Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         struct gpio_desc *gpiod;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
129 {
130         if (!rdev->constraints) {
131                 rdev_err(rdev, "no constraints\n");
132                 return false;
133         }
134
135         if (rdev->constraints->valid_ops_mask & ops)
136                 return true;
137
138         return false;
139 }
140
141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
142 {
143         if (rdev && rdev->supply)
144                 return rdev->supply->rdev;
145
146         return NULL;
147 }
148
149 /**
150  * regulator_lock_nested - lock a single regulator
151  * @rdev:               regulator source
152  * @subclass:           mutex subclass used for lockdep
153  *
154  * This function can be called many times by one task on
155  * a single regulator and its mutex will be locked only
156  * once. If a task, which is calling this function is other
157  * than the one, which initially locked the mutex, it will
158  * wait on mutex.
159  */
160 static void regulator_lock_nested(struct regulator_dev *rdev,
161                                   unsigned int subclass)
162 {
163         if (!mutex_trylock(&rdev->mutex)) {
164                 if (rdev->mutex_owner == current) {
165                         rdev->ref_cnt++;
166                         return;
167                 }
168                 mutex_lock_nested(&rdev->mutex, subclass);
169         }
170
171         rdev->ref_cnt = 1;
172         rdev->mutex_owner = current;
173 }
174
175 static inline void regulator_lock(struct regulator_dev *rdev)
176 {
177         regulator_lock_nested(rdev, 0);
178 }
179
180 /**
181  * regulator_unlock - unlock a single regulator
182  * @rdev:               regulator_source
183  *
184  * This function unlocks the mutex when the
185  * reference counter reaches 0.
186  */
187 static void regulator_unlock(struct regulator_dev *rdev)
188 {
189         if (rdev->ref_cnt != 0) {
190                 rdev->ref_cnt--;
191
192                 if (!rdev->ref_cnt) {
193                         rdev->mutex_owner = NULL;
194                         mutex_unlock(&rdev->mutex);
195                 }
196         }
197 }
198
199 /**
200  * regulator_lock_supply - lock a regulator and its supplies
201  * @rdev:         regulator source
202  */
203 static void regulator_lock_supply(struct regulator_dev *rdev)
204 {
205         int i;
206
207         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
208                 regulator_lock_nested(rdev, i);
209 }
210
211 /**
212  * regulator_unlock_supply - unlock a regulator and its supplies
213  * @rdev:         regulator source
214  */
215 static void regulator_unlock_supply(struct regulator_dev *rdev)
216 {
217         struct regulator *supply;
218
219         while (1) {
220                 regulator_unlock(rdev);
221                 supply = rdev->supply;
222
223                 if (!rdev->supply)
224                         return;
225
226                 rdev = supply->rdev;
227         }
228 }
229
230 /**
231  * of_get_regulator - get a regulator device node based on supply name
232  * @dev: Device pointer for the consumer (of regulator) device
233  * @supply: regulator supply name
234  *
235  * Extract the regulator device node corresponding to the supply name.
236  * returns the device node corresponding to the regulator if found, else
237  * returns NULL.
238  */
239 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
240 {
241         struct device_node *regnode = NULL;
242         char prop_name[32]; /* 32 is max size of property name */
243
244         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
245
246         snprintf(prop_name, 32, "%s-supply", supply);
247         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
248
249         if (!regnode) {
250                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
251                                 prop_name, dev->of_node);
252                 return NULL;
253         }
254         return regnode;
255 }
256
257 /* Platform voltage constraint check */
258 static int regulator_check_voltage(struct regulator_dev *rdev,
259                                    int *min_uV, int *max_uV)
260 {
261         BUG_ON(*min_uV > *max_uV);
262
263         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264                 rdev_err(rdev, "voltage operation not allowed\n");
265                 return -EPERM;
266         }
267
268         if (*max_uV > rdev->constraints->max_uV)
269                 *max_uV = rdev->constraints->max_uV;
270         if (*min_uV < rdev->constraints->min_uV)
271                 *min_uV = rdev->constraints->min_uV;
272
273         if (*min_uV > *max_uV) {
274                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275                          *min_uV, *max_uV);
276                 return -EINVAL;
277         }
278
279         return 0;
280 }
281
282 /* return 0 if the state is valid */
283 static int regulator_check_states(suspend_state_t state)
284 {
285         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
286 }
287
288 /* Make sure we select a voltage that suits the needs of all
289  * regulator consumers
290  */
291 static int regulator_check_consumers(struct regulator_dev *rdev,
292                                      int *min_uV, int *max_uV,
293                                      suspend_state_t state)
294 {
295         struct regulator *regulator;
296         struct regulator_voltage *voltage;
297
298         list_for_each_entry(regulator, &rdev->consumer_list, list) {
299                 voltage = &regulator->voltage[state];
300                 /*
301                  * Assume consumers that didn't say anything are OK
302                  * with anything in the constraint range.
303                  */
304                 if (!voltage->min_uV && !voltage->max_uV)
305                         continue;
306
307                 if (*max_uV > voltage->max_uV)
308                         *max_uV = voltage->max_uV;
309                 if (*min_uV < voltage->min_uV)
310                         *min_uV = voltage->min_uV;
311         }
312
313         if (*min_uV > *max_uV) {
314                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
315                         *min_uV, *max_uV);
316                 return -EINVAL;
317         }
318
319         return 0;
320 }
321
322 /* current constraint check */
323 static int regulator_check_current_limit(struct regulator_dev *rdev,
324                                         int *min_uA, int *max_uA)
325 {
326         BUG_ON(*min_uA > *max_uA);
327
328         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329                 rdev_err(rdev, "current operation not allowed\n");
330                 return -EPERM;
331         }
332
333         if (*max_uA > rdev->constraints->max_uA)
334                 *max_uA = rdev->constraints->max_uA;
335         if (*min_uA < rdev->constraints->min_uA)
336                 *min_uA = rdev->constraints->min_uA;
337
338         if (*min_uA > *max_uA) {
339                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340                          *min_uA, *max_uA);
341                 return -EINVAL;
342         }
343
344         return 0;
345 }
346
347 /* operating mode constraint check */
348 static int regulator_mode_constrain(struct regulator_dev *rdev,
349                                     unsigned int *mode)
350 {
351         switch (*mode) {
352         case REGULATOR_MODE_FAST:
353         case REGULATOR_MODE_NORMAL:
354         case REGULATOR_MODE_IDLE:
355         case REGULATOR_MODE_STANDBY:
356                 break;
357         default:
358                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
359                 return -EINVAL;
360         }
361
362         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363                 rdev_err(rdev, "mode operation not allowed\n");
364                 return -EPERM;
365         }
366
367         /* The modes are bitmasks, the most power hungry modes having
368          * the lowest values. If the requested mode isn't supported
369          * try higher modes. */
370         while (*mode) {
371                 if (rdev->constraints->valid_modes_mask & *mode)
372                         return 0;
373                 *mode /= 2;
374         }
375
376         return -EINVAL;
377 }
378
379 static inline struct regulator_state *
380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
381 {
382         if (rdev->constraints == NULL)
383                 return NULL;
384
385         switch (state) {
386         case PM_SUSPEND_STANDBY:
387                 return &rdev->constraints->state_standby;
388         case PM_SUSPEND_MEM:
389                 return &rdev->constraints->state_mem;
390         case PM_SUSPEND_MAX:
391                 return &rdev->constraints->state_disk;
392         default:
393                 return NULL;
394         }
395 }
396
397 static ssize_t regulator_uV_show(struct device *dev,
398                                 struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401         ssize_t ret;
402
403         regulator_lock(rdev);
404         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405         regulator_unlock(rdev);
406
407         return ret;
408 }
409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
410
411 static ssize_t regulator_uA_show(struct device *dev,
412                                 struct device_attribute *attr, char *buf)
413 {
414         struct regulator_dev *rdev = dev_get_drvdata(dev);
415
416         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
417 }
418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
419
420 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
421                          char *buf)
422 {
423         struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425         return sprintf(buf, "%s\n", rdev_get_name(rdev));
426 }
427 static DEVICE_ATTR_RO(name);
428
429 static const char *regulator_opmode_to_str(int mode)
430 {
431         switch (mode) {
432         case REGULATOR_MODE_FAST:
433                 return "fast";
434         case REGULATOR_MODE_NORMAL:
435                 return "normal";
436         case REGULATOR_MODE_IDLE:
437                 return "idle";
438         case REGULATOR_MODE_STANDBY:
439                 return "standby";
440         }
441         return "unknown";
442 }
443
444 static ssize_t regulator_print_opmode(char *buf, int mode)
445 {
446         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
447 }
448
449 static ssize_t regulator_opmode_show(struct device *dev,
450                                     struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
455 }
456 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
457
458 static ssize_t regulator_print_state(char *buf, int state)
459 {
460         if (state > 0)
461                 return sprintf(buf, "enabled\n");
462         else if (state == 0)
463                 return sprintf(buf, "disabled\n");
464         else
465                 return sprintf(buf, "unknown\n");
466 }
467
468 static ssize_t regulator_state_show(struct device *dev,
469                                    struct device_attribute *attr, char *buf)
470 {
471         struct regulator_dev *rdev = dev_get_drvdata(dev);
472         ssize_t ret;
473
474         regulator_lock(rdev);
475         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
476         regulator_unlock(rdev);
477
478         return ret;
479 }
480 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
481
482 static ssize_t regulator_status_show(struct device *dev,
483                                    struct device_attribute *attr, char *buf)
484 {
485         struct regulator_dev *rdev = dev_get_drvdata(dev);
486         int status;
487         char *label;
488
489         status = rdev->desc->ops->get_status(rdev);
490         if (status < 0)
491                 return status;
492
493         switch (status) {
494         case REGULATOR_STATUS_OFF:
495                 label = "off";
496                 break;
497         case REGULATOR_STATUS_ON:
498                 label = "on";
499                 break;
500         case REGULATOR_STATUS_ERROR:
501                 label = "error";
502                 break;
503         case REGULATOR_STATUS_FAST:
504                 label = "fast";
505                 break;
506         case REGULATOR_STATUS_NORMAL:
507                 label = "normal";
508                 break;
509         case REGULATOR_STATUS_IDLE:
510                 label = "idle";
511                 break;
512         case REGULATOR_STATUS_STANDBY:
513                 label = "standby";
514                 break;
515         case REGULATOR_STATUS_BYPASS:
516                 label = "bypass";
517                 break;
518         case REGULATOR_STATUS_UNDEFINED:
519                 label = "undefined";
520                 break;
521         default:
522                 return -ERANGE;
523         }
524
525         return sprintf(buf, "%s\n", label);
526 }
527 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
528
529 static ssize_t regulator_min_uA_show(struct device *dev,
530                                     struct device_attribute *attr, char *buf)
531 {
532         struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534         if (!rdev->constraints)
535                 return sprintf(buf, "constraint not defined\n");
536
537         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
538 }
539 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
540
541 static ssize_t regulator_max_uA_show(struct device *dev,
542                                     struct device_attribute *attr, char *buf)
543 {
544         struct regulator_dev *rdev = dev_get_drvdata(dev);
545
546         if (!rdev->constraints)
547                 return sprintf(buf, "constraint not defined\n");
548
549         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
550 }
551 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
552
553 static ssize_t regulator_min_uV_show(struct device *dev,
554                                     struct device_attribute *attr, char *buf)
555 {
556         struct regulator_dev *rdev = dev_get_drvdata(dev);
557
558         if (!rdev->constraints)
559                 return sprintf(buf, "constraint not defined\n");
560
561         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
562 }
563 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
564
565 static ssize_t regulator_max_uV_show(struct device *dev,
566                                     struct device_attribute *attr, char *buf)
567 {
568         struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570         if (!rdev->constraints)
571                 return sprintf(buf, "constraint not defined\n");
572
573         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
574 }
575 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
576
577 static ssize_t regulator_total_uA_show(struct device *dev,
578                                       struct device_attribute *attr, char *buf)
579 {
580         struct regulator_dev *rdev = dev_get_drvdata(dev);
581         struct regulator *regulator;
582         int uA = 0;
583
584         regulator_lock(rdev);
585         list_for_each_entry(regulator, &rdev->consumer_list, list)
586                 uA += regulator->uA_load;
587         regulator_unlock(rdev);
588         return sprintf(buf, "%d\n", uA);
589 }
590 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
591
592 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
593                               char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596         return sprintf(buf, "%d\n", rdev->use_count);
597 }
598 static DEVICE_ATTR_RO(num_users);
599
600 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
601                          char *buf)
602 {
603         struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605         switch (rdev->desc->type) {
606         case REGULATOR_VOLTAGE:
607                 return sprintf(buf, "voltage\n");
608         case REGULATOR_CURRENT:
609                 return sprintf(buf, "current\n");
610         }
611         return sprintf(buf, "unknown\n");
612 }
613 static DEVICE_ATTR_RO(type);
614
615 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
616                                 struct device_attribute *attr, char *buf)
617 {
618         struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
621 }
622 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
623                 regulator_suspend_mem_uV_show, NULL);
624
625 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
626                                 struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
631 }
632 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
633                 regulator_suspend_disk_uV_show, NULL);
634
635 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
636                                 struct device_attribute *attr, char *buf)
637 {
638         struct regulator_dev *rdev = dev_get_drvdata(dev);
639
640         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
641 }
642 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
643                 regulator_suspend_standby_uV_show, NULL);
644
645 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
646                                 struct device_attribute *attr, char *buf)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649
650         return regulator_print_opmode(buf,
651                 rdev->constraints->state_mem.mode);
652 }
653 static DEVICE_ATTR(suspend_mem_mode, 0444,
654                 regulator_suspend_mem_mode_show, NULL);
655
656 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
657                                 struct device_attribute *attr, char *buf)
658 {
659         struct regulator_dev *rdev = dev_get_drvdata(dev);
660
661         return regulator_print_opmode(buf,
662                 rdev->constraints->state_disk.mode);
663 }
664 static DEVICE_ATTR(suspend_disk_mode, 0444,
665                 regulator_suspend_disk_mode_show, NULL);
666
667 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
668                                 struct device_attribute *attr, char *buf)
669 {
670         struct regulator_dev *rdev = dev_get_drvdata(dev);
671
672         return regulator_print_opmode(buf,
673                 rdev->constraints->state_standby.mode);
674 }
675 static DEVICE_ATTR(suspend_standby_mode, 0444,
676                 regulator_suspend_standby_mode_show, NULL);
677
678 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
679                                    struct device_attribute *attr, char *buf)
680 {
681         struct regulator_dev *rdev = dev_get_drvdata(dev);
682
683         return regulator_print_state(buf,
684                         rdev->constraints->state_mem.enabled);
685 }
686 static DEVICE_ATTR(suspend_mem_state, 0444,
687                 regulator_suspend_mem_state_show, NULL);
688
689 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
690                                    struct device_attribute *attr, char *buf)
691 {
692         struct regulator_dev *rdev = dev_get_drvdata(dev);
693
694         return regulator_print_state(buf,
695                         rdev->constraints->state_disk.enabled);
696 }
697 static DEVICE_ATTR(suspend_disk_state, 0444,
698                 regulator_suspend_disk_state_show, NULL);
699
700 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
701                                    struct device_attribute *attr, char *buf)
702 {
703         struct regulator_dev *rdev = dev_get_drvdata(dev);
704
705         return regulator_print_state(buf,
706                         rdev->constraints->state_standby.enabled);
707 }
708 static DEVICE_ATTR(suspend_standby_state, 0444,
709                 regulator_suspend_standby_state_show, NULL);
710
711 static ssize_t regulator_bypass_show(struct device *dev,
712                                      struct device_attribute *attr, char *buf)
713 {
714         struct regulator_dev *rdev = dev_get_drvdata(dev);
715         const char *report;
716         bool bypass;
717         int ret;
718
719         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
720
721         if (ret != 0)
722                 report = "unknown";
723         else if (bypass)
724                 report = "enabled";
725         else
726                 report = "disabled";
727
728         return sprintf(buf, "%s\n", report);
729 }
730 static DEVICE_ATTR(bypass, 0444,
731                    regulator_bypass_show, NULL);
732
733 /* Calculate the new optimum regulator operating mode based on the new total
734  * consumer load. All locks held by caller */
735 static int drms_uA_update(struct regulator_dev *rdev)
736 {
737         struct regulator *sibling;
738         int current_uA = 0, output_uV, input_uV, err;
739         unsigned int mode;
740
741         lockdep_assert_held_once(&rdev->mutex);
742
743         /*
744          * first check to see if we can set modes at all, otherwise just
745          * tell the consumer everything is OK.
746          */
747         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
748                 return 0;
749
750         if (!rdev->desc->ops->get_optimum_mode &&
751             !rdev->desc->ops->set_load)
752                 return 0;
753
754         if (!rdev->desc->ops->set_mode &&
755             !rdev->desc->ops->set_load)
756                 return -EINVAL;
757
758         /* calc total requested load */
759         list_for_each_entry(sibling, &rdev->consumer_list, list)
760                 current_uA += sibling->uA_load;
761
762         current_uA += rdev->constraints->system_load;
763
764         if (rdev->desc->ops->set_load) {
765                 /* set the optimum mode for our new total regulator load */
766                 err = rdev->desc->ops->set_load(rdev, current_uA);
767                 if (err < 0)
768                         rdev_err(rdev, "failed to set load %d\n", current_uA);
769         } else {
770                 /* get output voltage */
771                 output_uV = _regulator_get_voltage(rdev);
772                 if (output_uV <= 0) {
773                         rdev_err(rdev, "invalid output voltage found\n");
774                         return -EINVAL;
775                 }
776
777                 /* get input voltage */
778                 input_uV = 0;
779                 if (rdev->supply)
780                         input_uV = regulator_get_voltage(rdev->supply);
781                 if (input_uV <= 0)
782                         input_uV = rdev->constraints->input_uV;
783                 if (input_uV <= 0) {
784                         rdev_err(rdev, "invalid input voltage found\n");
785                         return -EINVAL;
786                 }
787
788                 /* now get the optimum mode for our new total regulator load */
789                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
790                                                          output_uV, current_uA);
791
792                 /* check the new mode is allowed */
793                 err = regulator_mode_constrain(rdev, &mode);
794                 if (err < 0) {
795                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
796                                  current_uA, input_uV, output_uV);
797                         return err;
798                 }
799
800                 err = rdev->desc->ops->set_mode(rdev, mode);
801                 if (err < 0)
802                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
803         }
804
805         return err;
806 }
807
808 static int suspend_set_state(struct regulator_dev *rdev,
809                                     suspend_state_t state)
810 {
811         int ret = 0;
812         struct regulator_state *rstate;
813
814         rstate = regulator_get_suspend_state(rdev, state);
815         if (rstate == NULL)
816                 return 0;
817
818         /* If we have no suspend mode configration don't set anything;
819          * only warn if the driver implements set_suspend_voltage or
820          * set_suspend_mode callback.
821          */
822         if (rstate->enabled != ENABLE_IN_SUSPEND &&
823             rstate->enabled != DISABLE_IN_SUSPEND) {
824                 if (rdev->desc->ops->set_suspend_voltage ||
825                     rdev->desc->ops->set_suspend_mode)
826                         rdev_warn(rdev, "No configuration\n");
827                 return 0;
828         }
829
830         if (rstate->enabled == ENABLE_IN_SUSPEND &&
831                 rdev->desc->ops->set_suspend_enable)
832                 ret = rdev->desc->ops->set_suspend_enable(rdev);
833         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
834                 rdev->desc->ops->set_suspend_disable)
835                 ret = rdev->desc->ops->set_suspend_disable(rdev);
836         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
837                 ret = 0;
838
839         if (ret < 0) {
840                 rdev_err(rdev, "failed to enabled/disable\n");
841                 return ret;
842         }
843
844         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
845                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
846                 if (ret < 0) {
847                         rdev_err(rdev, "failed to set voltage\n");
848                         return ret;
849                 }
850         }
851
852         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
853                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
854                 if (ret < 0) {
855                         rdev_err(rdev, "failed to set mode\n");
856                         return ret;
857                 }
858         }
859
860         return ret;
861 }
862
863 static void print_constraints(struct regulator_dev *rdev)
864 {
865         struct regulation_constraints *constraints = rdev->constraints;
866         char buf[160] = "";
867         size_t len = sizeof(buf) - 1;
868         int count = 0;
869         int ret;
870
871         if (constraints->min_uV && constraints->max_uV) {
872                 if (constraints->min_uV == constraints->max_uV)
873                         count += scnprintf(buf + count, len - count, "%d mV ",
874                                            constraints->min_uV / 1000);
875                 else
876                         count += scnprintf(buf + count, len - count,
877                                            "%d <--> %d mV ",
878                                            constraints->min_uV / 1000,
879                                            constraints->max_uV / 1000);
880         }
881
882         if (!constraints->min_uV ||
883             constraints->min_uV != constraints->max_uV) {
884                 ret = _regulator_get_voltage(rdev);
885                 if (ret > 0)
886                         count += scnprintf(buf + count, len - count,
887                                            "at %d mV ", ret / 1000);
888         }
889
890         if (constraints->uV_offset)
891                 count += scnprintf(buf + count, len - count, "%dmV offset ",
892                                    constraints->uV_offset / 1000);
893
894         if (constraints->min_uA && constraints->max_uA) {
895                 if (constraints->min_uA == constraints->max_uA)
896                         count += scnprintf(buf + count, len - count, "%d mA ",
897                                            constraints->min_uA / 1000);
898                 else
899                         count += scnprintf(buf + count, len - count,
900                                            "%d <--> %d mA ",
901                                            constraints->min_uA / 1000,
902                                            constraints->max_uA / 1000);
903         }
904
905         if (!constraints->min_uA ||
906             constraints->min_uA != constraints->max_uA) {
907                 ret = _regulator_get_current_limit(rdev);
908                 if (ret > 0)
909                         count += scnprintf(buf + count, len - count,
910                                            "at %d mA ", ret / 1000);
911         }
912
913         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
914                 count += scnprintf(buf + count, len - count, "fast ");
915         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
916                 count += scnprintf(buf + count, len - count, "normal ");
917         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
918                 count += scnprintf(buf + count, len - count, "idle ");
919         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
920                 count += scnprintf(buf + count, len - count, "standby");
921
922         if (!count)
923                 scnprintf(buf, len, "no parameters");
924
925         rdev_dbg(rdev, "%s\n", buf);
926
927         if ((constraints->min_uV != constraints->max_uV) &&
928             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
929                 rdev_warn(rdev,
930                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
931 }
932
933 static int machine_constraints_voltage(struct regulator_dev *rdev,
934         struct regulation_constraints *constraints)
935 {
936         const struct regulator_ops *ops = rdev->desc->ops;
937         int ret;
938
939         /* do we need to apply the constraint voltage */
940         if (rdev->constraints->apply_uV &&
941             rdev->constraints->min_uV && rdev->constraints->max_uV) {
942                 int target_min, target_max;
943                 int current_uV = _regulator_get_voltage(rdev);
944
945                 if (current_uV == -ENOTRECOVERABLE) {
946                         /* This regulator can't be read and must be initted */
947                         rdev_info(rdev, "Setting %d-%duV\n",
948                                   rdev->constraints->min_uV,
949                                   rdev->constraints->max_uV);
950                         _regulator_do_set_voltage(rdev,
951                                                   rdev->constraints->min_uV,
952                                                   rdev->constraints->max_uV);
953                         current_uV = _regulator_get_voltage(rdev);
954                 }
955
956                 if (current_uV < 0) {
957                         rdev_err(rdev,
958                                  "failed to get the current voltage(%d)\n",
959                                  current_uV);
960                         return current_uV;
961                 }
962
963                 /*
964                  * If we're below the minimum voltage move up to the
965                  * minimum voltage, if we're above the maximum voltage
966                  * then move down to the maximum.
967                  */
968                 target_min = current_uV;
969                 target_max = current_uV;
970
971                 if (current_uV < rdev->constraints->min_uV) {
972                         target_min = rdev->constraints->min_uV;
973                         target_max = rdev->constraints->min_uV;
974                 }
975
976                 if (current_uV > rdev->constraints->max_uV) {
977                         target_min = rdev->constraints->max_uV;
978                         target_max = rdev->constraints->max_uV;
979                 }
980
981                 if (target_min != current_uV || target_max != current_uV) {
982                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
983                                   current_uV, target_min, target_max);
984                         ret = _regulator_do_set_voltage(
985                                 rdev, target_min, target_max);
986                         if (ret < 0) {
987                                 rdev_err(rdev,
988                                         "failed to apply %d-%duV constraint(%d)\n",
989                                         target_min, target_max, ret);
990                                 return ret;
991                         }
992                 }
993         }
994
995         /* constrain machine-level voltage specs to fit
996          * the actual range supported by this regulator.
997          */
998         if (ops->list_voltage && rdev->desc->n_voltages) {
999                 int     count = rdev->desc->n_voltages;
1000                 int     i;
1001                 int     min_uV = INT_MAX;
1002                 int     max_uV = INT_MIN;
1003                 int     cmin = constraints->min_uV;
1004                 int     cmax = constraints->max_uV;
1005
1006                 /* it's safe to autoconfigure fixed-voltage supplies
1007                    and the constraints are used by list_voltage. */
1008                 if (count == 1 && !cmin) {
1009                         cmin = 1;
1010                         cmax = INT_MAX;
1011                         constraints->min_uV = cmin;
1012                         constraints->max_uV = cmax;
1013                 }
1014
1015                 /* voltage constraints are optional */
1016                 if ((cmin == 0) && (cmax == 0))
1017                         return 0;
1018
1019                 /* else require explicit machine-level constraints */
1020                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1021                         rdev_err(rdev, "invalid voltage constraints\n");
1022                         return -EINVAL;
1023                 }
1024
1025                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1026                 for (i = 0; i < count; i++) {
1027                         int     value;
1028
1029                         value = ops->list_voltage(rdev, i);
1030                         if (value <= 0)
1031                                 continue;
1032
1033                         /* maybe adjust [min_uV..max_uV] */
1034                         if (value >= cmin && value < min_uV)
1035                                 min_uV = value;
1036                         if (value <= cmax && value > max_uV)
1037                                 max_uV = value;
1038                 }
1039
1040                 /* final: [min_uV..max_uV] valid iff constraints valid */
1041                 if (max_uV < min_uV) {
1042                         rdev_err(rdev,
1043                                  "unsupportable voltage constraints %u-%uuV\n",
1044                                  min_uV, max_uV);
1045                         return -EINVAL;
1046                 }
1047
1048                 /* use regulator's subset of machine constraints */
1049                 if (constraints->min_uV < min_uV) {
1050                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1051                                  constraints->min_uV, min_uV);
1052                         constraints->min_uV = min_uV;
1053                 }
1054                 if (constraints->max_uV > max_uV) {
1055                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1056                                  constraints->max_uV, max_uV);
1057                         constraints->max_uV = max_uV;
1058                 }
1059         }
1060
1061         return 0;
1062 }
1063
1064 static int machine_constraints_current(struct regulator_dev *rdev,
1065         struct regulation_constraints *constraints)
1066 {
1067         const struct regulator_ops *ops = rdev->desc->ops;
1068         int ret;
1069
1070         if (!constraints->min_uA && !constraints->max_uA)
1071                 return 0;
1072
1073         if (constraints->min_uA > constraints->max_uA) {
1074                 rdev_err(rdev, "Invalid current constraints\n");
1075                 return -EINVAL;
1076         }
1077
1078         if (!ops->set_current_limit || !ops->get_current_limit) {
1079                 rdev_warn(rdev, "Operation of current configuration missing\n");
1080                 return 0;
1081         }
1082
1083         /* Set regulator current in constraints range */
1084         ret = ops->set_current_limit(rdev, constraints->min_uA,
1085                         constraints->max_uA);
1086         if (ret < 0) {
1087                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1088                 return ret;
1089         }
1090
1091         return 0;
1092 }
1093
1094 static int _regulator_do_enable(struct regulator_dev *rdev);
1095
1096 /**
1097  * set_machine_constraints - sets regulator constraints
1098  * @rdev: regulator source
1099  * @constraints: constraints to apply
1100  *
1101  * Allows platform initialisation code to define and constrain
1102  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1103  * Constraints *must* be set by platform code in order for some
1104  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1105  * set_mode.
1106  */
1107 static int set_machine_constraints(struct regulator_dev *rdev,
1108         const struct regulation_constraints *constraints)
1109 {
1110         int ret = 0;
1111         const struct regulator_ops *ops = rdev->desc->ops;
1112
1113         if (constraints)
1114                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1115                                             GFP_KERNEL);
1116         else
1117                 rdev->constraints = kzalloc(sizeof(*constraints),
1118                                             GFP_KERNEL);
1119         if (!rdev->constraints)
1120                 return -ENOMEM;
1121
1122         ret = machine_constraints_voltage(rdev, rdev->constraints);
1123         if (ret != 0)
1124                 return ret;
1125
1126         ret = machine_constraints_current(rdev, rdev->constraints);
1127         if (ret != 0)
1128                 return ret;
1129
1130         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1131                 ret = ops->set_input_current_limit(rdev,
1132                                                    rdev->constraints->ilim_uA);
1133                 if (ret < 0) {
1134                         rdev_err(rdev, "failed to set input limit\n");
1135                         return ret;
1136                 }
1137         }
1138
1139         /* do we need to setup our suspend state */
1140         if (rdev->constraints->initial_state) {
1141                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1142                 if (ret < 0) {
1143                         rdev_err(rdev, "failed to set suspend state\n");
1144                         return ret;
1145                 }
1146         }
1147
1148         if (rdev->constraints->initial_mode) {
1149                 if (!ops->set_mode) {
1150                         rdev_err(rdev, "no set_mode operation\n");
1151                         return -EINVAL;
1152                 }
1153
1154                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1155                 if (ret < 0) {
1156                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1157                         return ret;
1158                 }
1159         }
1160
1161         /* If the constraints say the regulator should be on at this point
1162          * and we have control then make sure it is enabled.
1163          */
1164         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1165                 ret = _regulator_do_enable(rdev);
1166                 if (ret < 0 && ret != -EINVAL) {
1167                         rdev_err(rdev, "failed to enable\n");
1168                         return ret;
1169                 }
1170         }
1171
1172         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1173                 && ops->set_ramp_delay) {
1174                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1175                 if (ret < 0) {
1176                         rdev_err(rdev, "failed to set ramp_delay\n");
1177                         return ret;
1178                 }
1179         }
1180
1181         if (rdev->constraints->pull_down && ops->set_pull_down) {
1182                 ret = ops->set_pull_down(rdev);
1183                 if (ret < 0) {
1184                         rdev_err(rdev, "failed to set pull down\n");
1185                         return ret;
1186                 }
1187         }
1188
1189         if (rdev->constraints->soft_start && ops->set_soft_start) {
1190                 ret = ops->set_soft_start(rdev);
1191                 if (ret < 0) {
1192                         rdev_err(rdev, "failed to set soft start\n");
1193                         return ret;
1194                 }
1195         }
1196
1197         if (rdev->constraints->over_current_protection
1198                 && ops->set_over_current_protection) {
1199                 ret = ops->set_over_current_protection(rdev);
1200                 if (ret < 0) {
1201                         rdev_err(rdev, "failed to set over current protection\n");
1202                         return ret;
1203                 }
1204         }
1205
1206         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1207                 bool ad_state = (rdev->constraints->active_discharge ==
1208                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1209
1210                 ret = ops->set_active_discharge(rdev, ad_state);
1211                 if (ret < 0) {
1212                         rdev_err(rdev, "failed to set active discharge\n");
1213                         return ret;
1214                 }
1215         }
1216
1217         print_constraints(rdev);
1218         return 0;
1219 }
1220
1221 /**
1222  * set_supply - set regulator supply regulator
1223  * @rdev: regulator name
1224  * @supply_rdev: supply regulator name
1225  *
1226  * Called by platform initialisation code to set the supply regulator for this
1227  * regulator. This ensures that a regulators supply will also be enabled by the
1228  * core if it's child is enabled.
1229  */
1230 static int set_supply(struct regulator_dev *rdev,
1231                       struct regulator_dev *supply_rdev)
1232 {
1233         int err;
1234
1235         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1236
1237         if (!try_module_get(supply_rdev->owner))
1238                 return -ENODEV;
1239
1240         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1241         if (rdev->supply == NULL) {
1242                 err = -ENOMEM;
1243                 return err;
1244         }
1245         supply_rdev->open_count++;
1246
1247         return 0;
1248 }
1249
1250 /**
1251  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1252  * @rdev:         regulator source
1253  * @consumer_dev_name: dev_name() string for device supply applies to
1254  * @supply:       symbolic name for supply
1255  *
1256  * Allows platform initialisation code to map physical regulator
1257  * sources to symbolic names for supplies for use by devices.  Devices
1258  * should use these symbolic names to request regulators, avoiding the
1259  * need to provide board-specific regulator names as platform data.
1260  */
1261 static int set_consumer_device_supply(struct regulator_dev *rdev,
1262                                       const char *consumer_dev_name,
1263                                       const char *supply)
1264 {
1265         struct regulator_map *node;
1266         int has_dev;
1267
1268         if (supply == NULL)
1269                 return -EINVAL;
1270
1271         if (consumer_dev_name != NULL)
1272                 has_dev = 1;
1273         else
1274                 has_dev = 0;
1275
1276         list_for_each_entry(node, &regulator_map_list, list) {
1277                 if (node->dev_name && consumer_dev_name) {
1278                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1279                                 continue;
1280                 } else if (node->dev_name || consumer_dev_name) {
1281                         continue;
1282                 }
1283
1284                 if (strcmp(node->supply, supply) != 0)
1285                         continue;
1286
1287                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1288                          consumer_dev_name,
1289                          dev_name(&node->regulator->dev),
1290                          node->regulator->desc->name,
1291                          supply,
1292                          dev_name(&rdev->dev), rdev_get_name(rdev));
1293                 return -EBUSY;
1294         }
1295
1296         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1297         if (node == NULL)
1298                 return -ENOMEM;
1299
1300         node->regulator = rdev;
1301         node->supply = supply;
1302
1303         if (has_dev) {
1304                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1305                 if (node->dev_name == NULL) {
1306                         kfree(node);
1307                         return -ENOMEM;
1308                 }
1309         }
1310
1311         list_add(&node->list, &regulator_map_list);
1312         return 0;
1313 }
1314
1315 static void unset_regulator_supplies(struct regulator_dev *rdev)
1316 {
1317         struct regulator_map *node, *n;
1318
1319         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1320                 if (rdev == node->regulator) {
1321                         list_del(&node->list);
1322                         kfree(node->dev_name);
1323                         kfree(node);
1324                 }
1325         }
1326 }
1327
1328 #ifdef CONFIG_DEBUG_FS
1329 static ssize_t constraint_flags_read_file(struct file *file,
1330                                           char __user *user_buf,
1331                                           size_t count, loff_t *ppos)
1332 {
1333         const struct regulator *regulator = file->private_data;
1334         const struct regulation_constraints *c = regulator->rdev->constraints;
1335         char *buf;
1336         ssize_t ret;
1337
1338         if (!c)
1339                 return 0;
1340
1341         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1342         if (!buf)
1343                 return -ENOMEM;
1344
1345         ret = snprintf(buf, PAGE_SIZE,
1346                         "always_on: %u\n"
1347                         "boot_on: %u\n"
1348                         "apply_uV: %u\n"
1349                         "ramp_disable: %u\n"
1350                         "soft_start: %u\n"
1351                         "pull_down: %u\n"
1352                         "over_current_protection: %u\n",
1353                         c->always_on,
1354                         c->boot_on,
1355                         c->apply_uV,
1356                         c->ramp_disable,
1357                         c->soft_start,
1358                         c->pull_down,
1359                         c->over_current_protection);
1360
1361         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1362         kfree(buf);
1363
1364         return ret;
1365 }
1366
1367 #endif
1368
1369 static const struct file_operations constraint_flags_fops = {
1370 #ifdef CONFIG_DEBUG_FS
1371         .open = simple_open,
1372         .read = constraint_flags_read_file,
1373         .llseek = default_llseek,
1374 #endif
1375 };
1376
1377 #define REG_STR_SIZE    64
1378
1379 static struct regulator *create_regulator(struct regulator_dev *rdev,
1380                                           struct device *dev,
1381                                           const char *supply_name)
1382 {
1383         struct regulator *regulator;
1384         char buf[REG_STR_SIZE];
1385         int err, size;
1386
1387         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1388         if (regulator == NULL)
1389                 return NULL;
1390
1391         regulator_lock(rdev);
1392         regulator->rdev = rdev;
1393         list_add(&regulator->list, &rdev->consumer_list);
1394
1395         if (dev) {
1396                 regulator->dev = dev;
1397
1398                 /* Add a link to the device sysfs entry */
1399                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1400                                 dev->kobj.name, supply_name);
1401                 if (size >= REG_STR_SIZE)
1402                         goto overflow_err;
1403
1404                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1405                 if (regulator->supply_name == NULL)
1406                         goto overflow_err;
1407
1408                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1409                                         buf);
1410                 if (err) {
1411                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1412                                   dev->kobj.name, err);
1413                         /* non-fatal */
1414                 }
1415         } else {
1416                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1417                 if (regulator->supply_name == NULL)
1418                         goto overflow_err;
1419         }
1420
1421         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1422                                                 rdev->debugfs);
1423         if (!regulator->debugfs) {
1424                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1425         } else {
1426                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1427                                    &regulator->uA_load);
1428                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1429                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1430                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1431                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1432                 debugfs_create_file("constraint_flags", 0444,
1433                                     regulator->debugfs, regulator,
1434                                     &constraint_flags_fops);
1435         }
1436
1437         /*
1438          * Check now if the regulator is an always on regulator - if
1439          * it is then we don't need to do nearly so much work for
1440          * enable/disable calls.
1441          */
1442         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1443             _regulator_is_enabled(rdev))
1444                 regulator->always_on = true;
1445
1446         regulator_unlock(rdev);
1447         return regulator;
1448 overflow_err:
1449         list_del(&regulator->list);
1450         kfree(regulator);
1451         regulator_unlock(rdev);
1452         return NULL;
1453 }
1454
1455 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1456 {
1457         if (rdev->constraints && rdev->constraints->enable_time)
1458                 return rdev->constraints->enable_time;
1459         if (!rdev->desc->ops->enable_time)
1460                 return rdev->desc->enable_time;
1461         return rdev->desc->ops->enable_time(rdev);
1462 }
1463
1464 static struct regulator_supply_alias *regulator_find_supply_alias(
1465                 struct device *dev, const char *supply)
1466 {
1467         struct regulator_supply_alias *map;
1468
1469         list_for_each_entry(map, &regulator_supply_alias_list, list)
1470                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1471                         return map;
1472
1473         return NULL;
1474 }
1475
1476 static void regulator_supply_alias(struct device **dev, const char **supply)
1477 {
1478         struct regulator_supply_alias *map;
1479
1480         map = regulator_find_supply_alias(*dev, *supply);
1481         if (map) {
1482                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1483                                 *supply, map->alias_supply,
1484                                 dev_name(map->alias_dev));
1485                 *dev = map->alias_dev;
1486                 *supply = map->alias_supply;
1487         }
1488 }
1489
1490 static int regulator_match(struct device *dev, const void *data)
1491 {
1492         struct regulator_dev *r = dev_to_rdev(dev);
1493
1494         return strcmp(rdev_get_name(r), data) == 0;
1495 }
1496
1497 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1498 {
1499         struct device *dev;
1500
1501         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1502
1503         return dev ? dev_to_rdev(dev) : NULL;
1504 }
1505
1506 /**
1507  * regulator_dev_lookup - lookup a regulator device.
1508  * @dev: device for regulator "consumer".
1509  * @supply: Supply name or regulator ID.
1510  *
1511  * If successful, returns a struct regulator_dev that corresponds to the name
1512  * @supply and with the embedded struct device refcount incremented by one.
1513  * The refcount must be dropped by calling put_device().
1514  * On failure one of the following ERR-PTR-encoded values is returned:
1515  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1516  * in the future.
1517  */
1518 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1519                                                   const char *supply)
1520 {
1521         struct regulator_dev *r = NULL;
1522         struct device_node *node;
1523         struct regulator_map *map;
1524         const char *devname = NULL;
1525
1526         regulator_supply_alias(&dev, &supply);
1527
1528         /* first do a dt based lookup */
1529         if (dev && dev->of_node) {
1530                 node = of_get_regulator(dev, supply);
1531                 if (node) {
1532                         r = of_find_regulator_by_node(node);
1533                         if (r)
1534                                 return r;
1535
1536                         /*
1537                          * We have a node, but there is no device.
1538                          * assume it has not registered yet.
1539                          */
1540                         return ERR_PTR(-EPROBE_DEFER);
1541                 }
1542         }
1543
1544         /* if not found, try doing it non-dt way */
1545         if (dev)
1546                 devname = dev_name(dev);
1547
1548         mutex_lock(&regulator_list_mutex);
1549         list_for_each_entry(map, &regulator_map_list, list) {
1550                 /* If the mapping has a device set up it must match */
1551                 if (map->dev_name &&
1552                     (!devname || strcmp(map->dev_name, devname)))
1553                         continue;
1554
1555                 if (strcmp(map->supply, supply) == 0 &&
1556                     get_device(&map->regulator->dev)) {
1557                         r = map->regulator;
1558                         break;
1559                 }
1560         }
1561         mutex_unlock(&regulator_list_mutex);
1562
1563         if (r)
1564                 return r;
1565
1566         r = regulator_lookup_by_name(supply);
1567         if (r)
1568                 return r;
1569
1570         return ERR_PTR(-ENODEV);
1571 }
1572
1573 static int regulator_resolve_supply(struct regulator_dev *rdev)
1574 {
1575         struct regulator_dev *r;
1576         struct device *dev = rdev->dev.parent;
1577         int ret;
1578
1579         /* No supply to resovle? */
1580         if (!rdev->supply_name)
1581                 return 0;
1582
1583         /* Supply already resolved? */
1584         if (rdev->supply)
1585                 return 0;
1586
1587         r = regulator_dev_lookup(dev, rdev->supply_name);
1588         if (IS_ERR(r)) {
1589                 ret = PTR_ERR(r);
1590
1591                 /* Did the lookup explicitly defer for us? */
1592                 if (ret == -EPROBE_DEFER)
1593                         return ret;
1594
1595                 if (have_full_constraints()) {
1596                         r = dummy_regulator_rdev;
1597                         get_device(&r->dev);
1598                 } else {
1599                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1600                                 rdev->supply_name, rdev->desc->name);
1601                         return -EPROBE_DEFER;
1602                 }
1603         }
1604
1605         /*
1606          * If the supply's parent device is not the same as the
1607          * regulator's parent device, then ensure the parent device
1608          * is bound before we resolve the supply, in case the parent
1609          * device get probe deferred and unregisters the supply.
1610          */
1611         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1612                 if (!device_is_bound(r->dev.parent)) {
1613                         put_device(&r->dev);
1614                         return -EPROBE_DEFER;
1615                 }
1616         }
1617
1618         /* Recursively resolve the supply of the supply */
1619         ret = regulator_resolve_supply(r);
1620         if (ret < 0) {
1621                 put_device(&r->dev);
1622                 return ret;
1623         }
1624
1625         ret = set_supply(rdev, r);
1626         if (ret < 0) {
1627                 put_device(&r->dev);
1628                 return ret;
1629         }
1630
1631         /* Cascade always-on state to supply */
1632         if (_regulator_is_enabled(rdev)) {
1633                 ret = regulator_enable(rdev->supply);
1634                 if (ret < 0) {
1635                         _regulator_put(rdev->supply);
1636                         rdev->supply = NULL;
1637                         return ret;
1638                 }
1639         }
1640
1641         return 0;
1642 }
1643
1644 /* Internal regulator request function */
1645 struct regulator *_regulator_get(struct device *dev, const char *id,
1646                                  enum regulator_get_type get_type)
1647 {
1648         struct regulator_dev *rdev;
1649         struct regulator *regulator;
1650         const char *devname = dev ? dev_name(dev) : "deviceless";
1651         int ret;
1652
1653         if (get_type >= MAX_GET_TYPE) {
1654                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1655                 return ERR_PTR(-EINVAL);
1656         }
1657
1658         if (id == NULL) {
1659                 pr_err("get() with no identifier\n");
1660                 return ERR_PTR(-EINVAL);
1661         }
1662
1663         rdev = regulator_dev_lookup(dev, id);
1664         if (IS_ERR(rdev)) {
1665                 ret = PTR_ERR(rdev);
1666
1667                 /*
1668                  * If regulator_dev_lookup() fails with error other
1669                  * than -ENODEV our job here is done, we simply return it.
1670                  */
1671                 if (ret != -ENODEV)
1672                         return ERR_PTR(ret);
1673
1674                 if (!have_full_constraints()) {
1675                         dev_warn(dev,
1676                                  "incomplete constraints, dummy supplies not allowed\n");
1677                         return ERR_PTR(-ENODEV);
1678                 }
1679
1680                 switch (get_type) {
1681                 case NORMAL_GET:
1682                         /*
1683                          * Assume that a regulator is physically present and
1684                          * enabled, even if it isn't hooked up, and just
1685                          * provide a dummy.
1686                          */
1687                         dev_warn(dev,
1688                                  "%s supply %s not found, using dummy regulator\n",
1689                                  devname, id);
1690                         rdev = dummy_regulator_rdev;
1691                         get_device(&rdev->dev);
1692                         break;
1693
1694                 case EXCLUSIVE_GET:
1695                         dev_warn(dev,
1696                                  "dummy supplies not allowed for exclusive requests\n");
1697                         /* fall through */
1698
1699                 default:
1700                         return ERR_PTR(-ENODEV);
1701                 }
1702         }
1703
1704         if (rdev->exclusive) {
1705                 regulator = ERR_PTR(-EPERM);
1706                 put_device(&rdev->dev);
1707                 return regulator;
1708         }
1709
1710         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1711                 regulator = ERR_PTR(-EBUSY);
1712                 put_device(&rdev->dev);
1713                 return regulator;
1714         }
1715
1716         ret = regulator_resolve_supply(rdev);
1717         if (ret < 0) {
1718                 regulator = ERR_PTR(ret);
1719                 put_device(&rdev->dev);
1720                 return regulator;
1721         }
1722
1723         if (!try_module_get(rdev->owner)) {
1724                 regulator = ERR_PTR(-EPROBE_DEFER);
1725                 put_device(&rdev->dev);
1726                 return regulator;
1727         }
1728
1729         regulator = create_regulator(rdev, dev, id);
1730         if (regulator == NULL) {
1731                 regulator = ERR_PTR(-ENOMEM);
1732                 put_device(&rdev->dev);
1733                 module_put(rdev->owner);
1734                 return regulator;
1735         }
1736
1737         rdev->open_count++;
1738         if (get_type == EXCLUSIVE_GET) {
1739                 rdev->exclusive = 1;
1740
1741                 ret = _regulator_is_enabled(rdev);
1742                 if (ret > 0)
1743                         rdev->use_count = 1;
1744                 else
1745                         rdev->use_count = 0;
1746         }
1747
1748         device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1749
1750         return regulator;
1751 }
1752
1753 /**
1754  * regulator_get - lookup and obtain a reference to a regulator.
1755  * @dev: device for regulator "consumer"
1756  * @id: Supply name or regulator ID.
1757  *
1758  * Returns a struct regulator corresponding to the regulator producer,
1759  * or IS_ERR() condition containing errno.
1760  *
1761  * Use of supply names configured via regulator_set_device_supply() is
1762  * strongly encouraged.  It is recommended that the supply name used
1763  * should match the name used for the supply and/or the relevant
1764  * device pins in the datasheet.
1765  */
1766 struct regulator *regulator_get(struct device *dev, const char *id)
1767 {
1768         return _regulator_get(dev, id, NORMAL_GET);
1769 }
1770 EXPORT_SYMBOL_GPL(regulator_get);
1771
1772 /**
1773  * regulator_get_exclusive - obtain exclusive access to a regulator.
1774  * @dev: device for regulator "consumer"
1775  * @id: Supply name or regulator ID.
1776  *
1777  * Returns a struct regulator corresponding to the regulator producer,
1778  * or IS_ERR() condition containing errno.  Other consumers will be
1779  * unable to obtain this regulator while this reference is held and the
1780  * use count for the regulator will be initialised to reflect the current
1781  * state of the regulator.
1782  *
1783  * This is intended for use by consumers which cannot tolerate shared
1784  * use of the regulator such as those which need to force the
1785  * regulator off for correct operation of the hardware they are
1786  * controlling.
1787  *
1788  * Use of supply names configured via regulator_set_device_supply() is
1789  * strongly encouraged.  It is recommended that the supply name used
1790  * should match the name used for the supply and/or the relevant
1791  * device pins in the datasheet.
1792  */
1793 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1794 {
1795         return _regulator_get(dev, id, EXCLUSIVE_GET);
1796 }
1797 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1798
1799 /**
1800  * regulator_get_optional - obtain optional access to a regulator.
1801  * @dev: device for regulator "consumer"
1802  * @id: Supply name or regulator ID.
1803  *
1804  * Returns a struct regulator corresponding to the regulator producer,
1805  * or IS_ERR() condition containing errno.
1806  *
1807  * This is intended for use by consumers for devices which can have
1808  * some supplies unconnected in normal use, such as some MMC devices.
1809  * It can allow the regulator core to provide stub supplies for other
1810  * supplies requested using normal regulator_get() calls without
1811  * disrupting the operation of drivers that can handle absent
1812  * supplies.
1813  *
1814  * Use of supply names configured via regulator_set_device_supply() is
1815  * strongly encouraged.  It is recommended that the supply name used
1816  * should match the name used for the supply and/or the relevant
1817  * device pins in the datasheet.
1818  */
1819 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1820 {
1821         return _regulator_get(dev, id, OPTIONAL_GET);
1822 }
1823 EXPORT_SYMBOL_GPL(regulator_get_optional);
1824
1825 /* regulator_list_mutex lock held by regulator_put() */
1826 static void _regulator_put(struct regulator *regulator)
1827 {
1828         struct regulator_dev *rdev;
1829
1830         if (IS_ERR_OR_NULL(regulator))
1831                 return;
1832
1833         lockdep_assert_held_once(&regulator_list_mutex);
1834
1835         rdev = regulator->rdev;
1836
1837         debugfs_remove_recursive(regulator->debugfs);
1838
1839         if (regulator->dev) {
1840                 int count = 0;
1841                 struct regulator *r;
1842
1843                 list_for_each_entry(r, &rdev->consumer_list, list)
1844                         if (r->dev == regulator->dev)
1845                                 count++;
1846
1847                 if (count == 1)
1848                         device_link_remove(regulator->dev, &rdev->dev);
1849
1850                 /* remove any sysfs entries */
1851                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1852         }
1853
1854         regulator_lock(rdev);
1855         list_del(&regulator->list);
1856
1857         rdev->open_count--;
1858         rdev->exclusive = 0;
1859         put_device(&rdev->dev);
1860         regulator_unlock(rdev);
1861
1862         kfree_const(regulator->supply_name);
1863         kfree(regulator);
1864
1865         module_put(rdev->owner);
1866 }
1867
1868 /**
1869  * regulator_put - "free" the regulator source
1870  * @regulator: regulator source
1871  *
1872  * Note: drivers must ensure that all regulator_enable calls made on this
1873  * regulator source are balanced by regulator_disable calls prior to calling
1874  * this function.
1875  */
1876 void regulator_put(struct regulator *regulator)
1877 {
1878         mutex_lock(&regulator_list_mutex);
1879         _regulator_put(regulator);
1880         mutex_unlock(&regulator_list_mutex);
1881 }
1882 EXPORT_SYMBOL_GPL(regulator_put);
1883
1884 /**
1885  * regulator_register_supply_alias - Provide device alias for supply lookup
1886  *
1887  * @dev: device that will be given as the regulator "consumer"
1888  * @id: Supply name or regulator ID
1889  * @alias_dev: device that should be used to lookup the supply
1890  * @alias_id: Supply name or regulator ID that should be used to lookup the
1891  * supply
1892  *
1893  * All lookups for id on dev will instead be conducted for alias_id on
1894  * alias_dev.
1895  */
1896 int regulator_register_supply_alias(struct device *dev, const char *id,
1897                                     struct device *alias_dev,
1898                                     const char *alias_id)
1899 {
1900         struct regulator_supply_alias *map;
1901
1902         map = regulator_find_supply_alias(dev, id);
1903         if (map)
1904                 return -EEXIST;
1905
1906         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1907         if (!map)
1908                 return -ENOMEM;
1909
1910         map->src_dev = dev;
1911         map->src_supply = id;
1912         map->alias_dev = alias_dev;
1913         map->alias_supply = alias_id;
1914
1915         list_add(&map->list, &regulator_supply_alias_list);
1916
1917         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1918                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1919
1920         return 0;
1921 }
1922 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1923
1924 /**
1925  * regulator_unregister_supply_alias - Remove device alias
1926  *
1927  * @dev: device that will be given as the regulator "consumer"
1928  * @id: Supply name or regulator ID
1929  *
1930  * Remove a lookup alias if one exists for id on dev.
1931  */
1932 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1933 {
1934         struct regulator_supply_alias *map;
1935
1936         map = regulator_find_supply_alias(dev, id);
1937         if (map) {
1938                 list_del(&map->list);
1939                 kfree(map);
1940         }
1941 }
1942 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1943
1944 /**
1945  * regulator_bulk_register_supply_alias - register multiple aliases
1946  *
1947  * @dev: device that will be given as the regulator "consumer"
1948  * @id: List of supply names or regulator IDs
1949  * @alias_dev: device that should be used to lookup the supply
1950  * @alias_id: List of supply names or regulator IDs that should be used to
1951  * lookup the supply
1952  * @num_id: Number of aliases to register
1953  *
1954  * @return 0 on success, an errno on failure.
1955  *
1956  * This helper function allows drivers to register several supply
1957  * aliases in one operation.  If any of the aliases cannot be
1958  * registered any aliases that were registered will be removed
1959  * before returning to the caller.
1960  */
1961 int regulator_bulk_register_supply_alias(struct device *dev,
1962                                          const char *const *id,
1963                                          struct device *alias_dev,
1964                                          const char *const *alias_id,
1965                                          int num_id)
1966 {
1967         int i;
1968         int ret;
1969
1970         for (i = 0; i < num_id; ++i) {
1971                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1972                                                       alias_id[i]);
1973                 if (ret < 0)
1974                         goto err;
1975         }
1976
1977         return 0;
1978
1979 err:
1980         dev_err(dev,
1981                 "Failed to create supply alias %s,%s -> %s,%s\n",
1982                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1983
1984         while (--i >= 0)
1985                 regulator_unregister_supply_alias(dev, id[i]);
1986
1987         return ret;
1988 }
1989 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1990
1991 /**
1992  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1993  *
1994  * @dev: device that will be given as the regulator "consumer"
1995  * @id: List of supply names or regulator IDs
1996  * @num_id: Number of aliases to unregister
1997  *
1998  * This helper function allows drivers to unregister several supply
1999  * aliases in one operation.
2000  */
2001 void regulator_bulk_unregister_supply_alias(struct device *dev,
2002                                             const char *const *id,
2003                                             int num_id)
2004 {
2005         int i;
2006
2007         for (i = 0; i < num_id; ++i)
2008                 regulator_unregister_supply_alias(dev, id[i]);
2009 }
2010 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2011
2012
2013 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2014 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2015                                 const struct regulator_config *config)
2016 {
2017         struct regulator_enable_gpio *pin;
2018         struct gpio_desc *gpiod;
2019         int ret;
2020
2021         if (config->ena_gpiod)
2022                 gpiod = config->ena_gpiod;
2023         else
2024                 gpiod = gpio_to_desc(config->ena_gpio);
2025
2026         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2027                 if (pin->gpiod == gpiod) {
2028                         rdev_dbg(rdev, "GPIO %d is already used\n",
2029                                 config->ena_gpio);
2030                         goto update_ena_gpio_to_rdev;
2031                 }
2032         }
2033
2034         if (!config->ena_gpiod) {
2035                 ret = gpio_request_one(config->ena_gpio,
2036                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
2037                                        rdev_get_name(rdev));
2038                 if (ret)
2039                         return ret;
2040         }
2041
2042         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2043         if (pin == NULL) {
2044                 if (!config->ena_gpiod)
2045                         gpio_free(config->ena_gpio);
2046                 return -ENOMEM;
2047         }
2048
2049         pin->gpiod = gpiod;
2050         pin->ena_gpio_invert = config->ena_gpio_invert;
2051         list_add(&pin->list, &regulator_ena_gpio_list);
2052
2053 update_ena_gpio_to_rdev:
2054         pin->request_count++;
2055         rdev->ena_pin = pin;
2056         return 0;
2057 }
2058
2059 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2060 {
2061         struct regulator_enable_gpio *pin, *n;
2062
2063         if (!rdev->ena_pin)
2064                 return;
2065
2066         /* Free the GPIO only in case of no use */
2067         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2068                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2069                         if (pin->request_count <= 1) {
2070                                 pin->request_count = 0;
2071                                 gpiod_put(pin->gpiod);
2072                                 list_del(&pin->list);
2073                                 kfree(pin);
2074                                 rdev->ena_pin = NULL;
2075                                 return;
2076                         } else {
2077                                 pin->request_count--;
2078                         }
2079                 }
2080         }
2081 }
2082
2083 /**
2084  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2085  * @rdev: regulator_dev structure
2086  * @enable: enable GPIO at initial use?
2087  *
2088  * GPIO is enabled in case of initial use. (enable_count is 0)
2089  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2090  */
2091 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2092 {
2093         struct regulator_enable_gpio *pin = rdev->ena_pin;
2094
2095         if (!pin)
2096                 return -EINVAL;
2097
2098         if (enable) {
2099                 /* Enable GPIO at initial use */
2100                 if (pin->enable_count == 0)
2101                         gpiod_set_value_cansleep(pin->gpiod,
2102                                                  !pin->ena_gpio_invert);
2103
2104                 pin->enable_count++;
2105         } else {
2106                 if (pin->enable_count > 1) {
2107                         pin->enable_count--;
2108                         return 0;
2109                 }
2110
2111                 /* Disable GPIO if not used */
2112                 if (pin->enable_count <= 1) {
2113                         gpiod_set_value_cansleep(pin->gpiod,
2114                                                  pin->ena_gpio_invert);
2115                         pin->enable_count = 0;
2116                 }
2117         }
2118
2119         return 0;
2120 }
2121
2122 /**
2123  * _regulator_enable_delay - a delay helper function
2124  * @delay: time to delay in microseconds
2125  *
2126  * Delay for the requested amount of time as per the guidelines in:
2127  *
2128  *     Documentation/timers/timers-howto.txt
2129  *
2130  * The assumption here is that regulators will never be enabled in
2131  * atomic context and therefore sleeping functions can be used.
2132  */
2133 static void _regulator_enable_delay(unsigned int delay)
2134 {
2135         unsigned int ms = delay / 1000;
2136         unsigned int us = delay % 1000;
2137
2138         if (ms > 0) {
2139                 /*
2140                  * For small enough values, handle super-millisecond
2141                  * delays in the usleep_range() call below.
2142                  */
2143                 if (ms < 20)
2144                         us += ms * 1000;
2145                 else
2146                         msleep(ms);
2147         }
2148
2149         /*
2150          * Give the scheduler some room to coalesce with any other
2151          * wakeup sources. For delays shorter than 10 us, don't even
2152          * bother setting up high-resolution timers and just busy-
2153          * loop.
2154          */
2155         if (us >= 10)
2156                 usleep_range(us, us + 100);
2157         else
2158                 udelay(us);
2159 }
2160
2161 static int _regulator_do_enable(struct regulator_dev *rdev)
2162 {
2163         int ret, delay;
2164
2165         /* Query before enabling in case configuration dependent.  */
2166         ret = _regulator_get_enable_time(rdev);
2167         if (ret >= 0) {
2168                 delay = ret;
2169         } else {
2170                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2171                 delay = 0;
2172         }
2173
2174         trace_regulator_enable(rdev_get_name(rdev));
2175
2176         if (rdev->desc->off_on_delay) {
2177                 /* if needed, keep a distance of off_on_delay from last time
2178                  * this regulator was disabled.
2179                  */
2180                 unsigned long start_jiffy = jiffies;
2181                 unsigned long intended, max_delay, remaining;
2182
2183                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2184                 intended = rdev->last_off_jiffy + max_delay;
2185
2186                 if (time_before(start_jiffy, intended)) {
2187                         /* calc remaining jiffies to deal with one-time
2188                          * timer wrapping.
2189                          * in case of multiple timer wrapping, either it can be
2190                          * detected by out-of-range remaining, or it cannot be
2191                          * detected and we gets a panelty of
2192                          * _regulator_enable_delay().
2193                          */
2194                         remaining = intended - start_jiffy;
2195                         if (remaining <= max_delay)
2196                                 _regulator_enable_delay(
2197                                                 jiffies_to_usecs(remaining));
2198                 }
2199         }
2200
2201         if (rdev->ena_pin) {
2202                 if (!rdev->ena_gpio_state) {
2203                         ret = regulator_ena_gpio_ctrl(rdev, true);
2204                         if (ret < 0)
2205                                 return ret;
2206                         rdev->ena_gpio_state = 1;
2207                 }
2208         } else if (rdev->desc->ops->enable) {
2209                 ret = rdev->desc->ops->enable(rdev);
2210                 if (ret < 0)
2211                         return ret;
2212         } else {
2213                 return -EINVAL;
2214         }
2215
2216         /* Allow the regulator to ramp; it would be useful to extend
2217          * this for bulk operations so that the regulators can ramp
2218          * together.  */
2219         trace_regulator_enable_delay(rdev_get_name(rdev));
2220
2221         _regulator_enable_delay(delay);
2222
2223         trace_regulator_enable_complete(rdev_get_name(rdev));
2224
2225         return 0;
2226 }
2227
2228 /* locks held by regulator_enable() */
2229 static int _regulator_enable(struct regulator_dev *rdev)
2230 {
2231         int ret;
2232
2233         lockdep_assert_held_once(&rdev->mutex);
2234
2235         /* check voltage and requested load before enabling */
2236         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2237                 drms_uA_update(rdev);
2238
2239         if (rdev->use_count == 0) {
2240                 /* The regulator may on if it's not switchable or left on */
2241                 ret = _regulator_is_enabled(rdev);
2242                 if (ret == -EINVAL || ret == 0) {
2243                         if (!regulator_ops_is_valid(rdev,
2244                                         REGULATOR_CHANGE_STATUS))
2245                                 return -EPERM;
2246
2247                         ret = _regulator_do_enable(rdev);
2248                         if (ret < 0)
2249                                 return ret;
2250
2251                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2252                                              NULL);
2253                 } else if (ret < 0) {
2254                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2255                         return ret;
2256                 }
2257                 /* Fallthrough on positive return values - already enabled */
2258         }
2259
2260         rdev->use_count++;
2261
2262         return 0;
2263 }
2264
2265 /**
2266  * regulator_enable - enable regulator output
2267  * @regulator: regulator source
2268  *
2269  * Request that the regulator be enabled with the regulator output at
2270  * the predefined voltage or current value.  Calls to regulator_enable()
2271  * must be balanced with calls to regulator_disable().
2272  *
2273  * NOTE: the output value can be set by other drivers, boot loader or may be
2274  * hardwired in the regulator.
2275  */
2276 int regulator_enable(struct regulator *regulator)
2277 {
2278         struct regulator_dev *rdev = regulator->rdev;
2279         int ret = 0;
2280
2281         if (regulator->always_on)
2282                 return 0;
2283
2284         if (rdev->supply) {
2285                 ret = regulator_enable(rdev->supply);
2286                 if (ret != 0)
2287                         return ret;
2288         }
2289
2290         mutex_lock(&rdev->mutex);
2291         ret = _regulator_enable(rdev);
2292         mutex_unlock(&rdev->mutex);
2293
2294         if (ret != 0 && rdev->supply)
2295                 regulator_disable(rdev->supply);
2296
2297         return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(regulator_enable);
2300
2301 static int _regulator_do_disable(struct regulator_dev *rdev)
2302 {
2303         int ret;
2304
2305         trace_regulator_disable(rdev_get_name(rdev));
2306
2307         if (rdev->ena_pin) {
2308                 if (rdev->ena_gpio_state) {
2309                         ret = regulator_ena_gpio_ctrl(rdev, false);
2310                         if (ret < 0)
2311                                 return ret;
2312                         rdev->ena_gpio_state = 0;
2313                 }
2314
2315         } else if (rdev->desc->ops->disable) {
2316                 ret = rdev->desc->ops->disable(rdev);
2317                 if (ret != 0)
2318                         return ret;
2319         }
2320
2321         /* cares about last_off_jiffy only if off_on_delay is required by
2322          * device.
2323          */
2324         if (rdev->desc->off_on_delay)
2325                 rdev->last_off_jiffy = jiffies;
2326
2327         trace_regulator_disable_complete(rdev_get_name(rdev));
2328
2329         return 0;
2330 }
2331
2332 /* locks held by regulator_disable() */
2333 static int _regulator_disable(struct regulator_dev *rdev)
2334 {
2335         int ret = 0;
2336
2337         lockdep_assert_held_once(&rdev->mutex);
2338
2339         if (WARN(rdev->use_count <= 0,
2340                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2341                 return -EIO;
2342
2343         /* are we the last user and permitted to disable ? */
2344         if (rdev->use_count == 1 &&
2345             (rdev->constraints && !rdev->constraints->always_on)) {
2346
2347                 /* we are last user */
2348                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2349                         ret = _notifier_call_chain(rdev,
2350                                                    REGULATOR_EVENT_PRE_DISABLE,
2351                                                    NULL);
2352                         if (ret & NOTIFY_STOP_MASK)
2353                                 return -EINVAL;
2354
2355                         ret = _regulator_do_disable(rdev);
2356                         if (ret < 0) {
2357                                 rdev_err(rdev, "failed to disable\n");
2358                                 _notifier_call_chain(rdev,
2359                                                 REGULATOR_EVENT_ABORT_DISABLE,
2360                                                 NULL);
2361                                 return ret;
2362                         }
2363                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2364                                         NULL);
2365                 }
2366
2367                 rdev->use_count = 0;
2368         } else if (rdev->use_count > 1) {
2369                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2370                         drms_uA_update(rdev);
2371
2372                 rdev->use_count--;
2373         }
2374
2375         return ret;
2376 }
2377
2378 /**
2379  * regulator_disable - disable regulator output
2380  * @regulator: regulator source
2381  *
2382  * Disable the regulator output voltage or current.  Calls to
2383  * regulator_enable() must be balanced with calls to
2384  * regulator_disable().
2385  *
2386  * NOTE: this will only disable the regulator output if no other consumer
2387  * devices have it enabled, the regulator device supports disabling and
2388  * machine constraints permit this operation.
2389  */
2390 int regulator_disable(struct regulator *regulator)
2391 {
2392         struct regulator_dev *rdev = regulator->rdev;
2393         int ret = 0;
2394
2395         if (regulator->always_on)
2396                 return 0;
2397
2398         mutex_lock(&rdev->mutex);
2399         ret = _regulator_disable(rdev);
2400         mutex_unlock(&rdev->mutex);
2401
2402         if (ret == 0 && rdev->supply)
2403                 regulator_disable(rdev->supply);
2404
2405         return ret;
2406 }
2407 EXPORT_SYMBOL_GPL(regulator_disable);
2408
2409 /* locks held by regulator_force_disable() */
2410 static int _regulator_force_disable(struct regulator_dev *rdev)
2411 {
2412         int ret = 0;
2413
2414         lockdep_assert_held_once(&rdev->mutex);
2415
2416         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2417                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2418         if (ret & NOTIFY_STOP_MASK)
2419                 return -EINVAL;
2420
2421         ret = _regulator_do_disable(rdev);
2422         if (ret < 0) {
2423                 rdev_err(rdev, "failed to force disable\n");
2424                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2425                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2426                 return ret;
2427         }
2428
2429         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2430                         REGULATOR_EVENT_DISABLE, NULL);
2431
2432         return 0;
2433 }
2434
2435 /**
2436  * regulator_force_disable - force disable regulator output
2437  * @regulator: regulator source
2438  *
2439  * Forcibly disable the regulator output voltage or current.
2440  * NOTE: this *will* disable the regulator output even if other consumer
2441  * devices have it enabled. This should be used for situations when device
2442  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2443  */
2444 int regulator_force_disable(struct regulator *regulator)
2445 {
2446         struct regulator_dev *rdev = regulator->rdev;
2447         int ret;
2448
2449         mutex_lock(&rdev->mutex);
2450         regulator->uA_load = 0;
2451         ret = _regulator_force_disable(regulator->rdev);
2452         mutex_unlock(&rdev->mutex);
2453
2454         if (rdev->supply)
2455                 while (rdev->open_count--)
2456                         regulator_disable(rdev->supply);
2457
2458         return ret;
2459 }
2460 EXPORT_SYMBOL_GPL(regulator_force_disable);
2461
2462 static void regulator_disable_work(struct work_struct *work)
2463 {
2464         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2465                                                   disable_work.work);
2466         int count, i, ret;
2467
2468         regulator_lock(rdev);
2469
2470         BUG_ON(!rdev->deferred_disables);
2471
2472         count = rdev->deferred_disables;
2473         rdev->deferred_disables = 0;
2474
2475         /*
2476          * Workqueue functions queue the new work instance while the previous
2477          * work instance is being processed. Cancel the queued work instance
2478          * as the work instance under processing does the job of the queued
2479          * work instance.
2480          */
2481         cancel_delayed_work(&rdev->disable_work);
2482
2483         for (i = 0; i < count; i++) {
2484                 ret = _regulator_disable(rdev);
2485                 if (ret != 0)
2486                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2487         }
2488
2489         regulator_unlock(rdev);
2490
2491         if (rdev->supply) {
2492                 for (i = 0; i < count; i++) {
2493                         ret = regulator_disable(rdev->supply);
2494                         if (ret != 0) {
2495                                 rdev_err(rdev,
2496                                          "Supply disable failed: %d\n", ret);
2497                         }
2498                 }
2499         }
2500 }
2501
2502 /**
2503  * regulator_disable_deferred - disable regulator output with delay
2504  * @regulator: regulator source
2505  * @ms: miliseconds until the regulator is disabled
2506  *
2507  * Execute regulator_disable() on the regulator after a delay.  This
2508  * is intended for use with devices that require some time to quiesce.
2509  *
2510  * NOTE: this will only disable the regulator output if no other consumer
2511  * devices have it enabled, the regulator device supports disabling and
2512  * machine constraints permit this operation.
2513  */
2514 int regulator_disable_deferred(struct regulator *regulator, int ms)
2515 {
2516         struct regulator_dev *rdev = regulator->rdev;
2517
2518         if (regulator->always_on)
2519                 return 0;
2520
2521         if (!ms)
2522                 return regulator_disable(regulator);
2523
2524         regulator_lock(rdev);
2525         rdev->deferred_disables++;
2526         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2527                          msecs_to_jiffies(ms));
2528         regulator_unlock(rdev);
2529
2530         return 0;
2531 }
2532 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2533
2534 static int _regulator_is_enabled(struct regulator_dev *rdev)
2535 {
2536         /* A GPIO control always takes precedence */
2537         if (rdev->ena_pin)
2538                 return rdev->ena_gpio_state;
2539
2540         /* If we don't know then assume that the regulator is always on */
2541         if (!rdev->desc->ops->is_enabled)
2542                 return 1;
2543
2544         return rdev->desc->ops->is_enabled(rdev);
2545 }
2546
2547 static int _regulator_list_voltage(struct regulator_dev *rdev,
2548                                    unsigned selector, int lock)
2549 {
2550         const struct regulator_ops *ops = rdev->desc->ops;
2551         int ret;
2552
2553         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2554                 return rdev->desc->fixed_uV;
2555
2556         if (ops->list_voltage) {
2557                 if (selector >= rdev->desc->n_voltages)
2558                         return -EINVAL;
2559                 if (lock)
2560                         regulator_lock(rdev);
2561                 ret = ops->list_voltage(rdev, selector);
2562                 if (lock)
2563                         regulator_unlock(rdev);
2564         } else if (rdev->is_switch && rdev->supply) {
2565                 ret = _regulator_list_voltage(rdev->supply->rdev,
2566                                               selector, lock);
2567         } else {
2568                 return -EINVAL;
2569         }
2570
2571         if (ret > 0) {
2572                 if (ret < rdev->constraints->min_uV)
2573                         ret = 0;
2574                 else if (ret > rdev->constraints->max_uV)
2575                         ret = 0;
2576         }
2577
2578         return ret;
2579 }
2580
2581 /**
2582  * regulator_is_enabled - is the regulator output enabled
2583  * @regulator: regulator source
2584  *
2585  * Returns positive if the regulator driver backing the source/client
2586  * has requested that the device be enabled, zero if it hasn't, else a
2587  * negative errno code.
2588  *
2589  * Note that the device backing this regulator handle can have multiple
2590  * users, so it might be enabled even if regulator_enable() was never
2591  * called for this particular source.
2592  */
2593 int regulator_is_enabled(struct regulator *regulator)
2594 {
2595         int ret;
2596
2597         if (regulator->always_on)
2598                 return 1;
2599
2600         mutex_lock(&regulator->rdev->mutex);
2601         ret = _regulator_is_enabled(regulator->rdev);
2602         mutex_unlock(&regulator->rdev->mutex);
2603
2604         return ret;
2605 }
2606 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2607
2608 /**
2609  * regulator_count_voltages - count regulator_list_voltage() selectors
2610  * @regulator: regulator source
2611  *
2612  * Returns number of selectors, or negative errno.  Selectors are
2613  * numbered starting at zero, and typically correspond to bitfields
2614  * in hardware registers.
2615  */
2616 int regulator_count_voltages(struct regulator *regulator)
2617 {
2618         struct regulator_dev    *rdev = regulator->rdev;
2619
2620         if (rdev->desc->n_voltages)
2621                 return rdev->desc->n_voltages;
2622
2623         if (!rdev->is_switch || !rdev->supply)
2624                 return -EINVAL;
2625
2626         return regulator_count_voltages(rdev->supply);
2627 }
2628 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2629
2630 /**
2631  * regulator_list_voltage - enumerate supported voltages
2632  * @regulator: regulator source
2633  * @selector: identify voltage to list
2634  * Context: can sleep
2635  *
2636  * Returns a voltage that can be passed to @regulator_set_voltage(),
2637  * zero if this selector code can't be used on this system, or a
2638  * negative errno.
2639  */
2640 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2641 {
2642         return _regulator_list_voltage(regulator->rdev, selector, 1);
2643 }
2644 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2645
2646 /**
2647  * regulator_get_regmap - get the regulator's register map
2648  * @regulator: regulator source
2649  *
2650  * Returns the register map for the given regulator, or an ERR_PTR value
2651  * if the regulator doesn't use regmap.
2652  */
2653 struct regmap *regulator_get_regmap(struct regulator *regulator)
2654 {
2655         struct regmap *map = regulator->rdev->regmap;
2656
2657         return map ? map : ERR_PTR(-EOPNOTSUPP);
2658 }
2659
2660 /**
2661  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2662  * @regulator: regulator source
2663  * @vsel_reg: voltage selector register, output parameter
2664  * @vsel_mask: mask for voltage selector bitfield, output parameter
2665  *
2666  * Returns the hardware register offset and bitmask used for setting the
2667  * regulator voltage. This might be useful when configuring voltage-scaling
2668  * hardware or firmware that can make I2C requests behind the kernel's back,
2669  * for example.
2670  *
2671  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2672  * and 0 is returned, otherwise a negative errno is returned.
2673  */
2674 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2675                                          unsigned *vsel_reg,
2676                                          unsigned *vsel_mask)
2677 {
2678         struct regulator_dev *rdev = regulator->rdev;
2679         const struct regulator_ops *ops = rdev->desc->ops;
2680
2681         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2682                 return -EOPNOTSUPP;
2683
2684         *vsel_reg = rdev->desc->vsel_reg;
2685         *vsel_mask = rdev->desc->vsel_mask;
2686
2687          return 0;
2688 }
2689 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2690
2691 /**
2692  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2693  * @regulator: regulator source
2694  * @selector: identify voltage to list
2695  *
2696  * Converts the selector to a hardware-specific voltage selector that can be
2697  * directly written to the regulator registers. The address of the voltage
2698  * register can be determined by calling @regulator_get_hardware_vsel_register.
2699  *
2700  * On error a negative errno is returned.
2701  */
2702 int regulator_list_hardware_vsel(struct regulator *regulator,
2703                                  unsigned selector)
2704 {
2705         struct regulator_dev *rdev = regulator->rdev;
2706         const struct regulator_ops *ops = rdev->desc->ops;
2707
2708         if (selector >= rdev->desc->n_voltages)
2709                 return -EINVAL;
2710         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2711                 return -EOPNOTSUPP;
2712
2713         return selector;
2714 }
2715 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2716
2717 /**
2718  * regulator_get_linear_step - return the voltage step size between VSEL values
2719  * @regulator: regulator source
2720  *
2721  * Returns the voltage step size between VSEL values for linear
2722  * regulators, or return 0 if the regulator isn't a linear regulator.
2723  */
2724 unsigned int regulator_get_linear_step(struct regulator *regulator)
2725 {
2726         struct regulator_dev *rdev = regulator->rdev;
2727
2728         return rdev->desc->uV_step;
2729 }
2730 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2731
2732 /**
2733  * regulator_is_supported_voltage - check if a voltage range can be supported
2734  *
2735  * @regulator: Regulator to check.
2736  * @min_uV: Minimum required voltage in uV.
2737  * @max_uV: Maximum required voltage in uV.
2738  *
2739  * Returns a boolean or a negative error code.
2740  */
2741 int regulator_is_supported_voltage(struct regulator *regulator,
2742                                    int min_uV, int max_uV)
2743 {
2744         struct regulator_dev *rdev = regulator->rdev;
2745         int i, voltages, ret;
2746
2747         /* If we can't change voltage check the current voltage */
2748         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2749                 ret = regulator_get_voltage(regulator);
2750                 if (ret >= 0)
2751                         return min_uV <= ret && ret <= max_uV;
2752                 else
2753                         return ret;
2754         }
2755
2756         /* Any voltage within constrains range is fine? */
2757         if (rdev->desc->continuous_voltage_range)
2758                 return min_uV >= rdev->constraints->min_uV &&
2759                                 max_uV <= rdev->constraints->max_uV;
2760
2761         ret = regulator_count_voltages(regulator);
2762         if (ret < 0)
2763                 return ret;
2764         voltages = ret;
2765
2766         for (i = 0; i < voltages; i++) {
2767                 ret = regulator_list_voltage(regulator, i);
2768
2769                 if (ret >= min_uV && ret <= max_uV)
2770                         return 1;
2771         }
2772
2773         return 0;
2774 }
2775 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2776
2777 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2778                                  int max_uV)
2779 {
2780         const struct regulator_desc *desc = rdev->desc;
2781
2782         if (desc->ops->map_voltage)
2783                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2784
2785         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2786                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2787
2788         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2789                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2790
2791         if (desc->ops->list_voltage ==
2792                 regulator_list_voltage_pickable_linear_range)
2793                 return regulator_map_voltage_pickable_linear_range(rdev,
2794                                                         min_uV, max_uV);
2795
2796         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2797 }
2798
2799 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2800                                        int min_uV, int max_uV,
2801                                        unsigned *selector)
2802 {
2803         struct pre_voltage_change_data data;
2804         int ret;
2805
2806         data.old_uV = _regulator_get_voltage(rdev);
2807         data.min_uV = min_uV;
2808         data.max_uV = max_uV;
2809         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2810                                    &data);
2811         if (ret & NOTIFY_STOP_MASK)
2812                 return -EINVAL;
2813
2814         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2815         if (ret >= 0)
2816                 return ret;
2817
2818         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2819                              (void *)data.old_uV);
2820
2821         return ret;
2822 }
2823
2824 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2825                                            int uV, unsigned selector)
2826 {
2827         struct pre_voltage_change_data data;
2828         int ret;
2829
2830         data.old_uV = _regulator_get_voltage(rdev);
2831         data.min_uV = uV;
2832         data.max_uV = uV;
2833         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2834                                    &data);
2835         if (ret & NOTIFY_STOP_MASK)
2836                 return -EINVAL;
2837
2838         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2839         if (ret >= 0)
2840                 return ret;
2841
2842         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2843                              (void *)data.old_uV);
2844
2845         return ret;
2846 }
2847
2848 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2849                                        int old_uV, int new_uV)
2850 {
2851         unsigned int ramp_delay = 0;
2852
2853         if (rdev->constraints->ramp_delay)
2854                 ramp_delay = rdev->constraints->ramp_delay;
2855         else if (rdev->desc->ramp_delay)
2856                 ramp_delay = rdev->desc->ramp_delay;
2857         else if (rdev->constraints->settling_time)
2858                 return rdev->constraints->settling_time;
2859         else if (rdev->constraints->settling_time_up &&
2860                  (new_uV > old_uV))
2861                 return rdev->constraints->settling_time_up;
2862         else if (rdev->constraints->settling_time_down &&
2863                  (new_uV < old_uV))
2864                 return rdev->constraints->settling_time_down;
2865
2866         if (ramp_delay == 0) {
2867                 rdev_dbg(rdev, "ramp_delay not set\n");
2868                 return 0;
2869         }
2870
2871         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2872 }
2873
2874 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2875                                      int min_uV, int max_uV)
2876 {
2877         int ret;
2878         int delay = 0;
2879         int best_val = 0;
2880         unsigned int selector;
2881         int old_selector = -1;
2882         const struct regulator_ops *ops = rdev->desc->ops;
2883         int old_uV = _regulator_get_voltage(rdev);
2884
2885         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2886
2887         min_uV += rdev->constraints->uV_offset;
2888         max_uV += rdev->constraints->uV_offset;
2889
2890         /*
2891          * If we can't obtain the old selector there is not enough
2892          * info to call set_voltage_time_sel().
2893          */
2894         if (_regulator_is_enabled(rdev) &&
2895             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2896                 old_selector = ops->get_voltage_sel(rdev);
2897                 if (old_selector < 0)
2898                         return old_selector;
2899         }
2900
2901         if (ops->set_voltage) {
2902                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2903                                                   &selector);
2904
2905                 if (ret >= 0) {
2906                         if (ops->list_voltage)
2907                                 best_val = ops->list_voltage(rdev,
2908                                                              selector);
2909                         else
2910                                 best_val = _regulator_get_voltage(rdev);
2911                 }
2912
2913         } else if (ops->set_voltage_sel) {
2914                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2915                 if (ret >= 0) {
2916                         best_val = ops->list_voltage(rdev, ret);
2917                         if (min_uV <= best_val && max_uV >= best_val) {
2918                                 selector = ret;
2919                                 if (old_selector == selector)
2920                                         ret = 0;
2921                                 else
2922                                         ret = _regulator_call_set_voltage_sel(
2923                                                 rdev, best_val, selector);
2924                         } else {
2925                                 ret = -EINVAL;
2926                         }
2927                 }
2928         } else {
2929                 ret = -EINVAL;
2930         }
2931
2932         if (ret)
2933                 goto out;
2934
2935         if (ops->set_voltage_time_sel) {
2936                 /*
2937                  * Call set_voltage_time_sel if successfully obtained
2938                  * old_selector
2939                  */
2940                 if (old_selector >= 0 && old_selector != selector)
2941                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2942                                                           selector);
2943         } else {
2944                 if (old_uV != best_val) {
2945                         if (ops->set_voltage_time)
2946                                 delay = ops->set_voltage_time(rdev, old_uV,
2947                                                               best_val);
2948                         else
2949                                 delay = _regulator_set_voltage_time(rdev,
2950                                                                     old_uV,
2951                                                                     best_val);
2952                 }
2953         }
2954
2955         if (delay < 0) {
2956                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2957                 delay = 0;
2958         }
2959
2960         /* Insert any necessary delays */
2961         if (delay >= 1000) {
2962                 mdelay(delay / 1000);
2963                 udelay(delay % 1000);
2964         } else if (delay) {
2965                 udelay(delay);
2966         }
2967
2968         if (best_val >= 0) {
2969                 unsigned long data = best_val;
2970
2971                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2972                                      (void *)data);
2973         }
2974
2975 out:
2976         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2977
2978         return ret;
2979 }
2980
2981 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2982                                   int min_uV, int max_uV, suspend_state_t state)
2983 {
2984         struct regulator_state *rstate;
2985         int uV, sel;
2986
2987         rstate = regulator_get_suspend_state(rdev, state);
2988         if (rstate == NULL)
2989                 return -EINVAL;
2990
2991         if (min_uV < rstate->min_uV)
2992                 min_uV = rstate->min_uV;
2993         if (max_uV > rstate->max_uV)
2994                 max_uV = rstate->max_uV;
2995
2996         sel = regulator_map_voltage(rdev, min_uV, max_uV);
2997         if (sel < 0)
2998                 return sel;
2999
3000         uV = rdev->desc->ops->list_voltage(rdev, sel);
3001         if (uV >= min_uV && uV <= max_uV)
3002                 rstate->uV = uV;
3003
3004         return 0;
3005 }
3006
3007 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3008                                           int min_uV, int max_uV,
3009                                           suspend_state_t state)
3010 {
3011         struct regulator_dev *rdev = regulator->rdev;
3012         struct regulator_voltage *voltage = &regulator->voltage[state];
3013         int ret = 0;
3014         int old_min_uV, old_max_uV;
3015         int current_uV;
3016         int best_supply_uV = 0;
3017         int supply_change_uV = 0;
3018
3019         /* If we're setting the same range as last time the change
3020          * should be a noop (some cpufreq implementations use the same
3021          * voltage for multiple frequencies, for example).
3022          */
3023         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3024                 goto out;
3025
3026         /* If we're trying to set a range that overlaps the current voltage,
3027          * return successfully even though the regulator does not support
3028          * changing the voltage.
3029          */
3030         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3031                 current_uV = _regulator_get_voltage(rdev);
3032                 if (min_uV <= current_uV && current_uV <= max_uV) {
3033                         voltage->min_uV = min_uV;
3034                         voltage->max_uV = max_uV;
3035                         goto out;
3036                 }
3037         }
3038
3039         /* sanity check */
3040         if (!rdev->desc->ops->set_voltage &&
3041             !rdev->desc->ops->set_voltage_sel) {
3042                 ret = -EINVAL;
3043                 goto out;
3044         }
3045
3046         /* constraints check */
3047         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3048         if (ret < 0)
3049                 goto out;
3050
3051         /* restore original values in case of error */
3052         old_min_uV = voltage->min_uV;
3053         old_max_uV = voltage->max_uV;
3054         voltage->min_uV = min_uV;
3055         voltage->max_uV = max_uV;
3056
3057         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3058         if (ret < 0)
3059                 goto out2;
3060
3061         if (rdev->supply &&
3062             regulator_ops_is_valid(rdev->supply->rdev,
3063                                    REGULATOR_CHANGE_VOLTAGE) &&
3064             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3065                                            rdev->desc->ops->get_voltage_sel))) {
3066                 int current_supply_uV;
3067                 int selector;
3068
3069                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3070                 if (selector < 0) {
3071                         ret = selector;
3072                         goto out2;
3073                 }
3074
3075                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3076                 if (best_supply_uV < 0) {
3077                         ret = best_supply_uV;
3078                         goto out2;
3079                 }
3080
3081                 best_supply_uV += rdev->desc->min_dropout_uV;
3082
3083                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3084                 if (current_supply_uV < 0) {
3085                         ret = current_supply_uV;
3086                         goto out2;
3087                 }
3088
3089                 supply_change_uV = best_supply_uV - current_supply_uV;
3090         }
3091
3092         if (supply_change_uV > 0) {
3093                 ret = regulator_set_voltage_unlocked(rdev->supply,
3094                                 best_supply_uV, INT_MAX, state);
3095                 if (ret) {
3096                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3097                                         ret);
3098                         goto out2;
3099                 }
3100         }
3101
3102         if (state == PM_SUSPEND_ON)
3103                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3104         else
3105                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3106                                                         max_uV, state);
3107         if (ret < 0)
3108                 goto out2;
3109
3110         if (supply_change_uV < 0) {
3111                 ret = regulator_set_voltage_unlocked(rdev->supply,
3112                                 best_supply_uV, INT_MAX, state);
3113                 if (ret)
3114                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3115                                         ret);
3116                 /* No need to fail here */
3117                 ret = 0;
3118         }
3119
3120 out:
3121         return ret;
3122 out2:
3123         voltage->min_uV = old_min_uV;
3124         voltage->max_uV = old_max_uV;
3125
3126         return ret;
3127 }
3128
3129 /**
3130  * regulator_set_voltage - set regulator output voltage
3131  * @regulator: regulator source
3132  * @min_uV: Minimum required voltage in uV
3133  * @max_uV: Maximum acceptable voltage in uV
3134  *
3135  * Sets a voltage regulator to the desired output voltage. This can be set
3136  * during any regulator state. IOW, regulator can be disabled or enabled.
3137  *
3138  * If the regulator is enabled then the voltage will change to the new value
3139  * immediately otherwise if the regulator is disabled the regulator will
3140  * output at the new voltage when enabled.
3141  *
3142  * NOTE: If the regulator is shared between several devices then the lowest
3143  * request voltage that meets the system constraints will be used.
3144  * Regulator system constraints must be set for this regulator before
3145  * calling this function otherwise this call will fail.
3146  */
3147 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3148 {
3149         int ret = 0;
3150
3151         regulator_lock_supply(regulator->rdev);
3152
3153         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3154                                              PM_SUSPEND_ON);
3155
3156         regulator_unlock_supply(regulator->rdev);
3157
3158         return ret;
3159 }
3160 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3161
3162 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3163                                            suspend_state_t state, bool en)
3164 {
3165         struct regulator_state *rstate;
3166
3167         rstate = regulator_get_suspend_state(rdev, state);
3168         if (rstate == NULL)
3169                 return -EINVAL;
3170
3171         if (!rstate->changeable)
3172                 return -EPERM;
3173
3174         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3175
3176         return 0;
3177 }
3178
3179 int regulator_suspend_enable(struct regulator_dev *rdev,
3180                                     suspend_state_t state)
3181 {
3182         return regulator_suspend_toggle(rdev, state, true);
3183 }
3184 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3185
3186 int regulator_suspend_disable(struct regulator_dev *rdev,
3187                                      suspend_state_t state)
3188 {
3189         struct regulator *regulator;
3190         struct regulator_voltage *voltage;
3191
3192         /*
3193          * if any consumer wants this regulator device keeping on in
3194          * suspend states, don't set it as disabled.
3195          */
3196         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3197                 voltage = &regulator->voltage[state];
3198                 if (voltage->min_uV || voltage->max_uV)
3199                         return 0;
3200         }
3201
3202         return regulator_suspend_toggle(rdev, state, false);
3203 }
3204 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3205
3206 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3207                                           int min_uV, int max_uV,
3208                                           suspend_state_t state)
3209 {
3210         struct regulator_dev *rdev = regulator->rdev;
3211         struct regulator_state *rstate;
3212
3213         rstate = regulator_get_suspend_state(rdev, state);
3214         if (rstate == NULL)
3215                 return -EINVAL;
3216
3217         if (rstate->min_uV == rstate->max_uV) {
3218                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3219                 return -EPERM;
3220         }
3221
3222         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3223 }
3224
3225 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3226                                   int max_uV, suspend_state_t state)
3227 {
3228         int ret = 0;
3229
3230         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3231         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3232                 return -EINVAL;
3233
3234         regulator_lock_supply(regulator->rdev);
3235
3236         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3237                                              max_uV, state);
3238
3239         regulator_unlock_supply(regulator->rdev);
3240
3241         return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3244
3245 /**
3246  * regulator_set_voltage_time - get raise/fall time
3247  * @regulator: regulator source
3248  * @old_uV: starting voltage in microvolts
3249  * @new_uV: target voltage in microvolts
3250  *
3251  * Provided with the starting and ending voltage, this function attempts to
3252  * calculate the time in microseconds required to rise or fall to this new
3253  * voltage.
3254  */
3255 int regulator_set_voltage_time(struct regulator *regulator,
3256                                int old_uV, int new_uV)
3257 {
3258         struct regulator_dev *rdev = regulator->rdev;
3259         const struct regulator_ops *ops = rdev->desc->ops;
3260         int old_sel = -1;
3261         int new_sel = -1;
3262         int voltage;
3263         int i;
3264
3265         if (ops->set_voltage_time)
3266                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3267         else if (!ops->set_voltage_time_sel)
3268                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3269
3270         /* Currently requires operations to do this */
3271         if (!ops->list_voltage || !rdev->desc->n_voltages)
3272                 return -EINVAL;
3273
3274         for (i = 0; i < rdev->desc->n_voltages; i++) {
3275                 /* We only look for exact voltage matches here */
3276                 voltage = regulator_list_voltage(regulator, i);
3277                 if (voltage < 0)
3278                         return -EINVAL;
3279                 if (voltage == 0)
3280                         continue;
3281                 if (voltage == old_uV)
3282                         old_sel = i;
3283                 if (voltage == new_uV)
3284                         new_sel = i;
3285         }
3286
3287         if (old_sel < 0 || new_sel < 0)
3288                 return -EINVAL;
3289
3290         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3291 }
3292 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3293
3294 /**
3295  * regulator_set_voltage_time_sel - get raise/fall time
3296  * @rdev: regulator source device
3297  * @old_selector: selector for starting voltage
3298  * @new_selector: selector for target voltage
3299  *
3300  * Provided with the starting and target voltage selectors, this function
3301  * returns time in microseconds required to rise or fall to this new voltage
3302  *
3303  * Drivers providing ramp_delay in regulation_constraints can use this as their
3304  * set_voltage_time_sel() operation.
3305  */
3306 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3307                                    unsigned int old_selector,
3308                                    unsigned int new_selector)
3309 {
3310         int old_volt, new_volt;
3311
3312         /* sanity check */
3313         if (!rdev->desc->ops->list_voltage)
3314                 return -EINVAL;
3315
3316         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3317         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3318
3319         if (rdev->desc->ops->set_voltage_time)
3320                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3321                                                          new_volt);
3322         else
3323                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3324 }
3325 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3326
3327 /**
3328  * regulator_sync_voltage - re-apply last regulator output voltage
3329  * @regulator: regulator source
3330  *
3331  * Re-apply the last configured voltage.  This is intended to be used
3332  * where some external control source the consumer is cooperating with
3333  * has caused the configured voltage to change.
3334  */
3335 int regulator_sync_voltage(struct regulator *regulator)
3336 {
3337         struct regulator_dev *rdev = regulator->rdev;
3338         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3339         int ret, min_uV, max_uV;
3340
3341         regulator_lock(rdev);
3342
3343         if (!rdev->desc->ops->set_voltage &&
3344             !rdev->desc->ops->set_voltage_sel) {
3345                 ret = -EINVAL;
3346                 goto out;
3347         }
3348
3349         /* This is only going to work if we've had a voltage configured. */
3350         if (!voltage->min_uV && !voltage->max_uV) {
3351                 ret = -EINVAL;
3352                 goto out;
3353         }
3354
3355         min_uV = voltage->min_uV;
3356         max_uV = voltage->max_uV;
3357
3358         /* This should be a paranoia check... */
3359         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3360         if (ret < 0)
3361                 goto out;
3362
3363         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3364         if (ret < 0)
3365                 goto out;
3366
3367         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3368
3369 out:
3370         regulator_unlock(rdev);
3371         return ret;
3372 }
3373 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3374
3375 static int _regulator_get_voltage(struct regulator_dev *rdev)
3376 {
3377         int sel, ret;
3378         bool bypassed;
3379
3380         if (rdev->desc->ops->get_bypass) {
3381                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3382                 if (ret < 0)
3383                         return ret;
3384                 if (bypassed) {
3385                         /* if bypassed the regulator must have a supply */
3386                         if (!rdev->supply) {
3387                                 rdev_err(rdev,
3388                                          "bypassed regulator has no supply!\n");
3389                                 return -EPROBE_DEFER;
3390                         }
3391
3392                         return _regulator_get_voltage(rdev->supply->rdev);
3393                 }
3394         }
3395
3396         if (rdev->desc->ops->get_voltage_sel) {
3397                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3398                 if (sel < 0)
3399                         return sel;
3400                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3401         } else if (rdev->desc->ops->get_voltage) {
3402                 ret = rdev->desc->ops->get_voltage(rdev);
3403         } else if (rdev->desc->ops->list_voltage) {
3404                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3405         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3406                 ret = rdev->desc->fixed_uV;
3407         } else if (rdev->supply) {
3408                 ret = _regulator_get_voltage(rdev->supply->rdev);
3409         } else {
3410                 return -EINVAL;
3411         }
3412
3413         if (ret < 0)
3414                 return ret;
3415         return ret - rdev->constraints->uV_offset;
3416 }
3417
3418 /**
3419  * regulator_get_voltage - get regulator output voltage
3420  * @regulator: regulator source
3421  *
3422  * This returns the current regulator voltage in uV.
3423  *
3424  * NOTE: If the regulator is disabled it will return the voltage value. This
3425  * function should not be used to determine regulator state.
3426  */
3427 int regulator_get_voltage(struct regulator *regulator)
3428 {
3429         int ret;
3430
3431         regulator_lock_supply(regulator->rdev);
3432
3433         ret = _regulator_get_voltage(regulator->rdev);
3434
3435         regulator_unlock_supply(regulator->rdev);
3436
3437         return ret;
3438 }
3439 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3440
3441 /**
3442  * regulator_set_current_limit - set regulator output current limit
3443  * @regulator: regulator source
3444  * @min_uA: Minimum supported current in uA
3445  * @max_uA: Maximum supported current in uA
3446  *
3447  * Sets current sink to the desired output current. This can be set during
3448  * any regulator state. IOW, regulator can be disabled or enabled.
3449  *
3450  * If the regulator is enabled then the current will change to the new value
3451  * immediately otherwise if the regulator is disabled the regulator will
3452  * output at the new current when enabled.
3453  *
3454  * NOTE: Regulator system constraints must be set for this regulator before
3455  * calling this function otherwise this call will fail.
3456  */
3457 int regulator_set_current_limit(struct regulator *regulator,
3458                                int min_uA, int max_uA)
3459 {
3460         struct regulator_dev *rdev = regulator->rdev;
3461         int ret;
3462
3463         regulator_lock(rdev);
3464
3465         /* sanity check */
3466         if (!rdev->desc->ops->set_current_limit) {
3467                 ret = -EINVAL;
3468                 goto out;
3469         }
3470
3471         /* constraints check */
3472         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3473         if (ret < 0)
3474                 goto out;
3475
3476         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3477 out:
3478         regulator_unlock(rdev);
3479         return ret;
3480 }
3481 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3482
3483 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
3484 {
3485         /* sanity check */
3486         if (!rdev->desc->ops->get_current_limit)
3487                 return -EINVAL;
3488
3489         return rdev->desc->ops->get_current_limit(rdev);
3490 }
3491
3492 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3493 {
3494         int ret;
3495
3496         regulator_lock(rdev);
3497         ret = _regulator_get_current_limit_unlocked(rdev);
3498         regulator_unlock(rdev);
3499
3500         return ret;
3501 }
3502
3503 /**
3504  * regulator_get_current_limit - get regulator output current
3505  * @regulator: regulator source
3506  *
3507  * This returns the current supplied by the specified current sink in uA.
3508  *
3509  * NOTE: If the regulator is disabled it will return the current value. This
3510  * function should not be used to determine regulator state.
3511  */
3512 int regulator_get_current_limit(struct regulator *regulator)
3513 {
3514         return _regulator_get_current_limit(regulator->rdev);
3515 }
3516 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3517
3518 /**
3519  * regulator_set_mode - set regulator operating mode
3520  * @regulator: regulator source
3521  * @mode: operating mode - one of the REGULATOR_MODE constants
3522  *
3523  * Set regulator operating mode to increase regulator efficiency or improve
3524  * regulation performance.
3525  *
3526  * NOTE: Regulator system constraints must be set for this regulator before
3527  * calling this function otherwise this call will fail.
3528  */
3529 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3530 {
3531         struct regulator_dev *rdev = regulator->rdev;
3532         int ret;
3533         int regulator_curr_mode;
3534
3535         regulator_lock(rdev);
3536
3537         /* sanity check */
3538         if (!rdev->desc->ops->set_mode) {
3539                 ret = -EINVAL;
3540                 goto out;
3541         }
3542
3543         /* return if the same mode is requested */
3544         if (rdev->desc->ops->get_mode) {
3545                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3546                 if (regulator_curr_mode == mode) {
3547                         ret = 0;
3548                         goto out;
3549                 }
3550         }
3551
3552         /* constraints check */
3553         ret = regulator_mode_constrain(rdev, &mode);
3554         if (ret < 0)
3555                 goto out;
3556
3557         ret = rdev->desc->ops->set_mode(rdev, mode);
3558 out:
3559         regulator_unlock(rdev);
3560         return ret;
3561 }
3562 EXPORT_SYMBOL_GPL(regulator_set_mode);
3563
3564 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
3565 {
3566         /* sanity check */
3567         if (!rdev->desc->ops->get_mode)
3568                 return -EINVAL;
3569
3570         return rdev->desc->ops->get_mode(rdev);
3571 }
3572
3573 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3574 {
3575         int ret;
3576
3577         regulator_lock(rdev);
3578         ret = _regulator_get_mode_unlocked(rdev);
3579         regulator_unlock(rdev);
3580
3581         return ret;
3582 }
3583
3584 /**
3585  * regulator_get_mode - get regulator operating mode
3586  * @regulator: regulator source
3587  *
3588  * Get the current regulator operating mode.
3589  */
3590 unsigned int regulator_get_mode(struct regulator *regulator)
3591 {
3592         return _regulator_get_mode(regulator->rdev);
3593 }
3594 EXPORT_SYMBOL_GPL(regulator_get_mode);
3595
3596 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3597                                         unsigned int *flags)
3598 {
3599         int ret;
3600
3601         regulator_lock(rdev);
3602
3603         /* sanity check */
3604         if (!rdev->desc->ops->get_error_flags) {
3605                 ret = -EINVAL;
3606                 goto out;
3607         }
3608
3609         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3610 out:
3611         regulator_unlock(rdev);
3612         return ret;
3613 }
3614
3615 /**
3616  * regulator_get_error_flags - get regulator error information
3617  * @regulator: regulator source
3618  * @flags: pointer to store error flags
3619  *
3620  * Get the current regulator error information.
3621  */
3622 int regulator_get_error_flags(struct regulator *regulator,
3623                                 unsigned int *flags)
3624 {
3625         return _regulator_get_error_flags(regulator->rdev, flags);
3626 }
3627 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3628
3629 /**
3630  * regulator_set_load - set regulator load
3631  * @regulator: regulator source
3632  * @uA_load: load current
3633  *
3634  * Notifies the regulator core of a new device load. This is then used by
3635  * DRMS (if enabled by constraints) to set the most efficient regulator
3636  * operating mode for the new regulator loading.
3637  *
3638  * Consumer devices notify their supply regulator of the maximum power
3639  * they will require (can be taken from device datasheet in the power
3640  * consumption tables) when they change operational status and hence power
3641  * state. Examples of operational state changes that can affect power
3642  * consumption are :-
3643  *
3644  *    o Device is opened / closed.
3645  *    o Device I/O is about to begin or has just finished.
3646  *    o Device is idling in between work.
3647  *
3648  * This information is also exported via sysfs to userspace.
3649  *
3650  * DRMS will sum the total requested load on the regulator and change
3651  * to the most efficient operating mode if platform constraints allow.
3652  *
3653  * On error a negative errno is returned.
3654  */
3655 int regulator_set_load(struct regulator *regulator, int uA_load)
3656 {
3657         struct regulator_dev *rdev = regulator->rdev;
3658         int ret;
3659
3660         regulator_lock(rdev);
3661         regulator->uA_load = uA_load;
3662         ret = drms_uA_update(rdev);
3663         regulator_unlock(rdev);
3664
3665         return ret;
3666 }
3667 EXPORT_SYMBOL_GPL(regulator_set_load);
3668
3669 /**
3670  * regulator_allow_bypass - allow the regulator to go into bypass mode
3671  *
3672  * @regulator: Regulator to configure
3673  * @enable: enable or disable bypass mode
3674  *
3675  * Allow the regulator to go into bypass mode if all other consumers
3676  * for the regulator also enable bypass mode and the machine
3677  * constraints allow this.  Bypass mode means that the regulator is
3678  * simply passing the input directly to the output with no regulation.
3679  */
3680 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3681 {
3682         struct regulator_dev *rdev = regulator->rdev;
3683         int ret = 0;
3684
3685         if (!rdev->desc->ops->set_bypass)
3686                 return 0;
3687
3688         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3689                 return 0;
3690
3691         regulator_lock(rdev);
3692
3693         if (enable && !regulator->bypass) {
3694                 rdev->bypass_count++;
3695
3696                 if (rdev->bypass_count == rdev->open_count) {
3697                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3698                         if (ret != 0)
3699                                 rdev->bypass_count--;
3700                 }
3701
3702         } else if (!enable && regulator->bypass) {
3703                 rdev->bypass_count--;
3704
3705                 if (rdev->bypass_count != rdev->open_count) {
3706                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3707                         if (ret != 0)
3708                                 rdev->bypass_count++;
3709                 }
3710         }
3711
3712         if (ret == 0)
3713                 regulator->bypass = enable;
3714
3715         regulator_unlock(rdev);
3716
3717         return ret;
3718 }
3719 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3720
3721 /**
3722  * regulator_register_notifier - register regulator event notifier
3723  * @regulator: regulator source
3724  * @nb: notifier block
3725  *
3726  * Register notifier block to receive regulator events.
3727  */
3728 int regulator_register_notifier(struct regulator *regulator,
3729                               struct notifier_block *nb)
3730 {
3731         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3732                                                 nb);
3733 }
3734 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3735
3736 /**
3737  * regulator_unregister_notifier - unregister regulator event notifier
3738  * @regulator: regulator source
3739  * @nb: notifier block
3740  *
3741  * Unregister regulator event notifier block.
3742  */
3743 int regulator_unregister_notifier(struct regulator *regulator,
3744                                 struct notifier_block *nb)
3745 {
3746         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3747                                                   nb);
3748 }
3749 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3750
3751 /* notify regulator consumers and downstream regulator consumers.
3752  * Note mutex must be held by caller.
3753  */
3754 static int _notifier_call_chain(struct regulator_dev *rdev,
3755                                   unsigned long event, void *data)
3756 {
3757         /* call rdev chain first */
3758         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3759 }
3760
3761 /**
3762  * regulator_bulk_get - get multiple regulator consumers
3763  *
3764  * @dev:           Device to supply
3765  * @num_consumers: Number of consumers to register
3766  * @consumers:     Configuration of consumers; clients are stored here.
3767  *
3768  * @return 0 on success, an errno on failure.
3769  *
3770  * This helper function allows drivers to get several regulator
3771  * consumers in one operation.  If any of the regulators cannot be
3772  * acquired then any regulators that were allocated will be freed
3773  * before returning to the caller.
3774  */
3775 int regulator_bulk_get(struct device *dev, int num_consumers,
3776                        struct regulator_bulk_data *consumers)
3777 {
3778         int i;
3779         int ret;
3780
3781         for (i = 0; i < num_consumers; i++)
3782                 consumers[i].consumer = NULL;
3783
3784         for (i = 0; i < num_consumers; i++) {
3785                 consumers[i].consumer = regulator_get(dev,
3786                                                       consumers[i].supply);
3787                 if (IS_ERR(consumers[i].consumer)) {
3788                         ret = PTR_ERR(consumers[i].consumer);
3789                         dev_err(dev, "Failed to get supply '%s': %d\n",
3790                                 consumers[i].supply, ret);
3791                         consumers[i].consumer = NULL;
3792                         goto err;
3793                 }
3794         }
3795
3796         return 0;
3797
3798 err:
3799         while (--i >= 0)
3800                 regulator_put(consumers[i].consumer);
3801
3802         return ret;
3803 }
3804 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3805
3806 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3807 {
3808         struct regulator_bulk_data *bulk = data;
3809
3810         bulk->ret = regulator_enable(bulk->consumer);
3811 }
3812
3813 /**
3814  * regulator_bulk_enable - enable multiple regulator consumers
3815  *
3816  * @num_consumers: Number of consumers
3817  * @consumers:     Consumer data; clients are stored here.
3818  * @return         0 on success, an errno on failure
3819  *
3820  * This convenience API allows consumers to enable multiple regulator
3821  * clients in a single API call.  If any consumers cannot be enabled
3822  * then any others that were enabled will be disabled again prior to
3823  * return.
3824  */
3825 int regulator_bulk_enable(int num_consumers,
3826                           struct regulator_bulk_data *consumers)
3827 {
3828         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3829         int i;
3830         int ret = 0;
3831
3832         for (i = 0; i < num_consumers; i++) {
3833                 if (consumers[i].consumer->always_on)
3834                         consumers[i].ret = 0;
3835                 else
3836                         async_schedule_domain(regulator_bulk_enable_async,
3837                                               &consumers[i], &async_domain);
3838         }
3839
3840         async_synchronize_full_domain(&async_domain);
3841
3842         /* If any consumer failed we need to unwind any that succeeded */
3843         for (i = 0; i < num_consumers; i++) {
3844                 if (consumers[i].ret != 0) {
3845                         ret = consumers[i].ret;
3846                         goto err;
3847                 }
3848         }
3849
3850         return 0;
3851
3852 err:
3853         for (i = 0; i < num_consumers; i++) {
3854                 if (consumers[i].ret < 0)
3855                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3856                                consumers[i].ret);
3857                 else
3858                         regulator_disable(consumers[i].consumer);
3859         }
3860
3861         return ret;
3862 }
3863 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3864
3865 /**
3866  * regulator_bulk_disable - disable multiple regulator consumers
3867  *
3868  * @num_consumers: Number of consumers
3869  * @consumers:     Consumer data; clients are stored here.
3870  * @return         0 on success, an errno on failure
3871  *
3872  * This convenience API allows consumers to disable multiple regulator
3873  * clients in a single API call.  If any consumers cannot be disabled
3874  * then any others that were disabled will be enabled again prior to
3875  * return.
3876  */
3877 int regulator_bulk_disable(int num_consumers,
3878                            struct regulator_bulk_data *consumers)
3879 {
3880         int i;
3881         int ret, r;
3882
3883         for (i = num_consumers - 1; i >= 0; --i) {
3884                 ret = regulator_disable(consumers[i].consumer);
3885                 if (ret != 0)
3886                         goto err;
3887         }
3888
3889         return 0;
3890
3891 err:
3892         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3893         for (++i; i < num_consumers; ++i) {
3894                 r = regulator_enable(consumers[i].consumer);
3895                 if (r != 0)
3896                         pr_err("Failed to re-enable %s: %d\n",
3897                                consumers[i].supply, r);
3898         }
3899
3900         return ret;
3901 }
3902 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3903
3904 /**
3905  * regulator_bulk_force_disable - force disable multiple regulator consumers
3906  *
3907  * @num_consumers: Number of consumers
3908  * @consumers:     Consumer data; clients are stored here.
3909  * @return         0 on success, an errno on failure
3910  *
3911  * This convenience API allows consumers to forcibly disable multiple regulator
3912  * clients in a single API call.
3913  * NOTE: This should be used for situations when device damage will
3914  * likely occur if the regulators are not disabled (e.g. over temp).
3915  * Although regulator_force_disable function call for some consumers can
3916  * return error numbers, the function is called for all consumers.
3917  */
3918 int regulator_bulk_force_disable(int num_consumers,
3919                            struct regulator_bulk_data *consumers)
3920 {
3921         int i;
3922         int ret = 0;
3923
3924         for (i = 0; i < num_consumers; i++) {
3925                 consumers[i].ret =
3926                             regulator_force_disable(consumers[i].consumer);
3927
3928                 /* Store first error for reporting */
3929                 if (consumers[i].ret && !ret)
3930                         ret = consumers[i].ret;
3931         }
3932
3933         return ret;
3934 }
3935 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3936
3937 /**
3938  * regulator_bulk_free - free multiple regulator consumers
3939  *
3940  * @num_consumers: Number of consumers
3941  * @consumers:     Consumer data; clients are stored here.
3942  *
3943  * This convenience API allows consumers to free multiple regulator
3944  * clients in a single API call.
3945  */
3946 void regulator_bulk_free(int num_consumers,
3947                          struct regulator_bulk_data *consumers)
3948 {
3949         int i;
3950
3951         for (i = 0; i < num_consumers; i++) {
3952                 regulator_put(consumers[i].consumer);
3953                 consumers[i].consumer = NULL;
3954         }
3955 }
3956 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3957
3958 /**
3959  * regulator_notifier_call_chain - call regulator event notifier
3960  * @rdev: regulator source
3961  * @event: notifier block
3962  * @data: callback-specific data.
3963  *
3964  * Called by regulator drivers to notify clients a regulator event has
3965  * occurred. We also notify regulator clients downstream.
3966  * Note lock must be held by caller.
3967  */
3968 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3969                                   unsigned long event, void *data)
3970 {
3971         lockdep_assert_held_once(&rdev->mutex);
3972
3973         _notifier_call_chain(rdev, event, data);
3974         return NOTIFY_DONE;
3975
3976 }
3977 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3978
3979 /**
3980  * regulator_mode_to_status - convert a regulator mode into a status
3981  *
3982  * @mode: Mode to convert
3983  *
3984  * Convert a regulator mode into a status.
3985  */
3986 int regulator_mode_to_status(unsigned int mode)
3987 {
3988         switch (mode) {
3989         case REGULATOR_MODE_FAST:
3990                 return REGULATOR_STATUS_FAST;
3991         case REGULATOR_MODE_NORMAL:
3992                 return REGULATOR_STATUS_NORMAL;
3993         case REGULATOR_MODE_IDLE:
3994                 return REGULATOR_STATUS_IDLE;
3995         case REGULATOR_MODE_STANDBY:
3996                 return REGULATOR_STATUS_STANDBY;
3997         default:
3998                 return REGULATOR_STATUS_UNDEFINED;
3999         }
4000 }
4001 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4002
4003 static struct attribute *regulator_dev_attrs[] = {
4004         &dev_attr_name.attr,
4005         &dev_attr_num_users.attr,
4006         &dev_attr_type.attr,
4007         &dev_attr_microvolts.attr,
4008         &dev_attr_microamps.attr,
4009         &dev_attr_opmode.attr,
4010         &dev_attr_state.attr,
4011         &dev_attr_status.attr,
4012         &dev_attr_bypass.attr,
4013         &dev_attr_requested_microamps.attr,
4014         &dev_attr_min_microvolts.attr,
4015         &dev_attr_max_microvolts.attr,
4016         &dev_attr_min_microamps.attr,
4017         &dev_attr_max_microamps.attr,
4018         &dev_attr_suspend_standby_state.attr,
4019         &dev_attr_suspend_mem_state.attr,
4020         &dev_attr_suspend_disk_state.attr,
4021         &dev_attr_suspend_standby_microvolts.attr,
4022         &dev_attr_suspend_mem_microvolts.attr,
4023         &dev_attr_suspend_disk_microvolts.attr,
4024         &dev_attr_suspend_standby_mode.attr,
4025         &dev_attr_suspend_mem_mode.attr,
4026         &dev_attr_suspend_disk_mode.attr,
4027         NULL
4028 };
4029
4030 /*
4031  * To avoid cluttering sysfs (and memory) with useless state, only
4032  * create attributes that can be meaningfully displayed.
4033  */
4034 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4035                                          struct attribute *attr, int idx)
4036 {
4037         struct device *dev = kobj_to_dev(kobj);
4038         struct regulator_dev *rdev = dev_to_rdev(dev);
4039         const struct regulator_ops *ops = rdev->desc->ops;
4040         umode_t mode = attr->mode;
4041
4042         /* these three are always present */
4043         if (attr == &dev_attr_name.attr ||
4044             attr == &dev_attr_num_users.attr ||
4045             attr == &dev_attr_type.attr)
4046                 return mode;
4047
4048         /* some attributes need specific methods to be displayed */
4049         if (attr == &dev_attr_microvolts.attr) {
4050                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4051                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4052                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4053                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4054                         return mode;
4055                 return 0;
4056         }
4057
4058         if (attr == &dev_attr_microamps.attr)
4059                 return ops->get_current_limit ? mode : 0;
4060
4061         if (attr == &dev_attr_opmode.attr)
4062                 return ops->get_mode ? mode : 0;
4063
4064         if (attr == &dev_attr_state.attr)
4065                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4066
4067         if (attr == &dev_attr_status.attr)
4068                 return ops->get_status ? mode : 0;
4069
4070         if (attr == &dev_attr_bypass.attr)
4071                 return ops->get_bypass ? mode : 0;
4072
4073         /* some attributes are type-specific */
4074         if (attr == &dev_attr_requested_microamps.attr)
4075                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4076
4077         /* constraints need specific supporting methods */
4078         if (attr == &dev_attr_min_microvolts.attr ||
4079             attr == &dev_attr_max_microvolts.attr)
4080                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4081
4082         if (attr == &dev_attr_min_microamps.attr ||
4083             attr == &dev_attr_max_microamps.attr)
4084                 return ops->set_current_limit ? mode : 0;
4085
4086         if (attr == &dev_attr_suspend_standby_state.attr ||
4087             attr == &dev_attr_suspend_mem_state.attr ||
4088             attr == &dev_attr_suspend_disk_state.attr)
4089                 return mode;
4090
4091         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4092             attr == &dev_attr_suspend_mem_microvolts.attr ||
4093             attr == &dev_attr_suspend_disk_microvolts.attr)
4094                 return ops->set_suspend_voltage ? mode : 0;
4095
4096         if (attr == &dev_attr_suspend_standby_mode.attr ||
4097             attr == &dev_attr_suspend_mem_mode.attr ||
4098             attr == &dev_attr_suspend_disk_mode.attr)
4099                 return ops->set_suspend_mode ? mode : 0;
4100
4101         return mode;
4102 }
4103
4104 static const struct attribute_group regulator_dev_group = {
4105         .attrs = regulator_dev_attrs,
4106         .is_visible = regulator_attr_is_visible,
4107 };
4108
4109 static const struct attribute_group *regulator_dev_groups[] = {
4110         &regulator_dev_group,
4111         NULL
4112 };
4113
4114 static void regulator_dev_release(struct device *dev)
4115 {
4116         struct regulator_dev *rdev = dev_get_drvdata(dev);
4117
4118         kfree(rdev->constraints);
4119         of_node_put(rdev->dev.of_node);
4120         kfree(rdev);
4121 }
4122
4123 static void rdev_init_debugfs(struct regulator_dev *rdev)
4124 {
4125         struct device *parent = rdev->dev.parent;
4126         const char *rname = rdev_get_name(rdev);
4127         char name[NAME_MAX];
4128
4129         /* Avoid duplicate debugfs directory names */
4130         if (parent && rname == rdev->desc->name) {
4131                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4132                          rname);
4133                 rname = name;
4134         }
4135
4136         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4137         if (!rdev->debugfs) {
4138                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4139                 return;
4140         }
4141
4142         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4143                            &rdev->use_count);
4144         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4145                            &rdev->open_count);
4146         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4147                            &rdev->bypass_count);
4148 }
4149
4150 static int regulator_register_resolve_supply(struct device *dev, void *data)
4151 {
4152         struct regulator_dev *rdev = dev_to_rdev(dev);
4153
4154         if (regulator_resolve_supply(rdev))
4155                 rdev_dbg(rdev, "unable to resolve supply\n");
4156
4157         return 0;
4158 }
4159
4160 static int regulator_fill_coupling_array(struct regulator_dev *rdev)
4161 {
4162         struct coupling_desc *c_desc = &rdev->coupling_desc;
4163         int n_coupled = c_desc->n_coupled;
4164         struct regulator_dev *c_rdev;
4165         int i;
4166
4167         for (i = 1; i < n_coupled; i++) {
4168                 /* already resolved */
4169                 if (c_desc->coupled_rdevs[i])
4170                         continue;
4171
4172                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4173
4174                 if (c_rdev) {
4175                         c_desc->coupled_rdevs[i] = c_rdev;
4176                         c_desc->n_resolved++;
4177                 }
4178         }
4179
4180         if (rdev->coupling_desc.n_resolved < n_coupled)
4181                 return -1;
4182         else
4183                 return 0;
4184 }
4185
4186 static int regulator_register_fill_coupling_array(struct device *dev,
4187                                                   void *data)
4188 {
4189         struct regulator_dev *rdev = dev_to_rdev(dev);
4190
4191         if (!IS_ENABLED(CONFIG_OF))
4192                 return 0;
4193
4194         if (regulator_fill_coupling_array(rdev))
4195                 rdev_dbg(rdev, "unable to resolve coupling\n");
4196
4197         return 0;
4198 }
4199
4200 static int regulator_resolve_coupling(struct regulator_dev *rdev)
4201 {
4202         int n_phandles;
4203
4204         if (!IS_ENABLED(CONFIG_OF))
4205                 n_phandles = 0;
4206         else
4207                 n_phandles = of_get_n_coupled(rdev);
4208
4209         if (n_phandles + 1 > MAX_COUPLED) {
4210                 rdev_err(rdev, "too many regulators coupled\n");
4211                 return -EPERM;
4212         }
4213
4214         /*
4215          * Every regulator should always have coupling descriptor filled with
4216          * at least pointer to itself.
4217          */
4218         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4219         rdev->coupling_desc.n_coupled = n_phandles + 1;
4220         rdev->coupling_desc.n_resolved++;
4221
4222         /* regulator isn't coupled */
4223         if (n_phandles == 0)
4224                 return 0;
4225
4226         /* regulator, which can't change its voltage, can't be coupled */
4227         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4228                 rdev_err(rdev, "voltage operation not allowed\n");
4229                 return -EPERM;
4230         }
4231
4232         if (rdev->constraints->max_spread <= 0) {
4233                 rdev_err(rdev, "wrong max_spread value\n");
4234                 return -EPERM;
4235         }
4236
4237         if (!of_check_coupling_data(rdev))
4238                 return -EPERM;
4239
4240         /*
4241          * After everything has been checked, try to fill rdevs array
4242          * with pointers to regulators parsed from device tree. If some
4243          * regulators are not registered yet, retry in late init call
4244          */
4245         regulator_fill_coupling_array(rdev);
4246
4247         return 0;
4248 }
4249
4250 /**
4251  * regulator_register - register regulator
4252  * @regulator_desc: regulator to register
4253  * @cfg: runtime configuration for regulator
4254  *
4255  * Called by regulator drivers to register a regulator.
4256  * Returns a valid pointer to struct regulator_dev on success
4257  * or an ERR_PTR() on error.
4258  */
4259 struct regulator_dev *
4260 regulator_register(const struct regulator_desc *regulator_desc,
4261                    const struct regulator_config *cfg)
4262 {
4263         const struct regulation_constraints *constraints = NULL;
4264         const struct regulator_init_data *init_data;
4265         struct regulator_config *config = NULL;
4266         static atomic_t regulator_no = ATOMIC_INIT(-1);
4267         struct regulator_dev *rdev;
4268         struct device *dev;
4269         int ret, i;
4270
4271         if (regulator_desc == NULL || cfg == NULL)
4272                 return ERR_PTR(-EINVAL);
4273
4274         dev = cfg->dev;
4275         WARN_ON(!dev);
4276
4277         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4278                 return ERR_PTR(-EINVAL);
4279
4280         if (regulator_desc->type != REGULATOR_VOLTAGE &&
4281             regulator_desc->type != REGULATOR_CURRENT)
4282                 return ERR_PTR(-EINVAL);
4283
4284         /* Only one of each should be implemented */
4285         WARN_ON(regulator_desc->ops->get_voltage &&
4286                 regulator_desc->ops->get_voltage_sel);
4287         WARN_ON(regulator_desc->ops->set_voltage &&
4288                 regulator_desc->ops->set_voltage_sel);
4289
4290         /* If we're using selectors we must implement list_voltage. */
4291         if (regulator_desc->ops->get_voltage_sel &&
4292             !regulator_desc->ops->list_voltage) {
4293                 return ERR_PTR(-EINVAL);
4294         }
4295         if (regulator_desc->ops->set_voltage_sel &&
4296             !regulator_desc->ops->list_voltage) {
4297                 return ERR_PTR(-EINVAL);
4298         }
4299
4300         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4301         if (rdev == NULL)
4302                 return ERR_PTR(-ENOMEM);
4303
4304         /*
4305          * Duplicate the config so the driver could override it after
4306          * parsing init data.
4307          */
4308         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4309         if (config == NULL) {
4310                 kfree(rdev);
4311                 return ERR_PTR(-ENOMEM);
4312         }
4313
4314         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4315                                                &rdev->dev.of_node);
4316         if (!init_data) {
4317                 init_data = config->init_data;
4318                 rdev->dev.of_node = of_node_get(config->of_node);
4319         }
4320
4321         mutex_init(&rdev->mutex);
4322         rdev->reg_data = config->driver_data;
4323         rdev->owner = regulator_desc->owner;
4324         rdev->desc = regulator_desc;
4325         if (config->regmap)
4326                 rdev->regmap = config->regmap;
4327         else if (dev_get_regmap(dev, NULL))
4328                 rdev->regmap = dev_get_regmap(dev, NULL);
4329         else if (dev->parent)
4330                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4331         INIT_LIST_HEAD(&rdev->consumer_list);
4332         INIT_LIST_HEAD(&rdev->list);
4333         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4334         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4335
4336         /* preform any regulator specific init */
4337         if (init_data && init_data->regulator_init) {
4338                 ret = init_data->regulator_init(rdev->reg_data);
4339                 if (ret < 0)
4340                         goto clean;
4341         }
4342
4343         if (config->ena_gpiod ||
4344             ((config->ena_gpio || config->ena_gpio_initialized) &&
4345              gpio_is_valid(config->ena_gpio))) {
4346                 mutex_lock(&regulator_list_mutex);
4347                 ret = regulator_ena_gpio_request(rdev, config);
4348                 mutex_unlock(&regulator_list_mutex);
4349                 if (ret != 0) {
4350                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4351                                  config->ena_gpio, ret);
4352                         goto clean;
4353                 }
4354         }
4355
4356         /* register with sysfs */
4357         rdev->dev.class = &regulator_class;
4358         rdev->dev.parent = dev;
4359         dev_set_name(&rdev->dev, "regulator.%lu",
4360                     (unsigned long) atomic_inc_return(&regulator_no));
4361
4362         /* set regulator constraints */
4363         if (init_data)
4364                 constraints = &init_data->constraints;
4365
4366         if (init_data && init_data->supply_regulator)
4367                 rdev->supply_name = init_data->supply_regulator;
4368         else if (regulator_desc->supply_name)
4369                 rdev->supply_name = regulator_desc->supply_name;
4370
4371         /*
4372          * Attempt to resolve the regulator supply, if specified,
4373          * but don't return an error if we fail because we will try
4374          * to resolve it again later as more regulators are added.
4375          */
4376         if (regulator_resolve_supply(rdev))
4377                 rdev_dbg(rdev, "unable to resolve supply\n");
4378
4379         ret = set_machine_constraints(rdev, constraints);
4380         if (ret < 0)
4381                 goto wash;
4382
4383         mutex_lock(&regulator_list_mutex);
4384         ret = regulator_resolve_coupling(rdev);
4385         mutex_unlock(&regulator_list_mutex);
4386
4387         if (ret != 0)
4388                 goto wash;
4389
4390         /* add consumers devices */
4391         if (init_data) {
4392                 mutex_lock(&regulator_list_mutex);
4393                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4394                         ret = set_consumer_device_supply(rdev,
4395                                 init_data->consumer_supplies[i].dev_name,
4396                                 init_data->consumer_supplies[i].supply);
4397                         if (ret < 0) {
4398                                 mutex_unlock(&regulator_list_mutex);
4399                                 dev_err(dev, "Failed to set supply %s\n",
4400                                         init_data->consumer_supplies[i].supply);
4401                                 goto unset_supplies;
4402                         }
4403                 }
4404                 mutex_unlock(&regulator_list_mutex);
4405         }
4406
4407         if (!rdev->desc->ops->get_voltage &&
4408             !rdev->desc->ops->list_voltage &&
4409             !rdev->desc->fixed_uV)
4410                 rdev->is_switch = true;
4411
4412         dev_set_drvdata(&rdev->dev, rdev);
4413         ret = device_register(&rdev->dev);
4414         if (ret != 0) {
4415                 put_device(&rdev->dev);
4416                 goto unset_supplies;
4417         }
4418
4419         rdev_init_debugfs(rdev);
4420
4421         /* try to resolve regulators supply since a new one was registered */
4422         class_for_each_device(&regulator_class, NULL, NULL,
4423                               regulator_register_resolve_supply);
4424         kfree(config);
4425         return rdev;
4426
4427 unset_supplies:
4428         mutex_lock(&regulator_list_mutex);
4429         unset_regulator_supplies(rdev);
4430         mutex_unlock(&regulator_list_mutex);
4431 wash:
4432         kfree(rdev->constraints);
4433         mutex_lock(&regulator_list_mutex);
4434         regulator_ena_gpio_free(rdev);
4435         mutex_unlock(&regulator_list_mutex);
4436 clean:
4437         kfree(rdev);
4438         kfree(config);
4439         return ERR_PTR(ret);
4440 }
4441 EXPORT_SYMBOL_GPL(regulator_register);
4442
4443 /**
4444  * regulator_unregister - unregister regulator
4445  * @rdev: regulator to unregister
4446  *
4447  * Called by regulator drivers to unregister a regulator.
4448  */
4449 void regulator_unregister(struct regulator_dev *rdev)
4450 {
4451         if (rdev == NULL)
4452                 return;
4453
4454         if (rdev->supply) {
4455                 while (rdev->use_count--)
4456                         regulator_disable(rdev->supply);
4457                 regulator_put(rdev->supply);
4458         }
4459         mutex_lock(&regulator_list_mutex);
4460         debugfs_remove_recursive(rdev->debugfs);
4461         flush_work(&rdev->disable_work.work);
4462         WARN_ON(rdev->open_count);
4463         unset_regulator_supplies(rdev);
4464         list_del(&rdev->list);
4465         regulator_ena_gpio_free(rdev);
4466         mutex_unlock(&regulator_list_mutex);
4467         device_unregister(&rdev->dev);
4468 }
4469 EXPORT_SYMBOL_GPL(regulator_unregister);
4470
4471 #ifdef CONFIG_SUSPEND
4472 /**
4473  * regulator_suspend - prepare regulators for system wide suspend
4474  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
4475  *
4476  * Configure each regulator with it's suspend operating parameters for state.
4477  */
4478 static int regulator_suspend(struct device *dev)
4479 {
4480         struct regulator_dev *rdev = dev_to_rdev(dev);
4481         suspend_state_t state = pm_suspend_target_state;
4482         int ret;
4483
4484         regulator_lock(rdev);
4485         ret = suspend_set_state(rdev, state);
4486         regulator_unlock(rdev);
4487
4488         return ret;
4489 }
4490
4491 static int regulator_resume(struct device *dev)
4492 {
4493         suspend_state_t state = pm_suspend_target_state;
4494         struct regulator_dev *rdev = dev_to_rdev(dev);
4495         struct regulator_state *rstate;
4496         int ret = 0;
4497
4498         rstate = regulator_get_suspend_state(rdev, state);
4499         if (rstate == NULL)
4500                 return 0;
4501
4502         regulator_lock(rdev);
4503
4504         if (rdev->desc->ops->resume &&
4505             (rstate->enabled == ENABLE_IN_SUSPEND ||
4506              rstate->enabled == DISABLE_IN_SUSPEND))
4507                 ret = rdev->desc->ops->resume(rdev);
4508
4509         regulator_unlock(rdev);
4510
4511         return ret;
4512 }
4513 #else /* !CONFIG_SUSPEND */
4514
4515 #define regulator_suspend       NULL
4516 #define regulator_resume        NULL
4517
4518 #endif /* !CONFIG_SUSPEND */
4519
4520 #ifdef CONFIG_PM
4521 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4522         .suspend        = regulator_suspend,
4523         .resume         = regulator_resume,
4524 };
4525 #endif
4526
4527 struct class regulator_class = {
4528         .name = "regulator",
4529         .dev_release = regulator_dev_release,
4530         .dev_groups = regulator_dev_groups,
4531 #ifdef CONFIG_PM
4532         .pm = &regulator_pm_ops,
4533 #endif
4534 };
4535 /**
4536  * regulator_has_full_constraints - the system has fully specified constraints
4537  *
4538  * Calling this function will cause the regulator API to disable all
4539  * regulators which have a zero use count and don't have an always_on
4540  * constraint in a late_initcall.
4541  *
4542  * The intention is that this will become the default behaviour in a
4543  * future kernel release so users are encouraged to use this facility
4544  * now.
4545  */
4546 void regulator_has_full_constraints(void)
4547 {
4548         has_full_constraints = 1;
4549 }
4550 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4551
4552 /**
4553  * rdev_get_drvdata - get rdev regulator driver data
4554  * @rdev: regulator
4555  *
4556  * Get rdev regulator driver private data. This call can be used in the
4557  * regulator driver context.
4558  */
4559 void *rdev_get_drvdata(struct regulator_dev *rdev)
4560 {
4561         return rdev->reg_data;
4562 }
4563 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4564
4565 /**
4566  * regulator_get_drvdata - get regulator driver data
4567  * @regulator: regulator
4568  *
4569  * Get regulator driver private data. This call can be used in the consumer
4570  * driver context when non API regulator specific functions need to be called.
4571  */
4572 void *regulator_get_drvdata(struct regulator *regulator)
4573 {
4574         return regulator->rdev->reg_data;
4575 }
4576 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4577
4578 /**
4579  * regulator_set_drvdata - set regulator driver data
4580  * @regulator: regulator
4581  * @data: data
4582  */
4583 void regulator_set_drvdata(struct regulator *regulator, void *data)
4584 {
4585         regulator->rdev->reg_data = data;
4586 }
4587 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4588
4589 /**
4590  * regulator_get_id - get regulator ID
4591  * @rdev: regulator
4592  */
4593 int rdev_get_id(struct regulator_dev *rdev)
4594 {
4595         return rdev->desc->id;
4596 }
4597 EXPORT_SYMBOL_GPL(rdev_get_id);
4598
4599 struct device *rdev_get_dev(struct regulator_dev *rdev)
4600 {
4601         return &rdev->dev;
4602 }
4603 EXPORT_SYMBOL_GPL(rdev_get_dev);
4604
4605 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4606 {
4607         return reg_init_data->driver_data;
4608 }
4609 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4610
4611 #ifdef CONFIG_DEBUG_FS
4612 static int supply_map_show(struct seq_file *sf, void *data)
4613 {
4614         struct regulator_map *map;
4615
4616         list_for_each_entry(map, &regulator_map_list, list) {
4617                 seq_printf(sf, "%s -> %s.%s\n",
4618                                 rdev_get_name(map->regulator), map->dev_name,
4619                                 map->supply);
4620         }
4621
4622         return 0;
4623 }
4624
4625 static int supply_map_open(struct inode *inode, struct file *file)
4626 {
4627         return single_open(file, supply_map_show, inode->i_private);
4628 }
4629 #endif
4630
4631 static const struct file_operations supply_map_fops = {
4632 #ifdef CONFIG_DEBUG_FS
4633         .open = supply_map_open,
4634         .read = seq_read,
4635         .llseek = seq_lseek,
4636         .release = single_release,
4637 #endif
4638 };
4639
4640 #ifdef CONFIG_DEBUG_FS
4641 struct summary_data {
4642         struct seq_file *s;
4643         struct regulator_dev *parent;
4644         int level;
4645 };
4646
4647 static void regulator_summary_show_subtree(struct seq_file *s,
4648                                            struct regulator_dev *rdev,
4649                                            int level);
4650
4651 static int regulator_summary_show_children(struct device *dev, void *data)
4652 {
4653         struct regulator_dev *rdev = dev_to_rdev(dev);
4654         struct summary_data *summary_data = data;
4655
4656         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4657                 regulator_summary_show_subtree(summary_data->s, rdev,
4658                                                summary_data->level + 1);
4659
4660         return 0;
4661 }
4662
4663 static void regulator_summary_show_subtree(struct seq_file *s,
4664                                            struct regulator_dev *rdev,
4665                                            int level)
4666 {
4667         struct regulation_constraints *c;
4668         struct regulator *consumer;
4669         struct summary_data summary_data;
4670         unsigned int opmode;
4671
4672         if (!rdev)
4673                 return;
4674
4675         regulator_lock_nested(rdev, level);
4676
4677         opmode = _regulator_get_mode_unlocked(rdev);
4678         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
4679                    level * 3 + 1, "",
4680                    30 - level * 3, rdev_get_name(rdev),
4681                    rdev->use_count, rdev->open_count, rdev->bypass_count,
4682                    regulator_opmode_to_str(opmode));
4683
4684         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4685         seq_printf(s, "%5dmA ",
4686                    _regulator_get_current_limit_unlocked(rdev) / 1000);
4687
4688         c = rdev->constraints;
4689         if (c) {
4690                 switch (rdev->desc->type) {
4691                 case REGULATOR_VOLTAGE:
4692                         seq_printf(s, "%5dmV %5dmV ",
4693                                    c->min_uV / 1000, c->max_uV / 1000);
4694                         break;
4695                 case REGULATOR_CURRENT:
4696                         seq_printf(s, "%5dmA %5dmA ",
4697                                    c->min_uA / 1000, c->max_uA / 1000);
4698                         break;
4699                 }
4700         }
4701
4702         seq_puts(s, "\n");
4703
4704         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4705                 if (consumer->dev && consumer->dev->class == &regulator_class)
4706                         continue;
4707
4708                 seq_printf(s, "%*s%-*s ",
4709                            (level + 1) * 3 + 1, "",
4710                            30 - (level + 1) * 3,
4711                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4712
4713                 switch (rdev->desc->type) {
4714                 case REGULATOR_VOLTAGE:
4715                         seq_printf(s, "%37dmA %5dmV %5dmV",
4716                                    consumer->uA_load / 1000,
4717                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4718                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4719                         break;
4720                 case REGULATOR_CURRENT:
4721                         break;
4722                 }
4723
4724                 seq_puts(s, "\n");
4725         }
4726
4727         summary_data.s = s;
4728         summary_data.level = level;
4729         summary_data.parent = rdev;
4730
4731         class_for_each_device(&regulator_class, NULL, &summary_data,
4732                               regulator_summary_show_children);
4733
4734         regulator_unlock(rdev);
4735 }
4736
4737 static int regulator_summary_show_roots(struct device *dev, void *data)
4738 {
4739         struct regulator_dev *rdev = dev_to_rdev(dev);
4740         struct seq_file *s = data;
4741
4742         if (!rdev->supply)
4743                 regulator_summary_show_subtree(s, rdev, 0);
4744
4745         return 0;
4746 }
4747
4748 static int regulator_summary_show(struct seq_file *s, void *data)
4749 {
4750         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
4751         seq_puts(s, "---------------------------------------------------------------------------------------\n");
4752
4753         class_for_each_device(&regulator_class, NULL, s,
4754                               regulator_summary_show_roots);
4755
4756         return 0;
4757 }
4758
4759 static int regulator_summary_open(struct inode *inode, struct file *file)
4760 {
4761         return single_open(file, regulator_summary_show, inode->i_private);
4762 }
4763 #endif
4764
4765 static const struct file_operations regulator_summary_fops = {
4766 #ifdef CONFIG_DEBUG_FS
4767         .open           = regulator_summary_open,
4768         .read           = seq_read,
4769         .llseek         = seq_lseek,
4770         .release        = single_release,
4771 #endif
4772 };
4773
4774 static int __init regulator_init(void)
4775 {
4776         int ret;
4777
4778         ret = class_register(&regulator_class);
4779
4780         debugfs_root = debugfs_create_dir("regulator", NULL);
4781         if (!debugfs_root)
4782                 pr_warn("regulator: Failed to create debugfs directory\n");
4783
4784         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4785                             &supply_map_fops);
4786
4787         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4788                             NULL, &regulator_summary_fops);
4789
4790         regulator_dummy_init();
4791
4792         return ret;
4793 }
4794
4795 /* init early to allow our consumers to complete system booting */
4796 core_initcall(regulator_init);
4797
4798 static int __init regulator_late_cleanup(struct device *dev, void *data)
4799 {
4800         struct regulator_dev *rdev = dev_to_rdev(dev);
4801         const struct regulator_ops *ops = rdev->desc->ops;
4802         struct regulation_constraints *c = rdev->constraints;
4803         int enabled, ret;
4804
4805         if (c && c->always_on)
4806                 return 0;
4807
4808         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4809                 return 0;
4810
4811         regulator_lock(rdev);
4812
4813         if (rdev->use_count)
4814                 goto unlock;
4815
4816         /* If we can't read the status assume it's on. */
4817         if (ops->is_enabled)
4818                 enabled = ops->is_enabled(rdev);
4819         else
4820                 enabled = 1;
4821
4822         if (!enabled)
4823                 goto unlock;
4824
4825         if (have_full_constraints()) {
4826                 /* We log since this may kill the system if it goes
4827                  * wrong. */
4828                 rdev_info(rdev, "disabling\n");
4829                 ret = _regulator_do_disable(rdev);
4830                 if (ret != 0)
4831                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4832         } else {
4833                 /* The intention is that in future we will
4834                  * assume that full constraints are provided
4835                  * so warn even if we aren't going to do
4836                  * anything here.
4837                  */
4838                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4839         }
4840
4841 unlock:
4842         regulator_unlock(rdev);
4843
4844         return 0;
4845 }
4846
4847 static int __init regulator_init_complete(void)
4848 {
4849         /*
4850          * Since DT doesn't provide an idiomatic mechanism for
4851          * enabling full constraints and since it's much more natural
4852          * with DT to provide them just assume that a DT enabled
4853          * system has full constraints.
4854          */
4855         if (of_have_populated_dt())
4856                 has_full_constraints = true;
4857
4858         /*
4859          * Regulators may had failed to resolve their input supplies
4860          * when were registered, either because the input supply was
4861          * not registered yet or because its parent device was not
4862          * bound yet. So attempt to resolve the input supplies for
4863          * pending regulators before trying to disable unused ones.
4864          */
4865         class_for_each_device(&regulator_class, NULL, NULL,
4866                               regulator_register_resolve_supply);
4867
4868         /* If we have a full configuration then disable any regulators
4869          * we have permission to change the status for and which are
4870          * not in use or always_on.  This is effectively the default
4871          * for DT and ACPI as they have full constraints.
4872          */
4873         class_for_each_device(&regulator_class, NULL, NULL,
4874                               regulator_late_cleanup);
4875
4876         class_for_each_device(&regulator_class, NULL, NULL,
4877                               regulator_register_fill_coupling_array);
4878
4879         return 0;
4880 }
4881 late_initcall_sync(regulator_init_complete);