Merge tag 'sound-4.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-2.6-microblaze.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commsup.c
28  *
29  * Abstract: Contain all routines that are required for FSA host/adapter
30  *    communication.
31  *
32  */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/sched.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/completion.h>
42 #include <linux/blkdev.h>
43 #include <linux/delay.h>
44 #include <linux/kthread.h>
45 #include <linux/interrupt.h>
46 #include <linux/semaphore.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
52
53 #include "aacraid.h"
54
55 /**
56  *      fib_map_alloc           -       allocate the fib objects
57  *      @dev: Adapter to allocate for
58  *
59  *      Allocate and map the shared PCI space for the FIB blocks used to
60  *      talk to the Adaptec firmware.
61  */
62
63 static int fib_map_alloc(struct aac_dev *dev)
64 {
65         if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
66                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
67         else
68                 dev->max_cmd_size = dev->max_fib_size;
69         if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
70                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
71         } else {
72                 dev->max_cmd_size = dev->max_fib_size;
73         }
74
75         dprintk((KERN_INFO
76           "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
77           &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
78           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
79         dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
80                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
81                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
82                 &dev->hw_fib_pa, GFP_KERNEL);
83         if (dev->hw_fib_va == NULL)
84                 return -ENOMEM;
85         return 0;
86 }
87
88 /**
89  *      aac_fib_map_free                -       free the fib objects
90  *      @dev: Adapter to free
91  *
92  *      Free the PCI mappings and the memory allocated for FIB blocks
93  *      on this adapter.
94  */
95
96 void aac_fib_map_free(struct aac_dev *dev)
97 {
98         size_t alloc_size;
99         size_t fib_size;
100         int num_fibs;
101
102         if(!dev->hw_fib_va || !dev->max_cmd_size)
103                 return;
104
105         num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
106         fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
107         alloc_size = fib_size * num_fibs + ALIGN32 - 1;
108
109         dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
110                           dev->hw_fib_pa);
111
112         dev->hw_fib_va = NULL;
113         dev->hw_fib_pa = 0;
114 }
115
116 void aac_fib_vector_assign(struct aac_dev *dev)
117 {
118         u32 i = 0;
119         u32 vector = 1;
120         struct fib *fibptr = NULL;
121
122         for (i = 0, fibptr = &dev->fibs[i];
123                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
124                 i++, fibptr++) {
125                 if ((dev->max_msix == 1) ||
126                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
127                         - dev->vector_cap))) {
128                         fibptr->vector_no = 0;
129                 } else {
130                         fibptr->vector_no = vector;
131                         vector++;
132                         if (vector == dev->max_msix)
133                                 vector = 1;
134                 }
135         }
136 }
137
138 /**
139  *      aac_fib_setup   -       setup the fibs
140  *      @dev: Adapter to set up
141  *
142  *      Allocate the PCI space for the fibs, map it and then initialise the
143  *      fib area, the unmapped fib data and also the free list
144  */
145
146 int aac_fib_setup(struct aac_dev * dev)
147 {
148         struct fib *fibptr;
149         struct hw_fib *hw_fib;
150         dma_addr_t hw_fib_pa;
151         int i;
152         u32 max_cmds;
153
154         while (((i = fib_map_alloc(dev)) == -ENOMEM)
155          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
156                 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
157                 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
158                 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
159                         dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
160         }
161         if (i<0)
162                 return -ENOMEM;
163
164         memset(dev->hw_fib_va, 0,
165                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
166                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
167
168         /* 32 byte alignment for PMC */
169         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
170         hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
171                                         (hw_fib_pa - dev->hw_fib_pa));
172
173         /* add Xport header */
174         hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175                 sizeof(struct aac_fib_xporthdr));
176         hw_fib_pa += sizeof(struct aac_fib_xporthdr);
177
178         /*
179          *      Initialise the fibs
180          */
181         for (i = 0, fibptr = &dev->fibs[i];
182                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
183                 i++, fibptr++)
184         {
185                 fibptr->flags = 0;
186                 fibptr->size = sizeof(struct fib);
187                 fibptr->dev = dev;
188                 fibptr->hw_fib_va = hw_fib;
189                 fibptr->data = (void *) fibptr->hw_fib_va->data;
190                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
191                 sema_init(&fibptr->event_wait, 0);
192                 spin_lock_init(&fibptr->event_lock);
193                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
194                 hw_fib->header.SenderSize =
195                         cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
196                 fibptr->hw_fib_pa = hw_fib_pa;
197                 fibptr->hw_sgl_pa = hw_fib_pa +
198                         offsetof(struct aac_hba_cmd_req, sge[2]);
199                 /*
200                  * one element is for the ptr to the separate sg list,
201                  * second element for 32 byte alignment
202                  */
203                 fibptr->hw_error_pa = hw_fib_pa +
204                         offsetof(struct aac_native_hba, resp.resp_bytes[0]);
205
206                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
207                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
208                 hw_fib_pa = hw_fib_pa +
209                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
210         }
211
212         /*
213          *Assign vector numbers to fibs
214          */
215         aac_fib_vector_assign(dev);
216
217         /*
218          *      Add the fib chain to the free list
219          */
220         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
221         /*
222         *       Set 8 fibs aside for management tools
223         */
224         dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
225         return 0;
226 }
227
228 /**
229  *      aac_fib_alloc_tag-allocate a fib using tags
230  *      @dev: Adapter to allocate the fib for
231  *
232  *      Allocate a fib from the adapter fib pool using tags
233  *      from the blk layer.
234  */
235
236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
237 {
238         struct fib *fibptr;
239
240         fibptr = &dev->fibs[scmd->request->tag];
241         /*
242          *      Null out fields that depend on being zero at the start of
243          *      each I/O
244          */
245         fibptr->hw_fib_va->header.XferState = 0;
246         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
247         fibptr->callback_data = NULL;
248         fibptr->callback = NULL;
249
250         return fibptr;
251 }
252
253 /**
254  *      aac_fib_alloc   -       allocate a fib
255  *      @dev: Adapter to allocate the fib for
256  *
257  *      Allocate a fib from the adapter fib pool. If the pool is empty we
258  *      return NULL.
259  */
260
261 struct fib *aac_fib_alloc(struct aac_dev *dev)
262 {
263         struct fib * fibptr;
264         unsigned long flags;
265         spin_lock_irqsave(&dev->fib_lock, flags);
266         fibptr = dev->free_fib;
267         if(!fibptr){
268                 spin_unlock_irqrestore(&dev->fib_lock, flags);
269                 return fibptr;
270         }
271         dev->free_fib = fibptr->next;
272         spin_unlock_irqrestore(&dev->fib_lock, flags);
273         /*
274          *      Set the proper node type code and node byte size
275          */
276         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
277         fibptr->size = sizeof(struct fib);
278         /*
279          *      Null out fields that depend on being zero at the start of
280          *      each I/O
281          */
282         fibptr->hw_fib_va->header.XferState = 0;
283         fibptr->flags = 0;
284         fibptr->callback = NULL;
285         fibptr->callback_data = NULL;
286
287         return fibptr;
288 }
289
290 /**
291  *      aac_fib_free    -       free a fib
292  *      @fibptr: fib to free up
293  *
294  *      Frees up a fib and places it on the appropriate queue
295  */
296
297 void aac_fib_free(struct fib *fibptr)
298 {
299         unsigned long flags;
300
301         if (fibptr->done == 2)
302                 return;
303
304         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
305         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
306                 aac_config.fib_timeouts++;
307         if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
308                 fibptr->hw_fib_va->header.XferState != 0) {
309                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
310                          (void*)fibptr,
311                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
312         }
313         fibptr->next = fibptr->dev->free_fib;
314         fibptr->dev->free_fib = fibptr;
315         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
316 }
317
318 /**
319  *      aac_fib_init    -       initialise a fib
320  *      @fibptr: The fib to initialize
321  *
322  *      Set up the generic fib fields ready for use
323  */
324
325 void aac_fib_init(struct fib *fibptr)
326 {
327         struct hw_fib *hw_fib = fibptr->hw_fib_va;
328
329         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
330         hw_fib->header.StructType = FIB_MAGIC;
331         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
332         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
333         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
334         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
335 }
336
337 /**
338  *      fib_deallocate          -       deallocate a fib
339  *      @fibptr: fib to deallocate
340  *
341  *      Will deallocate and return to the free pool the FIB pointed to by the
342  *      caller.
343  */
344
345 static void fib_dealloc(struct fib * fibptr)
346 {
347         struct hw_fib *hw_fib = fibptr->hw_fib_va;
348         hw_fib->header.XferState = 0;
349 }
350
351 /*
352  *      Commuication primitives define and support the queuing method we use to
353  *      support host to adapter commuication. All queue accesses happen through
354  *      these routines and are the only routines which have a knowledge of the
355  *       how these queues are implemented.
356  */
357
358 /**
359  *      aac_get_entry           -       get a queue entry
360  *      @dev: Adapter
361  *      @qid: Queue Number
362  *      @entry: Entry return
363  *      @index: Index return
364  *      @nonotify: notification control
365  *
366  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
367  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
368  *      returned.
369  */
370
371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
372 {
373         struct aac_queue * q;
374         unsigned long idx;
375
376         /*
377          *      All of the queues wrap when they reach the end, so we check
378          *      to see if they have reached the end and if they have we just
379          *      set the index back to zero. This is a wrap. You could or off
380          *      the high bits in all updates but this is a bit faster I think.
381          */
382
383         q = &dev->queues->queue[qid];
384
385         idx = *index = le32_to_cpu(*(q->headers.producer));
386         /* Interrupt Moderation, only interrupt for first two entries */
387         if (idx != le32_to_cpu(*(q->headers.consumer))) {
388                 if (--idx == 0) {
389                         if (qid == AdapNormCmdQueue)
390                                 idx = ADAP_NORM_CMD_ENTRIES;
391                         else
392                                 idx = ADAP_NORM_RESP_ENTRIES;
393                 }
394                 if (idx != le32_to_cpu(*(q->headers.consumer)))
395                         *nonotify = 1;
396         }
397
398         if (qid == AdapNormCmdQueue) {
399                 if (*index >= ADAP_NORM_CMD_ENTRIES)
400                         *index = 0; /* Wrap to front of the Producer Queue. */
401         } else {
402                 if (*index >= ADAP_NORM_RESP_ENTRIES)
403                         *index = 0; /* Wrap to front of the Producer Queue. */
404         }
405
406         /* Queue is full */
407         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
408                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
409                                 qid, atomic_read(&q->numpending));
410                 return 0;
411         } else {
412                 *entry = q->base + *index;
413                 return 1;
414         }
415 }
416
417 /**
418  *      aac_queue_get           -       get the next free QE
419  *      @dev: Adapter
420  *      @index: Returned index
421  *      @priority: Priority of fib
422  *      @fib: Fib to associate with the queue entry
423  *      @wait: Wait if queue full
424  *      @fibptr: Driver fib object to go with fib
425  *      @nonotify: Don't notify the adapter
426  *
427  *      Gets the next free QE off the requested priorty adapter command
428  *      queue and associates the Fib with the QE. The QE represented by
429  *      index is ready to insert on the queue when this routine returns
430  *      success.
431  */
432
433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
434 {
435         struct aac_entry * entry = NULL;
436         int map = 0;
437
438         if (qid == AdapNormCmdQueue) {
439                 /*  if no entries wait for some if caller wants to */
440                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
441                         printk(KERN_ERR "GetEntries failed\n");
442                 }
443                 /*
444                  *      Setup queue entry with a command, status and fib mapped
445                  */
446                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
447                 map = 1;
448         } else {
449                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
450                         /* if no entries wait for some if caller wants to */
451                 }
452                 /*
453                  *      Setup queue entry with command, status and fib mapped
454                  */
455                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
456                 entry->addr = hw_fib->header.SenderFibAddress;
457                         /* Restore adapters pointer to the FIB */
458                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
459                 map = 0;
460         }
461         /*
462          *      If MapFib is true than we need to map the Fib and put pointers
463          *      in the queue entry.
464          */
465         if (map)
466                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
467         return 0;
468 }
469
470 #ifdef CONFIG_EEH
471 static inline int aac_check_eeh_failure(struct aac_dev *dev)
472 {
473         /* Check for an EEH failure for the given
474          * device node. Function eeh_dev_check_failure()
475          * returns 0 if there has not been an EEH error
476          * otherwise returns a non-zero value.
477          *
478          * Need to be called before any PCI operation,
479          * i.e.,before aac_adapter_check_health()
480          */
481         struct eeh_dev *edev = pci_dev_to_eeh_dev(dev->pdev);
482
483         if (eeh_dev_check_failure(edev)) {
484                 /* The EEH mechanisms will handle this
485                  * error and reset the device if
486                  * necessary.
487                  */
488                 return 1;
489         }
490         return 0;
491 }
492 #else
493 static inline int aac_check_eeh_failure(struct aac_dev *dev)
494 {
495         return 0;
496 }
497 #endif
498
499 /*
500  *      Define the highest level of host to adapter communication routines.
501  *      These routines will support host to adapter FS commuication. These
502  *      routines have no knowledge of the commuication method used. This level
503  *      sends and receives FIBs. This level has no knowledge of how these FIBs
504  *      get passed back and forth.
505  */
506
507 /**
508  *      aac_fib_send    -       send a fib to the adapter
509  *      @command: Command to send
510  *      @fibptr: The fib
511  *      @size: Size of fib data area
512  *      @priority: Priority of Fib
513  *      @wait: Async/sync select
514  *      @reply: True if a reply is wanted
515  *      @callback: Called with reply
516  *      @callback_data: Passed to callback
517  *
518  *      Sends the requested FIB to the adapter and optionally will wait for a
519  *      response FIB. If the caller does not wish to wait for a response than
520  *      an event to wait on must be supplied. This event will be set when a
521  *      response FIB is received from the adapter.
522  */
523
524 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
525                 int priority, int wait, int reply, fib_callback callback,
526                 void *callback_data)
527 {
528         struct aac_dev * dev = fibptr->dev;
529         struct hw_fib * hw_fib = fibptr->hw_fib_va;
530         unsigned long flags = 0;
531         unsigned long mflags = 0;
532         unsigned long sflags = 0;
533
534         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
535                 return -EBUSY;
536
537         if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
538                 return -EINVAL;
539
540         /*
541          *      There are 5 cases with the wait and response requested flags.
542          *      The only invalid cases are if the caller requests to wait and
543          *      does not request a response and if the caller does not want a
544          *      response and the Fib is not allocated from pool. If a response
545          *      is not requesed the Fib will just be deallocaed by the DPC
546          *      routine when the response comes back from the adapter. No
547          *      further processing will be done besides deleting the Fib. We
548          *      will have a debug mode where the adapter can notify the host
549          *      it had a problem and the host can log that fact.
550          */
551         fibptr->flags = 0;
552         if (wait && !reply) {
553                 return -EINVAL;
554         } else if (!wait && reply) {
555                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
556                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
557         } else if (!wait && !reply) {
558                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
559                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
560         } else if (wait && reply) {
561                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
562                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
563         }
564         /*
565          *      Map the fib into 32bits by using the fib number
566          */
567
568         hw_fib->header.SenderFibAddress =
569                 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
570
571         /* use the same shifted value for handle to be compatible
572          * with the new native hba command handle
573          */
574         hw_fib->header.Handle =
575                 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
576
577         /*
578          *      Set FIB state to indicate where it came from and if we want a
579          *      response from the adapter. Also load the command from the
580          *      caller.
581          *
582          *      Map the hw fib pointer as a 32bit value
583          */
584         hw_fib->header.Command = cpu_to_le16(command);
585         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
586         /*
587          *      Set the size of the Fib we want to send to the adapter
588          */
589         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
590         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
591                 return -EMSGSIZE;
592         }
593         /*
594          *      Get a queue entry connect the FIB to it and send an notify
595          *      the adapter a command is ready.
596          */
597         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
598
599         /*
600          *      Fill in the Callback and CallbackContext if we are not
601          *      going to wait.
602          */
603         if (!wait) {
604                 fibptr->callback = callback;
605                 fibptr->callback_data = callback_data;
606                 fibptr->flags = FIB_CONTEXT_FLAG;
607         }
608
609         fibptr->done = 0;
610
611         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
612
613         dprintk((KERN_DEBUG "Fib contents:.\n"));
614         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
615         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
616         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
617         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
618         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
619         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
620
621         if (!dev->queues)
622                 return -EBUSY;
623
624         if (wait) {
625
626                 spin_lock_irqsave(&dev->manage_lock, mflags);
627                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
628                         printk(KERN_INFO "No management Fibs Available:%d\n",
629                                                 dev->management_fib_count);
630                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
631                         return -EBUSY;
632                 }
633                 dev->management_fib_count++;
634                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
635                 spin_lock_irqsave(&fibptr->event_lock, flags);
636         }
637
638         if (dev->sync_mode) {
639                 if (wait)
640                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
641                 spin_lock_irqsave(&dev->sync_lock, sflags);
642                 if (dev->sync_fib) {
643                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
644                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
645                 } else {
646                         dev->sync_fib = fibptr;
647                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
648                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
649                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
650                                 NULL, NULL, NULL, NULL, NULL);
651                 }
652                 if (wait) {
653                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
654                         if (down_interruptible(&fibptr->event_wait)) {
655                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
656                                 return -EFAULT;
657                         }
658                         return 0;
659                 }
660                 return -EINPROGRESS;
661         }
662
663         if (aac_adapter_deliver(fibptr) != 0) {
664                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
665                 if (wait) {
666                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
667                         spin_lock_irqsave(&dev->manage_lock, mflags);
668                         dev->management_fib_count--;
669                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
670                 }
671                 return -EBUSY;
672         }
673
674
675         /*
676          *      If the caller wanted us to wait for response wait now.
677          */
678
679         if (wait) {
680                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
681                 /* Only set for first known interruptable command */
682                 if (wait < 0) {
683                         /*
684                          * *VERY* Dangerous to time out a command, the
685                          * assumption is made that we have no hope of
686                          * functioning because an interrupt routing or other
687                          * hardware failure has occurred.
688                          */
689                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
690                         while (down_trylock(&fibptr->event_wait)) {
691                                 int blink;
692                                 if (time_is_before_eq_jiffies(timeout)) {
693                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
694                                         atomic_dec(&q->numpending);
695                                         if (wait == -1) {
696                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
697                                                   "Usually a result of a PCI interrupt routing problem;\n"
698                                                   "update mother board BIOS or consider utilizing one of\n"
699                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
700                                         }
701                                         return -ETIMEDOUT;
702                                 }
703
704                                 if (aac_check_eeh_failure(dev))
705                                         return -EFAULT;
706
707                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
708                                         if (wait == -1) {
709                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
710                                                   "Usually a result of a serious unrecoverable hardware problem\n",
711                                                   blink);
712                                         }
713                                         return -EFAULT;
714                                 }
715                                 /*
716                                  * Allow other processes / CPUS to use core
717                                  */
718                                 schedule();
719                         }
720                 } else if (down_interruptible(&fibptr->event_wait)) {
721                         /* Do nothing ... satisfy
722                          * down_interruptible must_check */
723                 }
724
725                 spin_lock_irqsave(&fibptr->event_lock, flags);
726                 if (fibptr->done == 0) {
727                         fibptr->done = 2; /* Tell interrupt we aborted */
728                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
729                         return -ERESTARTSYS;
730                 }
731                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
732                 BUG_ON(fibptr->done == 0);
733
734                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
735                         return -ETIMEDOUT;
736                 return 0;
737         }
738         /*
739          *      If the user does not want a response than return success otherwise
740          *      return pending
741          */
742         if (reply)
743                 return -EINPROGRESS;
744         else
745                 return 0;
746 }
747
748 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
749                 void *callback_data)
750 {
751         struct aac_dev *dev = fibptr->dev;
752         int wait;
753         unsigned long flags = 0;
754         unsigned long mflags = 0;
755
756         fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
757         if (callback) {
758                 wait = 0;
759                 fibptr->callback = callback;
760                 fibptr->callback_data = callback_data;
761         } else
762                 wait = 1;
763
764
765         if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
766                 struct aac_hba_cmd_req *hbacmd =
767                         (struct aac_hba_cmd_req *)fibptr->hw_fib_va;
768
769                 hbacmd->iu_type = command;
770                 /* bit1 of request_id must be 0 */
771                 hbacmd->request_id =
772                         cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
773         } else
774                 return -EINVAL;
775
776
777         if (wait) {
778                 spin_lock_irqsave(&dev->manage_lock, mflags);
779                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
780                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
781                         return -EBUSY;
782                 }
783                 dev->management_fib_count++;
784                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
785                 spin_lock_irqsave(&fibptr->event_lock, flags);
786         }
787
788         if (aac_adapter_deliver(fibptr) != 0) {
789                 if (wait) {
790                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
791                         spin_lock_irqsave(&dev->manage_lock, mflags);
792                         dev->management_fib_count--;
793                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
794                 }
795                 return -EBUSY;
796         }
797         FIB_COUNTER_INCREMENT(aac_config.NativeSent);
798
799         if (wait) {
800
801                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
802
803                 if (aac_check_eeh_failure(dev))
804                         return -EFAULT;
805
806                 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
807                 if (down_interruptible(&fibptr->event_wait))
808                         fibptr->done = 2;
809                 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
810
811                 spin_lock_irqsave(&fibptr->event_lock, flags);
812                 if ((fibptr->done == 0) || (fibptr->done == 2)) {
813                         fibptr->done = 2; /* Tell interrupt we aborted */
814                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
815                         return -ERESTARTSYS;
816                 }
817                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
818                 WARN_ON(fibptr->done == 0);
819
820                 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
821                         return -ETIMEDOUT;
822
823                 return 0;
824         }
825
826         return -EINPROGRESS;
827 }
828
829 /**
830  *      aac_consumer_get        -       get the top of the queue
831  *      @dev: Adapter
832  *      @q: Queue
833  *      @entry: Return entry
834  *
835  *      Will return a pointer to the entry on the top of the queue requested that
836  *      we are a consumer of, and return the address of the queue entry. It does
837  *      not change the state of the queue.
838  */
839
840 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
841 {
842         u32 index;
843         int status;
844         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
845                 status = 0;
846         } else {
847                 /*
848                  *      The consumer index must be wrapped if we have reached
849                  *      the end of the queue, else we just use the entry
850                  *      pointed to by the header index
851                  */
852                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
853                         index = 0;
854                 else
855                         index = le32_to_cpu(*q->headers.consumer);
856                 *entry = q->base + index;
857                 status = 1;
858         }
859         return(status);
860 }
861
862 /**
863  *      aac_consumer_free       -       free consumer entry
864  *      @dev: Adapter
865  *      @q: Queue
866  *      @qid: Queue ident
867  *
868  *      Frees up the current top of the queue we are a consumer of. If the
869  *      queue was full notify the producer that the queue is no longer full.
870  */
871
872 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
873 {
874         int wasfull = 0;
875         u32 notify;
876
877         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
878                 wasfull = 1;
879
880         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
881                 *q->headers.consumer = cpu_to_le32(1);
882         else
883                 le32_add_cpu(q->headers.consumer, 1);
884
885         if (wasfull) {
886                 switch (qid) {
887
888                 case HostNormCmdQueue:
889                         notify = HostNormCmdNotFull;
890                         break;
891                 case HostNormRespQueue:
892                         notify = HostNormRespNotFull;
893                         break;
894                 default:
895                         BUG();
896                         return;
897                 }
898                 aac_adapter_notify(dev, notify);
899         }
900 }
901
902 /**
903  *      aac_fib_adapter_complete        -       complete adapter issued fib
904  *      @fibptr: fib to complete
905  *      @size: size of fib
906  *
907  *      Will do all necessary work to complete a FIB that was sent from
908  *      the adapter.
909  */
910
911 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
912 {
913         struct hw_fib * hw_fib = fibptr->hw_fib_va;
914         struct aac_dev * dev = fibptr->dev;
915         struct aac_queue * q;
916         unsigned long nointr = 0;
917         unsigned long qflags;
918
919         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
920                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
921                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
922                 kfree(hw_fib);
923                 return 0;
924         }
925
926         if (hw_fib->header.XferState == 0) {
927                 if (dev->comm_interface == AAC_COMM_MESSAGE)
928                         kfree(hw_fib);
929                 return 0;
930         }
931         /*
932          *      If we plan to do anything check the structure type first.
933          */
934         if (hw_fib->header.StructType != FIB_MAGIC &&
935             hw_fib->header.StructType != FIB_MAGIC2 &&
936             hw_fib->header.StructType != FIB_MAGIC2_64) {
937                 if (dev->comm_interface == AAC_COMM_MESSAGE)
938                         kfree(hw_fib);
939                 return -EINVAL;
940         }
941         /*
942          *      This block handles the case where the adapter had sent us a
943          *      command and we have finished processing the command. We
944          *      call completeFib when we are done processing the command
945          *      and want to send a response back to the adapter. This will
946          *      send the completed cdb to the adapter.
947          */
948         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
949                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
950                         kfree (hw_fib);
951                 } else {
952                         u32 index;
953                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
954                         if (size) {
955                                 size += sizeof(struct aac_fibhdr);
956                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
957                                         return -EMSGSIZE;
958                                 hw_fib->header.Size = cpu_to_le16(size);
959                         }
960                         q = &dev->queues->queue[AdapNormRespQueue];
961                         spin_lock_irqsave(q->lock, qflags);
962                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
963                         *(q->headers.producer) = cpu_to_le32(index + 1);
964                         spin_unlock_irqrestore(q->lock, qflags);
965                         if (!(nointr & (int)aac_config.irq_mod))
966                                 aac_adapter_notify(dev, AdapNormRespQueue);
967                 }
968         } else {
969                 printk(KERN_WARNING "aac_fib_adapter_complete: "
970                         "Unknown xferstate detected.\n");
971                 BUG();
972         }
973         return 0;
974 }
975
976 /**
977  *      aac_fib_complete        -       fib completion handler
978  *      @fib: FIB to complete
979  *
980  *      Will do all necessary work to complete a FIB.
981  */
982
983 int aac_fib_complete(struct fib *fibptr)
984 {
985         struct hw_fib * hw_fib = fibptr->hw_fib_va;
986
987         if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
988                 fib_dealloc(fibptr);
989                 return 0;
990         }
991
992         /*
993          *      Check for a fib which has already been completed or with a
994          *      status wait timeout
995          */
996
997         if (hw_fib->header.XferState == 0 || fibptr->done == 2)
998                 return 0;
999         /*
1000          *      If we plan to do anything check the structure type first.
1001          */
1002
1003         if (hw_fib->header.StructType != FIB_MAGIC &&
1004             hw_fib->header.StructType != FIB_MAGIC2 &&
1005             hw_fib->header.StructType != FIB_MAGIC2_64)
1006                 return -EINVAL;
1007         /*
1008          *      This block completes a cdb which orginated on the host and we
1009          *      just need to deallocate the cdb or reinit it. At this point the
1010          *      command is complete that we had sent to the adapter and this
1011          *      cdb could be reused.
1012          */
1013
1014         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
1015                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
1016         {
1017                 fib_dealloc(fibptr);
1018         }
1019         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
1020         {
1021                 /*
1022                  *      This handles the case when the host has aborted the I/O
1023                  *      to the adapter because the adapter is not responding
1024                  */
1025                 fib_dealloc(fibptr);
1026         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
1027                 fib_dealloc(fibptr);
1028         } else {
1029                 BUG();
1030         }
1031         return 0;
1032 }
1033
1034 /**
1035  *      aac_printf      -       handle printf from firmware
1036  *      @dev: Adapter
1037  *      @val: Message info
1038  *
1039  *      Print a message passed to us by the controller firmware on the
1040  *      Adaptec board
1041  */
1042
1043 void aac_printf(struct aac_dev *dev, u32 val)
1044 {
1045         char *cp = dev->printfbuf;
1046         if (dev->printf_enabled)
1047         {
1048                 int length = val & 0xffff;
1049                 int level = (val >> 16) & 0xffff;
1050
1051                 /*
1052                  *      The size of the printfbuf is set in port.c
1053                  *      There is no variable or define for it
1054                  */
1055                 if (length > 255)
1056                         length = 255;
1057                 if (cp[length] != 0)
1058                         cp[length] = 0;
1059                 if (level == LOG_AAC_HIGH_ERROR)
1060                         printk(KERN_WARNING "%s:%s", dev->name, cp);
1061                 else
1062                         printk(KERN_INFO "%s:%s", dev->name, cp);
1063         }
1064         memset(cp, 0, 256);
1065 }
1066
1067 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1068 {
1069         return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1070 }
1071
1072
1073 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1074 {
1075         switch (aac_aif_data(aifcmd, 1)) {
1076         case AifBuCacheDataLoss:
1077                 if (aac_aif_data(aifcmd, 2))
1078                         dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1079                         aac_aif_data(aifcmd, 2));
1080                 else
1081                         dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1082                 break;
1083         case AifBuCacheDataRecover:
1084                 if (aac_aif_data(aifcmd, 2))
1085                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1086                         aac_aif_data(aifcmd, 2));
1087                 else
1088                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1089                 break;
1090         }
1091 }
1092
1093 /**
1094  *      aac_handle_aif          -       Handle a message from the firmware
1095  *      @dev: Which adapter this fib is from
1096  *      @fibptr: Pointer to fibptr from adapter
1097  *
1098  *      This routine handles a driver notify fib from the adapter and
1099  *      dispatches it to the appropriate routine for handling.
1100  */
1101
1102 #define AIF_SNIFF_TIMEOUT       (500*HZ)
1103 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1104 {
1105         struct hw_fib * hw_fib = fibptr->hw_fib_va;
1106         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1107         u32 channel, id, lun, container;
1108         struct scsi_device *device;
1109         enum {
1110                 NOTHING,
1111                 DELETE,
1112                 ADD,
1113                 CHANGE
1114         } device_config_needed = NOTHING;
1115
1116         /* Sniff for container changes */
1117
1118         if (!dev || !dev->fsa_dev)
1119                 return;
1120         container = channel = id = lun = (u32)-1;
1121
1122         /*
1123          *      We have set this up to try and minimize the number of
1124          * re-configures that take place. As a result of this when
1125          * certain AIF's come in we will set a flag waiting for another
1126          * type of AIF before setting the re-config flag.
1127          */
1128         switch (le32_to_cpu(aifcmd->command)) {
1129         case AifCmdDriverNotify:
1130                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1131                 case AifRawDeviceRemove:
1132                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1133                         if ((container >> 28)) {
1134                                 container = (u32)-1;
1135                                 break;
1136                         }
1137                         channel = (container >> 24) & 0xF;
1138                         if (channel >= dev->maximum_num_channels) {
1139                                 container = (u32)-1;
1140                                 break;
1141                         }
1142                         id = container & 0xFFFF;
1143                         if (id >= dev->maximum_num_physicals) {
1144                                 container = (u32)-1;
1145                                 break;
1146                         }
1147                         lun = (container >> 16) & 0xFF;
1148                         container = (u32)-1;
1149                         channel = aac_phys_to_logical(channel);
1150                         device_config_needed = DELETE;
1151                         break;
1152
1153                 /*
1154                  *      Morph or Expand complete
1155                  */
1156                 case AifDenMorphComplete:
1157                 case AifDenVolumeExtendComplete:
1158                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1159                         if (container >= dev->maximum_num_containers)
1160                                 break;
1161
1162                         /*
1163                          *      Find the scsi_device associated with the SCSI
1164                          * address. Make sure we have the right array, and if
1165                          * so set the flag to initiate a new re-config once we
1166                          * see an AifEnConfigChange AIF come through.
1167                          */
1168
1169                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1170                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1171                                         CONTAINER_TO_CHANNEL(container),
1172                                         CONTAINER_TO_ID(container),
1173                                         CONTAINER_TO_LUN(container));
1174                                 if (device) {
1175                                         dev->fsa_dev[container].config_needed = CHANGE;
1176                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1177                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1178                                         scsi_device_put(device);
1179                                 }
1180                         }
1181                 }
1182
1183                 /*
1184                  *      If we are waiting on something and this happens to be
1185                  * that thing then set the re-configure flag.
1186                  */
1187                 if (container != (u32)-1) {
1188                         if (container >= dev->maximum_num_containers)
1189                                 break;
1190                         if ((dev->fsa_dev[container].config_waiting_on ==
1191                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1192                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1193                                 dev->fsa_dev[container].config_waiting_on = 0;
1194                 } else for (container = 0;
1195                     container < dev->maximum_num_containers; ++container) {
1196                         if ((dev->fsa_dev[container].config_waiting_on ==
1197                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1198                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1199                                 dev->fsa_dev[container].config_waiting_on = 0;
1200                 }
1201                 break;
1202
1203         case AifCmdEventNotify:
1204                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1205                 case AifEnBatteryEvent:
1206                         dev->cache_protected =
1207                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1208                         break;
1209                 /*
1210                  *      Add an Array.
1211                  */
1212                 case AifEnAddContainer:
1213                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1214                         if (container >= dev->maximum_num_containers)
1215                                 break;
1216                         dev->fsa_dev[container].config_needed = ADD;
1217                         dev->fsa_dev[container].config_waiting_on =
1218                                 AifEnConfigChange;
1219                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1220                         break;
1221
1222                 /*
1223                  *      Delete an Array.
1224                  */
1225                 case AifEnDeleteContainer:
1226                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1227                         if (container >= dev->maximum_num_containers)
1228                                 break;
1229                         dev->fsa_dev[container].config_needed = DELETE;
1230                         dev->fsa_dev[container].config_waiting_on =
1231                                 AifEnConfigChange;
1232                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1233                         break;
1234
1235                 /*
1236                  *      Container change detected. If we currently are not
1237                  * waiting on something else, setup to wait on a Config Change.
1238                  */
1239                 case AifEnContainerChange:
1240                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1241                         if (container >= dev->maximum_num_containers)
1242                                 break;
1243                         if (dev->fsa_dev[container].config_waiting_on &&
1244                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1245                                 break;
1246                         dev->fsa_dev[container].config_needed = CHANGE;
1247                         dev->fsa_dev[container].config_waiting_on =
1248                                 AifEnConfigChange;
1249                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1250                         break;
1251
1252                 case AifEnConfigChange:
1253                         break;
1254
1255                 case AifEnAddJBOD:
1256                 case AifEnDeleteJBOD:
1257                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1258                         if ((container >> 28)) {
1259                                 container = (u32)-1;
1260                                 break;
1261                         }
1262                         channel = (container >> 24) & 0xF;
1263                         if (channel >= dev->maximum_num_channels) {
1264                                 container = (u32)-1;
1265                                 break;
1266                         }
1267                         id = container & 0xFFFF;
1268                         if (id >= dev->maximum_num_physicals) {
1269                                 container = (u32)-1;
1270                                 break;
1271                         }
1272                         lun = (container >> 16) & 0xFF;
1273                         container = (u32)-1;
1274                         channel = aac_phys_to_logical(channel);
1275                         device_config_needed =
1276                           (((__le32 *)aifcmd->data)[0] ==
1277                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1278                         if (device_config_needed == ADD) {
1279                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1280                                         channel,
1281                                         id,
1282                                         lun);
1283                                 if (device) {
1284                                         scsi_remove_device(device);
1285                                         scsi_device_put(device);
1286                                 }
1287                         }
1288                         break;
1289
1290                 case AifEnEnclosureManagement:
1291                         /*
1292                          * If in JBOD mode, automatic exposure of new
1293                          * physical target to be suppressed until configured.
1294                          */
1295                         if (dev->jbod)
1296                                 break;
1297                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1298                         case EM_DRIVE_INSERTION:
1299                         case EM_DRIVE_REMOVAL:
1300                         case EM_SES_DRIVE_INSERTION:
1301                         case EM_SES_DRIVE_REMOVAL:
1302                                 container = le32_to_cpu(
1303                                         ((__le32 *)aifcmd->data)[2]);
1304                                 if ((container >> 28)) {
1305                                         container = (u32)-1;
1306                                         break;
1307                                 }
1308                                 channel = (container >> 24) & 0xF;
1309                                 if (channel >= dev->maximum_num_channels) {
1310                                         container = (u32)-1;
1311                                         break;
1312                                 }
1313                                 id = container & 0xFFFF;
1314                                 lun = (container >> 16) & 0xFF;
1315                                 container = (u32)-1;
1316                                 if (id >= dev->maximum_num_physicals) {
1317                                         /* legacy dev_t ? */
1318                                         if ((0x2000 <= id) || lun || channel ||
1319                                           ((channel = (id >> 7) & 0x3F) >=
1320                                           dev->maximum_num_channels))
1321                                                 break;
1322                                         lun = (id >> 4) & 7;
1323                                         id &= 0xF;
1324                                 }
1325                                 channel = aac_phys_to_logical(channel);
1326                                 device_config_needed =
1327                                   ((((__le32 *)aifcmd->data)[3]
1328                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1329                                     (((__le32 *)aifcmd->data)[3]
1330                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1331                                   ADD : DELETE;
1332                                 break;
1333                         }
1334                         case AifBuManagerEvent:
1335                                 aac_handle_aif_bu(dev, aifcmd);
1336                         break;
1337                 }
1338
1339                 /*
1340                  *      If we are waiting on something and this happens to be
1341                  * that thing then set the re-configure flag.
1342                  */
1343                 if (container != (u32)-1) {
1344                         if (container >= dev->maximum_num_containers)
1345                                 break;
1346                         if ((dev->fsa_dev[container].config_waiting_on ==
1347                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1348                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1349                                 dev->fsa_dev[container].config_waiting_on = 0;
1350                 } else for (container = 0;
1351                     container < dev->maximum_num_containers; ++container) {
1352                         if ((dev->fsa_dev[container].config_waiting_on ==
1353                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1354                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1355                                 dev->fsa_dev[container].config_waiting_on = 0;
1356                 }
1357                 break;
1358
1359         case AifCmdJobProgress:
1360                 /*
1361                  *      These are job progress AIF's. When a Clear is being
1362                  * done on a container it is initially created then hidden from
1363                  * the OS. When the clear completes we don't get a config
1364                  * change so we monitor the job status complete on a clear then
1365                  * wait for a container change.
1366                  */
1367
1368                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1369                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1370                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1371                         for (container = 0;
1372                             container < dev->maximum_num_containers;
1373                             ++container) {
1374                                 /*
1375                                  * Stomp on all config sequencing for all
1376                                  * containers?
1377                                  */
1378                                 dev->fsa_dev[container].config_waiting_on =
1379                                         AifEnContainerChange;
1380                                 dev->fsa_dev[container].config_needed = ADD;
1381                                 dev->fsa_dev[container].config_waiting_stamp =
1382                                         jiffies;
1383                         }
1384                 }
1385                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1386                     ((__le32 *)aifcmd->data)[6] == 0 &&
1387                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1388                         for (container = 0;
1389                             container < dev->maximum_num_containers;
1390                             ++container) {
1391                                 /*
1392                                  * Stomp on all config sequencing for all
1393                                  * containers?
1394                                  */
1395                                 dev->fsa_dev[container].config_waiting_on =
1396                                         AifEnContainerChange;
1397                                 dev->fsa_dev[container].config_needed = DELETE;
1398                                 dev->fsa_dev[container].config_waiting_stamp =
1399                                         jiffies;
1400                         }
1401                 }
1402                 break;
1403         }
1404
1405         container = 0;
1406 retry_next:
1407         if (device_config_needed == NOTHING)
1408         for (; container < dev->maximum_num_containers; ++container) {
1409                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1410                         (dev->fsa_dev[container].config_needed != NOTHING) &&
1411                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1412                         device_config_needed =
1413                                 dev->fsa_dev[container].config_needed;
1414                         dev->fsa_dev[container].config_needed = NOTHING;
1415                         channel = CONTAINER_TO_CHANNEL(container);
1416                         id = CONTAINER_TO_ID(container);
1417                         lun = CONTAINER_TO_LUN(container);
1418                         break;
1419                 }
1420         }
1421         if (device_config_needed == NOTHING)
1422                 return;
1423
1424         /*
1425          *      If we decided that a re-configuration needs to be done,
1426          * schedule it here on the way out the door, please close the door
1427          * behind you.
1428          */
1429
1430         /*
1431          *      Find the scsi_device associated with the SCSI address,
1432          * and mark it as changed, invalidating the cache. This deals
1433          * with changes to existing device IDs.
1434          */
1435
1436         if (!dev || !dev->scsi_host_ptr)
1437                 return;
1438         /*
1439          * force reload of disk info via aac_probe_container
1440          */
1441         if ((channel == CONTAINER_CHANNEL) &&
1442           (device_config_needed != NOTHING)) {
1443                 if (dev->fsa_dev[container].valid == 1)
1444                         dev->fsa_dev[container].valid = 2;
1445                 aac_probe_container(dev, container);
1446         }
1447         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1448         if (device) {
1449                 switch (device_config_needed) {
1450                 case DELETE:
1451 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1452                         scsi_remove_device(device);
1453 #else
1454                         if (scsi_device_online(device)) {
1455                                 scsi_device_set_state(device, SDEV_OFFLINE);
1456                                 sdev_printk(KERN_INFO, device,
1457                                         "Device offlined - %s\n",
1458                                         (channel == CONTAINER_CHANNEL) ?
1459                                                 "array deleted" :
1460                                                 "enclosure services event");
1461                         }
1462 #endif
1463                         break;
1464                 case ADD:
1465                         if (!scsi_device_online(device)) {
1466                                 sdev_printk(KERN_INFO, device,
1467                                         "Device online - %s\n",
1468                                         (channel == CONTAINER_CHANNEL) ?
1469                                                 "array created" :
1470                                                 "enclosure services event");
1471                                 scsi_device_set_state(device, SDEV_RUNNING);
1472                         }
1473                         /* FALLTHRU */
1474                 case CHANGE:
1475                         if ((channel == CONTAINER_CHANNEL)
1476                          && (!dev->fsa_dev[container].valid)) {
1477 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1478                                 scsi_remove_device(device);
1479 #else
1480                                 if (!scsi_device_online(device))
1481                                         break;
1482                                 scsi_device_set_state(device, SDEV_OFFLINE);
1483                                 sdev_printk(KERN_INFO, device,
1484                                         "Device offlined - %s\n",
1485                                         "array failed");
1486 #endif
1487                                 break;
1488                         }
1489                         scsi_rescan_device(&device->sdev_gendev);
1490
1491                 default:
1492                         break;
1493                 }
1494                 scsi_device_put(device);
1495                 device_config_needed = NOTHING;
1496         }
1497         if (device_config_needed == ADD)
1498                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1499         if (channel == CONTAINER_CHANNEL) {
1500                 container++;
1501                 device_config_needed = NOTHING;
1502                 goto retry_next;
1503         }
1504 }
1505
1506 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1507 {
1508         int index, quirks;
1509         int retval;
1510         struct Scsi_Host *host;
1511         struct scsi_device *dev;
1512         struct scsi_cmnd *command;
1513         struct scsi_cmnd *command_list;
1514         int jafo = 0;
1515         int bled;
1516         u64 dmamask;
1517         int num_of_fibs = 0;
1518
1519         /*
1520          * Assumptions:
1521          *      - host is locked, unless called by the aacraid thread.
1522          *        (a matter of convenience, due to legacy issues surrounding
1523          *        eh_host_adapter_reset).
1524          *      - in_reset is asserted, so no new i/o is getting to the
1525          *        card.
1526          *      - The card is dead, or will be very shortly ;-/ so no new
1527          *        commands are completing in the interrupt service.
1528          */
1529         host = aac->scsi_host_ptr;
1530         scsi_block_requests(host);
1531         aac_adapter_disable_int(aac);
1532         if (aac->thread->pid != current->pid) {
1533                 spin_unlock_irq(host->host_lock);
1534                 kthread_stop(aac->thread);
1535                 jafo = 1;
1536         }
1537
1538         /*
1539          *      If a positive health, means in a known DEAD PANIC
1540          * state and the adapter could be reset to `try again'.
1541          */
1542         bled = forced ? 0 : aac_adapter_check_health(aac);
1543         retval = aac_adapter_restart(aac, bled, reset_type);
1544
1545         if (retval)
1546                 goto out;
1547
1548         /*
1549          *      Loop through the fibs, close the synchronous FIBS
1550          */
1551         retval = 1;
1552         num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1553         for (index = 0; index <  num_of_fibs; index++) {
1554
1555                 struct fib *fib = &aac->fibs[index];
1556                 __le32 XferState = fib->hw_fib_va->header.XferState;
1557                 bool is_response_expected = false;
1558
1559                 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1560                    (XferState & cpu_to_le32(ResponseExpected)))
1561                         is_response_expected = true;
1562
1563                 if (is_response_expected
1564                   || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1565                         unsigned long flagv;
1566                         spin_lock_irqsave(&fib->event_lock, flagv);
1567                         up(&fib->event_wait);
1568                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1569                         schedule();
1570                         retval = 0;
1571                 }
1572         }
1573         /* Give some extra time for ioctls to complete. */
1574         if (retval == 0)
1575                 ssleep(2);
1576         index = aac->cardtype;
1577
1578         /*
1579          * Re-initialize the adapter, first free resources, then carefully
1580          * apply the initialization sequence to come back again. Only risk
1581          * is a change in Firmware dropping cache, it is assumed the caller
1582          * will ensure that i/o is queisced and the card is flushed in that
1583          * case.
1584          */
1585         aac_fib_map_free(aac);
1586         dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1587                           aac->comm_phys);
1588         aac->comm_addr = NULL;
1589         aac->comm_phys = 0;
1590         kfree(aac->queues);
1591         aac->queues = NULL;
1592         aac_free_irq(aac);
1593         kfree(aac->fsa_dev);
1594         aac->fsa_dev = NULL;
1595
1596         dmamask = DMA_BIT_MASK(32);
1597         quirks = aac_get_driver_ident(index)->quirks;
1598         if (quirks & AAC_QUIRK_31BIT)
1599                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1600         else if (!(quirks & AAC_QUIRK_SRC))
1601                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1602         else
1603                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1604
1605         if (quirks & AAC_QUIRK_31BIT && !retval) {
1606                 dmamask = DMA_BIT_MASK(31);
1607                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1608         }
1609
1610         if (retval)
1611                 goto out;
1612
1613         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1614                 goto out;
1615
1616         if (jafo) {
1617                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1618                                           aac->name);
1619                 if (IS_ERR(aac->thread)) {
1620                         retval = PTR_ERR(aac->thread);
1621                         goto out;
1622                 }
1623         }
1624         (void)aac_get_adapter_info(aac);
1625         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1626                 host->sg_tablesize = 34;
1627                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1628         }
1629         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1630                 host->sg_tablesize = 17;
1631                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1632         }
1633         aac_get_config_status(aac, 1);
1634         aac_get_containers(aac);
1635         /*
1636          * This is where the assumption that the Adapter is quiesced
1637          * is important.
1638          */
1639         command_list = NULL;
1640         __shost_for_each_device(dev, host) {
1641                 unsigned long flags;
1642                 spin_lock_irqsave(&dev->list_lock, flags);
1643                 list_for_each_entry(command, &dev->cmd_list, list)
1644                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1645                                 command->SCp.buffer = (struct scatterlist *)command_list;
1646                                 command_list = command;
1647                         }
1648                 spin_unlock_irqrestore(&dev->list_lock, flags);
1649         }
1650         while ((command = command_list)) {
1651                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1652                 command->SCp.buffer = NULL;
1653                 command->result = DID_OK << 16
1654                   | COMMAND_COMPLETE << 8
1655                   | SAM_STAT_TASK_SET_FULL;
1656                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1657                 command->scsi_done(command);
1658         }
1659         /*
1660          * Any Device that was already marked offline needs to be cleaned up
1661          */
1662         __shost_for_each_device(dev, host) {
1663                 if (!scsi_device_online(dev)) {
1664                         sdev_printk(KERN_INFO, dev, "Removing offline device\n");
1665                         scsi_remove_device(dev);
1666                         scsi_device_put(dev);
1667                 }
1668         }
1669         retval = 0;
1670
1671 out:
1672         aac->in_reset = 0;
1673         scsi_unblock_requests(host);
1674         /*
1675          * Issue bus rescan to catch any configuration that might have
1676          * occurred
1677          */
1678         if (!retval) {
1679                 dev_info(&aac->pdev->dev, "Issuing bus rescan\n");
1680                 scsi_scan_host(host);
1681         }
1682         if (jafo) {
1683                 spin_lock_irq(host->host_lock);
1684         }
1685         return retval;
1686 }
1687
1688 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1689 {
1690         unsigned long flagv = 0;
1691         int retval;
1692         struct Scsi_Host * host;
1693         int bled;
1694
1695         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1696                 return -EBUSY;
1697
1698         if (aac->in_reset) {
1699                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1700                 return -EBUSY;
1701         }
1702         aac->in_reset = 1;
1703         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1704
1705         /*
1706          * Wait for all commands to complete to this specific
1707          * target (block maximum 60 seconds). Although not necessary,
1708          * it does make us a good storage citizen.
1709          */
1710         host = aac->scsi_host_ptr;
1711         scsi_block_requests(host);
1712         if (forced < 2) for (retval = 60; retval; --retval) {
1713                 struct scsi_device * dev;
1714                 struct scsi_cmnd * command;
1715                 int active = 0;
1716
1717                 __shost_for_each_device(dev, host) {
1718                         spin_lock_irqsave(&dev->list_lock, flagv);
1719                         list_for_each_entry(command, &dev->cmd_list, list) {
1720                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1721                                         active++;
1722                                         break;
1723                                 }
1724                         }
1725                         spin_unlock_irqrestore(&dev->list_lock, flagv);
1726                         if (active)
1727                                 break;
1728
1729                 }
1730                 /*
1731                  * We can exit If all the commands are complete
1732                  */
1733                 if (active == 0)
1734                         break;
1735                 ssleep(1);
1736         }
1737
1738         /* Quiesce build, flush cache, write through mode */
1739         if (forced < 2)
1740                 aac_send_shutdown(aac);
1741         spin_lock_irqsave(host->host_lock, flagv);
1742         bled = forced ? forced :
1743                         (aac_check_reset != 0 && aac_check_reset != 1);
1744         retval = _aac_reset_adapter(aac, bled, reset_type);
1745         spin_unlock_irqrestore(host->host_lock, flagv);
1746
1747         if ((forced < 2) && (retval == -ENODEV)) {
1748                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1749                 struct fib * fibctx = aac_fib_alloc(aac);
1750                 if (fibctx) {
1751                         struct aac_pause *cmd;
1752                         int status;
1753
1754                         aac_fib_init(fibctx);
1755
1756                         cmd = (struct aac_pause *) fib_data(fibctx);
1757
1758                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1759                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1760                         cmd->timeout = cpu_to_le32(1);
1761                         cmd->min = cpu_to_le32(1);
1762                         cmd->noRescan = cpu_to_le32(1);
1763                         cmd->count = cpu_to_le32(0);
1764
1765                         status = aac_fib_send(ContainerCommand,
1766                           fibctx,
1767                           sizeof(struct aac_pause),
1768                           FsaNormal,
1769                           -2 /* Timeout silently */, 1,
1770                           NULL, NULL);
1771
1772                         if (status >= 0)
1773                                 aac_fib_complete(fibctx);
1774                         /* FIB should be freed only after getting
1775                          * the response from the F/W */
1776                         if (status != -ERESTARTSYS)
1777                                 aac_fib_free(fibctx);
1778                 }
1779         }
1780
1781         return retval;
1782 }
1783
1784 int aac_check_health(struct aac_dev * aac)
1785 {
1786         int BlinkLED;
1787         unsigned long time_now, flagv = 0;
1788         struct list_head * entry;
1789
1790         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1791         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1792                 return 0;
1793
1794         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1795                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1796                 return 0; /* OK */
1797         }
1798
1799         aac->in_reset = 1;
1800
1801         /* Fake up an AIF:
1802          *      aac_aifcmd.command = AifCmdEventNotify = 1
1803          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1804          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1805          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1806          *      aac.aifcmd.data[2] = AifHighPriority = 3
1807          *      aac.aifcmd.data[3] = BlinkLED
1808          */
1809
1810         time_now = jiffies/HZ;
1811         entry = aac->fib_list.next;
1812
1813         /*
1814          * For each Context that is on the
1815          * fibctxList, make a copy of the
1816          * fib, and then set the event to wake up the
1817          * thread that is waiting for it.
1818          */
1819         while (entry != &aac->fib_list) {
1820                 /*
1821                  * Extract the fibctx
1822                  */
1823                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1824                 struct hw_fib * hw_fib;
1825                 struct fib * fib;
1826                 /*
1827                  * Check if the queue is getting
1828                  * backlogged
1829                  */
1830                 if (fibctx->count > 20) {
1831                         /*
1832                          * It's *not* jiffies folks,
1833                          * but jiffies / HZ, so do not
1834                          * panic ...
1835                          */
1836                         u32 time_last = fibctx->jiffies;
1837                         /*
1838                          * Has it been > 2 minutes
1839                          * since the last read off
1840                          * the queue?
1841                          */
1842                         if ((time_now - time_last) > aif_timeout) {
1843                                 entry = entry->next;
1844                                 aac_close_fib_context(aac, fibctx);
1845                                 continue;
1846                         }
1847                 }
1848                 /*
1849                  * Warning: no sleep allowed while
1850                  * holding spinlock
1851                  */
1852                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1853                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1854                 if (fib && hw_fib) {
1855                         struct aac_aifcmd * aif;
1856
1857                         fib->hw_fib_va = hw_fib;
1858                         fib->dev = aac;
1859                         aac_fib_init(fib);
1860                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1861                         fib->size = sizeof (struct fib);
1862                         fib->data = hw_fib->data;
1863                         aif = (struct aac_aifcmd *)hw_fib->data;
1864                         aif->command = cpu_to_le32(AifCmdEventNotify);
1865                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1866                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1867                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1868                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1869                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1870
1871                         /*
1872                          * Put the FIB onto the
1873                          * fibctx's fibs
1874                          */
1875                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1876                         fibctx->count++;
1877                         /*
1878                          * Set the event to wake up the
1879                          * thread that will waiting.
1880                          */
1881                         up(&fibctx->wait_sem);
1882                 } else {
1883                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1884                         kfree(fib);
1885                         kfree(hw_fib);
1886                 }
1887                 entry = entry->next;
1888         }
1889
1890         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1891
1892         if (BlinkLED < 0) {
1893                 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1894                                 aac->name, BlinkLED);
1895                 goto out;
1896         }
1897
1898         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1899
1900 out:
1901         aac->in_reset = 0;
1902         return BlinkLED;
1903 }
1904
1905
1906 static void aac_resolve_luns(struct aac_dev *dev)
1907 {
1908         int bus, target, channel;
1909         struct scsi_device *sdev;
1910         u8 devtype;
1911         u8 new_devtype;
1912
1913         for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1914                 for (target = 0; target < AAC_MAX_TARGETS; target++) {
1915
1916                         if (bus == CONTAINER_CHANNEL)
1917                                 channel = CONTAINER_CHANNEL;
1918                         else
1919                                 channel = aac_phys_to_logical(bus);
1920
1921                         devtype = dev->hba_map[bus][target].devtype;
1922                         new_devtype = dev->hba_map[bus][target].new_devtype;
1923
1924                         sdev = scsi_device_lookup(dev->scsi_host_ptr, channel,
1925                                         target, 0);
1926
1927                         if (!sdev && new_devtype)
1928                                 scsi_add_device(dev->scsi_host_ptr, channel,
1929                                                 target, 0);
1930                         else if (sdev && new_devtype != devtype)
1931                                 scsi_remove_device(sdev);
1932                         else if (sdev && new_devtype == devtype)
1933                                 scsi_rescan_device(&sdev->sdev_gendev);
1934
1935                         if (sdev)
1936                                 scsi_device_put(sdev);
1937
1938                         dev->hba_map[bus][target].devtype = new_devtype;
1939                 }
1940         }
1941 }
1942
1943 /**
1944  *      aac_handle_sa_aif       Handle a message from the firmware
1945  *      @dev: Which adapter this fib is from
1946  *      @fibptr: Pointer to fibptr from adapter
1947  *
1948  *      This routine handles a driver notify fib from the adapter and
1949  *      dispatches it to the appropriate routine for handling.
1950  */
1951 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1952 {
1953         int i, bus, target, container, rcode = 0;
1954         u32 events = 0;
1955         struct fib *fib;
1956         struct scsi_device *sdev;
1957
1958         if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1959                 events = SA_AIF_HOTPLUG;
1960         else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1961                 events = SA_AIF_HARDWARE;
1962         else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1963                 events = SA_AIF_PDEV_CHANGE;
1964         else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1965                 events = SA_AIF_LDEV_CHANGE;
1966         else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1967                 events = SA_AIF_BPSTAT_CHANGE;
1968         else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1969                 events = SA_AIF_BPCFG_CHANGE;
1970
1971         switch (events) {
1972         case SA_AIF_HOTPLUG:
1973         case SA_AIF_HARDWARE:
1974         case SA_AIF_PDEV_CHANGE:
1975         case SA_AIF_LDEV_CHANGE:
1976         case SA_AIF_BPCFG_CHANGE:
1977
1978                 fib = aac_fib_alloc(dev);
1979                 if (!fib) {
1980                         pr_err("aac_handle_sa_aif: out of memory\n");
1981                         return;
1982                 }
1983                 for (bus = 0; bus < AAC_MAX_BUSES; bus++)
1984                         for (target = 0; target < AAC_MAX_TARGETS; target++)
1985                                 dev->hba_map[bus][target].new_devtype = 0;
1986
1987                 rcode = aac_report_phys_luns(dev, fib, AAC_RESCAN);
1988
1989                 if (rcode != -ERESTARTSYS)
1990                         aac_fib_free(fib);
1991
1992                 aac_resolve_luns(dev);
1993
1994                 if (events == SA_AIF_LDEV_CHANGE ||
1995                     events == SA_AIF_BPCFG_CHANGE) {
1996                         aac_get_containers(dev);
1997                         for (container = 0; container <
1998                         dev->maximum_num_containers; ++container) {
1999                                 sdev = scsi_device_lookup(dev->scsi_host_ptr,
2000                                                 CONTAINER_CHANNEL,
2001                                                 container, 0);
2002                                 if (dev->fsa_dev[container].valid && !sdev) {
2003                                         scsi_add_device(dev->scsi_host_ptr,
2004                                                 CONTAINER_CHANNEL,
2005                                                 container, 0);
2006                                 } else if (!dev->fsa_dev[container].valid &&
2007                                         sdev) {
2008                                         scsi_remove_device(sdev);
2009                                         scsi_device_put(sdev);
2010                                 } else if (sdev) {
2011                                         scsi_rescan_device(&sdev->sdev_gendev);
2012                                         scsi_device_put(sdev);
2013                                 }
2014                         }
2015                 }
2016                 break;
2017
2018         case SA_AIF_BPSTAT_CHANGE:
2019                 /* currently do nothing */
2020                 break;
2021         }
2022
2023         for (i = 1; i <= 10; ++i) {
2024                 events = src_readl(dev, MUnit.IDR);
2025                 if (events & (1<<23)) {
2026                         pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2027                                 i, 10);
2028                         ssleep(1);
2029                 }
2030         }
2031 }
2032
2033 static int get_fib_count(struct aac_dev *dev)
2034 {
2035         unsigned int num = 0;
2036         struct list_head *entry;
2037         unsigned long flagv;
2038
2039         /*
2040          * Warning: no sleep allowed while
2041          * holding spinlock. We take the estimate
2042          * and pre-allocate a set of fibs outside the
2043          * lock.
2044          */
2045         num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2046                         / sizeof(struct hw_fib); /* some extra */
2047         spin_lock_irqsave(&dev->fib_lock, flagv);
2048         entry = dev->fib_list.next;
2049         while (entry != &dev->fib_list) {
2050                 entry = entry->next;
2051                 ++num;
2052         }
2053         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2054
2055         return num;
2056 }
2057
2058 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2059                                                 struct fib **fib_pool,
2060                                                 unsigned int num)
2061 {
2062         struct hw_fib **hw_fib_p;
2063         struct fib **fib_p;
2064
2065         hw_fib_p = hw_fib_pool;
2066         fib_p = fib_pool;
2067         while (hw_fib_p < &hw_fib_pool[num]) {
2068                 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2069                 if (!(*(hw_fib_p++))) {
2070                         --hw_fib_p;
2071                         break;
2072                 }
2073
2074                 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2075                 if (!(*(fib_p++))) {
2076                         kfree(*(--hw_fib_p));
2077                         break;
2078                 }
2079         }
2080
2081         /*
2082          * Get the actual number of allocated fibs
2083          */
2084         num = hw_fib_p - hw_fib_pool;
2085         return num;
2086 }
2087
2088 static void wakeup_fibctx_threads(struct aac_dev *dev,
2089                                                 struct hw_fib **hw_fib_pool,
2090                                                 struct fib **fib_pool,
2091                                                 struct fib *fib,
2092                                                 struct hw_fib *hw_fib,
2093                                                 unsigned int num)
2094 {
2095         unsigned long flagv;
2096         struct list_head *entry;
2097         struct hw_fib **hw_fib_p;
2098         struct fib **fib_p;
2099         u32 time_now, time_last;
2100         struct hw_fib *hw_newfib;
2101         struct fib *newfib;
2102         struct aac_fib_context *fibctx;
2103
2104         time_now = jiffies/HZ;
2105         spin_lock_irqsave(&dev->fib_lock, flagv);
2106         entry = dev->fib_list.next;
2107         /*
2108          * For each Context that is on the
2109          * fibctxList, make a copy of the
2110          * fib, and then set the event to wake up the
2111          * thread that is waiting for it.
2112          */
2113
2114         hw_fib_p = hw_fib_pool;
2115         fib_p = fib_pool;
2116         while (entry != &dev->fib_list) {
2117                 /*
2118                  * Extract the fibctx
2119                  */
2120                 fibctx = list_entry(entry, struct aac_fib_context,
2121                                 next);
2122                 /*
2123                  * Check if the queue is getting
2124                  * backlogged
2125                  */
2126                 if (fibctx->count > 20) {
2127                         /*
2128                          * It's *not* jiffies folks,
2129                          * but jiffies / HZ so do not
2130                          * panic ...
2131                          */
2132                         time_last = fibctx->jiffies;
2133                         /*
2134                          * Has it been > 2 minutes
2135                          * since the last read off
2136                          * the queue?
2137                          */
2138                         if ((time_now - time_last) > aif_timeout) {
2139                                 entry = entry->next;
2140                                 aac_close_fib_context(dev, fibctx);
2141                                 continue;
2142                         }
2143                 }
2144                 /*
2145                  * Warning: no sleep allowed while
2146                  * holding spinlock
2147                  */
2148                 if (hw_fib_p >= &hw_fib_pool[num]) {
2149                         pr_warn("aifd: didn't allocate NewFib\n");
2150                         entry = entry->next;
2151                         continue;
2152                 }
2153
2154                 hw_newfib = *hw_fib_p;
2155                 *(hw_fib_p++) = NULL;
2156                 newfib = *fib_p;
2157                 *(fib_p++) = NULL;
2158                 /*
2159                  * Make the copy of the FIB
2160                  */
2161                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2162                 memcpy(newfib, fib, sizeof(struct fib));
2163                 newfib->hw_fib_va = hw_newfib;
2164                 /*
2165                  * Put the FIB onto the
2166                  * fibctx's fibs
2167                  */
2168                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2169                 fibctx->count++;
2170                 /*
2171                  * Set the event to wake up the
2172                  * thread that is waiting.
2173                  */
2174                 up(&fibctx->wait_sem);
2175
2176                 entry = entry->next;
2177         }
2178         /*
2179          *      Set the status of this FIB
2180          */
2181         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2182         aac_fib_adapter_complete(fib, sizeof(u32));
2183         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2184
2185 }
2186
2187 static void aac_process_events(struct aac_dev *dev)
2188 {
2189         struct hw_fib *hw_fib;
2190         struct fib *fib;
2191         unsigned long flags;
2192         spinlock_t *t_lock;
2193
2194         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2195         spin_lock_irqsave(t_lock, flags);
2196
2197         while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2198                 struct list_head *entry;
2199                 struct aac_aifcmd *aifcmd;
2200                 unsigned int  num;
2201                 struct hw_fib **hw_fib_pool, **hw_fib_p;
2202                 struct fib **fib_pool, **fib_p;
2203
2204                 set_current_state(TASK_RUNNING);
2205
2206                 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2207                 list_del(entry);
2208
2209                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2210                 spin_unlock_irqrestore(t_lock, flags);
2211
2212                 fib = list_entry(entry, struct fib, fiblink);
2213                 hw_fib = fib->hw_fib_va;
2214                 if (dev->sa_firmware) {
2215                         /* Thor AIF */
2216                         aac_handle_sa_aif(dev, fib);
2217                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2218                         goto free_fib;
2219                 }
2220                 /*
2221                  *      We will process the FIB here or pass it to a
2222                  *      worker thread that is TBD. We Really can't
2223                  *      do anything at this point since we don't have
2224                  *      anything defined for this thread to do.
2225                  */
2226                 memset(fib, 0, sizeof(struct fib));
2227                 fib->type = FSAFS_NTC_FIB_CONTEXT;
2228                 fib->size = sizeof(struct fib);
2229                 fib->hw_fib_va = hw_fib;
2230                 fib->data = hw_fib->data;
2231                 fib->dev = dev;
2232                 /*
2233                  *      We only handle AifRequest fibs from the adapter.
2234                  */
2235
2236                 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2237                 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2238                         /* Handle Driver Notify Events */
2239                         aac_handle_aif(dev, fib);
2240                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2241                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2242                         goto free_fib;
2243                 }
2244                 /*
2245                  * The u32 here is important and intended. We are using
2246                  * 32bit wrapping time to fit the adapter field
2247                  */
2248
2249                 /* Sniff events */
2250                 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2251                  || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2252                         aac_handle_aif(dev, fib);
2253                 }
2254
2255                 /*
2256                  * get number of fibs to process
2257                  */
2258                 num = get_fib_count(dev);
2259                 if (!num)
2260                         goto free_fib;
2261
2262                 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2263                                                 GFP_KERNEL);
2264                 if (!hw_fib_pool)
2265                         goto free_fib;
2266
2267                 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2268                 if (!fib_pool)
2269                         goto free_hw_fib_pool;
2270
2271                 /*
2272                  * Fill up fib pointer pools with actual fibs
2273                  * and hw_fibs
2274                  */
2275                 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2276                 if (!num)
2277                         goto free_mem;
2278
2279                 /*
2280                  * wakeup the thread that is waiting for
2281                  * the response from fw (ioctl)
2282                  */
2283                 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2284                                                             fib, hw_fib, num);
2285
2286 free_mem:
2287                 /* Free up the remaining resources */
2288                 hw_fib_p = hw_fib_pool;
2289                 fib_p = fib_pool;
2290                 while (hw_fib_p < &hw_fib_pool[num]) {
2291                         kfree(*hw_fib_p);
2292                         kfree(*fib_p);
2293                         ++fib_p;
2294                         ++hw_fib_p;
2295                 }
2296                 kfree(fib_pool);
2297 free_hw_fib_pool:
2298                 kfree(hw_fib_pool);
2299 free_fib:
2300                 kfree(fib);
2301                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2302                 spin_lock_irqsave(t_lock, flags);
2303         }
2304         /*
2305          *      There are no more AIF's
2306          */
2307         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2308         spin_unlock_irqrestore(t_lock, flags);
2309 }
2310
2311 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2312                                                         u32 datasize)
2313 {
2314         struct aac_srb *srbcmd;
2315         struct sgmap64 *sg64;
2316         dma_addr_t addr;
2317         char *dma_buf;
2318         struct fib *fibptr;
2319         int ret = -ENOMEM;
2320         u32 vbus, vid;
2321
2322         fibptr = aac_fib_alloc(dev);
2323         if (!fibptr)
2324                 goto out;
2325
2326         dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2327                                      GFP_KERNEL);
2328         if (!dma_buf)
2329                 goto fib_free_out;
2330
2331         aac_fib_init(fibptr);
2332
2333         vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2334         vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2335
2336         srbcmd = (struct aac_srb *)fib_data(fibptr);
2337
2338         srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2339         srbcmd->channel = cpu_to_le32(vbus);
2340         srbcmd->id = cpu_to_le32(vid);
2341         srbcmd->lun = 0;
2342         srbcmd->flags = cpu_to_le32(SRB_DataOut);
2343         srbcmd->timeout = cpu_to_le32(10);
2344         srbcmd->retry_limit = 0;
2345         srbcmd->cdb_size = cpu_to_le32(12);
2346         srbcmd->count = cpu_to_le32(datasize);
2347
2348         memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2349         srbcmd->cdb[0] = BMIC_OUT;
2350         srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2351         memcpy(dma_buf, (char *)wellness_str, datasize);
2352
2353         sg64 = (struct sgmap64 *)&srbcmd->sg;
2354         sg64->count = cpu_to_le32(1);
2355         sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2356         sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2357         sg64->sg[0].count = cpu_to_le32(datasize);
2358
2359         ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2360                                 FsaNormal, 1, 1, NULL, NULL);
2361
2362         dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2363
2364         /*
2365          * Do not set XferState to zero unless
2366          * receives a response from F/W
2367          */
2368         if (ret >= 0)
2369                 aac_fib_complete(fibptr);
2370
2371         /*
2372          * FIB should be freed only after
2373          * getting the response from the F/W
2374          */
2375         if (ret != -ERESTARTSYS)
2376                 goto fib_free_out;
2377
2378 out:
2379         return ret;
2380 fib_free_out:
2381         aac_fib_free(fibptr);
2382         goto out;
2383 }
2384
2385 int aac_send_safw_hostttime(struct aac_dev *dev, struct timeval *now)
2386 {
2387         struct tm cur_tm;
2388         char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2389         u32 datasize = sizeof(wellness_str);
2390         unsigned long local_time;
2391         int ret = -ENODEV;
2392
2393         if (!dev->sa_firmware)
2394                 goto out;
2395
2396         local_time = (u32)(now->tv_sec - (sys_tz.tz_minuteswest * 60));
2397         time_to_tm(local_time, 0, &cur_tm);
2398         cur_tm.tm_mon += 1;
2399         cur_tm.tm_year += 1900;
2400         wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2401         wellness_str[9] = bin2bcd(cur_tm.tm_min);
2402         wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2403         wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2404         wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2405         wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2406         wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2407
2408         ret = aac_send_wellness_command(dev, wellness_str, datasize);
2409
2410 out:
2411         return ret;
2412 }
2413
2414 int aac_send_hosttime(struct aac_dev *dev, struct timeval *now)
2415 {
2416         int ret = -ENOMEM;
2417         struct fib *fibptr;
2418         __le32 *info;
2419
2420         fibptr = aac_fib_alloc(dev);
2421         if (!fibptr)
2422                 goto out;
2423
2424         aac_fib_init(fibptr);
2425         info = (__le32 *)fib_data(fibptr);
2426         *info = cpu_to_le32(now->tv_sec);
2427         ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2428                                         1, 1, NULL, NULL);
2429
2430         /*
2431          * Do not set XferState to zero unless
2432          * receives a response from F/W
2433          */
2434         if (ret >= 0)
2435                 aac_fib_complete(fibptr);
2436
2437         /*
2438          * FIB should be freed only after
2439          * getting the response from the F/W
2440          */
2441         if (ret != -ERESTARTSYS)
2442                 aac_fib_free(fibptr);
2443
2444 out:
2445         return ret;
2446 }
2447
2448 /**
2449  *      aac_command_thread      -       command processing thread
2450  *      @dev: Adapter to monitor
2451  *
2452  *      Waits on the commandready event in it's queue. When the event gets set
2453  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2454  *      until the queue is empty. When the queue is empty it will wait for
2455  *      more FIBs.
2456  */
2457
2458 int aac_command_thread(void *data)
2459 {
2460         struct aac_dev *dev = data;
2461         DECLARE_WAITQUEUE(wait, current);
2462         unsigned long next_jiffies = jiffies + HZ;
2463         unsigned long next_check_jiffies = next_jiffies;
2464         long difference = HZ;
2465
2466         /*
2467          *      We can only have one thread per adapter for AIF's.
2468          */
2469         if (dev->aif_thread)
2470                 return -EINVAL;
2471
2472         /*
2473          *      Let the DPC know it has a place to send the AIF's to.
2474          */
2475         dev->aif_thread = 1;
2476         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2477         set_current_state(TASK_INTERRUPTIBLE);
2478         dprintk ((KERN_INFO "aac_command_thread start\n"));
2479         while (1) {
2480
2481                 aac_process_events(dev);
2482
2483                 /*
2484                  *      Background activity
2485                  */
2486                 if ((time_before(next_check_jiffies,next_jiffies))
2487                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
2488                         next_check_jiffies = next_jiffies;
2489                         if (aac_adapter_check_health(dev) == 0) {
2490                                 difference = ((long)(unsigned)check_interval)
2491                                            * HZ;
2492                                 next_check_jiffies = jiffies + difference;
2493                         } else if (!dev->queues)
2494                                 break;
2495                 }
2496                 if (!time_before(next_check_jiffies,next_jiffies)
2497                  && ((difference = next_jiffies - jiffies) <= 0)) {
2498                         struct timeval now;
2499                         int ret;
2500
2501                         /* Don't even try to talk to adapter if its sick */
2502                         ret = aac_adapter_check_health(dev);
2503                         if (ret || !dev->queues)
2504                                 break;
2505                         next_check_jiffies = jiffies
2506                                            + ((long)(unsigned)check_interval)
2507                                            * HZ;
2508                         do_gettimeofday(&now);
2509
2510                         /* Synchronize our watches */
2511                         if (((1000000 - (1000000 / HZ)) > now.tv_usec)
2512                          && (now.tv_usec > (1000000 / HZ)))
2513                                 difference = (((1000000 - now.tv_usec) * HZ)
2514                                   + 500000) / 1000000;
2515                         else {
2516                                 if (now.tv_usec > 500000)
2517                                         ++now.tv_sec;
2518
2519                                 if (dev->sa_firmware)
2520                                         ret =
2521                                         aac_send_safw_hostttime(dev, &now);
2522                                 else
2523                                         ret = aac_send_hosttime(dev, &now);
2524
2525                                 difference = (long)(unsigned)update_interval*HZ;
2526                         }
2527                         next_jiffies = jiffies + difference;
2528                         if (time_before(next_check_jiffies,next_jiffies))
2529                                 difference = next_check_jiffies - jiffies;
2530                 }
2531                 if (difference <= 0)
2532                         difference = 1;
2533                 set_current_state(TASK_INTERRUPTIBLE);
2534
2535                 if (kthread_should_stop())
2536                         break;
2537
2538                 schedule_timeout(difference);
2539
2540                 if (kthread_should_stop())
2541                         break;
2542         }
2543         if (dev->queues)
2544                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2545         dev->aif_thread = 0;
2546         return 0;
2547 }
2548
2549 int aac_acquire_irq(struct aac_dev *dev)
2550 {
2551         int i;
2552         int j;
2553         int ret = 0;
2554
2555         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2556                 for (i = 0; i < dev->max_msix; i++) {
2557                         dev->aac_msix[i].vector_no = i;
2558                         dev->aac_msix[i].dev = dev;
2559                         if (request_irq(pci_irq_vector(dev->pdev, i),
2560                                         dev->a_ops.adapter_intr,
2561                                         0, "aacraid", &(dev->aac_msix[i]))) {
2562                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2563                                                 dev->name, dev->id, i);
2564                                 for (j = 0 ; j < i ; j++)
2565                                         free_irq(pci_irq_vector(dev->pdev, j),
2566                                                  &(dev->aac_msix[j]));
2567                                 pci_disable_msix(dev->pdev);
2568                                 ret = -1;
2569                         }
2570                 }
2571         } else {
2572                 dev->aac_msix[0].vector_no = 0;
2573                 dev->aac_msix[0].dev = dev;
2574
2575                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2576                         IRQF_SHARED, "aacraid",
2577                         &(dev->aac_msix[0])) < 0) {
2578                         if (dev->msi)
2579                                 pci_disable_msi(dev->pdev);
2580                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2581                                         dev->name, dev->id);
2582                         ret = -1;
2583                 }
2584         }
2585         return ret;
2586 }
2587
2588 void aac_free_irq(struct aac_dev *dev)
2589 {
2590         int i;
2591         int cpu;
2592
2593         cpu = cpumask_first(cpu_online_mask);
2594         if (aac_is_src(dev)) {
2595                 if (dev->max_msix > 1) {
2596                         for (i = 0; i < dev->max_msix; i++)
2597                                 free_irq(pci_irq_vector(dev->pdev, i),
2598                                          &(dev->aac_msix[i]));
2599                 } else {
2600                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2601                 }
2602         } else {
2603                 free_irq(dev->pdev->irq, dev);
2604         }
2605         if (dev->msi)
2606                 pci_disable_msi(dev->pdev);
2607         else if (dev->max_msix > 1)
2608                 pci_disable_msix(dev->pdev);
2609 }