_READ;
6747                         c->Request.CDB[1] = 0;
6748                         c->Request.CDB[2] = 0;
6749                         c->Request.CDB[3] = 0;
6750                         c->Request.CDB[4] = 0;
6751                         c->Request.CDB[5] = 0;
6752                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6753                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6754                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6755                         c->Request.CDB[9] = 0;
6756                         break;
6757                 default:
6758                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6759                         BUG();
6760                 }
6761         } else if (cmd_type == TYPE_MSG) {
6762                 switch (cmd) {
6763
6764                 case  HPSA_PHYS_TARGET_RESET:
6765                         c->Request.CDBLen = 16;
6766                         c->Request.type_attr_dir =
6767                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6768                         c->Request.Timeout = 0; /* Don't time out */
6769                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6770                         c->Request.CDB[0] = HPSA_RESET;
6771                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6772                         /* Physical target reset needs no control bytes 4-7*/
6773                         c->Request.CDB[4] = 0x00;
6774                         c->Request.CDB[5] = 0x00;
6775                         c->Request.CDB[6] = 0x00;
6776                         c->Request.CDB[7] = 0x00;
6777                         break;
6778                 case  HPSA_DEVICE_RESET_MSG:
6779                         c->Request.CDBLen = 16;
6780                         c->Request.type_attr_dir =
6781                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6782                         c->Request.Timeout = 0; /* Don't time out */
6783                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6784                         c->Request.CDB[0] =  cmd;
6785                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6786                         /* If bytes 4-7 are zero, it means reset the */
6787                         /* LunID device */
6788                         c->Request.CDB[4] = 0x00;
6789                         c->Request.CDB[5] = 0x00;
6790                         c->Request.CDB[6] = 0x00;
6791                         c->Request.CDB[7] = 0x00;
6792                         break;
6793                 default:
6794                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6795                                 cmd);
6796                         BUG();
6797                 }
6798         } else {
6799                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6800                 BUG();
6801         }
6802
6803         switch (GET_DIR(c->Request.type_attr_dir)) {
6804         case XFER_READ:
6805                 pci_dir = PCI_DMA_FROMDEVICE;
6806                 break;
6807         case XFER_WRITE:
6808                 pci_dir = PCI_DMA_TODEVICE;
6809                 break;
6810         case XFER_NONE:
6811                 pci_dir = PCI_DMA_NONE;
6812                 break;
6813         default:
6814                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6815         }
6816         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6817                 return -1;
6818         return 0;
6819 }
6820
6821 /*
6822  * Map (physical) PCI mem into (virtual) kernel space
6823  */
6824 static void __iomem *remap_pci_mem(ulong base, ulong size)
6825 {
6826         ulong page_base = ((ulong) base) & PAGE_MASK;
6827         ulong page_offs = ((ulong) base) - page_base;
6828         void __iomem *page_remapped = ioremap_nocache(page_base,
6829                 page_offs + size);
6830
6831         return page_remapped ? (page_remapped + page_offs) : NULL;
6832 }
6833
6834 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6835 {
6836         return h->access.command_completed(h, q);
6837 }
6838
6839 static inline bool interrupt_pending(struct ctlr_info *h)
6840 {
6841         return h->access.intr_pending(h);
6842 }
6843
6844 static inline long interrupt_not_for_us(struct ctlr_info *h)
6845 {
6846         return (h->access.intr_pending(h) == 0) ||
6847                 (h->interrupts_enabled == 0);
6848 }
6849
6850 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6851         u32 raw_tag)
6852 {
6853         if (unlikely(tag_index >= h->nr_cmds)) {
6854                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6855                 return 1;
6856         }
6857         return 0;
6858 }
6859
6860 static inline void finish_cmd(struct CommandList *c)
6861 {
6862         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6863         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6864                         || c->cmd_type == CMD_IOACCEL2))
6865                 complete_scsi_command(c);
6866         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6867                 complete(c->waiting);
6868 }
6869
6870 /* process completion of an indexed ("direct lookup") command */
6871 static inline void process_indexed_cmd(struct ctlr_info *h,
6872         u32 raw_tag)
6873 {
6874         u32 tag_index;
6875         struct CommandList *c;
6876
6877         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6878         if (!bad_tag(h, tag_index, raw_tag)) {
6879                 c = h->cmd_pool + tag_index;
6880                 finish_cmd(c);
6881         }
6882 }
6883
6884 /* Some controllers, like p400, will give us one interrupt
6885  * after a soft reset, even if we turned interrupts off.
6886  * Only need to check for this in the hpsa_xxx_discard_completions
6887  * functions.
6888  */
6889 static int ignore_bogus_interrupt(struct ctlr_info *h)
6890 {
6891         if (likely(!reset_devices))
6892                 return 0;
6893
6894         if (likely(h->interrupts_enabled))
6895                 return 0;
6896
6897         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6898                 "(known firmware bug.)  Ignoring.\n");
6899
6900         return 1;
6901 }
6902
6903 /*
6904  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6905  * Relies on (h-q[x] == x) being true for x such that
6906  * 0 <= x < MAX_REPLY_QUEUES.
6907  */
6908 static struct ctlr_info *queue_to_hba(u8 *queue)
6909 {
6910         return container_of((queue - *queue), struct ctlr_info, q[0]);
6911 }
6912
6913 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6914 {
6915         struct ctlr_info *h = queue_to_hba(queue);
6916         u8 q = *(u8 *) queue;
6917         u32 raw_tag;
6918
6919         if (ignore_bogus_interrupt(h))
6920                 return IRQ_NONE;
6921
6922         if (interrupt_not_for_us(h))
6923                 return IRQ_NONE;
6924         h->last_intr_timestamp = get_jiffies_64();
6925         while (interrupt_pending(h)) {
6926                 raw_tag = get_next_completion(h, q);
6927                 while (raw_tag != FIFO_EMPTY)
6928                         raw_tag = next_command(h, q);
6929         }
6930         return IRQ_HANDLED;
6931 }
6932
6933 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6934 {
6935         struct ctlr_info *h = queue_to_hba(queue);
6936         u32 raw_tag;
6937         u8 q = *(u8 *) queue;
6938
6939         if (ignore_bogus_interrupt(h))
6940                 return IRQ_NONE;
6941
6942         h->last_intr_timestamp = get_jiffies_64();
6943         raw_tag = get_next_completion(h, q);
6944         while (raw_tag != FIFO_EMPTY)
6945                 raw_tag = next_command(h, q);
6946         return IRQ_HANDLED;
6947 }
6948
6949 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6950 {
6951         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6952         u32 raw_tag;
6953         u8 q = *(u8 *) queue;
6954
6955         if (interrupt_not_for_us(h))
6956                 return IRQ_NONE;
6957         h->last_intr_timestamp = get_jiffies_64();
6958         while (interrupt_pending(h)) {
6959                 raw_tag = get_next_completion(h, q);
6960                 while (raw_tag != FIFO_EMPTY) {
6961                         process_indexed_cmd(h, raw_tag);
6962                         raw_tag = next_command(h, q);
6963                 }
6964         }
6965         return IRQ_HANDLED;
6966 }
6967
6968 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6969 {
6970         struct ctlr_info *h = queue_to_hba(queue);
6971         u32 raw_tag;
6972         u8 q = *(u8 *) queue;
6973
6974         h->last_intr_timestamp = get_jiffies_64();
6975         raw_tag = get_next_completion(h, q);
6976         while (raw_tag != FIFO_EMPTY) {
6977                 process_indexed_cmd(h, raw_tag);
6978                 raw_tag = next_command(h, q);
6979         }
6980         return IRQ_HANDLED;
6981 }
6982
6983 /* Send a message CDB to the firmware. Careful, this only works
6984  * in simple mode, not performant mode due to the tag lookup.
6985  * We only ever use this immediately after a controller reset.
6986  */
6987 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6988                         unsigned char type)
6989 {
6990         struct Command {
6991                 struct CommandListHeader CommandHeader;
6992                 struct RequestBlock Request;
6993                 struct ErrDescriptor ErrorDescriptor;
6994         };
6995         struct Command *cmd;
6996         static const size_t cmd_sz = sizeof(*cmd) +
6997                                         sizeof(cmd->ErrorDescriptor);
6998         dma_addr_t paddr64;
6999         __le32 paddr32;
7000         u32 tag;
7001         void __iomem *vaddr;
7002         int i, err;
7003
7004         vaddr = pci_ioremap_bar(pdev, 0);
7005         if (vaddr == NULL)
7006                 return -ENOMEM;
7007
7008         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7009          * CCISS commands, so they must be allocated from the lower 4GiB of
7010          * memory.
7011          */
7012         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7013         if (err) {
7014                 iounmap(vaddr);
7015                 return err;
7016         }
7017
7018         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7019         if (cmd == NULL) {
7020                 iounmap(vaddr);
7021                 return -ENOMEM;
7022         }
7023
7024         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7025          * although there's no guarantee, we assume that the address is at
7026          * least 4-byte aligned (most likely, it's page-aligned).
7027          */
7028         paddr32 = cpu_to_le32(paddr64);
7029
7030         cmd->CommandHeader.ReplyQueue = 0;
7031         cmd->CommandHeader.SGList = 0;
7032         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7033         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7034         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7035
7036         cmd->Request.CDBLen = 16;
7037         cmd->Request.type_attr_dir =
7038                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7039         cmd->Request.Timeout = 0; /* Don't time out */
7040         cmd->Request.CDB[0] = opcode;
7041         cmd->Request.CDB[1] = type;
7042         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7043         cmd->ErrorDescriptor.Addr =
7044                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7045         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7046
7047         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7048
7049         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7050                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7051                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7052                         break;
7053                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7054         }
7055
7056         iounmap(vaddr);
7057
7058         /* we leak the DMA buffer here ... no choice since the controller could
7059          *  still complete the command.
7060          */
7061         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7062                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7063                         opcode, type);
7064                 return -ETIMEDOUT;
7065         }
7066
7067         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7068
7069         if (tag & HPSA_ERROR_BIT) {
7070                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7071                         opcode, type);
7072                 return -EIO;
7073         }
7074
7075         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7076                 opcode, type);
7077         return 0;
7078 }
7079
7080 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7081
7082 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7083         void __iomem *vaddr, u32 use_doorbell)
7084 {
7085
7086         if (use_doorbell) {
7087                 /* For everything after the P600, the PCI power state method
7088                  * of resetting the controller doesn't work, so we have this
7089                  * other way using the doorbell register.
7090                  */
7091                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7092                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7093
7094                 /* PMC hardware guys tell us we need a 10 second delay after
7095                  * doorbell reset and before any attempt to talk to the board
7096                  * at all to ensure that this actually works and doesn't fall
7097                  * over in some weird corner cases.
7098                  */
7099                 msleep(10000);
7100         } else { /* Try to do it the PCI power state way */
7101
7102                 /* Quoting from the Open CISS Specification: "The Power
7103                  * Management Control/Status Register (CSR) controls the power
7104                  * state of the device.  The normal operating state is D0,
7105                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7106                  * the controller, place the interface device in D3 then to D0,
7107                  * this causes a secondary PCI reset which will reset the
7108                  * controller." */
7109
7110                 int rc = 0;
7111
7112                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7113
7114                 /* enter the D3hot power management state */
7115                 rc = pci_set_power_state(pdev, PCI_D3hot);
7116                 if (rc)
7117                         return rc;
7118
7119                 msleep(500);
7120
7121                 /* enter the D0 power management state */
7122                 rc = pci_set_power_state(pdev, PCI_D0);
7123                 if (rc)
7124                         return rc;
7125
7126                 /*
7127                  * The P600 requires a small delay when changing states.
7128                  * Otherwise we may think the board did not reset and we bail.
7129                  * This for kdump only and is particular to the P600.
7130                  */
7131                 msleep(500);
7132         }
7133         return 0;
7134 }
7135
7136 static void init_driver_version(char *driver_version, int len)
7137 {
7138         memset(driver_version, 0, len);
7139         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7140 }
7141
7142 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7143 {
7144         char *driver_version;
7145         int i, size = sizeof(cfgtable->driver_version);
7146
7147         driver_version = kmalloc(size, GFP_KERNEL);
7148         if (!driver_version)
7149                 return -ENOMEM;
7150
7151         init_driver_version(driver_version, size);
7152         for (i = 0; i < size; i++)
7153                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7154         kfree(driver_version);
7155         return 0;
7156 }
7157
7158 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7159                                           unsigned char *driver_ver)
7160 {
7161         int i;
7162
7163         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7164                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7165 }
7166
7167 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7168 {
7169
7170         char *driver_ver, *old_driver_ver;
7171         int rc, size = sizeof(cfgtable->driver_version);
7172
7173         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7174         if (!old_driver_ver)
7175                 return -ENOMEM;
7176         driver_ver = old_driver_ver + size;
7177
7178         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7179          * should have been changed, otherwise we know the reset failed.
7180          */
7181         init_driver_version(old_driver_ver, size);
7182         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7183         rc = !memcmp(driver_ver, old_driver_ver, size);
7184         kfree(old_driver_ver);
7185         return rc;
7186 }
7187 /* This does a hard reset of the controller using PCI power management
7188  * states or the using the doorbell register.
7189  */
7190 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7191 {
7192         u64 cfg_offset;
7193         u32 cfg_base_addr;
7194         u64 cfg_base_addr_index;
7195         void __iomem *vaddr;
7196         unsigned long paddr;
7197         u32 misc_fw_support;
7198         int rc;
7199         struct CfgTable __iomem *cfgtable;
7200         u32 use_doorbell;
7201         u16 command_register;
7202
7203         /* For controllers as old as the P600, this is very nearly
7204          * the same thing as
7205          *
7206          * pci_save_state(pci_dev);
7207          * pci_set_power_state(pci_dev, PCI_D3hot);
7208          * pci_set_power_state(pci_dev, PCI_D0);
7209          * pci_restore_state(pci_dev);
7210          *
7211          * For controllers newer than the P600, the pci power state
7212          * method of resetting doesn't work so we have another way
7213          * using the doorbell register.
7214          */
7215
7216         if (!ctlr_is_resettable(board_id)) {
7217                 dev_warn(&pdev->dev, "Controller not resettable\n");
7218                 return -ENODEV;
7219         }
7220
7221         /* if controller is soft- but not hard resettable... */
7222         if (!ctlr_is_hard_resettable(board_id))
7223                 return -ENOTSUPP; /* try soft reset later. */
7224
7225         /* Save the PCI command register */
7226         pci_read_config_word(pdev, 4, &command_register);
7227         pci_save_state(pdev);
7228
7229         /* find the first memory BAR, so we can find the cfg table */
7230         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7231         if (rc)
7232                 return rc;
7233         vaddr = remap_pci_mem(paddr, 0x250);
7234         if (!vaddr)
7235                 return -ENOMEM;
7236
7237         /* find cfgtable in order to check if reset via doorbell is supported */
7238         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7239                                         &cfg_base_addr_index, &cfg_offset);
7240         if (rc)
7241                 goto unmap_vaddr;
7242         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7243                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7244         if (!cfgtable) {
7245                 rc = -ENOMEM;
7246                 goto unmap_vaddr;
7247         }
7248         rc = write_driver_ver_to_cfgtable(cfgtable);
7249         if (rc)
7250                 goto unmap_cfgtable;
7251
7252         /* If reset via doorbell register is supported, use that.
7253          * There are two such methods.  Favor the newest method.
7254          */
7255         misc_fw_support = readl(&cfgtable->misc_fw_support);
7256         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7257         if (use_doorbell) {
7258                 use_doorbell = DOORBELL_CTLR_RESET2;
7259         } else {
7260                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7261                 if (use_doorbell) {
7262                         dev_warn(&pdev->dev,
7263                                 "Soft reset not supported. Firmware update is required.\n");
7264                         rc = -ENOTSUPP; /* try soft reset */
7265                         goto unmap_cfgtable;
7266                 }
7267         }
7268
7269         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7270         if (rc)
7271                 goto unmap_cfgtable;
7272
7273         pci_restore_state(pdev);
7274         pci_write_config_word(pdev, 4, command_register);
7275
7276         /* Some devices (notably the HP Smart Array 5i Controller)
7277            need a little pause here */
7278         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7279
7280         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7281         if (rc) {
7282                 dev_warn(&pdev->dev,
7283                         "Failed waiting for board to become ready after hard reset\n");
7284                 goto unmap_cfgtable;
7285         }
7286
7287         rc = controller_reset_failed(vaddr);
7288         if (rc < 0)
7289                 goto unmap_cfgtable;
7290         if (rc) {
7291                 dev_warn(&pdev->dev, "Unable to successfully reset "
7292                         "controller. Will try soft reset.\n");
7293                 rc = -ENOTSUPP;
7294         } else {
7295                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7296         }
7297
7298 unmap_cfgtable:
7299         iounmap(cfgtable);
7300
7301 unmap_vaddr:
7302         iounmap(vaddr);
7303         return rc;
7304 }
7305
7306 /*
7307  *  We cannot read the structure directly, for portability we must use
7308  *   the io functions.
7309  *   This is for debug only.
7310  */
7311 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7312 {
7313 #ifdef HPSA_DEBUG
7314         int i;
7315         char temp_name[17];
7316
7317         dev_info(dev, "Controller Configuration information\n");
7318         dev_info(dev, "------------------------------------\n");
7319         for (i = 0; i < 4; i++)
7320                 temp_name[i] = readb(&(tb->Signature[i]));
7321         temp_name[4] = '\0';
7322         dev_info(dev, "   Signature = %s\n", temp_name);
7323         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7324         dev_info(dev, "   Transport methods supported = 0x%x\n",
7325                readl(&(tb->TransportSupport)));
7326         dev_info(dev, "   Transport methods active = 0x%x\n",
7327                readl(&(tb->TransportActive)));
7328         dev_info(dev, "   Requested transport Method = 0x%x\n",
7329                readl(&(tb->HostWrite.TransportRequest)));
7330         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7331                readl(&(tb->HostWrite.CoalIntDelay)));
7332         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7333                readl(&(tb->HostWrite.CoalIntCount)));
7334         dev_info(dev, "   Max outstanding commands = %d\n",
7335                readl(&(tb->CmdsOutMax)));
7336         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7337         for (i = 0; i < 16; i++)
7338                 temp_name[i] = readb(&(tb->ServerName[i]));
7339         temp_name[16] = '\0';
7340         dev_info(dev, "   Server Name = %s\n", temp_name);
7341         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7342                 readl(&(tb->HeartBeat)));
7343 #endif                          /* HPSA_DEBUG */
7344 }
7345
7346 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7347 {
7348         int i, offset, mem_type, bar_type;
7349
7350         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7351                 return 0;
7352         offset = 0;
7353         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7354                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7355                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7356                         offset += 4;
7357                 else {
7358                         mem_type = pci_resource_flags(pdev, i) &
7359                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7360                         switch (mem_type) {
7361                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7362                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7363                                 offset += 4;    /* 32 bit */
7364                                 break;
7365                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7366                                 offset += 8;
7367                                 break;
7368                         default:        /* reserved in PCI 2.2 */
7369                                 dev_warn(&pdev->dev,
7370                                        "base address is invalid\n");
7371                                 return -1;
7372                                 break;
7373                         }
7374                 }
7375                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7376                         return i + 1;
7377         }
7378         return -1;
7379 }
7380
7381 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7382 {
7383         pci_free_irq_vectors(h->pdev);
7384         h->msix_vectors = 0;
7385 }
7386
7387 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7388  * controllers that are capable. If not, we use legacy INTx mode.
7389  */
7390 static int hpsa_interrupt_mode(struct ctlr_info *h)
7391 {
7392         unsigned int flags = PCI_IRQ_LEGACY;
7393         int ret;
7394
7395         /* Some boards advertise MSI but don't really support it */
7396         switch (h->board_id) {
7397         case 0x40700E11:
7398         case 0x40800E11:
7399         case 0x40820E11:
7400         case 0x40830E11:
7401                 break;
7402         default:
7403                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7404                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7405                 if (ret > 0) {
7406                         h->msix_vectors = ret;
7407                         return 0;
7408                 }
7409
7410                 flags |= PCI_IRQ_MSI;
7411                 break;
7412         }
7413
7414         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7415         if (ret < 0)
7416                 return ret;
7417         return 0;
7418 }
7419
7420 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7421                                 bool *legacy_board)
7422 {
7423         int i;
7424         u32 subsystem_vendor_id, subsystem_device_id;
7425
7426         subsystem_vendor_id = pdev->subsystem_vendor;
7427         subsystem_device_id = pdev->subsystem_device;
7428         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7429                     subsystem_vendor_id;
7430
7431         if (legacy_board)
7432                 *legacy_board = false;
7433         for (i = 0; i < ARRAY_SIZE(products); i++)
7434                 if (*board_id == products[i].board_id) {
7435                         if (products[i].access != &SA5A_access &&
7436                             products[i].access != &SA5B_access)
7437                                 return i;
7438                         dev_warn(&pdev->dev,
7439                                  "legacy board ID: 0x%08x\n",
7440                                  *board_id);
7441                         if (legacy_board)
7442                             *legacy_board = true;
7443                         return i;
7444                 }
7445
7446         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7447         if (legacy_board)
7448                 *legacy_board = true;
7449         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7450 }
7451
7452 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7453                                     unsigned long *memory_bar)
7454 {
7455         int i;
7456
7457         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7458                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7459                         /* addressing mode bits already removed */
7460                         *memory_bar = pci_resource_start(pdev, i);
7461                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7462                                 *memory_bar);
7463                         return 0;
7464                 }
7465         dev_warn(&pdev->dev, "no memory BAR found\n");
7466         return -ENODEV;
7467 }
7468
7469 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7470                                      int wait_for_ready)
7471 {
7472         int i, iterations;
7473         u32 scratchpad;
7474         if (wait_for_ready)
7475                 iterations = HPSA_BOARD_READY_ITERATIONS;
7476         else
7477                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7478
7479         for (i = 0; i < iterations; i++) {
7480                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7481                 if (wait_for_ready) {
7482                         if (scratchpad == HPSA_FIRMWARE_READY)
7483                                 return 0;
7484                 } else {
7485                         if (scratchpad != HPSA_FIRMWARE_READY)
7486                                 return 0;
7487                 }
7488                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7489         }
7490         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7491         return -ENODEV;
7492 }
7493
7494 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7495                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7496                                u64 *cfg_offset)
7497 {
7498         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7499         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7500         *cfg_base_addr &= (u32) 0x0000ffff;
7501         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7502         if (*cfg_base_addr_index == -1) {
7503                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7504                 return -ENODEV;
7505         }
7506         return 0;
7507 }
7508
7509 static void hpsa_free_cfgtables(struct ctlr_info *h)
7510 {
7511         if (h->transtable) {
7512                 iounmap(h->transtable);
7513                 h->transtable = NULL;
7514         }
7515         if (h->cfgtable) {
7516                 iounmap(h->cfgtable);
7517                 h->cfgtable = NULL;
7518         }
7519 }
7520
7521 /* Find and map CISS config table and transfer table
7522 + * several items must be unmapped (freed) later
7523 + * */
7524 static int hpsa_find_cfgtables(struct ctlr_info *h)
7525 {
7526         u64 cfg_offset;
7527         u32 cfg_base_addr;
7528         u64 cfg_base_addr_index;
7529         u32 trans_offset;
7530         int rc;
7531
7532         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7533                 &cfg_base_addr_index, &cfg_offset);
7534         if (rc)
7535                 return rc;
7536         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7537                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7538         if (!h->cfgtable) {
7539                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7540                 return -ENOMEM;
7541         }
7542         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7543         if (rc)
7544                 return rc;
7545         /* Find performant mode table. */
7546         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7547         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7548                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7549                                 sizeof(*h->transtable));
7550         if (!h->transtable) {
7551                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7552                 hpsa_free_cfgtables(h);
7553                 return -ENOMEM;
7554         }
7555         return 0;
7556 }
7557
7558 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7559 {
7560 #define MIN_MAX_COMMANDS 16
7561         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7562
7563         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7564
7565         /* Limit commands in memory limited kdump scenario. */
7566         if (reset_devices && h->max_commands > 32)
7567                 h->max_commands = 32;
7568
7569         if (h->max_commands < MIN_MAX_COMMANDS) {
7570                 dev_warn(&h->pdev->dev,
7571                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7572                         h->max_commands,
7573                         MIN_MAX_COMMANDS);
7574                 h->max_commands = MIN_MAX_COMMANDS;
7575         }
7576 }
7577
7578 /* If the controller reports that the total max sg entries is greater than 512,
7579  * then we know that chained SG blocks work.  (Original smart arrays did not
7580  * support chained SG blocks and would return zero for max sg entries.)
7581  */
7582 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7583 {
7584         return h->maxsgentries > 512;
7585 }
7586
7587 /* Interrogate the hardware for some limits:
7588  * max commands, max SG elements without chaining, and with chaining,
7589  * SG chain block size, etc.
7590  */
7591 static void hpsa_find_board_params(struct ctlr_info *h)
7592 {
7593         hpsa_get_max_perf_mode_cmds(h);
7594         h->nr_cmds = h->max_commands;
7595         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7596         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7597         if (hpsa_supports_chained_sg_blocks(h)) {
7598                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7599                 h->max_cmd_sg_entries = 32;
7600                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7601                 h->maxsgentries--; /* save one for chain pointer */
7602         } else {
7603                 /*
7604                  * Original smart arrays supported at most 31 s/g entries
7605                  * embedded inline in the command (trying to use more
7606                  * would lock up the controller)
7607                  */
7608                 h->max_cmd_sg_entries = 31;
7609                 h->maxsgentries = 31; /* default to traditional values */
7610                 h->chainsize = 0;
7611         }
7612
7613         /* Find out what task management functions are supported and cache */
7614         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7615         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7616                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7617         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7618                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7619         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7620                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7621 }
7622
7623 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7624 {
7625         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7626                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7627                 return false;
7628         }
7629         return true;
7630 }
7631
7632 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7633 {
7634         u32 driver_support;
7635
7636         driver_support = readl(&(h->cfgtable->driver_support));
7637         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7638 #ifdef CONFIG_X86
7639         driver_support |= ENABLE_SCSI_PREFETCH;
7640 #endif
7641         driver_support |= ENABLE_UNIT_ATTN;
7642         writel(driver_support, &(h->cfgtable->driver_support));
7643 }
7644
7645 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7646  * in a prefetch beyond physical memory.
7647  */
7648 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7649 {
7650         u32 dma_prefetch;
7651
7652         if (h->board_id != 0x3225103C)
7653                 return;
7654         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7655         dma_prefetch |= 0x8000;
7656         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7657 }
7658
7659 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7660 {
7661         int i;
7662         u32 doorbell_value;
7663         unsigned long flags;
7664         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7665         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7666                 spin_lock_irqsave(&h->lock, flags);
7667                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7668                 spin_unlock_irqrestore(&h->lock, flags);
7669                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7670                         goto done;
7671                 /* delay and try again */
7672                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7673         }
7674         return -ENODEV;
7675 done:
7676         return 0;
7677 }
7678
7679 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7680 {
7681         int i;
7682         u32 doorbell_value;
7683         unsigned long flags;
7684
7685         /* under certain very rare conditions, this can take awhile.
7686          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7687          * as we enter this code.)
7688          */
7689         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7690                 if (h->remove_in_progress)
7691                         goto done;
7692                 spin_lock_irqsave(&h->lock, flags);
7693                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7694                 spin_unlock_irqrestore(&h->lock, flags);
7695                 if (!(doorbell_value & CFGTBL_ChangeReq))
7696                         goto done;
7697                 /* delay and try again */
7698                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7699         }
7700         return -ENODEV;
7701 done:
7702         return 0;
7703 }
7704
7705 /* return -ENODEV or other reason on error, 0 on success */
7706 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7707 {
7708         u32 trans_support;
7709
7710         trans_support = readl(&(h->cfgtable->TransportSupport));
7711         if (!(trans_support & SIMPLE_MODE))
7712                 return -ENOTSUPP;
7713
7714         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7715
7716         /* Update the field, and then ring the doorbell */
7717         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7718         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7719         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7720         if (hpsa_wait_for_mode_change_ack(h))
7721                 goto error;
7722         print_cfg_table(&h->pdev->dev, h->cfgtable);
7723         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7724                 goto error;
7725         h->transMethod = CFGTBL_Trans_Simple;
7726         return 0;
7727 error:
7728         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7729         return -ENODEV;
7730 }
7731
7732 /* free items allocated or mapped by hpsa_pci_init */
7733 static void hpsa_free_pci_init(struct ctlr_info *h)
7734 {
7735         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7736         iounmap(h->vaddr);                      /* pci_init 3 */
7737         h->vaddr = NULL;
7738         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7739         /*
7740          * call pci_disable_device before pci_release_regions per
7741          * Documentation/PCI/pci.txt
7742          */
7743         pci_disable_device(h->pdev);            /* pci_init 1 */
7744         pci_release_regions(h->pdev);           /* pci_init 2 */
7745 }
7746
7747 /* several items must be freed later */
7748 static int hpsa_pci_init(struct ctlr_info *h)
7749 {
7750         int prod_index, err;
7751         bool legacy_board;
7752
7753         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7754         if (prod_index < 0)
7755                 return prod_index;
7756         h->product_name = products[prod_index].product_name;
7757         h->access = *(products[prod_index].access);
7758         h->legacy_board = legacy_board;
7759         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7760                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7761
7762         err = pci_enable_device(h->pdev);
7763         if (err) {
7764                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7765                 pci_disable_device(h->pdev);
7766                 return err;
7767         }
7768
7769         err = pci_request_regions(h->pdev, HPSA);
7770         if (err) {
7771                 dev_err(&h->pdev->dev,
7772                         "failed to obtain PCI resources\n");
7773                 pci_disable_device(h->pdev);
7774                 return err;
7775         }
7776
7777         pci_set_master(h->pdev);
7778
7779         err = hpsa_interrupt_mode(h);
7780         if (err)
7781                 goto clean1;
7782         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7783         if (err)
7784                 goto clean2;    /* intmode+region, pci */
7785         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7786         if (!h->vaddr) {
7787                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7788                 err = -ENOMEM;
7789                 goto clean2;    /* intmode+region, pci */
7790         }
7791         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7792         if (err)
7793                 goto clean3;    /* vaddr, intmode+region, pci */
7794         err = hpsa_find_cfgtables(h);
7795         if (err)
7796                 goto clean3;    /* vaddr, intmode+region, pci */
7797         hpsa_find_board_params(h);
7798
7799         if (!hpsa_CISS_signature_present(h)) {
7800                 err = -ENODEV;
7801                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7802         }
7803         hpsa_set_driver_support_bits(h);
7804         hpsa_p600_dma_prefetch_quirk(h);
7805         err = hpsa_enter_simple_mode(h);
7806         if (err)
7807                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7808         return 0;
7809
7810 clean4: /* cfgtables, vaddr, intmode+region, pci */
7811         hpsa_free_cfgtables(h);
7812 clean3: /* vaddr, intmode+region, pci */
7813         iounmap(h->vaddr);
7814         h->vaddr = NULL;
7815 clean2: /* intmode+region, pci */
7816         hpsa_disable_interrupt_mode(h);
7817 clean1:
7818         /*
7819          * call pci_disable_device before pci_release_regions per
7820          * Documentation/PCI/pci.txt
7821          */
7822         pci_disable_device(h->pdev);
7823         pci_release_regions(h->pdev);
7824         return err;
7825 }
7826
7827 static void hpsa_hba_inquiry(struct ctlr_info *h)
7828 {
7829         int rc;
7830
7831 #define HBA_INQUIRY_BYTE_COUNT 64
7832         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7833         if (!h->hba_inquiry_data)
7834                 return;
7835         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7836                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7837         if (rc != 0) {
7838                 kfree(h->hba_inquiry_data);
7839                 h->hba_inquiry_data = NULL;
7840         }
7841 }
7842
7843 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7844 {
7845         int rc, i;
7846         void __iomem *vaddr;
7847
7848         if (!reset_devices)
7849                 return 0;
7850
7851         /* kdump kernel is loading, we don't know in which state is
7852          * the pci interface. The dev->enable_cnt is equal zero
7853          * so we call enable+disable, wait a while and switch it on.
7854          */
7855         rc = pci_enable_device(pdev);
7856         if (rc) {
7857                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7858                 return -ENODEV;
7859         }
7860         pci_disable_device(pdev);
7861         msleep(260);                    /* a randomly chosen number */
7862         rc = pci_enable_device(pdev);
7863         if (rc) {
7864                 dev_warn(&pdev->dev, "failed to enable device.\n");
7865                 return -ENODEV;
7866         }
7867
7868         pci_set_master(pdev);
7869
7870         vaddr = pci_ioremap_bar(pdev, 0);
7871         if (vaddr == NULL) {
7872                 rc = -ENOMEM;
7873                 goto out_disable;
7874         }
7875         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7876         iounmap(vaddr);
7877
7878         /* Reset the controller with a PCI power-cycle or via doorbell */
7879         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7880
7881         /* -ENOTSUPP here means we cannot reset the controller
7882          * but it's already (and still) up and running in
7883          * "performant mode".  Or, it might be 640x, which can't reset
7884          * due to concerns about shared bbwc between 6402/6404 pair.
7885          */
7886         if (rc)
7887                 goto out_disable;
7888
7889         /* Now try to get the controller to respond to a no-op */
7890         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7891         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7892                 if (hpsa_noop(pdev) == 0)
7893                         break;
7894                 else
7895                         dev_warn(&pdev->dev, "no-op failed%s\n",
7896                                         (i < 11 ? "; re-trying" : ""));
7897         }
7898
7899 out_disable:
7900
7901         pci_disable_device(pdev);
7902         return rc;
7903 }
7904
7905 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7906 {
7907         kfree(h->cmd_pool_bits);
7908         h->cmd_pool_bits = NULL;
7909         if (h->cmd_pool) {
7910                 pci_free_consistent(h->pdev,
7911                                 h->nr_cmds * sizeof(struct CommandList),
7912                                 h->cmd_pool,
7913                                 h->cmd_pool_dhandle);
7914                 h->cmd_pool = NULL;
7915                 h->cmd_pool_dhandle = 0;
7916         }
7917         if (h->errinfo_pool) {
7918                 pci_free_consistent(h->pdev,
7919                                 h->nr_cmds * sizeof(struct ErrorInfo),
7920                                 h->errinfo_pool,
7921                                 h->errinfo_pool_dhandle);
7922                 h->errinfo_pool = NULL;
7923                 h->errinfo_pool_dhandle = 0;
7924         }
7925 }
7926
7927 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7928 {
7929         h->cmd_pool_bits = kzalloc(
7930                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7931                 sizeof(unsigned long), GFP_KERNEL);
7932         h->cmd_pool = pci_alloc_consistent(h->pdev,
7933                     h->nr_cmds * sizeof(*h->cmd_pool),
7934                     &(h->cmd_pool_dhandle));
7935         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7936                     h->nr_cmds * sizeof(*h->errinfo_pool),
7937                     &(h->errinfo_pool_dhandle));
7938         if ((h->cmd_pool_bits == NULL)
7939             || (h->cmd_pool == NULL)
7940             || (h->errinfo_pool == NULL)) {
7941                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7942                 goto clean_up;
7943         }
7944         hpsa_preinitialize_commands(h);
7945         return 0;
7946 clean_up:
7947         hpsa_free_cmd_pool(h);
7948         return -ENOMEM;
7949 }
7950
7951 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7952 static void hpsa_free_irqs(struct ctlr_info *h)
7953 {
7954         int i;
7955
7956         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7957                 /* Single reply queue, only one irq to free */
7958                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7959                 h->q[h->intr_mode] = 0;
7960                 return;
7961         }
7962
7963         for (i = 0; i < h->msix_vectors; i++) {
7964                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7965                 h->q[i] = 0;
7966         }
7967         for (; i < MAX_REPLY_QUEUES; i++)
7968                 h->q[i] = 0;
7969 }
7970
7971 /* returns 0 on success; cleans up and returns -Enn on error */
7972 static int hpsa_request_irqs(struct ctlr_info *h,
7973         irqreturn_t (*msixhandler)(int, void *),
7974         irqreturn_t (*intxhandler)(int, void *))
7975 {
7976         int rc, i;
7977
7978         /*
7979          * initialize h->q[x] = x so that interrupt handlers know which
7980          * queue to process.
7981          */
7982         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7983                 h->q[i] = (u8) i;
7984
7985         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7986                 /* If performant mode and MSI-X, use multiple reply queues */
7987                 for (i = 0; i < h->msix_vectors; i++) {
7988                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7989                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7990                                         0, h->intrname[i],
7991                                         &h->q[i]);
7992                         if (rc) {
7993                                 int j;
7994
7995                                 dev_err(&h->pdev->dev,
7996                                         "failed to get irq %d for %s\n",
7997                                        pci_irq_vector(h->pdev, i), h->devname);
7998                                 for (j = 0; j < i; j++) {
7999                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8000                                         h->q[j] = 0;
8001                                 }
8002                                 for (; j < MAX_REPLY_QUEUES; j++)
8003                                         h->q[j] = 0;
8004                                 return rc;
8005                         }
8006                 }
8007         } else {
8008                 /* Use single reply pool */
8009                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8010                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8011                                 h->msix_vectors ? "x" : "");
8012                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8013                                 msixhandler, 0,
8014                                 h->intrname[0],
8015                                 &h->q[h->intr_mode]);
8016                 } else {
8017                         sprintf(h->intrname[h->intr_mode],
8018                                 "%s-intx", h->devname);
8019                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8020                                 intxhandler, IRQF_SHARED,
8021                                 h->intrname[0],
8022                                 &h->q[h->intr_mode]);
8023                 }
8024         }
8025         if (rc) {
8026                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8027                        pci_irq_vector(h->pdev, 0), h->devname);
8028                 hpsa_free_irqs(h);
8029                 return -ENODEV;
8030         }
8031         return 0;
8032 }
8033
8034 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8035 {
8036         int rc;
8037         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8038
8039         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8040         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8041         if (rc) {
8042                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8043                 return rc;
8044         }
8045
8046         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8047         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8048         if (rc) {
8049                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8050                         "after soft reset.\n");
8051                 return rc;
8052         }
8053
8054         return 0;
8055 }
8056
8057 static void hpsa_free_reply_queues(struct ctlr_info *h)
8058 {
8059         int i;
8060
8061         for (i = 0; i < h->nreply_queues; i++) {
8062                 if (!h->reply_queue[i].head)
8063                         continue;
8064                 pci_free_consistent(h->pdev,
8065                                         h->reply_queue_size,
8066                                         h->reply_queue[i].head,
8067                                         h->reply_queue[i].busaddr);
8068                 h->reply_queue[i].head = NULL;
8069                 h->reply_queue[i].busaddr = 0;
8070         }
8071         h->reply_queue_size = 0;
8072 }
8073
8074 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8075 {
8076         hpsa_free_performant_mode(h);           /* init_one 7 */
8077         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8078         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8079         hpsa_free_irqs(h);                      /* init_one 4 */
8080         scsi_host_put(h->scsi_host);            /* init_one 3 */
8081         h->scsi_host = NULL;                    /* init_one 3 */
8082         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8083         free_percpu(h->lockup_detected);        /* init_one 2 */
8084         h->lockup_detected = NULL;              /* init_one 2 */
8085         if (h->resubmit_wq) {
8086                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8087                 h->resubmit_wq = NULL;
8088         }
8089         if (h->rescan_ctlr_wq) {
8090                 destroy_workqueue(h->rescan_ctlr_wq);
8091                 h->rescan_ctlr_wq = NULL;
8092         }
8093         kfree(h);                               /* init_one 1 */
8094 }
8095
8096 /* Called when controller lockup detected. */
8097 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8098 {
8099         int i, refcount;
8100         struct CommandList *c;
8101         int failcount = 0;
8102
8103         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8104         for (i = 0; i < h->nr_cmds; i++) {
8105                 c = h->cmd_pool + i;
8106                 refcount = atomic_inc_return(&c->refcount);
8107                 if (refcount > 1) {
8108                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8109                         finish_cmd(c);
8110                         atomic_dec(&h->commands_outstanding);
8111                         failcount++;
8112                 }
8113                 cmd_free(h, c);
8114         }
8115         dev_warn(&h->pdev->dev,
8116                 "failed %d commands in fail_all\n", failcount);
8117 }
8118
8119 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8120 {
8121         int cpu;
8122
8123         for_each_online_cpu(cpu) {
8124                 u32 *lockup_detected;
8125                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8126                 *lockup_detected = value;
8127         }
8128         wmb(); /* be sure the per-cpu variables are out to memory */
8129 }
8130
8131 static void controller_lockup_detected(struct ctlr_info *h)
8132 {
8133         unsigned long flags;
8134         u32 lockup_detected;
8135
8136         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8137         spin_lock_irqsave(&h->lock, flags);
8138         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8139         if (!lockup_detected) {
8140                 /* no heartbeat, but controller gave us a zero. */
8141                 dev_warn(&h->pdev->dev,
8142                         "lockup detected after %d but scratchpad register is zero\n",
8143                         h->heartbeat_sample_interval / HZ);
8144                 lockup_detected = 0xffffffff;
8145         }
8146         set_lockup_detected_for_all_cpus(h, lockup_detected);
8147         spin_unlock_irqrestore(&h->lock, flags);
8148         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8149                         lockup_detected, h->heartbeat_sample_interval / HZ);
8150         if (lockup_detected == 0xffff0000) {
8151                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8152                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8153         }
8154         pci_disable_device(h->pdev);
8155         fail_all_outstanding_cmds(h);
8156 }
8157
8158 static int detect_controller_lockup(struct ctlr_info *h)
8159 {
8160         u64 now;
8161         u32 heartbeat;
8162         unsigned long flags;
8163
8164         now = get_jiffies_64();
8165         /* If we've received an interrupt recently, we're ok. */
8166         if (time_after64(h->last_intr_timestamp +
8167                                 (h->heartbeat_sample_interval), now))
8168                 return false;
8169
8170         /*
8171          * If we've already checked the heartbeat recently, we're ok.
8172          * This could happen if someone sends us a signal. We
8173          * otherwise don't care about signals in this thread.
8174          */
8175         if (time_after64(h->last_heartbeat_timestamp +
8176                                 (h->heartbeat_sample_interval), now))
8177                 return false;
8178
8179         /* If heartbeat has not changed since we last looked, we're not ok. */
8180         spin_lock_irqsave(&h->lock, flags);
8181         heartbeat = readl(&h->cfgtable->HeartBeat);
8182         spin_unlock_irqrestore(&h->lock, flags);
8183         if (h->last_heartbeat == heartbeat) {
8184                 controller_lockup_detected(h);
8185                 return true;
8186         }
8187
8188         /* We're ok. */
8189         h->last_heartbeat = heartbeat;
8190         h->last_heartbeat_timestamp = now;
8191         return false;
8192 }
8193
8194 /*
8195  * Set ioaccel status for all ioaccel volumes.
8196  *
8197  * Called from monitor controller worker (hpsa_event_monitor_worker)
8198  *
8199  * A Volume (or Volumes that comprise an Array set may be undergoing a
8200  * transformation, so we will be turning off ioaccel for all volumes that
8201  * make up the Array.
8202  */
8203 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8204 {
8205         int rc;
8206         int i;
8207         u8 ioaccel_status;
8208         unsigned char *buf;
8209         struct hpsa_scsi_dev_t *device;
8210
8211         if (!h)
8212                 return;
8213
8214         buf = kmalloc(64, GFP_KERNEL);
8215         if (!buf)
8216                 return;
8217
8218         /*
8219          * Run through current device list used during I/O requests.
8220          */
8221         for (i = 0; i < h->ndevices; i++) {
8222                 device = h->dev[i];
8223
8224                 if (!device)
8225                         continue;
8226                 if (!device->scsi3addr)
8227                         continue;
8228                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8229                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8230                         continue;
8231
8232                 memset(buf, 0, 64);
8233
8234                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8235                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8236                                         buf, 64);
8237                 if (rc != 0)
8238                         continue;
8239
8240                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8241                 device->offload_config =
8242                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8243                 if (device->offload_config)
8244                         device->offload_to_be_enabled =
8245                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8246
8247                 /*
8248                  * Immediately turn off ioaccel for any volume the
8249                  * controller tells us to. Some of the reasons could be:
8250                  *    transformation - change to the LVs of an Array.
8251                  *    degraded volume - component failure
8252                  *
8253                  * If ioaccel is to be re-enabled, re-enable later during the
8254                  * scan operation so the driver can get a fresh raidmap
8255                  * before turning ioaccel back on.
8256                  *
8257                  */
8258                 if (!device->offload_to_be_enabled)
8259                         device->offload_enabled = 0;
8260         }
8261
8262         kfree(buf);
8263 }
8264
8265 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8266 {
8267         char *event_type;
8268
8269         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8270                 return;
8271
8272         /* Ask the controller to clear the events we're handling. */
8273         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8274                         | CFGTBL_Trans_io_accel2)) &&
8275                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8276                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8277
8278                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8279                         event_type = "state change";
8280                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8281                         event_type = "configuration change";
8282                 /* Stop sending new RAID offload reqs via the IO accelerator */
8283                 scsi_block_requests(h->scsi_host);
8284                 hpsa_set_ioaccel_status(h);
8285                 hpsa_drain_accel_commands(h);
8286                 /* Set 'accelerator path config change' bit */
8287                 dev_warn(&h->pdev->dev,
8288                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8289                         h->events, event_type);
8290                 writel(h->events, &(h->cfgtable->clear_event_notify));
8291                 /* Set the "clear event notify field update" bit 6 */
8292                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8293                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8294                 hpsa_wait_for_clear_event_notify_ack(h);
8295                 scsi_unblock_requests(h->scsi_host);
8296         } else {
8297                 /* Acknowledge controller notification events. */
8298                 writel(h->events, &(h->cfgtable->clear_event_notify));
8299                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8300                 hpsa_wait_for_clear_event_notify_ack(h);
8301         }
8302         return;
8303 }
8304
8305 /* Check a register on the controller to see if there are configuration
8306  * changes (added/changed/removed logical drives, etc.) which mean that
8307  * we should rescan the controller for devices.
8308  * Also check flag for driver-initiated rescan.
8309  */
8310 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8311 {
8312         if (h->drv_req_rescan) {
8313                 h->drv_req_rescan = 0;
8314                 return 1;
8315         }
8316
8317         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8318                 return 0;
8319
8320         h->events = readl(&(h->cfgtable->event_notify));
8321         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8322 }
8323
8324 /*
8325  * Check if any of the offline devices have become ready
8326  */
8327 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8328 {
8329         unsigned long flags;
8330         struct offline_device_entry *d;
8331         struct list_head *this, *tmp;
8332
8333         spin_lock_irqsave(&h->offline_device_lock, flags);
8334         list_for_each_safe(this, tmp, &h->offline_device_list) {
8335                 d = list_entry(this, struct offline_device_entry,
8336                                 offline_list);
8337                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8338                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8339                         spin_lock_irqsave(&h->offline_device_lock, flags);
8340                         list_del(&d->offline_list);
8341                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8342                         return 1;
8343                 }
8344                 spin_lock_irqsave(&h->offline_device_lock, flags);
8345         }
8346         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8347         return 0;
8348 }
8349
8350 static int hpsa_luns_changed(struct ctlr_info *h)
8351 {
8352         int rc = 1; /* assume there are changes */
8353         struct ReportLUNdata *logdev = NULL;
8354
8355         /* if we can't find out if lun data has changed,
8356          * assume that it has.
8357          */
8358
8359         if (!h->lastlogicals)
8360                 return rc;
8361
8362         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8363         if (!logdev)
8364                 return rc;
8365
8366         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8367                 dev_warn(&h->pdev->dev,
8368                         "report luns failed, can't track lun changes.\n");
8369                 goto out;
8370         }
8371         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8372                 dev_info(&h->pdev->dev,
8373                         "Lun changes detected.\n");
8374                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8375                 goto out;
8376         } else
8377                 rc = 0; /* no changes detected. */
8378 out:
8379         kfree(logdev);
8380         return rc;
8381 }
8382
8383 static void hpsa_perform_rescan(struct ctlr_info *h)
8384 {
8385         struct Scsi_Host *sh = NULL;
8386         unsigned long flags;
8387
8388         /*
8389          * Do the scan after the reset
8390          */
8391         spin_lock_irqsave(&h->reset_lock, flags);
8392         if (h->reset_in_progress) {
8393                 h->drv_req_rescan = 1;
8394                 spin_unlock_irqrestore(&h->reset_lock, flags);
8395                 return;
8396         }
8397         spin_unlock_irqrestore(&h->reset_lock, flags);
8398
8399         sh = scsi_host_get(h->scsi_host);
8400         if (sh != NULL) {
8401                 hpsa_scan_start(sh);
8402                 scsi_host_put(sh);
8403                 h->drv_req_rescan = 0;
8404         }
8405 }
8406
8407 /*
8408  * watch for controller events
8409  */
8410 static void hpsa_event_monitor_worker(struct work_struct *work)
8411 {
8412         struct ctlr_info *h = container_of(to_delayed_work(work),
8413                                         struct ctlr_info, event_monitor_work);
8414         unsigned long flags;
8415
8416         spin_lock_irqsave(&h->lock, flags);
8417         if (h->remove_in_progress) {
8418                 spin_unlock_irqrestore(&h->lock, flags);
8419                 return;
8420         }
8421         spin_unlock_irqrestore(&h->lock, flags);
8422
8423         if (hpsa_ctlr_needs_rescan(h)) {
8424                 hpsa_ack_ctlr_events(h);
8425                 hpsa_perform_rescan(h);
8426         }
8427
8428         spin_lock_irqsave(&h->lock, flags);
8429         if (!h->remove_in_progress)
8430                 schedule_delayed_work(&h->event_monitor_work,
8431                                         HPSA_EVENT_MONITOR_INTERVAL);
8432         spin_unlock_irqrestore(&h->lock, flags);
8433 }
8434
8435 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8436 {
8437         unsigned long flags;
8438         struct ctlr_info *h = container_of(to_delayed_work(work),
8439                                         struct ctlr_info, rescan_ctlr_work);
8440
8441         spin_lock_irqsave(&h->lock, flags);
8442         if (h->remove_in_progress) {
8443                 spin_unlock_irqrestore(&h->lock, flags);
8444                 return;
8445         }
8446         spin_unlock_irqrestore(&h->lock, flags);
8447
8448         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8449                 hpsa_perform_rescan(h);
8450         } else if (h->discovery_polling) {
8451                 if (hpsa_luns_changed(h)) {
8452                         dev_info(&h->pdev->dev,
8453                                 "driver discovery polling rescan.\n");
8454                         hpsa_perform_rescan(h);
8455                 }
8456         }
8457         spin_lock_irqsave(&h->lock, flags);
8458         if (!h->remove_in_progress)
8459                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8460                                 h->heartbeat_sample_interval);
8461         spin_unlock_irqrestore(&h->lock, flags);
8462 }
8463
8464 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8465 {
8466         unsigned long flags;
8467         struct ctlr_info *h = container_of(to_delayed_work(work),
8468                                         struct ctlr_info, monitor_ctlr_work);
8469
8470         detect_controller_lockup(h);
8471         if (lockup_detected(h))
8472                 return;
8473
8474         spin_lock_irqsave(&h->lock, flags);
8475         if (!h->remove_in_progress)
8476                 schedule_delayed_work(&h->monitor_ctlr_work,
8477                                 h->heartbeat_sample_interval);
8478         spin_unlock_irqrestore(&h->lock, flags);
8479 }
8480
8481 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8482                                                 char *name)
8483 {
8484         struct workqueue_struct *wq = NULL;
8485
8486         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8487         if (!wq)
8488                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8489
8490         return wq;
8491 }
8492
8493 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8494 {
8495         int dac, rc;
8496         struct ctlr_info *h;
8497         int try_soft_reset = 0;
8498         unsigned long flags;
8499         u32 board_id;
8500
8501         if (number_of_controllers == 0)
8502                 printk(KERN_INFO DRIVER_NAME "\n");
8503
8504         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8505         if (rc < 0) {
8506                 dev_warn(&pdev->dev, "Board ID not found\n");
8507                 return rc;
8508         }
8509
8510         rc = hpsa_init_reset_devices(pdev, board_id);
8511         if (rc) {
8512                 if (rc != -ENOTSUPP)
8513                         return rc;
8514                 /* If the reset fails in a particular way (it has no way to do
8515                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8516                  * a soft reset once we get the controller configured up to the
8517                  * point that it can accept a command.
8518                  */
8519                 try_soft_reset = 1;
8520                 rc = 0;
8521         }
8522
8523 reinit_after_soft_reset:
8524
8525         /* Command structures must be aligned on a 32-byte boundary because
8526          * the 5 lower bits of the address are used by the hardware. and by
8527          * the driver.  See comments in hpsa.h for more info.
8528          */
8529         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8530         h = kzalloc(sizeof(*h), GFP_KERNEL);
8531         if (!h) {
8532                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8533                 return -ENOMEM;
8534         }
8535
8536         h->pdev = pdev;
8537
8538         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8539         INIT_LIST_HEAD(&h->offline_device_list);
8540         spin_lock_init(&h->lock);
8541         spin_lock_init(&h->offline_device_lock);
8542         spin_lock_init(&h->scan_lock);
8543         spin_lock_init(&h->reset_lock);
8544         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8545
8546         /* Allocate and clear per-cpu variable lockup_detected */
8547         h->lockup_detected = alloc_percpu(u32);
8548         if (!h->lockup_detected) {
8549                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8550                 rc = -ENOMEM;
8551                 goto clean1;    /* aer/h */
8552         }
8553         set_lockup_detected_for_all_cpus(h, 0);
8554
8555         rc = hpsa_pci_init(h);
8556         if (rc)
8557                 goto clean2;    /* lu, aer/h */
8558
8559         /* relies on h-> settings made by hpsa_pci_init, including
8560          * interrupt_mode h->intr */
8561         rc = hpsa_scsi_host_alloc(h);
8562         if (rc)
8563                 goto clean2_5;  /* pci, lu, aer/h */
8564
8565         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8566         h->ctlr = number_of_controllers;
8567         number_of_controllers++;
8568
8569         /* configure PCI DMA stuff */
8570         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8571         if (rc == 0) {
8572                 dac = 1;
8573         } else {
8574                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8575                 if (rc == 0) {
8576                         dac = 0;
8577                 } else {
8578                         dev_err(&pdev->dev, "no suitable DMA available\n");
8579                         goto clean3;    /* shost, pci, lu, aer/h */
8580                 }
8581         }
8582
8583         /* make sure the board interrupts are off */
8584         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8585
8586         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8587         if (rc)
8588                 goto clean3;    /* shost, pci, lu, aer/h */
8589         rc = hpsa_alloc_cmd_pool(h);
8590         if (rc)
8591                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8592         rc = hpsa_alloc_sg_chain_blocks(h);
8593         if (rc)
8594                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8595         init_waitqueue_head(&h->scan_wait_queue);
8596         init_waitqueue_head(&h->event_sync_wait_queue);
8597         mutex_init(&h->reset_mutex);
8598         h->scan_finished = 1; /* no scan currently in progress */
8599         h->scan_waiting = 0;
8600
8601         pci_set_drvdata(pdev, h);
8602         h->ndevices = 0;
8603
8604         spin_lock_init(&h->devlock);
8605         rc = hpsa_put_ctlr_into_performant_mode(h);
8606         if (rc)
8607                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8608
8609         /* create the resubmit workqueue */
8610         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8611         if (!h->rescan_ctlr_wq) {
8612                 rc = -ENOMEM;
8613                 goto clean7;
8614         }
8615
8616         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8617         if (!h->resubmit_wq) {
8618                 rc = -ENOMEM;
8619                 goto clean7;    /* aer/h */
8620         }
8621
8622         /*
8623          * At this point, the controller is ready to take commands.
8624          * Now, if reset_devices and the hard reset didn't work, try
8625          * the soft reset and see if that works.
8626          */
8627         if (try_soft_reset) {
8628
8629                 /* This is kind of gross.  We may or may not get a completion
8630                  * from the soft reset command, and if we do, then the value
8631                  * from the fifo may or may not be valid.  So, we wait 10 secs
8632                  * after the reset throwing away any completions we get during
8633                  * that time.  Unregister the interrupt handler and register
8634                  * fake ones to scoop up any residual completions.
8635                  */
8636                 spin_lock_irqsave(&h->lock, flags);
8637                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8638                 spin_unlock_irqrestore(&h->lock, flags);
8639                 hpsa_free_irqs(h);
8640                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8641                                         hpsa_intx_discard_completions);
8642                 if (rc) {
8643                         dev_warn(&h->pdev->dev,
8644                                 "Failed to request_irq after soft reset.\n");
8645                         /*
8646                          * cannot goto clean7 or free_irqs will be called
8647                          * again. Instead, do its work
8648                          */
8649                         hpsa_free_performant_mode(h);   /* clean7 */
8650                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8651                         hpsa_free_cmd_pool(h);          /* clean5 */
8652                         /*
8653                          * skip hpsa_free_irqs(h) clean4 since that
8654                          * was just called before request_irqs failed
8655                          */
8656                         goto clean3;
8657                 }
8658
8659                 rc = hpsa_kdump_soft_reset(h);
8660                 if (rc)
8661                         /* Neither hard nor soft reset worked, we're hosed. */
8662                         goto clean7;
8663
8664                 dev_info(&h->pdev->dev, "Board READY.\n");
8665                 dev_info(&h->pdev->dev,
8666                         "Waiting for stale completions to drain.\n");
8667                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8668                 msleep(10000);
8669                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8670
8671                 rc = controller_reset_failed(h->cfgtable);
8672                 if (rc)
8673                         dev_info(&h->pdev->dev,
8674                                 "Soft reset appears to have failed.\n");
8675
8676                 /* since the controller's reset, we have to go back and re-init
8677                  * everything.  Easiest to just forget what we've done and do it
8678                  * all over again.
8679                  */
8680                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8681                 try_soft_reset = 0;
8682                 if (rc)
8683                         /* don't goto clean, we already unallocated */
8684                         return -ENODEV;
8685
8686                 goto reinit_after_soft_reset;
8687         }
8688
8689         /* Enable Accelerated IO path at driver layer */
8690         h->acciopath_status = 1;
8691         /* Disable discovery polling.*/
8692         h->discovery_polling = 0;
8693
8694
8695         /* Turn the interrupts on so we can service requests */
8696         h->access.set_intr_mask(h, HPSA_INTR_ON);
8697
8698         hpsa_hba_inquiry(h);
8699
8700         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8701         if (!h->lastlogicals)
8702                 dev_info(&h->pdev->dev,
8703                         "Can't track change to report lun data\n");
8704
8705         /* hook into SCSI subsystem */
8706         rc = hpsa_scsi_add_host(h);
8707         if (rc)
8708                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8709
8710         /* Monitor the controller for firmware lockups */
8711         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8712         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8713         schedule_delayed_work(&h->monitor_ctlr_work,
8714                                 h->heartbeat_sample_interval);
8715         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8716         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8717                                 h->heartbeat_sample_interval);
8718         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8719         schedule_delayed_work(&h->event_monitor_work,
8720                                 HPSA_EVENT_MONITOR_INTERVAL);
8721         return 0;
8722
8723 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8724         hpsa_free_performant_mode(h);
8725         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8726 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8727         hpsa_free_sg_chain_blocks(h);
8728 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8729         hpsa_free_cmd_pool(h);
8730 clean4: /* irq, shost, pci, lu, aer/h */
8731         hpsa_free_irqs(h);
8732 clean3: /* shost, pci, lu, aer/h */
8733         scsi_host_put(h->scsi_host);
8734         h->scsi_host = NULL;
8735 clean2_5: /* pci, lu, aer/h */
8736         hpsa_free_pci_init(h);
8737 clean2: /* lu, aer/h */
8738         if (h->lockup_detected) {
8739                 free_percpu(h->lockup_detected);
8740                 h->lockup_detected = NULL;
8741         }
8742 clean1: /* wq/aer/h */
8743         if (h->resubmit_wq) {
8744                 destroy_workqueue(h->resubmit_wq);
8745                 h->resubmit_wq = NULL;
8746         }
8747         if (h->rescan_ctlr_wq) {
8748                 destroy_workqueue(h->rescan_ctlr_wq);
8749                 h->rescan_ctlr_wq = NULL;
8750         }
8751         kfree(h);
8752         return rc;
8753 }
8754
8755 static void hpsa_flush_cache(struct ctlr_info *h)
8756 {
8757         char *flush_buf;
8758         struct CommandList *c;
8759         int rc;
8760
8761         if (unlikely(lockup_detected(h)))
8762                 return;
8763         flush_buf = kzalloc(4, GFP_KERNEL);
8764         if (!flush_buf)
8765                 return;
8766
8767         c = cmd_alloc(h);
8768
8769         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8770                 RAID_CTLR_LUNID, TYPE_CMD)) {
8771                 goto out;
8772         }
8773         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8774                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8775         if (rc)
8776                 goto out;
8777         if (c->err_info->CommandStatus != 0)
8778 out:
8779                 dev_warn(&h->pdev->dev,
8780                         "error flushing cache on controller\n");
8781         cmd_free(h, c);
8782         kfree(flush_buf);
8783 }
8784
8785 /* Make controller gather fresh report lun data each time we
8786  * send down a report luns request
8787  */
8788 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8789 {
8790         u32 *options;
8791         struct CommandList *c;
8792         int rc;
8793
8794         /* Don't bother trying to set diag options if locked up */
8795         if (unlikely(h->lockup_detected))
8796                 return;
8797
8798         options = kzalloc(sizeof(*options), GFP_KERNEL);
8799         if (!options)
8800                 return;
8801
8802         c = cmd_alloc(h);
8803
8804         /* first, get the current diag options settings */
8805         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8806                 RAID_CTLR_LUNID, TYPE_CMD))
8807                 goto errout;
8808
8809         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8810                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8811         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8812                 goto errout;
8813
8814         /* Now, set the bit for disabling the RLD caching */
8815         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8816
8817         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8818                 RAID_CTLR_LUNID, TYPE_CMD))
8819                 goto errout;
8820
8821         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8822                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8823         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8824                 goto errout;
8825
8826         /* Now verify that it got set: */
8827         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8828                 RAID_CTLR_LUNID, TYPE_CMD))
8829                 goto errout;
8830
8831         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8832                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8833         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8834                 goto errout;
8835
8836         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8837                 goto out;
8838
8839 errout:
8840         dev_err(&h->pdev->dev,
8841                         "Error: failed to disable report lun data caching.\n");
8842 out:
8843         cmd_free(h, c);
8844         kfree(options);
8845 }
8846
8847 static void hpsa_shutdown(struct pci_dev *pdev)
8848 {
8849         struct ctlr_info *h;
8850
8851         h = pci_get_drvdata(pdev);
8852         /* Turn board interrupts off  and send the flush cache command
8853          * sendcmd will turn off interrupt, and send the flush...
8854          * To write all data in the battery backed cache to disks
8855          */
8856         hpsa_flush_cache(h);
8857         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8858         hpsa_free_irqs(h);                      /* init_one 4 */
8859         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8860 }
8861
8862 static void hpsa_free_device_info(struct ctlr_info *h)
8863 {
8864         int i;
8865
8866         for (i = 0; i < h->ndevices; i++) {
8867                 kfree(h->dev[i]);
8868                 h->dev[i] = NULL;
8869         }
8870 }
8871
8872 static void hpsa_remove_one(struct pci_dev *pdev)
8873 {
8874         struct ctlr_info *h;
8875         unsigned long flags;
8876
8877         if (pci_get_drvdata(pdev) == NULL) {
8878                 dev_err(&pdev->dev, "unable to remove device\n");
8879                 return;
8880         }
8881         h = pci_get_drvdata(pdev);
8882
8883         /* Get rid of any controller monitoring work items */
8884         spin_lock_irqsave(&h->lock, flags);
8885         h->remove_in_progress = 1;
8886         spin_unlock_irqrestore(&h->lock, flags);
8887         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8888         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8889         cancel_delayed_work_sync(&h->event_monitor_work);
8890         destroy_workqueue(h->rescan_ctlr_wq);
8891         destroy_workqueue(h->resubmit_wq);
8892
8893         hpsa_delete_sas_host(h);
8894
8895         /*
8896          * Call before disabling interrupts.
8897          * scsi_remove_host can trigger I/O operations especially
8898          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8899          * operations which cannot complete and will hang the system.
8900          */
8901         if (h->scsi_host)
8902                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8903         /* includes hpsa_free_irqs - init_one 4 */
8904         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8905         hpsa_shutdown(pdev);
8906
8907         hpsa_free_device_info(h);               /* scan */
8908
8909         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8910         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8911         hpsa_free_ioaccel2_sg_chain_blocks(h);
8912         hpsa_free_performant_mode(h);                   /* init_one 7 */
8913         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8914         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8915         kfree(h->lastlogicals);
8916
8917         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8918
8919         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8920         h->scsi_host = NULL;                            /* init_one 3 */
8921
8922         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8923         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8924
8925         free_percpu(h->lockup_detected);                /* init_one 2 */
8926         h->lockup_detected = NULL;                      /* init_one 2 */
8927         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8928
8929         kfree(h);                                       /* init_one 1 */
8930 }
8931
8932 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8933         __attribute__((unused)) pm_message_t state)
8934 {
8935         return -ENOSYS;
8936 }
8937
8938 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8939 {
8940         return -ENOSYS;
8941 }
8942
8943 static struct pci_driver hpsa_pci_driver = {
8944         .name = HPSA,
8945         .probe = hpsa_init_one,
8946         .remove = hpsa_remove_one,
8947         .id_table = hpsa_pci_device_id, /* id_table */
8948         .shutdown = hpsa_shutdown,
8949         .suspend = hpsa_suspend,
8950         .resume = hpsa_resume,
8951 };
8952
8953 /* Fill in bucket_map[], given nsgs (the max number of
8954  * scatter gather elements supported) and bucket[],
8955  * which is an array of 8 integers.  The bucket[] array
8956  * contains 8 different DMA transfer sizes (in 16
8957  * byte increments) which the controller uses to fetch
8958  * commands.  This function fills in bucket_map[], which
8959  * maps a given number of scatter gather elements to one of
8960  * the 8 DMA transfer sizes.  The point of it is to allow the
8961  * controller to only do as much DMA as needed to fetch the
8962  * command, with the DMA transfer size encoded in the lower
8963  * bits of the command address.
8964  */
8965 static void  calc_bucket_map(int bucket[], int num_buckets,
8966         int nsgs, int min_blocks, u32 *bucket_map)
8967 {
8968         int i, j, b, size;
8969
8970         /* Note, bucket_map must have nsgs+1 entries. */
8971         for (i = 0; i <= nsgs; i++) {
8972                 /* Compute size of a command with i SG entries */
8973                 size = i + min_blocks;
8974                 b = num_buckets; /* Assume the biggest bucket */
8975                 /* Find the bucket that is just big enough */
8976                 for (j = 0; j < num_buckets; j++) {
8977                         if (bucket[j] >= size) {
8978                                 b = j;
8979                                 break;
8980                         }
8981                 }
8982                 /* for a command with i SG entries, use bucket b. */
8983                 bucket_map[i] = b;
8984         }
8985 }
8986
8987 /*
8988  * return -ENODEV on err, 0 on success (or no action)
8989  * allocates numerous items that must be freed later
8990  */
8991 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8992 {
8993         int i;
8994         unsigned long register_value;
8995         unsigned long transMethod = CFGTBL_Trans_Performant |
8996                         (trans_support & CFGTBL_Trans_use_short_tags) |
8997                                 CFGTBL_Trans_enable_directed_msix |
8998                         (trans_support & (CFGTBL_Trans_io_accel1 |
8999                                 CFGTBL_Trans_io_accel2));
9000         struct access_method access = SA5_performant_access;
9001
9002         /* This is a bit complicated.  There are 8 registers on
9003          * the controller which we write to to tell it 8 different
9004          * sizes of commands which there may be.  It's a way of
9005          * reducing the DMA done to fetch each command.  Encoded into
9006          * each command's tag are 3 bits which communicate to the controller
9007          * which of the eight sizes that command fits within.  The size of
9008          * each command depends on how many scatter gather entries there are.
9009          * Each SG entry requires 16 bytes.  The eight registers are programmed
9010          * with the number of 16-byte blocks a command of that size requires.
9011          * The smallest command possible requires 5 such 16 byte blocks.
9012          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9013          * blocks.  Note, this only extends to the SG entries contained
9014          * within the command block, and does not extend to chained blocks
9015          * of SG elements.   bft[] contains the eight values we write to
9016          * the registers.  They are not evenly distributed, but have more
9017          * sizes for small commands, and fewer sizes for larger commands.
9018          */
9019         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9020 #define MIN_IOACCEL2_BFT_ENTRY 5
9021 #define HPSA_IOACCEL2_HEADER_SZ 4
9022         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9023                         13, 14, 15, 16, 17, 18, 19,
9024                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9025         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9026         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9027         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9028                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9029         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9030         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9031         /*  5 = 1 s/g entry or 4k
9032          *  6 = 2 s/g entry or 8k
9033          *  8 = 4 s/g entry or 16k
9034          * 10 = 6 s/g entry or 24k
9035          */
9036
9037         /* If the controller supports either ioaccel method then
9038          * we can also use the RAID stack submit path that does not
9039          * perform the superfluous readl() after each command submission.
9040          */
9041         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9042                 access = SA5_performant_access_no_read;
9043
9044         /* Controller spec: zero out this buffer. */
9045         for (i = 0; i < h->nreply_queues; i++)
9046                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9047
9048         bft[7] = SG_ENTRIES_IN_CMD + 4;
9049         calc_bucket_map(bft, ARRAY_SIZE(bft),
9050                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9051         for (i = 0; i < 8; i++)
9052                 writel(bft[i], &h->transtable->BlockFetch[i]);
9053
9054         /* size of controller ring buffer */
9055         writel(h->max_commands, &h->transtable->RepQSize);
9056         writel(h->nreply_queues, &h->transtable->RepQCount);
9057         writel(0, &h->transtable->RepQCtrAddrLow32);
9058         writel(0, &h->transtable->RepQCtrAddrHigh32);
9059
9060         for (i = 0; i < h->nreply_queues; i++) {
9061                 writel(0, &h->transtable->RepQAddr[i].upper);
9062                 writel(h->reply_queue[i].busaddr,
9063                         &h->transtable->RepQAddr[i].lower);
9064         }
9065
9066         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9067         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9068         /*
9069          * enable outbound interrupt coalescing in accelerator mode;
9070          */
9071         if (trans_support & CFGTBL_Trans_io_accel1) {
9072                 access = SA5_ioaccel_mode1_access;
9073                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9074                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9075         } else
9076                 if (trans_support & CFGTBL_Trans_io_accel2)
9077                         access = SA5_ioaccel_mode2_access;
9078         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9079         if (hpsa_wait_for_mode_change_ack(h)) {
9080                 dev_err(&h->pdev->dev,
9081                         "performant mode problem - doorbell timeout\n");
9082                 return -ENODEV;
9083         }
9084         register_value = readl(&(h->cfgtable->TransportActive));
9085         if (!(register_value & CFGTBL_Trans_Performant)) {
9086                 dev_err(&h->pdev->dev,
9087                         "performant mode problem - transport not active\n");
9088                 return -ENODEV;
9089         }
9090         /* Change the access methods to the performant access methods */
9091         h->access = access;
9092         h->transMethod = transMethod;
9093
9094         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9095                 (trans_support & CFGTBL_Trans_io_accel2)))
9096                 return 0;
9097
9098         if (trans_support & CFGTBL_Trans_io_accel1) {
9099                 /* Set up I/O accelerator mode */
9100                 for (i = 0; i < h->nreply_queues; i++) {
9101                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9102                         h->reply_queue[i].current_entry =
9103                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9104                 }
9105                 bft[7] = h->ioaccel_maxsg + 8;
9106                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9107                                 h->ioaccel1_blockFetchTable);
9108
9109                 /* initialize all reply queue entries to unused */
9110                 for (i = 0; i < h->nreply_queues; i++)
9111                         memset(h->reply_queue[i].head,
9112                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9113                                 h->reply_queue_size);
9114
9115                 /* set all the constant fields in the accelerator command
9116                  * frames once at init time to save CPU cycles later.
9117                  */
9118                 for (i = 0; i < h->nr_cmds; i++) {
9119                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9120
9121                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9122                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9123                                         (i * sizeof(struct ErrorInfo)));
9124                         cp->err_info_len = sizeof(struct ErrorInfo);
9125                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9126                         cp->host_context_flags =
9127                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9128                         cp->timeout_sec = 0;
9129                         cp->ReplyQueue = 0;
9130                         cp->tag =
9131                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9132                         cp->host_addr =
9133                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9134                                         (i * sizeof(struct io_accel1_cmd)));
9135                 }
9136         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9137                 u64 cfg_offset, cfg_base_addr_index;
9138                 u32 bft2_offset, cfg_base_addr;
9139                 int rc;
9140
9141                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9142                         &cfg_base_addr_index, &cfg_offset);
9143                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9144                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9145                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9146                                 4, h->ioaccel2_blockFetchTable);
9147                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9148                 BUILD_BUG_ON(offsetof(struct CfgTable,
9149                                 io_accel_request_size_offset) != 0xb8);
9150                 h->ioaccel2_bft2_regs =
9151                         remap_pci_mem(pci_resource_start(h->pdev,
9152                                         cfg_base_addr_index) +
9153                                         cfg_offset + bft2_offset,
9154                                         ARRAY_SIZE(bft2) *
9155                                         sizeof(*h->ioaccel2_bft2_regs));
9156                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9157                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9158         }
9159         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9160         if (hpsa_wait_for_mode_change_ack(h)) {
9161                 dev_err(&h->pdev->dev,
9162                         "performant mode problem - enabling ioaccel mode\n");
9163                 return -ENODEV;
9164         }
9165         return 0;
9166 }
9167
9168 /* Free ioaccel1 mode command blocks and block fetch table */
9169 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9170 {
9171         if (h->ioaccel_cmd_pool) {
9172                 pci_free_consistent(h->pdev,
9173                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9174                         h->ioaccel_cmd_pool,
9175                         h->ioaccel_cmd_pool_dhandle);
9176                 h->ioaccel_cmd_pool = NULL;
9177                 h->ioaccel_cmd_pool_dhandle = 0;
9178         }
9179         kfree(h->ioaccel1_blockFetchTable);
9180         h->ioaccel1_blockFetchTable = NULL;
9181 }
9182
9183 /* Allocate ioaccel1 mode command blocks and block fetch table */
9184 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9185 {
9186         h->ioaccel_maxsg =
9187                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9188         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9189                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9190
9191         /* Command structures must be aligned on a 128-byte boundary
9192          * because the 7 lower bits of the address are used by the
9193          * hardware.
9194          */
9195         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9196                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9197         h->ioaccel_cmd_pool =
9198                 pci_alloc_consistent(h->pdev,
9199                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9200                         &(h->ioaccel_cmd_pool_dhandle));
9201
9202         h->ioaccel1_blockFetchTable =
9203                 kmalloc(((h->ioaccel_maxsg + 1) *
9204                                 sizeof(u32)), GFP_KERNEL);
9205
9206         if ((h->ioaccel_cmd_pool == NULL) ||
9207                 (h->ioaccel1_blockFetchTable == NULL))
9208                 goto clean_up;
9209
9210         memset(h->ioaccel_cmd_pool, 0,
9211                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9212         return 0;
9213
9214 clean_up:
9215         hpsa_free_ioaccel1_cmd_and_bft(h);
9216         return -ENOMEM;
9217 }
9218
9219 /* Free ioaccel2 mode command blocks and block fetch table */
9220 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9221 {
9222         hpsa_free_ioaccel2_sg_chain_blocks(h);
9223
9224         if (h->ioaccel2_cmd_pool) {
9225                 pci_free_consistent(h->pdev,
9226                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9227                         h->ioaccel2_cmd_pool,
9228                         h->ioaccel2_cmd_pool_dhandle);
9229                 h->ioaccel2_cmd_pool = NULL;
9230                 h->ioaccel2_cmd_pool_dhandle = 0;
9231         }
9232         kfree(h->ioaccel2_blockFetchTable);
9233         h->ioaccel2_blockFetchTable = NULL;
9234 }
9235
9236 /* Allocate ioaccel2 mode command blocks and block fetch table */
9237 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9238 {
9239         int rc;
9240
9241         /* Allocate ioaccel2 mode command blocks and block fetch table */
9242
9243         h->ioaccel_maxsg =
9244                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9245         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9246                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9247
9248         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9249                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9250         h->ioaccel2_cmd_pool =
9251                 pci_alloc_consistent(h->pdev,
9252                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9253                         &(h->ioaccel2_cmd_pool_dhandle));
9254
9255         h->ioaccel2_blockFetchTable =
9256                 kmalloc(((h->ioaccel_maxsg + 1) *
9257                                 sizeof(u32)), GFP_KERNEL);
9258
9259         if ((h->ioaccel2_cmd_pool == NULL) ||
9260                 (h->ioaccel2_blockFetchTable == NULL)) {
9261                 rc = -ENOMEM;
9262                 goto clean_up;
9263         }
9264
9265         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9266         if (rc)
9267                 goto clean_up;
9268
9269         memset(h->ioaccel2_cmd_pool, 0,
9270                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9271         return 0;
9272
9273 clean_up:
9274         hpsa_free_ioaccel2_cmd_and_bft(h);
9275         return rc;
9276 }
9277
9278 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9279 static void hpsa_free_performant_mode(struct ctlr_info *h)
9280 {
9281         kfree(h->blockFetchTable);
9282         h->blockFetchTable = NULL;
9283         hpsa_free_reply_queues(h);
9284         hpsa_free_ioaccel1_cmd_and_bft(h);
9285         hpsa_free_ioaccel2_cmd_and_bft(h);
9286 }
9287
9288 /* return -ENODEV on error, 0 on success (or no action)
9289  * allocates numerous items that must be freed later
9290  */
9291 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9292 {
9293         u32 trans_support;
9294         unsigned long transMethod = CFGTBL_Trans_Performant |
9295                                         CFGTBL_Trans_use_short_tags;
9296         int i, rc;
9297
9298         if (hpsa_simple_mode)
9299                 return 0;
9300
9301         trans_support = readl(&(h->cfgtable->TransportSupport));
9302         if (!(trans_support & PERFORMANT_MODE))
9303                 return 0;
9304
9305         /* Check for I/O accelerator mode support */
9306         if (trans_support & CFGTBL_Trans_io_accel1) {
9307                 transMethod |= CFGTBL_Trans_io_accel1 |
9308                                 CFGTBL_Trans_enable_directed_msix;
9309                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9310                 if (rc)
9311                         return rc;
9312         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9313                 transMethod |= CFGTBL_Trans_io_accel2 |
9314                                 CFGTBL_Trans_enable_directed_msix;
9315                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9316                 if (rc)
9317                         return rc;
9318         }
9319
9320         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9321         hpsa_get_max_perf_mode_cmds(h);
9322         /* Performant mode ring buffer and supporting data structures */
9323         h->reply_queue_size = h->max_commands * sizeof(u64);
9324
9325         for (i = 0; i < h->nreply_queues; i++) {
9326                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9327                                                 h->reply_queue_size,
9328                                                 &(h->reply_queue[i].busaddr));
9329                 if (!h->reply_queue[i].head) {
9330                         rc = -ENOMEM;
9331                         goto clean1;    /* rq, ioaccel */
9332                 }
9333                 h->reply_queue[i].size = h->max_commands;
9334                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9335                 h->reply_queue[i].current_entry = 0;
9336         }
9337
9338         /* Need a block fetch table for performant mode */
9339         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9340                                 sizeof(u32)), GFP_KERNEL);
9341         if (!h->blockFetchTable) {
9342                 rc = -ENOMEM;
9343                 goto clean1;    /* rq, ioaccel */
9344         }
9345
9346         rc = hpsa_enter_performant_mode(h, trans_support);
9347         if (rc)
9348                 goto clean2;    /* bft, rq, ioaccel */
9349         return 0;
9350
9351 clean2: /* bft, rq, ioaccel */
9352         kfree(h->blockFetchTable);
9353         h->blockFetchTable = NULL;
9354 clean1: /* rq, ioaccel */
9355         hpsa_free_reply_queues(h);
9356         hpsa_free_ioaccel1_cmd_and_bft(h);
9357         hpsa_free_ioaccel2_cmd_and_bft(h);
9358         return rc;
9359 }
9360
9361 static int is_accelerated_cmd(struct CommandList *c)
9362 {
9363         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9364 }
9365
9366 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9367 {
9368         struct CommandList *c = NULL;
9369         int i, accel_cmds_out;
9370         int refcount;
9371
9372         do { /* wait for all outstanding ioaccel commands to drain out */
9373                 accel_cmds_out = 0;
9374                 for (i = 0; i < h->nr_cmds; i++) {
9375                         c = h->cmd_pool + i;
9376                         refcount = atomic_inc_return(&c->refcount);
9377                         if (refcount > 1) /* Command is allocated */
9378                                 accel_cmds_out += is_accelerated_cmd(c);
9379                         cmd_free(h, c);
9380                 }
9381                 if (accel_cmds_out <= 0)
9382                         break;
9383                 msleep(100);
9384         } while (1);
9385 }
9386
9387 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9388                                 struct hpsa_sas_port *hpsa_sas_port)
9389 {
9390         struct hpsa_sas_phy *hpsa_sas_phy;
9391         struct sas_phy *phy;
9392
9393         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9394         if (!hpsa_sas_phy)
9395                 return NULL;
9396
9397         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9398                 hpsa_sas_port->next_phy_index);
9399         if (!phy) {
9400                 kfree(hpsa_sas_phy);
9401                 return NULL;
9402         }
9403
9404         hpsa_sas_port->next_phy_index++;
9405         hpsa_sas_phy->phy = phy;
9406         hpsa_sas_phy->parent_port = hpsa_sas_port;
9407
9408         return hpsa_sas_phy;
9409 }
9410
9411 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9412 {
9413         struct sas_phy *phy = hpsa_sas_phy->phy;
9414
9415         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9416         if (hpsa_sas_phy->added_to_port)
9417                 list_del(&hpsa_sas_phy->phy_list_entry);
9418         sas_phy_delete(phy);
9419         kfree(hpsa_sas_phy);
9420 }
9421
9422 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9423 {
9424         int rc;
9425         struct hpsa_sas_port *hpsa_sas_port;
9426         struct sas_phy *phy;
9427         struct sas_identify *identify;
9428
9429         hpsa_sas_port = hpsa_sas_phy->parent_port;
9430         phy = hpsa_sas_phy->phy;
9431
9432         identify = &phy->identify;
9433         memset(identify, 0, sizeof(*identify));
9434         identify->sas_address = hpsa_sas_port->sas_address;
9435         identify->device_type = SAS_END_DEVICE;
9436         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9437         identify->target_port_protocols = SAS_PROTOCOL_STP;
9438         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9439         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9440         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9441         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9442         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9443
9444         rc = sas_phy_add(hpsa_sas_phy->phy);
9445         if (rc)
9446                 return rc;
9447
9448         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9449         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9450                         &hpsa_sas_port->phy_list_head);
9451         hpsa_sas_phy->added_to_port = true;
9452
9453         return 0;
9454 }
9455
9456 static int
9457         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9458                                 struct sas_rphy *rphy)
9459 {
9460         struct sas_identify *identify;
9461
9462         identify = &rphy->identify;
9463         identify->sas_address = hpsa_sas_port->sas_address;
9464         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9465         identify->target_port_protocols = SAS_PROTOCOL_STP;
9466
9467         return sas_rphy_add(rphy);
9468 }
9469
9470 static struct hpsa_sas_port
9471         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9472                                 u64 sas_address)
9473 {
9474         int rc;
9475         struct hpsa_sas_port *hpsa_sas_port;
9476         struct sas_port *port;
9477
9478         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9479         if (!hpsa_sas_port)
9480                 return NULL;
9481
9482         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9483         hpsa_sas_port->parent_node = hpsa_sas_node;
9484
9485         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9486         if (!port)
9487                 goto free_hpsa_port;
9488
9489         rc = sas_port_add(port);
9490         if (rc)
9491                 goto free_sas_port;
9492
9493         hpsa_sas_port->port = port;
9494         hpsa_sas_port->sas_address = sas_address;
9495         list_add_tail(&hpsa_sas_port->port_list_entry,
9496                         &hpsa_sas_node->port_list_head);
9497
9498         return hpsa_sas_port;
9499
9500 free_sas_port:
9501         sas_port_free(port);
9502 free_hpsa_port:
9503         kfree(hpsa_sas_port);
9504
9505         return NULL;
9506 }
9507
9508 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9509 {
9510         struct hpsa_sas_phy *hpsa_sas_phy;
9511         struct hpsa_sas_phy *next;
9512
9513         list_for_each_entry_safe(hpsa_sas_phy, next,
9514                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9515                 hpsa_free_sas_phy(hpsa_sas_phy);
9516
9517         sas_port_delete(hpsa_sas_port->port);
9518         list_del(&hpsa_sas_port->port_list_entry);
9519         kfree(hpsa_sas_port);
9520 }
9521
9522 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9523 {
9524         struct hpsa_sas_node *hpsa_sas_node;
9525
9526         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9527         if (hpsa_sas_node) {
9528                 hpsa_sas_node->parent_dev = parent_dev;
9529                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9530         }
9531
9532         return hpsa_sas_node;
9533 }
9534
9535 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9536 {
9537         struct hpsa_sas_port *hpsa_sas_port;
9538         struct hpsa_sas_port *next;
9539
9540         if (!hpsa_sas_node)
9541                 return;
9542
9543         list_for_each_entry_safe(hpsa_sas_port, next,
9544                         &hpsa_sas_node->port_list_head, port_list_entry)
9545                 hpsa_free_sas_port(hpsa_sas_port);
9546
9547         kfree(hpsa_sas_node);
9548 }
9549
9550 static struct hpsa_scsi_dev_t
9551         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9552                                         struct sas_rphy *rphy)
9553 {
9554         int i;
9555         struct hpsa_scsi_dev_t *device;
9556
9557         for (i = 0; i < h->ndevices; i++) {
9558                 device = h->dev[i];
9559                 if (!device->sas_port)
9560                         continue;
9561                 if (device->sas_port->rphy == rphy)
9562                         return device;
9563         }
9564
9565         return NULL;
9566 }
9567
9568 static int hpsa_add_sas_host(struct ctlr_info *h)
9569 {
9570         int rc;
9571         struct device *parent_dev;
9572         struct hpsa_sas_node *hpsa_sas_node;
9573         struct hpsa_sas_port *hpsa_sas_port;
9574         struct hpsa_sas_phy *hpsa_sas_phy;
9575
9576         parent_dev = &h->scsi_host->shost_dev;
9577
9578         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9579         if (!hpsa_sas_node)
9580                 return -ENOMEM;
9581
9582         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9583         if (!hpsa_sas_port) {
9584                 rc = -ENODEV;
9585                 goto free_sas_node;
9586         }
9587
9588         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9589         if (!hpsa_sas_phy) {
9590                 rc = -ENODEV;
9591                 goto free_sas_port;
9592         }
9593
9594         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9595         if (rc)
9596                 goto free_sas_phy;
9597
9598         h->sas_host = hpsa_sas_node;
9599
9600         return 0;
9601
9602 free_sas_phy:
9603         hpsa_free_sas_phy(hpsa_sas_phy);
9604 free_sas_port:
9605         hpsa_free_sas_port(hpsa_sas_port);
9606 free_sas_node:
9607         hpsa_free_sas_node(hpsa_sas_node);
9608
9609         return rc;
9610 }
9611
9612 static void hpsa_delete_sas_host(struct ctlr_info *h)
9613 {
9614         hpsa_free_sas_node(h->sas_host);
9615 }
9616
9617 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9618                                 struct hpsa_scsi_dev_t *device)
9619 {
9620         int rc;
9621         struct hpsa_sas_port *hpsa_sas_port;
9622         struct sas_rphy *rphy;
9623
9624         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9625         if (!hpsa_sas_port)
9626                 return -ENOMEM;
9627
9628         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9629         if (!rphy) {
9630                 rc = -ENODEV;
9631                 goto free_sas_port;
9632         }
9633
9634         hpsa_sas_port->rphy = rphy;
9635         device->sas_port = hpsa_sas_port;
9636
9637         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9638         if (rc)
9639                 goto free_sas_port;
9640
9641         return 0;
9642
9643 free_sas_port:
9644         hpsa_free_sas_port(hpsa_sas_port);
9645         device->sas_port = NULL;
9646
9647         return rc;
9648 }
9649
9650 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9651 {
9652         if (device->sas_port) {
9653                 hpsa_free_sas_port(device->sas_port);
9654                 device->sas_port = NULL;
9655         }
9656 }
9657
9658 static int
9659 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9660 {
9661         return 0;
9662 }
9663
9664 static int
9665 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9666 {
9667         *identifier = rphy->identify.sas_address;
9668         return 0;
9669 }
9670
9671 static int
9672 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9673 {
9674         return -ENXIO;
9675 }
9676
9677 static int
9678 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9679 {
9680         return 0;
9681 }
9682
9683 static int
9684 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9685 {
9686         return 0;
9687 }
9688
9689 static int
9690 hpsa_sas_phy_setup(struct sas_phy *phy)
9691 {
9692         return 0;
9693 }
9694
9695 static void
9696 hpsa_sas_phy_release(struct sas_phy *phy)
9697 {
9698 }
9699
9700 static int
9701 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9702 {
9703         return -EINVAL;
9704 }
9705
9706 static struct sas_function_template hpsa_sas_transport_functions = {
9707         .get_linkerrors = hpsa_sas_get_linkerrors,
9708         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9709         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9710         .phy_reset = hpsa_sas_phy_reset,
9711         .phy_enable = hpsa_sas_phy_enable,
9712         .phy_setup = hpsa_sas_phy_setup,
9713         .phy_release = hpsa_sas_phy_release,
9714         .set_phy_speed = hpsa_sas_phy_speed,
9715 };
9716
9717 /*
9718  *  This is it.  Register the PCI driver information for the cards we control
9719  *  the OS will call our registered routines when it finds one of our cards.
9720  */
9721 static int __init hpsa_init(void)
9722 {
9723         int rc;
9724
9725         hpsa_sas_transport_template =
9726                 sas_attach_transport(&hpsa_sas_transport_functions);
9727         if (!hpsa_sas_transport_template)
9728                 return -ENODEV;
9729
9730         rc = pci_register_driver(&hpsa_pci_driver);
9731
9732         if (rc)
9733                 sas_release_transport(hpsa_sas_transport_template);
9734
9735         return rc;
9736 }
9737
9738 static void __exit hpsa_cleanup(void)
9739 {
9740         pci_unregister_driver(&hpsa_pci_driver);
9741         sas_release_transport(hpsa_sas_transport_template);
9742 }
9743
9744 static void __attribute__((unused)) verify_offsets(void)
9745 {
9746 #define VERIFY_OFFSET(member, offset) \
9747         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9748
9749         VERIFY_OFFSET(structure_size, 0);
9750         VERIFY_OFFSET(volume_blk_size, 4);
9751         VERIFY_OFFSET(volume_blk_cnt, 8);
9752         VERIFY_OFFSET(phys_blk_shift, 16);
9753         VERIFY_OFFSET(parity_rotation_shift, 17);
9754         VERIFY_OFFSET(strip_size, 18);
9755         VERIFY_OFFSET(disk_starting_blk, 20);
9756         VERIFY_OFFSET(disk_blk_cnt, 28);
9757         VERIFY_OFFSET(data_disks_per_row, 36);
9758         VERIFY_OFFSET(metadata_disks_per_row, 38);
9759         VERIFY_OFFSET(row_cnt, 40);
9760         VERIFY_OFFSET(layout_map_count, 42);
9761         VERIFY_OFFSET(flags, 44);
9762         VERIFY_OFFSET(dekindex, 46);
9763         /* VERIFY_OFFSET(reserved, 48 */
9764         VERIFY_OFFSET(data, 64);
9765
9766 #undef VERIFY_OFFSET
9767
9768 #define VERIFY_OFFSET(member, offset) \
9769         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9770
9771         VERIFY_OFFSET(IU_type, 0);
9772         VERIFY_OFFSET(direction, 1);
9773         VERIFY_OFFSET(reply_queue, 2);
9774         /* VERIFY_OFFSET(reserved1, 3);  */
9775         VERIFY_OFFSET(scsi_nexus, 4);
9776         VERIFY_OFFSET(Tag, 8);
9777         VERIFY_OFFSET(cdb, 16);
9778         VERIFY_OFFSET(cciss_lun, 32);
9779         VERIFY_OFFSET(data_len, 40);
9780         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9781         VERIFY_OFFSET(sg_count, 45);
9782         /* VERIFY_OFFSET(reserved3 */
9783         VERIFY_OFFSET(err_ptr, 48);
9784         VERIFY_OFFSET(err_len, 56);
9785         /* VERIFY_OFFSET(reserved4  */
9786         VERIFY_OFFSET(sg, 64);
9787
9788 #undef VERIFY_OFFSET
9789
9790 #define VERIFY_OFFSET(member, offset) \
9791         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9792
9793         VERIFY_OFFSET(dev_handle, 0x00);
9794         VERIFY_OFFSET(reserved1, 0x02);
9795         VERIFY_OFFSET(function, 0x03);
9796         VERIFY_OFFSET(reserved2, 0x04);
9797         VERIFY_OFFSET(err_info, 0x0C);
9798         VERIFY_OFFSET(reserved3, 0x10);
9799         VERIFY_OFFSET(err_info_len, 0x12);
9800         VERIFY_OFFSET(reserved4, 0x13);
9801         VERIFY_OFFSET(sgl_offset, 0x14);
9802         VERIFY_OFFSET(reserved5, 0x15);
9803         VERIFY_OFFSET(transfer_len, 0x1C);
9804         VERIFY_OFFSET(reserved6, 0x20);
9805         VERIFY_OFFSET(io_flags, 0x24);
9806         VERIFY_OFFSET(reserved7, 0x26);
9807         VERIFY_OFFSET(LUN, 0x34);
9808         VERIFY_OFFSET(control, 0x3C);
9809         VERIFY_OFFSET(CDB, 0x40);
9810         VERIFY_OFFSET(reserved8, 0x50);
9811         VERIFY_OFFSET(host_context_flags, 0x60);
9812         VERIFY_OFFSET(timeout_sec, 0x62);
9813         VERIFY_OFFSET(ReplyQueue, 0x64);
9814         VERIFY_OFFSET(reserved9, 0x65);
9815         VERIFY_OFFSET(tag, 0x68);
9816         VERIFY_OFFSET(host_addr, 0x70);
9817         VERIFY_OFFSET(CISS_LUN, 0x78);
9818         VERIFY_OFFSET(SG, 0x78 + 8);
9819 #undef VERIFY_OFFSET
9820 }
9821
9822 module_init(hpsa_init);
9823 module_exit(hpsa_cleanup);