Merge tag 'gvt-next-fixes-2020-08-05' of https://github.com/intel/gvt-linux into...
[linux-2.6-microblaze.git] / drivers / scsi / bnx2fc / bnx2fc_hwi.c
1 /* bnx2fc_hwi.c: QLogic Linux FCoE offload driver.
2  * This file contains the code that low level functions that interact
3  * with 57712 FCoE firmware.
4  *
5  * Copyright (c) 2008-2013 Broadcom Corporation
6  * Copyright (c) 2014-2016 QLogic Corporation
7  * Copyright (c) 2016-2017 Cavium Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation.
12  *
13  * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
14  */
15
16 #include "bnx2fc.h"
17
18 DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu);
19
20 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
21                                         struct fcoe_kcqe *new_cqe_kcqe);
22 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
23                                         struct fcoe_kcqe *ofld_kcqe);
24 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
25                                                 struct fcoe_kcqe *ofld_kcqe);
26 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code);
27 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
28                                         struct fcoe_kcqe *destroy_kcqe);
29
30 int bnx2fc_send_stat_req(struct bnx2fc_hba *hba)
31 {
32         struct fcoe_kwqe_stat stat_req;
33         struct kwqe *kwqe_arr[2];
34         int num_kwqes = 1;
35         int rc = 0;
36
37         memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat));
38         stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT;
39         stat_req.hdr.flags =
40                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
41
42         stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma;
43         stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32);
44
45         kwqe_arr[0] = (struct kwqe *) &stat_req;
46
47         if (hba->cnic && hba->cnic->submit_kwqes)
48                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
49
50         return rc;
51 }
52
53 /**
54  * bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w
55  *
56  * @hba:        adapter structure pointer
57  *
58  * Send down FCoE firmware init KWQEs which initiates the initial handshake
59  *      with the f/w.
60  *
61  */
62 int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba)
63 {
64         struct fcoe_kwqe_init1 fcoe_init1;
65         struct fcoe_kwqe_init2 fcoe_init2;
66         struct fcoe_kwqe_init3 fcoe_init3;
67         struct kwqe *kwqe_arr[3];
68         int num_kwqes = 3;
69         int rc = 0;
70
71         if (!hba->cnic) {
72                 printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n");
73                 return -ENODEV;
74         }
75
76         /* fill init1 KWQE */
77         memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1));
78         fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1;
79         fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
80                                         FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
81
82         fcoe_init1.num_tasks = hba->max_tasks;
83         fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX;
84         fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX;
85         fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ;
86         fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX;
87         fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma;
88         fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32);
89         fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma;
90         fcoe_init1.task_list_pbl_addr_hi =
91                                 (u32) ((u64) hba->task_ctx_bd_dma >> 32);
92         fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU;
93
94         fcoe_init1.flags = (PAGE_SHIFT <<
95                                 FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT);
96
97         fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG;
98
99         /* fill init2 KWQE */
100         memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2));
101         fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2;
102         fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
103                                         FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
104
105         fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION;
106         fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION;
107
108
109         fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma;
110         fcoe_init2.hash_tbl_pbl_addr_hi = (u32)
111                                            ((u64) hba->hash_tbl_pbl_dma >> 32);
112
113         fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma;
114         fcoe_init2.t2_hash_tbl_addr_hi = (u32)
115                                           ((u64) hba->t2_hash_tbl_dma >> 32);
116
117         fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma;
118         fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32)
119                                         ((u64) hba->t2_hash_tbl_ptr_dma >> 32);
120
121         fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS;
122
123         /* fill init3 KWQE */
124         memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3));
125         fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3;
126         fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
127                                         FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
128         fcoe_init3.error_bit_map_lo = 0xffffffff;
129         fcoe_init3.error_bit_map_hi = 0xffffffff;
130
131         /*
132          * enable both cached connection and cached tasks
133          * 0 = none, 1 = cached connection, 2 = cached tasks, 3 = both
134          */
135         fcoe_init3.perf_config = 3;
136
137         kwqe_arr[0] = (struct kwqe *) &fcoe_init1;
138         kwqe_arr[1] = (struct kwqe *) &fcoe_init2;
139         kwqe_arr[2] = (struct kwqe *) &fcoe_init3;
140
141         if (hba->cnic && hba->cnic->submit_kwqes)
142                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
143
144         return rc;
145 }
146 int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba)
147 {
148         struct fcoe_kwqe_destroy fcoe_destroy;
149         struct kwqe *kwqe_arr[2];
150         int num_kwqes = 1;
151         int rc = -1;
152
153         /* fill destroy KWQE */
154         memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy));
155         fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY;
156         fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
157                                         FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
158         kwqe_arr[0] = (struct kwqe *) &fcoe_destroy;
159
160         if (hba->cnic && hba->cnic->submit_kwqes)
161                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
162         return rc;
163 }
164
165 /**
166  * bnx2fc_send_session_ofld_req - initiates FCoE Session offload process
167  *
168  * @port:               port structure pointer
169  * @tgt:                bnx2fc_rport structure pointer
170  */
171 int bnx2fc_send_session_ofld_req(struct fcoe_port *port,
172                                         struct bnx2fc_rport *tgt)
173 {
174         struct fc_lport *lport = port->lport;
175         struct bnx2fc_interface *interface = port->priv;
176         struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
177         struct bnx2fc_hba *hba = interface->hba;
178         struct kwqe *kwqe_arr[4];
179         struct fcoe_kwqe_conn_offload1 ofld_req1;
180         struct fcoe_kwqe_conn_offload2 ofld_req2;
181         struct fcoe_kwqe_conn_offload3 ofld_req3;
182         struct fcoe_kwqe_conn_offload4 ofld_req4;
183         struct fc_rport_priv *rdata = tgt->rdata;
184         struct fc_rport *rport = tgt->rport;
185         int num_kwqes = 4;
186         u32 port_id;
187         int rc = 0;
188         u16 conn_id;
189
190         /* Initialize offload request 1 structure */
191         memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1));
192
193         ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1;
194         ofld_req1.hdr.flags =
195                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
196
197
198         conn_id = (u16)tgt->fcoe_conn_id;
199         ofld_req1.fcoe_conn_id = conn_id;
200
201
202         ofld_req1.sq_addr_lo = (u32) tgt->sq_dma;
203         ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32);
204
205         ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma;
206         ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32);
207
208         ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma;
209         ofld_req1.rq_first_pbe_addr_hi =
210                                 (u32)((u64) tgt->rq_dma >> 32);
211
212         ofld_req1.rq_prod = 0x8000;
213
214         /* Initialize offload request 2 structure */
215         memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2));
216
217         ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2;
218         ofld_req2.hdr.flags =
219                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
220
221         ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size;
222
223         ofld_req2.cq_addr_lo = (u32) tgt->cq_dma;
224         ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32);
225
226         ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma;
227         ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32);
228
229         ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma;
230         ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32);
231
232         /* Initialize offload request 3 structure */
233         memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3));
234
235         ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3;
236         ofld_req3.hdr.flags =
237                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
238
239         ofld_req3.vlan_tag = interface->vlan_id <<
240                                 FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT;
241         ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT;
242
243         port_id = fc_host_port_id(lport->host);
244         if (port_id == 0) {
245                 BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n");
246                 return -EINVAL;
247         }
248
249         /*
250          * Store s_id of the initiator for further reference. This will
251          * be used during disable/destroy during linkdown processing as
252          * when the lport is reset, the port_id also is reset to 0
253          */
254         tgt->sid = port_id;
255         ofld_req3.s_id[0] = (port_id & 0x000000FF);
256         ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8;
257         ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16;
258
259         port_id = rport->port_id;
260         ofld_req3.d_id[0] = (port_id & 0x000000FF);
261         ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8;
262         ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16;
263
264         ofld_req3.tx_total_conc_seqs = rdata->max_seq;
265
266         ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq;
267         ofld_req3.rx_max_fc_pay_len  = lport->mfs;
268
269         ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS;
270         ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS;
271         ofld_req3.rx_open_seqs_exch_c3 = 1;
272
273         ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma;
274         ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32);
275
276         /* set mul_n_port_ids supported flag to 0, until it is supported */
277         ofld_req3.flags = 0;
278         /*
279         ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) <<
280                             FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT);
281         */
282         /* Info from PLOGI response */
283         ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) <<
284                              FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT);
285
286         ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
287                              FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT);
288
289         /*
290          * Info from PRLI response, this info is used for sequence level error
291          * recovery support
292          */
293         if (tgt->dev_type == TYPE_TAPE) {
294                 ofld_req3.flags |= 1 <<
295                                     FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT;
296                 ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED)
297                                     ? 1 : 0) <<
298                                     FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT);
299         }
300
301         /* vlan flag */
302         ofld_req3.flags |= (interface->vlan_enabled <<
303                             FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT);
304
305         /* C2_VALID and ACK flags are not set as they are not supported */
306
307
308         /* Initialize offload request 4 structure */
309         memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4));
310         ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4;
311         ofld_req4.hdr.flags =
312                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
313
314         ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20;
315
316
317         ofld_req4.src_mac_addr_lo[0] =  port->data_src_addr[5];
318                                                         /* local mac */
319         ofld_req4.src_mac_addr_lo[1] =  port->data_src_addr[4];
320         ofld_req4.src_mac_addr_mid[0] =  port->data_src_addr[3];
321         ofld_req4.src_mac_addr_mid[1] =  port->data_src_addr[2];
322         ofld_req4.src_mac_addr_hi[0] =  port->data_src_addr[1];
323         ofld_req4.src_mac_addr_hi[1] =  port->data_src_addr[0];
324         ofld_req4.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
325                                                         /* fcf mac */
326         ofld_req4.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
327         ofld_req4.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
328         ofld_req4.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
329         ofld_req4.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
330         ofld_req4.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
331
332         ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma;
333         ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32);
334
335         ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma;
336         ofld_req4.confq_pbl_base_addr_hi =
337                                         (u32)((u64) tgt->confq_pbl_dma >> 32);
338
339         kwqe_arr[0] = (struct kwqe *) &ofld_req1;
340         kwqe_arr[1] = (struct kwqe *) &ofld_req2;
341         kwqe_arr[2] = (struct kwqe *) &ofld_req3;
342         kwqe_arr[3] = (struct kwqe *) &ofld_req4;
343
344         if (hba->cnic && hba->cnic->submit_kwqes)
345                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
346
347         return rc;
348 }
349
350 /**
351  * bnx2fc_send_session_enable_req - initiates FCoE Session enablement
352  *
353  * @port:               port structure pointer
354  * @tgt:                bnx2fc_rport structure pointer
355  */
356 int bnx2fc_send_session_enable_req(struct fcoe_port *port,
357                                         struct bnx2fc_rport *tgt)
358 {
359         struct kwqe *kwqe_arr[2];
360         struct bnx2fc_interface *interface = port->priv;
361         struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
362         struct bnx2fc_hba *hba = interface->hba;
363         struct fcoe_kwqe_conn_enable_disable enbl_req;
364         struct fc_lport *lport = port->lport;
365         struct fc_rport *rport = tgt->rport;
366         int num_kwqes = 1;
367         int rc = 0;
368         u32 port_id;
369
370         memset(&enbl_req, 0x00,
371                sizeof(struct fcoe_kwqe_conn_enable_disable));
372         enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN;
373         enbl_req.hdr.flags =
374                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
375
376         enbl_req.src_mac_addr_lo[0] =  port->data_src_addr[5];
377                                                         /* local mac */
378         enbl_req.src_mac_addr_lo[1] =  port->data_src_addr[4];
379         enbl_req.src_mac_addr_mid[0] =  port->data_src_addr[3];
380         enbl_req.src_mac_addr_mid[1] =  port->data_src_addr[2];
381         enbl_req.src_mac_addr_hi[0] =  port->data_src_addr[1];
382         enbl_req.src_mac_addr_hi[1] =  port->data_src_addr[0];
383         memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN);
384
385         enbl_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
386         enbl_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
387         enbl_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
388         enbl_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
389         enbl_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
390         enbl_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
391
392         port_id = fc_host_port_id(lport->host);
393         if (port_id != tgt->sid) {
394                 printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x,"
395                                 "sid = 0x%x\n", port_id, tgt->sid);
396                 port_id = tgt->sid;
397         }
398         enbl_req.s_id[0] = (port_id & 0x000000FF);
399         enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
400         enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
401
402         port_id = rport->port_id;
403         enbl_req.d_id[0] = (port_id & 0x000000FF);
404         enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
405         enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
406         enbl_req.vlan_tag = interface->vlan_id <<
407                                 FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
408         enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
409         enbl_req.vlan_flag = interface->vlan_enabled;
410         enbl_req.context_id = tgt->context_id;
411         enbl_req.conn_id = tgt->fcoe_conn_id;
412
413         kwqe_arr[0] = (struct kwqe *) &enbl_req;
414
415         if (hba->cnic && hba->cnic->submit_kwqes)
416                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
417         return rc;
418 }
419
420 /**
421  * bnx2fc_send_session_disable_req - initiates FCoE Session disable
422  *
423  * @port:               port structure pointer
424  * @tgt:                bnx2fc_rport structure pointer
425  */
426 int bnx2fc_send_session_disable_req(struct fcoe_port *port,
427                                     struct bnx2fc_rport *tgt)
428 {
429         struct bnx2fc_interface *interface = port->priv;
430         struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
431         struct bnx2fc_hba *hba = interface->hba;
432         struct fcoe_kwqe_conn_enable_disable disable_req;
433         struct kwqe *kwqe_arr[2];
434         struct fc_rport *rport = tgt->rport;
435         int num_kwqes = 1;
436         int rc = 0;
437         u32 port_id;
438
439         memset(&disable_req, 0x00,
440                sizeof(struct fcoe_kwqe_conn_enable_disable));
441         disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN;
442         disable_req.hdr.flags =
443                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
444
445         disable_req.src_mac_addr_lo[0] =  tgt->src_addr[5];
446         disable_req.src_mac_addr_lo[1] =  tgt->src_addr[4];
447         disable_req.src_mac_addr_mid[0] =  tgt->src_addr[3];
448         disable_req.src_mac_addr_mid[1] =  tgt->src_addr[2];
449         disable_req.src_mac_addr_hi[0] =  tgt->src_addr[1];
450         disable_req.src_mac_addr_hi[1] =  tgt->src_addr[0];
451
452         disable_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
453         disable_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
454         disable_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
455         disable_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
456         disable_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
457         disable_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
458
459         port_id = tgt->sid;
460         disable_req.s_id[0] = (port_id & 0x000000FF);
461         disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
462         disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
463
464
465         port_id = rport->port_id;
466         disable_req.d_id[0] = (port_id & 0x000000FF);
467         disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
468         disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
469         disable_req.context_id = tgt->context_id;
470         disable_req.conn_id = tgt->fcoe_conn_id;
471         disable_req.vlan_tag = interface->vlan_id <<
472                                 FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
473         disable_req.vlan_tag |=
474                         3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
475         disable_req.vlan_flag = interface->vlan_enabled;
476
477         kwqe_arr[0] = (struct kwqe *) &disable_req;
478
479         if (hba->cnic && hba->cnic->submit_kwqes)
480                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
481
482         return rc;
483 }
484
485 /**
486  * bnx2fc_send_session_destroy_req - initiates FCoE Session destroy
487  *
488  * @hba:                adapter structure pointer
489  * @tgt:                bnx2fc_rport structure pointer
490  */
491 int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba,
492                                         struct bnx2fc_rport *tgt)
493 {
494         struct fcoe_kwqe_conn_destroy destroy_req;
495         struct kwqe *kwqe_arr[2];
496         int num_kwqes = 1;
497         int rc = 0;
498
499         memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy));
500         destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN;
501         destroy_req.hdr.flags =
502                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
503
504         destroy_req.context_id = tgt->context_id;
505         destroy_req.conn_id = tgt->fcoe_conn_id;
506
507         kwqe_arr[0] = (struct kwqe *) &destroy_req;
508
509         if (hba->cnic && hba->cnic->submit_kwqes)
510                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
511
512         return rc;
513 }
514
515 static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport)
516 {
517         struct bnx2fc_lport *blport;
518
519         spin_lock_bh(&hba->hba_lock);
520         list_for_each_entry(blport, &hba->vports, list) {
521                 if (blport->lport == lport) {
522                         spin_unlock_bh(&hba->hba_lock);
523                         return true;
524                 }
525         }
526         spin_unlock_bh(&hba->hba_lock);
527         return false;
528
529 }
530
531
532 static void bnx2fc_unsol_els_work(struct work_struct *work)
533 {
534         struct bnx2fc_unsol_els *unsol_els;
535         struct fc_lport *lport;
536         struct bnx2fc_hba *hba;
537         struct fc_frame *fp;
538
539         unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work);
540         lport = unsol_els->lport;
541         fp = unsol_els->fp;
542         hba = unsol_els->hba;
543         if (is_valid_lport(hba, lport))
544                 fc_exch_recv(lport, fp);
545         kfree(unsol_els);
546 }
547
548 void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt,
549                                    unsigned char *buf,
550                                    u32 frame_len, u16 l2_oxid)
551 {
552         struct fcoe_port *port = tgt->port;
553         struct fc_lport *lport = port->lport;
554         struct bnx2fc_interface *interface = port->priv;
555         struct bnx2fc_unsol_els *unsol_els;
556         struct fc_frame_header *fh;
557         struct fc_frame *fp;
558         struct sk_buff *skb;
559         u32 payload_len;
560         u32 crc;
561         u8 op;
562
563
564         unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC);
565         if (!unsol_els) {
566                 BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n");
567                 return;
568         }
569
570         BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n",
571                 l2_oxid, frame_len);
572
573         payload_len = frame_len - sizeof(struct fc_frame_header);
574
575         fp = fc_frame_alloc(lport, payload_len);
576         if (!fp) {
577                 printk(KERN_ERR PFX "fc_frame_alloc failure\n");
578                 kfree(unsol_els);
579                 return;
580         }
581
582         fh = (struct fc_frame_header *) fc_frame_header_get(fp);
583         /* Copy FC Frame header and payload into the frame */
584         memcpy(fh, buf, frame_len);
585
586         if (l2_oxid != FC_XID_UNKNOWN)
587                 fh->fh_ox_id = htons(l2_oxid);
588
589         skb = fp_skb(fp);
590
591         if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) ||
592             (fh->fh_r_ctl == FC_RCTL_ELS_REP)) {
593
594                 if (fh->fh_type == FC_TYPE_ELS) {
595                         op = fc_frame_payload_op(fp);
596                         if ((op == ELS_TEST) || (op == ELS_ESTC) ||
597                             (op == ELS_FAN) || (op == ELS_CSU)) {
598                                 /*
599                                  * No need to reply for these
600                                  * ELS requests
601                                  */
602                                 printk(KERN_ERR PFX "dropping ELS 0x%x\n", op);
603                                 kfree_skb(skb);
604                                 kfree(unsol_els);
605                                 return;
606                         }
607                 }
608                 crc = fcoe_fc_crc(fp);
609                 fc_frame_init(fp);
610                 fr_dev(fp) = lport;
611                 fr_sof(fp) = FC_SOF_I3;
612                 fr_eof(fp) = FC_EOF_T;
613                 fr_crc(fp) = cpu_to_le32(~crc);
614                 unsol_els->lport = lport;
615                 unsol_els->hba = interface->hba;
616                 unsol_els->fp = fp;
617                 INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work);
618                 queue_work(bnx2fc_wq, &unsol_els->unsol_els_work);
619         } else {
620                 BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl);
621                 kfree_skb(skb);
622                 kfree(unsol_els);
623         }
624 }
625
626 static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe)
627 {
628         u8 num_rq;
629         struct fcoe_err_report_entry *err_entry;
630         unsigned char *rq_data;
631         unsigned char *buf = NULL, *buf1;
632         int i;
633         u16 xid;
634         u32 frame_len, len;
635         struct bnx2fc_cmd *io_req = NULL;
636         struct bnx2fc_interface *interface = tgt->port->priv;
637         struct bnx2fc_hba *hba = interface->hba;
638         int rc = 0;
639         u64 err_warn_bit_map;
640         u8 err_warn = 0xff;
641
642
643         BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe);
644         switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) {
645         case FCOE_UNSOLICITED_FRAME_CQE_TYPE:
646                 frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >>
647                              FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT;
648
649                 num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ;
650
651                 spin_lock_bh(&tgt->tgt_lock);
652                 rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq);
653                 spin_unlock_bh(&tgt->tgt_lock);
654
655                 if (rq_data) {
656                         buf = rq_data;
657                 } else {
658                         buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ),
659                                               GFP_ATOMIC);
660
661                         if (!buf1) {
662                                 BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n");
663                                 break;
664                         }
665
666                         for (i = 0; i < num_rq; i++) {
667                                 spin_lock_bh(&tgt->tgt_lock);
668                                 rq_data = (unsigned char *)
669                                            bnx2fc_get_next_rqe(tgt, 1);
670                                 spin_unlock_bh(&tgt->tgt_lock);
671                                 len = BNX2FC_RQ_BUF_SZ;
672                                 memcpy(buf1, rq_data, len);
673                                 buf1 += len;
674                         }
675                 }
676                 bnx2fc_process_l2_frame_compl(tgt, buf, frame_len,
677                                               FC_XID_UNKNOWN);
678
679                 if (buf != rq_data)
680                         kfree(buf);
681                 spin_lock_bh(&tgt->tgt_lock);
682                 bnx2fc_return_rqe(tgt, num_rq);
683                 spin_unlock_bh(&tgt->tgt_lock);
684                 break;
685
686         case FCOE_ERROR_DETECTION_CQE_TYPE:
687                 /*
688                  * In case of error reporting CQE a single RQ entry
689                  * is consumed.
690                  */
691                 spin_lock_bh(&tgt->tgt_lock);
692                 num_rq = 1;
693                 err_entry = (struct fcoe_err_report_entry *)
694                              bnx2fc_get_next_rqe(tgt, 1);
695                 xid = err_entry->fc_hdr.ox_id;
696                 BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid);
697                 BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n",
698                         err_entry->data.err_warn_bitmap_hi,
699                         err_entry->data.err_warn_bitmap_lo);
700                 BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n",
701                         err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
702
703                 if (xid > hba->max_xid) {
704                         BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n",
705                                    xid);
706                         goto ret_err_rqe;
707                 }
708
709
710                 io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
711                 if (!io_req)
712                         goto ret_err_rqe;
713
714                 if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
715                         printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
716                         goto ret_err_rqe;
717                 }
718
719                 if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
720                                        &io_req->req_flags)) {
721                         BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in "
722                                             "progress.. ignore unsol err\n");
723                         goto ret_err_rqe;
724                 }
725
726                 err_warn_bit_map = (u64)
727                         ((u64)err_entry->data.err_warn_bitmap_hi << 32) |
728                         (u64)err_entry->data.err_warn_bitmap_lo;
729                 for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
730                         if (err_warn_bit_map & (u64)((u64)1 << i)) {
731                                 err_warn = i;
732                                 break;
733                         }
734                 }
735
736                 /*
737                  * If ABTS is already in progress, and FW error is
738                  * received after that, do not cancel the timeout_work
739                  * and let the error recovery continue by explicitly
740                  * logging out the target, when the ABTS eventually
741                  * times out.
742                  */
743                 if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
744                         printk(KERN_ERR PFX "err_warn: io_req (0x%x) already "
745                                             "in ABTS processing\n", xid);
746                         goto ret_err_rqe;
747                 }
748                 BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn);
749                 if (tgt->dev_type != TYPE_TAPE)
750                         goto skip_rec;
751                 switch (err_warn) {
752                 case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION:
753                 case FCOE_ERROR_CODE_DATA_OOO_RO:
754                 case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT:
755                 case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET:
756                 case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ:
757                 case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET:
758                         BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n",
759                                    xid);
760                         memcpy(&io_req->err_entry, err_entry,
761                                sizeof(struct fcoe_err_report_entry));
762                         if (!test_bit(BNX2FC_FLAG_SRR_SENT,
763                                       &io_req->req_flags)) {
764                                 spin_unlock_bh(&tgt->tgt_lock);
765                                 rc = bnx2fc_send_rec(io_req);
766                                 spin_lock_bh(&tgt->tgt_lock);
767
768                                 if (rc)
769                                         goto skip_rec;
770                         } else
771                                 printk(KERN_ERR PFX "SRR in progress\n");
772                         goto ret_err_rqe;
773                         break;
774                 default:
775                         break;
776                 }
777
778 skip_rec:
779                 set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags);
780                 /*
781                  * Cancel the timeout_work, as we received IO
782                  * completion with FW error.
783                  */
784                 if (cancel_delayed_work(&io_req->timeout_work))
785                         kref_put(&io_req->refcount, bnx2fc_cmd_release);
786
787                 rc = bnx2fc_initiate_abts(io_req);
788                 if (rc != SUCCESS) {
789                         printk(KERN_ERR PFX "err_warn: initiate_abts "
790                                 "failed xid = 0x%x. issue cleanup\n",
791                                 io_req->xid);
792                         bnx2fc_initiate_cleanup(io_req);
793                 }
794 ret_err_rqe:
795                 bnx2fc_return_rqe(tgt, 1);
796                 spin_unlock_bh(&tgt->tgt_lock);
797                 break;
798
799         case FCOE_WARNING_DETECTION_CQE_TYPE:
800                 /*
801                  *In case of warning reporting CQE a single RQ entry
802                  * is consumes.
803                  */
804                 spin_lock_bh(&tgt->tgt_lock);
805                 num_rq = 1;
806                 err_entry = (struct fcoe_err_report_entry *)
807                              bnx2fc_get_next_rqe(tgt, 1);
808                 xid = cpu_to_be16(err_entry->fc_hdr.ox_id);
809                 BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid);
810                 BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x",
811                         err_entry->data.err_warn_bitmap_hi,
812                         err_entry->data.err_warn_bitmap_lo);
813                 BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x",
814                         err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
815
816                 if (xid > hba->max_xid) {
817                         BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid);
818                         goto ret_warn_rqe;
819                 }
820
821                 err_warn_bit_map = (u64)
822                         ((u64)err_entry->data.err_warn_bitmap_hi << 32) |
823                         (u64)err_entry->data.err_warn_bitmap_lo;
824                 for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
825                         if (err_warn_bit_map & ((u64)1 << i)) {
826                                 err_warn = i;
827                                 break;
828                         }
829                 }
830                 BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn);
831
832                 io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
833                 if (!io_req)
834                         goto ret_warn_rqe;
835
836                 if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
837                         printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
838                         goto ret_warn_rqe;
839                 }
840
841                 memcpy(&io_req->err_entry, err_entry,
842                        sizeof(struct fcoe_err_report_entry));
843
844                 if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION)
845                         /* REC_TOV is not a warning code */
846                         BUG_ON(1);
847                 else
848                         BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n");
849 ret_warn_rqe:
850                 bnx2fc_return_rqe(tgt, 1);
851                 spin_unlock_bh(&tgt->tgt_lock);
852                 break;
853
854         default:
855                 printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n");
856                 break;
857         }
858 }
859
860 void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe,
861                              unsigned char *rq_data, u8 num_rq,
862                              struct fcoe_task_ctx_entry *task)
863 {
864         struct fcoe_port *port = tgt->port;
865         struct bnx2fc_interface *interface = port->priv;
866         struct bnx2fc_hba *hba = interface->hba;
867         struct bnx2fc_cmd *io_req;
868
869         u16 xid;
870         u8  cmd_type;
871         u8 rx_state = 0;
872
873         spin_lock_bh(&tgt->tgt_lock);
874
875         xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
876         io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
877
878         if (io_req == NULL) {
879                 printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n");
880                 spin_unlock_bh(&tgt->tgt_lock);
881                 return;
882         }
883
884         /* Timestamp IO completion time */
885         cmd_type = io_req->cmd_type;
886
887         rx_state = ((task->rxwr_txrd.var_ctx.rx_flags &
888                     FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >>
889                     FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT);
890
891         /* Process other IO completion types */
892         switch (cmd_type) {
893         case BNX2FC_SCSI_CMD:
894                 if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) {
895                         bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq,
896                                                       rq_data);
897                         spin_unlock_bh(&tgt->tgt_lock);
898                         return;
899                 }
900
901                 if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
902                         bnx2fc_process_abts_compl(io_req, task, num_rq);
903                 else if (rx_state ==
904                          FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
905                         bnx2fc_process_cleanup_compl(io_req, task, num_rq);
906                 else
907                         printk(KERN_ERR PFX "Invalid rx state - %d\n",
908                                 rx_state);
909                 break;
910
911         case BNX2FC_TASK_MGMT_CMD:
912                 BNX2FC_IO_DBG(io_req, "Processing TM complete\n");
913                 bnx2fc_process_tm_compl(io_req, task, num_rq, rq_data);
914                 break;
915
916         case BNX2FC_ABTS:
917                 /*
918                  * ABTS request received by firmware. ABTS response
919                  * will be delivered to the task belonging to the IO
920                  * that was aborted
921                  */
922                 BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n");
923                 kref_put(&io_req->refcount, bnx2fc_cmd_release);
924                 break;
925
926         case BNX2FC_ELS:
927                 if (rx_state == FCOE_TASK_RX_STATE_COMPLETED)
928                         bnx2fc_process_els_compl(io_req, task, num_rq);
929                 else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
930                         bnx2fc_process_abts_compl(io_req, task, num_rq);
931                 else if (rx_state ==
932                          FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
933                         bnx2fc_process_cleanup_compl(io_req, task, num_rq);
934                 else
935                         printk(KERN_ERR PFX "Invalid rx state =  %d\n",
936                                 rx_state);
937                 break;
938
939         case BNX2FC_CLEANUP:
940                 BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n");
941                 kref_put(&io_req->refcount, bnx2fc_cmd_release);
942                 break;
943
944         case BNX2FC_SEQ_CLEANUP:
945                 BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n",
946                               io_req->xid);
947                 bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state);
948                 kref_put(&io_req->refcount, bnx2fc_cmd_release);
949                 break;
950
951         default:
952                 printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type);
953                 break;
954         }
955         spin_unlock_bh(&tgt->tgt_lock);
956 }
957
958 void bnx2fc_arm_cq(struct bnx2fc_rport *tgt)
959 {
960         struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db;
961         u32 msg;
962
963         wmb();
964         rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit <<
965                         FCOE_CQE_TOGGLE_BIT_SHIFT);
966         msg = *((u32 *)rx_db);
967         writel(cpu_to_le32(msg), tgt->ctx_base);
968
969 }
970
971 static struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe,
972                                              unsigned char *rq_data, u8 num_rq,
973                                              struct fcoe_task_ctx_entry *task)
974 {
975         struct bnx2fc_work *work;
976         work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC);
977         if (!work)
978                 return NULL;
979
980         INIT_LIST_HEAD(&work->list);
981         work->tgt = tgt;
982         work->wqe = wqe;
983         work->num_rq = num_rq;
984         work->task = task;
985         if (rq_data)
986                 memcpy(work->rq_data, rq_data, BNX2FC_RQ_BUF_SZ);
987
988         return work;
989 }
990
991 /* Pending work request completion */
992 static bool bnx2fc_pending_work(struct bnx2fc_rport *tgt, unsigned int wqe)
993 {
994         unsigned int cpu = wqe % num_possible_cpus();
995         struct bnx2fc_percpu_s *fps;
996         struct bnx2fc_work *work;
997         struct fcoe_task_ctx_entry *task;
998         struct fcoe_task_ctx_entry *task_page;
999         struct fcoe_port *port = tgt->port;
1000         struct bnx2fc_interface *interface = port->priv;
1001         struct bnx2fc_hba *hba = interface->hba;
1002         unsigned char *rq_data = NULL;
1003         unsigned char rq_data_buff[BNX2FC_RQ_BUF_SZ];
1004         int task_idx, index;
1005         u16 xid;
1006         u8 num_rq;
1007         int i;
1008
1009         xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
1010         if (xid >= hba->max_tasks) {
1011                 pr_err(PFX "ERROR:xid out of range\n");
1012                 return false;
1013         }
1014
1015         task_idx = xid / BNX2FC_TASKS_PER_PAGE;
1016         index = xid % BNX2FC_TASKS_PER_PAGE;
1017         task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx];
1018         task = &task_page[index];
1019
1020         num_rq = ((task->rxwr_txrd.var_ctx.rx_flags &
1021                    FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >>
1022                   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT);
1023
1024         memset(rq_data_buff, 0, BNX2FC_RQ_BUF_SZ);
1025
1026         if (!num_rq)
1027                 goto num_rq_zero;
1028
1029         rq_data = bnx2fc_get_next_rqe(tgt, 1);
1030
1031         if (num_rq > 1) {
1032                 /* We do not need extra sense data */
1033                 for (i = 1; i < num_rq; i++)
1034                         bnx2fc_get_next_rqe(tgt, 1);
1035         }
1036
1037         if (rq_data)
1038                 memcpy(rq_data_buff, rq_data, BNX2FC_RQ_BUF_SZ);
1039
1040         /* return RQ entries */
1041         for (i = 0; i < num_rq; i++)
1042                 bnx2fc_return_rqe(tgt, 1);
1043
1044 num_rq_zero:
1045
1046         fps = &per_cpu(bnx2fc_percpu, cpu);
1047         spin_lock_bh(&fps->fp_work_lock);
1048         if (fps->iothread) {
1049                 work = bnx2fc_alloc_work(tgt, wqe, rq_data_buff,
1050                                          num_rq, task);
1051                 if (work) {
1052                         list_add_tail(&work->list, &fps->work_list);
1053                         wake_up_process(fps->iothread);
1054                         spin_unlock_bh(&fps->fp_work_lock);
1055                         return true;
1056                 }
1057         }
1058         spin_unlock_bh(&fps->fp_work_lock);
1059         bnx2fc_process_cq_compl(tgt, wqe,
1060                                 rq_data_buff, num_rq, task);
1061
1062         return true;
1063 }
1064
1065 int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt)
1066 {
1067         struct fcoe_cqe *cq;
1068         u32 cq_cons;
1069         struct fcoe_cqe *cqe;
1070         u32 num_free_sqes = 0;
1071         u32 num_cqes = 0;
1072         u16 wqe;
1073
1074         /*
1075          * cq_lock is a low contention lock used to protect
1076          * the CQ data structure from being freed up during
1077          * the upload operation
1078          */
1079         spin_lock_bh(&tgt->cq_lock);
1080
1081         if (!tgt->cq) {
1082                 printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n");
1083                 spin_unlock_bh(&tgt->cq_lock);
1084                 return 0;
1085         }
1086         cq = tgt->cq;
1087         cq_cons = tgt->cq_cons_idx;
1088         cqe = &cq[cq_cons];
1089
1090         while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) ==
1091                (tgt->cq_curr_toggle_bit <<
1092                FCOE_CQE_TOGGLE_BIT_SHIFT)) {
1093
1094                 /* new entry on the cq */
1095                 if (wqe & FCOE_CQE_CQE_TYPE) {
1096                         /* Unsolicited event notification */
1097                         bnx2fc_process_unsol_compl(tgt, wqe);
1098                 } else {
1099                         if (bnx2fc_pending_work(tgt, wqe))
1100                                 num_free_sqes++;
1101                 }
1102                 cqe++;
1103                 tgt->cq_cons_idx++;
1104                 num_cqes++;
1105
1106                 if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) {
1107                         tgt->cq_cons_idx = 0;
1108                         cqe = cq;
1109                         tgt->cq_curr_toggle_bit =
1110                                 1 - tgt->cq_curr_toggle_bit;
1111                 }
1112         }
1113         if (num_cqes) {
1114                 /* Arm CQ only if doorbell is mapped */
1115                 if (tgt->ctx_base)
1116                         bnx2fc_arm_cq(tgt);
1117                 atomic_add(num_free_sqes, &tgt->free_sqes);
1118         }
1119         spin_unlock_bh(&tgt->cq_lock);
1120         return 0;
1121 }
1122
1123 /**
1124  * bnx2fc_fastpath_notification - process global event queue (KCQ)
1125  *
1126  * @hba:                adapter structure pointer
1127  * @new_cqe_kcqe:       pointer to newly DMA'd KCQ entry
1128  *
1129  * Fast path event notification handler
1130  */
1131 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
1132                                         struct fcoe_kcqe *new_cqe_kcqe)
1133 {
1134         u32 conn_id = new_cqe_kcqe->fcoe_conn_id;
1135         struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id];
1136
1137         if (!tgt) {
1138                 printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id);
1139                 return;
1140         }
1141
1142         bnx2fc_process_new_cqes(tgt);
1143 }
1144
1145 /**
1146  * bnx2fc_process_ofld_cmpl - process FCoE session offload completion
1147  *
1148  * @hba:        adapter structure pointer
1149  * @ofld_kcqe:  connection offload kcqe pointer
1150  *
1151  * handle session offload completion, enable the session if offload is
1152  * successful.
1153  */
1154 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
1155                                         struct fcoe_kcqe *ofld_kcqe)
1156 {
1157         struct bnx2fc_rport             *tgt;
1158         struct bnx2fc_interface         *interface;
1159         u32                             conn_id;
1160         u32                             context_id;
1161
1162         conn_id = ofld_kcqe->fcoe_conn_id;
1163         context_id = ofld_kcqe->fcoe_conn_context_id;
1164         tgt = hba->tgt_ofld_list[conn_id];
1165         if (!tgt) {
1166                 printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n");
1167                 return;
1168         }
1169         BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n",
1170                 ofld_kcqe->fcoe_conn_context_id);
1171         interface = tgt->port->priv;
1172         if (hba != interface->hba) {
1173                 printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mis-match\n");
1174                 goto ofld_cmpl_err;
1175         }
1176         /*
1177          * cnic has allocated a context_id for this session; use this
1178          * while enabling the session.
1179          */
1180         tgt->context_id = context_id;
1181         if (ofld_kcqe->completion_status) {
1182                 if (ofld_kcqe->completion_status ==
1183                                 FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) {
1184                         printk(KERN_ERR PFX "unable to allocate FCoE context "
1185                                 "resources\n");
1186                         set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags);
1187                 }
1188         } else {
1189                 /* FW offload request successfully completed */
1190                 set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1191         }
1192 ofld_cmpl_err:
1193         set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1194         wake_up_interruptible(&tgt->ofld_wait);
1195 }
1196
1197 /**
1198  * bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion
1199  *
1200  * @hba:        adapter structure pointer
1201  * @ofld_kcqe:  connection offload kcqe pointer
1202  *
1203  * handle session enable completion, mark the rport as ready
1204  */
1205
1206 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
1207                                                 struct fcoe_kcqe *ofld_kcqe)
1208 {
1209         struct bnx2fc_rport             *tgt;
1210         struct bnx2fc_interface         *interface;
1211         u32                             conn_id;
1212         u32                             context_id;
1213
1214         context_id = ofld_kcqe->fcoe_conn_context_id;
1215         conn_id = ofld_kcqe->fcoe_conn_id;
1216         tgt = hba->tgt_ofld_list[conn_id];
1217         if (!tgt) {
1218                 printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n");
1219                 return;
1220         }
1221
1222         BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n",
1223                 ofld_kcqe->fcoe_conn_context_id);
1224
1225         /*
1226          * context_id should be the same for this target during offload
1227          * and enable
1228          */
1229         if (tgt->context_id != context_id) {
1230                 printk(KERN_ERR PFX "context id mis-match\n");
1231                 return;
1232         }
1233         interface = tgt->port->priv;
1234         if (hba != interface->hba) {
1235                 printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mis-match\n");
1236                 goto enbl_cmpl_err;
1237         }
1238         if (!ofld_kcqe->completion_status)
1239                 /* enable successful - rport ready for issuing IOs */
1240                 set_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1241
1242 enbl_cmpl_err:
1243         set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1244         wake_up_interruptible(&tgt->ofld_wait);
1245 }
1246
1247 static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba,
1248                                         struct fcoe_kcqe *disable_kcqe)
1249 {
1250
1251         struct bnx2fc_rport             *tgt;
1252         u32                             conn_id;
1253
1254         conn_id = disable_kcqe->fcoe_conn_id;
1255         tgt = hba->tgt_ofld_list[conn_id];
1256         if (!tgt) {
1257                 printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n");
1258                 return;
1259         }
1260
1261         BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id);
1262
1263         if (disable_kcqe->completion_status) {
1264                 printk(KERN_ERR PFX "Disable failed with cmpl status %d\n",
1265                         disable_kcqe->completion_status);
1266                 set_bit(BNX2FC_FLAG_DISABLE_FAILED, &tgt->flags);
1267                 set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1268                 wake_up_interruptible(&tgt->upld_wait);
1269         } else {
1270                 /* disable successful */
1271                 BNX2FC_TGT_DBG(tgt, "disable successful\n");
1272                 clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1273                 clear_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1274                 set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1275                 set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1276                 wake_up_interruptible(&tgt->upld_wait);
1277         }
1278 }
1279
1280 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
1281                                         struct fcoe_kcqe *destroy_kcqe)
1282 {
1283         struct bnx2fc_rport             *tgt;
1284         u32                             conn_id;
1285
1286         conn_id = destroy_kcqe->fcoe_conn_id;
1287         tgt = hba->tgt_ofld_list[conn_id];
1288         if (!tgt) {
1289                 printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n");
1290                 return;
1291         }
1292
1293         BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id);
1294
1295         if (destroy_kcqe->completion_status) {
1296                 printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n",
1297                         destroy_kcqe->completion_status);
1298                 return;
1299         } else {
1300                 /* destroy successful */
1301                 BNX2FC_TGT_DBG(tgt, "upload successful\n");
1302                 clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1303                 set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags);
1304                 set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1305                 wake_up_interruptible(&tgt->upld_wait);
1306         }
1307 }
1308
1309 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code)
1310 {
1311         switch (err_code) {
1312         case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE:
1313                 printk(KERN_ERR PFX "init_failure due to invalid opcode\n");
1314                 break;
1315
1316         case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE:
1317                 printk(KERN_ERR PFX "init failed due to ctx alloc failure\n");
1318                 break;
1319
1320         case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR:
1321                 printk(KERN_ERR PFX "init_failure due to NIC error\n");
1322                 break;
1323         case FCOE_KCQE_COMPLETION_STATUS_ERROR:
1324                 printk(KERN_ERR PFX "init failure due to compl status err\n");
1325                 break;
1326         case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION:
1327                 printk(KERN_ERR PFX "init failure due to HSI mismatch\n");
1328                 break;
1329         default:
1330                 printk(KERN_ERR PFX "Unknown Error code %d\n", err_code);
1331         }
1332 }
1333
1334 /**
1335  * bnx2fc_indicae_kcqe - process KCQE
1336  *
1337  * @context:    adapter structure pointer
1338  * @kcq:        kcqe pointer
1339  * @num_cqe:    Number of completion queue elements
1340  *
1341  * Generic KCQ event handler
1342  */
1343 void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[],
1344                                         u32 num_cqe)
1345 {
1346         struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context;
1347         int i = 0;
1348         struct fcoe_kcqe *kcqe = NULL;
1349
1350         while (i < num_cqe) {
1351                 kcqe = (struct fcoe_kcqe *) kcq[i++];
1352
1353                 switch (kcqe->op_code) {
1354                 case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION:
1355                         bnx2fc_fastpath_notification(hba, kcqe);
1356                         break;
1357
1358                 case FCOE_KCQE_OPCODE_OFFLOAD_CONN:
1359                         bnx2fc_process_ofld_cmpl(hba, kcqe);
1360                         break;
1361
1362                 case FCOE_KCQE_OPCODE_ENABLE_CONN:
1363                         bnx2fc_process_enable_conn_cmpl(hba, kcqe);
1364                         break;
1365
1366                 case FCOE_KCQE_OPCODE_INIT_FUNC:
1367                         if (kcqe->completion_status !=
1368                                         FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1369                                 bnx2fc_init_failure(hba,
1370                                                 kcqe->completion_status);
1371                         } else {
1372                                 set_bit(ADAPTER_STATE_UP, &hba->adapter_state);
1373                                 bnx2fc_get_link_state(hba);
1374                                 printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n",
1375                                         (u8)hba->pcidev->bus->number);
1376                         }
1377                         break;
1378
1379                 case FCOE_KCQE_OPCODE_DESTROY_FUNC:
1380                         if (kcqe->completion_status !=
1381                                         FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1382
1383                                 printk(KERN_ERR PFX "DESTROY failed\n");
1384                         } else {
1385                                 printk(KERN_ERR PFX "DESTROY success\n");
1386                         }
1387                         set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags);
1388                         wake_up_interruptible(&hba->destroy_wait);
1389                         break;
1390
1391                 case FCOE_KCQE_OPCODE_DISABLE_CONN:
1392                         bnx2fc_process_conn_disable_cmpl(hba, kcqe);
1393                         break;
1394
1395                 case FCOE_KCQE_OPCODE_DESTROY_CONN:
1396                         bnx2fc_process_conn_destroy_cmpl(hba, kcqe);
1397                         break;
1398
1399                 case FCOE_KCQE_OPCODE_STAT_FUNC:
1400                         if (kcqe->completion_status !=
1401                             FCOE_KCQE_COMPLETION_STATUS_SUCCESS)
1402                                 printk(KERN_ERR PFX "STAT failed\n");
1403                         complete(&hba->stat_req_done);
1404                         break;
1405
1406                 case FCOE_KCQE_OPCODE_FCOE_ERROR:
1407                         /* fall thru */
1408                 default:
1409                         printk(KERN_ERR PFX "unknown opcode 0x%x\n",
1410                                                                 kcqe->op_code);
1411                 }
1412         }
1413 }
1414
1415 void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid)
1416 {
1417         struct fcoe_sqe *sqe;
1418
1419         sqe = &tgt->sq[tgt->sq_prod_idx];
1420
1421         /* Fill SQ WQE */
1422         sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT;
1423         sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT;
1424
1425         /* Advance SQ Prod Idx */
1426         if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) {
1427                 tgt->sq_prod_idx = 0;
1428                 tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit;
1429         }
1430 }
1431
1432 void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt)
1433 {
1434         struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db;
1435         u32 msg;
1436
1437         wmb();
1438         sq_db->prod = tgt->sq_prod_idx |
1439                                 (tgt->sq_curr_toggle_bit << 15);
1440         msg = *((u32 *)sq_db);
1441         writel(cpu_to_le32(msg), tgt->ctx_base);
1442
1443 }
1444
1445 int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt)
1446 {
1447         u32 context_id = tgt->context_id;
1448         struct fcoe_port *port = tgt->port;
1449         u32 reg_off;
1450         resource_size_t reg_base;
1451         struct bnx2fc_interface *interface = port->priv;
1452         struct bnx2fc_hba *hba = interface->hba;
1453
1454         reg_base = pci_resource_start(hba->pcidev,
1455                                         BNX2X_DOORBELL_PCI_BAR);
1456         reg_off = (1 << BNX2X_DB_SHIFT) * (context_id & 0x1FFFF);
1457         tgt->ctx_base = ioremap(reg_base + reg_off, 4);
1458         if (!tgt->ctx_base)
1459                 return -ENOMEM;
1460         return 0;
1461 }
1462
1463 char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1464 {
1465         char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ);
1466
1467         if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX)
1468                 return NULL;
1469
1470         tgt->rq_cons_idx += num_items;
1471
1472         if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX)
1473                 tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX;
1474
1475         return buf;
1476 }
1477
1478 void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1479 {
1480         /* return the rq buffer */
1481         u32 next_prod_idx = tgt->rq_prod_idx + num_items;
1482         if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) {
1483                 /* Wrap around RQ */
1484                 next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX;
1485         }
1486         tgt->rq_prod_idx = next_prod_idx;
1487         tgt->conn_db->rq_prod = tgt->rq_prod_idx;
1488 }
1489
1490 void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req,
1491                                   struct fcoe_task_ctx_entry *task,
1492                                   struct bnx2fc_cmd *orig_io_req,
1493                                   u32 offset)
1494 {
1495         struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd;
1496         struct bnx2fc_rport *tgt = seq_clnp_req->tgt;
1497         struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl;
1498         struct fcoe_ext_mul_sges_ctx *sgl;
1499         u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP;
1500         u8 orig_task_type;
1501         u16 orig_xid = orig_io_req->xid;
1502         u32 context_id = tgt->context_id;
1503         u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma;
1504         u32 orig_offset = offset;
1505         int bd_count;
1506         int i;
1507
1508         memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1509
1510         if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1511                 orig_task_type = FCOE_TASK_TYPE_WRITE;
1512         else
1513                 orig_task_type = FCOE_TASK_TYPE_READ;
1514
1515         /* Tx flags */
1516         task->txwr_rxrd.const_ctx.tx_flags =
1517                                 FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP <<
1518                                 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1519         /* init flags */
1520         task->txwr_rxrd.const_ctx.init_flags = task_type <<
1521                                 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1522         task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1523                                 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1524         task->rxwr_txrd.const_ctx.init_flags = context_id <<
1525                                 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1526         task->rxwr_txrd.const_ctx.init_flags = context_id <<
1527                                 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1528
1529         task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1530
1531         task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0;
1532         task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset;
1533
1534         bd_count = orig_io_req->bd_tbl->bd_valid;
1535
1536         /* obtain the appropriate bd entry from relative offset */
1537         for (i = 0; i < bd_count; i++) {
1538                 if (offset < bd[i].buf_len)
1539                         break;
1540                 offset -= bd[i].buf_len;
1541         }
1542         phys_addr += (i * sizeof(struct fcoe_bd_ctx));
1543
1544         if (orig_task_type == FCOE_TASK_TYPE_WRITE) {
1545                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1546                                 (u32)phys_addr;
1547                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1548                                 (u32)((u64)phys_addr >> 32);
1549                 task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1550                                 bd_count;
1551                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off =
1552                                 offset; /* adjusted offset */
1553                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i;
1554         } else {
1555
1556                 /* Multiple SGEs were used for this IO */
1557                 sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1558                 sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr;
1559                 sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32);
1560                 sgl->mul_sgl.sgl_size = bd_count;
1561                 sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */
1562                 sgl->mul_sgl.cur_sge_idx = i;
1563
1564                 memset(&task->rxwr_only.rx_seq_ctx, 0,
1565                        sizeof(struct fcoe_rx_seq_ctx));
1566                 task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset;
1567                 task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset;
1568         }
1569 }
1570 void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req,
1571                               struct fcoe_task_ctx_entry *task,
1572                               u16 orig_xid)
1573 {
1574         u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP;
1575         struct bnx2fc_rport *tgt = io_req->tgt;
1576         u32 context_id = tgt->context_id;
1577
1578         memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1579
1580         /* Tx Write Rx Read */
1581         /* init flags */
1582         task->txwr_rxrd.const_ctx.init_flags = task_type <<
1583                                 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1584         task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1585                                 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1586         if (tgt->dev_type == TYPE_TAPE)
1587                 task->txwr_rxrd.const_ctx.init_flags |=
1588                                 FCOE_TASK_DEV_TYPE_TAPE <<
1589                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1590         else
1591                 task->txwr_rxrd.const_ctx.init_flags |=
1592                                 FCOE_TASK_DEV_TYPE_DISK <<
1593                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1594         task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1595
1596         /* Tx flags */
1597         task->txwr_rxrd.const_ctx.tx_flags =
1598                                 FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP <<
1599                                 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1600
1601         /* Rx Read Tx Write */
1602         task->rxwr_txrd.const_ctx.init_flags = context_id <<
1603                                 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1604         task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1605                                 FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1606 }
1607
1608 void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req,
1609                                 struct fcoe_task_ctx_entry *task)
1610 {
1611         struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
1612         struct bnx2fc_rport *tgt = io_req->tgt;
1613         struct fc_frame_header *fc_hdr;
1614         struct fcoe_ext_mul_sges_ctx *sgl;
1615         u8 task_type = 0;
1616         u64 *hdr;
1617         u64 temp_hdr[3];
1618         u32 context_id;
1619
1620
1621         /* Obtain task_type */
1622         if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) ||
1623             (io_req->cmd_type == BNX2FC_ELS)) {
1624                 task_type = FCOE_TASK_TYPE_MIDPATH;
1625         } else if (io_req->cmd_type == BNX2FC_ABTS) {
1626                 task_type = FCOE_TASK_TYPE_ABTS;
1627         }
1628
1629         memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1630
1631         /* Setup the task from io_req for easy reference */
1632         io_req->task = task;
1633
1634         BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n",
1635                 io_req->cmd_type, task_type);
1636
1637         /* Tx only */
1638         if ((task_type == FCOE_TASK_TYPE_MIDPATH) ||
1639             (task_type == FCOE_TASK_TYPE_UNSOLICITED)) {
1640                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1641                                 (u32)mp_req->mp_req_bd_dma;
1642                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1643                                 (u32)((u64)mp_req->mp_req_bd_dma >> 32);
1644                 task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1;
1645         }
1646
1647         /* Tx Write Rx Read */
1648         /* init flags */
1649         task->txwr_rxrd.const_ctx.init_flags = task_type <<
1650                                 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1651         if (tgt->dev_type == TYPE_TAPE)
1652                 task->txwr_rxrd.const_ctx.init_flags |=
1653                                 FCOE_TASK_DEV_TYPE_TAPE <<
1654                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1655         else
1656                 task->txwr_rxrd.const_ctx.init_flags |=
1657                                 FCOE_TASK_DEV_TYPE_DISK <<
1658                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1659         task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1660                                 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1661
1662         /* tx flags */
1663         task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT <<
1664                                 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1665
1666         /* Rx Write Tx Read */
1667         task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1668
1669         /* rx flags */
1670         task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1671                                 FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1672
1673         context_id = tgt->context_id;
1674         task->rxwr_txrd.const_ctx.init_flags = context_id <<
1675                                 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1676
1677         fc_hdr = &(mp_req->req_fc_hdr);
1678         if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1679                 fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid);
1680                 fc_hdr->fh_rx_id = htons(0xffff);
1681                 task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1682         } else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) {
1683                 fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid);
1684         }
1685
1686         /* Fill FC Header into middle path buffer */
1687         hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr;
1688         memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr));
1689         hdr[0] = cpu_to_be64(temp_hdr[0]);
1690         hdr[1] = cpu_to_be64(temp_hdr[1]);
1691         hdr[2] = cpu_to_be64(temp_hdr[2]);
1692
1693         /* Rx Only */
1694         if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1695                 sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1696
1697                 sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma;
1698                 sgl->mul_sgl.cur_sge_addr.hi =
1699                                 (u32)((u64)mp_req->mp_resp_bd_dma >> 32);
1700                 sgl->mul_sgl.sgl_size = 1;
1701         }
1702 }
1703
1704 void bnx2fc_init_task(struct bnx2fc_cmd *io_req,
1705                              struct fcoe_task_ctx_entry *task)
1706 {
1707         u8 task_type;
1708         struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1709         struct io_bdt *bd_tbl = io_req->bd_tbl;
1710         struct bnx2fc_rport *tgt = io_req->tgt;
1711         struct fcoe_cached_sge_ctx *cached_sge;
1712         struct fcoe_ext_mul_sges_ctx *sgl;
1713         int dev_type = tgt->dev_type;
1714         u64 *fcp_cmnd;
1715         u64 tmp_fcp_cmnd[4];
1716         u32 context_id;
1717         int cnt, i;
1718         int bd_count;
1719
1720         memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1721
1722         /* Setup the task from io_req for easy reference */
1723         io_req->task = task;
1724
1725         if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1726                 task_type = FCOE_TASK_TYPE_WRITE;
1727         else
1728                 task_type = FCOE_TASK_TYPE_READ;
1729
1730         /* Tx only */
1731         bd_count = bd_tbl->bd_valid;
1732         cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge;
1733         if (task_type == FCOE_TASK_TYPE_WRITE) {
1734                 if ((dev_type == TYPE_DISK) && (bd_count == 1)) {
1735                         struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1736
1737                         task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo =
1738                         cached_sge->cur_buf_addr.lo =
1739                                         fcoe_bd_tbl->buf_addr_lo;
1740                         task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi =
1741                         cached_sge->cur_buf_addr.hi =
1742                                         fcoe_bd_tbl->buf_addr_hi;
1743                         task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem =
1744                         cached_sge->cur_buf_rem =
1745                                         fcoe_bd_tbl->buf_len;
1746
1747                         task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1748                                 FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1749                 } else {
1750                         task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1751                                         (u32)bd_tbl->bd_tbl_dma;
1752                         task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1753                                         (u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1754                         task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1755                                         bd_tbl->bd_valid;
1756                 }
1757         }
1758
1759         /*Tx Write Rx Read */
1760         /* Init state to NORMAL */
1761         task->txwr_rxrd.const_ctx.init_flags |= task_type <<
1762                                 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1763         if (dev_type == TYPE_TAPE) {
1764                 task->txwr_rxrd.const_ctx.init_flags |=
1765                                 FCOE_TASK_DEV_TYPE_TAPE <<
1766                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1767                 io_req->rec_retry = 0;
1768                 io_req->rec_retry = 0;
1769         } else
1770                 task->txwr_rxrd.const_ctx.init_flags |=
1771                                 FCOE_TASK_DEV_TYPE_DISK <<
1772                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1773         task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1774                                 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1775         /* tx flags */
1776         task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL <<
1777                                 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1778
1779         /* Set initial seq counter */
1780         task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1;
1781
1782         /* Fill FCP_CMND IU */
1783         fcp_cmnd = (u64 *)
1784                     task->txwr_rxrd.union_ctx.fcp_cmd.opaque;
1785         bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)&tmp_fcp_cmnd);
1786
1787         /* swap fcp_cmnd */
1788         cnt = sizeof(struct fcp_cmnd) / sizeof(u64);
1789
1790         for (i = 0; i < cnt; i++) {
1791                 *fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]);
1792                 fcp_cmnd++;
1793         }
1794
1795         /* Rx Write Tx Read */
1796         task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1797
1798         context_id = tgt->context_id;
1799         task->rxwr_txrd.const_ctx.init_flags = context_id <<
1800                                 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1801
1802         /* rx flags */
1803         /* Set state to "waiting for the first packet" */
1804         task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1805                                 FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1806
1807         task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1808
1809         /* Rx Only */
1810         if (task_type != FCOE_TASK_TYPE_READ)
1811                 return;
1812
1813         sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1814         bd_count = bd_tbl->bd_valid;
1815
1816         if (dev_type == TYPE_DISK) {
1817                 if (bd_count == 1) {
1818
1819                         struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1820
1821                         cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1822                         cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1823                         cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1824                         task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1825                                 FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1826                 } else if (bd_count == 2) {
1827                         struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1828
1829                         cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1830                         cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1831                         cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1832
1833                         fcoe_bd_tbl++;
1834                         cached_sge->second_buf_addr.lo =
1835                                                  fcoe_bd_tbl->buf_addr_lo;
1836                         cached_sge->second_buf_addr.hi =
1837                                                 fcoe_bd_tbl->buf_addr_hi;
1838                         cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len;
1839                         task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1840                                 FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1841                 } else {
1842
1843                         sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1844                         sgl->mul_sgl.cur_sge_addr.hi =
1845                                         (u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1846                         sgl->mul_sgl.sgl_size = bd_count;
1847                 }
1848         } else {
1849                 sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1850                 sgl->mul_sgl.cur_sge_addr.hi =
1851                                 (u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1852                 sgl->mul_sgl.sgl_size = bd_count;
1853         }
1854 }
1855
1856 /**
1857  * bnx2fc_setup_task_ctx - allocate and map task context
1858  *
1859  * @hba:        pointer to adapter structure
1860  *
1861  * allocate memory for task context, and associated BD table to be used
1862  * by firmware
1863  *
1864  */
1865 int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba)
1866 {
1867         int rc = 0;
1868         struct regpair *task_ctx_bdt;
1869         dma_addr_t addr;
1870         int task_ctx_arr_sz;
1871         int i;
1872
1873         /*
1874          * Allocate task context bd table. A page size of bd table
1875          * can map 256 buffers. Each buffer contains 32 task context
1876          * entries. Hence the limit with one page is 8192 task context
1877          * entries.
1878          */
1879         hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
1880                                                   PAGE_SIZE,
1881                                                   &hba->task_ctx_bd_dma,
1882                                                   GFP_KERNEL);
1883         if (!hba->task_ctx_bd_tbl) {
1884                 printk(KERN_ERR PFX "unable to allocate task context BDT\n");
1885                 rc = -1;
1886                 goto out;
1887         }
1888
1889         /*
1890          * Allocate task_ctx which is an array of pointers pointing to
1891          * a page containing 32 task contexts
1892          */
1893         task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1894         hba->task_ctx = kzalloc((task_ctx_arr_sz * sizeof(void *)),
1895                                  GFP_KERNEL);
1896         if (!hba->task_ctx) {
1897                 printk(KERN_ERR PFX "unable to allocate task context array\n");
1898                 rc = -1;
1899                 goto out1;
1900         }
1901
1902         /*
1903          * Allocate task_ctx_dma which is an array of dma addresses
1904          */
1905         hba->task_ctx_dma = kmalloc((task_ctx_arr_sz *
1906                                         sizeof(dma_addr_t)), GFP_KERNEL);
1907         if (!hba->task_ctx_dma) {
1908                 printk(KERN_ERR PFX "unable to alloc context mapping array\n");
1909                 rc = -1;
1910                 goto out2;
1911         }
1912
1913         task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl;
1914         for (i = 0; i < task_ctx_arr_sz; i++) {
1915
1916                 hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev,
1917                                                       PAGE_SIZE,
1918                                                       &hba->task_ctx_dma[i],
1919                                                       GFP_KERNEL);
1920                 if (!hba->task_ctx[i]) {
1921                         printk(KERN_ERR PFX "unable to alloc task context\n");
1922                         rc = -1;
1923                         goto out3;
1924                 }
1925                 addr = (u64)hba->task_ctx_dma[i];
1926                 task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32);
1927                 task_ctx_bdt->lo = cpu_to_le32((u32)addr);
1928                 task_ctx_bdt++;
1929         }
1930         return 0;
1931
1932 out3:
1933         for (i = 0; i < task_ctx_arr_sz; i++) {
1934                 if (hba->task_ctx[i]) {
1935
1936                         dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1937                                 hba->task_ctx[i], hba->task_ctx_dma[i]);
1938                         hba->task_ctx[i] = NULL;
1939                 }
1940         }
1941
1942         kfree(hba->task_ctx_dma);
1943         hba->task_ctx_dma = NULL;
1944 out2:
1945         kfree(hba->task_ctx);
1946         hba->task_ctx = NULL;
1947 out1:
1948         dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1949                         hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma);
1950         hba->task_ctx_bd_tbl = NULL;
1951 out:
1952         return rc;
1953 }
1954
1955 void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba)
1956 {
1957         int task_ctx_arr_sz;
1958         int i;
1959
1960         if (hba->task_ctx_bd_tbl) {
1961                 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1962                                     hba->task_ctx_bd_tbl,
1963                                     hba->task_ctx_bd_dma);
1964                 hba->task_ctx_bd_tbl = NULL;
1965         }
1966
1967         task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1968         if (hba->task_ctx) {
1969                 for (i = 0; i < task_ctx_arr_sz; i++) {
1970                         if (hba->task_ctx[i]) {
1971                                 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1972                                                     hba->task_ctx[i],
1973                                                     hba->task_ctx_dma[i]);
1974                                 hba->task_ctx[i] = NULL;
1975                         }
1976                 }
1977                 kfree(hba->task_ctx);
1978                 hba->task_ctx = NULL;
1979         }
1980
1981         kfree(hba->task_ctx_dma);
1982         hba->task_ctx_dma = NULL;
1983 }
1984
1985 static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba)
1986 {
1987         int i;
1988         int segment_count;
1989         u32 *pbl;
1990
1991         if (hba->hash_tbl_segments) {
1992
1993                 pbl = hba->hash_tbl_pbl;
1994                 if (pbl) {
1995                         segment_count = hba->hash_tbl_segment_count;
1996                         for (i = 0; i < segment_count; ++i) {
1997                                 dma_addr_t dma_address;
1998
1999                                 dma_address = le32_to_cpu(*pbl);
2000                                 ++pbl;
2001                                 dma_address += ((u64)le32_to_cpu(*pbl)) << 32;
2002                                 ++pbl;
2003                                 dma_free_coherent(&hba->pcidev->dev,
2004                                                   BNX2FC_HASH_TBL_CHUNK_SIZE,
2005                                                   hba->hash_tbl_segments[i],
2006                                                   dma_address);
2007                         }
2008                 }
2009
2010                 kfree(hba->hash_tbl_segments);
2011                 hba->hash_tbl_segments = NULL;
2012         }
2013
2014         if (hba->hash_tbl_pbl) {
2015                 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2016                                     hba->hash_tbl_pbl,
2017                                     hba->hash_tbl_pbl_dma);
2018                 hba->hash_tbl_pbl = NULL;
2019         }
2020 }
2021
2022 static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba)
2023 {
2024         int i;
2025         int hash_table_size;
2026         int segment_count;
2027         int segment_array_size;
2028         int dma_segment_array_size;
2029         dma_addr_t *dma_segment_array;
2030         u32 *pbl;
2031
2032         hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
2033                 sizeof(struct fcoe_hash_table_entry);
2034
2035         segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1;
2036         segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE;
2037         hba->hash_tbl_segment_count = segment_count;
2038
2039         segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments);
2040         hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL);
2041         if (!hba->hash_tbl_segments) {
2042                 printk(KERN_ERR PFX "hash table pointers alloc failed\n");
2043                 return -ENOMEM;
2044         }
2045         dma_segment_array_size = segment_count * sizeof(*dma_segment_array);
2046         dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL);
2047         if (!dma_segment_array) {
2048                 printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n");
2049                 goto cleanup_ht;
2050         }
2051
2052         for (i = 0; i < segment_count; ++i) {
2053                 hba->hash_tbl_segments[i] = dma_alloc_coherent(&hba->pcidev->dev,
2054                                                                BNX2FC_HASH_TBL_CHUNK_SIZE,
2055                                                                &dma_segment_array[i],
2056                                                                GFP_KERNEL);
2057                 if (!hba->hash_tbl_segments[i]) {
2058                         printk(KERN_ERR PFX "hash segment alloc failed\n");
2059                         goto cleanup_dma;
2060                 }
2061         }
2062
2063         hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
2064                                                &hba->hash_tbl_pbl_dma,
2065                                                GFP_KERNEL);
2066         if (!hba->hash_tbl_pbl) {
2067                 printk(KERN_ERR PFX "hash table pbl alloc failed\n");
2068                 goto cleanup_dma;
2069         }
2070
2071         pbl = hba->hash_tbl_pbl;
2072         for (i = 0; i < segment_count; ++i) {
2073                 u64 paddr = dma_segment_array[i];
2074                 *pbl = cpu_to_le32((u32) paddr);
2075                 ++pbl;
2076                 *pbl = cpu_to_le32((u32) (paddr >> 32));
2077                 ++pbl;
2078         }
2079         pbl = hba->hash_tbl_pbl;
2080         i = 0;
2081         while (*pbl && *(pbl + 1)) {
2082                 ++pbl;
2083                 ++pbl;
2084                 ++i;
2085         }
2086         kfree(dma_segment_array);
2087         return 0;
2088
2089 cleanup_dma:
2090         for (i = 0; i < segment_count; ++i) {
2091                 if (hba->hash_tbl_segments[i])
2092                         dma_free_coherent(&hba->pcidev->dev,
2093                                             BNX2FC_HASH_TBL_CHUNK_SIZE,
2094                                             hba->hash_tbl_segments[i],
2095                                             dma_segment_array[i]);
2096         }
2097
2098         kfree(dma_segment_array);
2099
2100 cleanup_ht:
2101         kfree(hba->hash_tbl_segments);
2102         hba->hash_tbl_segments = NULL;
2103         return -ENOMEM;
2104 }
2105
2106 /**
2107  * bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer
2108  *
2109  * @hba:        Pointer to adapter structure
2110  *
2111  */
2112 int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba)
2113 {
2114         u64 addr;
2115         u32 mem_size;
2116         int i;
2117
2118         if (bnx2fc_allocate_hash_table(hba))
2119                 return -ENOMEM;
2120
2121         mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2122         hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2123                                                   &hba->t2_hash_tbl_ptr_dma,
2124                                                   GFP_KERNEL);
2125         if (!hba->t2_hash_tbl_ptr) {
2126                 printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n");
2127                 bnx2fc_free_fw_resc(hba);
2128                 return -ENOMEM;
2129         }
2130
2131         mem_size = BNX2FC_NUM_MAX_SESS *
2132                                 sizeof(struct fcoe_t2_hash_table_entry);
2133         hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2134                                               &hba->t2_hash_tbl_dma,
2135                                               GFP_KERNEL);
2136         if (!hba->t2_hash_tbl) {
2137                 printk(KERN_ERR PFX "unable to allocate t2 hash table\n");
2138                 bnx2fc_free_fw_resc(hba);
2139                 return -ENOMEM;
2140         }
2141         for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) {
2142                 addr = (unsigned long) hba->t2_hash_tbl_dma +
2143                          ((i+1) * sizeof(struct fcoe_t2_hash_table_entry));
2144                 hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff;
2145                 hba->t2_hash_tbl[i].next.hi = addr >> 32;
2146         }
2147
2148         hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev,
2149                                                PAGE_SIZE, &hba->dummy_buf_dma,
2150                                                GFP_KERNEL);
2151         if (!hba->dummy_buffer) {
2152                 printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n");
2153                 bnx2fc_free_fw_resc(hba);
2154                 return -ENOMEM;
2155         }
2156
2157         hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
2158                                                &hba->stats_buf_dma,
2159                                                GFP_KERNEL);
2160         if (!hba->stats_buffer) {
2161                 printk(KERN_ERR PFX "unable to alloc Stats Buffer\n");
2162                 bnx2fc_free_fw_resc(hba);
2163                 return -ENOMEM;
2164         }
2165
2166         return 0;
2167 }
2168
2169 void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba)
2170 {
2171         u32 mem_size;
2172
2173         if (hba->stats_buffer) {
2174                 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2175                                   hba->stats_buffer, hba->stats_buf_dma);
2176                 hba->stats_buffer = NULL;
2177         }
2178
2179         if (hba->dummy_buffer) {
2180                 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2181                                   hba->dummy_buffer, hba->dummy_buf_dma);
2182                 hba->dummy_buffer = NULL;
2183         }
2184
2185         if (hba->t2_hash_tbl_ptr) {
2186                 mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2187                 dma_free_coherent(&hba->pcidev->dev, mem_size,
2188                                     hba->t2_hash_tbl_ptr,
2189                                     hba->t2_hash_tbl_ptr_dma);
2190                 hba->t2_hash_tbl_ptr = NULL;
2191         }
2192
2193         if (hba->t2_hash_tbl) {
2194                 mem_size = BNX2FC_NUM_MAX_SESS *
2195                             sizeof(struct fcoe_t2_hash_table_entry);
2196                 dma_free_coherent(&hba->pcidev->dev, mem_size,
2197                                     hba->t2_hash_tbl, hba->t2_hash_tbl_dma);
2198                 hba->t2_hash_tbl = NULL;
2199         }
2200         bnx2fc_free_hash_table(hba);
2201 }