ARM: s3c64xx: bring back notes from removed debug-macro.S
[linux-2.6-microblaze.git] / drivers / scsi / aacraid / commsup.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      Adaptec AAC series RAID controller driver
4  *      (c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commsup.c
15  *
16  * Abstract: Contain all routines that are required for FSA host/adapter
17  *    communication.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
38
39 #include "aacraid.h"
40
41 /**
42  *      fib_map_alloc           -       allocate the fib objects
43  *      @dev: Adapter to allocate for
44  *
45  *      Allocate and map the shared PCI space for the FIB blocks used to
46  *      talk to the Adaptec firmware.
47  */
48
49 static int fib_map_alloc(struct aac_dev *dev)
50 {
51         if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53         else
54                 dev->max_cmd_size = dev->max_fib_size;
55         if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57         } else {
58                 dev->max_cmd_size = dev->max_fib_size;
59         }
60
61         dprintk((KERN_INFO
62           "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63           &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65         dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68                 &dev->hw_fib_pa, GFP_KERNEL);
69         if (dev->hw_fib_va == NULL)
70                 return -ENOMEM;
71         return 0;
72 }
73
74 /**
75  *      aac_fib_map_free                -       free the fib objects
76  *      @dev: Adapter to free
77  *
78  *      Free the PCI mappings and the memory allocated for FIB blocks
79  *      on this adapter.
80  */
81
82 void aac_fib_map_free(struct aac_dev *dev)
83 {
84         size_t alloc_size;
85         size_t fib_size;
86         int num_fibs;
87
88         if(!dev->hw_fib_va || !dev->max_cmd_size)
89                 return;
90
91         num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92         fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93         alloc_size = fib_size * num_fibs + ALIGN32 - 1;
94
95         dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96                           dev->hw_fib_pa);
97
98         dev->hw_fib_va = NULL;
99         dev->hw_fib_pa = 0;
100 }
101
102 void aac_fib_vector_assign(struct aac_dev *dev)
103 {
104         u32 i = 0;
105         u32 vector = 1;
106         struct fib *fibptr = NULL;
107
108         for (i = 0, fibptr = &dev->fibs[i];
109                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110                 i++, fibptr++) {
111                 if ((dev->max_msix == 1) ||
112                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113                         - dev->vector_cap))) {
114                         fibptr->vector_no = 0;
115                 } else {
116                         fibptr->vector_no = vector;
117                         vector++;
118                         if (vector == dev->max_msix)
119                                 vector = 1;
120                 }
121         }
122 }
123
124 /**
125  *      aac_fib_setup   -       setup the fibs
126  *      @dev: Adapter to set up
127  *
128  *      Allocate the PCI space for the fibs, map it and then initialise the
129  *      fib area, the unmapped fib data and also the free list
130  */
131
132 int aac_fib_setup(struct aac_dev * dev)
133 {
134         struct fib *fibptr;
135         struct hw_fib *hw_fib;
136         dma_addr_t hw_fib_pa;
137         int i;
138         u32 max_cmds;
139
140         while (((i = fib_map_alloc(dev)) == -ENOMEM)
141          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142                 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143                 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144                 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145                         dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
146         }
147         if (i<0)
148                 return -ENOMEM;
149
150         memset(dev->hw_fib_va, 0,
151                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
153
154         /* 32 byte alignment for PMC */
155         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156         hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157                                         (hw_fib_pa - dev->hw_fib_pa));
158
159         /* add Xport header */
160         hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161                 sizeof(struct aac_fib_xporthdr));
162         hw_fib_pa += sizeof(struct aac_fib_xporthdr);
163
164         /*
165          *      Initialise the fibs
166          */
167         for (i = 0, fibptr = &dev->fibs[i];
168                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169                 i++, fibptr++)
170         {
171                 fibptr->flags = 0;
172                 fibptr->size = sizeof(struct fib);
173                 fibptr->dev = dev;
174                 fibptr->hw_fib_va = hw_fib;
175                 fibptr->data = (void *) fibptr->hw_fib_va->data;
176                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
177                 init_completion(&fibptr->event_wait);
178                 spin_lock_init(&fibptr->event_lock);
179                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180                 hw_fib->header.SenderSize =
181                         cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
182                 fibptr->hw_fib_pa = hw_fib_pa;
183                 fibptr->hw_sgl_pa = hw_fib_pa +
184                         offsetof(struct aac_hba_cmd_req, sge[2]);
185                 /*
186                  * one element is for the ptr to the separate sg list,
187                  * second element for 32 byte alignment
188                  */
189                 fibptr->hw_error_pa = hw_fib_pa +
190                         offsetof(struct aac_native_hba, resp.resp_bytes[0]);
191
192                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194                 hw_fib_pa = hw_fib_pa +
195                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
196         }
197
198         /*
199          *Assign vector numbers to fibs
200          */
201         aac_fib_vector_assign(dev);
202
203         /*
204          *      Add the fib chain to the free list
205          */
206         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
207         /*
208         *       Set 8 fibs aside for management tools
209         */
210         dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211         return 0;
212 }
213
214 /**
215  *      aac_fib_alloc_tag-allocate a fib using tags
216  *      @dev: Adapter to allocate the fib for
217  *      @scmd: SCSI command
218  *
219  *      Allocate a fib from the adapter fib pool using tags
220  *      from the blk layer.
221  */
222
223 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
224 {
225         struct fib *fibptr;
226
227         fibptr = &dev->fibs[scmd->request->tag];
228         /*
229          *      Null out fields that depend on being zero at the start of
230          *      each I/O
231          */
232         fibptr->hw_fib_va->header.XferState = 0;
233         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
234         fibptr->callback_data = NULL;
235         fibptr->callback = NULL;
236         fibptr->flags = 0;
237
238         return fibptr;
239 }
240
241 /**
242  *      aac_fib_alloc   -       allocate a fib
243  *      @dev: Adapter to allocate the fib for
244  *
245  *      Allocate a fib from the adapter fib pool. If the pool is empty we
246  *      return NULL.
247  */
248
249 struct fib *aac_fib_alloc(struct aac_dev *dev)
250 {
251         struct fib * fibptr;
252         unsigned long flags;
253         spin_lock_irqsave(&dev->fib_lock, flags);
254         fibptr = dev->free_fib;
255         if(!fibptr){
256                 spin_unlock_irqrestore(&dev->fib_lock, flags);
257                 return fibptr;
258         }
259         dev->free_fib = fibptr->next;
260         spin_unlock_irqrestore(&dev->fib_lock, flags);
261         /*
262          *      Set the proper node type code and node byte size
263          */
264         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
265         fibptr->size = sizeof(struct fib);
266         /*
267          *      Null out fields that depend on being zero at the start of
268          *      each I/O
269          */
270         fibptr->hw_fib_va->header.XferState = 0;
271         fibptr->flags = 0;
272         fibptr->callback = NULL;
273         fibptr->callback_data = NULL;
274
275         return fibptr;
276 }
277
278 /**
279  *      aac_fib_free    -       free a fib
280  *      @fibptr: fib to free up
281  *
282  *      Frees up a fib and places it on the appropriate queue
283  */
284
285 void aac_fib_free(struct fib *fibptr)
286 {
287         unsigned long flags;
288
289         if (fibptr->done == 2)
290                 return;
291
292         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
293         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
294                 aac_config.fib_timeouts++;
295         if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
296                 fibptr->hw_fib_va->header.XferState != 0) {
297                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
298                          (void*)fibptr,
299                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
300         }
301         fibptr->next = fibptr->dev->free_fib;
302         fibptr->dev->free_fib = fibptr;
303         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
304 }
305
306 /**
307  *      aac_fib_init    -       initialise a fib
308  *      @fibptr: The fib to initialize
309  *
310  *      Set up the generic fib fields ready for use
311  */
312
313 void aac_fib_init(struct fib *fibptr)
314 {
315         struct hw_fib *hw_fib = fibptr->hw_fib_va;
316
317         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
318         hw_fib->header.StructType = FIB_MAGIC;
319         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
320         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
321         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
322         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
323 }
324
325 /**
326  *      fib_deallocate          -       deallocate a fib
327  *      @fibptr: fib to deallocate
328  *
329  *      Will deallocate and return to the free pool the FIB pointed to by the
330  *      caller.
331  */
332
333 static void fib_dealloc(struct fib * fibptr)
334 {
335         struct hw_fib *hw_fib = fibptr->hw_fib_va;
336         hw_fib->header.XferState = 0;
337 }
338
339 /*
340  *      Commuication primitives define and support the queuing method we use to
341  *      support host to adapter commuication. All queue accesses happen through
342  *      these routines and are the only routines which have a knowledge of the
343  *       how these queues are implemented.
344  */
345
346 /**
347  *      aac_get_entry           -       get a queue entry
348  *      @dev: Adapter
349  *      @qid: Queue Number
350  *      @entry: Entry return
351  *      @index: Index return
352  *      @nonotify: notification control
353  *
354  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
355  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
356  *      returned.
357  */
358
359 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
360 {
361         struct aac_queue * q;
362         unsigned long idx;
363
364         /*
365          *      All of the queues wrap when they reach the end, so we check
366          *      to see if they have reached the end and if they have we just
367          *      set the index back to zero. This is a wrap. You could or off
368          *      the high bits in all updates but this is a bit faster I think.
369          */
370
371         q = &dev->queues->queue[qid];
372
373         idx = *index = le32_to_cpu(*(q->headers.producer));
374         /* Interrupt Moderation, only interrupt for first two entries */
375         if (idx != le32_to_cpu(*(q->headers.consumer))) {
376                 if (--idx == 0) {
377                         if (qid == AdapNormCmdQueue)
378                                 idx = ADAP_NORM_CMD_ENTRIES;
379                         else
380                                 idx = ADAP_NORM_RESP_ENTRIES;
381                 }
382                 if (idx != le32_to_cpu(*(q->headers.consumer)))
383                         *nonotify = 1;
384         }
385
386         if (qid == AdapNormCmdQueue) {
387                 if (*index >= ADAP_NORM_CMD_ENTRIES)
388                         *index = 0; /* Wrap to front of the Producer Queue. */
389         } else {
390                 if (*index >= ADAP_NORM_RESP_ENTRIES)
391                         *index = 0; /* Wrap to front of the Producer Queue. */
392         }
393
394         /* Queue is full */
395         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
396                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
397                                 qid, atomic_read(&q->numpending));
398                 return 0;
399         } else {
400                 *entry = q->base + *index;
401                 return 1;
402         }
403 }
404
405 /**
406  *      aac_queue_get           -       get the next free QE
407  *      @dev: Adapter
408  *      @index: Returned index
409  *      @qid: Queue number
410  *      @hw_fib: Fib to associate with the queue entry
411  *      @wait: Wait if queue full
412  *      @fibptr: Driver fib object to go with fib
413  *      @nonotify: Don't notify the adapter
414  *
415  *      Gets the next free QE off the requested priorty adapter command
416  *      queue and associates the Fib with the QE. The QE represented by
417  *      index is ready to insert on the queue when this routine returns
418  *      success.
419  */
420
421 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
422 {
423         struct aac_entry * entry = NULL;
424         int map = 0;
425
426         if (qid == AdapNormCmdQueue) {
427                 /*  if no entries wait for some if caller wants to */
428                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
429                         printk(KERN_ERR "GetEntries failed\n");
430                 }
431                 /*
432                  *      Setup queue entry with a command, status and fib mapped
433                  */
434                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
435                 map = 1;
436         } else {
437                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
438                         /* if no entries wait for some if caller wants to */
439                 }
440                 /*
441                  *      Setup queue entry with command, status and fib mapped
442                  */
443                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
444                 entry->addr = hw_fib->header.SenderFibAddress;
445                         /* Restore adapters pointer to the FIB */
446                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
447                 map = 0;
448         }
449         /*
450          *      If MapFib is true than we need to map the Fib and put pointers
451          *      in the queue entry.
452          */
453         if (map)
454                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
455         return 0;
456 }
457
458 /*
459  *      Define the highest level of host to adapter communication routines.
460  *      These routines will support host to adapter FS commuication. These
461  *      routines have no knowledge of the commuication method used. This level
462  *      sends and receives FIBs. This level has no knowledge of how these FIBs
463  *      get passed back and forth.
464  */
465
466 /**
467  *      aac_fib_send    -       send a fib to the adapter
468  *      @command: Command to send
469  *      @fibptr: The fib
470  *      @size: Size of fib data area
471  *      @priority: Priority of Fib
472  *      @wait: Async/sync select
473  *      @reply: True if a reply is wanted
474  *      @callback: Called with reply
475  *      @callback_data: Passed to callback
476  *
477  *      Sends the requested FIB to the adapter and optionally will wait for a
478  *      response FIB. If the caller does not wish to wait for a response than
479  *      an event to wait on must be supplied. This event will be set when a
480  *      response FIB is received from the adapter.
481  */
482
483 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
484                 int priority, int wait, int reply, fib_callback callback,
485                 void *callback_data)
486 {
487         struct aac_dev * dev = fibptr->dev;
488         struct hw_fib * hw_fib = fibptr->hw_fib_va;
489         unsigned long flags = 0;
490         unsigned long mflags = 0;
491         unsigned long sflags = 0;
492
493         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
494                 return -EBUSY;
495
496         if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
497                 return -EINVAL;
498
499         /*
500          *      There are 5 cases with the wait and response requested flags.
501          *      The only invalid cases are if the caller requests to wait and
502          *      does not request a response and if the caller does not want a
503          *      response and the Fib is not allocated from pool. If a response
504          *      is not requested the Fib will just be deallocaed by the DPC
505          *      routine when the response comes back from the adapter. No
506          *      further processing will be done besides deleting the Fib. We
507          *      will have a debug mode where the adapter can notify the host
508          *      it had a problem and the host can log that fact.
509          */
510         fibptr->flags = 0;
511         if (wait && !reply) {
512                 return -EINVAL;
513         } else if (!wait && reply) {
514                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
515                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
516         } else if (!wait && !reply) {
517                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
518                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
519         } else if (wait && reply) {
520                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
521                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
522         }
523         /*
524          *      Map the fib into 32bits by using the fib number
525          */
526
527         hw_fib->header.SenderFibAddress =
528                 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
529
530         /* use the same shifted value for handle to be compatible
531          * with the new native hba command handle
532          */
533         hw_fib->header.Handle =
534                 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
535
536         /*
537          *      Set FIB state to indicate where it came from and if we want a
538          *      response from the adapter. Also load the command from the
539          *      caller.
540          *
541          *      Map the hw fib pointer as a 32bit value
542          */
543         hw_fib->header.Command = cpu_to_le16(command);
544         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
545         /*
546          *      Set the size of the Fib we want to send to the adapter
547          */
548         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
549         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
550                 return -EMSGSIZE;
551         }
552         /*
553          *      Get a queue entry connect the FIB to it and send an notify
554          *      the adapter a command is ready.
555          */
556         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
557
558         /*
559          *      Fill in the Callback and CallbackContext if we are not
560          *      going to wait.
561          */
562         if (!wait) {
563                 fibptr->callback = callback;
564                 fibptr->callback_data = callback_data;
565                 fibptr->flags = FIB_CONTEXT_FLAG;
566         }
567
568         fibptr->done = 0;
569
570         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
571
572         dprintk((KERN_DEBUG "Fib contents:.\n"));
573         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
574         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
575         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
576         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
577         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
578         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
579
580         if (!dev->queues)
581                 return -EBUSY;
582
583         if (wait) {
584
585                 spin_lock_irqsave(&dev->manage_lock, mflags);
586                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
587                         printk(KERN_INFO "No management Fibs Available:%d\n",
588                                                 dev->management_fib_count);
589                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
590                         return -EBUSY;
591                 }
592                 dev->management_fib_count++;
593                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
594                 spin_lock_irqsave(&fibptr->event_lock, flags);
595         }
596
597         if (dev->sync_mode) {
598                 if (wait)
599                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
600                 spin_lock_irqsave(&dev->sync_lock, sflags);
601                 if (dev->sync_fib) {
602                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
603                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
604                 } else {
605                         dev->sync_fib = fibptr;
606                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
607                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
608                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
609                                 NULL, NULL, NULL, NULL, NULL);
610                 }
611                 if (wait) {
612                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
613                         if (wait_for_completion_interruptible(&fibptr->event_wait)) {
614                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
615                                 return -EFAULT;
616                         }
617                         return 0;
618                 }
619                 return -EINPROGRESS;
620         }
621
622         if (aac_adapter_deliver(fibptr) != 0) {
623                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
624                 if (wait) {
625                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
626                         spin_lock_irqsave(&dev->manage_lock, mflags);
627                         dev->management_fib_count--;
628                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
629                 }
630                 return -EBUSY;
631         }
632
633
634         /*
635          *      If the caller wanted us to wait for response wait now.
636          */
637
638         if (wait) {
639                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
640                 /* Only set for first known interruptable command */
641                 if (wait < 0) {
642                         /*
643                          * *VERY* Dangerous to time out a command, the
644                          * assumption is made that we have no hope of
645                          * functioning because an interrupt routing or other
646                          * hardware failure has occurred.
647                          */
648                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
649                         while (!try_wait_for_completion(&fibptr->event_wait)) {
650                                 int blink;
651                                 if (time_is_before_eq_jiffies(timeout)) {
652                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
653                                         atomic_dec(&q->numpending);
654                                         if (wait == -1) {
655                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
656                                                   "Usually a result of a PCI interrupt routing problem;\n"
657                                                   "update mother board BIOS or consider utilizing one of\n"
658                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
659                                         }
660                                         return -ETIMEDOUT;
661                                 }
662
663                                 if (unlikely(aac_pci_offline(dev)))
664                                         return -EFAULT;
665
666                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
667                                         if (wait == -1) {
668                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
669                                                   "Usually a result of a serious unrecoverable hardware problem\n",
670                                                   blink);
671                                         }
672                                         return -EFAULT;
673                                 }
674                                 /*
675                                  * Allow other processes / CPUS to use core
676                                  */
677                                 schedule();
678                         }
679                 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
680                         /* Do nothing ... satisfy
681                          * wait_for_completion_interruptible must_check */
682                 }
683
684                 spin_lock_irqsave(&fibptr->event_lock, flags);
685                 if (fibptr->done == 0) {
686                         fibptr->done = 2; /* Tell interrupt we aborted */
687                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
688                         return -ERESTARTSYS;
689                 }
690                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
691                 BUG_ON(fibptr->done == 0);
692
693                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
694                         return -ETIMEDOUT;
695                 return 0;
696         }
697         /*
698          *      If the user does not want a response than return success otherwise
699          *      return pending
700          */
701         if (reply)
702                 return -EINPROGRESS;
703         else
704                 return 0;
705 }
706
707 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
708                 void *callback_data)
709 {
710         struct aac_dev *dev = fibptr->dev;
711         int wait;
712         unsigned long flags = 0;
713         unsigned long mflags = 0;
714         struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
715                         fibptr->hw_fib_va;
716
717         fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
718         if (callback) {
719                 wait = 0;
720                 fibptr->callback = callback;
721                 fibptr->callback_data = callback_data;
722         } else
723                 wait = 1;
724
725
726         hbacmd->iu_type = command;
727
728         if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
729                 /* bit1 of request_id must be 0 */
730                 hbacmd->request_id =
731                         cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
732                 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
733         } else
734                 return -EINVAL;
735
736
737         if (wait) {
738                 spin_lock_irqsave(&dev->manage_lock, mflags);
739                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
740                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
741                         return -EBUSY;
742                 }
743                 dev->management_fib_count++;
744                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
745                 spin_lock_irqsave(&fibptr->event_lock, flags);
746         }
747
748         if (aac_adapter_deliver(fibptr) != 0) {
749                 if (wait) {
750                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
751                         spin_lock_irqsave(&dev->manage_lock, mflags);
752                         dev->management_fib_count--;
753                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
754                 }
755                 return -EBUSY;
756         }
757         FIB_COUNTER_INCREMENT(aac_config.NativeSent);
758
759         if (wait) {
760
761                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
762
763                 if (unlikely(aac_pci_offline(dev)))
764                         return -EFAULT;
765
766                 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
767                 if (wait_for_completion_interruptible(&fibptr->event_wait))
768                         fibptr->done = 2;
769                 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
770
771                 spin_lock_irqsave(&fibptr->event_lock, flags);
772                 if ((fibptr->done == 0) || (fibptr->done == 2)) {
773                         fibptr->done = 2; /* Tell interrupt we aborted */
774                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
775                         return -ERESTARTSYS;
776                 }
777                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
778                 WARN_ON(fibptr->done == 0);
779
780                 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
781                         return -ETIMEDOUT;
782
783                 return 0;
784         }
785
786         return -EINPROGRESS;
787 }
788
789 /**
790  *      aac_consumer_get        -       get the top of the queue
791  *      @dev: Adapter
792  *      @q: Queue
793  *      @entry: Return entry
794  *
795  *      Will return a pointer to the entry on the top of the queue requested that
796  *      we are a consumer of, and return the address of the queue entry. It does
797  *      not change the state of the queue.
798  */
799
800 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
801 {
802         u32 index;
803         int status;
804         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
805                 status = 0;
806         } else {
807                 /*
808                  *      The consumer index must be wrapped if we have reached
809                  *      the end of the queue, else we just use the entry
810                  *      pointed to by the header index
811                  */
812                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
813                         index = 0;
814                 else
815                         index = le32_to_cpu(*q->headers.consumer);
816                 *entry = q->base + index;
817                 status = 1;
818         }
819         return(status);
820 }
821
822 /**
823  *      aac_consumer_free       -       free consumer entry
824  *      @dev: Adapter
825  *      @q: Queue
826  *      @qid: Queue ident
827  *
828  *      Frees up the current top of the queue we are a consumer of. If the
829  *      queue was full notify the producer that the queue is no longer full.
830  */
831
832 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
833 {
834         int wasfull = 0;
835         u32 notify;
836
837         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
838                 wasfull = 1;
839
840         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
841                 *q->headers.consumer = cpu_to_le32(1);
842         else
843                 le32_add_cpu(q->headers.consumer, 1);
844
845         if (wasfull) {
846                 switch (qid) {
847
848                 case HostNormCmdQueue:
849                         notify = HostNormCmdNotFull;
850                         break;
851                 case HostNormRespQueue:
852                         notify = HostNormRespNotFull;
853                         break;
854                 default:
855                         BUG();
856                         return;
857                 }
858                 aac_adapter_notify(dev, notify);
859         }
860 }
861
862 /**
863  *      aac_fib_adapter_complete        -       complete adapter issued fib
864  *      @fibptr: fib to complete
865  *      @size: size of fib
866  *
867  *      Will do all necessary work to complete a FIB that was sent from
868  *      the adapter.
869  */
870
871 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
872 {
873         struct hw_fib * hw_fib = fibptr->hw_fib_va;
874         struct aac_dev * dev = fibptr->dev;
875         struct aac_queue * q;
876         unsigned long nointr = 0;
877         unsigned long qflags;
878
879         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
880                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
881                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
882                 kfree(hw_fib);
883                 return 0;
884         }
885
886         if (hw_fib->header.XferState == 0) {
887                 if (dev->comm_interface == AAC_COMM_MESSAGE)
888                         kfree(hw_fib);
889                 return 0;
890         }
891         /*
892          *      If we plan to do anything check the structure type first.
893          */
894         if (hw_fib->header.StructType != FIB_MAGIC &&
895             hw_fib->header.StructType != FIB_MAGIC2 &&
896             hw_fib->header.StructType != FIB_MAGIC2_64) {
897                 if (dev->comm_interface == AAC_COMM_MESSAGE)
898                         kfree(hw_fib);
899                 return -EINVAL;
900         }
901         /*
902          *      This block handles the case where the adapter had sent us a
903          *      command and we have finished processing the command. We
904          *      call completeFib when we are done processing the command
905          *      and want to send a response back to the adapter. This will
906          *      send the completed cdb to the adapter.
907          */
908         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
909                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
910                         kfree (hw_fib);
911                 } else {
912                         u32 index;
913                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
914                         if (size) {
915                                 size += sizeof(struct aac_fibhdr);
916                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
917                                         return -EMSGSIZE;
918                                 hw_fib->header.Size = cpu_to_le16(size);
919                         }
920                         q = &dev->queues->queue[AdapNormRespQueue];
921                         spin_lock_irqsave(q->lock, qflags);
922                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
923                         *(q->headers.producer) = cpu_to_le32(index + 1);
924                         spin_unlock_irqrestore(q->lock, qflags);
925                         if (!(nointr & (int)aac_config.irq_mod))
926                                 aac_adapter_notify(dev, AdapNormRespQueue);
927                 }
928         } else {
929                 printk(KERN_WARNING "aac_fib_adapter_complete: "
930                         "Unknown xferstate detected.\n");
931                 BUG();
932         }
933         return 0;
934 }
935
936 /**
937  *      aac_fib_complete        -       fib completion handler
938  *      @fibptr: FIB to complete
939  *
940  *      Will do all necessary work to complete a FIB.
941  */
942
943 int aac_fib_complete(struct fib *fibptr)
944 {
945         struct hw_fib * hw_fib = fibptr->hw_fib_va;
946
947         if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
948                 fib_dealloc(fibptr);
949                 return 0;
950         }
951
952         /*
953          *      Check for a fib which has already been completed or with a
954          *      status wait timeout
955          */
956
957         if (hw_fib->header.XferState == 0 || fibptr->done == 2)
958                 return 0;
959         /*
960          *      If we plan to do anything check the structure type first.
961          */
962
963         if (hw_fib->header.StructType != FIB_MAGIC &&
964             hw_fib->header.StructType != FIB_MAGIC2 &&
965             hw_fib->header.StructType != FIB_MAGIC2_64)
966                 return -EINVAL;
967         /*
968          *      This block completes a cdb which orginated on the host and we
969          *      just need to deallocate the cdb or reinit it. At this point the
970          *      command is complete that we had sent to the adapter and this
971          *      cdb could be reused.
972          */
973
974         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
975                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
976         {
977                 fib_dealloc(fibptr);
978         }
979         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
980         {
981                 /*
982                  *      This handles the case when the host has aborted the I/O
983                  *      to the adapter because the adapter is not responding
984                  */
985                 fib_dealloc(fibptr);
986         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
987                 fib_dealloc(fibptr);
988         } else {
989                 BUG();
990         }
991         return 0;
992 }
993
994 /**
995  *      aac_printf      -       handle printf from firmware
996  *      @dev: Adapter
997  *      @val: Message info
998  *
999  *      Print a message passed to us by the controller firmware on the
1000  *      Adaptec board
1001  */
1002
1003 void aac_printf(struct aac_dev *dev, u32 val)
1004 {
1005         char *cp = dev->printfbuf;
1006         if (dev->printf_enabled)
1007         {
1008                 int length = val & 0xffff;
1009                 int level = (val >> 16) & 0xffff;
1010
1011                 /*
1012                  *      The size of the printfbuf is set in port.c
1013                  *      There is no variable or define for it
1014                  */
1015                 if (length > 255)
1016                         length = 255;
1017                 if (cp[length] != 0)
1018                         cp[length] = 0;
1019                 if (level == LOG_AAC_HIGH_ERROR)
1020                         printk(KERN_WARNING "%s:%s", dev->name, cp);
1021                 else
1022                         printk(KERN_INFO "%s:%s", dev->name, cp);
1023         }
1024         memset(cp, 0, 256);
1025 }
1026
1027 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1028 {
1029         return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1030 }
1031
1032
1033 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1034 {
1035         switch (aac_aif_data(aifcmd, 1)) {
1036         case AifBuCacheDataLoss:
1037                 if (aac_aif_data(aifcmd, 2))
1038                         dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1039                         aac_aif_data(aifcmd, 2));
1040                 else
1041                         dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1042                 break;
1043         case AifBuCacheDataRecover:
1044                 if (aac_aif_data(aifcmd, 2))
1045                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1046                         aac_aif_data(aifcmd, 2));
1047                 else
1048                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1049                 break;
1050         }
1051 }
1052
1053 #define AIF_SNIFF_TIMEOUT       (500*HZ)
1054 /**
1055  *      aac_handle_aif          -       Handle a message from the firmware
1056  *      @dev: Which adapter this fib is from
1057  *      @fibptr: Pointer to fibptr from adapter
1058  *
1059  *      This routine handles a driver notify fib from the adapter and
1060  *      dispatches it to the appropriate routine for handling.
1061  */
1062 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1063 {
1064         struct hw_fib * hw_fib = fibptr->hw_fib_va;
1065         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1066         u32 channel, id, lun, container;
1067         struct scsi_device *device;
1068         enum {
1069                 NOTHING,
1070                 DELETE,
1071                 ADD,
1072                 CHANGE
1073         } device_config_needed = NOTHING;
1074
1075         /* Sniff for container changes */
1076
1077         if (!dev || !dev->fsa_dev)
1078                 return;
1079         container = channel = id = lun = (u32)-1;
1080
1081         /*
1082          *      We have set this up to try and minimize the number of
1083          * re-configures that take place. As a result of this when
1084          * certain AIF's come in we will set a flag waiting for another
1085          * type of AIF before setting the re-config flag.
1086          */
1087         switch (le32_to_cpu(aifcmd->command)) {
1088         case AifCmdDriverNotify:
1089                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1090                 case AifRawDeviceRemove:
1091                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1092                         if ((container >> 28)) {
1093                                 container = (u32)-1;
1094                                 break;
1095                         }
1096                         channel = (container >> 24) & 0xF;
1097                         if (channel >= dev->maximum_num_channels) {
1098                                 container = (u32)-1;
1099                                 break;
1100                         }
1101                         id = container & 0xFFFF;
1102                         if (id >= dev->maximum_num_physicals) {
1103                                 container = (u32)-1;
1104                                 break;
1105                         }
1106                         lun = (container >> 16) & 0xFF;
1107                         container = (u32)-1;
1108                         channel = aac_phys_to_logical(channel);
1109                         device_config_needed = DELETE;
1110                         break;
1111
1112                 /*
1113                  *      Morph or Expand complete
1114                  */
1115                 case AifDenMorphComplete:
1116                 case AifDenVolumeExtendComplete:
1117                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1118                         if (container >= dev->maximum_num_containers)
1119                                 break;
1120
1121                         /*
1122                          *      Find the scsi_device associated with the SCSI
1123                          * address. Make sure we have the right array, and if
1124                          * so set the flag to initiate a new re-config once we
1125                          * see an AifEnConfigChange AIF come through.
1126                          */
1127
1128                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1129                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1130                                         CONTAINER_TO_CHANNEL(container),
1131                                         CONTAINER_TO_ID(container),
1132                                         CONTAINER_TO_LUN(container));
1133                                 if (device) {
1134                                         dev->fsa_dev[container].config_needed = CHANGE;
1135                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1136                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1137                                         scsi_device_put(device);
1138                                 }
1139                         }
1140                 }
1141
1142                 /*
1143                  *      If we are waiting on something and this happens to be
1144                  * that thing then set the re-configure flag.
1145                  */
1146                 if (container != (u32)-1) {
1147                         if (container >= dev->maximum_num_containers)
1148                                 break;
1149                         if ((dev->fsa_dev[container].config_waiting_on ==
1150                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152                                 dev->fsa_dev[container].config_waiting_on = 0;
1153                 } else for (container = 0;
1154                     container < dev->maximum_num_containers; ++container) {
1155                         if ((dev->fsa_dev[container].config_waiting_on ==
1156                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1157                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1158                                 dev->fsa_dev[container].config_waiting_on = 0;
1159                 }
1160                 break;
1161
1162         case AifCmdEventNotify:
1163                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1164                 case AifEnBatteryEvent:
1165                         dev->cache_protected =
1166                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1167                         break;
1168                 /*
1169                  *      Add an Array.
1170                  */
1171                 case AifEnAddContainer:
1172                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1173                         if (container >= dev->maximum_num_containers)
1174                                 break;
1175                         dev->fsa_dev[container].config_needed = ADD;
1176                         dev->fsa_dev[container].config_waiting_on =
1177                                 AifEnConfigChange;
1178                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179                         break;
1180
1181                 /*
1182                  *      Delete an Array.
1183                  */
1184                 case AifEnDeleteContainer:
1185                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186                         if (container >= dev->maximum_num_containers)
1187                                 break;
1188                         dev->fsa_dev[container].config_needed = DELETE;
1189                         dev->fsa_dev[container].config_waiting_on =
1190                                 AifEnConfigChange;
1191                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192                         break;
1193
1194                 /*
1195                  *      Container change detected. If we currently are not
1196                  * waiting on something else, setup to wait on a Config Change.
1197                  */
1198                 case AifEnContainerChange:
1199                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200                         if (container >= dev->maximum_num_containers)
1201                                 break;
1202                         if (dev->fsa_dev[container].config_waiting_on &&
1203                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1204                                 break;
1205                         dev->fsa_dev[container].config_needed = CHANGE;
1206                         dev->fsa_dev[container].config_waiting_on =
1207                                 AifEnConfigChange;
1208                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1209                         break;
1210
1211                 case AifEnConfigChange:
1212                         break;
1213
1214                 case AifEnAddJBOD:
1215                 case AifEnDeleteJBOD:
1216                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1217                         if ((container >> 28)) {
1218                                 container = (u32)-1;
1219                                 break;
1220                         }
1221                         channel = (container >> 24) & 0xF;
1222                         if (channel >= dev->maximum_num_channels) {
1223                                 container = (u32)-1;
1224                                 break;
1225                         }
1226                         id = container & 0xFFFF;
1227                         if (id >= dev->maximum_num_physicals) {
1228                                 container = (u32)-1;
1229                                 break;
1230                         }
1231                         lun = (container >> 16) & 0xFF;
1232                         container = (u32)-1;
1233                         channel = aac_phys_to_logical(channel);
1234                         device_config_needed =
1235                           (((__le32 *)aifcmd->data)[0] ==
1236                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1237                         if (device_config_needed == ADD) {
1238                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1239                                         channel,
1240                                         id,
1241                                         lun);
1242                                 if (device) {
1243                                         scsi_remove_device(device);
1244                                         scsi_device_put(device);
1245                                 }
1246                         }
1247                         break;
1248
1249                 case AifEnEnclosureManagement:
1250                         /*
1251                          * If in JBOD mode, automatic exposure of new
1252                          * physical target to be suppressed until configured.
1253                          */
1254                         if (dev->jbod)
1255                                 break;
1256                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1257                         case EM_DRIVE_INSERTION:
1258                         case EM_DRIVE_REMOVAL:
1259                         case EM_SES_DRIVE_INSERTION:
1260                         case EM_SES_DRIVE_REMOVAL:
1261                                 container = le32_to_cpu(
1262                                         ((__le32 *)aifcmd->data)[2]);
1263                                 if ((container >> 28)) {
1264                                         container = (u32)-1;
1265                                         break;
1266                                 }
1267                                 channel = (container >> 24) & 0xF;
1268                                 if (channel >= dev->maximum_num_channels) {
1269                                         container = (u32)-1;
1270                                         break;
1271                                 }
1272                                 id = container & 0xFFFF;
1273                                 lun = (container >> 16) & 0xFF;
1274                                 container = (u32)-1;
1275                                 if (id >= dev->maximum_num_physicals) {
1276                                         /* legacy dev_t ? */
1277                                         if ((0x2000 <= id) || lun || channel ||
1278                                           ((channel = (id >> 7) & 0x3F) >=
1279                                           dev->maximum_num_channels))
1280                                                 break;
1281                                         lun = (id >> 4) & 7;
1282                                         id &= 0xF;
1283                                 }
1284                                 channel = aac_phys_to_logical(channel);
1285                                 device_config_needed =
1286                                   ((((__le32 *)aifcmd->data)[3]
1287                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1288                                     (((__le32 *)aifcmd->data)[3]
1289                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1290                                   ADD : DELETE;
1291                                 break;
1292                         }
1293                         break;
1294                 case AifBuManagerEvent:
1295                         aac_handle_aif_bu(dev, aifcmd);
1296                         break;
1297                 }
1298
1299                 /*
1300                  *      If we are waiting on something and this happens to be
1301                  * that thing then set the re-configure flag.
1302                  */
1303                 if (container != (u32)-1) {
1304                         if (container >= dev->maximum_num_containers)
1305                                 break;
1306                         if ((dev->fsa_dev[container].config_waiting_on ==
1307                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1308                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1309                                 dev->fsa_dev[container].config_waiting_on = 0;
1310                 } else for (container = 0;
1311                     container < dev->maximum_num_containers; ++container) {
1312                         if ((dev->fsa_dev[container].config_waiting_on ==
1313                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1314                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1315                                 dev->fsa_dev[container].config_waiting_on = 0;
1316                 }
1317                 break;
1318
1319         case AifCmdJobProgress:
1320                 /*
1321                  *      These are job progress AIF's. When a Clear is being
1322                  * done on a container it is initially created then hidden from
1323                  * the OS. When the clear completes we don't get a config
1324                  * change so we monitor the job status complete on a clear then
1325                  * wait for a container change.
1326                  */
1327
1328                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1329                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1330                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1331                         for (container = 0;
1332                             container < dev->maximum_num_containers;
1333                             ++container) {
1334                                 /*
1335                                  * Stomp on all config sequencing for all
1336                                  * containers?
1337                                  */
1338                                 dev->fsa_dev[container].config_waiting_on =
1339                                         AifEnContainerChange;
1340                                 dev->fsa_dev[container].config_needed = ADD;
1341                                 dev->fsa_dev[container].config_waiting_stamp =
1342                                         jiffies;
1343                         }
1344                 }
1345                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1346                     ((__le32 *)aifcmd->data)[6] == 0 &&
1347                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1348                         for (container = 0;
1349                             container < dev->maximum_num_containers;
1350                             ++container) {
1351                                 /*
1352                                  * Stomp on all config sequencing for all
1353                                  * containers?
1354                                  */
1355                                 dev->fsa_dev[container].config_waiting_on =
1356                                         AifEnContainerChange;
1357                                 dev->fsa_dev[container].config_needed = DELETE;
1358                                 dev->fsa_dev[container].config_waiting_stamp =
1359                                         jiffies;
1360                         }
1361                 }
1362                 break;
1363         }
1364
1365         container = 0;
1366 retry_next:
1367         if (device_config_needed == NOTHING) {
1368                 for (; container < dev->maximum_num_containers; ++container) {
1369                         if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1370                             (dev->fsa_dev[container].config_needed != NOTHING) &&
1371                             time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1372                                 device_config_needed =
1373                                         dev->fsa_dev[container].config_needed;
1374                                 dev->fsa_dev[container].config_needed = NOTHING;
1375                                 channel = CONTAINER_TO_CHANNEL(container);
1376                                 id = CONTAINER_TO_ID(container);
1377                                 lun = CONTAINER_TO_LUN(container);
1378                                 break;
1379                         }
1380                 }
1381         }
1382         if (device_config_needed == NOTHING)
1383                 return;
1384
1385         /*
1386          *      If we decided that a re-configuration needs to be done,
1387          * schedule it here on the way out the door, please close the door
1388          * behind you.
1389          */
1390
1391         /*
1392          *      Find the scsi_device associated with the SCSI address,
1393          * and mark it as changed, invalidating the cache. This deals
1394          * with changes to existing device IDs.
1395          */
1396
1397         if (!dev || !dev->scsi_host_ptr)
1398                 return;
1399         /*
1400          * force reload of disk info via aac_probe_container
1401          */
1402         if ((channel == CONTAINER_CHANNEL) &&
1403           (device_config_needed != NOTHING)) {
1404                 if (dev->fsa_dev[container].valid == 1)
1405                         dev->fsa_dev[container].valid = 2;
1406                 aac_probe_container(dev, container);
1407         }
1408         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1409         if (device) {
1410                 switch (device_config_needed) {
1411                 case DELETE:
1412 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1413                         scsi_remove_device(device);
1414 #else
1415                         if (scsi_device_online(device)) {
1416                                 scsi_device_set_state(device, SDEV_OFFLINE);
1417                                 sdev_printk(KERN_INFO, device,
1418                                         "Device offlined - %s\n",
1419                                         (channel == CONTAINER_CHANNEL) ?
1420                                                 "array deleted" :
1421                                                 "enclosure services event");
1422                         }
1423 #endif
1424                         break;
1425                 case ADD:
1426                         if (!scsi_device_online(device)) {
1427                                 sdev_printk(KERN_INFO, device,
1428                                         "Device online - %s\n",
1429                                         (channel == CONTAINER_CHANNEL) ?
1430                                                 "array created" :
1431                                                 "enclosure services event");
1432                                 scsi_device_set_state(device, SDEV_RUNNING);
1433                         }
1434                         /* FALLTHRU */
1435                 case CHANGE:
1436                         if ((channel == CONTAINER_CHANNEL)
1437                          && (!dev->fsa_dev[container].valid)) {
1438 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1439                                 scsi_remove_device(device);
1440 #else
1441                                 if (!scsi_device_online(device))
1442                                         break;
1443                                 scsi_device_set_state(device, SDEV_OFFLINE);
1444                                 sdev_printk(KERN_INFO, device,
1445                                         "Device offlined - %s\n",
1446                                         "array failed");
1447 #endif
1448                                 break;
1449                         }
1450                         scsi_rescan_device(&device->sdev_gendev);
1451
1452                 default:
1453                         break;
1454                 }
1455                 scsi_device_put(device);
1456                 device_config_needed = NOTHING;
1457         }
1458         if (device_config_needed == ADD)
1459                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1460         if (channel == CONTAINER_CHANNEL) {
1461                 container++;
1462                 device_config_needed = NOTHING;
1463                 goto retry_next;
1464         }
1465 }
1466
1467 static void aac_schedule_bus_scan(struct aac_dev *aac)
1468 {
1469         if (aac->sa_firmware)
1470                 aac_schedule_safw_scan_worker(aac);
1471         else
1472                 aac_schedule_src_reinit_aif_worker(aac);
1473 }
1474
1475 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1476 {
1477         int index, quirks;
1478         int retval;
1479         struct Scsi_Host *host = aac->scsi_host_ptr;
1480         int jafo = 0;
1481         int bled;
1482         u64 dmamask;
1483         int num_of_fibs = 0;
1484
1485         /*
1486          * Assumptions:
1487          *      - host is locked, unless called by the aacraid thread.
1488          *        (a matter of convenience, due to legacy issues surrounding
1489          *        eh_host_adapter_reset).
1490          *      - in_reset is asserted, so no new i/o is getting to the
1491          *        card.
1492          *      - The card is dead, or will be very shortly ;-/ so no new
1493          *        commands are completing in the interrupt service.
1494          */
1495         aac_adapter_disable_int(aac);
1496         if (aac->thread && aac->thread->pid != current->pid) {
1497                 spin_unlock_irq(host->host_lock);
1498                 kthread_stop(aac->thread);
1499                 aac->thread = NULL;
1500                 jafo = 1;
1501         }
1502
1503         /*
1504          *      If a positive health, means in a known DEAD PANIC
1505          * state and the adapter could be reset to `try again'.
1506          */
1507         bled = forced ? 0 : aac_adapter_check_health(aac);
1508         retval = aac_adapter_restart(aac, bled, reset_type);
1509
1510         if (retval)
1511                 goto out;
1512
1513         /*
1514          *      Loop through the fibs, close the synchronous FIBS
1515          */
1516         retval = 1;
1517         num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1518         for (index = 0; index <  num_of_fibs; index++) {
1519
1520                 struct fib *fib = &aac->fibs[index];
1521                 __le32 XferState = fib->hw_fib_va->header.XferState;
1522                 bool is_response_expected = false;
1523
1524                 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1525                    (XferState & cpu_to_le32(ResponseExpected)))
1526                         is_response_expected = true;
1527
1528                 if (is_response_expected
1529                   || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1530                         unsigned long flagv;
1531                         spin_lock_irqsave(&fib->event_lock, flagv);
1532                         complete(&fib->event_wait);
1533                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1534                         schedule();
1535                         retval = 0;
1536                 }
1537         }
1538         /* Give some extra time for ioctls to complete. */
1539         if (retval == 0)
1540                 ssleep(2);
1541         index = aac->cardtype;
1542
1543         /*
1544          * Re-initialize the adapter, first free resources, then carefully
1545          * apply the initialization sequence to come back again. Only risk
1546          * is a change in Firmware dropping cache, it is assumed the caller
1547          * will ensure that i/o is queisced and the card is flushed in that
1548          * case.
1549          */
1550         aac_free_irq(aac);
1551         aac_fib_map_free(aac);
1552         dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1553                           aac->comm_phys);
1554         aac->comm_addr = NULL;
1555         aac->comm_phys = 0;
1556         kfree(aac->queues);
1557         aac->queues = NULL;
1558         kfree(aac->fsa_dev);
1559         aac->fsa_dev = NULL;
1560
1561         dmamask = DMA_BIT_MASK(32);
1562         quirks = aac_get_driver_ident(index)->quirks;
1563         if (quirks & AAC_QUIRK_31BIT)
1564                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1565         else if (!(quirks & AAC_QUIRK_SRC))
1566                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1567         else
1568                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1569
1570         if (quirks & AAC_QUIRK_31BIT && !retval) {
1571                 dmamask = DMA_BIT_MASK(31);
1572                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1573         }
1574
1575         if (retval)
1576                 goto out;
1577
1578         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1579                 goto out;
1580
1581         if (jafo) {
1582                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1583                                           aac->name);
1584                 if (IS_ERR(aac->thread)) {
1585                         retval = PTR_ERR(aac->thread);
1586                         aac->thread = NULL;
1587                         goto out;
1588                 }
1589         }
1590         (void)aac_get_adapter_info(aac);
1591         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1592                 host->sg_tablesize = 34;
1593                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1594         }
1595         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1596                 host->sg_tablesize = 17;
1597                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1598         }
1599         aac_get_config_status(aac, 1);
1600         aac_get_containers(aac);
1601         /*
1602          * This is where the assumption that the Adapter is quiesced
1603          * is important.
1604          */
1605         scsi_host_complete_all_commands(host, DID_RESET);
1606
1607         retval = 0;
1608 out:
1609         aac->in_reset = 0;
1610
1611         /*
1612          * Issue bus rescan to catch any configuration that might have
1613          * occurred
1614          */
1615         if (!retval && !is_kdump_kernel()) {
1616                 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1617                 aac_schedule_bus_scan(aac);
1618         }
1619
1620         if (jafo) {
1621                 spin_lock_irq(host->host_lock);
1622         }
1623         return retval;
1624 }
1625
1626 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1627 {
1628         unsigned long flagv = 0;
1629         int retval, unblock_retval;
1630         struct Scsi_Host *host = aac->scsi_host_ptr;
1631         int bled;
1632
1633         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1634                 return -EBUSY;
1635
1636         if (aac->in_reset) {
1637                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1638                 return -EBUSY;
1639         }
1640         aac->in_reset = 1;
1641         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1642
1643         /*
1644          * Wait for all commands to complete to this specific
1645          * target (block maximum 60 seconds). Although not necessary,
1646          * it does make us a good storage citizen.
1647          */
1648         scsi_host_block(host);
1649
1650         /* Quiesce build, flush cache, write through mode */
1651         if (forced < 2)
1652                 aac_send_shutdown(aac);
1653         spin_lock_irqsave(host->host_lock, flagv);
1654         bled = forced ? forced :
1655                         (aac_check_reset != 0 && aac_check_reset != 1);
1656         retval = _aac_reset_adapter(aac, bled, reset_type);
1657         spin_unlock_irqrestore(host->host_lock, flagv);
1658
1659         unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1660         if (!retval)
1661                 retval = unblock_retval;
1662         if ((forced < 2) && (retval == -ENODEV)) {
1663                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1664                 struct fib * fibctx = aac_fib_alloc(aac);
1665                 if (fibctx) {
1666                         struct aac_pause *cmd;
1667                         int status;
1668
1669                         aac_fib_init(fibctx);
1670
1671                         cmd = (struct aac_pause *) fib_data(fibctx);
1672
1673                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1674                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1675                         cmd->timeout = cpu_to_le32(1);
1676                         cmd->min = cpu_to_le32(1);
1677                         cmd->noRescan = cpu_to_le32(1);
1678                         cmd->count = cpu_to_le32(0);
1679
1680                         status = aac_fib_send(ContainerCommand,
1681                           fibctx,
1682                           sizeof(struct aac_pause),
1683                           FsaNormal,
1684                           -2 /* Timeout silently */, 1,
1685                           NULL, NULL);
1686
1687                         if (status >= 0)
1688                                 aac_fib_complete(fibctx);
1689                         /* FIB should be freed only after getting
1690                          * the response from the F/W */
1691                         if (status != -ERESTARTSYS)
1692                                 aac_fib_free(fibctx);
1693                 }
1694         }
1695
1696         return retval;
1697 }
1698
1699 int aac_check_health(struct aac_dev * aac)
1700 {
1701         int BlinkLED;
1702         unsigned long time_now, flagv = 0;
1703         struct list_head * entry;
1704
1705         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1706         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1707                 return 0;
1708
1709         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1710                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1711                 return 0; /* OK */
1712         }
1713
1714         aac->in_reset = 1;
1715
1716         /* Fake up an AIF:
1717          *      aac_aifcmd.command = AifCmdEventNotify = 1
1718          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1719          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1720          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1721          *      aac.aifcmd.data[2] = AifHighPriority = 3
1722          *      aac.aifcmd.data[3] = BlinkLED
1723          */
1724
1725         time_now = jiffies/HZ;
1726         entry = aac->fib_list.next;
1727
1728         /*
1729          * For each Context that is on the
1730          * fibctxList, make a copy of the
1731          * fib, and then set the event to wake up the
1732          * thread that is waiting for it.
1733          */
1734         while (entry != &aac->fib_list) {
1735                 /*
1736                  * Extract the fibctx
1737                  */
1738                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1739                 struct hw_fib * hw_fib;
1740                 struct fib * fib;
1741                 /*
1742                  * Check if the queue is getting
1743                  * backlogged
1744                  */
1745                 if (fibctx->count > 20) {
1746                         /*
1747                          * It's *not* jiffies folks,
1748                          * but jiffies / HZ, so do not
1749                          * panic ...
1750                          */
1751                         u32 time_last = fibctx->jiffies;
1752                         /*
1753                          * Has it been > 2 minutes
1754                          * since the last read off
1755                          * the queue?
1756                          */
1757                         if ((time_now - time_last) > aif_timeout) {
1758                                 entry = entry->next;
1759                                 aac_close_fib_context(aac, fibctx);
1760                                 continue;
1761                         }
1762                 }
1763                 /*
1764                  * Warning: no sleep allowed while
1765                  * holding spinlock
1766                  */
1767                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1768                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1769                 if (fib && hw_fib) {
1770                         struct aac_aifcmd * aif;
1771
1772                         fib->hw_fib_va = hw_fib;
1773                         fib->dev = aac;
1774                         aac_fib_init(fib);
1775                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1776                         fib->size = sizeof (struct fib);
1777                         fib->data = hw_fib->data;
1778                         aif = (struct aac_aifcmd *)hw_fib->data;
1779                         aif->command = cpu_to_le32(AifCmdEventNotify);
1780                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1781                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1782                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1783                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1784                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1785
1786                         /*
1787                          * Put the FIB onto the
1788                          * fibctx's fibs
1789                          */
1790                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1791                         fibctx->count++;
1792                         /*
1793                          * Set the event to wake up the
1794                          * thread that will waiting.
1795                          */
1796                         complete(&fibctx->completion);
1797                 } else {
1798                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1799                         kfree(fib);
1800                         kfree(hw_fib);
1801                 }
1802                 entry = entry->next;
1803         }
1804
1805         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1806
1807         if (BlinkLED < 0) {
1808                 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1809                                 aac->name, BlinkLED);
1810                 goto out;
1811         }
1812
1813         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1814
1815 out:
1816         aac->in_reset = 0;
1817         return BlinkLED;
1818 }
1819
1820 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1821 {
1822         return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1823 }
1824
1825 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1826                                                                 int bus,
1827                                                                 int target)
1828 {
1829         if (bus != CONTAINER_CHANNEL)
1830                 bus = aac_phys_to_logical(bus);
1831
1832         return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1833 }
1834
1835 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1836 {
1837         if (bus != CONTAINER_CHANNEL)
1838                 bus = aac_phys_to_logical(bus);
1839
1840         return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1841 }
1842
1843 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1844 {
1845         if (sdev)
1846                 scsi_device_put(sdev);
1847 }
1848
1849 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1850 {
1851         struct scsi_device *sdev;
1852
1853         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1854         scsi_remove_device(sdev);
1855         aac_put_safw_scsi_device(sdev);
1856 }
1857
1858 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1859         int bus, int target)
1860 {
1861         return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1862 }
1863
1864 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1865 {
1866         if (is_safw_raid_volume(dev, bus, target))
1867                 return dev->fsa_dev[target].valid;
1868         else
1869                 return aac_is_safw_scan_count_equal(dev, bus, target);
1870 }
1871
1872 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1873 {
1874         int is_exposed = 0;
1875         struct scsi_device *sdev;
1876
1877         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1878         if (sdev)
1879                 is_exposed = 1;
1880         aac_put_safw_scsi_device(sdev);
1881
1882         return is_exposed;
1883 }
1884
1885 static int aac_update_safw_host_devices(struct aac_dev *dev)
1886 {
1887         int i;
1888         int bus;
1889         int target;
1890         int is_exposed = 0;
1891         int rcode = 0;
1892
1893         rcode = aac_setup_safw_adapter(dev);
1894         if (unlikely(rcode < 0)) {
1895                 goto out;
1896         }
1897
1898         for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1899
1900                 bus = get_bus_number(i);
1901                 target = get_target_number(i);
1902
1903                 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1904
1905                 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1906                         aac_add_safw_device(dev, bus, target);
1907                 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1908                                                                 is_exposed)
1909                         aac_remove_safw_device(dev, bus, target);
1910         }
1911 out:
1912         return rcode;
1913 }
1914
1915 static int aac_scan_safw_host(struct aac_dev *dev)
1916 {
1917         int rcode = 0;
1918
1919         rcode = aac_update_safw_host_devices(dev);
1920         if (rcode)
1921                 aac_schedule_safw_scan_worker(dev);
1922
1923         return rcode;
1924 }
1925
1926 int aac_scan_host(struct aac_dev *dev)
1927 {
1928         int rcode = 0;
1929
1930         mutex_lock(&dev->scan_mutex);
1931         if (dev->sa_firmware)
1932                 rcode = aac_scan_safw_host(dev);
1933         else
1934                 scsi_scan_host(dev->scsi_host_ptr);
1935         mutex_unlock(&dev->scan_mutex);
1936
1937         return rcode;
1938 }
1939
1940 void aac_src_reinit_aif_worker(struct work_struct *work)
1941 {
1942         struct aac_dev *dev = container_of(to_delayed_work(work),
1943                                 struct aac_dev, src_reinit_aif_worker);
1944
1945         wait_event(dev->scsi_host_ptr->host_wait,
1946                         !scsi_host_in_recovery(dev->scsi_host_ptr));
1947         aac_reinit_aif(dev, dev->cardtype);
1948 }
1949
1950 /**
1951  *      aac_handle_sa_aif       Handle a message from the firmware
1952  *      @dev: Which adapter this fib is from
1953  *      @fibptr: Pointer to fibptr from adapter
1954  *
1955  *      This routine handles a driver notify fib from the adapter and
1956  *      dispatches it to the appropriate routine for handling.
1957  */
1958 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1959 {
1960         int i;
1961         u32 events = 0;
1962
1963         if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1964                 events = SA_AIF_HOTPLUG;
1965         else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1966                 events = SA_AIF_HARDWARE;
1967         else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1968                 events = SA_AIF_PDEV_CHANGE;
1969         else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1970                 events = SA_AIF_LDEV_CHANGE;
1971         else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1972                 events = SA_AIF_BPSTAT_CHANGE;
1973         else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1974                 events = SA_AIF_BPCFG_CHANGE;
1975
1976         switch (events) {
1977         case SA_AIF_HOTPLUG:
1978         case SA_AIF_HARDWARE:
1979         case SA_AIF_PDEV_CHANGE:
1980         case SA_AIF_LDEV_CHANGE:
1981         case SA_AIF_BPCFG_CHANGE:
1982
1983                 aac_scan_host(dev);
1984
1985                 break;
1986
1987         case SA_AIF_BPSTAT_CHANGE:
1988                 /* currently do nothing */
1989                 break;
1990         }
1991
1992         for (i = 1; i <= 10; ++i) {
1993                 events = src_readl(dev, MUnit.IDR);
1994                 if (events & (1<<23)) {
1995                         pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1996                                 i, 10);
1997                         ssleep(1);
1998                 }
1999         }
2000 }
2001
2002 static int get_fib_count(struct aac_dev *dev)
2003 {
2004         unsigned int num = 0;
2005         struct list_head *entry;
2006         unsigned long flagv;
2007
2008         /*
2009          * Warning: no sleep allowed while
2010          * holding spinlock. We take the estimate
2011          * and pre-allocate a set of fibs outside the
2012          * lock.
2013          */
2014         num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2015                         / sizeof(struct hw_fib); /* some extra */
2016         spin_lock_irqsave(&dev->fib_lock, flagv);
2017         entry = dev->fib_list.next;
2018         while (entry != &dev->fib_list) {
2019                 entry = entry->next;
2020                 ++num;
2021         }
2022         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2023
2024         return num;
2025 }
2026
2027 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2028                                                 struct fib **fib_pool,
2029                                                 unsigned int num)
2030 {
2031         struct hw_fib **hw_fib_p;
2032         struct fib **fib_p;
2033
2034         hw_fib_p = hw_fib_pool;
2035         fib_p = fib_pool;
2036         while (hw_fib_p < &hw_fib_pool[num]) {
2037                 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2038                 if (!(*(hw_fib_p++))) {
2039                         --hw_fib_p;
2040                         break;
2041                 }
2042
2043                 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2044                 if (!(*(fib_p++))) {
2045                         kfree(*(--hw_fib_p));
2046                         break;
2047                 }
2048         }
2049
2050         /*
2051          * Get the actual number of allocated fibs
2052          */
2053         num = hw_fib_p - hw_fib_pool;
2054         return num;
2055 }
2056
2057 static void wakeup_fibctx_threads(struct aac_dev *dev,
2058                                                 struct hw_fib **hw_fib_pool,
2059                                                 struct fib **fib_pool,
2060                                                 struct fib *fib,
2061                                                 struct hw_fib *hw_fib,
2062                                                 unsigned int num)
2063 {
2064         unsigned long flagv;
2065         struct list_head *entry;
2066         struct hw_fib **hw_fib_p;
2067         struct fib **fib_p;
2068         u32 time_now, time_last;
2069         struct hw_fib *hw_newfib;
2070         struct fib *newfib;
2071         struct aac_fib_context *fibctx;
2072
2073         time_now = jiffies/HZ;
2074         spin_lock_irqsave(&dev->fib_lock, flagv);
2075         entry = dev->fib_list.next;
2076         /*
2077          * For each Context that is on the
2078          * fibctxList, make a copy of the
2079          * fib, and then set the event to wake up the
2080          * thread that is waiting for it.
2081          */
2082
2083         hw_fib_p = hw_fib_pool;
2084         fib_p = fib_pool;
2085         while (entry != &dev->fib_list) {
2086                 /*
2087                  * Extract the fibctx
2088                  */
2089                 fibctx = list_entry(entry, struct aac_fib_context,
2090                                 next);
2091                 /*
2092                  * Check if the queue is getting
2093                  * backlogged
2094                  */
2095                 if (fibctx->count > 20) {
2096                         /*
2097                          * It's *not* jiffies folks,
2098                          * but jiffies / HZ so do not
2099                          * panic ...
2100                          */
2101                         time_last = fibctx->jiffies;
2102                         /*
2103                          * Has it been > 2 minutes
2104                          * since the last read off
2105                          * the queue?
2106                          */
2107                         if ((time_now - time_last) > aif_timeout) {
2108                                 entry = entry->next;
2109                                 aac_close_fib_context(dev, fibctx);
2110                                 continue;
2111                         }
2112                 }
2113                 /*
2114                  * Warning: no sleep allowed while
2115                  * holding spinlock
2116                  */
2117                 if (hw_fib_p >= &hw_fib_pool[num]) {
2118                         pr_warn("aifd: didn't allocate NewFib\n");
2119                         entry = entry->next;
2120                         continue;
2121                 }
2122
2123                 hw_newfib = *hw_fib_p;
2124                 *(hw_fib_p++) = NULL;
2125                 newfib = *fib_p;
2126                 *(fib_p++) = NULL;
2127                 /*
2128                  * Make the copy of the FIB
2129                  */
2130                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2131                 memcpy(newfib, fib, sizeof(struct fib));
2132                 newfib->hw_fib_va = hw_newfib;
2133                 /*
2134                  * Put the FIB onto the
2135                  * fibctx's fibs
2136                  */
2137                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2138                 fibctx->count++;
2139                 /*
2140                  * Set the event to wake up the
2141                  * thread that is waiting.
2142                  */
2143                 complete(&fibctx->completion);
2144
2145                 entry = entry->next;
2146         }
2147         /*
2148          *      Set the status of this FIB
2149          */
2150         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2151         aac_fib_adapter_complete(fib, sizeof(u32));
2152         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2153
2154 }
2155
2156 static void aac_process_events(struct aac_dev *dev)
2157 {
2158         struct hw_fib *hw_fib;
2159         struct fib *fib;
2160         unsigned long flags;
2161         spinlock_t *t_lock;
2162
2163         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2164         spin_lock_irqsave(t_lock, flags);
2165
2166         while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2167                 struct list_head *entry;
2168                 struct aac_aifcmd *aifcmd;
2169                 unsigned int  num;
2170                 struct hw_fib **hw_fib_pool, **hw_fib_p;
2171                 struct fib **fib_pool, **fib_p;
2172
2173                 set_current_state(TASK_RUNNING);
2174
2175                 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2176                 list_del(entry);
2177
2178                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2179                 spin_unlock_irqrestore(t_lock, flags);
2180
2181                 fib = list_entry(entry, struct fib, fiblink);
2182                 hw_fib = fib->hw_fib_va;
2183                 if (dev->sa_firmware) {
2184                         /* Thor AIF */
2185                         aac_handle_sa_aif(dev, fib);
2186                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2187                         goto free_fib;
2188                 }
2189                 /*
2190                  *      We will process the FIB here or pass it to a
2191                  *      worker thread that is TBD. We Really can't
2192                  *      do anything at this point since we don't have
2193                  *      anything defined for this thread to do.
2194                  */
2195                 memset(fib, 0, sizeof(struct fib));
2196                 fib->type = FSAFS_NTC_FIB_CONTEXT;
2197                 fib->size = sizeof(struct fib);
2198                 fib->hw_fib_va = hw_fib;
2199                 fib->data = hw_fib->data;
2200                 fib->dev = dev;
2201                 /*
2202                  *      We only handle AifRequest fibs from the adapter.
2203                  */
2204
2205                 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2206                 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2207                         /* Handle Driver Notify Events */
2208                         aac_handle_aif(dev, fib);
2209                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2210                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2211                         goto free_fib;
2212                 }
2213                 /*
2214                  * The u32 here is important and intended. We are using
2215                  * 32bit wrapping time to fit the adapter field
2216                  */
2217
2218                 /* Sniff events */
2219                 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2220                  || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2221                         aac_handle_aif(dev, fib);
2222                 }
2223
2224                 /*
2225                  * get number of fibs to process
2226                  */
2227                 num = get_fib_count(dev);
2228                 if (!num)
2229                         goto free_fib;
2230
2231                 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2232                                                 GFP_KERNEL);
2233                 if (!hw_fib_pool)
2234                         goto free_fib;
2235
2236                 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2237                 if (!fib_pool)
2238                         goto free_hw_fib_pool;
2239
2240                 /*
2241                  * Fill up fib pointer pools with actual fibs
2242                  * and hw_fibs
2243                  */
2244                 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2245                 if (!num)
2246                         goto free_mem;
2247
2248                 /*
2249                  * wakeup the thread that is waiting for
2250                  * the response from fw (ioctl)
2251                  */
2252                 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2253                                                             fib, hw_fib, num);
2254
2255 free_mem:
2256                 /* Free up the remaining resources */
2257                 hw_fib_p = hw_fib_pool;
2258                 fib_p = fib_pool;
2259                 while (hw_fib_p < &hw_fib_pool[num]) {
2260                         kfree(*hw_fib_p);
2261                         kfree(*fib_p);
2262                         ++fib_p;
2263                         ++hw_fib_p;
2264                 }
2265                 kfree(fib_pool);
2266 free_hw_fib_pool:
2267                 kfree(hw_fib_pool);
2268 free_fib:
2269                 kfree(fib);
2270                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2271                 spin_lock_irqsave(t_lock, flags);
2272         }
2273         /*
2274          *      There are no more AIF's
2275          */
2276         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2277         spin_unlock_irqrestore(t_lock, flags);
2278 }
2279
2280 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2281                                                         u32 datasize)
2282 {
2283         struct aac_srb *srbcmd;
2284         struct sgmap64 *sg64;
2285         dma_addr_t addr;
2286         char *dma_buf;
2287         struct fib *fibptr;
2288         int ret = -ENOMEM;
2289         u32 vbus, vid;
2290
2291         fibptr = aac_fib_alloc(dev);
2292         if (!fibptr)
2293                 goto out;
2294
2295         dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2296                                      GFP_KERNEL);
2297         if (!dma_buf)
2298                 goto fib_free_out;
2299
2300         aac_fib_init(fibptr);
2301
2302         vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2303         vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2304
2305         srbcmd = (struct aac_srb *)fib_data(fibptr);
2306
2307         srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2308         srbcmd->channel = cpu_to_le32(vbus);
2309         srbcmd->id = cpu_to_le32(vid);
2310         srbcmd->lun = 0;
2311         srbcmd->flags = cpu_to_le32(SRB_DataOut);
2312         srbcmd->timeout = cpu_to_le32(10);
2313         srbcmd->retry_limit = 0;
2314         srbcmd->cdb_size = cpu_to_le32(12);
2315         srbcmd->count = cpu_to_le32(datasize);
2316
2317         memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2318         srbcmd->cdb[0] = BMIC_OUT;
2319         srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2320         memcpy(dma_buf, (char *)wellness_str, datasize);
2321
2322         sg64 = (struct sgmap64 *)&srbcmd->sg;
2323         sg64->count = cpu_to_le32(1);
2324         sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2325         sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2326         sg64->sg[0].count = cpu_to_le32(datasize);
2327
2328         ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2329                                 FsaNormal, 1, 1, NULL, NULL);
2330
2331         dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2332
2333         /*
2334          * Do not set XferState to zero unless
2335          * receives a response from F/W
2336          */
2337         if (ret >= 0)
2338                 aac_fib_complete(fibptr);
2339
2340         /*
2341          * FIB should be freed only after
2342          * getting the response from the F/W
2343          */
2344         if (ret != -ERESTARTSYS)
2345                 goto fib_free_out;
2346
2347 out:
2348         return ret;
2349 fib_free_out:
2350         aac_fib_free(fibptr);
2351         goto out;
2352 }
2353
2354 static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2355 {
2356         struct tm cur_tm;
2357         char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2358         u32 datasize = sizeof(wellness_str);
2359         time64_t local_time;
2360         int ret = -ENODEV;
2361
2362         if (!dev->sa_firmware)
2363                 goto out;
2364
2365         local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2366         time64_to_tm(local_time, 0, &cur_tm);
2367         cur_tm.tm_mon += 1;
2368         cur_tm.tm_year += 1900;
2369         wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2370         wellness_str[9] = bin2bcd(cur_tm.tm_min);
2371         wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2372         wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2373         wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2374         wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2375         wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2376
2377         ret = aac_send_wellness_command(dev, wellness_str, datasize);
2378
2379 out:
2380         return ret;
2381 }
2382
2383 static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2384 {
2385         int ret = -ENOMEM;
2386         struct fib *fibptr;
2387         __le32 *info;
2388
2389         fibptr = aac_fib_alloc(dev);
2390         if (!fibptr)
2391                 goto out;
2392
2393         aac_fib_init(fibptr);
2394         info = (__le32 *)fib_data(fibptr);
2395         *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2396         ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2397                                         1, 1, NULL, NULL);
2398
2399         /*
2400          * Do not set XferState to zero unless
2401          * receives a response from F/W
2402          */
2403         if (ret >= 0)
2404                 aac_fib_complete(fibptr);
2405
2406         /*
2407          * FIB should be freed only after
2408          * getting the response from the F/W
2409          */
2410         if (ret != -ERESTARTSYS)
2411                 aac_fib_free(fibptr);
2412
2413 out:
2414         return ret;
2415 }
2416
2417 /**
2418  *      aac_command_thread      -       command processing thread
2419  *      @data: Adapter to monitor
2420  *
2421  *      Waits on the commandready event in it's queue. When the event gets set
2422  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2423  *      until the queue is empty. When the queue is empty it will wait for
2424  *      more FIBs.
2425  */
2426
2427 int aac_command_thread(void *data)
2428 {
2429         struct aac_dev *dev = data;
2430         DECLARE_WAITQUEUE(wait, current);
2431         unsigned long next_jiffies = jiffies + HZ;
2432         unsigned long next_check_jiffies = next_jiffies;
2433         long difference = HZ;
2434
2435         /*
2436          *      We can only have one thread per adapter for AIF's.
2437          */
2438         if (dev->aif_thread)
2439                 return -EINVAL;
2440
2441         /*
2442          *      Let the DPC know it has a place to send the AIF's to.
2443          */
2444         dev->aif_thread = 1;
2445         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2446         set_current_state(TASK_INTERRUPTIBLE);
2447         dprintk ((KERN_INFO "aac_command_thread start\n"));
2448         while (1) {
2449
2450                 aac_process_events(dev);
2451
2452                 /*
2453                  *      Background activity
2454                  */
2455                 if ((time_before(next_check_jiffies,next_jiffies))
2456                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
2457                         next_check_jiffies = next_jiffies;
2458                         if (aac_adapter_check_health(dev) == 0) {
2459                                 difference = ((long)(unsigned)check_interval)
2460                                            * HZ;
2461                                 next_check_jiffies = jiffies + difference;
2462                         } else if (!dev->queues)
2463                                 break;
2464                 }
2465                 if (!time_before(next_check_jiffies,next_jiffies)
2466                  && ((difference = next_jiffies - jiffies) <= 0)) {
2467                         struct timespec64 now;
2468                         int ret;
2469
2470                         /* Don't even try to talk to adapter if its sick */
2471                         ret = aac_adapter_check_health(dev);
2472                         if (ret || !dev->queues)
2473                                 break;
2474                         next_check_jiffies = jiffies
2475                                            + ((long)(unsigned)check_interval)
2476                                            * HZ;
2477                         ktime_get_real_ts64(&now);
2478
2479                         /* Synchronize our watches */
2480                         if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2481                          && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2482                                 difference = HZ + HZ / 2 -
2483                                              now.tv_nsec / (NSEC_PER_SEC / HZ);
2484                         else {
2485                                 if (now.tv_nsec > NSEC_PER_SEC / 2)
2486                                         ++now.tv_sec;
2487
2488                                 if (dev->sa_firmware)
2489                                         ret =
2490                                         aac_send_safw_hostttime(dev, &now);
2491                                 else
2492                                         ret = aac_send_hosttime(dev, &now);
2493
2494                                 difference = (long)(unsigned)update_interval*HZ;
2495                         }
2496                         next_jiffies = jiffies + difference;
2497                         if (time_before(next_check_jiffies,next_jiffies))
2498                                 difference = next_check_jiffies - jiffies;
2499                 }
2500                 if (difference <= 0)
2501                         difference = 1;
2502                 set_current_state(TASK_INTERRUPTIBLE);
2503
2504                 if (kthread_should_stop())
2505                         break;
2506
2507                 /*
2508                  * we probably want usleep_range() here instead of the
2509                  * jiffies computation
2510                  */
2511                 schedule_timeout(difference);
2512
2513                 if (kthread_should_stop())
2514                         break;
2515         }
2516         if (dev->queues)
2517                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2518         dev->aif_thread = 0;
2519         return 0;
2520 }
2521
2522 int aac_acquire_irq(struct aac_dev *dev)
2523 {
2524         int i;
2525         int j;
2526         int ret = 0;
2527
2528         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2529                 for (i = 0; i < dev->max_msix; i++) {
2530                         dev->aac_msix[i].vector_no = i;
2531                         dev->aac_msix[i].dev = dev;
2532                         if (request_irq(pci_irq_vector(dev->pdev, i),
2533                                         dev->a_ops.adapter_intr,
2534                                         0, "aacraid", &(dev->aac_msix[i]))) {
2535                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2536                                                 dev->name, dev->id, i);
2537                                 for (j = 0 ; j < i ; j++)
2538                                         free_irq(pci_irq_vector(dev->pdev, j),
2539                                                  &(dev->aac_msix[j]));
2540                                 pci_disable_msix(dev->pdev);
2541                                 ret = -1;
2542                         }
2543                 }
2544         } else {
2545                 dev->aac_msix[0].vector_no = 0;
2546                 dev->aac_msix[0].dev = dev;
2547
2548                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2549                         IRQF_SHARED, "aacraid",
2550                         &(dev->aac_msix[0])) < 0) {
2551                         if (dev->msi)
2552                                 pci_disable_msi(dev->pdev);
2553                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2554                                         dev->name, dev->id);
2555                         ret = -1;
2556                 }
2557         }
2558         return ret;
2559 }
2560
2561 void aac_free_irq(struct aac_dev *dev)
2562 {
2563         int i;
2564
2565         if (aac_is_src(dev)) {
2566                 if (dev->max_msix > 1) {
2567                         for (i = 0; i < dev->max_msix; i++)
2568                                 free_irq(pci_irq_vector(dev->pdev, i),
2569                                          &(dev->aac_msix[i]));
2570                 } else {
2571                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2572                 }
2573         } else {
2574                 free_irq(dev->pdev->irq, dev);
2575         }
2576         if (dev->msi)
2577                 pci_disable_msi(dev->pdev);
2578         else if (dev->max_msix > 1)
2579                 pci_disable_msix(dev->pdev);
2580 }