mlxsw: spectrum: Set KVH XLT cache mode for Spectrum2/3
[linux-2.6-microblaze.git] / drivers / rtc / rtc-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * An RTC driver for Allwinner A31/A23
4  *
5  * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
6  *
7  * based on rtc-sunxi.c
8  *
9  * An RTC driver for Allwinner A10/A20
10  *
11  * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
12  */
13
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/rtc.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
31
32 /* Control register */
33 #define SUN6I_LOSC_CTRL                         0x0000
34 #define SUN6I_LOSC_CTRL_KEY                     (0x16aa << 16)
35 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS         BIT(15)
36 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC            BIT(9)
37 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC             BIT(8)
38 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC             BIT(7)
39 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN             BIT(4)
40 #define SUN6I_LOSC_CTRL_EXT_OSC                 BIT(0)
41 #define SUN6I_LOSC_CTRL_ACC_MASK                GENMASK(9, 7)
42
43 #define SUN6I_LOSC_CLK_PRESCAL                  0x0008
44
45 /* RTC */
46 #define SUN6I_RTC_YMD                           0x0010
47 #define SUN6I_RTC_HMS                           0x0014
48
49 /* Alarm 0 (counter) */
50 #define SUN6I_ALRM_COUNTER                      0x0020
51 #define SUN6I_ALRM_CUR_VAL                      0x0024
52 #define SUN6I_ALRM_EN                           0x0028
53 #define SUN6I_ALRM_EN_CNT_EN                    BIT(0)
54 #define SUN6I_ALRM_IRQ_EN                       0x002c
55 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN            BIT(0)
56 #define SUN6I_ALRM_IRQ_STA                      0x0030
57 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND         BIT(0)
58
59 /* Alarm 1 (wall clock) */
60 #define SUN6I_ALRM1_EN                          0x0044
61 #define SUN6I_ALRM1_IRQ_EN                      0x0048
62 #define SUN6I_ALRM1_IRQ_STA                     0x004c
63 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND       BIT(0)
64
65 /* Alarm config */
66 #define SUN6I_ALARM_CONFIG                      0x0050
67 #define SUN6I_ALARM_CONFIG_WAKEUP               BIT(0)
68
69 #define SUN6I_LOSC_OUT_GATING                   0x0060
70 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET         0
71
72 /*
73  * Get date values
74  */
75 #define SUN6I_DATE_GET_DAY_VALUE(x)             ((x)  & 0x0000001f)
76 #define SUN6I_DATE_GET_MON_VALUE(x)             (((x) & 0x00000f00) >> 8)
77 #define SUN6I_DATE_GET_YEAR_VALUE(x)            (((x) & 0x003f0000) >> 16)
78 #define SUN6I_LEAP_GET_VALUE(x)                 (((x) & 0x00400000) >> 22)
79
80 /*
81  * Get time values
82  */
83 #define SUN6I_TIME_GET_SEC_VALUE(x)             ((x)  & 0x0000003f)
84 #define SUN6I_TIME_GET_MIN_VALUE(x)             (((x) & 0x00003f00) >> 8)
85 #define SUN6I_TIME_GET_HOUR_VALUE(x)            (((x) & 0x001f0000) >> 16)
86
87 /*
88  * Set date values
89  */
90 #define SUN6I_DATE_SET_DAY_VALUE(x)             ((x)       & 0x0000001f)
91 #define SUN6I_DATE_SET_MON_VALUE(x)             ((x) <<  8 & 0x00000f00)
92 #define SUN6I_DATE_SET_YEAR_VALUE(x)            ((x) << 16 & 0x003f0000)
93 #define SUN6I_LEAP_SET_VALUE(x)                 ((x) << 22 & 0x00400000)
94
95 /*
96  * Set time values
97  */
98 #define SUN6I_TIME_SET_SEC_VALUE(x)             ((x)       & 0x0000003f)
99 #define SUN6I_TIME_SET_MIN_VALUE(x)             ((x) <<  8 & 0x00003f00)
100 #define SUN6I_TIME_SET_HOUR_VALUE(x)            ((x) << 16 & 0x001f0000)
101
102 /*
103  * The year parameter passed to the driver is usually an offset relative to
104  * the year 1900. This macro is used to convert this offset to another one
105  * relative to the minimum year allowed by the hardware.
106  *
107  * The year range is 1970 - 2033. This range is selected to match Allwinner's
108  * driver, even though it is somewhat limited.
109  */
110 #define SUN6I_YEAR_MIN                          1970
111 #define SUN6I_YEAR_OFF                          (SUN6I_YEAR_MIN - 1900)
112
113 /*
114  * There are other differences between models, including:
115  *
116  *   - number of GPIO pins that can be configured to hold a certain level
117  *   - crypto-key related registers (H5, H6)
118  *   - boot process related (super standby, secondary processor entry address)
119  *     registers (R40, H6)
120  *   - SYS power domain controls (R40)
121  *   - DCXO controls (H6)
122  *   - RC oscillator calibration (H6)
123  *
124  * These functions are not covered by this driver.
125  */
126 struct sun6i_rtc_clk_data {
127         unsigned long rc_osc_rate;
128         unsigned int fixed_prescaler : 16;
129         unsigned int has_prescaler : 1;
130         unsigned int has_out_clk : 1;
131         unsigned int export_iosc : 1;
132         unsigned int has_losc_en : 1;
133         unsigned int has_auto_swt : 1;
134 };
135
136 struct sun6i_rtc_dev {
137         struct rtc_device *rtc;
138         const struct sun6i_rtc_clk_data *data;
139         void __iomem *base;
140         int irq;
141         unsigned long alarm;
142
143         struct clk_hw hw;
144         struct clk_hw *int_osc;
145         struct clk *losc;
146         struct clk *ext_losc;
147
148         spinlock_t lock;
149 };
150
151 static struct sun6i_rtc_dev *sun6i_rtc;
152
153 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
154                                                unsigned long parent_rate)
155 {
156         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
157         u32 val = 0;
158
159         val = readl(rtc->base + SUN6I_LOSC_CTRL);
160         if (val & SUN6I_LOSC_CTRL_EXT_OSC)
161                 return parent_rate;
162
163         if (rtc->data->fixed_prescaler)
164                 parent_rate /= rtc->data->fixed_prescaler;
165
166         if (rtc->data->has_prescaler) {
167                 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
168                 val &= GENMASK(4, 0);
169         }
170
171         return parent_rate / (val + 1);
172 }
173
174 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
175 {
176         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
177
178         return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
179 }
180
181 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
182 {
183         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
184         unsigned long flags;
185         u32 val;
186
187         if (index > 1)
188                 return -EINVAL;
189
190         spin_lock_irqsave(&rtc->lock, flags);
191         val = readl(rtc->base + SUN6I_LOSC_CTRL);
192         val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
193         val |= SUN6I_LOSC_CTRL_KEY;
194         val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
195         if (rtc->data->has_losc_en) {
196                 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
197                 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
198         }
199         writel(val, rtc->base + SUN6I_LOSC_CTRL);
200         spin_unlock_irqrestore(&rtc->lock, flags);
201
202         return 0;
203 }
204
205 static const struct clk_ops sun6i_rtc_osc_ops = {
206         .recalc_rate    = sun6i_rtc_osc_recalc_rate,
207
208         .get_parent     = sun6i_rtc_osc_get_parent,
209         .set_parent     = sun6i_rtc_osc_set_parent,
210 };
211
212 static void __init sun6i_rtc_clk_init(struct device_node *node,
213                                       const struct sun6i_rtc_clk_data *data)
214 {
215         struct clk_hw_onecell_data *clk_data;
216         struct sun6i_rtc_dev *rtc;
217         struct clk_init_data init = {
218                 .ops            = &sun6i_rtc_osc_ops,
219                 .name           = "losc",
220         };
221         const char *iosc_name = "rtc-int-osc";
222         const char *clkout_name = "osc32k-out";
223         const char *parents[2];
224         u32 reg;
225
226         rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
227         if (!rtc)
228                 return;
229
230         rtc->data = data;
231         clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
232         if (!clk_data) {
233                 kfree(rtc);
234                 return;
235         }
236
237         spin_lock_init(&rtc->lock);
238
239         rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
240         if (IS_ERR(rtc->base)) {
241                 pr_crit("Can't map RTC registers");
242                 goto err;
243         }
244
245         reg = SUN6I_LOSC_CTRL_KEY;
246         if (rtc->data->has_auto_swt) {
247                 /* Bypass auto-switch to int osc, on ext losc failure */
248                 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
249                 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
250         }
251
252         /* Switch to the external, more precise, oscillator, if present */
253         if (of_get_property(node, "clocks", NULL)) {
254                 reg |= SUN6I_LOSC_CTRL_EXT_OSC;
255                 if (rtc->data->has_losc_en)
256                         reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
257         }
258         writel(reg, rtc->base + SUN6I_LOSC_CTRL);
259
260         /* Yes, I know, this is ugly. */
261         sun6i_rtc = rtc;
262
263         /* Only read IOSC name from device tree if it is exported */
264         if (rtc->data->export_iosc)
265                 of_property_read_string_index(node, "clock-output-names", 2,
266                                               &iosc_name);
267
268         rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
269                                                                 iosc_name,
270                                                                 NULL, 0,
271                                                                 rtc->data->rc_osc_rate,
272                                                                 300000000);
273         if (IS_ERR(rtc->int_osc)) {
274                 pr_crit("Couldn't register the internal oscillator\n");
275                 return;
276         }
277
278         parents[0] = clk_hw_get_name(rtc->int_osc);
279         /* If there is no external oscillator, this will be NULL and ... */
280         parents[1] = of_clk_get_parent_name(node, 0);
281
282         rtc->hw.init = &init;
283
284         init.parent_names = parents;
285         /* ... number of clock parents will be 1. */
286         init.num_parents = of_clk_get_parent_count(node) + 1;
287         of_property_read_string_index(node, "clock-output-names", 0,
288                                       &init.name);
289
290         rtc->losc = clk_register(NULL, &rtc->hw);
291         if (IS_ERR(rtc->losc)) {
292                 pr_crit("Couldn't register the LOSC clock\n");
293                 return;
294         }
295
296         of_property_read_string_index(node, "clock-output-names", 1,
297                                       &clkout_name);
298         rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
299                                           0, rtc->base + SUN6I_LOSC_OUT_GATING,
300                                           SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
301                                           &rtc->lock);
302         if (IS_ERR(rtc->ext_losc)) {
303                 pr_crit("Couldn't register the LOSC external gate\n");
304                 return;
305         }
306
307         clk_data->num = 2;
308         clk_data->hws[0] = &rtc->hw;
309         clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
310         if (rtc->data->export_iosc) {
311                 clk_data->hws[2] = rtc->int_osc;
312                 clk_data->num = 3;
313         }
314         of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
315         return;
316
317 err:
318         kfree(clk_data);
319 }
320
321 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
322         .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
323         .has_prescaler = 1,
324 };
325
326 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
327 {
328         sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
329 }
330 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
331                       sun6i_a31_rtc_clk_init);
332
333 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
334         .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
335         .has_prescaler = 1,
336         .has_out_clk = 1,
337 };
338
339 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
340 {
341         sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
342 }
343 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
344                       sun8i_a23_rtc_clk_init);
345
346 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
347         .rc_osc_rate = 16000000,
348         .fixed_prescaler = 32,
349         .has_prescaler = 1,
350         .has_out_clk = 1,
351         .export_iosc = 1,
352 };
353
354 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
355 {
356         sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
357 }
358 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
359                       sun8i_h3_rtc_clk_init);
360 /* As far as we are concerned, clocks for H5 are the same as H3 */
361 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
362                       sun8i_h3_rtc_clk_init);
363
364 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
365         .rc_osc_rate = 16000000,
366         .fixed_prescaler = 32,
367         .has_prescaler = 1,
368         .has_out_clk = 1,
369         .export_iosc = 1,
370         .has_losc_en = 1,
371         .has_auto_swt = 1,
372 };
373
374 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
375 {
376         sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
377 }
378 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
379                       sun50i_h6_rtc_clk_init);
380
381 /*
382  * The R40 user manual is self-conflicting on whether the prescaler is
383  * fixed or configurable. The clock diagram shows it as fixed, but there
384  * is also a configurable divider in the RTC block.
385  */
386 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
387         .rc_osc_rate = 16000000,
388         .fixed_prescaler = 512,
389 };
390 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
391 {
392         sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
393 }
394 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
395                       sun8i_r40_rtc_clk_init);
396
397 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
398         .rc_osc_rate = 32000,
399         .has_out_clk = 1,
400 };
401
402 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
403 {
404         sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
405 }
406 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
407                       sun8i_v3_rtc_clk_init);
408
409 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
410 {
411         struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
412         irqreturn_t ret = IRQ_NONE;
413         u32 val;
414
415         spin_lock(&chip->lock);
416         val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
417
418         if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
419                 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
420                 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
421
422                 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
423
424                 ret = IRQ_HANDLED;
425         }
426         spin_unlock(&chip->lock);
427
428         return ret;
429 }
430
431 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
432 {
433         u32 alrm_val = 0;
434         u32 alrm_irq_val = 0;
435         u32 alrm_wake_val = 0;
436         unsigned long flags;
437
438         if (to) {
439                 alrm_val = SUN6I_ALRM_EN_CNT_EN;
440                 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
441                 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
442         } else {
443                 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
444                        chip->base + SUN6I_ALRM_IRQ_STA);
445         }
446
447         spin_lock_irqsave(&chip->lock, flags);
448         writel(alrm_val, chip->base + SUN6I_ALRM_EN);
449         writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
450         writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
451         spin_unlock_irqrestore(&chip->lock, flags);
452 }
453
454 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
455 {
456         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
457         u32 date, time;
458
459         /*
460          * read again in case it changes
461          */
462         do {
463                 date = readl(chip->base + SUN6I_RTC_YMD);
464                 time = readl(chip->base + SUN6I_RTC_HMS);
465         } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
466                  (time != readl(chip->base + SUN6I_RTC_HMS)));
467
468         rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
469         rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
470         rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
471
472         rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
473         rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date);
474         rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
475
476         rtc_tm->tm_mon  -= 1;
477
478         /*
479          * switch from (data_year->min)-relative offset to
480          * a (1900)-relative one
481          */
482         rtc_tm->tm_year += SUN6I_YEAR_OFF;
483
484         return 0;
485 }
486
487 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
488 {
489         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
490         unsigned long flags;
491         u32 alrm_st;
492         u32 alrm_en;
493
494         spin_lock_irqsave(&chip->lock, flags);
495         alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
496         alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
497         spin_unlock_irqrestore(&chip->lock, flags);
498
499         wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
500         wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
501         rtc_time64_to_tm(chip->alarm, &wkalrm->time);
502
503         return 0;
504 }
505
506 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
507 {
508         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
509         struct rtc_time *alrm_tm = &wkalrm->time;
510         struct rtc_time tm_now;
511         unsigned long time_now = 0;
512         unsigned long time_set = 0;
513         unsigned long time_gap = 0;
514         int ret = 0;
515
516         ret = sun6i_rtc_gettime(dev, &tm_now);
517         if (ret < 0) {
518                 dev_err(dev, "Error in getting time\n");
519                 return -EINVAL;
520         }
521
522         time_set = rtc_tm_to_time64(alrm_tm);
523         time_now = rtc_tm_to_time64(&tm_now);
524         if (time_set <= time_now) {
525                 dev_err(dev, "Date to set in the past\n");
526                 return -EINVAL;
527         }
528
529         time_gap = time_set - time_now;
530
531         if (time_gap > U32_MAX) {
532                 dev_err(dev, "Date too far in the future\n");
533                 return -EINVAL;
534         }
535
536         sun6i_rtc_setaie(0, chip);
537         writel(0, chip->base + SUN6I_ALRM_COUNTER);
538         usleep_range(100, 300);
539
540         writel(time_gap, chip->base + SUN6I_ALRM_COUNTER);
541         chip->alarm = time_set;
542
543         sun6i_rtc_setaie(wkalrm->enabled, chip);
544
545         return 0;
546 }
547
548 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
549                           unsigned int mask, unsigned int ms_timeout)
550 {
551         const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
552         u32 reg;
553
554         do {
555                 reg = readl(chip->base + offset);
556                 reg &= mask;
557
558                 if (!reg)
559                         return 0;
560
561         } while (time_before(jiffies, timeout));
562
563         return -ETIMEDOUT;
564 }
565
566 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
567 {
568         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
569         u32 date = 0;
570         u32 time = 0;
571
572         rtc_tm->tm_year -= SUN6I_YEAR_OFF;
573         rtc_tm->tm_mon += 1;
574
575         date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
576                 SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
577                 SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
578
579         if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
580                 date |= SUN6I_LEAP_SET_VALUE(1);
581
582         time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
583                 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
584                 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
585
586         /* Check whether registers are writable */
587         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
588                            SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
589                 dev_err(dev, "rtc is still busy.\n");
590                 return -EBUSY;
591         }
592
593         writel(time, chip->base + SUN6I_RTC_HMS);
594
595         /*
596          * After writing the RTC HH-MM-SS register, the
597          * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
598          * be cleared until the real writing operation is finished
599          */
600
601         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
602                            SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
603                 dev_err(dev, "Failed to set rtc time.\n");
604                 return -ETIMEDOUT;
605         }
606
607         writel(date, chip->base + SUN6I_RTC_YMD);
608
609         /*
610          * After writing the RTC YY-MM-DD register, the
611          * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
612          * be cleared until the real writing operation is finished
613          */
614
615         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
616                            SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
617                 dev_err(dev, "Failed to set rtc time.\n");
618                 return -ETIMEDOUT;
619         }
620
621         return 0;
622 }
623
624 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
625 {
626         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
627
628         if (!enabled)
629                 sun6i_rtc_setaie(enabled, chip);
630
631         return 0;
632 }
633
634 static const struct rtc_class_ops sun6i_rtc_ops = {
635         .read_time              = sun6i_rtc_gettime,
636         .set_time               = sun6i_rtc_settime,
637         .read_alarm             = sun6i_rtc_getalarm,
638         .set_alarm              = sun6i_rtc_setalarm,
639         .alarm_irq_enable       = sun6i_rtc_alarm_irq_enable
640 };
641
642 #ifdef CONFIG_PM_SLEEP
643 /* Enable IRQ wake on suspend, to wake up from RTC. */
644 static int sun6i_rtc_suspend(struct device *dev)
645 {
646         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
647
648         if (device_may_wakeup(dev))
649                 enable_irq_wake(chip->irq);
650
651         return 0;
652 }
653
654 /* Disable IRQ wake on resume. */
655 static int sun6i_rtc_resume(struct device *dev)
656 {
657         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
658
659         if (device_may_wakeup(dev))
660                 disable_irq_wake(chip->irq);
661
662         return 0;
663 }
664 #endif
665
666 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
667         sun6i_rtc_suspend, sun6i_rtc_resume);
668
669 static int sun6i_rtc_probe(struct platform_device *pdev)
670 {
671         struct sun6i_rtc_dev *chip = sun6i_rtc;
672         int ret;
673
674         if (!chip)
675                 return -ENODEV;
676
677         platform_set_drvdata(pdev, chip);
678
679         chip->irq = platform_get_irq(pdev, 0);
680         if (chip->irq < 0)
681                 return chip->irq;
682
683         ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
684                                0, dev_name(&pdev->dev), chip);
685         if (ret) {
686                 dev_err(&pdev->dev, "Could not request IRQ\n");
687                 return ret;
688         }
689
690         /* clear the alarm counter value */
691         writel(0, chip->base + SUN6I_ALRM_COUNTER);
692
693         /* disable counter alarm */
694         writel(0, chip->base + SUN6I_ALRM_EN);
695
696         /* disable counter alarm interrupt */
697         writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
698
699         /* disable week alarm */
700         writel(0, chip->base + SUN6I_ALRM1_EN);
701
702         /* disable week alarm interrupt */
703         writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
704
705         /* clear counter alarm pending interrupts */
706         writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
707                chip->base + SUN6I_ALRM_IRQ_STA);
708
709         /* clear week alarm pending interrupts */
710         writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
711                chip->base + SUN6I_ALRM1_IRQ_STA);
712
713         /* disable alarm wakeup */
714         writel(0, chip->base + SUN6I_ALARM_CONFIG);
715
716         clk_prepare_enable(chip->losc);
717
718         device_init_wakeup(&pdev->dev, 1);
719
720         chip->rtc = devm_rtc_allocate_device(&pdev->dev);
721         if (IS_ERR(chip->rtc))
722                 return PTR_ERR(chip->rtc);
723
724         chip->rtc->ops = &sun6i_rtc_ops;
725         chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
726
727         ret = rtc_register_device(chip->rtc);
728         if (ret)
729                 return ret;
730
731         dev_info(&pdev->dev, "RTC enabled\n");
732
733         return 0;
734 }
735
736 /*
737  * As far as RTC functionality goes, all models are the same. The
738  * datasheets claim that different models have different number of
739  * registers available for non-volatile storage, but experiments show
740  * that all SoCs have 16 registers available for this purpose.
741  */
742 static const struct of_device_id sun6i_rtc_dt_ids[] = {
743         { .compatible = "allwinner,sun6i-a31-rtc" },
744         { .compatible = "allwinner,sun8i-a23-rtc" },
745         { .compatible = "allwinner,sun8i-h3-rtc" },
746         { .compatible = "allwinner,sun8i-r40-rtc" },
747         { .compatible = "allwinner,sun8i-v3-rtc" },
748         { .compatible = "allwinner,sun50i-h5-rtc" },
749         { .compatible = "allwinner,sun50i-h6-rtc" },
750         { /* sentinel */ },
751 };
752 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
753
754 static struct platform_driver sun6i_rtc_driver = {
755         .probe          = sun6i_rtc_probe,
756         .driver         = {
757                 .name           = "sun6i-rtc",
758                 .of_match_table = sun6i_rtc_dt_ids,
759                 .pm = &sun6i_rtc_pm_ops,
760         },
761 };
762 builtin_platform_driver(sun6i_rtc_driver);