Merge tag 'backlight-next-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / scsi / esas2r / esas2r_ioctl.c
1 /*
2  *  linux/drivers/scsi/esas2r/esas2r_ioctl.c
3  *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
4  *
5  *  Copyright (c) 2001-2013 ATTO Technology, Inc.
6  *  (mailto:linuxdrivers@attotech.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * NO WARRANTY
19  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23  * solely responsible for determining the appropriateness of using and
24  * distributing the Program and assumes all risks associated with its
25  * exercise of rights under this Agreement, including but not limited to
26  * the risks and costs of program errors, damage to or loss of data,
27  * programs or equipment, and unavailability or interruption of operations.
28  *
29  * DISCLAIMER OF LIABILITY
30  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
37  *
38  * You should have received a copy of the GNU General Public License
39  * along with this program; if not, write to the Free Software
40  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
41  * USA.
42  */
43
44 #include "esas2r.h"
45
46 /*
47  * Buffered ioctl handlers.  A buffered ioctl is one which requires that we
48  * allocate a DMA-able memory area to communicate with the firmware.  In
49  * order to prevent continually allocating and freeing consistent memory,
50  * we will allocate a global buffer the first time we need it and re-use
51  * it for subsequent ioctl calls that require it.
52  */
53
54 u8 *esas2r_buffered_ioctl;
55 dma_addr_t esas2r_buffered_ioctl_addr;
56 u32 esas2r_buffered_ioctl_size;
57 struct pci_dev *esas2r_buffered_ioctl_pcid;
58
59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61                                        struct esas2r_request *,
62                                        struct esas2r_sg_context *,
63                                        void *);
64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65                                              struct esas2r_request *, void *);
66
67 struct esas2r_buffered_ioctl {
68         struct esas2r_adapter *a;
69         void *ioctl;
70         u32 length;
71         u32 control_code;
72         u32 offset;
73         BUFFERED_IOCTL_CALLBACK
74                 callback;
75         void *context;
76         BUFFERED_IOCTL_DONE_CALLBACK
77                 done_callback;
78         void *done_context;
79
80 };
81
82 static void complete_fm_api_req(struct esas2r_adapter *a,
83                                 struct esas2r_request *rq)
84 {
85         a->fm_api_command_done = 1;
86         wake_up_interruptible(&a->fm_api_waiter);
87 }
88
89 /* Callbacks for building scatter/gather lists for FM API requests */
90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
91 {
92         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93         int offset = sgc->cur_offset - a->save_offset;
94
95         (*addr) = a->firmware.phys + offset;
96         return a->firmware.orig_len - offset;
97 }
98
99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
100 {
101         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102         int offset = sgc->cur_offset - a->save_offset;
103
104         (*addr) = a->firmware.header_buff_phys + offset;
105         return sizeof(struct esas2r_flash_img) - offset;
106 }
107
108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
110 {
111         struct esas2r_request *rq;
112
113         if (mutex_lock_interruptible(&a->fm_api_mutex)) {
114                 fi->status = FI_STAT_BUSY;
115                 return;
116         }
117
118         rq = esas2r_alloc_request(a);
119         if (rq == NULL) {
120                 fi->status = FI_STAT_BUSY;
121                 goto free_sem;
122         }
123
124         if (fi == &a->firmware.header) {
125                 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
126                                                              (size_t)sizeof(
127                                                                      struct
128                                                                      esas2r_flash_img),
129                                                              (dma_addr_t *)&a->
130                                                              firmware.
131                                                              header_buff_phys,
132                                                              GFP_KERNEL);
133
134                 if (a->firmware.header_buff == NULL) {
135                         esas2r_debug("failed to allocate header buffer!");
136                         fi->status = FI_STAT_BUSY;
137                         goto free_req;
138                 }
139
140                 memcpy(a->firmware.header_buff, fi,
141                        sizeof(struct esas2r_flash_img));
142                 a->save_offset = a->firmware.header_buff;
143                 a->fm_api_sgc.get_phys_addr =
144                         (PGETPHYSADDR)get_physaddr_fm_api_header;
145         } else {
146                 a->save_offset = (u8 *)fi;
147                 a->fm_api_sgc.get_phys_addr =
148                         (PGETPHYSADDR)get_physaddr_fm_api;
149         }
150
151         rq->comp_cb = complete_fm_api_req;
152         a->fm_api_command_done = 0;
153         a->fm_api_sgc.cur_offset = a->save_offset;
154
155         if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
156                            &a->fm_api_sgc))
157                 goto all_done;
158
159         /* Now wait around for it to complete. */
160         while (!a->fm_api_command_done)
161                 wait_event_interruptible(a->fm_api_waiter,
162                                          a->fm_api_command_done);
163 all_done:
164         if (fi == &a->firmware.header) {
165                 memcpy(fi, a->firmware.header_buff,
166                        sizeof(struct esas2r_flash_img));
167
168                 dma_free_coherent(&a->pcid->dev,
169                                   (size_t)sizeof(struct esas2r_flash_img),
170                                   a->firmware.header_buff,
171                                   (dma_addr_t)a->firmware.header_buff_phys);
172         }
173 free_req:
174         esas2r_free_request(a, (struct esas2r_request *)rq);
175 free_sem:
176         mutex_unlock(&a->fm_api_mutex);
177         return;
178
179 }
180
181 static void complete_nvr_req(struct esas2r_adapter *a,
182                              struct esas2r_request *rq)
183 {
184         a->nvram_command_done = 1;
185         wake_up_interruptible(&a->nvram_waiter);
186 }
187
188 /* Callback for building scatter/gather lists for buffered ioctls */
189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
190                                        u64 *addr)
191 {
192         int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
193
194         (*addr) = esas2r_buffered_ioctl_addr + offset;
195         return esas2r_buffered_ioctl_size - offset;
196 }
197
198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199                                         struct esas2r_request *rq)
200 {
201         a->buffered_ioctl_done = 1;
202         wake_up_interruptible(&a->buffered_ioctl_waiter);
203 }
204
205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
206 {
207         struct esas2r_adapter *a = bi->a;
208         struct esas2r_request *rq;
209         struct esas2r_sg_context sgc;
210         u8 result = IOCTL_SUCCESS;
211
212         if (down_interruptible(&buffered_ioctl_semaphore))
213                 return IOCTL_OUT_OF_RESOURCES;
214
215         /* allocate a buffer or use the existing buffer. */
216         if (esas2r_buffered_ioctl) {
217                 if (esas2r_buffered_ioctl_size < bi->length) {
218                         /* free the too-small buffer and get a new one */
219                         dma_free_coherent(&a->pcid->dev,
220                                           (size_t)esas2r_buffered_ioctl_size,
221                                           esas2r_buffered_ioctl,
222                                           esas2r_buffered_ioctl_addr);
223
224                         goto allocate_buffer;
225                 }
226         } else {
227 allocate_buffer:
228                 esas2r_buffered_ioctl_size = bi->length;
229                 esas2r_buffered_ioctl_pcid = a->pcid;
230                 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
231                                                            (size_t)
232                                                            esas2r_buffered_ioctl_size,
233                                                            &
234                                                            esas2r_buffered_ioctl_addr,
235                                                            GFP_KERNEL);
236         }
237
238         if (!esas2r_buffered_ioctl) {
239                 esas2r_log(ESAS2R_LOG_CRIT,
240                            "could not allocate %d bytes of consistent memory "
241                            "for a buffered ioctl!",
242                            bi->length);
243
244                 esas2r_debug("buffered ioctl alloc failure");
245                 result = IOCTL_OUT_OF_RESOURCES;
246                 goto exit_cleanly;
247         }
248
249         memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
250
251         rq = esas2r_alloc_request(a);
252         if (rq == NULL) {
253                 esas2r_log(ESAS2R_LOG_CRIT,
254                            "could not allocate an internal request");
255
256                 result = IOCTL_OUT_OF_RESOURCES;
257                 esas2r_debug("buffered ioctl - no requests");
258                 goto exit_cleanly;
259         }
260
261         a->buffered_ioctl_done = 0;
262         rq->comp_cb = complete_buffered_ioctl_req;
263         sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264         sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265         sgc.length = esas2r_buffered_ioctl_size;
266
267         if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268                 /* completed immediately, no need to wait */
269                 a->buffered_ioctl_done = 0;
270                 goto free_andexit_cleanly;
271         }
272
273         /* now wait around for it to complete. */
274         while (!a->buffered_ioctl_done)
275                 wait_event_interruptible(a->buffered_ioctl_waiter,
276                                          a->buffered_ioctl_done);
277
278 free_andexit_cleanly:
279         if (result == IOCTL_SUCCESS && bi->done_callback)
280                 (*bi->done_callback)(a, rq, bi->done_context);
281
282         esas2r_free_request(a, rq);
283
284 exit_cleanly:
285         if (result == IOCTL_SUCCESS)
286                 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
287
288         up(&buffered_ioctl_semaphore);
289         return result;
290 }
291
292 /* SMP ioctl support */
293 static int smp_ioctl_callback(struct esas2r_adapter *a,
294                               struct esas2r_request *rq,
295                               struct esas2r_sg_context *sgc, void *context)
296 {
297         struct atto_ioctl_smp *si =
298                 (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
299
300         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
302
303         if (!esas2r_build_sg_list(a, rq, sgc)) {
304                 si->status = ATTO_STS_OUT_OF_RSRC;
305                 return false;
306         }
307
308         esas2r_start_request(a, rq);
309         return true;
310 }
311
312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
313 {
314         struct esas2r_buffered_ioctl bi;
315
316         memset(&bi, 0, sizeof(bi));
317
318         bi.a = a;
319         bi.ioctl = si;
320         bi.length = sizeof(struct atto_ioctl_smp)
321                     + le32_to_cpu(si->req_length)
322                     + le32_to_cpu(si->rsp_length);
323         bi.offset = 0;
324         bi.callback = smp_ioctl_callback;
325         return handle_buffered_ioctl(&bi);
326 }
327
328
329 /* CSMI ioctl support */
330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331                                              struct esas2r_request *rq)
332 {
333         rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334         rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
335
336         /* Now call the original completion callback. */
337         (*rq->aux_req_cb)(a, rq);
338 }
339
340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */
341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342                               union atto_ioctl_csmi *ci,
343                               struct esas2r_request *rq,
344                               struct esas2r_sg_context *sgc,
345                               u32 ctrl_code,
346                               u16 target_id)
347 {
348         struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
349
350         if (test_bit(AF_DEGRADED_MODE, &a->flags))
351                 return false;
352
353         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355         ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356         ioctl->csmi.target_id = cpu_to_le16(target_id);
357         ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
358
359         /*
360          * Always usurp the completion callback since the interrupt callback
361          * mechanism may be used.
362          */
363         rq->aux_req_cx = ci;
364         rq->aux_req_cb = rq->comp_cb;
365         rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
366
367         if (!esas2r_build_sg_list(a, rq, sgc))
368                 return false;
369
370         esas2r_start_request(a, rq);
371         return true;
372 }
373
374 static bool check_lun(struct scsi_lun lun)
375 {
376         bool result;
377
378         result = ((lun.scsi_lun[7] == 0) &&
379                   (lun.scsi_lun[6] == 0) &&
380                   (lun.scsi_lun[5] == 0) &&
381                   (lun.scsi_lun[4] == 0) &&
382                   (lun.scsi_lun[3] == 0) &&
383                   (lun.scsi_lun[2] == 0) &&
384 /* Byte 1 is intentionally skipped */
385                   (lun.scsi_lun[0] == 0));
386
387         return result;
388 }
389
390 static int csmi_ioctl_callback(struct esas2r_adapter *a,
391                                struct esas2r_request *rq,
392                                struct esas2r_sg_context *sgc, void *context)
393 {
394         struct atto_csmi *ci = (struct atto_csmi *)context;
395         union atto_ioctl_csmi *ioctl_csmi =
396                 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
397         u8 path = 0;
398         u8 tid = 0;
399         u8 lun = 0;
400         u32 sts = CSMI_STS_SUCCESS;
401         struct esas2r_target *t;
402         unsigned long flags;
403
404         if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405                 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
406
407                 path = gda->path_id;
408                 tid = gda->target_id;
409                 lun = gda->lun;
410         } else if (ci->control_code == CSMI_CC_TASK_MGT) {
411                 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
412
413                 path = tm->path_id;
414                 tid = tm->target_id;
415                 lun = tm->lun;
416         }
417
418         if (path > 0) {
419                 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
420                         CSMI_STS_INV_PARAM);
421                 return false;
422         }
423
424         rq->target_id = tid;
425         rq->vrq->scsi.flags |= cpu_to_le32(lun);
426
427         switch (ci->control_code) {
428         case CSMI_CC_GET_DRVR_INFO:
429         {
430                 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
431
432                 strcpy(gdi->description, esas2r_get_model_name(a));
433                 gdi->csmi_major_rev = CSMI_MAJOR_REV;
434                 gdi->csmi_minor_rev = CSMI_MINOR_REV;
435                 break;
436         }
437
438         case CSMI_CC_GET_CNTLR_CFG:
439         {
440                 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
441
442                 gcc->base_io_addr = 0;
443                 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444                                       &gcc->base_memaddr_lo);
445                 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446                                       &gcc->base_memaddr_hi);
447                 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448                                           a->pcid->subsystem_vendor);
449                 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450                 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451                 gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452                 gcc->pci_addr.bus_num = a->pcid->bus->number;
453                 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454                 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
455
456                 memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
457
458                 gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459                 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460                 gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461                 gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462                 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463                 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464                 gcc->bios_build_rev = LOWORD(a->flash_ver);
465
466                 if (test_bit(AF2_THUNDERLINK, &a->flags2))
467                         gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468                                            | CSMI_CNTLRF_SATA_HBA;
469                 else
470                         gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471                                            | CSMI_CNTLRF_SATA_RAID;
472
473                 gcc->rrom_major_rev = 0;
474                 gcc->rrom_minor_rev = 0;
475                 gcc->rrom_build_rev = 0;
476                 gcc->rrom_release_rev = 0;
477                 gcc->rrom_biosmajor_rev = 0;
478                 gcc->rrom_biosminor_rev = 0;
479                 gcc->rrom_biosbuild_rev = 0;
480                 gcc->rrom_biosrelease_rev = 0;
481                 break;
482         }
483
484         case CSMI_CC_GET_CNTLR_STS:
485         {
486                 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
487
488                 if (test_bit(AF_DEGRADED_MODE, &a->flags))
489                         gcs->status = CSMI_CNTLR_STS_FAILED;
490                 else
491                         gcs->status = CSMI_CNTLR_STS_GOOD;
492
493                 gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
494                 break;
495         }
496
497         case CSMI_CC_FW_DOWNLOAD:
498         case CSMI_CC_GET_RAID_INFO:
499         case CSMI_CC_GET_RAID_CFG:
500
501                 sts = CSMI_STS_BAD_CTRL_CODE;
502                 break;
503
504         case CSMI_CC_SMP_PASSTHRU:
505         case CSMI_CC_SSP_PASSTHRU:
506         case CSMI_CC_STP_PASSTHRU:
507         case CSMI_CC_GET_PHY_INFO:
508         case CSMI_CC_SET_PHY_INFO:
509         case CSMI_CC_GET_LINK_ERRORS:
510         case CSMI_CC_GET_SATA_SIG:
511         case CSMI_CC_GET_CONN_INFO:
512         case CSMI_CC_PHY_CTRL:
513
514                 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
515                                        ci->control_code,
516                                        ESAS2R_TARG_ID_INV)) {
517                         sts = CSMI_STS_FAILED;
518                         break;
519                 }
520
521                 return true;
522
523         case CSMI_CC_GET_SCSI_ADDR:
524         {
525                 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
526
527                 struct scsi_lun lun;
528
529                 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
530
531                 if (!check_lun(lun)) {
532                         sts = CSMI_STS_NO_SCSI_ADDR;
533                         break;
534                 }
535
536                 /* make sure the device is present */
537                 spin_lock_irqsave(&a->mem_lock, flags);
538                 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539                 spin_unlock_irqrestore(&a->mem_lock, flags);
540
541                 if (t == NULL) {
542                         sts = CSMI_STS_NO_SCSI_ADDR;
543                         break;
544                 }
545
546                 gsa->host_index = 0xFF;
547                 gsa->lun = gsa->sas_lun[1];
548                 rq->target_id = esas2r_targ_get_id(t, a);
549                 break;
550         }
551
552         case CSMI_CC_GET_DEV_ADDR:
553         {
554                 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
555
556                 /* make sure the target is present */
557                 t = a->targetdb + rq->target_id;
558
559                 if (t >= a->targetdb_end
560                     || t->target_state != TS_PRESENT
561                     || t->sas_addr == 0) {
562                         sts = CSMI_STS_NO_DEV_ADDR;
563                         break;
564                 }
565
566                 /* fill in the result */
567                 *(u64 *)gda->sas_addr = t->sas_addr;
568                 memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569                 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
570                 break;
571         }
572
573         case CSMI_CC_TASK_MGT:
574
575                 /* make sure the target is present */
576                 t = a->targetdb + rq->target_id;
577
578                 if (t >= a->targetdb_end
579                     || t->target_state != TS_PRESENT
580                     || !(t->flags & TF_PASS_THRU)) {
581                         sts = CSMI_STS_NO_DEV_ADDR;
582                         break;
583                 }
584
585                 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
586                                        ci->control_code,
587                                        t->phys_targ_id)) {
588                         sts = CSMI_STS_FAILED;
589                         break;
590                 }
591
592                 return true;
593
594         default:
595
596                 sts = CSMI_STS_BAD_CTRL_CODE;
597                 break;
598         }
599
600         rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
601
602         return false;
603 }
604
605
606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607                                      struct esas2r_request *rq, void *context)
608 {
609         struct atto_csmi *ci = (struct atto_csmi *)context;
610         union atto_ioctl_csmi *ioctl_csmi =
611                 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
612
613         switch (ci->control_code) {
614         case CSMI_CC_GET_DRVR_INFO:
615         {
616                 struct atto_csmi_get_driver_info *gdi =
617                         &ioctl_csmi->drvr_info;
618
619                 strcpy(gdi->name, ESAS2R_VERSION_STR);
620
621                 gdi->major_rev = ESAS2R_MAJOR_REV;
622                 gdi->minor_rev = ESAS2R_MINOR_REV;
623                 gdi->build_rev = 0;
624                 gdi->release_rev = 0;
625                 break;
626         }
627
628         case CSMI_CC_GET_SCSI_ADDR:
629         {
630                 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
631
632                 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
633                     CSMI_STS_SUCCESS) {
634                         gsa->target_id = rq->target_id;
635                         gsa->path_id = 0;
636                 }
637
638                 break;
639         }
640         }
641
642         ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
643 }
644
645
646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
647 {
648         struct esas2r_buffered_ioctl bi;
649
650         memset(&bi, 0, sizeof(bi));
651
652         bi.a = a;
653         bi.ioctl = &ci->data;
654         bi.length = sizeof(union atto_ioctl_csmi);
655         bi.offset = 0;
656         bi.callback = csmi_ioctl_callback;
657         bi.context = ci;
658         bi.done_callback = csmi_ioctl_done_callback;
659         bi.done_context = ci;
660
661         return handle_buffered_ioctl(&bi);
662 }
663
664 /* ATTO HBA ioctl support */
665
666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668                              struct atto_ioctl *hi,
669                              struct esas2r_request *rq,
670                              struct esas2r_sg_context *sgc)
671 {
672         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
673
674         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
675
676         if (!esas2r_build_sg_list(a, rq, sgc)) {
677                 hi->status = ATTO_STS_OUT_OF_RSRC;
678
679                 return false;
680         }
681
682         esas2r_start_request(a, rq);
683
684         return true;
685 }
686
687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688                                   struct esas2r_request *rq)
689 {
690         struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691         struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692         u8 sts = ATTO_SPT_RS_FAILED;
693
694         spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695         spt->sense_length = rq->sense_len;
696         spt->residual_length =
697                 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
698
699         switch (rq->req_stat) {
700         case RS_SUCCESS:
701         case RS_SCSI_ERROR:
702                 sts = ATTO_SPT_RS_SUCCESS;
703                 break;
704         case RS_UNDERRUN:
705                 sts = ATTO_SPT_RS_UNDERRUN;
706                 break;
707         case RS_OVERRUN:
708                 sts = ATTO_SPT_RS_OVERRUN;
709                 break;
710         case RS_SEL:
711         case RS_SEL2:
712                 sts = ATTO_SPT_RS_NO_DEVICE;
713                 break;
714         case RS_NO_LUN:
715                 sts = ATTO_SPT_RS_NO_LUN;
716                 break;
717         case RS_TIMEOUT:
718                 sts = ATTO_SPT_RS_TIMEOUT;
719                 break;
720         case RS_DEGRADED:
721                 sts = ATTO_SPT_RS_DEGRADED;
722                 break;
723         case RS_BUSY:
724                 sts = ATTO_SPT_RS_BUSY;
725                 break;
726         case RS_ABORTED:
727                 sts = ATTO_SPT_RS_ABORTED;
728                 break;
729         case RS_RESET:
730                 sts = ATTO_SPT_RS_BUS_RESET;
731                 break;
732         }
733
734         spt->req_status = sts;
735
736         /* Update the target ID to the next one present. */
737         spt->target_id =
738                 esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
739
740         /* Done, call the completion callback. */
741         (*rq->aux_req_cb)(a, rq);
742 }
743
744 static int hba_ioctl_callback(struct esas2r_adapter *a,
745                               struct esas2r_request *rq,
746                               struct esas2r_sg_context *sgc,
747                               void *context)
748 {
749         struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
750
751         hi->status = ATTO_STS_SUCCESS;
752
753         switch (hi->function) {
754         case ATTO_FUNC_GET_ADAP_INFO:
755         {
756                 u8 *class_code = (u8 *)&a->pcid->class;
757
758                 struct atto_hba_get_adapter_info *gai =
759                         &hi->data.get_adap_info;
760
761                 if (hi->flags & HBAF_TUNNEL) {
762                         hi->status = ATTO_STS_UNSUPPORTED;
763                         break;
764                 }
765
766                 if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
767                         hi->status = ATTO_STS_INV_VERSION;
768                         hi->version = ATTO_VER_GET_ADAP_INFO0;
769                         break;
770                 }
771
772                 memset(gai, 0, sizeof(*gai));
773
774                 gai->pci.vendor_id = a->pcid->vendor;
775                 gai->pci.device_id = a->pcid->device;
776                 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
777                 gai->pci.ss_device_id = a->pcid->subsystem_device;
778                 gai->pci.class_code[0] = class_code[0];
779                 gai->pci.class_code[1] = class_code[1];
780                 gai->pci.class_code[2] = class_code[2];
781                 gai->pci.rev_id = a->pcid->revision;
782                 gai->pci.bus_num = a->pcid->bus->number;
783                 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
784                 gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
785
786                 if (pci_is_pcie(a->pcid)) {
787                         u16 stat;
788                         u32 caps;
789
790                         pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA,
791                                                   &stat);
792                         pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP,
793                                                    &caps);
794
795                         gai->pci.link_speed_curr =
796                                 (u8)(stat & PCI_EXP_LNKSTA_CLS);
797                         gai->pci.link_speed_max =
798                                 (u8)(caps & PCI_EXP_LNKCAP_SLS);
799                         gai->pci.link_width_curr =
800                                 (u8)((stat & PCI_EXP_LNKSTA_NLW)
801                                      >> PCI_EXP_LNKSTA_NLW_SHIFT);
802                         gai->pci.link_width_max =
803                                 (u8)((caps & PCI_EXP_LNKCAP_MLW)
804                                      >> 4);
805                 }
806
807                 gai->pci.msi_vector_cnt = 1;
808
809                 if (a->pcid->msix_enabled)
810                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
811                 else if (a->pcid->msi_enabled)
812                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
813                 else
814                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
815
816                 gai->adap_type = ATTO_GAI_AT_ESASRAID2;
817
818                 if (test_bit(AF2_THUNDERLINK, &a->flags2))
819                         gai->adap_type = ATTO_GAI_AT_TLSASHBA;
820
821                 if (test_bit(AF_DEGRADED_MODE, &a->flags))
822                         gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
823
824                 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
825                                    ATTO_GAI_AF_DEVADDR_SUPP;
826
827                 if (a->pcid->subsystem_device == ATTO_ESAS_R60F
828                     || a->pcid->subsystem_device == ATTO_ESAS_R608
829                     || a->pcid->subsystem_device == ATTO_ESAS_R644
830                     || a->pcid->subsystem_device == ATTO_TSSC_3808E)
831                         gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
832
833                 gai->num_ports = ESAS2R_NUM_PHYS;
834                 gai->num_phys = ESAS2R_NUM_PHYS;
835
836                 strcpy(gai->firmware_rev, a->fw_rev);
837                 strcpy(gai->flash_rev, a->flash_rev);
838                 strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
839                 strcpy(gai->model_name, esas2r_get_model_name(a));
840
841                 gai->num_targets = ESAS2R_MAX_TARGETS;
842
843                 gai->num_busses = 1;
844                 gai->num_targsper_bus = gai->num_targets;
845                 gai->num_lunsper_targ = 256;
846
847                 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
848                     || a->pcid->subsystem_device == ATTO_ESAS_R60F)
849                         gai->num_connectors = 4;
850                 else
851                         gai->num_connectors = 2;
852
853                 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
854
855                 gai->num_targets_backend = a->num_targets_backend;
856
857                 gai->tunnel_flags = a->ioctl_tunnel
858                                     & (ATTO_GAI_TF_MEM_RW
859                                        | ATTO_GAI_TF_TRACE
860                                        | ATTO_GAI_TF_SCSI_PASS_THRU
861                                        | ATTO_GAI_TF_GET_DEV_ADDR
862                                        | ATTO_GAI_TF_PHY_CTRL
863                                        | ATTO_GAI_TF_CONN_CTRL
864                                        | ATTO_GAI_TF_GET_DEV_INFO);
865                 break;
866         }
867
868         case ATTO_FUNC_GET_ADAP_ADDR:
869         {
870                 struct atto_hba_get_adapter_address *gaa =
871                         &hi->data.get_adap_addr;
872
873                 if (hi->flags & HBAF_TUNNEL) {
874                         hi->status = ATTO_STS_UNSUPPORTED;
875                         break;
876                 }
877
878                 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
879                         hi->status = ATTO_STS_INV_VERSION;
880                         hi->version = ATTO_VER_GET_ADAP_ADDR0;
881                 } else if (gaa->addr_type == ATTO_GAA_AT_PORT
882                            || gaa->addr_type == ATTO_GAA_AT_NODE) {
883                         if (gaa->addr_type == ATTO_GAA_AT_PORT
884                             && gaa->port_id >= ESAS2R_NUM_PHYS) {
885                                 hi->status = ATTO_STS_NOT_APPL;
886                         } else {
887                                 memcpy((u64 *)gaa->address,
888                                        &a->nvram->sas_addr[0], sizeof(u64));
889                                 gaa->addr_len = sizeof(u64);
890                         }
891                 } else {
892                         hi->status = ATTO_STS_INV_PARAM;
893                 }
894
895                 break;
896         }
897
898         case ATTO_FUNC_MEM_RW:
899         {
900                 if (hi->flags & HBAF_TUNNEL) {
901                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
902                                 return true;
903
904                         break;
905                 }
906
907                 hi->status = ATTO_STS_UNSUPPORTED;
908
909                 break;
910         }
911
912         case ATTO_FUNC_TRACE:
913         {
914                 struct atto_hba_trace *trc = &hi->data.trace;
915
916                 if (hi->flags & HBAF_TUNNEL) {
917                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
918                                 return true;
919
920                         break;
921                 }
922
923                 if (hi->version > ATTO_VER_TRACE1) {
924                         hi->status = ATTO_STS_INV_VERSION;
925                         hi->version = ATTO_VER_TRACE1;
926                         break;
927                 }
928
929                 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
930                     && hi->version >= ATTO_VER_TRACE1) {
931                         if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
932                                 u32 len = hi->data_length;
933                                 u32 offset = trc->current_offset;
934                                 u32 total_len = ESAS2R_FWCOREDUMP_SZ;
935
936                                 /* Size is zero if a core dump isn't present */
937                                 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
938                                         total_len = 0;
939
940                                 if (len > total_len)
941                                         len = total_len;
942
943                                 if (offset >= total_len
944                                     || offset + len > total_len
945                                     || len == 0) {
946                                         hi->status = ATTO_STS_INV_PARAM;
947                                         break;
948                                 }
949
950                                 memcpy(trc + 1,
951                                        a->fw_coredump_buff + offset,
952                                        len);
953
954                                 hi->data_length = len;
955                         } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
956                                 memset(a->fw_coredump_buff, 0,
957                                        ESAS2R_FWCOREDUMP_SZ);
958
959                                 clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
960                         } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
961                                 hi->status = ATTO_STS_UNSUPPORTED;
962                                 break;
963                         }
964
965                         /* Always return all the info we can. */
966                         trc->trace_mask = 0;
967                         trc->current_offset = 0;
968                         trc->total_length = ESAS2R_FWCOREDUMP_SZ;
969
970                         /* Return zero length buffer if core dump not present */
971                         if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
972                                 trc->total_length = 0;
973                 } else {
974                         hi->status = ATTO_STS_UNSUPPORTED;
975                 }
976
977                 break;
978         }
979
980         case ATTO_FUNC_SCSI_PASS_THRU:
981         {
982                 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
983                 struct scsi_lun lun;
984
985                 memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
986
987                 if (hi->flags & HBAF_TUNNEL) {
988                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
989                                 return true;
990
991                         break;
992                 }
993
994                 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
995                         hi->status = ATTO_STS_INV_VERSION;
996                         hi->version = ATTO_VER_SCSI_PASS_THRU0;
997                         break;
998                 }
999
1000                 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1001                         hi->status = ATTO_STS_INV_PARAM;
1002                         break;
1003                 }
1004
1005                 esas2r_sgc_init(sgc, a, rq, NULL);
1006
1007                 sgc->length = hi->data_length;
1008                 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1009                                    + sizeof(struct atto_hba_scsi_pass_thru);
1010
1011                 /* Finish request initialization */
1012                 rq->target_id = (u16)spt->target_id;
1013                 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1014                 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1015                 rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1016                 rq->sense_len = spt->sense_length;
1017                 rq->sense_buf = (u8 *)spt->sense_data;
1018                 /* NOTE: we ignore spt->timeout */
1019
1020                 /*
1021                  * always usurp the completion callback since the interrupt
1022                  * callback mechanism may be used.
1023                  */
1024
1025                 rq->aux_req_cx = hi;
1026                 rq->aux_req_cb = rq->comp_cb;
1027                 rq->comp_cb = scsi_passthru_comp_cb;
1028
1029                 if (spt->flags & ATTO_SPTF_DATA_IN) {
1030                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1031                 } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1032                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1033                 } else {
1034                         if (sgc->length) {
1035                                 hi->status = ATTO_STS_INV_PARAM;
1036                                 break;
1037                         }
1038                 }
1039
1040                 if (spt->flags & ATTO_SPTF_ORDERED_Q)
1041                         rq->vrq->scsi.flags |=
1042                                 cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1043                 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1044                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1045
1046
1047                 if (!esas2r_build_sg_list(a, rq, sgc)) {
1048                         hi->status = ATTO_STS_OUT_OF_RSRC;
1049                         break;
1050                 }
1051
1052                 esas2r_start_request(a, rq);
1053
1054                 return true;
1055         }
1056
1057         case ATTO_FUNC_GET_DEV_ADDR:
1058         {
1059                 struct atto_hba_get_device_address *gda =
1060                         &hi->data.get_dev_addr;
1061                 struct esas2r_target *t;
1062
1063                 if (hi->flags & HBAF_TUNNEL) {
1064                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
1065                                 return true;
1066
1067                         break;
1068                 }
1069
1070                 if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1071                         hi->status = ATTO_STS_INV_VERSION;
1072                         hi->version = ATTO_VER_GET_DEV_ADDR0;
1073                         break;
1074                 }
1075
1076                 if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1077                         hi->status = ATTO_STS_INV_PARAM;
1078                         break;
1079                 }
1080
1081                 t = a->targetdb + (u16)gda->target_id;
1082
1083                 if (t->target_state != TS_PRESENT) {
1084                         hi->status = ATTO_STS_FAILED;
1085                 } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1086                         if (t->sas_addr == 0) {
1087                                 hi->status = ATTO_STS_UNSUPPORTED;
1088                         } else {
1089                                 *(u64 *)gda->address = t->sas_addr;
1090
1091                                 gda->addr_len = sizeof(u64);
1092                         }
1093                 } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1094                         hi->status = ATTO_STS_NOT_APPL;
1095                 } else {
1096                         hi->status = ATTO_STS_INV_PARAM;
1097                 }
1098
1099                 /* update the target ID to the next one present. */
1100
1101                 gda->target_id =
1102                         esas2r_targ_db_find_next_present(a,
1103                                                          (u16)gda->target_id);
1104                 break;
1105         }
1106
1107         case ATTO_FUNC_PHY_CTRL:
1108         case ATTO_FUNC_CONN_CTRL:
1109         {
1110                 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1111                         return true;
1112
1113                 break;
1114         }
1115
1116         case ATTO_FUNC_ADAP_CTRL:
1117         {
1118                 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1119
1120                 if (hi->flags & HBAF_TUNNEL) {
1121                         hi->status = ATTO_STS_UNSUPPORTED;
1122                         break;
1123                 }
1124
1125                 if (hi->version > ATTO_VER_ADAP_CTRL0) {
1126                         hi->status = ATTO_STS_INV_VERSION;
1127                         hi->version = ATTO_VER_ADAP_CTRL0;
1128                         break;
1129                 }
1130
1131                 if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1132                         esas2r_reset_adapter(a);
1133                 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1134                         hi->status = ATTO_STS_UNSUPPORTED;
1135                         break;
1136                 }
1137
1138                 if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1139                         ac->adap_state = ATTO_AC_AS_RST_SCHED;
1140                 else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1141                         ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1142                 else if (test_bit(AF_DISC_PENDING, &a->flags))
1143                         ac->adap_state = ATTO_AC_AS_RST_DISC;
1144                 else if (test_bit(AF_DISABLED, &a->flags))
1145                         ac->adap_state = ATTO_AC_AS_DISABLED;
1146                 else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1147                         ac->adap_state = ATTO_AC_AS_DEGRADED;
1148                 else
1149                         ac->adap_state = ATTO_AC_AS_OK;
1150
1151                 break;
1152         }
1153
1154         case ATTO_FUNC_GET_DEV_INFO:
1155         {
1156                 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1157                 struct esas2r_target *t;
1158
1159                 if (hi->flags & HBAF_TUNNEL) {
1160                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
1161                                 return true;
1162
1163                         break;
1164                 }
1165
1166                 if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1167                         hi->status = ATTO_STS_INV_VERSION;
1168                         hi->version = ATTO_VER_GET_DEV_INFO0;
1169                         break;
1170                 }
1171
1172                 if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1173                         hi->status = ATTO_STS_INV_PARAM;
1174                         break;
1175                 }
1176
1177                 t = a->targetdb + (u16)gdi->target_id;
1178
1179                 /* update the target ID to the next one present. */
1180
1181                 gdi->target_id =
1182                         esas2r_targ_db_find_next_present(a,
1183                                                          (u16)gdi->target_id);
1184
1185                 if (t->target_state != TS_PRESENT) {
1186                         hi->status = ATTO_STS_FAILED;
1187                         break;
1188                 }
1189
1190                 hi->status = ATTO_STS_UNSUPPORTED;
1191                 break;
1192         }
1193
1194         default:
1195
1196                 hi->status = ATTO_STS_INV_FUNC;
1197                 break;
1198         }
1199
1200         return false;
1201 }
1202
1203 static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1204                                     struct esas2r_request *rq, void *context)
1205 {
1206         struct atto_ioctl *ioctl_hba =
1207                 (struct atto_ioctl *)esas2r_buffered_ioctl;
1208
1209         esas2r_debug("hba_ioctl_done_callback %d", a->index);
1210
1211         if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1212                 struct atto_hba_get_adapter_info *gai =
1213                         &ioctl_hba->data.get_adap_info;
1214
1215                 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1216
1217                 gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1218                 gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1219
1220                 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1221                 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1222
1223                 gai->num_busses = 1;
1224                 gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1225                 gai->num_lunsper_targ = 1;
1226         }
1227 }
1228
1229 u8 handle_hba_ioctl(struct esas2r_adapter *a,
1230                     struct atto_ioctl *ioctl_hba)
1231 {
1232         struct esas2r_buffered_ioctl bi;
1233
1234         memset(&bi, 0, sizeof(bi));
1235
1236         bi.a = a;
1237         bi.ioctl = ioctl_hba;
1238         bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1239         bi.callback = hba_ioctl_callback;
1240         bi.context = NULL;
1241         bi.done_callback = hba_ioctl_done_callback;
1242         bi.done_context = NULL;
1243         bi.offset = 0;
1244
1245         return handle_buffered_ioctl(&bi);
1246 }
1247
1248
1249 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1250                         struct esas2r_sas_nvram *data)
1251 {
1252         int result = 0;
1253
1254         a->nvram_command_done = 0;
1255         rq->comp_cb = complete_nvr_req;
1256
1257         if (esas2r_nvram_write(a, rq, data)) {
1258                 /* now wait around for it to complete. */
1259                 while (!a->nvram_command_done)
1260                         wait_event_interruptible(a->nvram_waiter,
1261                                                  a->nvram_command_done);
1262                 ;
1263
1264                 /* done, check the status. */
1265                 if (rq->req_stat == RS_SUCCESS)
1266                         result = 1;
1267         }
1268         return result;
1269 }
1270
1271
1272 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1273 int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg)
1274 {
1275         struct atto_express_ioctl *ioctl = NULL;
1276         struct esas2r_adapter *a;
1277         struct esas2r_request *rq;
1278         u16 code;
1279         int err;
1280
1281         esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1282
1283         if ((arg == NULL)
1284             || (cmd < EXPRESS_IOCTL_MIN)
1285             || (cmd > EXPRESS_IOCTL_MAX))
1286                 return -ENOTSUPP;
1287
1288         ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl));
1289         if (IS_ERR(ioctl)) {
1290                 esas2r_log(ESAS2R_LOG_WARN,
1291                            "ioctl_handler access_ok failed for cmd %u, address %p",
1292                            cmd, arg);
1293                 return PTR_ERR(ioctl);
1294         }
1295
1296         /* verify the signature */
1297
1298         if (memcmp(ioctl->header.signature,
1299                    EXPRESS_IOCTL_SIGNATURE,
1300                    EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1301                 esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1302                 kfree(ioctl);
1303
1304                 return -ENOTSUPP;
1305         }
1306
1307         /* assume success */
1308
1309         ioctl->header.return_code = IOCTL_SUCCESS;
1310         err = 0;
1311
1312         /*
1313          * handle EXPRESS_IOCTL_GET_CHANNELS
1314          * without paying attention to channel
1315          */
1316
1317         if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1318                 int i = 0, k = 0;
1319
1320                 ioctl->data.chanlist.num_channels = 0;
1321
1322                 while (i < MAX_ADAPTERS) {
1323                         if (esas2r_adapters[i]) {
1324                                 ioctl->data.chanlist.num_channels++;
1325                                 ioctl->data.chanlist.channel[k] = i;
1326                                 k++;
1327                         }
1328                         i++;
1329                 }
1330
1331                 goto ioctl_done;
1332         }
1333
1334         /* get the channel */
1335
1336         if (ioctl->header.channel == 0xFF) {
1337                 a = (struct esas2r_adapter *)hostdata;
1338         } else {
1339                 if (ioctl->header.channel >= MAX_ADAPTERS ||
1340                         esas2r_adapters[ioctl->header.channel] == NULL) {
1341                         ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1342                         esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1343                         kfree(ioctl);
1344
1345                         return -ENOTSUPP;
1346                 }
1347                 a = esas2r_adapters[ioctl->header.channel];
1348         }
1349
1350         switch (cmd) {
1351         case EXPRESS_IOCTL_RW_FIRMWARE:
1352
1353                 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1354                         err = esas2r_write_fw(a,
1355                                               (char *)ioctl->data.fwrw.image,
1356                                               0,
1357                                               sizeof(struct
1358                                                      atto_express_ioctl));
1359
1360                         if (err >= 0) {
1361                                 err = esas2r_read_fw(a,
1362                                                      (char *)ioctl->data.fwrw.
1363                                                      image,
1364                                                      0,
1365                                                      sizeof(struct
1366                                                             atto_express_ioctl));
1367                         }
1368                 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1369                         err = esas2r_write_fs(a,
1370                                               (char *)ioctl->data.fwrw.image,
1371                                               0,
1372                                               sizeof(struct
1373                                                      atto_express_ioctl));
1374
1375                         if (err >= 0) {
1376                                 err = esas2r_read_fs(a,
1377                                                      (char *)ioctl->data.fwrw.
1378                                                      image,
1379                                                      0,
1380                                                      sizeof(struct
1381                                                             atto_express_ioctl));
1382                         }
1383                 } else {
1384                         ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1385                 }
1386
1387                 break;
1388
1389         case EXPRESS_IOCTL_READ_PARAMS:
1390
1391                 memcpy(ioctl->data.prw.data_buffer, a->nvram,
1392                        sizeof(struct esas2r_sas_nvram));
1393                 ioctl->data.prw.code = 1;
1394                 break;
1395
1396         case EXPRESS_IOCTL_WRITE_PARAMS:
1397
1398                 rq = esas2r_alloc_request(a);
1399                 if (rq == NULL) {
1400                         kfree(ioctl);
1401                         esas2r_log(ESAS2R_LOG_WARN,
1402                            "could not allocate an internal request");
1403                         return -ENOMEM;
1404                 }
1405
1406                 code = esas2r_write_params(a, rq,
1407                                            (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1408                 ioctl->data.prw.code = code;
1409
1410                 esas2r_free_request(a, rq);
1411
1412                 break;
1413
1414         case EXPRESS_IOCTL_DEFAULT_PARAMS:
1415
1416                 esas2r_nvram_get_defaults(a,
1417                                           (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1418                 ioctl->data.prw.code = 1;
1419                 break;
1420
1421         case EXPRESS_IOCTL_CHAN_INFO:
1422
1423                 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1424                 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1425                 ioctl->data.chaninfo.IRQ = a->pcid->irq;
1426                 ioctl->data.chaninfo.device_id = a->pcid->device;
1427                 ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1428                 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1429                 ioctl->data.chaninfo.revision_id = a->pcid->revision;
1430                 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1431                 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1432                 ioctl->data.chaninfo.core_rev = 0;
1433                 ioctl->data.chaninfo.host_no = a->host->host_no;
1434                 ioctl->data.chaninfo.hbaapi_rev = 0;
1435                 break;
1436
1437         case EXPRESS_IOCTL_SMP:
1438                 ioctl->header.return_code = handle_smp_ioctl(a,
1439                                                              &ioctl->data.
1440                                                              ioctl_smp);
1441                 break;
1442
1443         case EXPRESS_CSMI:
1444                 ioctl->header.return_code =
1445                         handle_csmi_ioctl(a, &ioctl->data.csmi);
1446                 break;
1447
1448         case EXPRESS_IOCTL_HBA:
1449                 ioctl->header.return_code = handle_hba_ioctl(a,
1450                                                              &ioctl->data.
1451                                                              ioctl_hba);
1452                 break;
1453
1454         case EXPRESS_IOCTL_VDA:
1455                 err = esas2r_write_vda(a,
1456                                        (char *)&ioctl->data.ioctl_vda,
1457                                        0,
1458                                        sizeof(struct atto_ioctl_vda) +
1459                                        ioctl->data.ioctl_vda.data_length);
1460
1461                 if (err >= 0) {
1462                         err = esas2r_read_vda(a,
1463                                               (char *)&ioctl->data.ioctl_vda,
1464                                               0,
1465                                               sizeof(struct atto_ioctl_vda) +
1466                                               ioctl->data.ioctl_vda.data_length);
1467                 }
1468
1469
1470
1471
1472                 break;
1473
1474         case EXPRESS_IOCTL_GET_MOD_INFO:
1475
1476                 ioctl->data.modinfo.adapter = a;
1477                 ioctl->data.modinfo.pci_dev = a->pcid;
1478                 ioctl->data.modinfo.scsi_host = a->host;
1479                 ioctl->data.modinfo.host_no = a->host->host_no;
1480
1481                 break;
1482
1483         default:
1484                 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1485                 ioctl->header.return_code = IOCTL_ERR_INVCMD;
1486         }
1487
1488 ioctl_done:
1489
1490         if (err < 0) {
1491                 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err,
1492                            cmd);
1493
1494                 switch (err) {
1495                 case -ENOMEM:
1496                 case -EBUSY:
1497                         ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1498                         break;
1499
1500                 case -ENOSYS:
1501                 case -EINVAL:
1502                         ioctl->header.return_code = IOCTL_INVALID_PARAM;
1503                         break;
1504
1505                 default:
1506                         ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1507                         break;
1508                 }
1509
1510         }
1511
1512         /* Always copy the buffer back, if only to pick up the status */
1513         err = copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1514         if (err != 0) {
1515                 esas2r_log(ESAS2R_LOG_WARN,
1516                            "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)",
1517                            err, cmd);
1518                 kfree(ioctl);
1519
1520                 return -EFAULT;
1521         }
1522
1523         kfree(ioctl);
1524
1525         return 0;
1526 }
1527
1528 int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg)
1529 {
1530         return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1531 }
1532
1533 static void free_fw_buffers(struct esas2r_adapter *a)
1534 {
1535         if (a->firmware.data) {
1536                 dma_free_coherent(&a->pcid->dev,
1537                                   (size_t)a->firmware.orig_len,
1538                                   a->firmware.data,
1539                                   (dma_addr_t)a->firmware.phys);
1540
1541                 a->firmware.data = NULL;
1542         }
1543 }
1544
1545 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1546 {
1547         free_fw_buffers(a);
1548
1549         a->firmware.orig_len = length;
1550
1551         a->firmware.data = dma_alloc_coherent(&a->pcid->dev,
1552                                               (size_t)length,
1553                                               (dma_addr_t *)&a->firmware.phys,
1554                                               GFP_KERNEL);
1555
1556         if (!a->firmware.data) {
1557                 esas2r_debug("buffer alloc failed!");
1558                 return 0;
1559         }
1560
1561         return 1;
1562 }
1563
1564 /* Handle a call to read firmware. */
1565 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1566 {
1567         esas2r_trace_enter();
1568         /* if the cached header is a status, simply copy it over and return. */
1569         if (a->firmware.state == FW_STATUS_ST) {
1570                 int size = min_t(int, count, sizeof(a->firmware.header));
1571                 esas2r_trace_exit();
1572                 memcpy(buf, &a->firmware.header, size);
1573                 esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1574                 return size;
1575         }
1576
1577         /*
1578          * if the cached header is a command, do it if at
1579          * offset 0, otherwise copy the pieces.
1580          */
1581
1582         if (a->firmware.state == FW_COMMAND_ST) {
1583                 u32 length = a->firmware.header.length;
1584                 esas2r_trace_exit();
1585
1586                 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1587                              length,
1588                              off);
1589
1590                 if (off == 0) {
1591                         if (a->firmware.header.action == FI_ACT_UP) {
1592                                 if (!allocate_fw_buffers(a, length))
1593                                         return -ENOMEM;
1594
1595
1596                                 /* copy header over */
1597
1598                                 memcpy(a->firmware.data,
1599                                        &a->firmware.header,
1600                                        sizeof(a->firmware.header));
1601
1602                                 do_fm_api(a,
1603                                           (struct esas2r_flash_img *)a->firmware.data);
1604                         } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1605                                 int size =
1606                                         min((int)count,
1607                                             (int)sizeof(a->firmware.header));
1608                                 do_fm_api(a, &a->firmware.header);
1609                                 memcpy(buf, &a->firmware.header, size);
1610                                 esas2r_debug("FI_ACT_UPSZ size %d", size);
1611                                 return size;
1612                         } else {
1613                                 esas2r_debug("invalid action %d",
1614                                              a->firmware.header.action);
1615                                 return -ENOSYS;
1616                         }
1617                 }
1618
1619                 if (count + off > length)
1620                         count = length - off;
1621
1622                 if (count < 0)
1623                         return 0;
1624
1625                 if (!a->firmware.data) {
1626                         esas2r_debug(
1627                                 "read: nonzero offset but no buffer available!");
1628                         return -ENOMEM;
1629                 }
1630
1631                 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1632                              count,
1633                              length);
1634
1635                 memcpy(buf, &a->firmware.data[off], count);
1636
1637                 /* when done, release the buffer */
1638
1639                 if (length <= off + count) {
1640                         esas2r_debug("esas2r_read_fw: freeing buffer!");
1641
1642                         free_fw_buffers(a);
1643                 }
1644
1645                 return count;
1646         }
1647
1648         esas2r_trace_exit();
1649         esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1650                      a->firmware.state);
1651
1652         return -EINVAL;
1653 }
1654
1655 /* Handle a call to write firmware. */
1656 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1657                     int count)
1658 {
1659         u32 length;
1660
1661         if (off == 0) {
1662                 struct esas2r_flash_img *header =
1663                         (struct esas2r_flash_img *)buf;
1664
1665                 /* assume version 0 flash image */
1666
1667                 int min_size = sizeof(struct esas2r_flash_img_v0);
1668
1669                 a->firmware.state = FW_INVALID_ST;
1670
1671                 /* validate the version field first */
1672
1673                 if (count < 4
1674                     ||  header->fi_version > FI_VERSION_1) {
1675                         esas2r_debug(
1676                                 "esas2r_write_fw: short header or invalid version");
1677                         return -EINVAL;
1678                 }
1679
1680                 /* See if its a version 1 flash image */
1681
1682                 if (header->fi_version == FI_VERSION_1)
1683                         min_size = sizeof(struct esas2r_flash_img);
1684
1685                 /* If this is the start, the header must be full and valid. */
1686                 if (count < min_size) {
1687                         esas2r_debug("esas2r_write_fw: short header, aborting");
1688                         return -EINVAL;
1689                 }
1690
1691                 /* Make sure the size is reasonable. */
1692                 length = header->length;
1693
1694                 if (length > 1024 * 1024) {
1695                         esas2r_debug(
1696                                 "esas2r_write_fw: hosed, length %d  fi_version %d",
1697                                 length, header->fi_version);
1698                         return -EINVAL;
1699                 }
1700
1701                 /*
1702                  * If this is a write command, allocate memory because
1703                  * we have to cache everything. otherwise, just cache
1704                  * the header, because the read op will do the command.
1705                  */
1706
1707                 if (header->action == FI_ACT_DOWN) {
1708                         if (!allocate_fw_buffers(a, length))
1709                                 return -ENOMEM;
1710
1711                         /*
1712                          * Store the command, so there is context on subsequent
1713                          * calls.
1714                          */
1715                         memcpy(&a->firmware.header,
1716                                buf,
1717                                sizeof(*header));
1718                 } else if (header->action == FI_ACT_UP
1719                            ||  header->action == FI_ACT_UPSZ) {
1720                         /* Save the command, result will be picked up on read */
1721                         memcpy(&a->firmware.header,
1722                                buf,
1723                                sizeof(*header));
1724
1725                         a->firmware.state = FW_COMMAND_ST;
1726
1727                         esas2r_debug(
1728                                 "esas2r_write_fw: COMMAND, count %d, action %d ",
1729                                 count, header->action);
1730
1731                         /*
1732                          * Pretend we took the whole buffer,
1733                          * so we don't get bothered again.
1734                          */
1735
1736                         return count;
1737                 } else {
1738                         esas2r_debug("esas2r_write_fw: invalid action %d ",
1739                                      a->firmware.header.action);
1740                         return -ENOSYS;
1741                 }
1742         } else {
1743                 length = a->firmware.header.length;
1744         }
1745
1746         /*
1747          * We only get here on a download command, regardless of offset.
1748          * the chunks written by the system need to be cached, and when
1749          * the final one arrives, issue the fmapi command.
1750          */
1751
1752         if (off + count > length)
1753                 count = length - off;
1754
1755         if (count > 0) {
1756                 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1757                              count,
1758                              length);
1759
1760                 /*
1761                  * On a full upload, the system tries sending the whole buffer.
1762                  * there's nothing to do with it, so just drop it here, before
1763                  * trying to copy over into unallocated memory!
1764                  */
1765                 if (a->firmware.header.action == FI_ACT_UP)
1766                         return count;
1767
1768                 if (!a->firmware.data) {
1769                         esas2r_debug(
1770                                 "write: nonzero offset but no buffer available!");
1771                         return -ENOMEM;
1772                 }
1773
1774                 memcpy(&a->firmware.data[off], buf, count);
1775
1776                 if (length == off + count) {
1777                         do_fm_api(a,
1778                                   (struct esas2r_flash_img *)a->firmware.data);
1779
1780                         /*
1781                          * Now copy the header result to be picked up by the
1782                          * next read
1783                          */
1784                         memcpy(&a->firmware.header,
1785                                a->firmware.data,
1786                                sizeof(a->firmware.header));
1787
1788                         a->firmware.state = FW_STATUS_ST;
1789
1790                         esas2r_debug("write completed");
1791
1792                         /*
1793                          * Since the system has the data buffered, the only way
1794                          * this can leak is if a root user writes a program
1795                          * that writes a shorter buffer than it claims, and the
1796                          * copyin fails.
1797                          */
1798                         free_fw_buffers(a);
1799                 }
1800         }
1801
1802         return count;
1803 }
1804
1805 /* Callback for the completion of a VDA request. */
1806 static void vda_complete_req(struct esas2r_adapter *a,
1807                              struct esas2r_request *rq)
1808 {
1809         a->vda_command_done = 1;
1810         wake_up_interruptible(&a->vda_waiter);
1811 }
1812
1813 /* Scatter/gather callback for VDA requests */
1814 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1815 {
1816         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1817         int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1818
1819         (*addr) = a->ppvda_buffer + offset;
1820         return VDA_MAX_BUFFER_SIZE - offset;
1821 }
1822
1823 /* Handle a call to read a VDA command. */
1824 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1825 {
1826         if (!a->vda_buffer)
1827                 return -ENOMEM;
1828
1829         if (off == 0) {
1830                 struct esas2r_request *rq;
1831                 struct atto_ioctl_vda *vi =
1832                         (struct atto_ioctl_vda *)a->vda_buffer;
1833                 struct esas2r_sg_context sgc;
1834                 bool wait_for_completion;
1835
1836                 /*
1837                  * Presumeably, someone has already written to the vda_buffer,
1838                  * and now they are reading the node the response, so now we
1839                  * will actually issue the request to the chip and reply.
1840                  */
1841
1842                 /* allocate a request */
1843                 rq = esas2r_alloc_request(a);
1844                 if (rq == NULL) {
1845                         esas2r_debug("esas2r_read_vda: out of requests");
1846                         return -EBUSY;
1847                 }
1848
1849                 rq->comp_cb = vda_complete_req;
1850
1851                 sgc.first_req = rq;
1852                 sgc.adapter = a;
1853                 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1854                 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1855
1856                 a->vda_command_done = 0;
1857
1858                 wait_for_completion =
1859                         esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1860
1861                 if (wait_for_completion) {
1862                         /* now wait around for it to complete. */
1863
1864                         while (!a->vda_command_done)
1865                                 wait_event_interruptible(a->vda_waiter,
1866                                                          a->vda_command_done);
1867                 }
1868
1869                 esas2r_free_request(a, (struct esas2r_request *)rq);
1870         }
1871
1872         if (off > VDA_MAX_BUFFER_SIZE)
1873                 return 0;
1874
1875         if (count + off > VDA_MAX_BUFFER_SIZE)
1876                 count = VDA_MAX_BUFFER_SIZE - off;
1877
1878         if (count < 0)
1879                 return 0;
1880
1881         memcpy(buf, a->vda_buffer + off, count);
1882
1883         return count;
1884 }
1885
1886 /* Handle a call to write a VDA command. */
1887 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1888                      int count)
1889 {
1890         /*
1891          * allocate memory for it, if not already done.  once allocated,
1892          * we will keep it around until the driver is unloaded.
1893          */
1894
1895         if (!a->vda_buffer) {
1896                 dma_addr_t dma_addr;
1897                 a->vda_buffer = dma_alloc_coherent(&a->pcid->dev,
1898                                                    (size_t)
1899                                                    VDA_MAX_BUFFER_SIZE,
1900                                                    &dma_addr,
1901                                                    GFP_KERNEL);
1902
1903                 a->ppvda_buffer = dma_addr;
1904         }
1905
1906         if (!a->vda_buffer)
1907                 return -ENOMEM;
1908
1909         if (off > VDA_MAX_BUFFER_SIZE)
1910                 return 0;
1911
1912         if (count + off > VDA_MAX_BUFFER_SIZE)
1913                 count = VDA_MAX_BUFFER_SIZE - off;
1914
1915         if (count < 1)
1916                 return 0;
1917
1918         memcpy(a->vda_buffer + off, buf, count);
1919
1920         return count;
1921 }
1922
1923 /* Callback for the completion of an FS_API request.*/
1924 static void fs_api_complete_req(struct esas2r_adapter *a,
1925                                 struct esas2r_request *rq)
1926 {
1927         a->fs_api_command_done = 1;
1928
1929         wake_up_interruptible(&a->fs_api_waiter);
1930 }
1931
1932 /* Scatter/gather callback for VDA requests */
1933 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1934 {
1935         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1936         struct esas2r_ioctl_fs *fs =
1937                 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1938         u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1939
1940         (*addr) = a->ppfs_api_buffer + offset;
1941
1942         return a->fs_api_buffer_size - offset;
1943 }
1944
1945 /* Handle a call to read firmware via FS_API. */
1946 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1947 {
1948         if (!a->fs_api_buffer)
1949                 return -ENOMEM;
1950
1951         if (off == 0) {
1952                 struct esas2r_request *rq;
1953                 struct esas2r_sg_context sgc;
1954                 struct esas2r_ioctl_fs *fs =
1955                         (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1956
1957                 /* If another flash request is already in progress, return. */
1958                 if (mutex_lock_interruptible(&a->fs_api_mutex)) {
1959 busy:
1960                         fs->status = ATTO_STS_OUT_OF_RSRC;
1961                         return -EBUSY;
1962                 }
1963
1964                 /*
1965                  * Presumeably, someone has already written to the
1966                  * fs_api_buffer, and now they are reading the node the
1967                  * response, so now we will actually issue the request to the
1968                  * chip and reply. Allocate a request
1969                  */
1970
1971                 rq = esas2r_alloc_request(a);
1972                 if (rq == NULL) {
1973                         esas2r_debug("esas2r_read_fs: out of requests");
1974                         mutex_unlock(&a->fs_api_mutex);
1975                         goto busy;
1976                 }
1977
1978                 rq->comp_cb = fs_api_complete_req;
1979
1980                 /* Set up the SGCONTEXT for to build the s/g table */
1981
1982                 sgc.cur_offset = fs->data;
1983                 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
1984
1985                 a->fs_api_command_done = 0;
1986
1987                 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
1988                         if (fs->status == ATTO_STS_OUT_OF_RSRC)
1989                                 count = -EBUSY;
1990
1991                         goto dont_wait;
1992                 }
1993
1994                 /* Now wait around for it to complete. */
1995
1996                 while (!a->fs_api_command_done)
1997                         wait_event_interruptible(a->fs_api_waiter,
1998                                                  a->fs_api_command_done);
1999                 ;
2000 dont_wait:
2001                 /* Free the request and keep going */
2002                 mutex_unlock(&a->fs_api_mutex);
2003                 esas2r_free_request(a, (struct esas2r_request *)rq);
2004
2005                 /* Pick up possible error code from above */
2006                 if (count < 0)
2007                         return count;
2008         }
2009
2010         if (off > a->fs_api_buffer_size)
2011                 return 0;
2012
2013         if (count + off > a->fs_api_buffer_size)
2014                 count = a->fs_api_buffer_size - off;
2015
2016         if (count < 0)
2017                 return 0;
2018
2019         memcpy(buf, a->fs_api_buffer + off, count);
2020
2021         return count;
2022 }
2023
2024 /* Handle a call to write firmware via FS_API. */
2025 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2026                     int count)
2027 {
2028         if (off == 0) {
2029                 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2030                 u32 length = fs->command.length + offsetof(
2031                         struct esas2r_ioctl_fs,
2032                         data);
2033
2034                 /*
2035                  * Special case, for BEGIN commands, the length field
2036                  * is lying to us, so just get enough for the header.
2037                  */
2038
2039                 if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2040                         length = offsetof(struct esas2r_ioctl_fs, data);
2041
2042                 /*
2043                  * Beginning a command.  We assume we'll get at least
2044                  * enough in the first write so we can look at the
2045                  * header and see how much we need to alloc.
2046                  */
2047
2048                 if (count < offsetof(struct esas2r_ioctl_fs, data))
2049                         return -EINVAL;
2050
2051                 /* Allocate a buffer or use the existing buffer. */
2052                 if (a->fs_api_buffer) {
2053                         if (a->fs_api_buffer_size < length) {
2054                                 /* Free too-small buffer and get a new one */
2055                                 dma_free_coherent(&a->pcid->dev,
2056                                                   (size_t)a->fs_api_buffer_size,
2057                                                   a->fs_api_buffer,
2058                                                   (dma_addr_t)a->ppfs_api_buffer);
2059
2060                                 goto re_allocate_buffer;
2061                         }
2062                 } else {
2063 re_allocate_buffer:
2064                         a->fs_api_buffer_size = length;
2065
2066                         a->fs_api_buffer = dma_alloc_coherent(&a->pcid->dev,
2067                                                               (size_t)a->fs_api_buffer_size,
2068                                                               (dma_addr_t *)&a->ppfs_api_buffer,
2069                                                               GFP_KERNEL);
2070                 }
2071         }
2072
2073         if (!a->fs_api_buffer)
2074                 return -ENOMEM;
2075
2076         if (off > a->fs_api_buffer_size)
2077                 return 0;
2078
2079         if (count + off > a->fs_api_buffer_size)
2080                 count = a->fs_api_buffer_size - off;
2081
2082         if (count < 1)
2083                 return 0;
2084
2085         memcpy(a->fs_api_buffer + off, buf, count);
2086
2087         return count;
2088 }