Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux-2.6-microblaze.git] / drivers / scsi / aacraid / commsup.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      Adaptec AAC series RAID controller driver
4  *      (c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commsup.c
15  *
16  * Abstract: Contain all routines that are required for FSA host/adapter
17  *    communication.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
38
39 #include "aacraid.h"
40
41 /**
42  *      fib_map_alloc           -       allocate the fib objects
43  *      @dev: Adapter to allocate for
44  *
45  *      Allocate and map the shared PCI space for the FIB blocks used to
46  *      talk to the Adaptec firmware.
47  */
48
49 static int fib_map_alloc(struct aac_dev *dev)
50 {
51         if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53         else
54                 dev->max_cmd_size = dev->max_fib_size;
55         if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57         } else {
58                 dev->max_cmd_size = dev->max_fib_size;
59         }
60
61         dprintk((KERN_INFO
62           "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63           &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65         dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68                 &dev->hw_fib_pa, GFP_KERNEL);
69         if (dev->hw_fib_va == NULL)
70                 return -ENOMEM;
71         return 0;
72 }
73
74 /**
75  *      aac_fib_map_free                -       free the fib objects
76  *      @dev: Adapter to free
77  *
78  *      Free the PCI mappings and the memory allocated for FIB blocks
79  *      on this adapter.
80  */
81
82 void aac_fib_map_free(struct aac_dev *dev)
83 {
84         size_t alloc_size;
85         size_t fib_size;
86         int num_fibs;
87
88         if(!dev->hw_fib_va || !dev->max_cmd_size)
89                 return;
90
91         num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92         fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93         alloc_size = fib_size * num_fibs + ALIGN32 - 1;
94
95         dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96                           dev->hw_fib_pa);
97
98         dev->hw_fib_va = NULL;
99         dev->hw_fib_pa = 0;
100 }
101
102 void aac_fib_vector_assign(struct aac_dev *dev)
103 {
104         u32 i = 0;
105         u32 vector = 1;
106         struct fib *fibptr = NULL;
107
108         for (i = 0, fibptr = &dev->fibs[i];
109                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110                 i++, fibptr++) {
111                 if ((dev->max_msix == 1) ||
112                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113                         - dev->vector_cap))) {
114                         fibptr->vector_no = 0;
115                 } else {
116                         fibptr->vector_no = vector;
117                         vector++;
118                         if (vector == dev->max_msix)
119                                 vector = 1;
120                 }
121         }
122 }
123
124 /**
125  *      aac_fib_setup   -       setup the fibs
126  *      @dev: Adapter to set up
127  *
128  *      Allocate the PCI space for the fibs, map it and then initialise the
129  *      fib area, the unmapped fib data and also the free list
130  */
131
132 int aac_fib_setup(struct aac_dev * dev)
133 {
134         struct fib *fibptr;
135         struct hw_fib *hw_fib;
136         dma_addr_t hw_fib_pa;
137         int i;
138         u32 max_cmds;
139
140         while (((i = fib_map_alloc(dev)) == -ENOMEM)
141          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142                 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143                 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144                 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145                         dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
146         }
147         if (i<0)
148                 return -ENOMEM;
149
150         memset(dev->hw_fib_va, 0,
151                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
153
154         /* 32 byte alignment for PMC */
155         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156         hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157                                         (hw_fib_pa - dev->hw_fib_pa));
158
159         /* add Xport header */
160         hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161                 sizeof(struct aac_fib_xporthdr));
162         hw_fib_pa += sizeof(struct aac_fib_xporthdr);
163
164         /*
165          *      Initialise the fibs
166          */
167         for (i = 0, fibptr = &dev->fibs[i];
168                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169                 i++, fibptr++)
170         {
171                 fibptr->flags = 0;
172                 fibptr->size = sizeof(struct fib);
173                 fibptr->dev = dev;
174                 fibptr->hw_fib_va = hw_fib;
175                 fibptr->data = (void *) fibptr->hw_fib_va->data;
176                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
177                 init_completion(&fibptr->event_wait);
178                 spin_lock_init(&fibptr->event_lock);
179                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180                 hw_fib->header.SenderSize =
181                         cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
182                 fibptr->hw_fib_pa = hw_fib_pa;
183                 fibptr->hw_sgl_pa = hw_fib_pa +
184                         offsetof(struct aac_hba_cmd_req, sge[2]);
185                 /*
186                  * one element is for the ptr to the separate sg list,
187                  * second element for 32 byte alignment
188                  */
189                 fibptr->hw_error_pa = hw_fib_pa +
190                         offsetof(struct aac_native_hba, resp.resp_bytes[0]);
191
192                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194                 hw_fib_pa = hw_fib_pa +
195                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
196         }
197
198         /*
199          *Assign vector numbers to fibs
200          */
201         aac_fib_vector_assign(dev);
202
203         /*
204          *      Add the fib chain to the free list
205          */
206         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
207         /*
208         *       Set 8 fibs aside for management tools
209         */
210         dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211         return 0;
212 }
213
214 /**
215  *      aac_fib_alloc_tag-allocate a fib using tags
216  *      @dev: Adapter to allocate the fib for
217  *
218  *      Allocate a fib from the adapter fib pool using tags
219  *      from the blk layer.
220  */
221
222 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
223 {
224         struct fib *fibptr;
225
226         fibptr = &dev->fibs[scmd->request->tag];
227         /*
228          *      Null out fields that depend on being zero at the start of
229          *      each I/O
230          */
231         fibptr->hw_fib_va->header.XferState = 0;
232         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
233         fibptr->callback_data = NULL;
234         fibptr->callback = NULL;
235         fibptr->flags = 0;
236
237         return fibptr;
238 }
239
240 /**
241  *      aac_fib_alloc   -       allocate a fib
242  *      @dev: Adapter to allocate the fib for
243  *
244  *      Allocate a fib from the adapter fib pool. If the pool is empty we
245  *      return NULL.
246  */
247
248 struct fib *aac_fib_alloc(struct aac_dev *dev)
249 {
250         struct fib * fibptr;
251         unsigned long flags;
252         spin_lock_irqsave(&dev->fib_lock, flags);
253         fibptr = dev->free_fib;
254         if(!fibptr){
255                 spin_unlock_irqrestore(&dev->fib_lock, flags);
256                 return fibptr;
257         }
258         dev->free_fib = fibptr->next;
259         spin_unlock_irqrestore(&dev->fib_lock, flags);
260         /*
261          *      Set the proper node type code and node byte size
262          */
263         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
264         fibptr->size = sizeof(struct fib);
265         /*
266          *      Null out fields that depend on being zero at the start of
267          *      each I/O
268          */
269         fibptr->hw_fib_va->header.XferState = 0;
270         fibptr->flags = 0;
271         fibptr->callback = NULL;
272         fibptr->callback_data = NULL;
273
274         return fibptr;
275 }
276
277 /**
278  *      aac_fib_free    -       free a fib
279  *      @fibptr: fib to free up
280  *
281  *      Frees up a fib and places it on the appropriate queue
282  */
283
284 void aac_fib_free(struct fib *fibptr)
285 {
286         unsigned long flags;
287
288         if (fibptr->done == 2)
289                 return;
290
291         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
292         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
293                 aac_config.fib_timeouts++;
294         if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
295                 fibptr->hw_fib_va->header.XferState != 0) {
296                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
297                          (void*)fibptr,
298                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
299         }
300         fibptr->next = fibptr->dev->free_fib;
301         fibptr->dev->free_fib = fibptr;
302         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
303 }
304
305 /**
306  *      aac_fib_init    -       initialise a fib
307  *      @fibptr: The fib to initialize
308  *
309  *      Set up the generic fib fields ready for use
310  */
311
312 void aac_fib_init(struct fib *fibptr)
313 {
314         struct hw_fib *hw_fib = fibptr->hw_fib_va;
315
316         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
317         hw_fib->header.StructType = FIB_MAGIC;
318         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
319         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
320         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
321         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
322 }
323
324 /**
325  *      fib_deallocate          -       deallocate a fib
326  *      @fibptr: fib to deallocate
327  *
328  *      Will deallocate and return to the free pool the FIB pointed to by the
329  *      caller.
330  */
331
332 static void fib_dealloc(struct fib * fibptr)
333 {
334         struct hw_fib *hw_fib = fibptr->hw_fib_va;
335         hw_fib->header.XferState = 0;
336 }
337
338 /*
339  *      Commuication primitives define and support the queuing method we use to
340  *      support host to adapter commuication. All queue accesses happen through
341  *      these routines and are the only routines which have a knowledge of the
342  *       how these queues are implemented.
343  */
344
345 /**
346  *      aac_get_entry           -       get a queue entry
347  *      @dev: Adapter
348  *      @qid: Queue Number
349  *      @entry: Entry return
350  *      @index: Index return
351  *      @nonotify: notification control
352  *
353  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
354  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
355  *      returned.
356  */
357
358 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
359 {
360         struct aac_queue * q;
361         unsigned long idx;
362
363         /*
364          *      All of the queues wrap when they reach the end, so we check
365          *      to see if they have reached the end and if they have we just
366          *      set the index back to zero. This is a wrap. You could or off
367          *      the high bits in all updates but this is a bit faster I think.
368          */
369
370         q = &dev->queues->queue[qid];
371
372         idx = *index = le32_to_cpu(*(q->headers.producer));
373         /* Interrupt Moderation, only interrupt for first two entries */
374         if (idx != le32_to_cpu(*(q->headers.consumer))) {
375                 if (--idx == 0) {
376                         if (qid == AdapNormCmdQueue)
377                                 idx = ADAP_NORM_CMD_ENTRIES;
378                         else
379                                 idx = ADAP_NORM_RESP_ENTRIES;
380                 }
381                 if (idx != le32_to_cpu(*(q->headers.consumer)))
382                         *nonotify = 1;
383         }
384
385         if (qid == AdapNormCmdQueue) {
386                 if (*index >= ADAP_NORM_CMD_ENTRIES)
387                         *index = 0; /* Wrap to front of the Producer Queue. */
388         } else {
389                 if (*index >= ADAP_NORM_RESP_ENTRIES)
390                         *index = 0; /* Wrap to front of the Producer Queue. */
391         }
392
393         /* Queue is full */
394         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
395                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
396                                 qid, atomic_read(&q->numpending));
397                 return 0;
398         } else {
399                 *entry = q->base + *index;
400                 return 1;
401         }
402 }
403
404 /**
405  *      aac_queue_get           -       get the next free QE
406  *      @dev: Adapter
407  *      @index: Returned index
408  *      @priority: Priority of fib
409  *      @fib: Fib to associate with the queue entry
410  *      @wait: Wait if queue full
411  *      @fibptr: Driver fib object to go with fib
412  *      @nonotify: Don't notify the adapter
413  *
414  *      Gets the next free QE off the requested priorty adapter command
415  *      queue and associates the Fib with the QE. The QE represented by
416  *      index is ready to insert on the queue when this routine returns
417  *      success.
418  */
419
420 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
421 {
422         struct aac_entry * entry = NULL;
423         int map = 0;
424
425         if (qid == AdapNormCmdQueue) {
426                 /*  if no entries wait for some if caller wants to */
427                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
428                         printk(KERN_ERR "GetEntries failed\n");
429                 }
430                 /*
431                  *      Setup queue entry with a command, status and fib mapped
432                  */
433                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
434                 map = 1;
435         } else {
436                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
437                         /* if no entries wait for some if caller wants to */
438                 }
439                 /*
440                  *      Setup queue entry with command, status and fib mapped
441                  */
442                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
443                 entry->addr = hw_fib->header.SenderFibAddress;
444                         /* Restore adapters pointer to the FIB */
445                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
446                 map = 0;
447         }
448         /*
449          *      If MapFib is true than we need to map the Fib and put pointers
450          *      in the queue entry.
451          */
452         if (map)
453                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
454         return 0;
455 }
456
457 /*
458  *      Define the highest level of host to adapter communication routines.
459  *      These routines will support host to adapter FS commuication. These
460  *      routines have no knowledge of the commuication method used. This level
461  *      sends and receives FIBs. This level has no knowledge of how these FIBs
462  *      get passed back and forth.
463  */
464
465 /**
466  *      aac_fib_send    -       send a fib to the adapter
467  *      @command: Command to send
468  *      @fibptr: The fib
469  *      @size: Size of fib data area
470  *      @priority: Priority of Fib
471  *      @wait: Async/sync select
472  *      @reply: True if a reply is wanted
473  *      @callback: Called with reply
474  *      @callback_data: Passed to callback
475  *
476  *      Sends the requested FIB to the adapter and optionally will wait for a
477  *      response FIB. If the caller does not wish to wait for a response than
478  *      an event to wait on must be supplied. This event will be set when a
479  *      response FIB is received from the adapter.
480  */
481
482 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
483                 int priority, int wait, int reply, fib_callback callback,
484                 void *callback_data)
485 {
486         struct aac_dev * dev = fibptr->dev;
487         struct hw_fib * hw_fib = fibptr->hw_fib_va;
488         unsigned long flags = 0;
489         unsigned long mflags = 0;
490         unsigned long sflags = 0;
491
492         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
493                 return -EBUSY;
494
495         if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
496                 return -EINVAL;
497
498         /*
499          *      There are 5 cases with the wait and response requested flags.
500          *      The only invalid cases are if the caller requests to wait and
501          *      does not request a response and if the caller does not want a
502          *      response and the Fib is not allocated from pool. If a response
503          *      is not requested the Fib will just be deallocaed by the DPC
504          *      routine when the response comes back from the adapter. No
505          *      further processing will be done besides deleting the Fib. We
506          *      will have a debug mode where the adapter can notify the host
507          *      it had a problem and the host can log that fact.
508          */
509         fibptr->flags = 0;
510         if (wait && !reply) {
511                 return -EINVAL;
512         } else if (!wait && reply) {
513                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
514                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
515         } else if (!wait && !reply) {
516                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
517                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
518         } else if (wait && reply) {
519                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
520                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
521         }
522         /*
523          *      Map the fib into 32bits by using the fib number
524          */
525
526         hw_fib->header.SenderFibAddress =
527                 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
528
529         /* use the same shifted value for handle to be compatible
530          * with the new native hba command handle
531          */
532         hw_fib->header.Handle =
533                 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
534
535         /*
536          *      Set FIB state to indicate where it came from and if we want a
537          *      response from the adapter. Also load the command from the
538          *      caller.
539          *
540          *      Map the hw fib pointer as a 32bit value
541          */
542         hw_fib->header.Command = cpu_to_le16(command);
543         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
544         /*
545          *      Set the size of the Fib we want to send to the adapter
546          */
547         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
548         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
549                 return -EMSGSIZE;
550         }
551         /*
552          *      Get a queue entry connect the FIB to it and send an notify
553          *      the adapter a command is ready.
554          */
555         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
556
557         /*
558          *      Fill in the Callback and CallbackContext if we are not
559          *      going to wait.
560          */
561         if (!wait) {
562                 fibptr->callback = callback;
563                 fibptr->callback_data = callback_data;
564                 fibptr->flags = FIB_CONTEXT_FLAG;
565         }
566
567         fibptr->done = 0;
568
569         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
570
571         dprintk((KERN_DEBUG "Fib contents:.\n"));
572         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
573         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
574         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
575         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
576         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
577         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
578
579         if (!dev->queues)
580                 return -EBUSY;
581
582         if (wait) {
583
584                 spin_lock_irqsave(&dev->manage_lock, mflags);
585                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
586                         printk(KERN_INFO "No management Fibs Available:%d\n",
587                                                 dev->management_fib_count);
588                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
589                         return -EBUSY;
590                 }
591                 dev->management_fib_count++;
592                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
593                 spin_lock_irqsave(&fibptr->event_lock, flags);
594         }
595
596         if (dev->sync_mode) {
597                 if (wait)
598                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
599                 spin_lock_irqsave(&dev->sync_lock, sflags);
600                 if (dev->sync_fib) {
601                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
602                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
603                 } else {
604                         dev->sync_fib = fibptr;
605                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
606                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
607                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
608                                 NULL, NULL, NULL, NULL, NULL);
609                 }
610                 if (wait) {
611                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
612                         if (wait_for_completion_interruptible(&fibptr->event_wait)) {
613                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
614                                 return -EFAULT;
615                         }
616                         return 0;
617                 }
618                 return -EINPROGRESS;
619         }
620
621         if (aac_adapter_deliver(fibptr) != 0) {
622                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
623                 if (wait) {
624                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
625                         spin_lock_irqsave(&dev->manage_lock, mflags);
626                         dev->management_fib_count--;
627                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
628                 }
629                 return -EBUSY;
630         }
631
632
633         /*
634          *      If the caller wanted us to wait for response wait now.
635          */
636
637         if (wait) {
638                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
639                 /* Only set for first known interruptable command */
640                 if (wait < 0) {
641                         /*
642                          * *VERY* Dangerous to time out a command, the
643                          * assumption is made that we have no hope of
644                          * functioning because an interrupt routing or other
645                          * hardware failure has occurred.
646                          */
647                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
648                         while (!try_wait_for_completion(&fibptr->event_wait)) {
649                                 int blink;
650                                 if (time_is_before_eq_jiffies(timeout)) {
651                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
652                                         atomic_dec(&q->numpending);
653                                         if (wait == -1) {
654                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
655                                                   "Usually a result of a PCI interrupt routing problem;\n"
656                                                   "update mother board BIOS or consider utilizing one of\n"
657                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
658                                         }
659                                         return -ETIMEDOUT;
660                                 }
661
662                                 if (unlikely(aac_pci_offline(dev)))
663                                         return -EFAULT;
664
665                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
666                                         if (wait == -1) {
667                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
668                                                   "Usually a result of a serious unrecoverable hardware problem\n",
669                                                   blink);
670                                         }
671                                         return -EFAULT;
672                                 }
673                                 /*
674                                  * Allow other processes / CPUS to use core
675                                  */
676                                 schedule();
677                         }
678                 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
679                         /* Do nothing ... satisfy
680                          * wait_for_completion_interruptible must_check */
681                 }
682
683                 spin_lock_irqsave(&fibptr->event_lock, flags);
684                 if (fibptr->done == 0) {
685                         fibptr->done = 2; /* Tell interrupt we aborted */
686                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
687                         return -ERESTARTSYS;
688                 }
689                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
690                 BUG_ON(fibptr->done == 0);
691
692                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
693                         return -ETIMEDOUT;
694                 return 0;
695         }
696         /*
697          *      If the user does not want a response than return success otherwise
698          *      return pending
699          */
700         if (reply)
701                 return -EINPROGRESS;
702         else
703                 return 0;
704 }
705
706 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
707                 void *callback_data)
708 {
709         struct aac_dev *dev = fibptr->dev;
710         int wait;
711         unsigned long flags = 0;
712         unsigned long mflags = 0;
713         struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
714                         fibptr->hw_fib_va;
715
716         fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
717         if (callback) {
718                 wait = 0;
719                 fibptr->callback = callback;
720                 fibptr->callback_data = callback_data;
721         } else
722                 wait = 1;
723
724
725         hbacmd->iu_type = command;
726
727         if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
728                 /* bit1 of request_id must be 0 */
729                 hbacmd->request_id =
730                         cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
731                 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
732         } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
733                 return -EINVAL;
734
735
736         if (wait) {
737                 spin_lock_irqsave(&dev->manage_lock, mflags);
738                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
739                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
740                         return -EBUSY;
741                 }
742                 dev->management_fib_count++;
743                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
744                 spin_lock_irqsave(&fibptr->event_lock, flags);
745         }
746
747         if (aac_adapter_deliver(fibptr) != 0) {
748                 if (wait) {
749                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
750                         spin_lock_irqsave(&dev->manage_lock, mflags);
751                         dev->management_fib_count--;
752                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
753                 }
754                 return -EBUSY;
755         }
756         FIB_COUNTER_INCREMENT(aac_config.NativeSent);
757
758         if (wait) {
759
760                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
761
762                 if (unlikely(aac_pci_offline(dev)))
763                         return -EFAULT;
764
765                 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
766                 if (wait_for_completion_interruptible(&fibptr->event_wait))
767                         fibptr->done = 2;
768                 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
769
770                 spin_lock_irqsave(&fibptr->event_lock, flags);
771                 if ((fibptr->done == 0) || (fibptr->done == 2)) {
772                         fibptr->done = 2; /* Tell interrupt we aborted */
773                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
774                         return -ERESTARTSYS;
775                 }
776                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
777                 WARN_ON(fibptr->done == 0);
778
779                 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
780                         return -ETIMEDOUT;
781
782                 return 0;
783         }
784
785         return -EINPROGRESS;
786 }
787
788 /**
789  *      aac_consumer_get        -       get the top of the queue
790  *      @dev: Adapter
791  *      @q: Queue
792  *      @entry: Return entry
793  *
794  *      Will return a pointer to the entry on the top of the queue requested that
795  *      we are a consumer of, and return the address of the queue entry. It does
796  *      not change the state of the queue.
797  */
798
799 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
800 {
801         u32 index;
802         int status;
803         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
804                 status = 0;
805         } else {
806                 /*
807                  *      The consumer index must be wrapped if we have reached
808                  *      the end of the queue, else we just use the entry
809                  *      pointed to by the header index
810                  */
811                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
812                         index = 0;
813                 else
814                         index = le32_to_cpu(*q->headers.consumer);
815                 *entry = q->base + index;
816                 status = 1;
817         }
818         return(status);
819 }
820
821 /**
822  *      aac_consumer_free       -       free consumer entry
823  *      @dev: Adapter
824  *      @q: Queue
825  *      @qid: Queue ident
826  *
827  *      Frees up the current top of the queue we are a consumer of. If the
828  *      queue was full notify the producer that the queue is no longer full.
829  */
830
831 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
832 {
833         int wasfull = 0;
834         u32 notify;
835
836         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
837                 wasfull = 1;
838
839         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
840                 *q->headers.consumer = cpu_to_le32(1);
841         else
842                 le32_add_cpu(q->headers.consumer, 1);
843
844         if (wasfull) {
845                 switch (qid) {
846
847                 case HostNormCmdQueue:
848                         notify = HostNormCmdNotFull;
849                         break;
850                 case HostNormRespQueue:
851                         notify = HostNormRespNotFull;
852                         break;
853                 default:
854                         BUG();
855                         return;
856                 }
857                 aac_adapter_notify(dev, notify);
858         }
859 }
860
861 /**
862  *      aac_fib_adapter_complete        -       complete adapter issued fib
863  *      @fibptr: fib to complete
864  *      @size: size of fib
865  *
866  *      Will do all necessary work to complete a FIB that was sent from
867  *      the adapter.
868  */
869
870 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
871 {
872         struct hw_fib * hw_fib = fibptr->hw_fib_va;
873         struct aac_dev * dev = fibptr->dev;
874         struct aac_queue * q;
875         unsigned long nointr = 0;
876         unsigned long qflags;
877
878         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
879                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
880                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
881                 kfree(hw_fib);
882                 return 0;
883         }
884
885         if (hw_fib->header.XferState == 0) {
886                 if (dev->comm_interface == AAC_COMM_MESSAGE)
887                         kfree(hw_fib);
888                 return 0;
889         }
890         /*
891          *      If we plan to do anything check the structure type first.
892          */
893         if (hw_fib->header.StructType != FIB_MAGIC &&
894             hw_fib->header.StructType != FIB_MAGIC2 &&
895             hw_fib->header.StructType != FIB_MAGIC2_64) {
896                 if (dev->comm_interface == AAC_COMM_MESSAGE)
897                         kfree(hw_fib);
898                 return -EINVAL;
899         }
900         /*
901          *      This block handles the case where the adapter had sent us a
902          *      command and we have finished processing the command. We
903          *      call completeFib when we are done processing the command
904          *      and want to send a response back to the adapter. This will
905          *      send the completed cdb to the adapter.
906          */
907         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
908                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
909                         kfree (hw_fib);
910                 } else {
911                         u32 index;
912                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
913                         if (size) {
914                                 size += sizeof(struct aac_fibhdr);
915                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
916                                         return -EMSGSIZE;
917                                 hw_fib->header.Size = cpu_to_le16(size);
918                         }
919                         q = &dev->queues->queue[AdapNormRespQueue];
920                         spin_lock_irqsave(q->lock, qflags);
921                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
922                         *(q->headers.producer) = cpu_to_le32(index + 1);
923                         spin_unlock_irqrestore(q->lock, qflags);
924                         if (!(nointr & (int)aac_config.irq_mod))
925                                 aac_adapter_notify(dev, AdapNormRespQueue);
926                 }
927         } else {
928                 printk(KERN_WARNING "aac_fib_adapter_complete: "
929                         "Unknown xferstate detected.\n");
930                 BUG();
931         }
932         return 0;
933 }
934
935 /**
936  *      aac_fib_complete        -       fib completion handler
937  *      @fib: FIB to complete
938  *
939  *      Will do all necessary work to complete a FIB.
940  */
941
942 int aac_fib_complete(struct fib *fibptr)
943 {
944         struct hw_fib * hw_fib = fibptr->hw_fib_va;
945
946         if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
947                 fib_dealloc(fibptr);
948                 return 0;
949         }
950
951         /*
952          *      Check for a fib which has already been completed or with a
953          *      status wait timeout
954          */
955
956         if (hw_fib->header.XferState == 0 || fibptr->done == 2)
957                 return 0;
958         /*
959          *      If we plan to do anything check the structure type first.
960          */
961
962         if (hw_fib->header.StructType != FIB_MAGIC &&
963             hw_fib->header.StructType != FIB_MAGIC2 &&
964             hw_fib->header.StructType != FIB_MAGIC2_64)
965                 return -EINVAL;
966         /*
967          *      This block completes a cdb which orginated on the host and we
968          *      just need to deallocate the cdb or reinit it. At this point the
969          *      command is complete that we had sent to the adapter and this
970          *      cdb could be reused.
971          */
972
973         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
974                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
975         {
976                 fib_dealloc(fibptr);
977         }
978         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
979         {
980                 /*
981                  *      This handles the case when the host has aborted the I/O
982                  *      to the adapter because the adapter is not responding
983                  */
984                 fib_dealloc(fibptr);
985         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
986                 fib_dealloc(fibptr);
987         } else {
988                 BUG();
989         }
990         return 0;
991 }
992
993 /**
994  *      aac_printf      -       handle printf from firmware
995  *      @dev: Adapter
996  *      @val: Message info
997  *
998  *      Print a message passed to us by the controller firmware on the
999  *      Adaptec board
1000  */
1001
1002 void aac_printf(struct aac_dev *dev, u32 val)
1003 {
1004         char *cp = dev->printfbuf;
1005         if (dev->printf_enabled)
1006         {
1007                 int length = val & 0xffff;
1008                 int level = (val >> 16) & 0xffff;
1009
1010                 /*
1011                  *      The size of the printfbuf is set in port.c
1012                  *      There is no variable or define for it
1013                  */
1014                 if (length > 255)
1015                         length = 255;
1016                 if (cp[length] != 0)
1017                         cp[length] = 0;
1018                 if (level == LOG_AAC_HIGH_ERROR)
1019                         printk(KERN_WARNING "%s:%s", dev->name, cp);
1020                 else
1021                         printk(KERN_INFO "%s:%s", dev->name, cp);
1022         }
1023         memset(cp, 0, 256);
1024 }
1025
1026 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1027 {
1028         return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1029 }
1030
1031
1032 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1033 {
1034         switch (aac_aif_data(aifcmd, 1)) {
1035         case AifBuCacheDataLoss:
1036                 if (aac_aif_data(aifcmd, 2))
1037                         dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1038                         aac_aif_data(aifcmd, 2));
1039                 else
1040                         dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1041                 break;
1042         case AifBuCacheDataRecover:
1043                 if (aac_aif_data(aifcmd, 2))
1044                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1045                         aac_aif_data(aifcmd, 2));
1046                 else
1047                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1048                 break;
1049         }
1050 }
1051
1052 /**
1053  *      aac_handle_aif          -       Handle a message from the firmware
1054  *      @dev: Which adapter this fib is from
1055  *      @fibptr: Pointer to fibptr from adapter
1056  *
1057  *      This routine handles a driver notify fib from the adapter and
1058  *      dispatches it to the appropriate routine for handling.
1059  */
1060
1061 #define AIF_SNIFF_TIMEOUT       (500*HZ)
1062 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1063 {
1064         struct hw_fib * hw_fib = fibptr->hw_fib_va;
1065         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1066         u32 channel, id, lun, container;
1067         struct scsi_device *device;
1068         enum {
1069                 NOTHING,
1070                 DELETE,
1071                 ADD,
1072                 CHANGE
1073         } device_config_needed = NOTHING;
1074
1075         /* Sniff for container changes */
1076
1077         if (!dev || !dev->fsa_dev)
1078                 return;
1079         container = channel = id = lun = (u32)-1;
1080
1081         /*
1082          *      We have set this up to try and minimize the number of
1083          * re-configures that take place. As a result of this when
1084          * certain AIF's come in we will set a flag waiting for another
1085          * type of AIF before setting the re-config flag.
1086          */
1087         switch (le32_to_cpu(aifcmd->command)) {
1088         case AifCmdDriverNotify:
1089                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1090                 case AifRawDeviceRemove:
1091                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1092                         if ((container >> 28)) {
1093                                 container = (u32)-1;
1094                                 break;
1095                         }
1096                         channel = (container >> 24) & 0xF;
1097                         if (channel >= dev->maximum_num_channels) {
1098                                 container = (u32)-1;
1099                                 break;
1100                         }
1101                         id = container & 0xFFFF;
1102                         if (id >= dev->maximum_num_physicals) {
1103                                 container = (u32)-1;
1104                                 break;
1105                         }
1106                         lun = (container >> 16) & 0xFF;
1107                         container = (u32)-1;
1108                         channel = aac_phys_to_logical(channel);
1109                         device_config_needed = DELETE;
1110                         break;
1111
1112                 /*
1113                  *      Morph or Expand complete
1114                  */
1115                 case AifDenMorphComplete:
1116                 case AifDenVolumeExtendComplete:
1117                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1118                         if (container >= dev->maximum_num_containers)
1119                                 break;
1120
1121                         /*
1122                          *      Find the scsi_device associated with the SCSI
1123                          * address. Make sure we have the right array, and if
1124                          * so set the flag to initiate a new re-config once we
1125                          * see an AifEnConfigChange AIF come through.
1126                          */
1127
1128                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1129                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1130                                         CONTAINER_TO_CHANNEL(container),
1131                                         CONTAINER_TO_ID(container),
1132                                         CONTAINER_TO_LUN(container));
1133                                 if (device) {
1134                                         dev->fsa_dev[container].config_needed = CHANGE;
1135                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1136                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1137                                         scsi_device_put(device);
1138                                 }
1139                         }
1140                 }
1141
1142                 /*
1143                  *      If we are waiting on something and this happens to be
1144                  * that thing then set the re-configure flag.
1145                  */
1146                 if (container != (u32)-1) {
1147                         if (container >= dev->maximum_num_containers)
1148                                 break;
1149                         if ((dev->fsa_dev[container].config_waiting_on ==
1150                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152                                 dev->fsa_dev[container].config_waiting_on = 0;
1153                 } else for (container = 0;
1154                     container < dev->maximum_num_containers; ++container) {
1155                         if ((dev->fsa_dev[container].config_waiting_on ==
1156                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1157                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1158                                 dev->fsa_dev[container].config_waiting_on = 0;
1159                 }
1160                 break;
1161
1162         case AifCmdEventNotify:
1163                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1164                 case AifEnBatteryEvent:
1165                         dev->cache_protected =
1166                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1167                         break;
1168                 /*
1169                  *      Add an Array.
1170                  */
1171                 case AifEnAddContainer:
1172                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1173                         if (container >= dev->maximum_num_containers)
1174                                 break;
1175                         dev->fsa_dev[container].config_needed = ADD;
1176                         dev->fsa_dev[container].config_waiting_on =
1177                                 AifEnConfigChange;
1178                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179                         break;
1180
1181                 /*
1182                  *      Delete an Array.
1183                  */
1184                 case AifEnDeleteContainer:
1185                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186                         if (container >= dev->maximum_num_containers)
1187                                 break;
1188                         dev->fsa_dev[container].config_needed = DELETE;
1189                         dev->fsa_dev[container].config_waiting_on =
1190                                 AifEnConfigChange;
1191                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192                         break;
1193
1194                 /*
1195                  *      Container change detected. If we currently are not
1196                  * waiting on something else, setup to wait on a Config Change.
1197                  */
1198                 case AifEnContainerChange:
1199                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200                         if (container >= dev->maximum_num_containers)
1201                                 break;
1202                         if (dev->fsa_dev[container].config_waiting_on &&
1203                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1204                                 break;
1205                         dev->fsa_dev[container].config_needed = CHANGE;
1206                         dev->fsa_dev[container].config_waiting_on =
1207                                 AifEnConfigChange;
1208                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1209                         break;
1210
1211                 case AifEnConfigChange:
1212                         break;
1213
1214                 case AifEnAddJBOD:
1215                 case AifEnDeleteJBOD:
1216                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1217                         if ((container >> 28)) {
1218                                 container = (u32)-1;
1219                                 break;
1220                         }
1221                         channel = (container >> 24) & 0xF;
1222                         if (channel >= dev->maximum_num_channels) {
1223                                 container = (u32)-1;
1224                                 break;
1225                         }
1226                         id = container & 0xFFFF;
1227                         if (id >= dev->maximum_num_physicals) {
1228                                 container = (u32)-1;
1229                                 break;
1230                         }
1231                         lun = (container >> 16) & 0xFF;
1232                         container = (u32)-1;
1233                         channel = aac_phys_to_logical(channel);
1234                         device_config_needed =
1235                           (((__le32 *)aifcmd->data)[0] ==
1236                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1237                         if (device_config_needed == ADD) {
1238                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1239                                         channel,
1240                                         id,
1241                                         lun);
1242                                 if (device) {
1243                                         scsi_remove_device(device);
1244                                         scsi_device_put(device);
1245                                 }
1246                         }
1247                         break;
1248
1249                 case AifEnEnclosureManagement:
1250                         /*
1251                          * If in JBOD mode, automatic exposure of new
1252                          * physical target to be suppressed until configured.
1253                          */
1254                         if (dev->jbod)
1255                                 break;
1256                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1257                         case EM_DRIVE_INSERTION:
1258                         case EM_DRIVE_REMOVAL:
1259                         case EM_SES_DRIVE_INSERTION:
1260                         case EM_SES_DRIVE_REMOVAL:
1261                                 container = le32_to_cpu(
1262                                         ((__le32 *)aifcmd->data)[2]);
1263                                 if ((container >> 28)) {
1264                                         container = (u32)-1;
1265                                         break;
1266                                 }
1267                                 channel = (container >> 24) & 0xF;
1268                                 if (channel >= dev->maximum_num_channels) {
1269                                         container = (u32)-1;
1270                                         break;
1271                                 }
1272                                 id = container & 0xFFFF;
1273                                 lun = (container >> 16) & 0xFF;
1274                                 container = (u32)-1;
1275                                 if (id >= dev->maximum_num_physicals) {
1276                                         /* legacy dev_t ? */
1277                                         if ((0x2000 <= id) || lun || channel ||
1278                                           ((channel = (id >> 7) & 0x3F) >=
1279                                           dev->maximum_num_channels))
1280                                                 break;
1281                                         lun = (id >> 4) & 7;
1282                                         id &= 0xF;
1283                                 }
1284                                 channel = aac_phys_to_logical(channel);
1285                                 device_config_needed =
1286                                   ((((__le32 *)aifcmd->data)[3]
1287                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1288                                     (((__le32 *)aifcmd->data)[3]
1289                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1290                                   ADD : DELETE;
1291                                 break;
1292                         }
1293                         break;
1294                 case AifBuManagerEvent:
1295                         aac_handle_aif_bu(dev, aifcmd);
1296                         break;
1297                 }
1298
1299                 /*
1300                  *      If we are waiting on something and this happens to be
1301                  * that thing then set the re-configure flag.
1302                  */
1303                 if (container != (u32)-1) {
1304                         if (container >= dev->maximum_num_containers)
1305                                 break;
1306                         if ((dev->fsa_dev[container].config_waiting_on ==
1307                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1308                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1309                                 dev->fsa_dev[container].config_waiting_on = 0;
1310                 } else for (container = 0;
1311                     container < dev->maximum_num_containers; ++container) {
1312                         if ((dev->fsa_dev[container].config_waiting_on ==
1313                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1314                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1315                                 dev->fsa_dev[container].config_waiting_on = 0;
1316                 }
1317                 break;
1318
1319         case AifCmdJobProgress:
1320                 /*
1321                  *      These are job progress AIF's. When a Clear is being
1322                  * done on a container it is initially created then hidden from
1323                  * the OS. When the clear completes we don't get a config
1324                  * change so we monitor the job status complete on a clear then
1325                  * wait for a container change.
1326                  */
1327
1328                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1329                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1330                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1331                         for (container = 0;
1332                             container < dev->maximum_num_containers;
1333                             ++container) {
1334                                 /*
1335                                  * Stomp on all config sequencing for all
1336                                  * containers?
1337                                  */
1338                                 dev->fsa_dev[container].config_waiting_on =
1339                                         AifEnContainerChange;
1340                                 dev->fsa_dev[container].config_needed = ADD;
1341                                 dev->fsa_dev[container].config_waiting_stamp =
1342                                         jiffies;
1343                         }
1344                 }
1345                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1346                     ((__le32 *)aifcmd->data)[6] == 0 &&
1347                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1348                         for (container = 0;
1349                             container < dev->maximum_num_containers;
1350                             ++container) {
1351                                 /*
1352                                  * Stomp on all config sequencing for all
1353                                  * containers?
1354                                  */
1355                                 dev->fsa_dev[container].config_waiting_on =
1356                                         AifEnContainerChange;
1357                                 dev->fsa_dev[container].config_needed = DELETE;
1358                                 dev->fsa_dev[container].config_waiting_stamp =
1359                                         jiffies;
1360                         }
1361                 }
1362                 break;
1363         }
1364
1365         container = 0;
1366 retry_next:
1367         if (device_config_needed == NOTHING) {
1368                 for (; container < dev->maximum_num_containers; ++container) {
1369                         if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1370                             (dev->fsa_dev[container].config_needed != NOTHING) &&
1371                             time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1372                                 device_config_needed =
1373                                         dev->fsa_dev[container].config_needed;
1374                                 dev->fsa_dev[container].config_needed = NOTHING;
1375                                 channel = CONTAINER_TO_CHANNEL(container);
1376                                 id = CONTAINER_TO_ID(container);
1377                                 lun = CONTAINER_TO_LUN(container);
1378                                 break;
1379                         }
1380                 }
1381         }
1382         if (device_config_needed == NOTHING)
1383                 return;
1384
1385         /*
1386          *      If we decided that a re-configuration needs to be done,
1387          * schedule it here on the way out the door, please close the door
1388          * behind you.
1389          */
1390
1391         /*
1392          *      Find the scsi_device associated with the SCSI address,
1393          * and mark it as changed, invalidating the cache. This deals
1394          * with changes to existing device IDs.
1395          */
1396
1397         if (!dev || !dev->scsi_host_ptr)
1398                 return;
1399         /*
1400          * force reload of disk info via aac_probe_container
1401          */
1402         if ((channel == CONTAINER_CHANNEL) &&
1403           (device_config_needed != NOTHING)) {
1404                 if (dev->fsa_dev[container].valid == 1)
1405                         dev->fsa_dev[container].valid = 2;
1406                 aac_probe_container(dev, container);
1407         }
1408         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1409         if (device) {
1410                 switch (device_config_needed) {
1411                 case DELETE:
1412 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1413                         scsi_remove_device(device);
1414 #else
1415                         if (scsi_device_online(device)) {
1416                                 scsi_device_set_state(device, SDEV_OFFLINE);
1417                                 sdev_printk(KERN_INFO, device,
1418                                         "Device offlined - %s\n",
1419                                         (channel == CONTAINER_CHANNEL) ?
1420                                                 "array deleted" :
1421                                                 "enclosure services event");
1422                         }
1423 #endif
1424                         break;
1425                 case ADD:
1426                         if (!scsi_device_online(device)) {
1427                                 sdev_printk(KERN_INFO, device,
1428                                         "Device online - %s\n",
1429                                         (channel == CONTAINER_CHANNEL) ?
1430                                                 "array created" :
1431                                                 "enclosure services event");
1432                                 scsi_device_set_state(device, SDEV_RUNNING);
1433                         }
1434                         /* FALLTHRU */
1435                 case CHANGE:
1436                         if ((channel == CONTAINER_CHANNEL)
1437                          && (!dev->fsa_dev[container].valid)) {
1438 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1439                                 scsi_remove_device(device);
1440 #else
1441                                 if (!scsi_device_online(device))
1442                                         break;
1443                                 scsi_device_set_state(device, SDEV_OFFLINE);
1444                                 sdev_printk(KERN_INFO, device,
1445                                         "Device offlined - %s\n",
1446                                         "array failed");
1447 #endif
1448                                 break;
1449                         }
1450                         scsi_rescan_device(&device->sdev_gendev);
1451
1452                 default:
1453                         break;
1454                 }
1455                 scsi_device_put(device);
1456                 device_config_needed = NOTHING;
1457         }
1458         if (device_config_needed == ADD)
1459                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1460         if (channel == CONTAINER_CHANNEL) {
1461                 container++;
1462                 device_config_needed = NOTHING;
1463                 goto retry_next;
1464         }
1465 }
1466
1467 static void aac_schedule_bus_scan(struct aac_dev *aac)
1468 {
1469         if (aac->sa_firmware)
1470                 aac_schedule_safw_scan_worker(aac);
1471         else
1472                 aac_schedule_src_reinit_aif_worker(aac);
1473 }
1474
1475 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1476 {
1477         int index, quirks;
1478         int retval;
1479         struct Scsi_Host *host;
1480         struct scsi_device *dev;
1481         struct scsi_cmnd *command;
1482         struct scsi_cmnd *command_list;
1483         int jafo = 0;
1484         int bled;
1485         u64 dmamask;
1486         int num_of_fibs = 0;
1487
1488         /*
1489          * Assumptions:
1490          *      - host is locked, unless called by the aacraid thread.
1491          *        (a matter of convenience, due to legacy issues surrounding
1492          *        eh_host_adapter_reset).
1493          *      - in_reset is asserted, so no new i/o is getting to the
1494          *        card.
1495          *      - The card is dead, or will be very shortly ;-/ so no new
1496          *        commands are completing in the interrupt service.
1497          */
1498         host = aac->scsi_host_ptr;
1499         scsi_block_requests(host);
1500         aac_adapter_disable_int(aac);
1501         if (aac->thread && aac->thread->pid != current->pid) {
1502                 spin_unlock_irq(host->host_lock);
1503                 kthread_stop(aac->thread);
1504                 aac->thread = NULL;
1505                 jafo = 1;
1506         }
1507
1508         /*
1509          *      If a positive health, means in a known DEAD PANIC
1510          * state and the adapter could be reset to `try again'.
1511          */
1512         bled = forced ? 0 : aac_adapter_check_health(aac);
1513         retval = aac_adapter_restart(aac, bled, reset_type);
1514
1515         if (retval)
1516                 goto out;
1517
1518         /*
1519          *      Loop through the fibs, close the synchronous FIBS
1520          */
1521         retval = 1;
1522         num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1523         for (index = 0; index <  num_of_fibs; index++) {
1524
1525                 struct fib *fib = &aac->fibs[index];
1526                 __le32 XferState = fib->hw_fib_va->header.XferState;
1527                 bool is_response_expected = false;
1528
1529                 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1530                    (XferState & cpu_to_le32(ResponseExpected)))
1531                         is_response_expected = true;
1532
1533                 if (is_response_expected
1534                   || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1535                         unsigned long flagv;
1536                         spin_lock_irqsave(&fib->event_lock, flagv);
1537                         complete(&fib->event_wait);
1538                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1539                         schedule();
1540                         retval = 0;
1541                 }
1542         }
1543         /* Give some extra time for ioctls to complete. */
1544         if (retval == 0)
1545                 ssleep(2);
1546         index = aac->cardtype;
1547
1548         /*
1549          * Re-initialize the adapter, first free resources, then carefully
1550          * apply the initialization sequence to come back again. Only risk
1551          * is a change in Firmware dropping cache, it is assumed the caller
1552          * will ensure that i/o is queisced and the card is flushed in that
1553          * case.
1554          */
1555         aac_free_irq(aac);
1556         aac_fib_map_free(aac);
1557         dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1558                           aac->comm_phys);
1559         aac->comm_addr = NULL;
1560         aac->comm_phys = 0;
1561         kfree(aac->queues);
1562         aac->queues = NULL;
1563         kfree(aac->fsa_dev);
1564         aac->fsa_dev = NULL;
1565
1566         dmamask = DMA_BIT_MASK(32);
1567         quirks = aac_get_driver_ident(index)->quirks;
1568         if (quirks & AAC_QUIRK_31BIT)
1569                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1570         else if (!(quirks & AAC_QUIRK_SRC))
1571                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1572         else
1573                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1574
1575         if (quirks & AAC_QUIRK_31BIT && !retval) {
1576                 dmamask = DMA_BIT_MASK(31);
1577                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1578         }
1579
1580         if (retval)
1581                 goto out;
1582
1583         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1584                 goto out;
1585
1586         if (jafo) {
1587                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1588                                           aac->name);
1589                 if (IS_ERR(aac->thread)) {
1590                         retval = PTR_ERR(aac->thread);
1591                         aac->thread = NULL;
1592                         goto out;
1593                 }
1594         }
1595         (void)aac_get_adapter_info(aac);
1596         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1597                 host->sg_tablesize = 34;
1598                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1599         }
1600         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1601                 host->sg_tablesize = 17;
1602                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1603         }
1604         aac_get_config_status(aac, 1);
1605         aac_get_containers(aac);
1606         /*
1607          * This is where the assumption that the Adapter is quiesced
1608          * is important.
1609          */
1610         command_list = NULL;
1611         __shost_for_each_device(dev, host) {
1612                 unsigned long flags;
1613                 spin_lock_irqsave(&dev->list_lock, flags);
1614                 list_for_each_entry(command, &dev->cmd_list, list)
1615                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1616                                 command->SCp.buffer = (struct scatterlist *)command_list;
1617                                 command_list = command;
1618                         }
1619                 spin_unlock_irqrestore(&dev->list_lock, flags);
1620         }
1621         while ((command = command_list)) {
1622                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1623                 command->SCp.buffer = NULL;
1624                 command->result = DID_OK << 16
1625                   | COMMAND_COMPLETE << 8
1626                   | SAM_STAT_TASK_SET_FULL;
1627                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1628                 command->scsi_done(command);
1629         }
1630         /*
1631          * Any Device that was already marked offline needs to be marked
1632          * running
1633          */
1634         __shost_for_each_device(dev, host) {
1635                 if (!scsi_device_online(dev))
1636                         scsi_device_set_state(dev, SDEV_RUNNING);
1637         }
1638         retval = 0;
1639
1640 out:
1641         aac->in_reset = 0;
1642         scsi_unblock_requests(host);
1643
1644         /*
1645          * Issue bus rescan to catch any configuration that might have
1646          * occurred
1647          */
1648         if (!retval && !is_kdump_kernel()) {
1649                 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1650                 aac_schedule_bus_scan(aac);
1651         }
1652
1653         if (jafo) {
1654                 spin_lock_irq(host->host_lock);
1655         }
1656         return retval;
1657 }
1658
1659 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1660 {
1661         unsigned long flagv = 0;
1662         int retval;
1663         struct Scsi_Host * host;
1664         int bled;
1665
1666         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1667                 return -EBUSY;
1668
1669         if (aac->in_reset) {
1670                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1671                 return -EBUSY;
1672         }
1673         aac->in_reset = 1;
1674         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1675
1676         /*
1677          * Wait for all commands to complete to this specific
1678          * target (block maximum 60 seconds). Although not necessary,
1679          * it does make us a good storage citizen.
1680          */
1681         host = aac->scsi_host_ptr;
1682         scsi_block_requests(host);
1683
1684         /* Quiesce build, flush cache, write through mode */
1685         if (forced < 2)
1686                 aac_send_shutdown(aac);
1687         spin_lock_irqsave(host->host_lock, flagv);
1688         bled = forced ? forced :
1689                         (aac_check_reset != 0 && aac_check_reset != 1);
1690         retval = _aac_reset_adapter(aac, bled, reset_type);
1691         spin_unlock_irqrestore(host->host_lock, flagv);
1692
1693         if ((forced < 2) && (retval == -ENODEV)) {
1694                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1695                 struct fib * fibctx = aac_fib_alloc(aac);
1696                 if (fibctx) {
1697                         struct aac_pause *cmd;
1698                         int status;
1699
1700                         aac_fib_init(fibctx);
1701
1702                         cmd = (struct aac_pause *) fib_data(fibctx);
1703
1704                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1705                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1706                         cmd->timeout = cpu_to_le32(1);
1707                         cmd->min = cpu_to_le32(1);
1708                         cmd->noRescan = cpu_to_le32(1);
1709                         cmd->count = cpu_to_le32(0);
1710
1711                         status = aac_fib_send(ContainerCommand,
1712                           fibctx,
1713                           sizeof(struct aac_pause),
1714                           FsaNormal,
1715                           -2 /* Timeout silently */, 1,
1716                           NULL, NULL);
1717
1718                         if (status >= 0)
1719                                 aac_fib_complete(fibctx);
1720                         /* FIB should be freed only after getting
1721                          * the response from the F/W */
1722                         if (status != -ERESTARTSYS)
1723                                 aac_fib_free(fibctx);
1724                 }
1725         }
1726
1727         return retval;
1728 }
1729
1730 int aac_check_health(struct aac_dev * aac)
1731 {
1732         int BlinkLED;
1733         unsigned long time_now, flagv = 0;
1734         struct list_head * entry;
1735
1736         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1737         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1738                 return 0;
1739
1740         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1741                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1742                 return 0; /* OK */
1743         }
1744
1745         aac->in_reset = 1;
1746
1747         /* Fake up an AIF:
1748          *      aac_aifcmd.command = AifCmdEventNotify = 1
1749          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1750          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1751          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1752          *      aac.aifcmd.data[2] = AifHighPriority = 3
1753          *      aac.aifcmd.data[3] = BlinkLED
1754          */
1755
1756         time_now = jiffies/HZ;
1757         entry = aac->fib_list.next;
1758
1759         /*
1760          * For each Context that is on the
1761          * fibctxList, make a copy of the
1762          * fib, and then set the event to wake up the
1763          * thread that is waiting for it.
1764          */
1765         while (entry != &aac->fib_list) {
1766                 /*
1767                  * Extract the fibctx
1768                  */
1769                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1770                 struct hw_fib * hw_fib;
1771                 struct fib * fib;
1772                 /*
1773                  * Check if the queue is getting
1774                  * backlogged
1775                  */
1776                 if (fibctx->count > 20) {
1777                         /*
1778                          * It's *not* jiffies folks,
1779                          * but jiffies / HZ, so do not
1780                          * panic ...
1781                          */
1782                         u32 time_last = fibctx->jiffies;
1783                         /*
1784                          * Has it been > 2 minutes
1785                          * since the last read off
1786                          * the queue?
1787                          */
1788                         if ((time_now - time_last) > aif_timeout) {
1789                                 entry = entry->next;
1790                                 aac_close_fib_context(aac, fibctx);
1791                                 continue;
1792                         }
1793                 }
1794                 /*
1795                  * Warning: no sleep allowed while
1796                  * holding spinlock
1797                  */
1798                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1799                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1800                 if (fib && hw_fib) {
1801                         struct aac_aifcmd * aif;
1802
1803                         fib->hw_fib_va = hw_fib;
1804                         fib->dev = aac;
1805                         aac_fib_init(fib);
1806                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1807                         fib->size = sizeof (struct fib);
1808                         fib->data = hw_fib->data;
1809                         aif = (struct aac_aifcmd *)hw_fib->data;
1810                         aif->command = cpu_to_le32(AifCmdEventNotify);
1811                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1812                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1813                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1814                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1815                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1816
1817                         /*
1818                          * Put the FIB onto the
1819                          * fibctx's fibs
1820                          */
1821                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1822                         fibctx->count++;
1823                         /*
1824                          * Set the event to wake up the
1825                          * thread that will waiting.
1826                          */
1827                         complete(&fibctx->completion);
1828                 } else {
1829                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1830                         kfree(fib);
1831                         kfree(hw_fib);
1832                 }
1833                 entry = entry->next;
1834         }
1835
1836         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1837
1838         if (BlinkLED < 0) {
1839                 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1840                                 aac->name, BlinkLED);
1841                 goto out;
1842         }
1843
1844         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1845
1846 out:
1847         aac->in_reset = 0;
1848         return BlinkLED;
1849 }
1850
1851 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1852 {
1853         return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1854 }
1855
1856 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1857                                                                 int bus,
1858                                                                 int target)
1859 {
1860         if (bus != CONTAINER_CHANNEL)
1861                 bus = aac_phys_to_logical(bus);
1862
1863         return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1864 }
1865
1866 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1867 {
1868         if (bus != CONTAINER_CHANNEL)
1869                 bus = aac_phys_to_logical(bus);
1870
1871         return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1872 }
1873
1874 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1875 {
1876         if (sdev)
1877                 scsi_device_put(sdev);
1878 }
1879
1880 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1881 {
1882         struct scsi_device *sdev;
1883
1884         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1885         scsi_remove_device(sdev);
1886         aac_put_safw_scsi_device(sdev);
1887 }
1888
1889 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1890         int bus, int target)
1891 {
1892         return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1893 }
1894
1895 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1896 {
1897         if (is_safw_raid_volume(dev, bus, target))
1898                 return dev->fsa_dev[target].valid;
1899         else
1900                 return aac_is_safw_scan_count_equal(dev, bus, target);
1901 }
1902
1903 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1904 {
1905         int is_exposed = 0;
1906         struct scsi_device *sdev;
1907
1908         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1909         if (sdev)
1910                 is_exposed = 1;
1911         aac_put_safw_scsi_device(sdev);
1912
1913         return is_exposed;
1914 }
1915
1916 static int aac_update_safw_host_devices(struct aac_dev *dev)
1917 {
1918         int i;
1919         int bus;
1920         int target;
1921         int is_exposed = 0;
1922         int rcode = 0;
1923
1924         rcode = aac_setup_safw_adapter(dev);
1925         if (unlikely(rcode < 0)) {
1926                 goto out;
1927         }
1928
1929         for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1930
1931                 bus = get_bus_number(i);
1932                 target = get_target_number(i);
1933
1934                 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1935
1936                 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1937                         aac_add_safw_device(dev, bus, target);
1938                 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1939                                                                 is_exposed)
1940                         aac_remove_safw_device(dev, bus, target);
1941         }
1942 out:
1943         return rcode;
1944 }
1945
1946 static int aac_scan_safw_host(struct aac_dev *dev)
1947 {
1948         int rcode = 0;
1949
1950         rcode = aac_update_safw_host_devices(dev);
1951         if (rcode)
1952                 aac_schedule_safw_scan_worker(dev);
1953
1954         return rcode;
1955 }
1956
1957 int aac_scan_host(struct aac_dev *dev)
1958 {
1959         int rcode = 0;
1960
1961         mutex_lock(&dev->scan_mutex);
1962         if (dev->sa_firmware)
1963                 rcode = aac_scan_safw_host(dev);
1964         else
1965                 scsi_scan_host(dev->scsi_host_ptr);
1966         mutex_unlock(&dev->scan_mutex);
1967
1968         return rcode;
1969 }
1970
1971 void aac_src_reinit_aif_worker(struct work_struct *work)
1972 {
1973         struct aac_dev *dev = container_of(to_delayed_work(work),
1974                                 struct aac_dev, src_reinit_aif_worker);
1975
1976         wait_event(dev->scsi_host_ptr->host_wait,
1977                         !scsi_host_in_recovery(dev->scsi_host_ptr));
1978         aac_reinit_aif(dev, dev->cardtype);
1979 }
1980
1981 /**
1982  *      aac_handle_sa_aif       Handle a message from the firmware
1983  *      @dev: Which adapter this fib is from
1984  *      @fibptr: Pointer to fibptr from adapter
1985  *
1986  *      This routine handles a driver notify fib from the adapter and
1987  *      dispatches it to the appropriate routine for handling.
1988  */
1989 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1990 {
1991         int i;
1992         u32 events = 0;
1993
1994         if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1995                 events = SA_AIF_HOTPLUG;
1996         else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1997                 events = SA_AIF_HARDWARE;
1998         else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1999                 events = SA_AIF_PDEV_CHANGE;
2000         else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
2001                 events = SA_AIF_LDEV_CHANGE;
2002         else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
2003                 events = SA_AIF_BPSTAT_CHANGE;
2004         else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
2005                 events = SA_AIF_BPCFG_CHANGE;
2006
2007         switch (events) {
2008         case SA_AIF_HOTPLUG:
2009         case SA_AIF_HARDWARE:
2010         case SA_AIF_PDEV_CHANGE:
2011         case SA_AIF_LDEV_CHANGE:
2012         case SA_AIF_BPCFG_CHANGE:
2013
2014                 aac_scan_host(dev);
2015
2016                 break;
2017
2018         case SA_AIF_BPSTAT_CHANGE:
2019                 /* currently do nothing */
2020                 break;
2021         }
2022
2023         for (i = 1; i <= 10; ++i) {
2024                 events = src_readl(dev, MUnit.IDR);
2025                 if (events & (1<<23)) {
2026                         pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2027                                 i, 10);
2028                         ssleep(1);
2029                 }
2030         }
2031 }
2032
2033 static int get_fib_count(struct aac_dev *dev)
2034 {
2035         unsigned int num = 0;
2036         struct list_head *entry;
2037         unsigned long flagv;
2038
2039         /*
2040          * Warning: no sleep allowed while
2041          * holding spinlock. We take the estimate
2042          * and pre-allocate a set of fibs outside the
2043          * lock.
2044          */
2045         num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2046                         / sizeof(struct hw_fib); /* some extra */
2047         spin_lock_irqsave(&dev->fib_lock, flagv);
2048         entry = dev->fib_list.next;
2049         while (entry != &dev->fib_list) {
2050                 entry = entry->next;
2051                 ++num;
2052         }
2053         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2054
2055         return num;
2056 }
2057
2058 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2059                                                 struct fib **fib_pool,
2060                                                 unsigned int num)
2061 {
2062         struct hw_fib **hw_fib_p;
2063         struct fib **fib_p;
2064
2065         hw_fib_p = hw_fib_pool;
2066         fib_p = fib_pool;
2067         while (hw_fib_p < &hw_fib_pool[num]) {
2068                 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2069                 if (!(*(hw_fib_p++))) {
2070                         --hw_fib_p;
2071                         break;
2072                 }
2073
2074                 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2075                 if (!(*(fib_p++))) {
2076                         kfree(*(--hw_fib_p));
2077                         break;
2078                 }
2079         }
2080
2081         /*
2082          * Get the actual number of allocated fibs
2083          */
2084         num = hw_fib_p - hw_fib_pool;
2085         return num;
2086 }
2087
2088 static void wakeup_fibctx_threads(struct aac_dev *dev,
2089                                                 struct hw_fib **hw_fib_pool,
2090                                                 struct fib **fib_pool,
2091                                                 struct fib *fib,
2092                                                 struct hw_fib *hw_fib,
2093                                                 unsigned int num)
2094 {
2095         unsigned long flagv;
2096         struct list_head *entry;
2097         struct hw_fib **hw_fib_p;
2098         struct fib **fib_p;
2099         u32 time_now, time_last;
2100         struct hw_fib *hw_newfib;
2101         struct fib *newfib;
2102         struct aac_fib_context *fibctx;
2103
2104         time_now = jiffies/HZ;
2105         spin_lock_irqsave(&dev->fib_lock, flagv);
2106         entry = dev->fib_list.next;
2107         /*
2108          * For each Context that is on the
2109          * fibctxList, make a copy of the
2110          * fib, and then set the event to wake up the
2111          * thread that is waiting for it.
2112          */
2113
2114         hw_fib_p = hw_fib_pool;
2115         fib_p = fib_pool;
2116         while (entry != &dev->fib_list) {
2117                 /*
2118                  * Extract the fibctx
2119                  */
2120                 fibctx = list_entry(entry, struct aac_fib_context,
2121                                 next);
2122                 /*
2123                  * Check if the queue is getting
2124                  * backlogged
2125                  */
2126                 if (fibctx->count > 20) {
2127                         /*
2128                          * It's *not* jiffies folks,
2129                          * but jiffies / HZ so do not
2130                          * panic ...
2131                          */
2132                         time_last = fibctx->jiffies;
2133                         /*
2134                          * Has it been > 2 minutes
2135                          * since the last read off
2136                          * the queue?
2137                          */
2138                         if ((time_now - time_last) > aif_timeout) {
2139                                 entry = entry->next;
2140                                 aac_close_fib_context(dev, fibctx);
2141                                 continue;
2142                         }
2143                 }
2144                 /*
2145                  * Warning: no sleep allowed while
2146                  * holding spinlock
2147                  */
2148                 if (hw_fib_p >= &hw_fib_pool[num]) {
2149                         pr_warn("aifd: didn't allocate NewFib\n");
2150                         entry = entry->next;
2151                         continue;
2152                 }
2153
2154                 hw_newfib = *hw_fib_p;
2155                 *(hw_fib_p++) = NULL;
2156                 newfib = *fib_p;
2157                 *(fib_p++) = NULL;
2158                 /*
2159                  * Make the copy of the FIB
2160                  */
2161                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2162                 memcpy(newfib, fib, sizeof(struct fib));
2163                 newfib->hw_fib_va = hw_newfib;
2164                 /*
2165                  * Put the FIB onto the
2166                  * fibctx's fibs
2167                  */
2168                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2169                 fibctx->count++;
2170                 /*
2171                  * Set the event to wake up the
2172                  * thread that is waiting.
2173                  */
2174                 complete(&fibctx->completion);
2175
2176                 entry = entry->next;
2177         }
2178         /*
2179          *      Set the status of this FIB
2180          */
2181         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2182         aac_fib_adapter_complete(fib, sizeof(u32));
2183         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2184
2185 }
2186
2187 static void aac_process_events(struct aac_dev *dev)
2188 {
2189         struct hw_fib *hw_fib;
2190         struct fib *fib;
2191         unsigned long flags;
2192         spinlock_t *t_lock;
2193
2194         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2195         spin_lock_irqsave(t_lock, flags);
2196
2197         while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2198                 struct list_head *entry;
2199                 struct aac_aifcmd *aifcmd;
2200                 unsigned int  num;
2201                 struct hw_fib **hw_fib_pool, **hw_fib_p;
2202                 struct fib **fib_pool, **fib_p;
2203
2204                 set_current_state(TASK_RUNNING);
2205
2206                 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2207                 list_del(entry);
2208
2209                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2210                 spin_unlock_irqrestore(t_lock, flags);
2211
2212                 fib = list_entry(entry, struct fib, fiblink);
2213                 hw_fib = fib->hw_fib_va;
2214                 if (dev->sa_firmware) {
2215                         /* Thor AIF */
2216                         aac_handle_sa_aif(dev, fib);
2217                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2218                         goto free_fib;
2219                 }
2220                 /*
2221                  *      We will process the FIB here or pass it to a
2222                  *      worker thread that is TBD. We Really can't
2223                  *      do anything at this point since we don't have
2224                  *      anything defined for this thread to do.
2225                  */
2226                 memset(fib, 0, sizeof(struct fib));
2227                 fib->type = FSAFS_NTC_FIB_CONTEXT;
2228                 fib->size = sizeof(struct fib);
2229                 fib->hw_fib_va = hw_fib;
2230                 fib->data = hw_fib->data;
2231                 fib->dev = dev;
2232                 /*
2233                  *      We only handle AifRequest fibs from the adapter.
2234                  */
2235
2236                 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2237                 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2238                         /* Handle Driver Notify Events */
2239                         aac_handle_aif(dev, fib);
2240                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2241                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2242                         goto free_fib;
2243                 }
2244                 /*
2245                  * The u32 here is important and intended. We are using
2246                  * 32bit wrapping time to fit the adapter field
2247                  */
2248
2249                 /* Sniff events */
2250                 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2251                  || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2252                         aac_handle_aif(dev, fib);
2253                 }
2254
2255                 /*
2256                  * get number of fibs to process
2257                  */
2258                 num = get_fib_count(dev);
2259                 if (!num)
2260                         goto free_fib;
2261
2262                 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2263                                                 GFP_KERNEL);
2264                 if (!hw_fib_pool)
2265                         goto free_fib;
2266
2267                 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2268                 if (!fib_pool)
2269                         goto free_hw_fib_pool;
2270
2271                 /*
2272                  * Fill up fib pointer pools with actual fibs
2273                  * and hw_fibs
2274                  */
2275                 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2276                 if (!num)
2277                         goto free_mem;
2278
2279                 /*
2280                  * wakeup the thread that is waiting for
2281                  * the response from fw (ioctl)
2282                  */
2283                 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2284                                                             fib, hw_fib, num);
2285
2286 free_mem:
2287                 /* Free up the remaining resources */
2288                 hw_fib_p = hw_fib_pool;
2289                 fib_p = fib_pool;
2290                 while (hw_fib_p < &hw_fib_pool[num]) {
2291                         kfree(*hw_fib_p);
2292                         kfree(*fib_p);
2293                         ++fib_p;
2294                         ++hw_fib_p;
2295                 }
2296                 kfree(fib_pool);
2297 free_hw_fib_pool:
2298                 kfree(hw_fib_pool);
2299 free_fib:
2300                 kfree(fib);
2301                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2302                 spin_lock_irqsave(t_lock, flags);
2303         }
2304         /*
2305          *      There are no more AIF's
2306          */
2307         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2308         spin_unlock_irqrestore(t_lock, flags);
2309 }
2310
2311 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2312                                                         u32 datasize)
2313 {
2314         struct aac_srb *srbcmd;
2315         struct sgmap64 *sg64;
2316         dma_addr_t addr;
2317         char *dma_buf;
2318         struct fib *fibptr;
2319         int ret = -ENOMEM;
2320         u32 vbus, vid;
2321
2322         fibptr = aac_fib_alloc(dev);
2323         if (!fibptr)
2324                 goto out;
2325
2326         dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2327                                      GFP_KERNEL);
2328         if (!dma_buf)
2329                 goto fib_free_out;
2330
2331         aac_fib_init(fibptr);
2332
2333         vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2334         vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2335
2336         srbcmd = (struct aac_srb *)fib_data(fibptr);
2337
2338         srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2339         srbcmd->channel = cpu_to_le32(vbus);
2340         srbcmd->id = cpu_to_le32(vid);
2341         srbcmd->lun = 0;
2342         srbcmd->flags = cpu_to_le32(SRB_DataOut);
2343         srbcmd->timeout = cpu_to_le32(10);
2344         srbcmd->retry_limit = 0;
2345         srbcmd->cdb_size = cpu_to_le32(12);
2346         srbcmd->count = cpu_to_le32(datasize);
2347
2348         memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2349         srbcmd->cdb[0] = BMIC_OUT;
2350         srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2351         memcpy(dma_buf, (char *)wellness_str, datasize);
2352
2353         sg64 = (struct sgmap64 *)&srbcmd->sg;
2354         sg64->count = cpu_to_le32(1);
2355         sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2356         sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2357         sg64->sg[0].count = cpu_to_le32(datasize);
2358
2359         ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2360                                 FsaNormal, 1, 1, NULL, NULL);
2361
2362         dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2363
2364         /*
2365          * Do not set XferState to zero unless
2366          * receives a response from F/W
2367          */
2368         if (ret >= 0)
2369                 aac_fib_complete(fibptr);
2370
2371         /*
2372          * FIB should be freed only after
2373          * getting the response from the F/W
2374          */
2375         if (ret != -ERESTARTSYS)
2376                 goto fib_free_out;
2377
2378 out:
2379         return ret;
2380 fib_free_out:
2381         aac_fib_free(fibptr);
2382         goto out;
2383 }
2384
2385 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2386 {
2387         struct tm cur_tm;
2388         char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2389         u32 datasize = sizeof(wellness_str);
2390         time64_t local_time;
2391         int ret = -ENODEV;
2392
2393         if (!dev->sa_firmware)
2394                 goto out;
2395
2396         local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2397         time64_to_tm(local_time, 0, &cur_tm);
2398         cur_tm.tm_mon += 1;
2399         cur_tm.tm_year += 1900;
2400         wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2401         wellness_str[9] = bin2bcd(cur_tm.tm_min);
2402         wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2403         wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2404         wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2405         wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2406         wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2407
2408         ret = aac_send_wellness_command(dev, wellness_str, datasize);
2409
2410 out:
2411         return ret;
2412 }
2413
2414 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2415 {
2416         int ret = -ENOMEM;
2417         struct fib *fibptr;
2418         __le32 *info;
2419
2420         fibptr = aac_fib_alloc(dev);
2421         if (!fibptr)
2422                 goto out;
2423
2424         aac_fib_init(fibptr);
2425         info = (__le32 *)fib_data(fibptr);
2426         *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2427         ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2428                                         1, 1, NULL, NULL);
2429
2430         /*
2431          * Do not set XferState to zero unless
2432          * receives a response from F/W
2433          */
2434         if (ret >= 0)
2435                 aac_fib_complete(fibptr);
2436
2437         /*
2438          * FIB should be freed only after
2439          * getting the response from the F/W
2440          */
2441         if (ret != -ERESTARTSYS)
2442                 aac_fib_free(fibptr);
2443
2444 out:
2445         return ret;
2446 }
2447
2448 /**
2449  *      aac_command_thread      -       command processing thread
2450  *      @dev: Adapter to monitor
2451  *
2452  *      Waits on the commandready event in it's queue. When the event gets set
2453  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2454  *      until the queue is empty. When the queue is empty it will wait for
2455  *      more FIBs.
2456  */
2457
2458 int aac_command_thread(void *data)
2459 {
2460         struct aac_dev *dev = data;
2461         DECLARE_WAITQUEUE(wait, current);
2462         unsigned long next_jiffies = jiffies + HZ;
2463         unsigned long next_check_jiffies = next_jiffies;
2464         long difference = HZ;
2465
2466         /*
2467          *      We can only have one thread per adapter for AIF's.
2468          */
2469         if (dev->aif_thread)
2470                 return -EINVAL;
2471
2472         /*
2473          *      Let the DPC know it has a place to send the AIF's to.
2474          */
2475         dev->aif_thread = 1;
2476         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2477         set_current_state(TASK_INTERRUPTIBLE);
2478         dprintk ((KERN_INFO "aac_command_thread start\n"));
2479         while (1) {
2480
2481                 aac_process_events(dev);
2482
2483                 /*
2484                  *      Background activity
2485                  */
2486                 if ((time_before(next_check_jiffies,next_jiffies))
2487                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
2488                         next_check_jiffies = next_jiffies;
2489                         if (aac_adapter_check_health(dev) == 0) {
2490                                 difference = ((long)(unsigned)check_interval)
2491                                            * HZ;
2492                                 next_check_jiffies = jiffies + difference;
2493                         } else if (!dev->queues)
2494                                 break;
2495                 }
2496                 if (!time_before(next_check_jiffies,next_jiffies)
2497                  && ((difference = next_jiffies - jiffies) <= 0)) {
2498                         struct timespec64 now;
2499                         int ret;
2500
2501                         /* Don't even try to talk to adapter if its sick */
2502                         ret = aac_adapter_check_health(dev);
2503                         if (ret || !dev->queues)
2504                                 break;
2505                         next_check_jiffies = jiffies
2506                                            + ((long)(unsigned)check_interval)
2507                                            * HZ;
2508                         ktime_get_real_ts64(&now);
2509
2510                         /* Synchronize our watches */
2511                         if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2512                          && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2513                                 difference = HZ + HZ / 2 -
2514                                              now.tv_nsec / (NSEC_PER_SEC / HZ);
2515                         else {
2516                                 if (now.tv_nsec > NSEC_PER_SEC / 2)
2517                                         ++now.tv_sec;
2518
2519                                 if (dev->sa_firmware)
2520                                         ret =
2521                                         aac_send_safw_hostttime(dev, &now);
2522                                 else
2523                                         ret = aac_send_hosttime(dev, &now);
2524
2525                                 difference = (long)(unsigned)update_interval*HZ;
2526                         }
2527                         next_jiffies = jiffies + difference;
2528                         if (time_before(next_check_jiffies,next_jiffies))
2529                                 difference = next_check_jiffies - jiffies;
2530                 }
2531                 if (difference <= 0)
2532                         difference = 1;
2533                 set_current_state(TASK_INTERRUPTIBLE);
2534
2535                 if (kthread_should_stop())
2536                         break;
2537
2538                 /*
2539                  * we probably want usleep_range() here instead of the
2540                  * jiffies computation
2541                  */
2542                 schedule_timeout(difference);
2543
2544                 if (kthread_should_stop())
2545                         break;
2546         }
2547         if (dev->queues)
2548                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2549         dev->aif_thread = 0;
2550         return 0;
2551 }
2552
2553 int aac_acquire_irq(struct aac_dev *dev)
2554 {
2555         int i;
2556         int j;
2557         int ret = 0;
2558
2559         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2560                 for (i = 0; i < dev->max_msix; i++) {
2561                         dev->aac_msix[i].vector_no = i;
2562                         dev->aac_msix[i].dev = dev;
2563                         if (request_irq(pci_irq_vector(dev->pdev, i),
2564                                         dev->a_ops.adapter_intr,
2565                                         0, "aacraid", &(dev->aac_msix[i]))) {
2566                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2567                                                 dev->name, dev->id, i);
2568                                 for (j = 0 ; j < i ; j++)
2569                                         free_irq(pci_irq_vector(dev->pdev, j),
2570                                                  &(dev->aac_msix[j]));
2571                                 pci_disable_msix(dev->pdev);
2572                                 ret = -1;
2573                         }
2574                 }
2575         } else {
2576                 dev->aac_msix[0].vector_no = 0;
2577                 dev->aac_msix[0].dev = dev;
2578
2579                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2580                         IRQF_SHARED, "aacraid",
2581                         &(dev->aac_msix[0])) < 0) {
2582                         if (dev->msi)
2583                                 pci_disable_msi(dev->pdev);
2584                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2585                                         dev->name, dev->id);
2586                         ret = -1;
2587                 }
2588         }
2589         return ret;
2590 }
2591
2592 void aac_free_irq(struct aac_dev *dev)
2593 {
2594         int i;
2595
2596         if (aac_is_src(dev)) {
2597                 if (dev->max_msix > 1) {
2598                         for (i = 0; i < dev->max_msix; i++)
2599                                 free_irq(pci_irq_vector(dev->pdev, i),
2600                                          &(dev->aac_msix[i]));
2601                 } else {
2602                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2603                 }
2604         } else {
2605                 free_irq(dev->pdev->irq, dev);
2606         }
2607         if (dev->msi)
2608                 pci_disable_msi(dev->pdev);
2609         else if (dev->max_msix > 1)
2610                 pci_disable_msix(dev->pdev);
2611 }