Merge branch 'for-4.19/cougar' into for-linus
[linux-2.6-microblaze.git] / drivers / rtc / rtc-cmos.c
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
48 #endif
49
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
52
53 /*
54  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
55  *
56  * If cleared, ACPI SCI is only used to wake up the system from suspend
57  *
58  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
59  */
60
61 static bool use_acpi_alarm;
62 module_param(use_acpi_alarm, bool, 0444);
63
64 struct cmos_rtc {
65         struct rtc_device       *rtc;
66         struct device           *dev;
67         int                     irq;
68         struct resource         *iomem;
69         time64_t                alarm_expires;
70
71         void                    (*wake_on)(struct device *);
72         void                    (*wake_off)(struct device *);
73
74         u8                      enabled_wake;
75         u8                      suspend_ctrl;
76
77         /* newer hardware extends the original register set */
78         u8                      day_alrm;
79         u8                      mon_alrm;
80         u8                      century;
81
82         struct rtc_wkalrm       saved_wkalrm;
83 };
84
85 /* both platform and pnp busses use negative numbers for invalid irqs */
86 #define is_valid_irq(n)         ((n) > 0)
87
88 static const char driver_name[] = "rtc_cmos";
89
90 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
91  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
92  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
93  */
94 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
95
96 static inline int is_intr(u8 rtc_intr)
97 {
98         if (!(rtc_intr & RTC_IRQF))
99                 return 0;
100         return rtc_intr & RTC_IRQMASK;
101 }
102
103 /*----------------------------------------------------------------*/
104
105 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
106  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
107  * used in a broken "legacy replacement" mode.  The breakage includes
108  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
109  * other (better) use.
110  *
111  * When that broken mode is in use, platform glue provides a partial
112  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
113  * want to use HPET for anything except those IRQs though...
114  */
115 #ifdef CONFIG_HPET_EMULATE_RTC
116 #include <asm/hpet.h>
117 #else
118
119 static inline int is_hpet_enabled(void)
120 {
121         return 0;
122 }
123
124 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
125 {
126         return 0;
127 }
128
129 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
130 {
131         return 0;
132 }
133
134 static inline int
135 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
136 {
137         return 0;
138 }
139
140 static inline int hpet_set_periodic_freq(unsigned long freq)
141 {
142         return 0;
143 }
144
145 static inline int hpet_rtc_dropped_irq(void)
146 {
147         return 0;
148 }
149
150 static inline int hpet_rtc_timer_init(void)
151 {
152         return 0;
153 }
154
155 extern irq_handler_t hpet_rtc_interrupt;
156
157 static inline int hpet_register_irq_handler(irq_handler_t handler)
158 {
159         return 0;
160 }
161
162 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
163 {
164         return 0;
165 }
166
167 #endif
168
169 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
170 static int use_hpet_alarm(void)
171 {
172         return is_hpet_enabled() && !use_acpi_alarm;
173 }
174
175 /*----------------------------------------------------------------*/
176
177 #ifdef RTC_PORT
178
179 /* Most newer x86 systems have two register banks, the first used
180  * for RTC and NVRAM and the second only for NVRAM.  Caller must
181  * own rtc_lock ... and we won't worry about access during NMI.
182  */
183 #define can_bank2       true
184
185 static inline unsigned char cmos_read_bank2(unsigned char addr)
186 {
187         outb(addr, RTC_PORT(2));
188         return inb(RTC_PORT(3));
189 }
190
191 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
192 {
193         outb(addr, RTC_PORT(2));
194         outb(val, RTC_PORT(3));
195 }
196
197 #else
198
199 #define can_bank2       false
200
201 static inline unsigned char cmos_read_bank2(unsigned char addr)
202 {
203         return 0;
204 }
205
206 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
207 {
208 }
209
210 #endif
211
212 /*----------------------------------------------------------------*/
213
214 static int cmos_read_time(struct device *dev, struct rtc_time *t)
215 {
216         /*
217          * If pm_trace abused the RTC for storage, set the timespec to 0,
218          * which tells the caller that this RTC value is unusable.
219          */
220         if (!pm_trace_rtc_valid())
221                 return -EIO;
222
223         /* REVISIT:  if the clock has a "century" register, use
224          * that instead of the heuristic in mc146818_get_time().
225          * That'll make Y3K compatility (year > 2070) easy!
226          */
227         mc146818_get_time(t);
228         return 0;
229 }
230
231 static int cmos_set_time(struct device *dev, struct rtc_time *t)
232 {
233         /* REVISIT:  set the "century" register if available
234          *
235          * NOTE: this ignores the issue whereby updating the seconds
236          * takes effect exactly 500ms after we write the register.
237          * (Also queueing and other delays before we get this far.)
238          */
239         return mc146818_set_time(t);
240 }
241
242 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
243 {
244         struct cmos_rtc *cmos = dev_get_drvdata(dev);
245         unsigned char   rtc_control;
246
247         if (!is_valid_irq(cmos->irq))
248                 return -EIO;
249
250         /* Basic alarms only support hour, minute, and seconds fields.
251          * Some also support day and month, for alarms up to a year in
252          * the future.
253          */
254
255         spin_lock_irq(&rtc_lock);
256         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
257         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
258         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
259
260         if (cmos->day_alrm) {
261                 /* ignore upper bits on readback per ACPI spec */
262                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
263                 if (!t->time.tm_mday)
264                         t->time.tm_mday = -1;
265
266                 if (cmos->mon_alrm) {
267                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
268                         if (!t->time.tm_mon)
269                                 t->time.tm_mon = -1;
270                 }
271         }
272
273         rtc_control = CMOS_READ(RTC_CONTROL);
274         spin_unlock_irq(&rtc_lock);
275
276         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
277                 if (((unsigned)t->time.tm_sec) < 0x60)
278                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
279                 else
280                         t->time.tm_sec = -1;
281                 if (((unsigned)t->time.tm_min) < 0x60)
282                         t->time.tm_min = bcd2bin(t->time.tm_min);
283                 else
284                         t->time.tm_min = -1;
285                 if (((unsigned)t->time.tm_hour) < 0x24)
286                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
287                 else
288                         t->time.tm_hour = -1;
289
290                 if (cmos->day_alrm) {
291                         if (((unsigned)t->time.tm_mday) <= 0x31)
292                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
293                         else
294                                 t->time.tm_mday = -1;
295
296                         if (cmos->mon_alrm) {
297                                 if (((unsigned)t->time.tm_mon) <= 0x12)
298                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
299                                 else
300                                         t->time.tm_mon = -1;
301                         }
302                 }
303         }
304
305         t->enabled = !!(rtc_control & RTC_AIE);
306         t->pending = 0;
307
308         return 0;
309 }
310
311 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
312 {
313         unsigned char   rtc_intr;
314
315         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
316          * allegedly some older rtcs need that to handle irqs properly
317          */
318         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
319
320         if (use_hpet_alarm())
321                 return;
322
323         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
324         if (is_intr(rtc_intr))
325                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
326 }
327
328 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
329 {
330         unsigned char   rtc_control;
331
332         /* flush any pending IRQ status, notably for update irqs,
333          * before we enable new IRQs
334          */
335         rtc_control = CMOS_READ(RTC_CONTROL);
336         cmos_checkintr(cmos, rtc_control);
337
338         rtc_control |= mask;
339         CMOS_WRITE(rtc_control, RTC_CONTROL);
340         if (use_hpet_alarm())
341                 hpet_set_rtc_irq_bit(mask);
342
343         if ((mask & RTC_AIE) && use_acpi_alarm) {
344                 if (cmos->wake_on)
345                         cmos->wake_on(cmos->dev);
346         }
347
348         cmos_checkintr(cmos, rtc_control);
349 }
350
351 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
352 {
353         unsigned char   rtc_control;
354
355         rtc_control = CMOS_READ(RTC_CONTROL);
356         rtc_control &= ~mask;
357         CMOS_WRITE(rtc_control, RTC_CONTROL);
358         if (use_hpet_alarm())
359                 hpet_mask_rtc_irq_bit(mask);
360
361         if ((mask & RTC_AIE) && use_acpi_alarm) {
362                 if (cmos->wake_off)
363                         cmos->wake_off(cmos->dev);
364         }
365
366         cmos_checkintr(cmos, rtc_control);
367 }
368
369 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
370 {
371         struct cmos_rtc *cmos = dev_get_drvdata(dev);
372         struct rtc_time now;
373
374         cmos_read_time(dev, &now);
375
376         if (!cmos->day_alrm) {
377                 time64_t t_max_date;
378                 time64_t t_alrm;
379
380                 t_max_date = rtc_tm_to_time64(&now);
381                 t_max_date += 24 * 60 * 60 - 1;
382                 t_alrm = rtc_tm_to_time64(&t->time);
383                 if (t_alrm > t_max_date) {
384                         dev_err(dev,
385                                 "Alarms can be up to one day in the future\n");
386                         return -EINVAL;
387                 }
388         } else if (!cmos->mon_alrm) {
389                 struct rtc_time max_date = now;
390                 time64_t t_max_date;
391                 time64_t t_alrm;
392                 int max_mday;
393
394                 if (max_date.tm_mon == 11) {
395                         max_date.tm_mon = 0;
396                         max_date.tm_year += 1;
397                 } else {
398                         max_date.tm_mon += 1;
399                 }
400                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
401                 if (max_date.tm_mday > max_mday)
402                         max_date.tm_mday = max_mday;
403
404                 t_max_date = rtc_tm_to_time64(&max_date);
405                 t_max_date -= 1;
406                 t_alrm = rtc_tm_to_time64(&t->time);
407                 if (t_alrm > t_max_date) {
408                         dev_err(dev,
409                                 "Alarms can be up to one month in the future\n");
410                         return -EINVAL;
411                 }
412         } else {
413                 struct rtc_time max_date = now;
414                 time64_t t_max_date;
415                 time64_t t_alrm;
416                 int max_mday;
417
418                 max_date.tm_year += 1;
419                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
420                 if (max_date.tm_mday > max_mday)
421                         max_date.tm_mday = max_mday;
422
423                 t_max_date = rtc_tm_to_time64(&max_date);
424                 t_max_date -= 1;
425                 t_alrm = rtc_tm_to_time64(&t->time);
426                 if (t_alrm > t_max_date) {
427                         dev_err(dev,
428                                 "Alarms can be up to one year in the future\n");
429                         return -EINVAL;
430                 }
431         }
432
433         return 0;
434 }
435
436 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
437 {
438         struct cmos_rtc *cmos = dev_get_drvdata(dev);
439         unsigned char mon, mday, hrs, min, sec, rtc_control;
440         int ret;
441
442         if (!is_valid_irq(cmos->irq))
443                 return -EIO;
444
445         ret = cmos_validate_alarm(dev, t);
446         if (ret < 0)
447                 return ret;
448
449         mon = t->time.tm_mon + 1;
450         mday = t->time.tm_mday;
451         hrs = t->time.tm_hour;
452         min = t->time.tm_min;
453         sec = t->time.tm_sec;
454
455         rtc_control = CMOS_READ(RTC_CONTROL);
456         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
457                 /* Writing 0xff means "don't care" or "match all".  */
458                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
459                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
460                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
461                 min = (min < 60) ? bin2bcd(min) : 0xff;
462                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
463         }
464
465         spin_lock_irq(&rtc_lock);
466
467         /* next rtc irq must not be from previous alarm setting */
468         cmos_irq_disable(cmos, RTC_AIE);
469
470         /* update alarm */
471         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
472         CMOS_WRITE(min, RTC_MINUTES_ALARM);
473         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
474
475         /* the system may support an "enhanced" alarm */
476         if (cmos->day_alrm) {
477                 CMOS_WRITE(mday, cmos->day_alrm);
478                 if (cmos->mon_alrm)
479                         CMOS_WRITE(mon, cmos->mon_alrm);
480         }
481
482         if (use_hpet_alarm()) {
483                 /*
484                  * FIXME the HPET alarm glue currently ignores day_alrm
485                  * and mon_alrm ...
486                  */
487                 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
488                                     t->time.tm_sec);
489         }
490
491         if (t->enabled)
492                 cmos_irq_enable(cmos, RTC_AIE);
493
494         spin_unlock_irq(&rtc_lock);
495
496         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
497
498         return 0;
499 }
500
501 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
502 {
503         struct cmos_rtc *cmos = dev_get_drvdata(dev);
504         unsigned long   flags;
505
506         if (!is_valid_irq(cmos->irq))
507                 return -EINVAL;
508
509         spin_lock_irqsave(&rtc_lock, flags);
510
511         if (enabled)
512                 cmos_irq_enable(cmos, RTC_AIE);
513         else
514                 cmos_irq_disable(cmos, RTC_AIE);
515
516         spin_unlock_irqrestore(&rtc_lock, flags);
517         return 0;
518 }
519
520 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
521
522 static int cmos_procfs(struct device *dev, struct seq_file *seq)
523 {
524         struct cmos_rtc *cmos = dev_get_drvdata(dev);
525         unsigned char   rtc_control, valid;
526
527         spin_lock_irq(&rtc_lock);
528         rtc_control = CMOS_READ(RTC_CONTROL);
529         valid = CMOS_READ(RTC_VALID);
530         spin_unlock_irq(&rtc_lock);
531
532         /* NOTE:  at least ICH6 reports battery status using a different
533          * (non-RTC) bit; and SQWE is ignored on many current systems.
534          */
535         seq_printf(seq,
536                    "periodic_IRQ\t: %s\n"
537                    "update_IRQ\t: %s\n"
538                    "HPET_emulated\t: %s\n"
539                    // "square_wave\t: %s\n"
540                    "BCD\t\t: %s\n"
541                    "DST_enable\t: %s\n"
542                    "periodic_freq\t: %d\n"
543                    "batt_status\t: %s\n",
544                    (rtc_control & RTC_PIE) ? "yes" : "no",
545                    (rtc_control & RTC_UIE) ? "yes" : "no",
546                    use_hpet_alarm() ? "yes" : "no",
547                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
548                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
549                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
550                    cmos->rtc->irq_freq,
551                    (valid & RTC_VRT) ? "okay" : "dead");
552
553         return 0;
554 }
555
556 #else
557 #define cmos_procfs     NULL
558 #endif
559
560 static const struct rtc_class_ops cmos_rtc_ops = {
561         .read_time              = cmos_read_time,
562         .set_time               = cmos_set_time,
563         .read_alarm             = cmos_read_alarm,
564         .set_alarm              = cmos_set_alarm,
565         .proc                   = cmos_procfs,
566         .alarm_irq_enable       = cmos_alarm_irq_enable,
567 };
568
569 /*----------------------------------------------------------------*/
570
571 /*
572  * All these chips have at least 64 bytes of address space, shared by
573  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
574  * by boot firmware.  Modern chips have 128 or 256 bytes.
575  */
576
577 #define NVRAM_OFFSET    (RTC_REG_D + 1)
578
579 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
580                            size_t count)
581 {
582         unsigned char *buf = val;
583         int     retval;
584
585         off += NVRAM_OFFSET;
586         spin_lock_irq(&rtc_lock);
587         for (retval = 0; count; count--, off++, retval++) {
588                 if (off < 128)
589                         *buf++ = CMOS_READ(off);
590                 else if (can_bank2)
591                         *buf++ = cmos_read_bank2(off);
592                 else
593                         break;
594         }
595         spin_unlock_irq(&rtc_lock);
596
597         return retval;
598 }
599
600 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
601                             size_t count)
602 {
603         struct cmos_rtc *cmos = priv;
604         unsigned char   *buf = val;
605         int             retval;
606
607         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
608          * checksum on part of the NVRAM data.  That's currently ignored
609          * here.  If userspace is smart enough to know what fields of
610          * NVRAM to update, updating checksums is also part of its job.
611          */
612         off += NVRAM_OFFSET;
613         spin_lock_irq(&rtc_lock);
614         for (retval = 0; count; count--, off++, retval++) {
615                 /* don't trash RTC registers */
616                 if (off == cmos->day_alrm
617                                 || off == cmos->mon_alrm
618                                 || off == cmos->century)
619                         buf++;
620                 else if (off < 128)
621                         CMOS_WRITE(*buf++, off);
622                 else if (can_bank2)
623                         cmos_write_bank2(*buf++, off);
624                 else
625                         break;
626         }
627         spin_unlock_irq(&rtc_lock);
628
629         return retval;
630 }
631
632 /*----------------------------------------------------------------*/
633
634 static struct cmos_rtc  cmos_rtc;
635
636 static irqreturn_t cmos_interrupt(int irq, void *p)
637 {
638         u8              irqstat;
639         u8              rtc_control;
640
641         spin_lock(&rtc_lock);
642
643         /* When the HPET interrupt handler calls us, the interrupt
644          * status is passed as arg1 instead of the irq number.  But
645          * always clear irq status, even when HPET is in the way.
646          *
647          * Note that HPET and RTC are almost certainly out of phase,
648          * giving different IRQ status ...
649          */
650         irqstat = CMOS_READ(RTC_INTR_FLAGS);
651         rtc_control = CMOS_READ(RTC_CONTROL);
652         if (use_hpet_alarm())
653                 irqstat = (unsigned long)irq & 0xF0;
654
655         /* If we were suspended, RTC_CONTROL may not be accurate since the
656          * bios may have cleared it.
657          */
658         if (!cmos_rtc.suspend_ctrl)
659                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
660         else
661                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
662
663         /* All Linux RTC alarms should be treated as if they were oneshot.
664          * Similar code may be needed in system wakeup paths, in case the
665          * alarm woke the system.
666          */
667         if (irqstat & RTC_AIE) {
668                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
669                 rtc_control &= ~RTC_AIE;
670                 CMOS_WRITE(rtc_control, RTC_CONTROL);
671                 if (use_hpet_alarm())
672                         hpet_mask_rtc_irq_bit(RTC_AIE);
673                 CMOS_READ(RTC_INTR_FLAGS);
674         }
675         spin_unlock(&rtc_lock);
676
677         if (is_intr(irqstat)) {
678                 rtc_update_irq(p, 1, irqstat);
679                 return IRQ_HANDLED;
680         } else
681                 return IRQ_NONE;
682 }
683
684 #ifdef  CONFIG_PNP
685 #define INITSECTION
686
687 #else
688 #define INITSECTION     __init
689 #endif
690
691 static int INITSECTION
692 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
693 {
694         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
695         int                             retval = 0;
696         unsigned char                   rtc_control;
697         unsigned                        address_space;
698         u32                             flags = 0;
699         struct nvmem_config nvmem_cfg = {
700                 .name = "cmos_nvram",
701                 .word_size = 1,
702                 .stride = 1,
703                 .reg_read = cmos_nvram_read,
704                 .reg_write = cmos_nvram_write,
705                 .priv = &cmos_rtc,
706         };
707
708         /* there can be only one ... */
709         if (cmos_rtc.dev)
710                 return -EBUSY;
711
712         if (!ports)
713                 return -ENODEV;
714
715         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
716          *
717          * REVISIT non-x86 systems may instead use memory space resources
718          * (needing ioremap etc), not i/o space resources like this ...
719          */
720         if (RTC_IOMAPPED)
721                 ports = request_region(ports->start, resource_size(ports),
722                                        driver_name);
723         else
724                 ports = request_mem_region(ports->start, resource_size(ports),
725                                            driver_name);
726         if (!ports) {
727                 dev_dbg(dev, "i/o registers already in use\n");
728                 return -EBUSY;
729         }
730
731         cmos_rtc.irq = rtc_irq;
732         cmos_rtc.iomem = ports;
733
734         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
735          * driver did, but don't reject unknown configs.   Old hardware
736          * won't address 128 bytes.  Newer chips have multiple banks,
737          * though they may not be listed in one I/O resource.
738          */
739 #if     defined(CONFIG_ATARI)
740         address_space = 64;
741 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
742                         || defined(__sparc__) || defined(__mips__) \
743                         || defined(__powerpc__)
744         address_space = 128;
745 #else
746 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
747         address_space = 128;
748 #endif
749         if (can_bank2 && ports->end > (ports->start + 1))
750                 address_space = 256;
751
752         /* For ACPI systems extension info comes from the FADT.  On others,
753          * board specific setup provides it as appropriate.  Systems where
754          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
755          * some almost-clones) can provide hooks to make that behave.
756          *
757          * Note that ACPI doesn't preclude putting these registers into
758          * "extended" areas of the chip, including some that we won't yet
759          * expect CMOS_READ and friends to handle.
760          */
761         if (info) {
762                 if (info->flags)
763                         flags = info->flags;
764                 if (info->address_space)
765                         address_space = info->address_space;
766
767                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
768                         cmos_rtc.day_alrm = info->rtc_day_alarm;
769                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
770                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
771                 if (info->rtc_century && info->rtc_century < 128)
772                         cmos_rtc.century = info->rtc_century;
773
774                 if (info->wake_on && info->wake_off) {
775                         cmos_rtc.wake_on = info->wake_on;
776                         cmos_rtc.wake_off = info->wake_off;
777                 }
778         }
779
780         cmos_rtc.dev = dev;
781         dev_set_drvdata(dev, &cmos_rtc);
782
783         cmos_rtc.rtc = devm_rtc_allocate_device(dev);
784         if (IS_ERR(cmos_rtc.rtc)) {
785                 retval = PTR_ERR(cmos_rtc.rtc);
786                 goto cleanup0;
787         }
788
789         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
790
791         spin_lock_irq(&rtc_lock);
792
793         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
794                 /* force periodic irq to CMOS reset default of 1024Hz;
795                  *
796                  * REVISIT it's been reported that at least one x86_64 ALI
797                  * mobo doesn't use 32KHz here ... for portability we might
798                  * need to do something about other clock frequencies.
799                  */
800                 cmos_rtc.rtc->irq_freq = 1024;
801                 if (use_hpet_alarm())
802                         hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
803                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
804         }
805
806         /* disable irqs */
807         if (is_valid_irq(rtc_irq))
808                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
809
810         rtc_control = CMOS_READ(RTC_CONTROL);
811
812         spin_unlock_irq(&rtc_lock);
813
814         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
815                 dev_warn(dev, "only 24-hr supported\n");
816                 retval = -ENXIO;
817                 goto cleanup1;
818         }
819
820         if (use_hpet_alarm())
821                 hpet_rtc_timer_init();
822
823         if (is_valid_irq(rtc_irq)) {
824                 irq_handler_t rtc_cmos_int_handler;
825
826                 if (use_hpet_alarm()) {
827                         rtc_cmos_int_handler = hpet_rtc_interrupt;
828                         retval = hpet_register_irq_handler(cmos_interrupt);
829                         if (retval) {
830                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
831                                 dev_warn(dev, "hpet_register_irq_handler "
832                                                 " failed in rtc_init().");
833                                 goto cleanup1;
834                         }
835                 } else
836                         rtc_cmos_int_handler = cmos_interrupt;
837
838                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
839                                 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
840                                 cmos_rtc.rtc);
841                 if (retval < 0) {
842                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
843                         goto cleanup1;
844                 }
845         }
846
847         cmos_rtc.rtc->ops = &cmos_rtc_ops;
848         cmos_rtc.rtc->nvram_old_abi = true;
849         retval = rtc_register_device(cmos_rtc.rtc);
850         if (retval)
851                 goto cleanup2;
852
853         /* export at least the first block of NVRAM */
854         nvmem_cfg.size = address_space - NVRAM_OFFSET;
855         if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
856                 dev_err(dev, "nvmem registration failed\n");
857
858         dev_info(dev, "%s%s, %d bytes nvram%s\n",
859                  !is_valid_irq(rtc_irq) ? "no alarms" :
860                  cmos_rtc.mon_alrm ? "alarms up to one year" :
861                  cmos_rtc.day_alrm ? "alarms up to one month" :
862                  "alarms up to one day",
863                  cmos_rtc.century ? ", y3k" : "",
864                  nvmem_cfg.size,
865                  use_hpet_alarm() ? ", hpet irqs" : "");
866
867         return 0;
868
869 cleanup2:
870         if (is_valid_irq(rtc_irq))
871                 free_irq(rtc_irq, cmos_rtc.rtc);
872 cleanup1:
873         cmos_rtc.dev = NULL;
874 cleanup0:
875         if (RTC_IOMAPPED)
876                 release_region(ports->start, resource_size(ports));
877         else
878                 release_mem_region(ports->start, resource_size(ports));
879         return retval;
880 }
881
882 static void cmos_do_shutdown(int rtc_irq)
883 {
884         spin_lock_irq(&rtc_lock);
885         if (is_valid_irq(rtc_irq))
886                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
887         spin_unlock_irq(&rtc_lock);
888 }
889
890 static void cmos_do_remove(struct device *dev)
891 {
892         struct cmos_rtc *cmos = dev_get_drvdata(dev);
893         struct resource *ports;
894
895         cmos_do_shutdown(cmos->irq);
896
897         if (is_valid_irq(cmos->irq)) {
898                 free_irq(cmos->irq, cmos->rtc);
899                 if (use_hpet_alarm())
900                         hpet_unregister_irq_handler(cmos_interrupt);
901         }
902
903         cmos->rtc = NULL;
904
905         ports = cmos->iomem;
906         if (RTC_IOMAPPED)
907                 release_region(ports->start, resource_size(ports));
908         else
909                 release_mem_region(ports->start, resource_size(ports));
910         cmos->iomem = NULL;
911
912         cmos->dev = NULL;
913 }
914
915 static int cmos_aie_poweroff(struct device *dev)
916 {
917         struct cmos_rtc *cmos = dev_get_drvdata(dev);
918         struct rtc_time now;
919         time64_t t_now;
920         int retval = 0;
921         unsigned char rtc_control;
922
923         if (!cmos->alarm_expires)
924                 return -EINVAL;
925
926         spin_lock_irq(&rtc_lock);
927         rtc_control = CMOS_READ(RTC_CONTROL);
928         spin_unlock_irq(&rtc_lock);
929
930         /* We only care about the situation where AIE is disabled. */
931         if (rtc_control & RTC_AIE)
932                 return -EBUSY;
933
934         cmos_read_time(dev, &now);
935         t_now = rtc_tm_to_time64(&now);
936
937         /*
938          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
939          * automatically right after shutdown on some buggy boxes.
940          * This automatic rebooting issue won't happen when the alarm
941          * time is larger than now+1 seconds.
942          *
943          * If the alarm time is equal to now+1 seconds, the issue can be
944          * prevented by cancelling the alarm.
945          */
946         if (cmos->alarm_expires == t_now + 1) {
947                 struct rtc_wkalrm alarm;
948
949                 /* Cancel the AIE timer by configuring the past time. */
950                 rtc_time64_to_tm(t_now - 1, &alarm.time);
951                 alarm.enabled = 0;
952                 retval = cmos_set_alarm(dev, &alarm);
953         } else if (cmos->alarm_expires > t_now + 1) {
954                 retval = -EBUSY;
955         }
956
957         return retval;
958 }
959
960 static int cmos_suspend(struct device *dev)
961 {
962         struct cmos_rtc *cmos = dev_get_drvdata(dev);
963         unsigned char   tmp;
964
965         /* only the alarm might be a wakeup event source */
966         spin_lock_irq(&rtc_lock);
967         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
968         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
969                 unsigned char   mask;
970
971                 if (device_may_wakeup(dev))
972                         mask = RTC_IRQMASK & ~RTC_AIE;
973                 else
974                         mask = RTC_IRQMASK;
975                 tmp &= ~mask;
976                 CMOS_WRITE(tmp, RTC_CONTROL);
977                 if (use_hpet_alarm())
978                         hpet_mask_rtc_irq_bit(mask);
979                 cmos_checkintr(cmos, tmp);
980         }
981         spin_unlock_irq(&rtc_lock);
982
983         if ((tmp & RTC_AIE) && !use_acpi_alarm) {
984                 cmos->enabled_wake = 1;
985                 if (cmos->wake_on)
986                         cmos->wake_on(dev);
987                 else
988                         enable_irq_wake(cmos->irq);
989         }
990
991         cmos_read_alarm(dev, &cmos->saved_wkalrm);
992
993         dev_dbg(dev, "suspend%s, ctrl %02x\n",
994                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
995                         tmp);
996
997         return 0;
998 }
999
1000 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1001  * after a detour through G3 "mechanical off", although the ACPI spec
1002  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1003  * distinctions between S4 and S5 are pointless.  So when the hardware
1004  * allows, don't draw that distinction.
1005  */
1006 static inline int cmos_poweroff(struct device *dev)
1007 {
1008         if (!IS_ENABLED(CONFIG_PM))
1009                 return -ENOSYS;
1010
1011         return cmos_suspend(dev);
1012 }
1013
1014 static void cmos_check_wkalrm(struct device *dev)
1015 {
1016         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1017         struct rtc_wkalrm current_alarm;
1018         time64_t t_now;
1019         time64_t t_current_expires;
1020         time64_t t_saved_expires;
1021         struct rtc_time now;
1022
1023         /* Check if we have RTC Alarm armed */
1024         if (!(cmos->suspend_ctrl & RTC_AIE))
1025                 return;
1026
1027         cmos_read_time(dev, &now);
1028         t_now = rtc_tm_to_time64(&now);
1029
1030         /*
1031          * ACPI RTC wake event is cleared after resume from STR,
1032          * ACK the rtc irq here
1033          */
1034         if (t_now >= cmos->alarm_expires && use_acpi_alarm) {
1035                 cmos_interrupt(0, (void *)cmos->rtc);
1036                 return;
1037         }
1038
1039         cmos_read_alarm(dev, &current_alarm);
1040         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1041         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1042         if (t_current_expires != t_saved_expires ||
1043             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1044                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1045         }
1046 }
1047
1048 static void cmos_check_acpi_rtc_status(struct device *dev,
1049                                        unsigned char *rtc_control);
1050
1051 static int __maybe_unused cmos_resume(struct device *dev)
1052 {
1053         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1054         unsigned char tmp;
1055
1056         if (cmos->enabled_wake && !use_acpi_alarm) {
1057                 if (cmos->wake_off)
1058                         cmos->wake_off(dev);
1059                 else
1060                         disable_irq_wake(cmos->irq);
1061                 cmos->enabled_wake = 0;
1062         }
1063
1064         /* The BIOS might have changed the alarm, restore it */
1065         cmos_check_wkalrm(dev);
1066
1067         spin_lock_irq(&rtc_lock);
1068         tmp = cmos->suspend_ctrl;
1069         cmos->suspend_ctrl = 0;
1070         /* re-enable any irqs previously active */
1071         if (tmp & RTC_IRQMASK) {
1072                 unsigned char   mask;
1073
1074                 if (device_may_wakeup(dev) && use_hpet_alarm())
1075                         hpet_rtc_timer_init();
1076
1077                 do {
1078                         CMOS_WRITE(tmp, RTC_CONTROL);
1079                         if (use_hpet_alarm())
1080                                 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1081
1082                         mask = CMOS_READ(RTC_INTR_FLAGS);
1083                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1084                         if (!use_hpet_alarm() || !is_intr(mask))
1085                                 break;
1086
1087                         /* force one-shot behavior if HPET blocked
1088                          * the wake alarm's irq
1089                          */
1090                         rtc_update_irq(cmos->rtc, 1, mask);
1091                         tmp &= ~RTC_AIE;
1092                         hpet_mask_rtc_irq_bit(RTC_AIE);
1093                 } while (mask & RTC_AIE);
1094
1095                 if (tmp & RTC_AIE)
1096                         cmos_check_acpi_rtc_status(dev, &tmp);
1097         }
1098         spin_unlock_irq(&rtc_lock);
1099
1100         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1101
1102         return 0;
1103 }
1104
1105 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1106
1107 /*----------------------------------------------------------------*/
1108
1109 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1110  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1111  * probably list them in similar PNPBIOS tables; so PNP is more common.
1112  *
1113  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1114  * predate even PNPBIOS should set up platform_bus devices.
1115  */
1116
1117 #ifdef  CONFIG_ACPI
1118
1119 #include <linux/acpi.h>
1120
1121 static u32 rtc_handler(void *context)
1122 {
1123         struct device *dev = context;
1124         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1125         unsigned char rtc_control = 0;
1126         unsigned char rtc_intr;
1127         unsigned long flags;
1128
1129
1130         /*
1131          * Always update rtc irq when ACPI is used as RTC Alarm.
1132          * Or else, ACPI SCI is enabled during suspend/resume only,
1133          * update rtc irq in that case.
1134          */
1135         if (use_acpi_alarm)
1136                 cmos_interrupt(0, (void *)cmos->rtc);
1137         else {
1138                 /* Fix me: can we use cmos_interrupt() here as well? */
1139                 spin_lock_irqsave(&rtc_lock, flags);
1140                 if (cmos_rtc.suspend_ctrl)
1141                         rtc_control = CMOS_READ(RTC_CONTROL);
1142                 if (rtc_control & RTC_AIE) {
1143                         cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1144                         CMOS_WRITE(rtc_control, RTC_CONTROL);
1145                         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1146                         rtc_update_irq(cmos->rtc, 1, rtc_intr);
1147                 }
1148                 spin_unlock_irqrestore(&rtc_lock, flags);
1149         }
1150
1151         pm_wakeup_hard_event(dev);
1152         acpi_clear_event(ACPI_EVENT_RTC);
1153         acpi_disable_event(ACPI_EVENT_RTC, 0);
1154         return ACPI_INTERRUPT_HANDLED;
1155 }
1156
1157 static inline void rtc_wake_setup(struct device *dev)
1158 {
1159         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1160         /*
1161          * After the RTC handler is installed, the Fixed_RTC event should
1162          * be disabled. Only when the RTC alarm is set will it be enabled.
1163          */
1164         acpi_clear_event(ACPI_EVENT_RTC);
1165         acpi_disable_event(ACPI_EVENT_RTC, 0);
1166 }
1167
1168 static void rtc_wake_on(struct device *dev)
1169 {
1170         acpi_clear_event(ACPI_EVENT_RTC);
1171         acpi_enable_event(ACPI_EVENT_RTC, 0);
1172 }
1173
1174 static void rtc_wake_off(struct device *dev)
1175 {
1176         acpi_disable_event(ACPI_EVENT_RTC, 0);
1177 }
1178
1179 #ifdef CONFIG_X86
1180 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1181 static void use_acpi_alarm_quirks(void)
1182 {
1183         int year;
1184
1185         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1186                 return;
1187
1188         if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1189                 return;
1190
1191         if (!is_hpet_enabled())
1192                 return;
1193
1194         if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1195                 use_acpi_alarm = true;
1196 }
1197 #else
1198 static inline void use_acpi_alarm_quirks(void) { }
1199 #endif
1200
1201 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1202  * its device node and pass extra config data.  This helps its driver use
1203  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1204  * that this board's RTC is wakeup-capable (per ACPI spec).
1205  */
1206 static struct cmos_rtc_board_info acpi_rtc_info;
1207
1208 static void cmos_wake_setup(struct device *dev)
1209 {
1210         if (acpi_disabled)
1211                 return;
1212
1213         use_acpi_alarm_quirks();
1214
1215         rtc_wake_setup(dev);
1216         acpi_rtc_info.wake_on = rtc_wake_on;
1217         acpi_rtc_info.wake_off = rtc_wake_off;
1218
1219         /* workaround bug in some ACPI tables */
1220         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1221                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1222                         acpi_gbl_FADT.month_alarm);
1223                 acpi_gbl_FADT.month_alarm = 0;
1224         }
1225
1226         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1227         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1228         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1229
1230         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1231         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1232                 dev_info(dev, "RTC can wake from S4\n");
1233
1234         dev->platform_data = &acpi_rtc_info;
1235
1236         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1237         device_init_wakeup(dev, 1);
1238 }
1239
1240 static void cmos_check_acpi_rtc_status(struct device *dev,
1241                                        unsigned char *rtc_control)
1242 {
1243         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1244         acpi_event_status rtc_status;
1245         acpi_status status;
1246
1247         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1248                 return;
1249
1250         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1251         if (ACPI_FAILURE(status)) {
1252                 dev_err(dev, "Could not get RTC status\n");
1253         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1254                 unsigned char mask;
1255                 *rtc_control &= ~RTC_AIE;
1256                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1257                 mask = CMOS_READ(RTC_INTR_FLAGS);
1258                 rtc_update_irq(cmos->rtc, 1, mask);
1259         }
1260 }
1261
1262 #else
1263
1264 static void cmos_wake_setup(struct device *dev)
1265 {
1266 }
1267
1268 static void cmos_check_acpi_rtc_status(struct device *dev,
1269                                        unsigned char *rtc_control)
1270 {
1271 }
1272
1273 #endif
1274
1275 #ifdef  CONFIG_PNP
1276
1277 #include <linux/pnp.h>
1278
1279 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1280 {
1281         cmos_wake_setup(&pnp->dev);
1282
1283         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1284                 unsigned int irq = 0;
1285 #ifdef CONFIG_X86
1286                 /* Some machines contain a PNP entry for the RTC, but
1287                  * don't define the IRQ. It should always be safe to
1288                  * hardcode it on systems with a legacy PIC.
1289                  */
1290                 if (nr_legacy_irqs())
1291                         irq = 8;
1292 #endif
1293                 return cmos_do_probe(&pnp->dev,
1294                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1295         } else {
1296                 return cmos_do_probe(&pnp->dev,
1297                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1298                                 pnp_irq(pnp, 0));
1299         }
1300 }
1301
1302 static void cmos_pnp_remove(struct pnp_dev *pnp)
1303 {
1304         cmos_do_remove(&pnp->dev);
1305 }
1306
1307 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1308 {
1309         struct device *dev = &pnp->dev;
1310         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1311
1312         if (system_state == SYSTEM_POWER_OFF) {
1313                 int retval = cmos_poweroff(dev);
1314
1315                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1316                         return;
1317         }
1318
1319         cmos_do_shutdown(cmos->irq);
1320 }
1321
1322 static const struct pnp_device_id rtc_ids[] = {
1323         { .id = "PNP0b00", },
1324         { .id = "PNP0b01", },
1325         { .id = "PNP0b02", },
1326         { },
1327 };
1328 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1329
1330 static struct pnp_driver cmos_pnp_driver = {
1331         .name           = (char *) driver_name,
1332         .id_table       = rtc_ids,
1333         .probe          = cmos_pnp_probe,
1334         .remove         = cmos_pnp_remove,
1335         .shutdown       = cmos_pnp_shutdown,
1336
1337         /* flag ensures resume() gets called, and stops syslog spam */
1338         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1339         .driver         = {
1340                         .pm = &cmos_pm_ops,
1341         },
1342 };
1343
1344 #endif  /* CONFIG_PNP */
1345
1346 #ifdef CONFIG_OF
1347 static const struct of_device_id of_cmos_match[] = {
1348         {
1349                 .compatible = "motorola,mc146818",
1350         },
1351         { },
1352 };
1353 MODULE_DEVICE_TABLE(of, of_cmos_match);
1354
1355 static __init void cmos_of_init(struct platform_device *pdev)
1356 {
1357         struct device_node *node = pdev->dev.of_node;
1358         const __be32 *val;
1359
1360         if (!node)
1361                 return;
1362
1363         val = of_get_property(node, "ctrl-reg", NULL);
1364         if (val)
1365                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1366
1367         val = of_get_property(node, "freq-reg", NULL);
1368         if (val)
1369                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1370 }
1371 #else
1372 static inline void cmos_of_init(struct platform_device *pdev) {}
1373 #endif
1374 /*----------------------------------------------------------------*/
1375
1376 /* Platform setup should have set up an RTC device, when PNP is
1377  * unavailable ... this could happen even on (older) PCs.
1378  */
1379
1380 static int __init cmos_platform_probe(struct platform_device *pdev)
1381 {
1382         struct resource *resource;
1383         int irq;
1384
1385         cmos_of_init(pdev);
1386         cmos_wake_setup(&pdev->dev);
1387
1388         if (RTC_IOMAPPED)
1389                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1390         else
1391                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1392         irq = platform_get_irq(pdev, 0);
1393         if (irq < 0)
1394                 irq = -1;
1395
1396         return cmos_do_probe(&pdev->dev, resource, irq);
1397 }
1398
1399 static int cmos_platform_remove(struct platform_device *pdev)
1400 {
1401         cmos_do_remove(&pdev->dev);
1402         return 0;
1403 }
1404
1405 static void cmos_platform_shutdown(struct platform_device *pdev)
1406 {
1407         struct device *dev = &pdev->dev;
1408         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1409
1410         if (system_state == SYSTEM_POWER_OFF) {
1411                 int retval = cmos_poweroff(dev);
1412
1413                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1414                         return;
1415         }
1416
1417         cmos_do_shutdown(cmos->irq);
1418 }
1419
1420 /* work with hotplug and coldplug */
1421 MODULE_ALIAS("platform:rtc_cmos");
1422
1423 static struct platform_driver cmos_platform_driver = {
1424         .remove         = cmos_platform_remove,
1425         .shutdown       = cmos_platform_shutdown,
1426         .driver = {
1427                 .name           = driver_name,
1428                 .pm             = &cmos_pm_ops,
1429                 .of_match_table = of_match_ptr(of_cmos_match),
1430         }
1431 };
1432
1433 #ifdef CONFIG_PNP
1434 static bool pnp_driver_registered;
1435 #endif
1436 static bool platform_driver_registered;
1437
1438 static int __init cmos_init(void)
1439 {
1440         int retval = 0;
1441
1442 #ifdef  CONFIG_PNP
1443         retval = pnp_register_driver(&cmos_pnp_driver);
1444         if (retval == 0)
1445                 pnp_driver_registered = true;
1446 #endif
1447
1448         if (!cmos_rtc.dev) {
1449                 retval = platform_driver_probe(&cmos_platform_driver,
1450                                                cmos_platform_probe);
1451                 if (retval == 0)
1452                         platform_driver_registered = true;
1453         }
1454
1455         if (retval == 0)
1456                 return 0;
1457
1458 #ifdef  CONFIG_PNP
1459         if (pnp_driver_registered)
1460                 pnp_unregister_driver(&cmos_pnp_driver);
1461 #endif
1462         return retval;
1463 }
1464 module_init(cmos_init);
1465
1466 static void __exit cmos_exit(void)
1467 {
1468 #ifdef  CONFIG_PNP
1469         if (pnp_driver_registered)
1470                 pnp_unregister_driver(&cmos_pnp_driver);
1471 #endif
1472         if (platform_driver_registered)
1473                 platform_driver_unregister(&cmos_platform_driver);
1474 }
1475 module_exit(cmos_exit);
1476
1477
1478 MODULE_AUTHOR("David Brownell");
1479 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1480 MODULE_LICENSE("GPL");