Merge branch 'kvm-tdp-mmu-atomicity-fix' into HEAD
[linux-2.6-microblaze.git] / drivers / rtc / rtc-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * An RTC driver for Allwinner A31/A23
4  *
5  * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
6  *
7  * based on rtc-sunxi.c
8  *
9  * An RTC driver for Allwinner A10/A20
10  *
11  * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
12  */
13
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/clk/sunxi-ng.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/platform_device.h>
29 #include <linux/rtc.h>
30 #include <linux/slab.h>
31 #include <linux/types.h>
32
33 /* Control register */
34 #define SUN6I_LOSC_CTRL                         0x0000
35 #define SUN6I_LOSC_CTRL_KEY                     (0x16aa << 16)
36 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS         BIT(15)
37 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC            BIT(9)
38 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC             BIT(8)
39 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC             BIT(7)
40 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN             BIT(4)
41 #define SUN6I_LOSC_CTRL_EXT_OSC                 BIT(0)
42 #define SUN6I_LOSC_CTRL_ACC_MASK                GENMASK(9, 7)
43
44 #define SUN6I_LOSC_CLK_PRESCAL                  0x0008
45
46 /* RTC */
47 #define SUN6I_RTC_YMD                           0x0010
48 #define SUN6I_RTC_HMS                           0x0014
49
50 /* Alarm 0 (counter) */
51 #define SUN6I_ALRM_COUNTER                      0x0020
52 /* This holds the remaining alarm seconds on older SoCs (current value) */
53 #define SUN6I_ALRM_COUNTER_HMS                  0x0024
54 #define SUN6I_ALRM_EN                           0x0028
55 #define SUN6I_ALRM_EN_CNT_EN                    BIT(0)
56 #define SUN6I_ALRM_IRQ_EN                       0x002c
57 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN            BIT(0)
58 #define SUN6I_ALRM_IRQ_STA                      0x0030
59 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND         BIT(0)
60
61 /* Alarm 1 (wall clock) */
62 #define SUN6I_ALRM1_EN                          0x0044
63 #define SUN6I_ALRM1_IRQ_EN                      0x0048
64 #define SUN6I_ALRM1_IRQ_STA                     0x004c
65 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND       BIT(0)
66
67 /* Alarm config */
68 #define SUN6I_ALARM_CONFIG                      0x0050
69 #define SUN6I_ALARM_CONFIG_WAKEUP               BIT(0)
70
71 #define SUN6I_LOSC_OUT_GATING                   0x0060
72 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET         0
73
74 /*
75  * Get date values
76  */
77 #define SUN6I_DATE_GET_DAY_VALUE(x)             ((x)  & 0x0000001f)
78 #define SUN6I_DATE_GET_MON_VALUE(x)             (((x) & 0x00000f00) >> 8)
79 #define SUN6I_DATE_GET_YEAR_VALUE(x)            (((x) & 0x003f0000) >> 16)
80 #define SUN6I_LEAP_GET_VALUE(x)                 (((x) & 0x00400000) >> 22)
81
82 /*
83  * Get time values
84  */
85 #define SUN6I_TIME_GET_SEC_VALUE(x)             ((x)  & 0x0000003f)
86 #define SUN6I_TIME_GET_MIN_VALUE(x)             (((x) & 0x00003f00) >> 8)
87 #define SUN6I_TIME_GET_HOUR_VALUE(x)            (((x) & 0x001f0000) >> 16)
88
89 /*
90  * Set date values
91  */
92 #define SUN6I_DATE_SET_DAY_VALUE(x)             ((x)       & 0x0000001f)
93 #define SUN6I_DATE_SET_MON_VALUE(x)             ((x) <<  8 & 0x00000f00)
94 #define SUN6I_DATE_SET_YEAR_VALUE(x)            ((x) << 16 & 0x003f0000)
95 #define SUN6I_LEAP_SET_VALUE(x)                 ((x) << 22 & 0x00400000)
96
97 /*
98  * Set time values
99  */
100 #define SUN6I_TIME_SET_SEC_VALUE(x)             ((x)       & 0x0000003f)
101 #define SUN6I_TIME_SET_MIN_VALUE(x)             ((x) <<  8 & 0x00003f00)
102 #define SUN6I_TIME_SET_HOUR_VALUE(x)            ((x) << 16 & 0x001f0000)
103
104 /*
105  * The year parameter passed to the driver is usually an offset relative to
106  * the year 1900. This macro is used to convert this offset to another one
107  * relative to the minimum year allowed by the hardware.
108  *
109  * The year range is 1970 - 2033. This range is selected to match Allwinner's
110  * driver, even though it is somewhat limited.
111  */
112 #define SUN6I_YEAR_MIN                          1970
113 #define SUN6I_YEAR_OFF                          (SUN6I_YEAR_MIN - 1900)
114
115 #define SECS_PER_DAY                            (24 * 3600ULL)
116
117 /*
118  * There are other differences between models, including:
119  *
120  *   - number of GPIO pins that can be configured to hold a certain level
121  *   - crypto-key related registers (H5, H6)
122  *   - boot process related (super standby, secondary processor entry address)
123  *     registers (R40, H6)
124  *   - SYS power domain controls (R40)
125  *   - DCXO controls (H6)
126  *   - RC oscillator calibration (H6)
127  *
128  * These functions are not covered by this driver.
129  */
130 struct sun6i_rtc_clk_data {
131         unsigned long rc_osc_rate;
132         unsigned int fixed_prescaler : 16;
133         unsigned int has_prescaler : 1;
134         unsigned int has_out_clk : 1;
135         unsigned int export_iosc : 1;
136         unsigned int has_losc_en : 1;
137         unsigned int has_auto_swt : 1;
138 };
139
140 #define RTC_LINEAR_DAY  BIT(0)
141
142 struct sun6i_rtc_dev {
143         struct rtc_device *rtc;
144         const struct sun6i_rtc_clk_data *data;
145         void __iomem *base;
146         int irq;
147         time64_t alarm;
148         unsigned long flags;
149
150         struct clk_hw hw;
151         struct clk_hw *int_osc;
152         struct clk *losc;
153         struct clk *ext_losc;
154
155         spinlock_t lock;
156 };
157
158 static struct sun6i_rtc_dev *sun6i_rtc;
159
160 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
161                                                unsigned long parent_rate)
162 {
163         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
164         u32 val = 0;
165
166         val = readl(rtc->base + SUN6I_LOSC_CTRL);
167         if (val & SUN6I_LOSC_CTRL_EXT_OSC)
168                 return parent_rate;
169
170         if (rtc->data->fixed_prescaler)
171                 parent_rate /= rtc->data->fixed_prescaler;
172
173         if (rtc->data->has_prescaler) {
174                 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
175                 val &= GENMASK(4, 0);
176         }
177
178         return parent_rate / (val + 1);
179 }
180
181 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
182 {
183         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
184
185         return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
186 }
187
188 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
189 {
190         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
191         unsigned long flags;
192         u32 val;
193
194         if (index > 1)
195                 return -EINVAL;
196
197         spin_lock_irqsave(&rtc->lock, flags);
198         val = readl(rtc->base + SUN6I_LOSC_CTRL);
199         val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
200         val |= SUN6I_LOSC_CTRL_KEY;
201         val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
202         if (rtc->data->has_losc_en) {
203                 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
204                 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
205         }
206         writel(val, rtc->base + SUN6I_LOSC_CTRL);
207         spin_unlock_irqrestore(&rtc->lock, flags);
208
209         return 0;
210 }
211
212 static const struct clk_ops sun6i_rtc_osc_ops = {
213         .recalc_rate    = sun6i_rtc_osc_recalc_rate,
214
215         .get_parent     = sun6i_rtc_osc_get_parent,
216         .set_parent     = sun6i_rtc_osc_set_parent,
217 };
218
219 static void __init sun6i_rtc_clk_init(struct device_node *node,
220                                       const struct sun6i_rtc_clk_data *data)
221 {
222         struct clk_hw_onecell_data *clk_data;
223         struct sun6i_rtc_dev *rtc;
224         struct clk_init_data init = {
225                 .ops            = &sun6i_rtc_osc_ops,
226                 .name           = "losc",
227         };
228         const char *iosc_name = "rtc-int-osc";
229         const char *clkout_name = "osc32k-out";
230         const char *parents[2];
231         u32 reg;
232
233         rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
234         if (!rtc)
235                 return;
236
237         rtc->data = data;
238         clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
239         if (!clk_data) {
240                 kfree(rtc);
241                 return;
242         }
243
244         spin_lock_init(&rtc->lock);
245
246         rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
247         if (IS_ERR(rtc->base)) {
248                 pr_crit("Can't map RTC registers");
249                 goto err;
250         }
251
252         reg = SUN6I_LOSC_CTRL_KEY;
253         if (rtc->data->has_auto_swt) {
254                 /* Bypass auto-switch to int osc, on ext losc failure */
255                 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
256                 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
257         }
258
259         /* Switch to the external, more precise, oscillator, if present */
260         if (of_get_property(node, "clocks", NULL)) {
261                 reg |= SUN6I_LOSC_CTRL_EXT_OSC;
262                 if (rtc->data->has_losc_en)
263                         reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
264         }
265         writel(reg, rtc->base + SUN6I_LOSC_CTRL);
266
267         /* Yes, I know, this is ugly. */
268         sun6i_rtc = rtc;
269
270         /* Only read IOSC name from device tree if it is exported */
271         if (rtc->data->export_iosc)
272                 of_property_read_string_index(node, "clock-output-names", 2,
273                                               &iosc_name);
274
275         rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
276                                                                 iosc_name,
277                                                                 NULL, 0,
278                                                                 rtc->data->rc_osc_rate,
279                                                                 300000000);
280         if (IS_ERR(rtc->int_osc)) {
281                 pr_crit("Couldn't register the internal oscillator\n");
282                 goto err;
283         }
284
285         parents[0] = clk_hw_get_name(rtc->int_osc);
286         /* If there is no external oscillator, this will be NULL and ... */
287         parents[1] = of_clk_get_parent_name(node, 0);
288
289         rtc->hw.init = &init;
290
291         init.parent_names = parents;
292         /* ... number of clock parents will be 1. */
293         init.num_parents = of_clk_get_parent_count(node) + 1;
294         of_property_read_string_index(node, "clock-output-names", 0,
295                                       &init.name);
296
297         rtc->losc = clk_register(NULL, &rtc->hw);
298         if (IS_ERR(rtc->losc)) {
299                 pr_crit("Couldn't register the LOSC clock\n");
300                 goto err_register;
301         }
302
303         of_property_read_string_index(node, "clock-output-names", 1,
304                                       &clkout_name);
305         rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
306                                           0, rtc->base + SUN6I_LOSC_OUT_GATING,
307                                           SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
308                                           &rtc->lock);
309         if (IS_ERR(rtc->ext_losc)) {
310                 pr_crit("Couldn't register the LOSC external gate\n");
311                 goto err_register;
312         }
313
314         clk_data->num = 2;
315         clk_data->hws[0] = &rtc->hw;
316         clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
317         if (rtc->data->export_iosc) {
318                 clk_data->hws[2] = rtc->int_osc;
319                 clk_data->num = 3;
320         }
321         of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
322         return;
323
324 err_register:
325         clk_hw_unregister_fixed_rate(rtc->int_osc);
326 err:
327         kfree(clk_data);
328 }
329
330 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
331         .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
332         .has_prescaler = 1,
333 };
334
335 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
336 {
337         sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
338 }
339 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
340                       sun6i_a31_rtc_clk_init);
341
342 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
343         .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
344         .has_prescaler = 1,
345         .has_out_clk = 1,
346 };
347
348 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
349 {
350         sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
351 }
352 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
353                       sun8i_a23_rtc_clk_init);
354
355 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
356         .rc_osc_rate = 16000000,
357         .fixed_prescaler = 32,
358         .has_prescaler = 1,
359         .has_out_clk = 1,
360         .export_iosc = 1,
361 };
362
363 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
364 {
365         sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
366 }
367 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
368                       sun8i_h3_rtc_clk_init);
369 /* As far as we are concerned, clocks for H5 are the same as H3 */
370 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
371                       sun8i_h3_rtc_clk_init);
372
373 /*
374  * The R40 user manual is self-conflicting on whether the prescaler is
375  * fixed or configurable. The clock diagram shows it as fixed, but there
376  * is also a configurable divider in the RTC block.
377  */
378 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
379         .rc_osc_rate = 16000000,
380         .fixed_prescaler = 512,
381 };
382 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
383 {
384         sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
385 }
386 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
387                       sun8i_r40_rtc_clk_init);
388
389 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
390         .rc_osc_rate = 32000,
391         .has_out_clk = 1,
392 };
393
394 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
395 {
396         sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
397 }
398 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
399                       sun8i_v3_rtc_clk_init);
400
401 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
402 {
403         struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
404         irqreturn_t ret = IRQ_NONE;
405         u32 val;
406
407         spin_lock(&chip->lock);
408         val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
409
410         if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
411                 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
412                 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
413
414                 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
415
416                 ret = IRQ_HANDLED;
417         }
418         spin_unlock(&chip->lock);
419
420         return ret;
421 }
422
423 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
424 {
425         u32 alrm_val = 0;
426         u32 alrm_irq_val = 0;
427         u32 alrm_wake_val = 0;
428         unsigned long flags;
429
430         if (to) {
431                 alrm_val = SUN6I_ALRM_EN_CNT_EN;
432                 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
433                 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
434         } else {
435                 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
436                        chip->base + SUN6I_ALRM_IRQ_STA);
437         }
438
439         spin_lock_irqsave(&chip->lock, flags);
440         writel(alrm_val, chip->base + SUN6I_ALRM_EN);
441         writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
442         writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
443         spin_unlock_irqrestore(&chip->lock, flags);
444 }
445
446 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
447 {
448         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
449         u32 date, time;
450
451         /*
452          * read again in case it changes
453          */
454         do {
455                 date = readl(chip->base + SUN6I_RTC_YMD);
456                 time = readl(chip->base + SUN6I_RTC_HMS);
457         } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
458                  (time != readl(chip->base + SUN6I_RTC_HMS)));
459
460         if (chip->flags & RTC_LINEAR_DAY) {
461                 /*
462                  * Newer chips store a linear day number, the manual
463                  * does not mandate any epoch base. The BSP driver uses
464                  * the UNIX epoch, let's just copy that, as it's the
465                  * easiest anyway.
466                  */
467                 rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
468         } else {
469                 rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
470                 rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date) - 1;
471                 rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
472
473                 /*
474                  * switch from (data_year->min)-relative offset to
475                  * a (1900)-relative one
476                  */
477                 rtc_tm->tm_year += SUN6I_YEAR_OFF;
478         }
479
480         rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
481         rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
482         rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
483
484         return 0;
485 }
486
487 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
488 {
489         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
490         unsigned long flags;
491         u32 alrm_st;
492         u32 alrm_en;
493
494         spin_lock_irqsave(&chip->lock, flags);
495         alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
496         alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
497         spin_unlock_irqrestore(&chip->lock, flags);
498
499         wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
500         wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
501         rtc_time64_to_tm(chip->alarm, &wkalrm->time);
502
503         return 0;
504 }
505
506 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
507 {
508         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
509         struct rtc_time *alrm_tm = &wkalrm->time;
510         struct rtc_time tm_now;
511         time64_t time_set;
512         u32 counter_val, counter_val_hms;
513         int ret;
514
515         time_set = rtc_tm_to_time64(alrm_tm);
516
517         if (chip->flags & RTC_LINEAR_DAY) {
518                 /*
519                  * The alarm registers hold the actual alarm time, encoded
520                  * in the same way (linear day + HMS) as the current time.
521                  */
522                 counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec)  |
523                                   SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min)  |
524                                   SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
525                 /* The division will cut off the H:M:S part of alrm_tm. */
526                 counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
527         } else {
528                 /* The alarm register holds the number of seconds left. */
529                 time64_t time_now;
530
531                 ret = sun6i_rtc_gettime(dev, &tm_now);
532                 if (ret < 0) {
533                         dev_err(dev, "Error in getting time\n");
534                         return -EINVAL;
535                 }
536
537                 time_now = rtc_tm_to_time64(&tm_now);
538                 if (time_set <= time_now) {
539                         dev_err(dev, "Date to set in the past\n");
540                         return -EINVAL;
541                 }
542                 if ((time_set - time_now) > U32_MAX) {
543                         dev_err(dev, "Date too far in the future\n");
544                         return -EINVAL;
545                 }
546
547                 counter_val = time_set - time_now;
548         }
549
550         sun6i_rtc_setaie(0, chip);
551         writel(0, chip->base + SUN6I_ALRM_COUNTER);
552         if (chip->flags & RTC_LINEAR_DAY)
553                 writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
554         usleep_range(100, 300);
555
556         writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
557         if (chip->flags & RTC_LINEAR_DAY)
558                 writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
559         chip->alarm = time_set;
560
561         sun6i_rtc_setaie(wkalrm->enabled, chip);
562
563         return 0;
564 }
565
566 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
567                           unsigned int mask, unsigned int ms_timeout)
568 {
569         const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
570         u32 reg;
571
572         do {
573                 reg = readl(chip->base + offset);
574                 reg &= mask;
575
576                 if (!reg)
577                         return 0;
578
579         } while (time_before(jiffies, timeout));
580
581         return -ETIMEDOUT;
582 }
583
584 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
585 {
586         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
587         u32 date = 0;
588         u32 time = 0;
589
590         time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
591                 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
592                 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
593
594         if (chip->flags & RTC_LINEAR_DAY) {
595                 /* The division will cut off the H:M:S part of rtc_tm. */
596                 date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
597         } else {
598                 rtc_tm->tm_year -= SUN6I_YEAR_OFF;
599                 rtc_tm->tm_mon += 1;
600
601                 date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
602                         SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
603                         SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
604
605                 if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
606                         date |= SUN6I_LEAP_SET_VALUE(1);
607         }
608
609         /* Check whether registers are writable */
610         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
611                            SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
612                 dev_err(dev, "rtc is still busy.\n");
613                 return -EBUSY;
614         }
615
616         writel(time, chip->base + SUN6I_RTC_HMS);
617
618         /*
619          * After writing the RTC HH-MM-SS register, the
620          * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
621          * be cleared until the real writing operation is finished
622          */
623
624         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
625                            SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
626                 dev_err(dev, "Failed to set rtc time.\n");
627                 return -ETIMEDOUT;
628         }
629
630         writel(date, chip->base + SUN6I_RTC_YMD);
631
632         /*
633          * After writing the RTC YY-MM-DD register, the
634          * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
635          * be cleared until the real writing operation is finished
636          */
637
638         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
639                            SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
640                 dev_err(dev, "Failed to set rtc time.\n");
641                 return -ETIMEDOUT;
642         }
643
644         return 0;
645 }
646
647 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
648 {
649         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
650
651         if (!enabled)
652                 sun6i_rtc_setaie(enabled, chip);
653
654         return 0;
655 }
656
657 static const struct rtc_class_ops sun6i_rtc_ops = {
658         .read_time              = sun6i_rtc_gettime,
659         .set_time               = sun6i_rtc_settime,
660         .read_alarm             = sun6i_rtc_getalarm,
661         .set_alarm              = sun6i_rtc_setalarm,
662         .alarm_irq_enable       = sun6i_rtc_alarm_irq_enable
663 };
664
665 #ifdef CONFIG_PM_SLEEP
666 /* Enable IRQ wake on suspend, to wake up from RTC. */
667 static int sun6i_rtc_suspend(struct device *dev)
668 {
669         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
670
671         if (device_may_wakeup(dev))
672                 enable_irq_wake(chip->irq);
673
674         return 0;
675 }
676
677 /* Disable IRQ wake on resume. */
678 static int sun6i_rtc_resume(struct device *dev)
679 {
680         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
681
682         if (device_may_wakeup(dev))
683                 disable_irq_wake(chip->irq);
684
685         return 0;
686 }
687 #endif
688
689 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
690         sun6i_rtc_suspend, sun6i_rtc_resume);
691
692 static void sun6i_rtc_bus_clk_cleanup(void *data)
693 {
694         struct clk *bus_clk = data;
695
696         clk_disable_unprepare(bus_clk);
697 }
698
699 static int sun6i_rtc_probe(struct platform_device *pdev)
700 {
701         struct sun6i_rtc_dev *chip = sun6i_rtc;
702         struct device *dev = &pdev->dev;
703         struct clk *bus_clk;
704         int ret;
705
706         bus_clk = devm_clk_get_optional(dev, "bus");
707         if (IS_ERR(bus_clk))
708                 return PTR_ERR(bus_clk);
709
710         if (bus_clk) {
711                 ret = clk_prepare_enable(bus_clk);
712                 if (ret)
713                         return ret;
714
715                 ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
716                                                bus_clk);
717                 if (ret)
718                         return ret;
719         }
720
721         if (!chip) {
722                 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
723                 if (!chip)
724                         return -ENOMEM;
725
726                 spin_lock_init(&chip->lock);
727
728                 chip->base = devm_platform_ioremap_resource(pdev, 0);
729                 if (IS_ERR(chip->base))
730                         return PTR_ERR(chip->base);
731
732                 if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
733                         ret = sun6i_rtc_ccu_probe(dev, chip->base);
734                         if (ret)
735                                 return ret;
736                 }
737         }
738
739         platform_set_drvdata(pdev, chip);
740
741         chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
742
743         chip->irq = platform_get_irq(pdev, 0);
744         if (chip->irq < 0)
745                 return chip->irq;
746
747         ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
748                                0, dev_name(&pdev->dev), chip);
749         if (ret) {
750                 dev_err(&pdev->dev, "Could not request IRQ\n");
751                 return ret;
752         }
753
754         /* clear the alarm counter value */
755         writel(0, chip->base + SUN6I_ALRM_COUNTER);
756
757         /* disable counter alarm */
758         writel(0, chip->base + SUN6I_ALRM_EN);
759
760         /* disable counter alarm interrupt */
761         writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
762
763         /* disable week alarm */
764         writel(0, chip->base + SUN6I_ALRM1_EN);
765
766         /* disable week alarm interrupt */
767         writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
768
769         /* clear counter alarm pending interrupts */
770         writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
771                chip->base + SUN6I_ALRM_IRQ_STA);
772
773         /* clear week alarm pending interrupts */
774         writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
775                chip->base + SUN6I_ALRM1_IRQ_STA);
776
777         /* disable alarm wakeup */
778         writel(0, chip->base + SUN6I_ALARM_CONFIG);
779
780         clk_prepare_enable(chip->losc);
781
782         device_init_wakeup(&pdev->dev, 1);
783
784         chip->rtc = devm_rtc_allocate_device(&pdev->dev);
785         if (IS_ERR(chip->rtc))
786                 return PTR_ERR(chip->rtc);
787
788         chip->rtc->ops = &sun6i_rtc_ops;
789         if (chip->flags & RTC_LINEAR_DAY)
790                 chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
791         else
792                 chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
793
794         ret = devm_rtc_register_device(chip->rtc);
795         if (ret)
796                 return ret;
797
798         dev_info(&pdev->dev, "RTC enabled\n");
799
800         return 0;
801 }
802
803 /*
804  * As far as RTC functionality goes, all models are the same. The
805  * datasheets claim that different models have different number of
806  * registers available for non-volatile storage, but experiments show
807  * that all SoCs have 16 registers available for this purpose.
808  */
809 static const struct of_device_id sun6i_rtc_dt_ids[] = {
810         { .compatible = "allwinner,sun6i-a31-rtc" },
811         { .compatible = "allwinner,sun8i-a23-rtc" },
812         { .compatible = "allwinner,sun8i-h3-rtc" },
813         { .compatible = "allwinner,sun8i-r40-rtc" },
814         { .compatible = "allwinner,sun8i-v3-rtc" },
815         { .compatible = "allwinner,sun50i-h5-rtc" },
816         { .compatible = "allwinner,sun50i-h6-rtc" },
817         { .compatible = "allwinner,sun50i-h616-rtc",
818                 .data = (void *)RTC_LINEAR_DAY },
819         { /* sentinel */ },
820 };
821 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
822
823 static struct platform_driver sun6i_rtc_driver = {
824         .probe          = sun6i_rtc_probe,
825         .driver         = {
826                 .name           = "sun6i-rtc",
827                 .of_match_table = sun6i_rtc_dt_ids,
828                 .pm = &sun6i_rtc_pm_ops,
829         },
830 };
831 builtin_platform_driver(sun6i_rtc_driver);