Merge branch 'remotes/lorenzo/pci/xilinx'
[linux-2.6-microblaze.git] / drivers / scsi / bnx2fc / bnx2fc_hwi.c
1 /* bnx2fc_hwi.c: QLogic Linux FCoE offload driver.
2  * This file contains the code that low level functions that interact
3  * with 57712 FCoE firmware.
4  *
5  * Copyright (c) 2008-2013 Broadcom Corporation
6  * Copyright (c) 2014-2016 QLogic Corporation
7  * Copyright (c) 2016-2017 Cavium Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation.
12  *
13  * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
14  */
15
16 #include "bnx2fc.h"
17
18 DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu);
19
20 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
21                                         struct fcoe_kcqe *new_cqe_kcqe);
22 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
23                                         struct fcoe_kcqe *ofld_kcqe);
24 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
25                                                 struct fcoe_kcqe *ofld_kcqe);
26 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code);
27 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
28                                         struct fcoe_kcqe *destroy_kcqe);
29
30 int bnx2fc_send_stat_req(struct bnx2fc_hba *hba)
31 {
32         struct fcoe_kwqe_stat stat_req;
33         struct kwqe *kwqe_arr[2];
34         int num_kwqes = 1;
35         int rc = 0;
36
37         memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat));
38         stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT;
39         stat_req.hdr.flags =
40                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
41
42         stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma;
43         stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32);
44
45         kwqe_arr[0] = (struct kwqe *) &stat_req;
46
47         if (hba->cnic && hba->cnic->submit_kwqes)
48                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
49
50         return rc;
51 }
52
53 /**
54  * bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w
55  *
56  * @hba:        adapter structure pointer
57  *
58  * Send down FCoE firmware init KWQEs which initiates the initial handshake
59  *      with the f/w.
60  *
61  */
62 int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba)
63 {
64         struct fcoe_kwqe_init1 fcoe_init1;
65         struct fcoe_kwqe_init2 fcoe_init2;
66         struct fcoe_kwqe_init3 fcoe_init3;
67         struct kwqe *kwqe_arr[3];
68         int num_kwqes = 3;
69         int rc = 0;
70
71         if (!hba->cnic) {
72                 printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n");
73                 return -ENODEV;
74         }
75
76         /* fill init1 KWQE */
77         memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1));
78         fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1;
79         fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
80                                         FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
81
82         fcoe_init1.num_tasks = hba->max_tasks;
83         fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX;
84         fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX;
85         fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ;
86         fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX;
87         fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma;
88         fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32);
89         fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma;
90         fcoe_init1.task_list_pbl_addr_hi =
91                                 (u32) ((u64) hba->task_ctx_bd_dma >> 32);
92         fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU;
93
94         fcoe_init1.flags = (PAGE_SHIFT <<
95                                 FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT);
96
97         fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG;
98
99         /* fill init2 KWQE */
100         memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2));
101         fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2;
102         fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
103                                         FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
104
105         fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION;
106         fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION;
107
108
109         fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma;
110         fcoe_init2.hash_tbl_pbl_addr_hi = (u32)
111                                            ((u64) hba->hash_tbl_pbl_dma >> 32);
112
113         fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma;
114         fcoe_init2.t2_hash_tbl_addr_hi = (u32)
115                                           ((u64) hba->t2_hash_tbl_dma >> 32);
116
117         fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma;
118         fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32)
119                                         ((u64) hba->t2_hash_tbl_ptr_dma >> 32);
120
121         fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS;
122
123         /* fill init3 KWQE */
124         memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3));
125         fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3;
126         fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
127                                         FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
128         fcoe_init3.error_bit_map_lo = 0xffffffff;
129         fcoe_init3.error_bit_map_hi = 0xffffffff;
130
131         /*
132          * enable both cached connection and cached tasks
133          * 0 = none, 1 = cached connection, 2 = cached tasks, 3 = both
134          */
135         fcoe_init3.perf_config = 3;
136
137         kwqe_arr[0] = (struct kwqe *) &fcoe_init1;
138         kwqe_arr[1] = (struct kwqe *) &fcoe_init2;
139         kwqe_arr[2] = (struct kwqe *) &fcoe_init3;
140
141         if (hba->cnic && hba->cnic->submit_kwqes)
142                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
143
144         return rc;
145 }
146 int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba)
147 {
148         struct fcoe_kwqe_destroy fcoe_destroy;
149         struct kwqe *kwqe_arr[2];
150         int num_kwqes = 1;
151         int rc = -1;
152
153         /* fill destroy KWQE */
154         memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy));
155         fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY;
156         fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
157                                         FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
158         kwqe_arr[0] = (struct kwqe *) &fcoe_destroy;
159
160         if (hba->cnic && hba->cnic->submit_kwqes)
161                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
162         return rc;
163 }
164
165 /**
166  * bnx2fc_send_session_ofld_req - initiates FCoE Session offload process
167  *
168  * @port:               port structure pointer
169  * @tgt:                bnx2fc_rport structure pointer
170  */
171 int bnx2fc_send_session_ofld_req(struct fcoe_port *port,
172                                         struct bnx2fc_rport *tgt)
173 {
174         struct fc_lport *lport = port->lport;
175         struct bnx2fc_interface *interface = port->priv;
176         struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
177         struct bnx2fc_hba *hba = interface->hba;
178         struct kwqe *kwqe_arr[4];
179         struct fcoe_kwqe_conn_offload1 ofld_req1;
180         struct fcoe_kwqe_conn_offload2 ofld_req2;
181         struct fcoe_kwqe_conn_offload3 ofld_req3;
182         struct fcoe_kwqe_conn_offload4 ofld_req4;
183         struct fc_rport_priv *rdata = tgt->rdata;
184         struct fc_rport *rport = tgt->rport;
185         int num_kwqes = 4;
186         u32 port_id;
187         int rc = 0;
188         u16 conn_id;
189
190         /* Initialize offload request 1 structure */
191         memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1));
192
193         ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1;
194         ofld_req1.hdr.flags =
195                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
196
197
198         conn_id = (u16)tgt->fcoe_conn_id;
199         ofld_req1.fcoe_conn_id = conn_id;
200
201
202         ofld_req1.sq_addr_lo = (u32) tgt->sq_dma;
203         ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32);
204
205         ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma;
206         ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32);
207
208         ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma;
209         ofld_req1.rq_first_pbe_addr_hi =
210                                 (u32)((u64) tgt->rq_dma >> 32);
211
212         ofld_req1.rq_prod = 0x8000;
213
214         /* Initialize offload request 2 structure */
215         memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2));
216
217         ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2;
218         ofld_req2.hdr.flags =
219                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
220
221         ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size;
222
223         ofld_req2.cq_addr_lo = (u32) tgt->cq_dma;
224         ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32);
225
226         ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma;
227         ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32);
228
229         ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma;
230         ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32);
231
232         /* Initialize offload request 3 structure */
233         memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3));
234
235         ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3;
236         ofld_req3.hdr.flags =
237                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
238
239         ofld_req3.vlan_tag = interface->vlan_id <<
240                                 FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT;
241         ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT;
242
243         port_id = fc_host_port_id(lport->host);
244         if (port_id == 0) {
245                 BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n");
246                 return -EINVAL;
247         }
248
249         /*
250          * Store s_id of the initiator for further reference. This will
251          * be used during disable/destroy during linkdown processing as
252          * when the lport is reset, the port_id also is reset to 0
253          */
254         tgt->sid = port_id;
255         ofld_req3.s_id[0] = (port_id & 0x000000FF);
256         ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8;
257         ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16;
258
259         port_id = rport->port_id;
260         ofld_req3.d_id[0] = (port_id & 0x000000FF);
261         ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8;
262         ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16;
263
264         ofld_req3.tx_total_conc_seqs = rdata->max_seq;
265
266         ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq;
267         ofld_req3.rx_max_fc_pay_len  = lport->mfs;
268
269         ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS;
270         ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS;
271         ofld_req3.rx_open_seqs_exch_c3 = 1;
272
273         ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma;
274         ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32);
275
276         /* set mul_n_port_ids supported flag to 0, until it is supported */
277         ofld_req3.flags = 0;
278         /*
279         ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) <<
280                             FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT);
281         */
282         /* Info from PLOGI response */
283         ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) <<
284                              FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT);
285
286         ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
287                              FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT);
288
289         /*
290          * Info from PRLI response, this info is used for sequence level error
291          * recovery support
292          */
293         if (tgt->dev_type == TYPE_TAPE) {
294                 ofld_req3.flags |= 1 <<
295                                     FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT;
296                 ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED)
297                                     ? 1 : 0) <<
298                                     FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT);
299         }
300
301         /* vlan flag */
302         ofld_req3.flags |= (interface->vlan_enabled <<
303                             FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT);
304
305         /* C2_VALID and ACK flags are not set as they are not supported */
306
307
308         /* Initialize offload request 4 structure */
309         memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4));
310         ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4;
311         ofld_req4.hdr.flags =
312                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
313
314         ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20;
315
316
317         ofld_req4.src_mac_addr_lo[0] =  port->data_src_addr[5];
318                                                         /* local mac */
319         ofld_req4.src_mac_addr_lo[1] =  port->data_src_addr[4];
320         ofld_req4.src_mac_addr_mid[0] =  port->data_src_addr[3];
321         ofld_req4.src_mac_addr_mid[1] =  port->data_src_addr[2];
322         ofld_req4.src_mac_addr_hi[0] =  port->data_src_addr[1];
323         ofld_req4.src_mac_addr_hi[1] =  port->data_src_addr[0];
324         ofld_req4.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
325                                                         /* fcf mac */
326         ofld_req4.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
327         ofld_req4.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
328         ofld_req4.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
329         ofld_req4.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
330         ofld_req4.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
331
332         ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma;
333         ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32);
334
335         ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma;
336         ofld_req4.confq_pbl_base_addr_hi =
337                                         (u32)((u64) tgt->confq_pbl_dma >> 32);
338
339         kwqe_arr[0] = (struct kwqe *) &ofld_req1;
340         kwqe_arr[1] = (struct kwqe *) &ofld_req2;
341         kwqe_arr[2] = (struct kwqe *) &ofld_req3;
342         kwqe_arr[3] = (struct kwqe *) &ofld_req4;
343
344         if (hba->cnic && hba->cnic->submit_kwqes)
345                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
346
347         return rc;
348 }
349
350 /**
351  * bnx2fc_send_session_enable_req - initiates FCoE Session enablement
352  *
353  * @port:               port structure pointer
354  * @tgt:                bnx2fc_rport structure pointer
355  */
356 int bnx2fc_send_session_enable_req(struct fcoe_port *port,
357                                         struct bnx2fc_rport *tgt)
358 {
359         struct kwqe *kwqe_arr[2];
360         struct bnx2fc_interface *interface = port->priv;
361         struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
362         struct bnx2fc_hba *hba = interface->hba;
363         struct fcoe_kwqe_conn_enable_disable enbl_req;
364         struct fc_lport *lport = port->lport;
365         struct fc_rport *rport = tgt->rport;
366         int num_kwqes = 1;
367         int rc = 0;
368         u32 port_id;
369
370         memset(&enbl_req, 0x00,
371                sizeof(struct fcoe_kwqe_conn_enable_disable));
372         enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN;
373         enbl_req.hdr.flags =
374                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
375
376         enbl_req.src_mac_addr_lo[0] =  port->data_src_addr[5];
377                                                         /* local mac */
378         enbl_req.src_mac_addr_lo[1] =  port->data_src_addr[4];
379         enbl_req.src_mac_addr_mid[0] =  port->data_src_addr[3];
380         enbl_req.src_mac_addr_mid[1] =  port->data_src_addr[2];
381         enbl_req.src_mac_addr_hi[0] =  port->data_src_addr[1];
382         enbl_req.src_mac_addr_hi[1] =  port->data_src_addr[0];
383         memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN);
384
385         enbl_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
386         enbl_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
387         enbl_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
388         enbl_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
389         enbl_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
390         enbl_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
391
392         port_id = fc_host_port_id(lport->host);
393         if (port_id != tgt->sid) {
394                 printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x,"
395                                 "sid = 0x%x\n", port_id, tgt->sid);
396                 port_id = tgt->sid;
397         }
398         enbl_req.s_id[0] = (port_id & 0x000000FF);
399         enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
400         enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
401
402         port_id = rport->port_id;
403         enbl_req.d_id[0] = (port_id & 0x000000FF);
404         enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
405         enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
406         enbl_req.vlan_tag = interface->vlan_id <<
407                                 FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
408         enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
409         enbl_req.vlan_flag = interface->vlan_enabled;
410         enbl_req.context_id = tgt->context_id;
411         enbl_req.conn_id = tgt->fcoe_conn_id;
412
413         kwqe_arr[0] = (struct kwqe *) &enbl_req;
414
415         if (hba->cnic && hba->cnic->submit_kwqes)
416                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
417         return rc;
418 }
419
420 /**
421  * bnx2fc_send_session_disable_req - initiates FCoE Session disable
422  *
423  * @port:               port structure pointer
424  * @tgt:                bnx2fc_rport structure pointer
425  */
426 int bnx2fc_send_session_disable_req(struct fcoe_port *port,
427                                     struct bnx2fc_rport *tgt)
428 {
429         struct bnx2fc_interface *interface = port->priv;
430         struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
431         struct bnx2fc_hba *hba = interface->hba;
432         struct fcoe_kwqe_conn_enable_disable disable_req;
433         struct kwqe *kwqe_arr[2];
434         struct fc_rport *rport = tgt->rport;
435         int num_kwqes = 1;
436         int rc = 0;
437         u32 port_id;
438
439         memset(&disable_req, 0x00,
440                sizeof(struct fcoe_kwqe_conn_enable_disable));
441         disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN;
442         disable_req.hdr.flags =
443                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
444
445         disable_req.src_mac_addr_lo[0] =  tgt->src_addr[5];
446         disable_req.src_mac_addr_lo[1] =  tgt->src_addr[4];
447         disable_req.src_mac_addr_mid[0] =  tgt->src_addr[3];
448         disable_req.src_mac_addr_mid[1] =  tgt->src_addr[2];
449         disable_req.src_mac_addr_hi[0] =  tgt->src_addr[1];
450         disable_req.src_mac_addr_hi[1] =  tgt->src_addr[0];
451
452         disable_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
453         disable_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
454         disable_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
455         disable_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
456         disable_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
457         disable_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
458
459         port_id = tgt->sid;
460         disable_req.s_id[0] = (port_id & 0x000000FF);
461         disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
462         disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
463
464
465         port_id = rport->port_id;
466         disable_req.d_id[0] = (port_id & 0x000000FF);
467         disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
468         disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
469         disable_req.context_id = tgt->context_id;
470         disable_req.conn_id = tgt->fcoe_conn_id;
471         disable_req.vlan_tag = interface->vlan_id <<
472                                 FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
473         disable_req.vlan_tag |=
474                         3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
475         disable_req.vlan_flag = interface->vlan_enabled;
476
477         kwqe_arr[0] = (struct kwqe *) &disable_req;
478
479         if (hba->cnic && hba->cnic->submit_kwqes)
480                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
481
482         return rc;
483 }
484
485 /**
486  * bnx2fc_send_session_destroy_req - initiates FCoE Session destroy
487  *
488  * @hba:                adapter structure pointer
489  * @tgt:                bnx2fc_rport structure pointer
490  */
491 int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba,
492                                         struct bnx2fc_rport *tgt)
493 {
494         struct fcoe_kwqe_conn_destroy destroy_req;
495         struct kwqe *kwqe_arr[2];
496         int num_kwqes = 1;
497         int rc = 0;
498
499         memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy));
500         destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN;
501         destroy_req.hdr.flags =
502                 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
503
504         destroy_req.context_id = tgt->context_id;
505         destroy_req.conn_id = tgt->fcoe_conn_id;
506
507         kwqe_arr[0] = (struct kwqe *) &destroy_req;
508
509         if (hba->cnic && hba->cnic->submit_kwqes)
510                 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
511
512         return rc;
513 }
514
515 static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport)
516 {
517         struct bnx2fc_lport *blport;
518
519         spin_lock_bh(&hba->hba_lock);
520         list_for_each_entry(blport, &hba->vports, list) {
521                 if (blport->lport == lport) {
522                         spin_unlock_bh(&hba->hba_lock);
523                         return true;
524                 }
525         }
526         spin_unlock_bh(&hba->hba_lock);
527         return false;
528
529 }
530
531
532 static void bnx2fc_unsol_els_work(struct work_struct *work)
533 {
534         struct bnx2fc_unsol_els *unsol_els;
535         struct fc_lport *lport;
536         struct bnx2fc_hba *hba;
537         struct fc_frame *fp;
538
539         unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work);
540         lport = unsol_els->lport;
541         fp = unsol_els->fp;
542         hba = unsol_els->hba;
543         if (is_valid_lport(hba, lport))
544                 fc_exch_recv(lport, fp);
545         kfree(unsol_els);
546 }
547
548 void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt,
549                                    unsigned char *buf,
550                                    u32 frame_len, u16 l2_oxid)
551 {
552         struct fcoe_port *port = tgt->port;
553         struct fc_lport *lport = port->lport;
554         struct bnx2fc_interface *interface = port->priv;
555         struct bnx2fc_unsol_els *unsol_els;
556         struct fc_frame_header *fh;
557         struct fc_frame *fp;
558         struct sk_buff *skb;
559         u32 payload_len;
560         u32 crc;
561         u8 op;
562
563
564         unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC);
565         if (!unsol_els) {
566                 BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n");
567                 return;
568         }
569
570         BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n",
571                 l2_oxid, frame_len);
572
573         payload_len = frame_len - sizeof(struct fc_frame_header);
574
575         fp = fc_frame_alloc(lport, payload_len);
576         if (!fp) {
577                 printk(KERN_ERR PFX "fc_frame_alloc failure\n");
578                 kfree(unsol_els);
579                 return;
580         }
581
582         fh = (struct fc_frame_header *) fc_frame_header_get(fp);
583         /* Copy FC Frame header and payload into the frame */
584         memcpy(fh, buf, frame_len);
585
586         if (l2_oxid != FC_XID_UNKNOWN)
587                 fh->fh_ox_id = htons(l2_oxid);
588
589         skb = fp_skb(fp);
590
591         if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) ||
592             (fh->fh_r_ctl == FC_RCTL_ELS_REP)) {
593
594                 if (fh->fh_type == FC_TYPE_ELS) {
595                         op = fc_frame_payload_op(fp);
596                         if ((op == ELS_TEST) || (op == ELS_ESTC) ||
597                             (op == ELS_FAN) || (op == ELS_CSU)) {
598                                 /*
599                                  * No need to reply for these
600                                  * ELS requests
601                                  */
602                                 printk(KERN_ERR PFX "dropping ELS 0x%x\n", op);
603                                 kfree_skb(skb);
604                                 kfree(unsol_els);
605                                 return;
606                         }
607                 }
608                 crc = fcoe_fc_crc(fp);
609                 fc_frame_init(fp);
610                 fr_dev(fp) = lport;
611                 fr_sof(fp) = FC_SOF_I3;
612                 fr_eof(fp) = FC_EOF_T;
613                 fr_crc(fp) = cpu_to_le32(~crc);
614                 unsol_els->lport = lport;
615                 unsol_els->hba = interface->hba;
616                 unsol_els->fp = fp;
617                 INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work);
618                 queue_work(bnx2fc_wq, &unsol_els->unsol_els_work);
619         } else {
620                 BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl);
621                 kfree_skb(skb);
622                 kfree(unsol_els);
623         }
624 }
625
626 static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe)
627 {
628         u8 num_rq;
629         struct fcoe_err_report_entry *err_entry;
630         unsigned char *rq_data;
631         unsigned char *buf = NULL, *buf1;
632         int i;
633         u16 xid;
634         u32 frame_len, len;
635         struct bnx2fc_cmd *io_req = NULL;
636         struct bnx2fc_interface *interface = tgt->port->priv;
637         struct bnx2fc_hba *hba = interface->hba;
638         int rc = 0;
639         u64 err_warn_bit_map;
640         u8 err_warn = 0xff;
641
642
643         BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe);
644         switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) {
645         case FCOE_UNSOLICITED_FRAME_CQE_TYPE:
646                 frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >>
647                              FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT;
648
649                 num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ;
650
651                 spin_lock_bh(&tgt->tgt_lock);
652                 rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq);
653                 spin_unlock_bh(&tgt->tgt_lock);
654
655                 if (rq_data) {
656                         buf = rq_data;
657                 } else {
658                         buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ),
659                                               GFP_ATOMIC);
660
661                         if (!buf1) {
662                                 BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n");
663                                 break;
664                         }
665
666                         for (i = 0; i < num_rq; i++) {
667                                 spin_lock_bh(&tgt->tgt_lock);
668                                 rq_data = (unsigned char *)
669                                            bnx2fc_get_next_rqe(tgt, 1);
670                                 spin_unlock_bh(&tgt->tgt_lock);
671                                 len = BNX2FC_RQ_BUF_SZ;
672                                 memcpy(buf1, rq_data, len);
673                                 buf1 += len;
674                         }
675                 }
676                 bnx2fc_process_l2_frame_compl(tgt, buf, frame_len,
677                                               FC_XID_UNKNOWN);
678
679                 if (buf != rq_data)
680                         kfree(buf);
681                 spin_lock_bh(&tgt->tgt_lock);
682                 bnx2fc_return_rqe(tgt, num_rq);
683                 spin_unlock_bh(&tgt->tgt_lock);
684                 break;
685
686         case FCOE_ERROR_DETECTION_CQE_TYPE:
687                 /*
688                  * In case of error reporting CQE a single RQ entry
689                  * is consumed.
690                  */
691                 spin_lock_bh(&tgt->tgt_lock);
692                 num_rq = 1;
693                 err_entry = (struct fcoe_err_report_entry *)
694                              bnx2fc_get_next_rqe(tgt, 1);
695                 xid = err_entry->fc_hdr.ox_id;
696                 BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid);
697                 BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n",
698                         err_entry->data.err_warn_bitmap_hi,
699                         err_entry->data.err_warn_bitmap_lo);
700                 BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n",
701                         err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
702
703                 if (xid > hba->max_xid) {
704                         BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n",
705                                    xid);
706                         goto ret_err_rqe;
707                 }
708
709
710                 io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
711                 if (!io_req)
712                         goto ret_err_rqe;
713
714                 if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
715                         printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
716                         goto ret_err_rqe;
717                 }
718
719                 if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
720                                        &io_req->req_flags)) {
721                         BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in "
722                                             "progress.. ignore unsol err\n");
723                         goto ret_err_rqe;
724                 }
725
726                 err_warn_bit_map = (u64)
727                         ((u64)err_entry->data.err_warn_bitmap_hi << 32) |
728                         (u64)err_entry->data.err_warn_bitmap_lo;
729                 for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
730                         if (err_warn_bit_map & (u64)((u64)1 << i)) {
731                                 err_warn = i;
732                                 break;
733                         }
734                 }
735
736                 /*
737                  * If ABTS is already in progress, and FW error is
738                  * received after that, do not cancel the timeout_work
739                  * and let the error recovery continue by explicitly
740                  * logging out the target, when the ABTS eventually
741                  * times out.
742                  */
743                 if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
744                         printk(KERN_ERR PFX "err_warn: io_req (0x%x) already "
745                                             "in ABTS processing\n", xid);
746                         goto ret_err_rqe;
747                 }
748                 BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn);
749                 if (tgt->dev_type != TYPE_TAPE)
750                         goto skip_rec;
751                 switch (err_warn) {
752                 case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION:
753                 case FCOE_ERROR_CODE_DATA_OOO_RO:
754                 case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT:
755                 case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET:
756                 case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ:
757                 case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET:
758                         BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n",
759                                    xid);
760                         memcpy(&io_req->err_entry, err_entry,
761                                sizeof(struct fcoe_err_report_entry));
762                         if (!test_bit(BNX2FC_FLAG_SRR_SENT,
763                                       &io_req->req_flags)) {
764                                 spin_unlock_bh(&tgt->tgt_lock);
765                                 rc = bnx2fc_send_rec(io_req);
766                                 spin_lock_bh(&tgt->tgt_lock);
767
768                                 if (rc)
769                                         goto skip_rec;
770                         } else
771                                 printk(KERN_ERR PFX "SRR in progress\n");
772                         goto ret_err_rqe;
773                 default:
774                         break;
775                 }
776
777 skip_rec:
778                 set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags);
779                 /*
780                  * Cancel the timeout_work, as we received IO
781                  * completion with FW error.
782                  */
783                 if (cancel_delayed_work(&io_req->timeout_work))
784                         kref_put(&io_req->refcount, bnx2fc_cmd_release);
785
786                 rc = bnx2fc_initiate_abts(io_req);
787                 if (rc != SUCCESS) {
788                         printk(KERN_ERR PFX "err_warn: initiate_abts "
789                                 "failed xid = 0x%x. issue cleanup\n",
790                                 io_req->xid);
791                         bnx2fc_initiate_cleanup(io_req);
792                 }
793 ret_err_rqe:
794                 bnx2fc_return_rqe(tgt, 1);
795                 spin_unlock_bh(&tgt->tgt_lock);
796                 break;
797
798         case FCOE_WARNING_DETECTION_CQE_TYPE:
799                 /*
800                  *In case of warning reporting CQE a single RQ entry
801                  * is consumes.
802                  */
803                 spin_lock_bh(&tgt->tgt_lock);
804                 num_rq = 1;
805                 err_entry = (struct fcoe_err_report_entry *)
806                              bnx2fc_get_next_rqe(tgt, 1);
807                 xid = cpu_to_be16(err_entry->fc_hdr.ox_id);
808                 BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid);
809                 BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x",
810                         err_entry->data.err_warn_bitmap_hi,
811                         err_entry->data.err_warn_bitmap_lo);
812                 BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x",
813                         err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
814
815                 if (xid > hba->max_xid) {
816                         BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid);
817                         goto ret_warn_rqe;
818                 }
819
820                 err_warn_bit_map = (u64)
821                         ((u64)err_entry->data.err_warn_bitmap_hi << 32) |
822                         (u64)err_entry->data.err_warn_bitmap_lo;
823                 for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
824                         if (err_warn_bit_map & ((u64)1 << i)) {
825                                 err_warn = i;
826                                 break;
827                         }
828                 }
829                 BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn);
830
831                 io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
832                 if (!io_req)
833                         goto ret_warn_rqe;
834
835                 if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
836                         printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
837                         goto ret_warn_rqe;
838                 }
839
840                 memcpy(&io_req->err_entry, err_entry,
841                        sizeof(struct fcoe_err_report_entry));
842
843                 if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION)
844                         /* REC_TOV is not a warning code */
845                         BUG_ON(1);
846                 else
847                         BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n");
848 ret_warn_rqe:
849                 bnx2fc_return_rqe(tgt, 1);
850                 spin_unlock_bh(&tgt->tgt_lock);
851                 break;
852
853         default:
854                 printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n");
855                 break;
856         }
857 }
858
859 void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe,
860                              unsigned char *rq_data, u8 num_rq,
861                              struct fcoe_task_ctx_entry *task)
862 {
863         struct fcoe_port *port = tgt->port;
864         struct bnx2fc_interface *interface = port->priv;
865         struct bnx2fc_hba *hba = interface->hba;
866         struct bnx2fc_cmd *io_req;
867
868         u16 xid;
869         u8  cmd_type;
870         u8 rx_state = 0;
871
872         spin_lock_bh(&tgt->tgt_lock);
873
874         xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
875         io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
876
877         if (io_req == NULL) {
878                 printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n");
879                 spin_unlock_bh(&tgt->tgt_lock);
880                 return;
881         }
882
883         /* Timestamp IO completion time */
884         cmd_type = io_req->cmd_type;
885
886         rx_state = ((task->rxwr_txrd.var_ctx.rx_flags &
887                     FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >>
888                     FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT);
889
890         /* Process other IO completion types */
891         switch (cmd_type) {
892         case BNX2FC_SCSI_CMD:
893                 if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) {
894                         bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq,
895                                                       rq_data);
896                         spin_unlock_bh(&tgt->tgt_lock);
897                         return;
898                 }
899
900                 if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
901                         bnx2fc_process_abts_compl(io_req, task, num_rq);
902                 else if (rx_state ==
903                          FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
904                         bnx2fc_process_cleanup_compl(io_req, task, num_rq);
905                 else
906                         printk(KERN_ERR PFX "Invalid rx state - %d\n",
907                                 rx_state);
908                 break;
909
910         case BNX2FC_TASK_MGMT_CMD:
911                 BNX2FC_IO_DBG(io_req, "Processing TM complete\n");
912                 bnx2fc_process_tm_compl(io_req, task, num_rq, rq_data);
913                 break;
914
915         case BNX2FC_ABTS:
916                 /*
917                  * ABTS request received by firmware. ABTS response
918                  * will be delivered to the task belonging to the IO
919                  * that was aborted
920                  */
921                 BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n");
922                 kref_put(&io_req->refcount, bnx2fc_cmd_release);
923                 break;
924
925         case BNX2FC_ELS:
926                 if (rx_state == FCOE_TASK_RX_STATE_COMPLETED)
927                         bnx2fc_process_els_compl(io_req, task, num_rq);
928                 else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
929                         bnx2fc_process_abts_compl(io_req, task, num_rq);
930                 else if (rx_state ==
931                          FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
932                         bnx2fc_process_cleanup_compl(io_req, task, num_rq);
933                 else
934                         printk(KERN_ERR PFX "Invalid rx state =  %d\n",
935                                 rx_state);
936                 break;
937
938         case BNX2FC_CLEANUP:
939                 BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n");
940                 kref_put(&io_req->refcount, bnx2fc_cmd_release);
941                 break;
942
943         case BNX2FC_SEQ_CLEANUP:
944                 BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n",
945                               io_req->xid);
946                 bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state);
947                 kref_put(&io_req->refcount, bnx2fc_cmd_release);
948                 break;
949
950         default:
951                 printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type);
952                 break;
953         }
954         spin_unlock_bh(&tgt->tgt_lock);
955 }
956
957 void bnx2fc_arm_cq(struct bnx2fc_rport *tgt)
958 {
959         struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db;
960         u32 msg;
961
962         wmb();
963         rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit <<
964                         FCOE_CQE_TOGGLE_BIT_SHIFT);
965         msg = *((u32 *)rx_db);
966         writel(cpu_to_le32(msg), tgt->ctx_base);
967
968 }
969
970 static struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe,
971                                              unsigned char *rq_data, u8 num_rq,
972                                              struct fcoe_task_ctx_entry *task)
973 {
974         struct bnx2fc_work *work;
975         work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC);
976         if (!work)
977                 return NULL;
978
979         INIT_LIST_HEAD(&work->list);
980         work->tgt = tgt;
981         work->wqe = wqe;
982         work->num_rq = num_rq;
983         work->task = task;
984         if (rq_data)
985                 memcpy(work->rq_data, rq_data, BNX2FC_RQ_BUF_SZ);
986
987         return work;
988 }
989
990 /* Pending work request completion */
991 static bool bnx2fc_pending_work(struct bnx2fc_rport *tgt, unsigned int wqe)
992 {
993         unsigned int cpu = wqe % num_possible_cpus();
994         struct bnx2fc_percpu_s *fps;
995         struct bnx2fc_work *work;
996         struct fcoe_task_ctx_entry *task;
997         struct fcoe_task_ctx_entry *task_page;
998         struct fcoe_port *port = tgt->port;
999         struct bnx2fc_interface *interface = port->priv;
1000         struct bnx2fc_hba *hba = interface->hba;
1001         unsigned char *rq_data = NULL;
1002         unsigned char rq_data_buff[BNX2FC_RQ_BUF_SZ];
1003         int task_idx, index;
1004         u16 xid;
1005         u8 num_rq;
1006         int i;
1007
1008         xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
1009         if (xid >= hba->max_tasks) {
1010                 pr_err(PFX "ERROR:xid out of range\n");
1011                 return false;
1012         }
1013
1014         task_idx = xid / BNX2FC_TASKS_PER_PAGE;
1015         index = xid % BNX2FC_TASKS_PER_PAGE;
1016         task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx];
1017         task = &task_page[index];
1018
1019         num_rq = ((task->rxwr_txrd.var_ctx.rx_flags &
1020                    FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >>
1021                   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT);
1022
1023         memset(rq_data_buff, 0, BNX2FC_RQ_BUF_SZ);
1024
1025         if (!num_rq)
1026                 goto num_rq_zero;
1027
1028         rq_data = bnx2fc_get_next_rqe(tgt, 1);
1029
1030         if (num_rq > 1) {
1031                 /* We do not need extra sense data */
1032                 for (i = 1; i < num_rq; i++)
1033                         bnx2fc_get_next_rqe(tgt, 1);
1034         }
1035
1036         if (rq_data)
1037                 memcpy(rq_data_buff, rq_data, BNX2FC_RQ_BUF_SZ);
1038
1039         /* return RQ entries */
1040         for (i = 0; i < num_rq; i++)
1041                 bnx2fc_return_rqe(tgt, 1);
1042
1043 num_rq_zero:
1044
1045         fps = &per_cpu(bnx2fc_percpu, cpu);
1046         spin_lock_bh(&fps->fp_work_lock);
1047         if (fps->iothread) {
1048                 work = bnx2fc_alloc_work(tgt, wqe, rq_data_buff,
1049                                          num_rq, task);
1050                 if (work) {
1051                         list_add_tail(&work->list, &fps->work_list);
1052                         wake_up_process(fps->iothread);
1053                         spin_unlock_bh(&fps->fp_work_lock);
1054                         return true;
1055                 }
1056         }
1057         spin_unlock_bh(&fps->fp_work_lock);
1058         bnx2fc_process_cq_compl(tgt, wqe,
1059                                 rq_data_buff, num_rq, task);
1060
1061         return true;
1062 }
1063
1064 int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt)
1065 {
1066         struct fcoe_cqe *cq;
1067         u32 cq_cons;
1068         struct fcoe_cqe *cqe;
1069         u32 num_free_sqes = 0;
1070         u32 num_cqes = 0;
1071         u16 wqe;
1072
1073         /*
1074          * cq_lock is a low contention lock used to protect
1075          * the CQ data structure from being freed up during
1076          * the upload operation
1077          */
1078         spin_lock_bh(&tgt->cq_lock);
1079
1080         if (!tgt->cq) {
1081                 printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n");
1082                 spin_unlock_bh(&tgt->cq_lock);
1083                 return 0;
1084         }
1085         cq = tgt->cq;
1086         cq_cons = tgt->cq_cons_idx;
1087         cqe = &cq[cq_cons];
1088
1089         while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) ==
1090                (tgt->cq_curr_toggle_bit <<
1091                FCOE_CQE_TOGGLE_BIT_SHIFT)) {
1092
1093                 /* new entry on the cq */
1094                 if (wqe & FCOE_CQE_CQE_TYPE) {
1095                         /* Unsolicited event notification */
1096                         bnx2fc_process_unsol_compl(tgt, wqe);
1097                 } else {
1098                         if (bnx2fc_pending_work(tgt, wqe))
1099                                 num_free_sqes++;
1100                 }
1101                 cqe++;
1102                 tgt->cq_cons_idx++;
1103                 num_cqes++;
1104
1105                 if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) {
1106                         tgt->cq_cons_idx = 0;
1107                         cqe = cq;
1108                         tgt->cq_curr_toggle_bit =
1109                                 1 - tgt->cq_curr_toggle_bit;
1110                 }
1111         }
1112         if (num_cqes) {
1113                 /* Arm CQ only if doorbell is mapped */
1114                 if (tgt->ctx_base)
1115                         bnx2fc_arm_cq(tgt);
1116                 atomic_add(num_free_sqes, &tgt->free_sqes);
1117         }
1118         spin_unlock_bh(&tgt->cq_lock);
1119         return 0;
1120 }
1121
1122 /**
1123  * bnx2fc_fastpath_notification - process global event queue (KCQ)
1124  *
1125  * @hba:                adapter structure pointer
1126  * @new_cqe_kcqe:       pointer to newly DMA'd KCQ entry
1127  *
1128  * Fast path event notification handler
1129  */
1130 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
1131                                         struct fcoe_kcqe *new_cqe_kcqe)
1132 {
1133         u32 conn_id = new_cqe_kcqe->fcoe_conn_id;
1134         struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id];
1135
1136         if (!tgt) {
1137                 printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id);
1138                 return;
1139         }
1140
1141         bnx2fc_process_new_cqes(tgt);
1142 }
1143
1144 /**
1145  * bnx2fc_process_ofld_cmpl - process FCoE session offload completion
1146  *
1147  * @hba:        adapter structure pointer
1148  * @ofld_kcqe:  connection offload kcqe pointer
1149  *
1150  * handle session offload completion, enable the session if offload is
1151  * successful.
1152  */
1153 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
1154                                         struct fcoe_kcqe *ofld_kcqe)
1155 {
1156         struct bnx2fc_rport             *tgt;
1157         struct bnx2fc_interface         *interface;
1158         u32                             conn_id;
1159         u32                             context_id;
1160
1161         conn_id = ofld_kcqe->fcoe_conn_id;
1162         context_id = ofld_kcqe->fcoe_conn_context_id;
1163         tgt = hba->tgt_ofld_list[conn_id];
1164         if (!tgt) {
1165                 printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n");
1166                 return;
1167         }
1168         BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n",
1169                 ofld_kcqe->fcoe_conn_context_id);
1170         interface = tgt->port->priv;
1171         if (hba != interface->hba) {
1172                 printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mis-match\n");
1173                 goto ofld_cmpl_err;
1174         }
1175         /*
1176          * cnic has allocated a context_id for this session; use this
1177          * while enabling the session.
1178          */
1179         tgt->context_id = context_id;
1180         if (ofld_kcqe->completion_status) {
1181                 if (ofld_kcqe->completion_status ==
1182                                 FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) {
1183                         printk(KERN_ERR PFX "unable to allocate FCoE context "
1184                                 "resources\n");
1185                         set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags);
1186                 }
1187         } else {
1188                 /* FW offload request successfully completed */
1189                 set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1190         }
1191 ofld_cmpl_err:
1192         set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1193         wake_up_interruptible(&tgt->ofld_wait);
1194 }
1195
1196 /**
1197  * bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion
1198  *
1199  * @hba:        adapter structure pointer
1200  * @ofld_kcqe:  connection offload kcqe pointer
1201  *
1202  * handle session enable completion, mark the rport as ready
1203  */
1204
1205 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
1206                                                 struct fcoe_kcqe *ofld_kcqe)
1207 {
1208         struct bnx2fc_rport             *tgt;
1209         struct bnx2fc_interface         *interface;
1210         u32                             conn_id;
1211         u32                             context_id;
1212
1213         context_id = ofld_kcqe->fcoe_conn_context_id;
1214         conn_id = ofld_kcqe->fcoe_conn_id;
1215         tgt = hba->tgt_ofld_list[conn_id];
1216         if (!tgt) {
1217                 printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n");
1218                 return;
1219         }
1220
1221         BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n",
1222                 ofld_kcqe->fcoe_conn_context_id);
1223
1224         /*
1225          * context_id should be the same for this target during offload
1226          * and enable
1227          */
1228         if (tgt->context_id != context_id) {
1229                 printk(KERN_ERR PFX "context id mis-match\n");
1230                 return;
1231         }
1232         interface = tgt->port->priv;
1233         if (hba != interface->hba) {
1234                 printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mis-match\n");
1235                 goto enbl_cmpl_err;
1236         }
1237         if (!ofld_kcqe->completion_status)
1238                 /* enable successful - rport ready for issuing IOs */
1239                 set_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1240
1241 enbl_cmpl_err:
1242         set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1243         wake_up_interruptible(&tgt->ofld_wait);
1244 }
1245
1246 static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba,
1247                                         struct fcoe_kcqe *disable_kcqe)
1248 {
1249
1250         struct bnx2fc_rport             *tgt;
1251         u32                             conn_id;
1252
1253         conn_id = disable_kcqe->fcoe_conn_id;
1254         tgt = hba->tgt_ofld_list[conn_id];
1255         if (!tgt) {
1256                 printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n");
1257                 return;
1258         }
1259
1260         BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id);
1261
1262         if (disable_kcqe->completion_status) {
1263                 printk(KERN_ERR PFX "Disable failed with cmpl status %d\n",
1264                         disable_kcqe->completion_status);
1265                 set_bit(BNX2FC_FLAG_DISABLE_FAILED, &tgt->flags);
1266                 set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1267                 wake_up_interruptible(&tgt->upld_wait);
1268         } else {
1269                 /* disable successful */
1270                 BNX2FC_TGT_DBG(tgt, "disable successful\n");
1271                 clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1272                 clear_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1273                 set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1274                 set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1275                 wake_up_interruptible(&tgt->upld_wait);
1276         }
1277 }
1278
1279 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
1280                                         struct fcoe_kcqe *destroy_kcqe)
1281 {
1282         struct bnx2fc_rport             *tgt;
1283         u32                             conn_id;
1284
1285         conn_id = destroy_kcqe->fcoe_conn_id;
1286         tgt = hba->tgt_ofld_list[conn_id];
1287         if (!tgt) {
1288                 printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n");
1289                 return;
1290         }
1291
1292         BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id);
1293
1294         if (destroy_kcqe->completion_status) {
1295                 printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n",
1296                         destroy_kcqe->completion_status);
1297                 return;
1298         } else {
1299                 /* destroy successful */
1300                 BNX2FC_TGT_DBG(tgt, "upload successful\n");
1301                 clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1302                 set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags);
1303                 set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1304                 wake_up_interruptible(&tgt->upld_wait);
1305         }
1306 }
1307
1308 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code)
1309 {
1310         switch (err_code) {
1311         case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE:
1312                 printk(KERN_ERR PFX "init_failure due to invalid opcode\n");
1313                 break;
1314
1315         case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE:
1316                 printk(KERN_ERR PFX "init failed due to ctx alloc failure\n");
1317                 break;
1318
1319         case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR:
1320                 printk(KERN_ERR PFX "init_failure due to NIC error\n");
1321                 break;
1322         case FCOE_KCQE_COMPLETION_STATUS_ERROR:
1323                 printk(KERN_ERR PFX "init failure due to compl status err\n");
1324                 break;
1325         case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION:
1326                 printk(KERN_ERR PFX "init failure due to HSI mismatch\n");
1327                 break;
1328         default:
1329                 printk(KERN_ERR PFX "Unknown Error code %d\n", err_code);
1330         }
1331 }
1332
1333 /**
1334  * bnx2fc_indicae_kcqe - process KCQE
1335  *
1336  * @context:    adapter structure pointer
1337  * @kcq:        kcqe pointer
1338  * @num_cqe:    Number of completion queue elements
1339  *
1340  * Generic KCQ event handler
1341  */
1342 void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[],
1343                                         u32 num_cqe)
1344 {
1345         struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context;
1346         int i = 0;
1347         struct fcoe_kcqe *kcqe = NULL;
1348
1349         while (i < num_cqe) {
1350                 kcqe = (struct fcoe_kcqe *) kcq[i++];
1351
1352                 switch (kcqe->op_code) {
1353                 case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION:
1354                         bnx2fc_fastpath_notification(hba, kcqe);
1355                         break;
1356
1357                 case FCOE_KCQE_OPCODE_OFFLOAD_CONN:
1358                         bnx2fc_process_ofld_cmpl(hba, kcqe);
1359                         break;
1360
1361                 case FCOE_KCQE_OPCODE_ENABLE_CONN:
1362                         bnx2fc_process_enable_conn_cmpl(hba, kcqe);
1363                         break;
1364
1365                 case FCOE_KCQE_OPCODE_INIT_FUNC:
1366                         if (kcqe->completion_status !=
1367                                         FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1368                                 bnx2fc_init_failure(hba,
1369                                                 kcqe->completion_status);
1370                         } else {
1371                                 set_bit(ADAPTER_STATE_UP, &hba->adapter_state);
1372                                 bnx2fc_get_link_state(hba);
1373                                 printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n",
1374                                         (u8)hba->pcidev->bus->number);
1375                         }
1376                         break;
1377
1378                 case FCOE_KCQE_OPCODE_DESTROY_FUNC:
1379                         if (kcqe->completion_status !=
1380                                         FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1381
1382                                 printk(KERN_ERR PFX "DESTROY failed\n");
1383                         } else {
1384                                 printk(KERN_ERR PFX "DESTROY success\n");
1385                         }
1386                         set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags);
1387                         wake_up_interruptible(&hba->destroy_wait);
1388                         break;
1389
1390                 case FCOE_KCQE_OPCODE_DISABLE_CONN:
1391                         bnx2fc_process_conn_disable_cmpl(hba, kcqe);
1392                         break;
1393
1394                 case FCOE_KCQE_OPCODE_DESTROY_CONN:
1395                         bnx2fc_process_conn_destroy_cmpl(hba, kcqe);
1396                         break;
1397
1398                 case FCOE_KCQE_OPCODE_STAT_FUNC:
1399                         if (kcqe->completion_status !=
1400                             FCOE_KCQE_COMPLETION_STATUS_SUCCESS)
1401                                 printk(KERN_ERR PFX "STAT failed\n");
1402                         complete(&hba->stat_req_done);
1403                         break;
1404
1405                 case FCOE_KCQE_OPCODE_FCOE_ERROR:
1406                 default:
1407                         printk(KERN_ERR PFX "unknown opcode 0x%x\n",
1408                                                                 kcqe->op_code);
1409                 }
1410         }
1411 }
1412
1413 void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid)
1414 {
1415         struct fcoe_sqe *sqe;
1416
1417         sqe = &tgt->sq[tgt->sq_prod_idx];
1418
1419         /* Fill SQ WQE */
1420         sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT;
1421         sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT;
1422
1423         /* Advance SQ Prod Idx */
1424         if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) {
1425                 tgt->sq_prod_idx = 0;
1426                 tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit;
1427         }
1428 }
1429
1430 void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt)
1431 {
1432         struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db;
1433         u32 msg;
1434
1435         wmb();
1436         sq_db->prod = tgt->sq_prod_idx |
1437                                 (tgt->sq_curr_toggle_bit << 15);
1438         msg = *((u32 *)sq_db);
1439         writel(cpu_to_le32(msg), tgt->ctx_base);
1440
1441 }
1442
1443 int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt)
1444 {
1445         u32 context_id = tgt->context_id;
1446         struct fcoe_port *port = tgt->port;
1447         u32 reg_off;
1448         resource_size_t reg_base;
1449         struct bnx2fc_interface *interface = port->priv;
1450         struct bnx2fc_hba *hba = interface->hba;
1451
1452         reg_base = pci_resource_start(hba->pcidev,
1453                                         BNX2X_DOORBELL_PCI_BAR);
1454         reg_off = (1 << BNX2X_DB_SHIFT) * (context_id & 0x1FFFF);
1455         tgt->ctx_base = ioremap(reg_base + reg_off, 4);
1456         if (!tgt->ctx_base)
1457                 return -ENOMEM;
1458         return 0;
1459 }
1460
1461 char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1462 {
1463         char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ);
1464
1465         if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX)
1466                 return NULL;
1467
1468         tgt->rq_cons_idx += num_items;
1469
1470         if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX)
1471                 tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX;
1472
1473         return buf;
1474 }
1475
1476 void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1477 {
1478         /* return the rq buffer */
1479         u32 next_prod_idx = tgt->rq_prod_idx + num_items;
1480         if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) {
1481                 /* Wrap around RQ */
1482                 next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX;
1483         }
1484         tgt->rq_prod_idx = next_prod_idx;
1485         tgt->conn_db->rq_prod = tgt->rq_prod_idx;
1486 }
1487
1488 void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req,
1489                                   struct fcoe_task_ctx_entry *task,
1490                                   struct bnx2fc_cmd *orig_io_req,
1491                                   u32 offset)
1492 {
1493         struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd;
1494         struct bnx2fc_rport *tgt = seq_clnp_req->tgt;
1495         struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl;
1496         struct fcoe_ext_mul_sges_ctx *sgl;
1497         u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP;
1498         u8 orig_task_type;
1499         u16 orig_xid = orig_io_req->xid;
1500         u32 context_id = tgt->context_id;
1501         u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma;
1502         u32 orig_offset = offset;
1503         int bd_count;
1504         int i;
1505
1506         memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1507
1508         if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1509                 orig_task_type = FCOE_TASK_TYPE_WRITE;
1510         else
1511                 orig_task_type = FCOE_TASK_TYPE_READ;
1512
1513         /* Tx flags */
1514         task->txwr_rxrd.const_ctx.tx_flags =
1515                                 FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP <<
1516                                 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1517         /* init flags */
1518         task->txwr_rxrd.const_ctx.init_flags = task_type <<
1519                                 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1520         task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1521                                 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1522         task->rxwr_txrd.const_ctx.init_flags = context_id <<
1523                                 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1524         task->rxwr_txrd.const_ctx.init_flags = context_id <<
1525                                 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1526
1527         task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1528
1529         task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0;
1530         task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset;
1531
1532         bd_count = orig_io_req->bd_tbl->bd_valid;
1533
1534         /* obtain the appropriate bd entry from relative offset */
1535         for (i = 0; i < bd_count; i++) {
1536                 if (offset < bd[i].buf_len)
1537                         break;
1538                 offset -= bd[i].buf_len;
1539         }
1540         phys_addr += (i * sizeof(struct fcoe_bd_ctx));
1541
1542         if (orig_task_type == FCOE_TASK_TYPE_WRITE) {
1543                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1544                                 (u32)phys_addr;
1545                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1546                                 (u32)((u64)phys_addr >> 32);
1547                 task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1548                                 bd_count;
1549                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off =
1550                                 offset; /* adjusted offset */
1551                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i;
1552         } else {
1553
1554                 /* Multiple SGEs were used for this IO */
1555                 sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1556                 sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr;
1557                 sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32);
1558                 sgl->mul_sgl.sgl_size = bd_count;
1559                 sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */
1560                 sgl->mul_sgl.cur_sge_idx = i;
1561
1562                 memset(&task->rxwr_only.rx_seq_ctx, 0,
1563                        sizeof(struct fcoe_rx_seq_ctx));
1564                 task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset;
1565                 task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset;
1566         }
1567 }
1568 void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req,
1569                               struct fcoe_task_ctx_entry *task,
1570                               u16 orig_xid)
1571 {
1572         u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP;
1573         struct bnx2fc_rport *tgt = io_req->tgt;
1574         u32 context_id = tgt->context_id;
1575
1576         memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1577
1578         /* Tx Write Rx Read */
1579         /* init flags */
1580         task->txwr_rxrd.const_ctx.init_flags = task_type <<
1581                                 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1582         task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1583                                 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1584         if (tgt->dev_type == TYPE_TAPE)
1585                 task->txwr_rxrd.const_ctx.init_flags |=
1586                                 FCOE_TASK_DEV_TYPE_TAPE <<
1587                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1588         else
1589                 task->txwr_rxrd.const_ctx.init_flags |=
1590                                 FCOE_TASK_DEV_TYPE_DISK <<
1591                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1592         task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1593
1594         /* Tx flags */
1595         task->txwr_rxrd.const_ctx.tx_flags =
1596                                 FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP <<
1597                                 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1598
1599         /* Rx Read Tx Write */
1600         task->rxwr_txrd.const_ctx.init_flags = context_id <<
1601                                 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1602         task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1603                                 FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1604 }
1605
1606 void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req,
1607                                 struct fcoe_task_ctx_entry *task)
1608 {
1609         struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
1610         struct bnx2fc_rport *tgt = io_req->tgt;
1611         struct fc_frame_header *fc_hdr;
1612         struct fcoe_ext_mul_sges_ctx *sgl;
1613         u8 task_type = 0;
1614         u64 *hdr;
1615         u64 temp_hdr[3];
1616         u32 context_id;
1617
1618
1619         /* Obtain task_type */
1620         if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) ||
1621             (io_req->cmd_type == BNX2FC_ELS)) {
1622                 task_type = FCOE_TASK_TYPE_MIDPATH;
1623         } else if (io_req->cmd_type == BNX2FC_ABTS) {
1624                 task_type = FCOE_TASK_TYPE_ABTS;
1625         }
1626
1627         memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1628
1629         /* Setup the task from io_req for easy reference */
1630         io_req->task = task;
1631
1632         BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n",
1633                 io_req->cmd_type, task_type);
1634
1635         /* Tx only */
1636         if ((task_type == FCOE_TASK_TYPE_MIDPATH) ||
1637             (task_type == FCOE_TASK_TYPE_UNSOLICITED)) {
1638                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1639                                 (u32)mp_req->mp_req_bd_dma;
1640                 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1641                                 (u32)((u64)mp_req->mp_req_bd_dma >> 32);
1642                 task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1;
1643         }
1644
1645         /* Tx Write Rx Read */
1646         /* init flags */
1647         task->txwr_rxrd.const_ctx.init_flags = task_type <<
1648                                 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1649         if (tgt->dev_type == TYPE_TAPE)
1650                 task->txwr_rxrd.const_ctx.init_flags |=
1651                                 FCOE_TASK_DEV_TYPE_TAPE <<
1652                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1653         else
1654                 task->txwr_rxrd.const_ctx.init_flags |=
1655                                 FCOE_TASK_DEV_TYPE_DISK <<
1656                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1657         task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1658                                 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1659
1660         /* tx flags */
1661         task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT <<
1662                                 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1663
1664         /* Rx Write Tx Read */
1665         task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1666
1667         /* rx flags */
1668         task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1669                                 FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1670
1671         context_id = tgt->context_id;
1672         task->rxwr_txrd.const_ctx.init_flags = context_id <<
1673                                 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1674
1675         fc_hdr = &(mp_req->req_fc_hdr);
1676         if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1677                 fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid);
1678                 fc_hdr->fh_rx_id = htons(0xffff);
1679                 task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1680         } else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) {
1681                 fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid);
1682         }
1683
1684         /* Fill FC Header into middle path buffer */
1685         hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr;
1686         memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr));
1687         hdr[0] = cpu_to_be64(temp_hdr[0]);
1688         hdr[1] = cpu_to_be64(temp_hdr[1]);
1689         hdr[2] = cpu_to_be64(temp_hdr[2]);
1690
1691         /* Rx Only */
1692         if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1693                 sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1694
1695                 sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma;
1696                 sgl->mul_sgl.cur_sge_addr.hi =
1697                                 (u32)((u64)mp_req->mp_resp_bd_dma >> 32);
1698                 sgl->mul_sgl.sgl_size = 1;
1699         }
1700 }
1701
1702 void bnx2fc_init_task(struct bnx2fc_cmd *io_req,
1703                              struct fcoe_task_ctx_entry *task)
1704 {
1705         u8 task_type;
1706         struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1707         struct io_bdt *bd_tbl = io_req->bd_tbl;
1708         struct bnx2fc_rport *tgt = io_req->tgt;
1709         struct fcoe_cached_sge_ctx *cached_sge;
1710         struct fcoe_ext_mul_sges_ctx *sgl;
1711         int dev_type = tgt->dev_type;
1712         u64 *fcp_cmnd;
1713         u64 tmp_fcp_cmnd[4];
1714         u32 context_id;
1715         int cnt, i;
1716         int bd_count;
1717
1718         memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1719
1720         /* Setup the task from io_req for easy reference */
1721         io_req->task = task;
1722
1723         if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1724                 task_type = FCOE_TASK_TYPE_WRITE;
1725         else
1726                 task_type = FCOE_TASK_TYPE_READ;
1727
1728         /* Tx only */
1729         bd_count = bd_tbl->bd_valid;
1730         cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge;
1731         if (task_type == FCOE_TASK_TYPE_WRITE) {
1732                 if ((dev_type == TYPE_DISK) && (bd_count == 1)) {
1733                         struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1734
1735                         task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo =
1736                         cached_sge->cur_buf_addr.lo =
1737                                         fcoe_bd_tbl->buf_addr_lo;
1738                         task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi =
1739                         cached_sge->cur_buf_addr.hi =
1740                                         fcoe_bd_tbl->buf_addr_hi;
1741                         task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem =
1742                         cached_sge->cur_buf_rem =
1743                                         fcoe_bd_tbl->buf_len;
1744
1745                         task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1746                                 FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1747                 } else {
1748                         task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1749                                         (u32)bd_tbl->bd_tbl_dma;
1750                         task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1751                                         (u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1752                         task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1753                                         bd_tbl->bd_valid;
1754                 }
1755         }
1756
1757         /*Tx Write Rx Read */
1758         /* Init state to NORMAL */
1759         task->txwr_rxrd.const_ctx.init_flags |= task_type <<
1760                                 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1761         if (dev_type == TYPE_TAPE) {
1762                 task->txwr_rxrd.const_ctx.init_flags |=
1763                                 FCOE_TASK_DEV_TYPE_TAPE <<
1764                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1765                 io_req->rec_retry = 0;
1766                 io_req->rec_retry = 0;
1767         } else
1768                 task->txwr_rxrd.const_ctx.init_flags |=
1769                                 FCOE_TASK_DEV_TYPE_DISK <<
1770                                 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1771         task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1772                                 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1773         /* tx flags */
1774         task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL <<
1775                                 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1776
1777         /* Set initial seq counter */
1778         task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1;
1779
1780         /* Fill FCP_CMND IU */
1781         fcp_cmnd = (u64 *)
1782                     task->txwr_rxrd.union_ctx.fcp_cmd.opaque;
1783         bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)&tmp_fcp_cmnd);
1784
1785         /* swap fcp_cmnd */
1786         cnt = sizeof(struct fcp_cmnd) / sizeof(u64);
1787
1788         for (i = 0; i < cnt; i++) {
1789                 *fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]);
1790                 fcp_cmnd++;
1791         }
1792
1793         /* Rx Write Tx Read */
1794         task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1795
1796         context_id = tgt->context_id;
1797         task->rxwr_txrd.const_ctx.init_flags = context_id <<
1798                                 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1799
1800         /* rx flags */
1801         /* Set state to "waiting for the first packet" */
1802         task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1803                                 FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1804
1805         task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1806
1807         /* Rx Only */
1808         if (task_type != FCOE_TASK_TYPE_READ)
1809                 return;
1810
1811         sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1812         bd_count = bd_tbl->bd_valid;
1813
1814         if (dev_type == TYPE_DISK) {
1815                 if (bd_count == 1) {
1816
1817                         struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1818
1819                         cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1820                         cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1821                         cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1822                         task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1823                                 FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1824                 } else if (bd_count == 2) {
1825                         struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1826
1827                         cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1828                         cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1829                         cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1830
1831                         fcoe_bd_tbl++;
1832                         cached_sge->second_buf_addr.lo =
1833                                                  fcoe_bd_tbl->buf_addr_lo;
1834                         cached_sge->second_buf_addr.hi =
1835                                                 fcoe_bd_tbl->buf_addr_hi;
1836                         cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len;
1837                         task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1838                                 FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1839                 } else {
1840
1841                         sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1842                         sgl->mul_sgl.cur_sge_addr.hi =
1843                                         (u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1844                         sgl->mul_sgl.sgl_size = bd_count;
1845                 }
1846         } else {
1847                 sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1848                 sgl->mul_sgl.cur_sge_addr.hi =
1849                                 (u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1850                 sgl->mul_sgl.sgl_size = bd_count;
1851         }
1852 }
1853
1854 /**
1855  * bnx2fc_setup_task_ctx - allocate and map task context
1856  *
1857  * @hba:        pointer to adapter structure
1858  *
1859  * allocate memory for task context, and associated BD table to be used
1860  * by firmware
1861  *
1862  */
1863 int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba)
1864 {
1865         int rc = 0;
1866         struct regpair *task_ctx_bdt;
1867         dma_addr_t addr;
1868         int task_ctx_arr_sz;
1869         int i;
1870
1871         /*
1872          * Allocate task context bd table. A page size of bd table
1873          * can map 256 buffers. Each buffer contains 32 task context
1874          * entries. Hence the limit with one page is 8192 task context
1875          * entries.
1876          */
1877         hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
1878                                                   PAGE_SIZE,
1879                                                   &hba->task_ctx_bd_dma,
1880                                                   GFP_KERNEL);
1881         if (!hba->task_ctx_bd_tbl) {
1882                 printk(KERN_ERR PFX "unable to allocate task context BDT\n");
1883                 rc = -1;
1884                 goto out;
1885         }
1886
1887         /*
1888          * Allocate task_ctx which is an array of pointers pointing to
1889          * a page containing 32 task contexts
1890          */
1891         task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1892         hba->task_ctx = kzalloc((task_ctx_arr_sz * sizeof(void *)),
1893                                  GFP_KERNEL);
1894         if (!hba->task_ctx) {
1895                 printk(KERN_ERR PFX "unable to allocate task context array\n");
1896                 rc = -1;
1897                 goto out1;
1898         }
1899
1900         /*
1901          * Allocate task_ctx_dma which is an array of dma addresses
1902          */
1903         hba->task_ctx_dma = kmalloc((task_ctx_arr_sz *
1904                                         sizeof(dma_addr_t)), GFP_KERNEL);
1905         if (!hba->task_ctx_dma) {
1906                 printk(KERN_ERR PFX "unable to alloc context mapping array\n");
1907                 rc = -1;
1908                 goto out2;
1909         }
1910
1911         task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl;
1912         for (i = 0; i < task_ctx_arr_sz; i++) {
1913
1914                 hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev,
1915                                                       PAGE_SIZE,
1916                                                       &hba->task_ctx_dma[i],
1917                                                       GFP_KERNEL);
1918                 if (!hba->task_ctx[i]) {
1919                         printk(KERN_ERR PFX "unable to alloc task context\n");
1920                         rc = -1;
1921                         goto out3;
1922                 }
1923                 addr = (u64)hba->task_ctx_dma[i];
1924                 task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32);
1925                 task_ctx_bdt->lo = cpu_to_le32((u32)addr);
1926                 task_ctx_bdt++;
1927         }
1928         return 0;
1929
1930 out3:
1931         for (i = 0; i < task_ctx_arr_sz; i++) {
1932                 if (hba->task_ctx[i]) {
1933
1934                         dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1935                                 hba->task_ctx[i], hba->task_ctx_dma[i]);
1936                         hba->task_ctx[i] = NULL;
1937                 }
1938         }
1939
1940         kfree(hba->task_ctx_dma);
1941         hba->task_ctx_dma = NULL;
1942 out2:
1943         kfree(hba->task_ctx);
1944         hba->task_ctx = NULL;
1945 out1:
1946         dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1947                         hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma);
1948         hba->task_ctx_bd_tbl = NULL;
1949 out:
1950         return rc;
1951 }
1952
1953 void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba)
1954 {
1955         int task_ctx_arr_sz;
1956         int i;
1957
1958         if (hba->task_ctx_bd_tbl) {
1959                 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1960                                     hba->task_ctx_bd_tbl,
1961                                     hba->task_ctx_bd_dma);
1962                 hba->task_ctx_bd_tbl = NULL;
1963         }
1964
1965         task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1966         if (hba->task_ctx) {
1967                 for (i = 0; i < task_ctx_arr_sz; i++) {
1968                         if (hba->task_ctx[i]) {
1969                                 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1970                                                     hba->task_ctx[i],
1971                                                     hba->task_ctx_dma[i]);
1972                                 hba->task_ctx[i] = NULL;
1973                         }
1974                 }
1975                 kfree(hba->task_ctx);
1976                 hba->task_ctx = NULL;
1977         }
1978
1979         kfree(hba->task_ctx_dma);
1980         hba->task_ctx_dma = NULL;
1981 }
1982
1983 static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba)
1984 {
1985         int i;
1986         int segment_count;
1987         u32 *pbl;
1988
1989         if (hba->hash_tbl_segments) {
1990
1991                 pbl = hba->hash_tbl_pbl;
1992                 if (pbl) {
1993                         segment_count = hba->hash_tbl_segment_count;
1994                         for (i = 0; i < segment_count; ++i) {
1995                                 dma_addr_t dma_address;
1996
1997                                 dma_address = le32_to_cpu(*pbl);
1998                                 ++pbl;
1999                                 dma_address += ((u64)le32_to_cpu(*pbl)) << 32;
2000                                 ++pbl;
2001                                 dma_free_coherent(&hba->pcidev->dev,
2002                                                   BNX2FC_HASH_TBL_CHUNK_SIZE,
2003                                                   hba->hash_tbl_segments[i],
2004                                                   dma_address);
2005                         }
2006                 }
2007
2008                 kfree(hba->hash_tbl_segments);
2009                 hba->hash_tbl_segments = NULL;
2010         }
2011
2012         if (hba->hash_tbl_pbl) {
2013                 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2014                                     hba->hash_tbl_pbl,
2015                                     hba->hash_tbl_pbl_dma);
2016                 hba->hash_tbl_pbl = NULL;
2017         }
2018 }
2019
2020 static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba)
2021 {
2022         int i;
2023         int hash_table_size;
2024         int segment_count;
2025         int segment_array_size;
2026         int dma_segment_array_size;
2027         dma_addr_t *dma_segment_array;
2028         u32 *pbl;
2029
2030         hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
2031                 sizeof(struct fcoe_hash_table_entry);
2032
2033         segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1;
2034         segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE;
2035         hba->hash_tbl_segment_count = segment_count;
2036
2037         segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments);
2038         hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL);
2039         if (!hba->hash_tbl_segments) {
2040                 printk(KERN_ERR PFX "hash table pointers alloc failed\n");
2041                 return -ENOMEM;
2042         }
2043         dma_segment_array_size = segment_count * sizeof(*dma_segment_array);
2044         dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL);
2045         if (!dma_segment_array) {
2046                 printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n");
2047                 goto cleanup_ht;
2048         }
2049
2050         for (i = 0; i < segment_count; ++i) {
2051                 hba->hash_tbl_segments[i] = dma_alloc_coherent(&hba->pcidev->dev,
2052                                                                BNX2FC_HASH_TBL_CHUNK_SIZE,
2053                                                                &dma_segment_array[i],
2054                                                                GFP_KERNEL);
2055                 if (!hba->hash_tbl_segments[i]) {
2056                         printk(KERN_ERR PFX "hash segment alloc failed\n");
2057                         goto cleanup_dma;
2058                 }
2059         }
2060
2061         hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
2062                                                &hba->hash_tbl_pbl_dma,
2063                                                GFP_KERNEL);
2064         if (!hba->hash_tbl_pbl) {
2065                 printk(KERN_ERR PFX "hash table pbl alloc failed\n");
2066                 goto cleanup_dma;
2067         }
2068
2069         pbl = hba->hash_tbl_pbl;
2070         for (i = 0; i < segment_count; ++i) {
2071                 u64 paddr = dma_segment_array[i];
2072                 *pbl = cpu_to_le32((u32) paddr);
2073                 ++pbl;
2074                 *pbl = cpu_to_le32((u32) (paddr >> 32));
2075                 ++pbl;
2076         }
2077         pbl = hba->hash_tbl_pbl;
2078         i = 0;
2079         while (*pbl && *(pbl + 1)) {
2080                 ++pbl;
2081                 ++pbl;
2082                 ++i;
2083         }
2084         kfree(dma_segment_array);
2085         return 0;
2086
2087 cleanup_dma:
2088         for (i = 0; i < segment_count; ++i) {
2089                 if (hba->hash_tbl_segments[i])
2090                         dma_free_coherent(&hba->pcidev->dev,
2091                                             BNX2FC_HASH_TBL_CHUNK_SIZE,
2092                                             hba->hash_tbl_segments[i],
2093                                             dma_segment_array[i]);
2094         }
2095
2096         kfree(dma_segment_array);
2097
2098 cleanup_ht:
2099         kfree(hba->hash_tbl_segments);
2100         hba->hash_tbl_segments = NULL;
2101         return -ENOMEM;
2102 }
2103
2104 /**
2105  * bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer
2106  *
2107  * @hba:        Pointer to adapter structure
2108  *
2109  */
2110 int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba)
2111 {
2112         u64 addr;
2113         u32 mem_size;
2114         int i;
2115
2116         if (bnx2fc_allocate_hash_table(hba))
2117                 return -ENOMEM;
2118
2119         mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2120         hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2121                                                   &hba->t2_hash_tbl_ptr_dma,
2122                                                   GFP_KERNEL);
2123         if (!hba->t2_hash_tbl_ptr) {
2124                 printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n");
2125                 bnx2fc_free_fw_resc(hba);
2126                 return -ENOMEM;
2127         }
2128
2129         mem_size = BNX2FC_NUM_MAX_SESS *
2130                                 sizeof(struct fcoe_t2_hash_table_entry);
2131         hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2132                                               &hba->t2_hash_tbl_dma,
2133                                               GFP_KERNEL);
2134         if (!hba->t2_hash_tbl) {
2135                 printk(KERN_ERR PFX "unable to allocate t2 hash table\n");
2136                 bnx2fc_free_fw_resc(hba);
2137                 return -ENOMEM;
2138         }
2139         for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) {
2140                 addr = (unsigned long) hba->t2_hash_tbl_dma +
2141                          ((i+1) * sizeof(struct fcoe_t2_hash_table_entry));
2142                 hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff;
2143                 hba->t2_hash_tbl[i].next.hi = addr >> 32;
2144         }
2145
2146         hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev,
2147                                                PAGE_SIZE, &hba->dummy_buf_dma,
2148                                                GFP_KERNEL);
2149         if (!hba->dummy_buffer) {
2150                 printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n");
2151                 bnx2fc_free_fw_resc(hba);
2152                 return -ENOMEM;
2153         }
2154
2155         hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
2156                                                &hba->stats_buf_dma,
2157                                                GFP_KERNEL);
2158         if (!hba->stats_buffer) {
2159                 printk(KERN_ERR PFX "unable to alloc Stats Buffer\n");
2160                 bnx2fc_free_fw_resc(hba);
2161                 return -ENOMEM;
2162         }
2163
2164         return 0;
2165 }
2166
2167 void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba)
2168 {
2169         u32 mem_size;
2170
2171         if (hba->stats_buffer) {
2172                 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2173                                   hba->stats_buffer, hba->stats_buf_dma);
2174                 hba->stats_buffer = NULL;
2175         }
2176
2177         if (hba->dummy_buffer) {
2178                 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2179                                   hba->dummy_buffer, hba->dummy_buf_dma);
2180                 hba->dummy_buffer = NULL;
2181         }
2182
2183         if (hba->t2_hash_tbl_ptr) {
2184                 mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2185                 dma_free_coherent(&hba->pcidev->dev, mem_size,
2186                                     hba->t2_hash_tbl_ptr,
2187                                     hba->t2_hash_tbl_ptr_dma);
2188                 hba->t2_hash_tbl_ptr = NULL;
2189         }
2190
2191         if (hba->t2_hash_tbl) {
2192                 mem_size = BNX2FC_NUM_MAX_SESS *
2193                             sizeof(struct fcoe_t2_hash_table_entry);
2194                 dma_free_coherent(&hba->pcidev->dev, mem_size,
2195                                     hba->t2_hash_tbl, hba->t2_hash_tbl_dma);
2196                 hba->t2_hash_tbl = NULL;
2197         }
2198         bnx2fc_free_hash_table(hba);
2199 }