Merge tag 'usb-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_WW_CLASS(regulator_ww_class);
54 static DEFINE_MUTEX(regulator_nesting_mutex);
55 static DEFINE_MUTEX(regulator_list_mutex);
56 static LIST_HEAD(regulator_map_list);
57 static LIST_HEAD(regulator_ena_gpio_list);
58 static LIST_HEAD(regulator_supply_alias_list);
59 static bool has_full_constraints;
60
61 static struct dentry *debugfs_root;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator *regulator);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static int regulator_balance_voltage(struct regulator_dev *rdev,
111                                      suspend_state_t state);
112 static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
113                                       int min_uV, int max_uV,
114                                       suspend_state_t state);
115 static struct regulator *create_regulator(struct regulator_dev *rdev,
116                                           struct device *dev,
117                                           const char *supply_name);
118 static void _regulator_put(struct regulator *regulator);
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_nested - lock a single regulator
158  * @rdev:               regulator source
159  * @ww_ctx:             w/w mutex acquire context
160  *
161  * This function can be called many times by one task on
162  * a single regulator and its mutex will be locked only
163  * once. If a task, which is calling this function is other
164  * than the one, which initially locked the mutex, it will
165  * wait on mutex.
166  */
167 static inline int regulator_lock_nested(struct regulator_dev *rdev,
168                                         struct ww_acquire_ctx *ww_ctx)
169 {
170         bool lock = false;
171         int ret = 0;
172
173         mutex_lock(&regulator_nesting_mutex);
174
175         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
176                 if (rdev->mutex_owner == current)
177                         rdev->ref_cnt++;
178                 else
179                         lock = true;
180
181                 if (lock) {
182                         mutex_unlock(&regulator_nesting_mutex);
183                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
184                         mutex_lock(&regulator_nesting_mutex);
185                 }
186         } else {
187                 lock = true;
188         }
189
190         if (lock && ret != -EDEADLK) {
191                 rdev->ref_cnt++;
192                 rdev->mutex_owner = current;
193         }
194
195         mutex_unlock(&regulator_nesting_mutex);
196
197         return ret;
198 }
199
200 /**
201  * regulator_lock - lock a single regulator
202  * @rdev:               regulator source
203  *
204  * This function can be called many times by one task on
205  * a single regulator and its mutex will be locked only
206  * once. If a task, which is calling this function is other
207  * than the one, which initially locked the mutex, it will
208  * wait on mutex.
209  */
210 void regulator_lock(struct regulator_dev *rdev)
211 {
212         regulator_lock_nested(rdev, NULL);
213 }
214 EXPORT_SYMBOL_GPL(regulator_lock);
215
216 /**
217  * regulator_unlock - unlock a single regulator
218  * @rdev:               regulator_source
219  *
220  * This function unlocks the mutex when the
221  * reference counter reaches 0.
222  */
223 void regulator_unlock(struct regulator_dev *rdev)
224 {
225         mutex_lock(&regulator_nesting_mutex);
226
227         if (--rdev->ref_cnt == 0) {
228                 rdev->mutex_owner = NULL;
229                 ww_mutex_unlock(&rdev->mutex);
230         }
231
232         WARN_ON_ONCE(rdev->ref_cnt < 0);
233
234         mutex_unlock(&regulator_nesting_mutex);
235 }
236 EXPORT_SYMBOL_GPL(regulator_unlock);
237
238 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
239 {
240         struct regulator_dev *c_rdev;
241         int i;
242
243         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
244                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
245
246                 if (rdev->supply->rdev == c_rdev)
247                         return true;
248         }
249
250         return false;
251 }
252
253 static void regulator_unlock_recursive(struct regulator_dev *rdev,
254                                        unsigned int n_coupled)
255 {
256         struct regulator_dev *c_rdev;
257         int i;
258
259         for (i = n_coupled; i > 0; i--) {
260                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
261
262                 if (!c_rdev)
263                         continue;
264
265                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
266                         regulator_unlock_recursive(
267                                         c_rdev->supply->rdev,
268                                         c_rdev->coupling_desc.n_coupled);
269
270                 regulator_unlock(c_rdev);
271         }
272 }
273
274 static int regulator_lock_recursive(struct regulator_dev *rdev,
275                                     struct regulator_dev **new_contended_rdev,
276                                     struct regulator_dev **old_contended_rdev,
277                                     struct ww_acquire_ctx *ww_ctx)
278 {
279         struct regulator_dev *c_rdev;
280         int i, err;
281
282         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
283                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284
285                 if (!c_rdev)
286                         continue;
287
288                 if (c_rdev != *old_contended_rdev) {
289                         err = regulator_lock_nested(c_rdev, ww_ctx);
290                         if (err) {
291                                 if (err == -EDEADLK) {
292                                         *new_contended_rdev = c_rdev;
293                                         goto err_unlock;
294                                 }
295
296                                 /* shouldn't happen */
297                                 WARN_ON_ONCE(err != -EALREADY);
298                         }
299                 } else {
300                         *old_contended_rdev = NULL;
301                 }
302
303                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
304                         err = regulator_lock_recursive(c_rdev->supply->rdev,
305                                                        new_contended_rdev,
306                                                        old_contended_rdev,
307                                                        ww_ctx);
308                         if (err) {
309                                 regulator_unlock(c_rdev);
310                                 goto err_unlock;
311                         }
312                 }
313         }
314
315         return 0;
316
317 err_unlock:
318         regulator_unlock_recursive(rdev, i);
319
320         return err;
321 }
322
323 /**
324  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
325  *                              regulators
326  * @rdev:                       regulator source
327  * @ww_ctx:                     w/w mutex acquire context
328  *
329  * Unlock all regulators related with rdev by coupling or suppling.
330  */
331 static void regulator_unlock_dependent(struct regulator_dev *rdev,
332                                        struct ww_acquire_ctx *ww_ctx)
333 {
334         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
335         ww_acquire_fini(ww_ctx);
336 }
337
338 /**
339  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
340  * @rdev:                       regulator source
341  * @ww_ctx:                     w/w mutex acquire context
342  *
343  * This function as a wrapper on regulator_lock_recursive(), which locks
344  * all regulators related with rdev by coupling or suppling.
345  */
346 static void regulator_lock_dependent(struct regulator_dev *rdev,
347                                      struct ww_acquire_ctx *ww_ctx)
348 {
349         struct regulator_dev *new_contended_rdev = NULL;
350         struct regulator_dev *old_contended_rdev = NULL;
351         int err;
352
353         mutex_lock(&regulator_list_mutex);
354
355         ww_acquire_init(ww_ctx, &regulator_ww_class);
356
357         do {
358                 if (new_contended_rdev) {
359                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
360                         old_contended_rdev = new_contended_rdev;
361                         old_contended_rdev->ref_cnt++;
362                 }
363
364                 err = regulator_lock_recursive(rdev,
365                                                &new_contended_rdev,
366                                                &old_contended_rdev,
367                                                ww_ctx);
368
369                 if (old_contended_rdev)
370                         regulator_unlock(old_contended_rdev);
371
372         } while (err == -EDEADLK);
373
374         ww_acquire_done(ww_ctx);
375
376         mutex_unlock(&regulator_list_mutex);
377 }
378
379 /**
380  * of_get_child_regulator - get a child regulator device node
381  * based on supply name
382  * @parent: Parent device node
383  * @prop_name: Combination regulator supply name and "-supply"
384  *
385  * Traverse all child nodes.
386  * Extract the child regulator device node corresponding to the supply name.
387  * returns the device node corresponding to the regulator if found, else
388  * returns NULL.
389  */
390 static struct device_node *of_get_child_regulator(struct device_node *parent,
391                                                   const char *prop_name)
392 {
393         struct device_node *regnode = NULL;
394         struct device_node *child = NULL;
395
396         for_each_child_of_node(parent, child) {
397                 regnode = of_parse_phandle(child, prop_name, 0);
398
399                 if (!regnode) {
400                         regnode = of_get_child_regulator(child, prop_name);
401                         if (regnode)
402                                 return regnode;
403                 } else {
404                         return regnode;
405                 }
406         }
407         return NULL;
408 }
409
410 /**
411  * of_get_regulator - get a regulator device node based on supply name
412  * @dev: Device pointer for the consumer (of regulator) device
413  * @supply: regulator supply name
414  *
415  * Extract the regulator device node corresponding to the supply name.
416  * returns the device node corresponding to the regulator if found, else
417  * returns NULL.
418  */
419 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
420 {
421         struct device_node *regnode = NULL;
422         char prop_name[32]; /* 32 is max size of property name */
423
424         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
425
426         snprintf(prop_name, 32, "%s-supply", supply);
427         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
428
429         if (!regnode) {
430                 regnode = of_get_child_regulator(dev->of_node, prop_name);
431                 if (regnode)
432                         return regnode;
433
434                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
435                                 prop_name, dev->of_node);
436                 return NULL;
437         }
438         return regnode;
439 }
440
441 /* Platform voltage constraint check */
442 static int regulator_check_voltage(struct regulator_dev *rdev,
443                                    int *min_uV, int *max_uV)
444 {
445         BUG_ON(*min_uV > *max_uV);
446
447         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
448                 rdev_err(rdev, "voltage operation not allowed\n");
449                 return -EPERM;
450         }
451
452         if (*max_uV > rdev->constraints->max_uV)
453                 *max_uV = rdev->constraints->max_uV;
454         if (*min_uV < rdev->constraints->min_uV)
455                 *min_uV = rdev->constraints->min_uV;
456
457         if (*min_uV > *max_uV) {
458                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
459                          *min_uV, *max_uV);
460                 return -EINVAL;
461         }
462
463         return 0;
464 }
465
466 /* return 0 if the state is valid */
467 static int regulator_check_states(suspend_state_t state)
468 {
469         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
470 }
471
472 /* Make sure we select a voltage that suits the needs of all
473  * regulator consumers
474  */
475 static int regulator_check_consumers(struct regulator_dev *rdev,
476                                      int *min_uV, int *max_uV,
477                                      suspend_state_t state)
478 {
479         struct regulator *regulator;
480         struct regulator_voltage *voltage;
481
482         list_for_each_entry(regulator, &rdev->consumer_list, list) {
483                 voltage = &regulator->voltage[state];
484                 /*
485                  * Assume consumers that didn't say anything are OK
486                  * with anything in the constraint range.
487                  */
488                 if (!voltage->min_uV && !voltage->max_uV)
489                         continue;
490
491                 if (*max_uV > voltage->max_uV)
492                         *max_uV = voltage->max_uV;
493                 if (*min_uV < voltage->min_uV)
494                         *min_uV = voltage->min_uV;
495         }
496
497         if (*min_uV > *max_uV) {
498                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
499                         *min_uV, *max_uV);
500                 return -EINVAL;
501         }
502
503         return 0;
504 }
505
506 /* current constraint check */
507 static int regulator_check_current_limit(struct regulator_dev *rdev,
508                                         int *min_uA, int *max_uA)
509 {
510         BUG_ON(*min_uA > *max_uA);
511
512         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
513                 rdev_err(rdev, "current operation not allowed\n");
514                 return -EPERM;
515         }
516
517         if (*max_uA > rdev->constraints->max_uA)
518                 *max_uA = rdev->constraints->max_uA;
519         if (*min_uA < rdev->constraints->min_uA)
520                 *min_uA = rdev->constraints->min_uA;
521
522         if (*min_uA > *max_uA) {
523                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
524                          *min_uA, *max_uA);
525                 return -EINVAL;
526         }
527
528         return 0;
529 }
530
531 /* operating mode constraint check */
532 static int regulator_mode_constrain(struct regulator_dev *rdev,
533                                     unsigned int *mode)
534 {
535         switch (*mode) {
536         case REGULATOR_MODE_FAST:
537         case REGULATOR_MODE_NORMAL:
538         case REGULATOR_MODE_IDLE:
539         case REGULATOR_MODE_STANDBY:
540                 break;
541         default:
542                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
543                 return -EINVAL;
544         }
545
546         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
547                 rdev_err(rdev, "mode operation not allowed\n");
548                 return -EPERM;
549         }
550
551         /* The modes are bitmasks, the most power hungry modes having
552          * the lowest values. If the requested mode isn't supported
553          * try higher modes. */
554         while (*mode) {
555                 if (rdev->constraints->valid_modes_mask & *mode)
556                         return 0;
557                 *mode /= 2;
558         }
559
560         return -EINVAL;
561 }
562
563 static inline struct regulator_state *
564 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
565 {
566         if (rdev->constraints == NULL)
567                 return NULL;
568
569         switch (state) {
570         case PM_SUSPEND_STANDBY:
571                 return &rdev->constraints->state_standby;
572         case PM_SUSPEND_MEM:
573                 return &rdev->constraints->state_mem;
574         case PM_SUSPEND_MAX:
575                 return &rdev->constraints->state_disk;
576         default:
577                 return NULL;
578         }
579 }
580
581 static ssize_t regulator_uV_show(struct device *dev,
582                                 struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585         ssize_t ret;
586
587         regulator_lock(rdev);
588         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
589         regulator_unlock(rdev);
590
591         return ret;
592 }
593 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
594
595 static ssize_t regulator_uA_show(struct device *dev,
596                                 struct device_attribute *attr, char *buf)
597 {
598         struct regulator_dev *rdev = dev_get_drvdata(dev);
599
600         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
601 }
602 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
603
604 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
605                          char *buf)
606 {
607         struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609         return sprintf(buf, "%s\n", rdev_get_name(rdev));
610 }
611 static DEVICE_ATTR_RO(name);
612
613 static const char *regulator_opmode_to_str(int mode)
614 {
615         switch (mode) {
616         case REGULATOR_MODE_FAST:
617                 return "fast";
618         case REGULATOR_MODE_NORMAL:
619                 return "normal";
620         case REGULATOR_MODE_IDLE:
621                 return "idle";
622         case REGULATOR_MODE_STANDBY:
623                 return "standby";
624         }
625         return "unknown";
626 }
627
628 static ssize_t regulator_print_opmode(char *buf, int mode)
629 {
630         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
631 }
632
633 static ssize_t regulator_opmode_show(struct device *dev,
634                                     struct device_attribute *attr, char *buf)
635 {
636         struct regulator_dev *rdev = dev_get_drvdata(dev);
637
638         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
639 }
640 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
641
642 static ssize_t regulator_print_state(char *buf, int state)
643 {
644         if (state > 0)
645                 return sprintf(buf, "enabled\n");
646         else if (state == 0)
647                 return sprintf(buf, "disabled\n");
648         else
649                 return sprintf(buf, "unknown\n");
650 }
651
652 static ssize_t regulator_state_show(struct device *dev,
653                                    struct device_attribute *attr, char *buf)
654 {
655         struct regulator_dev *rdev = dev_get_drvdata(dev);
656         ssize_t ret;
657
658         regulator_lock(rdev);
659         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
660         regulator_unlock(rdev);
661
662         return ret;
663 }
664 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
665
666 static ssize_t regulator_status_show(struct device *dev,
667                                    struct device_attribute *attr, char *buf)
668 {
669         struct regulator_dev *rdev = dev_get_drvdata(dev);
670         int status;
671         char *label;
672
673         status = rdev->desc->ops->get_status(rdev);
674         if (status < 0)
675                 return status;
676
677         switch (status) {
678         case REGULATOR_STATUS_OFF:
679                 label = "off";
680                 break;
681         case REGULATOR_STATUS_ON:
682                 label = "on";
683                 break;
684         case REGULATOR_STATUS_ERROR:
685                 label = "error";
686                 break;
687         case REGULATOR_STATUS_FAST:
688                 label = "fast";
689                 break;
690         case REGULATOR_STATUS_NORMAL:
691                 label = "normal";
692                 break;
693         case REGULATOR_STATUS_IDLE:
694                 label = "idle";
695                 break;
696         case REGULATOR_STATUS_STANDBY:
697                 label = "standby";
698                 break;
699         case REGULATOR_STATUS_BYPASS:
700                 label = "bypass";
701                 break;
702         case REGULATOR_STATUS_UNDEFINED:
703                 label = "undefined";
704                 break;
705         default:
706                 return -ERANGE;
707         }
708
709         return sprintf(buf, "%s\n", label);
710 }
711 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
712
713 static ssize_t regulator_min_uA_show(struct device *dev,
714                                     struct device_attribute *attr, char *buf)
715 {
716         struct regulator_dev *rdev = dev_get_drvdata(dev);
717
718         if (!rdev->constraints)
719                 return sprintf(buf, "constraint not defined\n");
720
721         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
722 }
723 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
724
725 static ssize_t regulator_max_uA_show(struct device *dev,
726                                     struct device_attribute *attr, char *buf)
727 {
728         struct regulator_dev *rdev = dev_get_drvdata(dev);
729
730         if (!rdev->constraints)
731                 return sprintf(buf, "constraint not defined\n");
732
733         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
734 }
735 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
736
737 static ssize_t regulator_min_uV_show(struct device *dev,
738                                     struct device_attribute *attr, char *buf)
739 {
740         struct regulator_dev *rdev = dev_get_drvdata(dev);
741
742         if (!rdev->constraints)
743                 return sprintf(buf, "constraint not defined\n");
744
745         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
746 }
747 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
748
749 static ssize_t regulator_max_uV_show(struct device *dev,
750                                     struct device_attribute *attr, char *buf)
751 {
752         struct regulator_dev *rdev = dev_get_drvdata(dev);
753
754         if (!rdev->constraints)
755                 return sprintf(buf, "constraint not defined\n");
756
757         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
758 }
759 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
760
761 static ssize_t regulator_total_uA_show(struct device *dev,
762                                       struct device_attribute *attr, char *buf)
763 {
764         struct regulator_dev *rdev = dev_get_drvdata(dev);
765         struct regulator *regulator;
766         int uA = 0;
767
768         regulator_lock(rdev);
769         list_for_each_entry(regulator, &rdev->consumer_list, list) {
770                 if (regulator->enable_count)
771                         uA += regulator->uA_load;
772         }
773         regulator_unlock(rdev);
774         return sprintf(buf, "%d\n", uA);
775 }
776 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
777
778 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
779                               char *buf)
780 {
781         struct regulator_dev *rdev = dev_get_drvdata(dev);
782         return sprintf(buf, "%d\n", rdev->use_count);
783 }
784 static DEVICE_ATTR_RO(num_users);
785
786 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
787                          char *buf)
788 {
789         struct regulator_dev *rdev = dev_get_drvdata(dev);
790
791         switch (rdev->desc->type) {
792         case REGULATOR_VOLTAGE:
793                 return sprintf(buf, "voltage\n");
794         case REGULATOR_CURRENT:
795                 return sprintf(buf, "current\n");
796         }
797         return sprintf(buf, "unknown\n");
798 }
799 static DEVICE_ATTR_RO(type);
800
801 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
802                                 struct device_attribute *attr, char *buf)
803 {
804         struct regulator_dev *rdev = dev_get_drvdata(dev);
805
806         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
807 }
808 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
809                 regulator_suspend_mem_uV_show, NULL);
810
811 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
812                                 struct device_attribute *attr, char *buf)
813 {
814         struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
817 }
818 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
819                 regulator_suspend_disk_uV_show, NULL);
820
821 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
822                                 struct device_attribute *attr, char *buf)
823 {
824         struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
827 }
828 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
829                 regulator_suspend_standby_uV_show, NULL);
830
831 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
832                                 struct device_attribute *attr, char *buf)
833 {
834         struct regulator_dev *rdev = dev_get_drvdata(dev);
835
836         return regulator_print_opmode(buf,
837                 rdev->constraints->state_mem.mode);
838 }
839 static DEVICE_ATTR(suspend_mem_mode, 0444,
840                 regulator_suspend_mem_mode_show, NULL);
841
842 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
843                                 struct device_attribute *attr, char *buf)
844 {
845         struct regulator_dev *rdev = dev_get_drvdata(dev);
846
847         return regulator_print_opmode(buf,
848                 rdev->constraints->state_disk.mode);
849 }
850 static DEVICE_ATTR(suspend_disk_mode, 0444,
851                 regulator_suspend_disk_mode_show, NULL);
852
853 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
854                                 struct device_attribute *attr, char *buf)
855 {
856         struct regulator_dev *rdev = dev_get_drvdata(dev);
857
858         return regulator_print_opmode(buf,
859                 rdev->constraints->state_standby.mode);
860 }
861 static DEVICE_ATTR(suspend_standby_mode, 0444,
862                 regulator_suspend_standby_mode_show, NULL);
863
864 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
865                                    struct device_attribute *attr, char *buf)
866 {
867         struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869         return regulator_print_state(buf,
870                         rdev->constraints->state_mem.enabled);
871 }
872 static DEVICE_ATTR(suspend_mem_state, 0444,
873                 regulator_suspend_mem_state_show, NULL);
874
875 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
876                                    struct device_attribute *attr, char *buf)
877 {
878         struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880         return regulator_print_state(buf,
881                         rdev->constraints->state_disk.enabled);
882 }
883 static DEVICE_ATTR(suspend_disk_state, 0444,
884                 regulator_suspend_disk_state_show, NULL);
885
886 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
887                                    struct device_attribute *attr, char *buf)
888 {
889         struct regulator_dev *rdev = dev_get_drvdata(dev);
890
891         return regulator_print_state(buf,
892                         rdev->constraints->state_standby.enabled);
893 }
894 static DEVICE_ATTR(suspend_standby_state, 0444,
895                 regulator_suspend_standby_state_show, NULL);
896
897 static ssize_t regulator_bypass_show(struct device *dev,
898                                      struct device_attribute *attr, char *buf)
899 {
900         struct regulator_dev *rdev = dev_get_drvdata(dev);
901         const char *report;
902         bool bypass;
903         int ret;
904
905         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
906
907         if (ret != 0)
908                 report = "unknown";
909         else if (bypass)
910                 report = "enabled";
911         else
912                 report = "disabled";
913
914         return sprintf(buf, "%s\n", report);
915 }
916 static DEVICE_ATTR(bypass, 0444,
917                    regulator_bypass_show, NULL);
918
919 /* Calculate the new optimum regulator operating mode based on the new total
920  * consumer load. All locks held by caller */
921 static int drms_uA_update(struct regulator_dev *rdev)
922 {
923         struct regulator *sibling;
924         int current_uA = 0, output_uV, input_uV, err;
925         unsigned int mode;
926
927         lockdep_assert_held_once(&rdev->mutex.base);
928
929         /*
930          * first check to see if we can set modes at all, otherwise just
931          * tell the consumer everything is OK.
932          */
933         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
934                 return 0;
935
936         if (!rdev->desc->ops->get_optimum_mode &&
937             !rdev->desc->ops->set_load)
938                 return 0;
939
940         if (!rdev->desc->ops->set_mode &&
941             !rdev->desc->ops->set_load)
942                 return -EINVAL;
943
944         /* calc total requested load */
945         list_for_each_entry(sibling, &rdev->consumer_list, list) {
946                 if (sibling->enable_count)
947                         current_uA += sibling->uA_load;
948         }
949
950         current_uA += rdev->constraints->system_load;
951
952         if (rdev->desc->ops->set_load) {
953                 /* set the optimum mode for our new total regulator load */
954                 err = rdev->desc->ops->set_load(rdev, current_uA);
955                 if (err < 0)
956                         rdev_err(rdev, "failed to set load %d\n", current_uA);
957         } else {
958                 /* get output voltage */
959                 output_uV = _regulator_get_voltage(rdev);
960                 if (output_uV <= 0) {
961                         rdev_err(rdev, "invalid output voltage found\n");
962                         return -EINVAL;
963                 }
964
965                 /* get input voltage */
966                 input_uV = 0;
967                 if (rdev->supply)
968                         input_uV = regulator_get_voltage(rdev->supply);
969                 if (input_uV <= 0)
970                         input_uV = rdev->constraints->input_uV;
971                 if (input_uV <= 0) {
972                         rdev_err(rdev, "invalid input voltage found\n");
973                         return -EINVAL;
974                 }
975
976                 /* now get the optimum mode for our new total regulator load */
977                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
978                                                          output_uV, current_uA);
979
980                 /* check the new mode is allowed */
981                 err = regulator_mode_constrain(rdev, &mode);
982                 if (err < 0) {
983                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
984                                  current_uA, input_uV, output_uV);
985                         return err;
986                 }
987
988                 err = rdev->desc->ops->set_mode(rdev, mode);
989                 if (err < 0)
990                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
991         }
992
993         return err;
994 }
995
996 static int suspend_set_state(struct regulator_dev *rdev,
997                                     suspend_state_t state)
998 {
999         int ret = 0;
1000         struct regulator_state *rstate;
1001
1002         rstate = regulator_get_suspend_state(rdev, state);
1003         if (rstate == NULL)
1004                 return 0;
1005
1006         /* If we have no suspend mode configration don't set anything;
1007          * only warn if the driver implements set_suspend_voltage or
1008          * set_suspend_mode callback.
1009          */
1010         if (rstate->enabled != ENABLE_IN_SUSPEND &&
1011             rstate->enabled != DISABLE_IN_SUSPEND) {
1012                 if (rdev->desc->ops->set_suspend_voltage ||
1013                     rdev->desc->ops->set_suspend_mode)
1014                         rdev_warn(rdev, "No configuration\n");
1015                 return 0;
1016         }
1017
1018         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1019                 rdev->desc->ops->set_suspend_enable)
1020                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1021         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1022                 rdev->desc->ops->set_suspend_disable)
1023                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1024         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1025                 ret = 0;
1026
1027         if (ret < 0) {
1028                 rdev_err(rdev, "failed to enabled/disable\n");
1029                 return ret;
1030         }
1031
1032         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1033                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1034                 if (ret < 0) {
1035                         rdev_err(rdev, "failed to set voltage\n");
1036                         return ret;
1037                 }
1038         }
1039
1040         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1041                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1042                 if (ret < 0) {
1043                         rdev_err(rdev, "failed to set mode\n");
1044                         return ret;
1045                 }
1046         }
1047
1048         return ret;
1049 }
1050
1051 static void print_constraints(struct regulator_dev *rdev)
1052 {
1053         struct regulation_constraints *constraints = rdev->constraints;
1054         char buf[160] = "";
1055         size_t len = sizeof(buf) - 1;
1056         int count = 0;
1057         int ret;
1058
1059         if (constraints->min_uV && constraints->max_uV) {
1060                 if (constraints->min_uV == constraints->max_uV)
1061                         count += scnprintf(buf + count, len - count, "%d mV ",
1062                                            constraints->min_uV / 1000);
1063                 else
1064                         count += scnprintf(buf + count, len - count,
1065                                            "%d <--> %d mV ",
1066                                            constraints->min_uV / 1000,
1067                                            constraints->max_uV / 1000);
1068         }
1069
1070         if (!constraints->min_uV ||
1071             constraints->min_uV != constraints->max_uV) {
1072                 ret = _regulator_get_voltage(rdev);
1073                 if (ret > 0)
1074                         count += scnprintf(buf + count, len - count,
1075                                            "at %d mV ", ret / 1000);
1076         }
1077
1078         if (constraints->uV_offset)
1079                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1080                                    constraints->uV_offset / 1000);
1081
1082         if (constraints->min_uA && constraints->max_uA) {
1083                 if (constraints->min_uA == constraints->max_uA)
1084                         count += scnprintf(buf + count, len - count, "%d mA ",
1085                                            constraints->min_uA / 1000);
1086                 else
1087                         count += scnprintf(buf + count, len - count,
1088                                            "%d <--> %d mA ",
1089                                            constraints->min_uA / 1000,
1090                                            constraints->max_uA / 1000);
1091         }
1092
1093         if (!constraints->min_uA ||
1094             constraints->min_uA != constraints->max_uA) {
1095                 ret = _regulator_get_current_limit(rdev);
1096                 if (ret > 0)
1097                         count += scnprintf(buf + count, len - count,
1098                                            "at %d mA ", ret / 1000);
1099         }
1100
1101         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1102                 count += scnprintf(buf + count, len - count, "fast ");
1103         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1104                 count += scnprintf(buf + count, len - count, "normal ");
1105         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1106                 count += scnprintf(buf + count, len - count, "idle ");
1107         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1108                 count += scnprintf(buf + count, len - count, "standby");
1109
1110         if (!count)
1111                 scnprintf(buf, len, "no parameters");
1112
1113         rdev_dbg(rdev, "%s\n", buf);
1114
1115         if ((constraints->min_uV != constraints->max_uV) &&
1116             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1117                 rdev_warn(rdev,
1118                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1119 }
1120
1121 static int machine_constraints_voltage(struct regulator_dev *rdev,
1122         struct regulation_constraints *constraints)
1123 {
1124         const struct regulator_ops *ops = rdev->desc->ops;
1125         int ret;
1126
1127         /* do we need to apply the constraint voltage */
1128         if (rdev->constraints->apply_uV &&
1129             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1130                 int target_min, target_max;
1131                 int current_uV = _regulator_get_voltage(rdev);
1132
1133                 if (current_uV == -ENOTRECOVERABLE) {
1134                         /* This regulator can't be read and must be initted */
1135                         rdev_info(rdev, "Setting %d-%duV\n",
1136                                   rdev->constraints->min_uV,
1137                                   rdev->constraints->max_uV);
1138                         _regulator_do_set_voltage(rdev,
1139                                                   rdev->constraints->min_uV,
1140                                                   rdev->constraints->max_uV);
1141                         current_uV = _regulator_get_voltage(rdev);
1142                 }
1143
1144                 if (current_uV < 0) {
1145                         rdev_err(rdev,
1146                                  "failed to get the current voltage(%d)\n",
1147                                  current_uV);
1148                         return current_uV;
1149                 }
1150
1151                 /*
1152                  * If we're below the minimum voltage move up to the
1153                  * minimum voltage, if we're above the maximum voltage
1154                  * then move down to the maximum.
1155                  */
1156                 target_min = current_uV;
1157                 target_max = current_uV;
1158
1159                 if (current_uV < rdev->constraints->min_uV) {
1160                         target_min = rdev->constraints->min_uV;
1161                         target_max = rdev->constraints->min_uV;
1162                 }
1163
1164                 if (current_uV > rdev->constraints->max_uV) {
1165                         target_min = rdev->constraints->max_uV;
1166                         target_max = rdev->constraints->max_uV;
1167                 }
1168
1169                 if (target_min != current_uV || target_max != current_uV) {
1170                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1171                                   current_uV, target_min, target_max);
1172                         ret = _regulator_do_set_voltage(
1173                                 rdev, target_min, target_max);
1174                         if (ret < 0) {
1175                                 rdev_err(rdev,
1176                                         "failed to apply %d-%duV constraint(%d)\n",
1177                                         target_min, target_max, ret);
1178                                 return ret;
1179                         }
1180                 }
1181         }
1182
1183         /* constrain machine-level voltage specs to fit
1184          * the actual range supported by this regulator.
1185          */
1186         if (ops->list_voltage && rdev->desc->n_voltages) {
1187                 int     count = rdev->desc->n_voltages;
1188                 int     i;
1189                 int     min_uV = INT_MAX;
1190                 int     max_uV = INT_MIN;
1191                 int     cmin = constraints->min_uV;
1192                 int     cmax = constraints->max_uV;
1193
1194                 /* it's safe to autoconfigure fixed-voltage supplies
1195                    and the constraints are used by list_voltage. */
1196                 if (count == 1 && !cmin) {
1197                         cmin = 1;
1198                         cmax = INT_MAX;
1199                         constraints->min_uV = cmin;
1200                         constraints->max_uV = cmax;
1201                 }
1202
1203                 /* voltage constraints are optional */
1204                 if ((cmin == 0) && (cmax == 0))
1205                         return 0;
1206
1207                 /* else require explicit machine-level constraints */
1208                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1209                         rdev_err(rdev, "invalid voltage constraints\n");
1210                         return -EINVAL;
1211                 }
1212
1213                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1214                 for (i = 0; i < count; i++) {
1215                         int     value;
1216
1217                         value = ops->list_voltage(rdev, i);
1218                         if (value <= 0)
1219                                 continue;
1220
1221                         /* maybe adjust [min_uV..max_uV] */
1222                         if (value >= cmin && value < min_uV)
1223                                 min_uV = value;
1224                         if (value <= cmax && value > max_uV)
1225                                 max_uV = value;
1226                 }
1227
1228                 /* final: [min_uV..max_uV] valid iff constraints valid */
1229                 if (max_uV < min_uV) {
1230                         rdev_err(rdev,
1231                                  "unsupportable voltage constraints %u-%uuV\n",
1232                                  min_uV, max_uV);
1233                         return -EINVAL;
1234                 }
1235
1236                 /* use regulator's subset of machine constraints */
1237                 if (constraints->min_uV < min_uV) {
1238                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1239                                  constraints->min_uV, min_uV);
1240                         constraints->min_uV = min_uV;
1241                 }
1242                 if (constraints->max_uV > max_uV) {
1243                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1244                                  constraints->max_uV, max_uV);
1245                         constraints->max_uV = max_uV;
1246                 }
1247         }
1248
1249         return 0;
1250 }
1251
1252 static int machine_constraints_current(struct regulator_dev *rdev,
1253         struct regulation_constraints *constraints)
1254 {
1255         const struct regulator_ops *ops = rdev->desc->ops;
1256         int ret;
1257
1258         if (!constraints->min_uA && !constraints->max_uA)
1259                 return 0;
1260
1261         if (constraints->min_uA > constraints->max_uA) {
1262                 rdev_err(rdev, "Invalid current constraints\n");
1263                 return -EINVAL;
1264         }
1265
1266         if (!ops->set_current_limit || !ops->get_current_limit) {
1267                 rdev_warn(rdev, "Operation of current configuration missing\n");
1268                 return 0;
1269         }
1270
1271         /* Set regulator current in constraints range */
1272         ret = ops->set_current_limit(rdev, constraints->min_uA,
1273                         constraints->max_uA);
1274         if (ret < 0) {
1275                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1276                 return ret;
1277         }
1278
1279         return 0;
1280 }
1281
1282 static int _regulator_do_enable(struct regulator_dev *rdev);
1283
1284 /**
1285  * set_machine_constraints - sets regulator constraints
1286  * @rdev: regulator source
1287  * @constraints: constraints to apply
1288  *
1289  * Allows platform initialisation code to define and constrain
1290  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1291  * Constraints *must* be set by platform code in order for some
1292  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1293  * set_mode.
1294  */
1295 static int set_machine_constraints(struct regulator_dev *rdev,
1296         const struct regulation_constraints *constraints)
1297 {
1298         int ret = 0;
1299         const struct regulator_ops *ops = rdev->desc->ops;
1300
1301         if (constraints)
1302                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1303                                             GFP_KERNEL);
1304         else
1305                 rdev->constraints = kzalloc(sizeof(*constraints),
1306                                             GFP_KERNEL);
1307         if (!rdev->constraints)
1308                 return -ENOMEM;
1309
1310         ret = machine_constraints_voltage(rdev, rdev->constraints);
1311         if (ret != 0)
1312                 return ret;
1313
1314         ret = machine_constraints_current(rdev, rdev->constraints);
1315         if (ret != 0)
1316                 return ret;
1317
1318         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1319                 ret = ops->set_input_current_limit(rdev,
1320                                                    rdev->constraints->ilim_uA);
1321                 if (ret < 0) {
1322                         rdev_err(rdev, "failed to set input limit\n");
1323                         return ret;
1324                 }
1325         }
1326
1327         /* do we need to setup our suspend state */
1328         if (rdev->constraints->initial_state) {
1329                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1330                 if (ret < 0) {
1331                         rdev_err(rdev, "failed to set suspend state\n");
1332                         return ret;
1333                 }
1334         }
1335
1336         if (rdev->constraints->initial_mode) {
1337                 if (!ops->set_mode) {
1338                         rdev_err(rdev, "no set_mode operation\n");
1339                         return -EINVAL;
1340                 }
1341
1342                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1343                 if (ret < 0) {
1344                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1345                         return ret;
1346                 }
1347         } else if (rdev->constraints->system_load) {
1348                 /*
1349                  * We'll only apply the initial system load if an
1350                  * initial mode wasn't specified.
1351                  */
1352                 drms_uA_update(rdev);
1353         }
1354
1355         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1356                 && ops->set_ramp_delay) {
1357                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1358                 if (ret < 0) {
1359                         rdev_err(rdev, "failed to set ramp_delay\n");
1360                         return ret;
1361                 }
1362         }
1363
1364         if (rdev->constraints->pull_down && ops->set_pull_down) {
1365                 ret = ops->set_pull_down(rdev);
1366                 if (ret < 0) {
1367                         rdev_err(rdev, "failed to set pull down\n");
1368                         return ret;
1369                 }
1370         }
1371
1372         if (rdev->constraints->soft_start && ops->set_soft_start) {
1373                 ret = ops->set_soft_start(rdev);
1374                 if (ret < 0) {
1375                         rdev_err(rdev, "failed to set soft start\n");
1376                         return ret;
1377                 }
1378         }
1379
1380         if (rdev->constraints->over_current_protection
1381                 && ops->set_over_current_protection) {
1382                 ret = ops->set_over_current_protection(rdev);
1383                 if (ret < 0) {
1384                         rdev_err(rdev, "failed to set over current protection\n");
1385                         return ret;
1386                 }
1387         }
1388
1389         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1390                 bool ad_state = (rdev->constraints->active_discharge ==
1391                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1392
1393                 ret = ops->set_active_discharge(rdev, ad_state);
1394                 if (ret < 0) {
1395                         rdev_err(rdev, "failed to set active discharge\n");
1396                         return ret;
1397                 }
1398         }
1399
1400         /* If the constraints say the regulator should be on at this point
1401          * and we have control then make sure it is enabled.
1402          */
1403         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1404                 if (rdev->supply) {
1405                         ret = regulator_enable(rdev->supply);
1406                         if (ret < 0) {
1407                                 _regulator_put(rdev->supply);
1408                                 rdev->supply = NULL;
1409                                 return ret;
1410                         }
1411                 }
1412
1413                 ret = _regulator_do_enable(rdev);
1414                 if (ret < 0 && ret != -EINVAL) {
1415                         rdev_err(rdev, "failed to enable\n");
1416                         return ret;
1417                 }
1418                 rdev->use_count++;
1419         }
1420
1421         print_constraints(rdev);
1422         return 0;
1423 }
1424
1425 /**
1426  * set_supply - set regulator supply regulator
1427  * @rdev: regulator name
1428  * @supply_rdev: supply regulator name
1429  *
1430  * Called by platform initialisation code to set the supply regulator for this
1431  * regulator. This ensures that a regulators supply will also be enabled by the
1432  * core if it's child is enabled.
1433  */
1434 static int set_supply(struct regulator_dev *rdev,
1435                       struct regulator_dev *supply_rdev)
1436 {
1437         int err;
1438
1439         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1440
1441         if (!try_module_get(supply_rdev->owner))
1442                 return -ENODEV;
1443
1444         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1445         if (rdev->supply == NULL) {
1446                 err = -ENOMEM;
1447                 return err;
1448         }
1449         supply_rdev->open_count++;
1450
1451         return 0;
1452 }
1453
1454 /**
1455  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1456  * @rdev:         regulator source
1457  * @consumer_dev_name: dev_name() string for device supply applies to
1458  * @supply:       symbolic name for supply
1459  *
1460  * Allows platform initialisation code to map physical regulator
1461  * sources to symbolic names for supplies for use by devices.  Devices
1462  * should use these symbolic names to request regulators, avoiding the
1463  * need to provide board-specific regulator names as platform data.
1464  */
1465 static int set_consumer_device_supply(struct regulator_dev *rdev,
1466                                       const char *consumer_dev_name,
1467                                       const char *supply)
1468 {
1469         struct regulator_map *node;
1470         int has_dev;
1471
1472         if (supply == NULL)
1473                 return -EINVAL;
1474
1475         if (consumer_dev_name != NULL)
1476                 has_dev = 1;
1477         else
1478                 has_dev = 0;
1479
1480         list_for_each_entry(node, &regulator_map_list, list) {
1481                 if (node->dev_name && consumer_dev_name) {
1482                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1483                                 continue;
1484                 } else if (node->dev_name || consumer_dev_name) {
1485                         continue;
1486                 }
1487
1488                 if (strcmp(node->supply, supply) != 0)
1489                         continue;
1490
1491                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1492                          consumer_dev_name,
1493                          dev_name(&node->regulator->dev),
1494                          node->regulator->desc->name,
1495                          supply,
1496                          dev_name(&rdev->dev), rdev_get_name(rdev));
1497                 return -EBUSY;
1498         }
1499
1500         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1501         if (node == NULL)
1502                 return -ENOMEM;
1503
1504         node->regulator = rdev;
1505         node->supply = supply;
1506
1507         if (has_dev) {
1508                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1509                 if (node->dev_name == NULL) {
1510                         kfree(node);
1511                         return -ENOMEM;
1512                 }
1513         }
1514
1515         list_add(&node->list, &regulator_map_list);
1516         return 0;
1517 }
1518
1519 static void unset_regulator_supplies(struct regulator_dev *rdev)
1520 {
1521         struct regulator_map *node, *n;
1522
1523         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1524                 if (rdev == node->regulator) {
1525                         list_del(&node->list);
1526                         kfree(node->dev_name);
1527                         kfree(node);
1528                 }
1529         }
1530 }
1531
1532 #ifdef CONFIG_DEBUG_FS
1533 static ssize_t constraint_flags_read_file(struct file *file,
1534                                           char __user *user_buf,
1535                                           size_t count, loff_t *ppos)
1536 {
1537         const struct regulator *regulator = file->private_data;
1538         const struct regulation_constraints *c = regulator->rdev->constraints;
1539         char *buf;
1540         ssize_t ret;
1541
1542         if (!c)
1543                 return 0;
1544
1545         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1546         if (!buf)
1547                 return -ENOMEM;
1548
1549         ret = snprintf(buf, PAGE_SIZE,
1550                         "always_on: %u\n"
1551                         "boot_on: %u\n"
1552                         "apply_uV: %u\n"
1553                         "ramp_disable: %u\n"
1554                         "soft_start: %u\n"
1555                         "pull_down: %u\n"
1556                         "over_current_protection: %u\n",
1557                         c->always_on,
1558                         c->boot_on,
1559                         c->apply_uV,
1560                         c->ramp_disable,
1561                         c->soft_start,
1562                         c->pull_down,
1563                         c->over_current_protection);
1564
1565         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1566         kfree(buf);
1567
1568         return ret;
1569 }
1570
1571 #endif
1572
1573 static const struct file_operations constraint_flags_fops = {
1574 #ifdef CONFIG_DEBUG_FS
1575         .open = simple_open,
1576         .read = constraint_flags_read_file,
1577         .llseek = default_llseek,
1578 #endif
1579 };
1580
1581 #define REG_STR_SIZE    64
1582
1583 static struct regulator *create_regulator(struct regulator_dev *rdev,
1584                                           struct device *dev,
1585                                           const char *supply_name)
1586 {
1587         struct regulator *regulator;
1588         char buf[REG_STR_SIZE];
1589         int err, size;
1590
1591         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1592         if (regulator == NULL)
1593                 return NULL;
1594
1595         regulator_lock(rdev);
1596         regulator->rdev = rdev;
1597         list_add(&regulator->list, &rdev->consumer_list);
1598
1599         if (dev) {
1600                 regulator->dev = dev;
1601
1602                 /* Add a link to the device sysfs entry */
1603                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1604                                 dev->kobj.name, supply_name);
1605                 if (size >= REG_STR_SIZE)
1606                         goto overflow_err;
1607
1608                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1609                 if (regulator->supply_name == NULL)
1610                         goto overflow_err;
1611
1612                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1613                                         buf);
1614                 if (err) {
1615                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1616                                   dev->kobj.name, err);
1617                         /* non-fatal */
1618                 }
1619         } else {
1620                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1621                 if (regulator->supply_name == NULL)
1622                         goto overflow_err;
1623         }
1624
1625         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1626                                                 rdev->debugfs);
1627         if (!regulator->debugfs) {
1628                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1629         } else {
1630                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1631                                    &regulator->uA_load);
1632                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1633                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1634                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1635                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1636                 debugfs_create_file("constraint_flags", 0444,
1637                                     regulator->debugfs, regulator,
1638                                     &constraint_flags_fops);
1639         }
1640
1641         /*
1642          * Check now if the regulator is an always on regulator - if
1643          * it is then we don't need to do nearly so much work for
1644          * enable/disable calls.
1645          */
1646         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1647             _regulator_is_enabled(rdev))
1648                 regulator->always_on = true;
1649
1650         regulator_unlock(rdev);
1651         return regulator;
1652 overflow_err:
1653         list_del(&regulator->list);
1654         kfree(regulator);
1655         regulator_unlock(rdev);
1656         return NULL;
1657 }
1658
1659 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1660 {
1661         if (rdev->constraints && rdev->constraints->enable_time)
1662                 return rdev->constraints->enable_time;
1663         if (!rdev->desc->ops->enable_time)
1664                 return rdev->desc->enable_time;
1665         return rdev->desc->ops->enable_time(rdev);
1666 }
1667
1668 static struct regulator_supply_alias *regulator_find_supply_alias(
1669                 struct device *dev, const char *supply)
1670 {
1671         struct regulator_supply_alias *map;
1672
1673         list_for_each_entry(map, &regulator_supply_alias_list, list)
1674                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1675                         return map;
1676
1677         return NULL;
1678 }
1679
1680 static void regulator_supply_alias(struct device **dev, const char **supply)
1681 {
1682         struct regulator_supply_alias *map;
1683
1684         map = regulator_find_supply_alias(*dev, *supply);
1685         if (map) {
1686                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1687                                 *supply, map->alias_supply,
1688                                 dev_name(map->alias_dev));
1689                 *dev = map->alias_dev;
1690                 *supply = map->alias_supply;
1691         }
1692 }
1693
1694 static int regulator_match(struct device *dev, const void *data)
1695 {
1696         struct regulator_dev *r = dev_to_rdev(dev);
1697
1698         return strcmp(rdev_get_name(r), data) == 0;
1699 }
1700
1701 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1702 {
1703         struct device *dev;
1704
1705         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1706
1707         return dev ? dev_to_rdev(dev) : NULL;
1708 }
1709
1710 /**
1711  * regulator_dev_lookup - lookup a regulator device.
1712  * @dev: device for regulator "consumer".
1713  * @supply: Supply name or regulator ID.
1714  *
1715  * If successful, returns a struct regulator_dev that corresponds to the name
1716  * @supply and with the embedded struct device refcount incremented by one.
1717  * The refcount must be dropped by calling put_device().
1718  * On failure one of the following ERR-PTR-encoded values is returned:
1719  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1720  * in the future.
1721  */
1722 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1723                                                   const char *supply)
1724 {
1725         struct regulator_dev *r = NULL;
1726         struct device_node *node;
1727         struct regulator_map *map;
1728         const char *devname = NULL;
1729
1730         regulator_supply_alias(&dev, &supply);
1731
1732         /* first do a dt based lookup */
1733         if (dev && dev->of_node) {
1734                 node = of_get_regulator(dev, supply);
1735                 if (node) {
1736                         r = of_find_regulator_by_node(node);
1737                         if (r)
1738                                 return r;
1739
1740                         /*
1741                          * We have a node, but there is no device.
1742                          * assume it has not registered yet.
1743                          */
1744                         return ERR_PTR(-EPROBE_DEFER);
1745                 }
1746         }
1747
1748         /* if not found, try doing it non-dt way */
1749         if (dev)
1750                 devname = dev_name(dev);
1751
1752         mutex_lock(&regulator_list_mutex);
1753         list_for_each_entry(map, &regulator_map_list, list) {
1754                 /* If the mapping has a device set up it must match */
1755                 if (map->dev_name &&
1756                     (!devname || strcmp(map->dev_name, devname)))
1757                         continue;
1758
1759                 if (strcmp(map->supply, supply) == 0 &&
1760                     get_device(&map->regulator->dev)) {
1761                         r = map->regulator;
1762                         break;
1763                 }
1764         }
1765         mutex_unlock(&regulator_list_mutex);
1766
1767         if (r)
1768                 return r;
1769
1770         r = regulator_lookup_by_name(supply);
1771         if (r)
1772                 return r;
1773
1774         return ERR_PTR(-ENODEV);
1775 }
1776
1777 static int regulator_resolve_supply(struct regulator_dev *rdev)
1778 {
1779         struct regulator_dev *r;
1780         struct device *dev = rdev->dev.parent;
1781         int ret;
1782
1783         /* No supply to resovle? */
1784         if (!rdev->supply_name)
1785                 return 0;
1786
1787         /* Supply already resolved? */
1788         if (rdev->supply)
1789                 return 0;
1790
1791         r = regulator_dev_lookup(dev, rdev->supply_name);
1792         if (IS_ERR(r)) {
1793                 ret = PTR_ERR(r);
1794
1795                 /* Did the lookup explicitly defer for us? */
1796                 if (ret == -EPROBE_DEFER)
1797                         return ret;
1798
1799                 if (have_full_constraints()) {
1800                         r = dummy_regulator_rdev;
1801                         get_device(&r->dev);
1802                 } else {
1803                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1804                                 rdev->supply_name, rdev->desc->name);
1805                         return -EPROBE_DEFER;
1806                 }
1807         }
1808
1809         /*
1810          * If the supply's parent device is not the same as the
1811          * regulator's parent device, then ensure the parent device
1812          * is bound before we resolve the supply, in case the parent
1813          * device get probe deferred and unregisters the supply.
1814          */
1815         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1816                 if (!device_is_bound(r->dev.parent)) {
1817                         put_device(&r->dev);
1818                         return -EPROBE_DEFER;
1819                 }
1820         }
1821
1822         /* Recursively resolve the supply of the supply */
1823         ret = regulator_resolve_supply(r);
1824         if (ret < 0) {
1825                 put_device(&r->dev);
1826                 return ret;
1827         }
1828
1829         ret = set_supply(rdev, r);
1830         if (ret < 0) {
1831                 put_device(&r->dev);
1832                 return ret;
1833         }
1834
1835         /*
1836          * In set_machine_constraints() we may have turned this regulator on
1837          * but we couldn't propagate to the supply if it hadn't been resolved
1838          * yet.  Do it now.
1839          */
1840         if (rdev->use_count) {
1841                 ret = regulator_enable(rdev->supply);
1842                 if (ret < 0) {
1843                         _regulator_put(rdev->supply);
1844                         rdev->supply = NULL;
1845                         return ret;
1846                 }
1847         }
1848
1849         return 0;
1850 }
1851
1852 /* Internal regulator request function */
1853 struct regulator *_regulator_get(struct device *dev, const char *id,
1854                                  enum regulator_get_type get_type)
1855 {
1856         struct regulator_dev *rdev;
1857         struct regulator *regulator;
1858         const char *devname = dev ? dev_name(dev) : "deviceless";
1859         int ret;
1860
1861         if (get_type >= MAX_GET_TYPE) {
1862                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1863                 return ERR_PTR(-EINVAL);
1864         }
1865
1866         if (id == NULL) {
1867                 pr_err("get() with no identifier\n");
1868                 return ERR_PTR(-EINVAL);
1869         }
1870
1871         rdev = regulator_dev_lookup(dev, id);
1872         if (IS_ERR(rdev)) {
1873                 ret = PTR_ERR(rdev);
1874
1875                 /*
1876                  * If regulator_dev_lookup() fails with error other
1877                  * than -ENODEV our job here is done, we simply return it.
1878                  */
1879                 if (ret != -ENODEV)
1880                         return ERR_PTR(ret);
1881
1882                 if (!have_full_constraints()) {
1883                         dev_warn(dev,
1884                                  "incomplete constraints, dummy supplies not allowed\n");
1885                         return ERR_PTR(-ENODEV);
1886                 }
1887
1888                 switch (get_type) {
1889                 case NORMAL_GET:
1890                         /*
1891                          * Assume that a regulator is physically present and
1892                          * enabled, even if it isn't hooked up, and just
1893                          * provide a dummy.
1894                          */
1895                         dev_warn(dev,
1896                                  "%s supply %s not found, using dummy regulator\n",
1897                                  devname, id);
1898                         rdev = dummy_regulator_rdev;
1899                         get_device(&rdev->dev);
1900                         break;
1901
1902                 case EXCLUSIVE_GET:
1903                         dev_warn(dev,
1904                                  "dummy supplies not allowed for exclusive requests\n");
1905                         /* fall through */
1906
1907                 default:
1908                         return ERR_PTR(-ENODEV);
1909                 }
1910         }
1911
1912         if (rdev->exclusive) {
1913                 regulator = ERR_PTR(-EPERM);
1914                 put_device(&rdev->dev);
1915                 return regulator;
1916         }
1917
1918         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1919                 regulator = ERR_PTR(-EBUSY);
1920                 put_device(&rdev->dev);
1921                 return regulator;
1922         }
1923
1924         mutex_lock(&regulator_list_mutex);
1925         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1926         mutex_unlock(&regulator_list_mutex);
1927
1928         if (ret != 0) {
1929                 regulator = ERR_PTR(-EPROBE_DEFER);
1930                 put_device(&rdev->dev);
1931                 return regulator;
1932         }
1933
1934         ret = regulator_resolve_supply(rdev);
1935         if (ret < 0) {
1936                 regulator = ERR_PTR(ret);
1937                 put_device(&rdev->dev);
1938                 return regulator;
1939         }
1940
1941         if (!try_module_get(rdev->owner)) {
1942                 regulator = ERR_PTR(-EPROBE_DEFER);
1943                 put_device(&rdev->dev);
1944                 return regulator;
1945         }
1946
1947         regulator = create_regulator(rdev, dev, id);
1948         if (regulator == NULL) {
1949                 regulator = ERR_PTR(-ENOMEM);
1950                 put_device(&rdev->dev);
1951                 module_put(rdev->owner);
1952                 return regulator;
1953         }
1954
1955         rdev->open_count++;
1956         if (get_type == EXCLUSIVE_GET) {
1957                 rdev->exclusive = 1;
1958
1959                 ret = _regulator_is_enabled(rdev);
1960                 if (ret > 0)
1961                         rdev->use_count = 1;
1962                 else
1963                         rdev->use_count = 0;
1964         }
1965
1966         device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1967
1968         return regulator;
1969 }
1970
1971 /**
1972  * regulator_get - lookup and obtain a reference to a regulator.
1973  * @dev: device for regulator "consumer"
1974  * @id: Supply name or regulator ID.
1975  *
1976  * Returns a struct regulator corresponding to the regulator producer,
1977  * or IS_ERR() condition containing errno.
1978  *
1979  * Use of supply names configured via regulator_set_device_supply() is
1980  * strongly encouraged.  It is recommended that the supply name used
1981  * should match the name used for the supply and/or the relevant
1982  * device pins in the datasheet.
1983  */
1984 struct regulator *regulator_get(struct device *dev, const char *id)
1985 {
1986         return _regulator_get(dev, id, NORMAL_GET);
1987 }
1988 EXPORT_SYMBOL_GPL(regulator_get);
1989
1990 /**
1991  * regulator_get_exclusive - obtain exclusive access to a regulator.
1992  * @dev: device for regulator "consumer"
1993  * @id: Supply name or regulator ID.
1994  *
1995  * Returns a struct regulator corresponding to the regulator producer,
1996  * or IS_ERR() condition containing errno.  Other consumers will be
1997  * unable to obtain this regulator while this reference is held and the
1998  * use count for the regulator will be initialised to reflect the current
1999  * state of the regulator.
2000  *
2001  * This is intended for use by consumers which cannot tolerate shared
2002  * use of the regulator such as those which need to force the
2003  * regulator off for correct operation of the hardware they are
2004  * controlling.
2005  *
2006  * Use of supply names configured via regulator_set_device_supply() is
2007  * strongly encouraged.  It is recommended that the supply name used
2008  * should match the name used for the supply and/or the relevant
2009  * device pins in the datasheet.
2010  */
2011 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2012 {
2013         return _regulator_get(dev, id, EXCLUSIVE_GET);
2014 }
2015 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2016
2017 /**
2018  * regulator_get_optional - obtain optional access to a regulator.
2019  * @dev: device for regulator "consumer"
2020  * @id: Supply name or regulator ID.
2021  *
2022  * Returns a struct regulator corresponding to the regulator producer,
2023  * or IS_ERR() condition containing errno.
2024  *
2025  * This is intended for use by consumers for devices which can have
2026  * some supplies unconnected in normal use, such as some MMC devices.
2027  * It can allow the regulator core to provide stub supplies for other
2028  * supplies requested using normal regulator_get() calls without
2029  * disrupting the operation of drivers that can handle absent
2030  * supplies.
2031  *
2032  * Use of supply names configured via regulator_set_device_supply() is
2033  * strongly encouraged.  It is recommended that the supply name used
2034  * should match the name used for the supply and/or the relevant
2035  * device pins in the datasheet.
2036  */
2037 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2038 {
2039         return _regulator_get(dev, id, OPTIONAL_GET);
2040 }
2041 EXPORT_SYMBOL_GPL(regulator_get_optional);
2042
2043 /* regulator_list_mutex lock held by regulator_put() */
2044 static void _regulator_put(struct regulator *regulator)
2045 {
2046         struct regulator_dev *rdev;
2047
2048         if (IS_ERR_OR_NULL(regulator))
2049                 return;
2050
2051         lockdep_assert_held_once(&regulator_list_mutex);
2052
2053         /* Docs say you must disable before calling regulator_put() */
2054         WARN_ON(regulator->enable_count);
2055
2056         rdev = regulator->rdev;
2057
2058         debugfs_remove_recursive(regulator->debugfs);
2059
2060         if (regulator->dev) {
2061                 int count = 0;
2062                 struct regulator *r;
2063
2064                 list_for_each_entry(r, &rdev->consumer_list, list)
2065                         if (r->dev == regulator->dev)
2066                                 count++;
2067
2068                 if (count == 1)
2069                         device_link_remove(regulator->dev, &rdev->dev);
2070
2071                 /* remove any sysfs entries */
2072                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2073         }
2074
2075         regulator_lock(rdev);
2076         list_del(&regulator->list);
2077
2078         rdev->open_count--;
2079         rdev->exclusive = 0;
2080         put_device(&rdev->dev);
2081         regulator_unlock(rdev);
2082
2083         kfree_const(regulator->supply_name);
2084         kfree(regulator);
2085
2086         module_put(rdev->owner);
2087 }
2088
2089 /**
2090  * regulator_put - "free" the regulator source
2091  * @regulator: regulator source
2092  *
2093  * Note: drivers must ensure that all regulator_enable calls made on this
2094  * regulator source are balanced by regulator_disable calls prior to calling
2095  * this function.
2096  */
2097 void regulator_put(struct regulator *regulator)
2098 {
2099         mutex_lock(&regulator_list_mutex);
2100         _regulator_put(regulator);
2101         mutex_unlock(&regulator_list_mutex);
2102 }
2103 EXPORT_SYMBOL_GPL(regulator_put);
2104
2105 /**
2106  * regulator_register_supply_alias - Provide device alias for supply lookup
2107  *
2108  * @dev: device that will be given as the regulator "consumer"
2109  * @id: Supply name or regulator ID
2110  * @alias_dev: device that should be used to lookup the supply
2111  * @alias_id: Supply name or regulator ID that should be used to lookup the
2112  * supply
2113  *
2114  * All lookups for id on dev will instead be conducted for alias_id on
2115  * alias_dev.
2116  */
2117 int regulator_register_supply_alias(struct device *dev, const char *id,
2118                                     struct device *alias_dev,
2119                                     const char *alias_id)
2120 {
2121         struct regulator_supply_alias *map;
2122
2123         map = regulator_find_supply_alias(dev, id);
2124         if (map)
2125                 return -EEXIST;
2126
2127         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2128         if (!map)
2129                 return -ENOMEM;
2130
2131         map->src_dev = dev;
2132         map->src_supply = id;
2133         map->alias_dev = alias_dev;
2134         map->alias_supply = alias_id;
2135
2136         list_add(&map->list, &regulator_supply_alias_list);
2137
2138         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2139                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2140
2141         return 0;
2142 }
2143 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2144
2145 /**
2146  * regulator_unregister_supply_alias - Remove device alias
2147  *
2148  * @dev: device that will be given as the regulator "consumer"
2149  * @id: Supply name or regulator ID
2150  *
2151  * Remove a lookup alias if one exists for id on dev.
2152  */
2153 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2154 {
2155         struct regulator_supply_alias *map;
2156
2157         map = regulator_find_supply_alias(dev, id);
2158         if (map) {
2159                 list_del(&map->list);
2160                 kfree(map);
2161         }
2162 }
2163 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2164
2165 /**
2166  * regulator_bulk_register_supply_alias - register multiple aliases
2167  *
2168  * @dev: device that will be given as the regulator "consumer"
2169  * @id: List of supply names or regulator IDs
2170  * @alias_dev: device that should be used to lookup the supply
2171  * @alias_id: List of supply names or regulator IDs that should be used to
2172  * lookup the supply
2173  * @num_id: Number of aliases to register
2174  *
2175  * @return 0 on success, an errno on failure.
2176  *
2177  * This helper function allows drivers to register several supply
2178  * aliases in one operation.  If any of the aliases cannot be
2179  * registered any aliases that were registered will be removed
2180  * before returning to the caller.
2181  */
2182 int regulator_bulk_register_supply_alias(struct device *dev,
2183                                          const char *const *id,
2184                                          struct device *alias_dev,
2185                                          const char *const *alias_id,
2186                                          int num_id)
2187 {
2188         int i;
2189         int ret;
2190
2191         for (i = 0; i < num_id; ++i) {
2192                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2193                                                       alias_id[i]);
2194                 if (ret < 0)
2195                         goto err;
2196         }
2197
2198         return 0;
2199
2200 err:
2201         dev_err(dev,
2202                 "Failed to create supply alias %s,%s -> %s,%s\n",
2203                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2204
2205         while (--i >= 0)
2206                 regulator_unregister_supply_alias(dev, id[i]);
2207
2208         return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2211
2212 /**
2213  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2214  *
2215  * @dev: device that will be given as the regulator "consumer"
2216  * @id: List of supply names or regulator IDs
2217  * @num_id: Number of aliases to unregister
2218  *
2219  * This helper function allows drivers to unregister several supply
2220  * aliases in one operation.
2221  */
2222 void regulator_bulk_unregister_supply_alias(struct device *dev,
2223                                             const char *const *id,
2224                                             int num_id)
2225 {
2226         int i;
2227
2228         for (i = 0; i < num_id; ++i)
2229                 regulator_unregister_supply_alias(dev, id[i]);
2230 }
2231 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2232
2233
2234 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2235 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2236                                 const struct regulator_config *config)
2237 {
2238         struct regulator_enable_gpio *pin;
2239         struct gpio_desc *gpiod;
2240         int ret;
2241
2242         if (config->ena_gpiod)
2243                 gpiod = config->ena_gpiod;
2244         else
2245                 gpiod = gpio_to_desc(config->ena_gpio);
2246
2247         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2248                 if (pin->gpiod == gpiod) {
2249                         rdev_dbg(rdev, "GPIO %d is already used\n",
2250                                 config->ena_gpio);
2251                         goto update_ena_gpio_to_rdev;
2252                 }
2253         }
2254
2255         if (!config->ena_gpiod) {
2256                 ret = gpio_request_one(config->ena_gpio,
2257                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
2258                                        rdev_get_name(rdev));
2259                 if (ret)
2260                         return ret;
2261         }
2262
2263         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2264         if (pin == NULL) {
2265                 if (!config->ena_gpiod)
2266                         gpio_free(config->ena_gpio);
2267                 return -ENOMEM;
2268         }
2269
2270         pin->gpiod = gpiod;
2271         pin->ena_gpio_invert = config->ena_gpio_invert;
2272         list_add(&pin->list, &regulator_ena_gpio_list);
2273
2274 update_ena_gpio_to_rdev:
2275         pin->request_count++;
2276         rdev->ena_pin = pin;
2277         return 0;
2278 }
2279
2280 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2281 {
2282         struct regulator_enable_gpio *pin, *n;
2283
2284         if (!rdev->ena_pin)
2285                 return;
2286
2287         /* Free the GPIO only in case of no use */
2288         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2289                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2290                         if (pin->request_count <= 1) {
2291                                 pin->request_count = 0;
2292                                 gpiod_put(pin->gpiod);
2293                                 list_del(&pin->list);
2294                                 kfree(pin);
2295                                 rdev->ena_pin = NULL;
2296                                 return;
2297                         } else {
2298                                 pin->request_count--;
2299                         }
2300                 }
2301         }
2302 }
2303
2304 /**
2305  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2306  * @rdev: regulator_dev structure
2307  * @enable: enable GPIO at initial use?
2308  *
2309  * GPIO is enabled in case of initial use. (enable_count is 0)
2310  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2311  */
2312 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2313 {
2314         struct regulator_enable_gpio *pin = rdev->ena_pin;
2315
2316         if (!pin)
2317                 return -EINVAL;
2318
2319         if (enable) {
2320                 /* Enable GPIO at initial use */
2321                 if (pin->enable_count == 0)
2322                         gpiod_set_value_cansleep(pin->gpiod,
2323                                                  !pin->ena_gpio_invert);
2324
2325                 pin->enable_count++;
2326         } else {
2327                 if (pin->enable_count > 1) {
2328                         pin->enable_count--;
2329                         return 0;
2330                 }
2331
2332                 /* Disable GPIO if not used */
2333                 if (pin->enable_count <= 1) {
2334                         gpiod_set_value_cansleep(pin->gpiod,
2335                                                  pin->ena_gpio_invert);
2336                         pin->enable_count = 0;
2337                 }
2338         }
2339
2340         return 0;
2341 }
2342
2343 /**
2344  * _regulator_enable_delay - a delay helper function
2345  * @delay: time to delay in microseconds
2346  *
2347  * Delay for the requested amount of time as per the guidelines in:
2348  *
2349  *     Documentation/timers/timers-howto.txt
2350  *
2351  * The assumption here is that regulators will never be enabled in
2352  * atomic context and therefore sleeping functions can be used.
2353  */
2354 static void _regulator_enable_delay(unsigned int delay)
2355 {
2356         unsigned int ms = delay / 1000;
2357         unsigned int us = delay % 1000;
2358
2359         if (ms > 0) {
2360                 /*
2361                  * For small enough values, handle super-millisecond
2362                  * delays in the usleep_range() call below.
2363                  */
2364                 if (ms < 20)
2365                         us += ms * 1000;
2366                 else
2367                         msleep(ms);
2368         }
2369
2370         /*
2371          * Give the scheduler some room to coalesce with any other
2372          * wakeup sources. For delays shorter than 10 us, don't even
2373          * bother setting up high-resolution timers and just busy-
2374          * loop.
2375          */
2376         if (us >= 10)
2377                 usleep_range(us, us + 100);
2378         else
2379                 udelay(us);
2380 }
2381
2382 static int _regulator_do_enable(struct regulator_dev *rdev)
2383 {
2384         int ret, delay;
2385
2386         /* Query before enabling in case configuration dependent.  */
2387         ret = _regulator_get_enable_time(rdev);
2388         if (ret >= 0) {
2389                 delay = ret;
2390         } else {
2391                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2392                 delay = 0;
2393         }
2394
2395         trace_regulator_enable(rdev_get_name(rdev));
2396
2397         if (rdev->desc->off_on_delay) {
2398                 /* if needed, keep a distance of off_on_delay from last time
2399                  * this regulator was disabled.
2400                  */
2401                 unsigned long start_jiffy = jiffies;
2402                 unsigned long intended, max_delay, remaining;
2403
2404                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2405                 intended = rdev->last_off_jiffy + max_delay;
2406
2407                 if (time_before(start_jiffy, intended)) {
2408                         /* calc remaining jiffies to deal with one-time
2409                          * timer wrapping.
2410                          * in case of multiple timer wrapping, either it can be
2411                          * detected by out-of-range remaining, or it cannot be
2412                          * detected and we gets a panelty of
2413                          * _regulator_enable_delay().
2414                          */
2415                         remaining = intended - start_jiffy;
2416                         if (remaining <= max_delay)
2417                                 _regulator_enable_delay(
2418                                                 jiffies_to_usecs(remaining));
2419                 }
2420         }
2421
2422         if (rdev->ena_pin) {
2423                 if (!rdev->ena_gpio_state) {
2424                         ret = regulator_ena_gpio_ctrl(rdev, true);
2425                         if (ret < 0)
2426                                 return ret;
2427                         rdev->ena_gpio_state = 1;
2428                 }
2429         } else if (rdev->desc->ops->enable) {
2430                 ret = rdev->desc->ops->enable(rdev);
2431                 if (ret < 0)
2432                         return ret;
2433         } else {
2434                 return -EINVAL;
2435         }
2436
2437         /* Allow the regulator to ramp; it would be useful to extend
2438          * this for bulk operations so that the regulators can ramp
2439          * together.  */
2440         trace_regulator_enable_delay(rdev_get_name(rdev));
2441
2442         _regulator_enable_delay(delay);
2443
2444         trace_regulator_enable_complete(rdev_get_name(rdev));
2445
2446         return 0;
2447 }
2448
2449 /**
2450  * _regulator_handle_consumer_enable - handle that a consumer enabled
2451  * @regulator: regulator source
2452  *
2453  * Some things on a regulator consumer (like the contribution towards total
2454  * load on the regulator) only have an effect when the consumer wants the
2455  * regulator enabled.  Explained in example with two consumers of the same
2456  * regulator:
2457  *   consumer A: set_load(100);       => total load = 0
2458  *   consumer A: regulator_enable();  => total load = 100
2459  *   consumer B: set_load(1000);      => total load = 100
2460  *   consumer B: regulator_enable();  => total load = 1100
2461  *   consumer A: regulator_disable(); => total_load = 1000
2462  *
2463  * This function (together with _regulator_handle_consumer_disable) is
2464  * responsible for keeping track of the refcount for a given regulator consumer
2465  * and applying / unapplying these things.
2466  *
2467  * Returns 0 upon no error; -error upon error.
2468  */
2469 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2470 {
2471         struct regulator_dev *rdev = regulator->rdev;
2472
2473         lockdep_assert_held_once(&rdev->mutex.base);
2474
2475         regulator->enable_count++;
2476         if (regulator->uA_load && regulator->enable_count == 1)
2477                 return drms_uA_update(rdev);
2478
2479         return 0;
2480 }
2481
2482 /**
2483  * _regulator_handle_consumer_disable - handle that a consumer disabled
2484  * @regulator: regulator source
2485  *
2486  * The opposite of _regulator_handle_consumer_enable().
2487  *
2488  * Returns 0 upon no error; -error upon error.
2489  */
2490 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2491 {
2492         struct regulator_dev *rdev = regulator->rdev;
2493
2494         lockdep_assert_held_once(&rdev->mutex.base);
2495
2496         if (!regulator->enable_count) {
2497                 rdev_err(rdev, "Underflow of regulator enable count\n");
2498                 return -EINVAL;
2499         }
2500
2501         regulator->enable_count--;
2502         if (regulator->uA_load && regulator->enable_count == 0)
2503                 return drms_uA_update(rdev);
2504
2505         return 0;
2506 }
2507
2508 /* locks held by regulator_enable() */
2509 static int _regulator_enable(struct regulator *regulator)
2510 {
2511         struct regulator_dev *rdev = regulator->rdev;
2512         int ret;
2513
2514         lockdep_assert_held_once(&rdev->mutex.base);
2515
2516         if (rdev->use_count == 0 && rdev->supply) {
2517                 ret = _regulator_enable(rdev->supply);
2518                 if (ret < 0)
2519                         return ret;
2520         }
2521
2522         /* balance only if there are regulators coupled */
2523         if (rdev->coupling_desc.n_coupled > 1) {
2524                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2525                 if (ret < 0)
2526                         goto err_disable_supply;
2527         }
2528
2529         ret = _regulator_handle_consumer_enable(regulator);
2530         if (ret < 0)
2531                 goto err_disable_supply;
2532
2533         if (rdev->use_count == 0) {
2534                 /* The regulator may on if it's not switchable or left on */
2535                 ret = _regulator_is_enabled(rdev);
2536                 if (ret == -EINVAL || ret == 0) {
2537                         if (!regulator_ops_is_valid(rdev,
2538                                         REGULATOR_CHANGE_STATUS)) {
2539                                 ret = -EPERM;
2540                                 goto err_consumer_disable;
2541                         }
2542
2543                         ret = _regulator_do_enable(rdev);
2544                         if (ret < 0)
2545                                 goto err_consumer_disable;
2546
2547                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2548                                              NULL);
2549                 } else if (ret < 0) {
2550                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2551                         goto err_consumer_disable;
2552                 }
2553                 /* Fallthrough on positive return values - already enabled */
2554         }
2555
2556         rdev->use_count++;
2557
2558         return 0;
2559
2560 err_consumer_disable:
2561         _regulator_handle_consumer_disable(regulator);
2562
2563 err_disable_supply:
2564         if (rdev->use_count == 0 && rdev->supply)
2565                 _regulator_disable(rdev->supply);
2566
2567         return ret;
2568 }
2569
2570 /**
2571  * regulator_enable - enable regulator output
2572  * @regulator: regulator source
2573  *
2574  * Request that the regulator be enabled with the regulator output at
2575  * the predefined voltage or current value.  Calls to regulator_enable()
2576  * must be balanced with calls to regulator_disable().
2577  *
2578  * NOTE: the output value can be set by other drivers, boot loader or may be
2579  * hardwired in the regulator.
2580  */
2581 int regulator_enable(struct regulator *regulator)
2582 {
2583         struct regulator_dev *rdev = regulator->rdev;
2584         struct ww_acquire_ctx ww_ctx;
2585         int ret;
2586
2587         regulator_lock_dependent(rdev, &ww_ctx);
2588         ret = _regulator_enable(regulator);
2589         regulator_unlock_dependent(rdev, &ww_ctx);
2590
2591         return ret;
2592 }
2593 EXPORT_SYMBOL_GPL(regulator_enable);
2594
2595 static int _regulator_do_disable(struct regulator_dev *rdev)
2596 {
2597         int ret;
2598
2599         trace_regulator_disable(rdev_get_name(rdev));
2600
2601         if (rdev->ena_pin) {
2602                 if (rdev->ena_gpio_state) {
2603                         ret = regulator_ena_gpio_ctrl(rdev, false);
2604                         if (ret < 0)
2605                                 return ret;
2606                         rdev->ena_gpio_state = 0;
2607                 }
2608
2609         } else if (rdev->desc->ops->disable) {
2610                 ret = rdev->desc->ops->disable(rdev);
2611                 if (ret != 0)
2612                         return ret;
2613         }
2614
2615         /* cares about last_off_jiffy only if off_on_delay is required by
2616          * device.
2617          */
2618         if (rdev->desc->off_on_delay)
2619                 rdev->last_off_jiffy = jiffies;
2620
2621         trace_regulator_disable_complete(rdev_get_name(rdev));
2622
2623         return 0;
2624 }
2625
2626 /* locks held by regulator_disable() */
2627 static int _regulator_disable(struct regulator *regulator)
2628 {
2629         struct regulator_dev *rdev = regulator->rdev;
2630         int ret = 0;
2631
2632         lockdep_assert_held_once(&rdev->mutex.base);
2633
2634         if (WARN(rdev->use_count <= 0,
2635                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2636                 return -EIO;
2637
2638         /* are we the last user and permitted to disable ? */
2639         if (rdev->use_count == 1 &&
2640             (rdev->constraints && !rdev->constraints->always_on)) {
2641
2642                 /* we are last user */
2643                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2644                         ret = _notifier_call_chain(rdev,
2645                                                    REGULATOR_EVENT_PRE_DISABLE,
2646                                                    NULL);
2647                         if (ret & NOTIFY_STOP_MASK)
2648                                 return -EINVAL;
2649
2650                         ret = _regulator_do_disable(rdev);
2651                         if (ret < 0) {
2652                                 rdev_err(rdev, "failed to disable\n");
2653                                 _notifier_call_chain(rdev,
2654                                                 REGULATOR_EVENT_ABORT_DISABLE,
2655                                                 NULL);
2656                                 return ret;
2657                         }
2658                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2659                                         NULL);
2660                 }
2661
2662                 rdev->use_count = 0;
2663         } else if (rdev->use_count > 1) {
2664                 rdev->use_count--;
2665         }
2666
2667         if (ret == 0)
2668                 ret = _regulator_handle_consumer_disable(regulator);
2669
2670         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2671                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2672
2673         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2674                 ret = _regulator_disable(rdev->supply);
2675
2676         return ret;
2677 }
2678
2679 /**
2680  * regulator_disable - disable regulator output
2681  * @regulator: regulator source
2682  *
2683  * Disable the regulator output voltage or current.  Calls to
2684  * regulator_enable() must be balanced with calls to
2685  * regulator_disable().
2686  *
2687  * NOTE: this will only disable the regulator output if no other consumer
2688  * devices have it enabled, the regulator device supports disabling and
2689  * machine constraints permit this operation.
2690  */
2691 int regulator_disable(struct regulator *regulator)
2692 {
2693         struct regulator_dev *rdev = regulator->rdev;
2694         struct ww_acquire_ctx ww_ctx;
2695         int ret;
2696
2697         regulator_lock_dependent(rdev, &ww_ctx);
2698         ret = _regulator_disable(regulator);
2699         regulator_unlock_dependent(rdev, &ww_ctx);
2700
2701         return ret;
2702 }
2703 EXPORT_SYMBOL_GPL(regulator_disable);
2704
2705 /* locks held by regulator_force_disable() */
2706 static int _regulator_force_disable(struct regulator_dev *rdev)
2707 {
2708         int ret = 0;
2709
2710         lockdep_assert_held_once(&rdev->mutex.base);
2711
2712         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2713                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2714         if (ret & NOTIFY_STOP_MASK)
2715                 return -EINVAL;
2716
2717         ret = _regulator_do_disable(rdev);
2718         if (ret < 0) {
2719                 rdev_err(rdev, "failed to force disable\n");
2720                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2721                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2722                 return ret;
2723         }
2724
2725         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2726                         REGULATOR_EVENT_DISABLE, NULL);
2727
2728         return 0;
2729 }
2730
2731 /**
2732  * regulator_force_disable - force disable regulator output
2733  * @regulator: regulator source
2734  *
2735  * Forcibly disable the regulator output voltage or current.
2736  * NOTE: this *will* disable the regulator output even if other consumer
2737  * devices have it enabled. This should be used for situations when device
2738  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2739  */
2740 int regulator_force_disable(struct regulator *regulator)
2741 {
2742         struct regulator_dev *rdev = regulator->rdev;
2743         struct ww_acquire_ctx ww_ctx;
2744         int ret;
2745
2746         regulator_lock_dependent(rdev, &ww_ctx);
2747
2748         ret = _regulator_force_disable(regulator->rdev);
2749
2750         if (rdev->coupling_desc.n_coupled > 1)
2751                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2752
2753         if (regulator->uA_load) {
2754                 regulator->uA_load = 0;
2755                 ret = drms_uA_update(rdev);
2756         }
2757
2758         if (rdev->use_count != 0 && rdev->supply)
2759                 _regulator_disable(rdev->supply);
2760
2761         regulator_unlock_dependent(rdev, &ww_ctx);
2762
2763         return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(regulator_force_disable);
2766
2767 static void regulator_disable_work(struct work_struct *work)
2768 {
2769         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2770                                                   disable_work.work);
2771         struct ww_acquire_ctx ww_ctx;
2772         int count, i, ret;
2773         struct regulator *regulator;
2774         int total_count = 0;
2775
2776         regulator_lock_dependent(rdev, &ww_ctx);
2777
2778         /*
2779          * Workqueue functions queue the new work instance while the previous
2780          * work instance is being processed. Cancel the queued work instance
2781          * as the work instance under processing does the job of the queued
2782          * work instance.
2783          */
2784         cancel_delayed_work(&rdev->disable_work);
2785
2786         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2787                 count = regulator->deferred_disables;
2788
2789                 if (!count)
2790                         continue;
2791
2792                 total_count += count;
2793                 regulator->deferred_disables = 0;
2794
2795                 for (i = 0; i < count; i++) {
2796                         ret = _regulator_disable(regulator);
2797                         if (ret != 0)
2798                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2799                 }
2800         }
2801         WARN_ON(!total_count);
2802
2803         if (rdev->coupling_desc.n_coupled > 1)
2804                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2805
2806         regulator_unlock_dependent(rdev, &ww_ctx);
2807 }
2808
2809 /**
2810  * regulator_disable_deferred - disable regulator output with delay
2811  * @regulator: regulator source
2812  * @ms: miliseconds until the regulator is disabled
2813  *
2814  * Execute regulator_disable() on the regulator after a delay.  This
2815  * is intended for use with devices that require some time to quiesce.
2816  *
2817  * NOTE: this will only disable the regulator output if no other consumer
2818  * devices have it enabled, the regulator device supports disabling and
2819  * machine constraints permit this operation.
2820  */
2821 int regulator_disable_deferred(struct regulator *regulator, int ms)
2822 {
2823         struct regulator_dev *rdev = regulator->rdev;
2824
2825         if (!ms)
2826                 return regulator_disable(regulator);
2827
2828         regulator_lock(rdev);
2829         regulator->deferred_disables++;
2830         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2831                          msecs_to_jiffies(ms));
2832         regulator_unlock(rdev);
2833
2834         return 0;
2835 }
2836 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2837
2838 static int _regulator_is_enabled(struct regulator_dev *rdev)
2839 {
2840         /* A GPIO control always takes precedence */
2841         if (rdev->ena_pin)
2842                 return rdev->ena_gpio_state;
2843
2844         /* If we don't know then assume that the regulator is always on */
2845         if (!rdev->desc->ops->is_enabled)
2846                 return 1;
2847
2848         return rdev->desc->ops->is_enabled(rdev);
2849 }
2850
2851 static int _regulator_list_voltage(struct regulator_dev *rdev,
2852                                    unsigned selector, int lock)
2853 {
2854         const struct regulator_ops *ops = rdev->desc->ops;
2855         int ret;
2856
2857         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2858                 return rdev->desc->fixed_uV;
2859
2860         if (ops->list_voltage) {
2861                 if (selector >= rdev->desc->n_voltages)
2862                         return -EINVAL;
2863                 if (lock)
2864                         regulator_lock(rdev);
2865                 ret = ops->list_voltage(rdev, selector);
2866                 if (lock)
2867                         regulator_unlock(rdev);
2868         } else if (rdev->is_switch && rdev->supply) {
2869                 ret = _regulator_list_voltage(rdev->supply->rdev,
2870                                               selector, lock);
2871         } else {
2872                 return -EINVAL;
2873         }
2874
2875         if (ret > 0) {
2876                 if (ret < rdev->constraints->min_uV)
2877                         ret = 0;
2878                 else if (ret > rdev->constraints->max_uV)
2879                         ret = 0;
2880         }
2881
2882         return ret;
2883 }
2884
2885 /**
2886  * regulator_is_enabled - is the regulator output enabled
2887  * @regulator: regulator source
2888  *
2889  * Returns positive if the regulator driver backing the source/client
2890  * has requested that the device be enabled, zero if it hasn't, else a
2891  * negative errno code.
2892  *
2893  * Note that the device backing this regulator handle can have multiple
2894  * users, so it might be enabled even if regulator_enable() was never
2895  * called for this particular source.
2896  */
2897 int regulator_is_enabled(struct regulator *regulator)
2898 {
2899         int ret;
2900
2901         if (regulator->always_on)
2902                 return 1;
2903
2904         regulator_lock(regulator->rdev);
2905         ret = _regulator_is_enabled(regulator->rdev);
2906         regulator_unlock(regulator->rdev);
2907
2908         return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2911
2912 /**
2913  * regulator_count_voltages - count regulator_list_voltage() selectors
2914  * @regulator: regulator source
2915  *
2916  * Returns number of selectors, or negative errno.  Selectors are
2917  * numbered starting at zero, and typically correspond to bitfields
2918  * in hardware registers.
2919  */
2920 int regulator_count_voltages(struct regulator *regulator)
2921 {
2922         struct regulator_dev    *rdev = regulator->rdev;
2923
2924         if (rdev->desc->n_voltages)
2925                 return rdev->desc->n_voltages;
2926
2927         if (!rdev->is_switch || !rdev->supply)
2928                 return -EINVAL;
2929
2930         return regulator_count_voltages(rdev->supply);
2931 }
2932 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2933
2934 /**
2935  * regulator_list_voltage - enumerate supported voltages
2936  * @regulator: regulator source
2937  * @selector: identify voltage to list
2938  * Context: can sleep
2939  *
2940  * Returns a voltage that can be passed to @regulator_set_voltage(),
2941  * zero if this selector code can't be used on this system, or a
2942  * negative errno.
2943  */
2944 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2945 {
2946         return _regulator_list_voltage(regulator->rdev, selector, 1);
2947 }
2948 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2949
2950 /**
2951  * regulator_get_regmap - get the regulator's register map
2952  * @regulator: regulator source
2953  *
2954  * Returns the register map for the given regulator, or an ERR_PTR value
2955  * if the regulator doesn't use regmap.
2956  */
2957 struct regmap *regulator_get_regmap(struct regulator *regulator)
2958 {
2959         struct regmap *map = regulator->rdev->regmap;
2960
2961         return map ? map : ERR_PTR(-EOPNOTSUPP);
2962 }
2963
2964 /**
2965  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2966  * @regulator: regulator source
2967  * @vsel_reg: voltage selector register, output parameter
2968  * @vsel_mask: mask for voltage selector bitfield, output parameter
2969  *
2970  * Returns the hardware register offset and bitmask used for setting the
2971  * regulator voltage. This might be useful when configuring voltage-scaling
2972  * hardware or firmware that can make I2C requests behind the kernel's back,
2973  * for example.
2974  *
2975  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2976  * and 0 is returned, otherwise a negative errno is returned.
2977  */
2978 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2979                                          unsigned *vsel_reg,
2980                                          unsigned *vsel_mask)
2981 {
2982         struct regulator_dev *rdev = regulator->rdev;
2983         const struct regulator_ops *ops = rdev->desc->ops;
2984
2985         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2986                 return -EOPNOTSUPP;
2987
2988         *vsel_reg = rdev->desc->vsel_reg;
2989         *vsel_mask = rdev->desc->vsel_mask;
2990
2991          return 0;
2992 }
2993 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2994
2995 /**
2996  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2997  * @regulator: regulator source
2998  * @selector: identify voltage to list
2999  *
3000  * Converts the selector to a hardware-specific voltage selector that can be
3001  * directly written to the regulator registers. The address of the voltage
3002  * register can be determined by calling @regulator_get_hardware_vsel_register.
3003  *
3004  * On error a negative errno is returned.
3005  */
3006 int regulator_list_hardware_vsel(struct regulator *regulator,
3007                                  unsigned selector)
3008 {
3009         struct regulator_dev *rdev = regulator->rdev;
3010         const struct regulator_ops *ops = rdev->desc->ops;
3011
3012         if (selector >= rdev->desc->n_voltages)
3013                 return -EINVAL;
3014         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3015                 return -EOPNOTSUPP;
3016
3017         return selector;
3018 }
3019 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3020
3021 /**
3022  * regulator_get_linear_step - return the voltage step size between VSEL values
3023  * @regulator: regulator source
3024  *
3025  * Returns the voltage step size between VSEL values for linear
3026  * regulators, or return 0 if the regulator isn't a linear regulator.
3027  */
3028 unsigned int regulator_get_linear_step(struct regulator *regulator)
3029 {
3030         struct regulator_dev *rdev = regulator->rdev;
3031
3032         return rdev->desc->uV_step;
3033 }
3034 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3035
3036 /**
3037  * regulator_is_supported_voltage - check if a voltage range can be supported
3038  *
3039  * @regulator: Regulator to check.
3040  * @min_uV: Minimum required voltage in uV.
3041  * @max_uV: Maximum required voltage in uV.
3042  *
3043  * Returns a boolean or a negative error code.
3044  */
3045 int regulator_is_supported_voltage(struct regulator *regulator,
3046                                    int min_uV, int max_uV)
3047 {
3048         struct regulator_dev *rdev = regulator->rdev;
3049         int i, voltages, ret;
3050
3051         /* If we can't change voltage check the current voltage */
3052         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3053                 ret = regulator_get_voltage(regulator);
3054                 if (ret >= 0)
3055                         return min_uV <= ret && ret <= max_uV;
3056                 else
3057                         return ret;
3058         }
3059
3060         /* Any voltage within constrains range is fine? */
3061         if (rdev->desc->continuous_voltage_range)
3062                 return min_uV >= rdev->constraints->min_uV &&
3063                                 max_uV <= rdev->constraints->max_uV;
3064
3065         ret = regulator_count_voltages(regulator);
3066         if (ret < 0)
3067                 return ret;
3068         voltages = ret;
3069
3070         for (i = 0; i < voltages; i++) {
3071                 ret = regulator_list_voltage(regulator, i);
3072
3073                 if (ret >= min_uV && ret <= max_uV)
3074                         return 1;
3075         }
3076
3077         return 0;
3078 }
3079 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3080
3081 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3082                                  int max_uV)
3083 {
3084         const struct regulator_desc *desc = rdev->desc;
3085
3086         if (desc->ops->map_voltage)
3087                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3088
3089         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3090                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3091
3092         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3093                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3094
3095         if (desc->ops->list_voltage ==
3096                 regulator_list_voltage_pickable_linear_range)
3097                 return regulator_map_voltage_pickable_linear_range(rdev,
3098                                                         min_uV, max_uV);
3099
3100         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3101 }
3102
3103 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3104                                        int min_uV, int max_uV,
3105                                        unsigned *selector)
3106 {
3107         struct pre_voltage_change_data data;
3108         int ret;
3109
3110         data.old_uV = _regulator_get_voltage(rdev);
3111         data.min_uV = min_uV;
3112         data.max_uV = max_uV;
3113         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3114                                    &data);
3115         if (ret & NOTIFY_STOP_MASK)
3116                 return -EINVAL;
3117
3118         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3119         if (ret >= 0)
3120                 return ret;
3121
3122         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3123                              (void *)data.old_uV);
3124
3125         return ret;
3126 }
3127
3128 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3129                                            int uV, unsigned selector)
3130 {
3131         struct pre_voltage_change_data data;
3132         int ret;
3133
3134         data.old_uV = _regulator_get_voltage(rdev);
3135         data.min_uV = uV;
3136         data.max_uV = uV;
3137         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3138                                    &data);
3139         if (ret & NOTIFY_STOP_MASK)
3140                 return -EINVAL;
3141
3142         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3143         if (ret >= 0)
3144                 return ret;
3145
3146         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3147                              (void *)data.old_uV);
3148
3149         return ret;
3150 }
3151
3152 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3153                                        int old_uV, int new_uV)
3154 {
3155         unsigned int ramp_delay = 0;
3156
3157         if (rdev->constraints->ramp_delay)
3158                 ramp_delay = rdev->constraints->ramp_delay;
3159         else if (rdev->desc->ramp_delay)
3160                 ramp_delay = rdev->desc->ramp_delay;
3161         else if (rdev->constraints->settling_time)
3162                 return rdev->constraints->settling_time;
3163         else if (rdev->constraints->settling_time_up &&
3164                  (new_uV > old_uV))
3165                 return rdev->constraints->settling_time_up;
3166         else if (rdev->constraints->settling_time_down &&
3167                  (new_uV < old_uV))
3168                 return rdev->constraints->settling_time_down;
3169
3170         if (ramp_delay == 0) {
3171                 rdev_dbg(rdev, "ramp_delay not set\n");
3172                 return 0;
3173         }
3174
3175         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3176 }
3177
3178 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3179                                      int min_uV, int max_uV)
3180 {
3181         int ret;
3182         int delay = 0;
3183         int best_val = 0;
3184         unsigned int selector;
3185         int old_selector = -1;
3186         const struct regulator_ops *ops = rdev->desc->ops;
3187         int old_uV = _regulator_get_voltage(rdev);
3188
3189         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3190
3191         min_uV += rdev->constraints->uV_offset;
3192         max_uV += rdev->constraints->uV_offset;
3193
3194         /*
3195          * If we can't obtain the old selector there is not enough
3196          * info to call set_voltage_time_sel().
3197          */
3198         if (_regulator_is_enabled(rdev) &&
3199             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3200                 old_selector = ops->get_voltage_sel(rdev);
3201                 if (old_selector < 0)
3202                         return old_selector;
3203         }
3204
3205         if (ops->set_voltage) {
3206                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3207                                                   &selector);
3208
3209                 if (ret >= 0) {
3210                         if (ops->list_voltage)
3211                                 best_val = ops->list_voltage(rdev,
3212                                                              selector);
3213                         else
3214                                 best_val = _regulator_get_voltage(rdev);
3215                 }
3216
3217         } else if (ops->set_voltage_sel) {
3218                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3219                 if (ret >= 0) {
3220                         best_val = ops->list_voltage(rdev, ret);
3221                         if (min_uV <= best_val && max_uV >= best_val) {
3222                                 selector = ret;
3223                                 if (old_selector == selector)
3224                                         ret = 0;
3225                                 else
3226                                         ret = _regulator_call_set_voltage_sel(
3227                                                 rdev, best_val, selector);
3228                         } else {
3229                                 ret = -EINVAL;
3230                         }
3231                 }
3232         } else {
3233                 ret = -EINVAL;
3234         }
3235
3236         if (ret)
3237                 goto out;
3238
3239         if (ops->set_voltage_time_sel) {
3240                 /*
3241                  * Call set_voltage_time_sel if successfully obtained
3242                  * old_selector
3243                  */
3244                 if (old_selector >= 0 && old_selector != selector)
3245                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3246                                                           selector);
3247         } else {
3248                 if (old_uV != best_val) {
3249                         if (ops->set_voltage_time)
3250                                 delay = ops->set_voltage_time(rdev, old_uV,
3251                                                               best_val);
3252                         else
3253                                 delay = _regulator_set_voltage_time(rdev,
3254                                                                     old_uV,
3255                                                                     best_val);
3256                 }
3257         }
3258
3259         if (delay < 0) {
3260                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3261                 delay = 0;
3262         }
3263
3264         /* Insert any necessary delays */
3265         if (delay >= 1000) {
3266                 mdelay(delay / 1000);
3267                 udelay(delay % 1000);
3268         } else if (delay) {
3269                 udelay(delay);
3270         }
3271
3272         if (best_val >= 0) {
3273                 unsigned long data = best_val;
3274
3275                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3276                                      (void *)data);
3277         }
3278
3279 out:
3280         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3281
3282         return ret;
3283 }
3284
3285 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3286                                   int min_uV, int max_uV, suspend_state_t state)
3287 {
3288         struct regulator_state *rstate;
3289         int uV, sel;
3290
3291         rstate = regulator_get_suspend_state(rdev, state);
3292         if (rstate == NULL)
3293                 return -EINVAL;
3294
3295         if (min_uV < rstate->min_uV)
3296                 min_uV = rstate->min_uV;
3297         if (max_uV > rstate->max_uV)
3298                 max_uV = rstate->max_uV;
3299
3300         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3301         if (sel < 0)
3302                 return sel;
3303
3304         uV = rdev->desc->ops->list_voltage(rdev, sel);
3305         if (uV >= min_uV && uV <= max_uV)
3306                 rstate->uV = uV;
3307
3308         return 0;
3309 }
3310
3311 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3312                                           int min_uV, int max_uV,
3313                                           suspend_state_t state)
3314 {
3315         struct regulator_dev *rdev = regulator->rdev;
3316         struct regulator_voltage *voltage = &regulator->voltage[state];
3317         int ret = 0;
3318         int old_min_uV, old_max_uV;
3319         int current_uV;
3320
3321         /* If we're setting the same range as last time the change
3322          * should be a noop (some cpufreq implementations use the same
3323          * voltage for multiple frequencies, for example).
3324          */
3325         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3326                 goto out;
3327
3328         /* If we're trying to set a range that overlaps the current voltage,
3329          * return successfully even though the regulator does not support
3330          * changing the voltage.
3331          */
3332         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3333                 current_uV = _regulator_get_voltage(rdev);
3334                 if (min_uV <= current_uV && current_uV <= max_uV) {
3335                         voltage->min_uV = min_uV;
3336                         voltage->max_uV = max_uV;
3337                         goto out;
3338                 }
3339         }
3340
3341         /* sanity check */
3342         if (!rdev->desc->ops->set_voltage &&
3343             !rdev->desc->ops->set_voltage_sel) {
3344                 ret = -EINVAL;
3345                 goto out;
3346         }
3347
3348         /* constraints check */
3349         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3350         if (ret < 0)
3351                 goto out;
3352
3353         /* restore original values in case of error */
3354         old_min_uV = voltage->min_uV;
3355         old_max_uV = voltage->max_uV;
3356         voltage->min_uV = min_uV;
3357         voltage->max_uV = max_uV;
3358
3359         /* for not coupled regulators this will just set the voltage */
3360         ret = regulator_balance_voltage(rdev, state);
3361         if (ret < 0)
3362                 goto out2;
3363
3364 out:
3365         return 0;
3366 out2:
3367         voltage->min_uV = old_min_uV;
3368         voltage->max_uV = old_max_uV;
3369
3370         return ret;
3371 }
3372
3373 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3374                                       int max_uV, suspend_state_t state)
3375 {
3376         int best_supply_uV = 0;
3377         int supply_change_uV = 0;
3378         int ret;
3379
3380         if (rdev->supply &&
3381             regulator_ops_is_valid(rdev->supply->rdev,
3382                                    REGULATOR_CHANGE_VOLTAGE) &&
3383             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3384                                            rdev->desc->ops->get_voltage_sel))) {
3385                 int current_supply_uV;
3386                 int selector;
3387
3388                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3389                 if (selector < 0) {
3390                         ret = selector;
3391                         goto out;
3392                 }
3393
3394                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3395                 if (best_supply_uV < 0) {
3396                         ret = best_supply_uV;
3397                         goto out;
3398                 }
3399
3400                 best_supply_uV += rdev->desc->min_dropout_uV;
3401
3402                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3403                 if (current_supply_uV < 0) {
3404                         ret = current_supply_uV;
3405                         goto out;
3406                 }
3407
3408                 supply_change_uV = best_supply_uV - current_supply_uV;
3409         }
3410
3411         if (supply_change_uV > 0) {
3412                 ret = regulator_set_voltage_unlocked(rdev->supply,
3413                                 best_supply_uV, INT_MAX, state);
3414                 if (ret) {
3415                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3416                                         ret);
3417                         goto out;
3418                 }
3419         }
3420
3421         if (state == PM_SUSPEND_ON)
3422                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3423         else
3424                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3425                                                         max_uV, state);
3426         if (ret < 0)
3427                 goto out;
3428
3429         if (supply_change_uV < 0) {
3430                 ret = regulator_set_voltage_unlocked(rdev->supply,
3431                                 best_supply_uV, INT_MAX, state);
3432                 if (ret)
3433                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3434                                         ret);
3435                 /* No need to fail here */
3436                 ret = 0;
3437         }
3438
3439 out:
3440         return ret;
3441 }
3442
3443 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3444                                         int *current_uV, int *min_uV)
3445 {
3446         struct regulation_constraints *constraints = rdev->constraints;
3447
3448         /* Limit voltage change only if necessary */
3449         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3450                 return 1;
3451
3452         if (*current_uV < 0) {
3453                 *current_uV = _regulator_get_voltage(rdev);
3454
3455                 if (*current_uV < 0)
3456                         return *current_uV;
3457         }
3458
3459         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3460                 return 1;
3461
3462         /* Clamp target voltage within the given step */
3463         if (*current_uV < *min_uV)
3464                 *min_uV = min(*current_uV + constraints->max_uV_step,
3465                               *min_uV);
3466         else
3467                 *min_uV = max(*current_uV - constraints->max_uV_step,
3468                               *min_uV);
3469
3470         return 0;
3471 }
3472
3473 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3474                                          int *current_uV,
3475                                          int *min_uV, int *max_uV,
3476                                          suspend_state_t state,
3477                                          int n_coupled)
3478 {
3479         struct coupling_desc *c_desc = &rdev->coupling_desc;
3480         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3481         struct regulation_constraints *constraints = rdev->constraints;
3482         int max_spread = constraints->max_spread;
3483         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3484         int max_current_uV = 0, min_current_uV = INT_MAX;
3485         int highest_min_uV = 0, target_uV, possible_uV;
3486         int i, ret;
3487         bool done;
3488
3489         *current_uV = -1;
3490
3491         /*
3492          * If there are no coupled regulators, simply set the voltage
3493          * demanded by consumers.
3494          */
3495         if (n_coupled == 1) {
3496                 /*
3497                  * If consumers don't provide any demands, set voltage
3498                  * to min_uV
3499                  */
3500                 desired_min_uV = constraints->min_uV;
3501                 desired_max_uV = constraints->max_uV;
3502
3503                 ret = regulator_check_consumers(rdev,
3504                                                 &desired_min_uV,
3505                                                 &desired_max_uV, state);
3506                 if (ret < 0)
3507                         return ret;
3508
3509                 possible_uV = desired_min_uV;
3510                 done = true;
3511
3512                 goto finish;
3513         }
3514
3515         /* Find highest min desired voltage */
3516         for (i = 0; i < n_coupled; i++) {
3517                 int tmp_min = 0;
3518                 int tmp_max = INT_MAX;
3519
3520                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3521
3522                 ret = regulator_check_consumers(c_rdevs[i],
3523                                                 &tmp_min,
3524                                                 &tmp_max, state);
3525                 if (ret < 0)
3526                         return ret;
3527
3528                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3529                 if (ret < 0)
3530                         return ret;
3531
3532                 highest_min_uV = max(highest_min_uV, tmp_min);
3533
3534                 if (i == 0) {
3535                         desired_min_uV = tmp_min;
3536                         desired_max_uV = tmp_max;
3537                 }
3538         }
3539
3540         /*
3541          * Let target_uV be equal to the desired one if possible.
3542          * If not, set it to minimum voltage, allowed by other coupled
3543          * regulators.
3544          */
3545         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3546
3547         /*
3548          * Find min and max voltages, which currently aren't violating
3549          * max_spread.
3550          */
3551         for (i = 1; i < n_coupled; i++) {
3552                 int tmp_act;
3553
3554                 if (!_regulator_is_enabled(c_rdevs[i]))
3555                         continue;
3556
3557                 tmp_act = _regulator_get_voltage(c_rdevs[i]);
3558                 if (tmp_act < 0)
3559                         return tmp_act;
3560
3561                 min_current_uV = min(tmp_act, min_current_uV);
3562                 max_current_uV = max(tmp_act, max_current_uV);
3563         }
3564
3565         /* There aren't any other regulators enabled */
3566         if (max_current_uV == 0) {
3567                 possible_uV = target_uV;
3568         } else {
3569                 /*
3570                  * Correct target voltage, so as it currently isn't
3571                  * violating max_spread
3572                  */
3573                 possible_uV = max(target_uV, max_current_uV - max_spread);
3574                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3575         }
3576
3577         if (possible_uV > desired_max_uV)
3578                 return -EINVAL;
3579
3580         done = (possible_uV == target_uV);
3581         desired_min_uV = possible_uV;
3582
3583 finish:
3584         /* Apply max_uV_step constraint if necessary */
3585         if (state == PM_SUSPEND_ON) {
3586                 ret = regulator_limit_voltage_step(rdev, current_uV,
3587                                                    &desired_min_uV);
3588                 if (ret < 0)
3589                         return ret;
3590
3591                 if (ret == 0)
3592                         done = false;
3593         }
3594
3595         /* Set current_uV if wasn't done earlier in the code and if necessary */
3596         if (n_coupled > 1 && *current_uV == -1) {
3597
3598                 if (_regulator_is_enabled(rdev)) {
3599                         ret = _regulator_get_voltage(rdev);
3600                         if (ret < 0)
3601                                 return ret;
3602
3603                         *current_uV = ret;
3604                 } else {
3605                         *current_uV = desired_min_uV;
3606                 }
3607         }
3608
3609         *min_uV = desired_min_uV;
3610         *max_uV = desired_max_uV;
3611
3612         return done;
3613 }
3614
3615 static int regulator_balance_voltage(struct regulator_dev *rdev,
3616                                      suspend_state_t state)
3617 {
3618         struct regulator_dev **c_rdevs;
3619         struct regulator_dev *best_rdev;
3620         struct coupling_desc *c_desc = &rdev->coupling_desc;
3621         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3622         bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
3623         unsigned int delta, best_delta;
3624
3625         c_rdevs = c_desc->coupled_rdevs;
3626         n_coupled = c_desc->n_coupled;
3627
3628         /*
3629          * If system is in a state other than PM_SUSPEND_ON, don't check
3630          * other coupled regulators.
3631          */
3632         if (state != PM_SUSPEND_ON)
3633                 n_coupled = 1;
3634
3635         if (c_desc->n_resolved < n_coupled) {
3636                 rdev_err(rdev, "Not all coupled regulators registered\n");
3637                 return -EPERM;
3638         }
3639
3640         for (i = 0; i < n_coupled; i++)
3641                 c_rdev_done[i] = false;
3642
3643         /*
3644          * Find the best possible voltage change on each loop. Leave the loop
3645          * if there isn't any possible change.
3646          */
3647         do {
3648                 best_c_rdev_done = false;
3649                 best_delta = 0;
3650                 best_min_uV = 0;
3651                 best_max_uV = 0;
3652                 best_c_rdev = 0;
3653                 best_rdev = NULL;
3654
3655                 /*
3656                  * Find highest difference between optimal voltage
3657                  * and current voltage.
3658                  */
3659                 for (i = 0; i < n_coupled; i++) {
3660                         /*
3661                          * optimal_uV is the best voltage that can be set for
3662                          * i-th regulator at the moment without violating
3663                          * max_spread constraint in order to balance
3664                          * the coupled voltages.
3665                          */
3666                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3667
3668                         if (c_rdev_done[i])
3669                                 continue;
3670
3671                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3672                                                             &current_uV,
3673                                                             &optimal_uV,
3674                                                             &optimal_max_uV,
3675                                                             state, n_coupled);
3676                         if (ret < 0)
3677                                 goto out;
3678
3679                         delta = abs(optimal_uV - current_uV);
3680
3681                         if (delta && best_delta <= delta) {
3682                                 best_c_rdev_done = ret;
3683                                 best_delta = delta;
3684                                 best_rdev = c_rdevs[i];
3685                                 best_min_uV = optimal_uV;
3686                                 best_max_uV = optimal_max_uV;
3687                                 best_c_rdev = i;
3688                         }
3689                 }
3690
3691                 /* Nothing to change, return successfully */
3692                 if (!best_rdev) {
3693                         ret = 0;
3694                         goto out;
3695                 }
3696
3697                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3698                                                  best_max_uV, state);
3699
3700                 if (ret < 0)
3701                         goto out;
3702
3703                 c_rdev_done[best_c_rdev] = best_c_rdev_done;
3704
3705         } while (n_coupled > 1);
3706
3707 out:
3708         return ret;
3709 }
3710
3711 /**
3712  * regulator_set_voltage - set regulator output voltage
3713  * @regulator: regulator source
3714  * @min_uV: Minimum required voltage in uV
3715  * @max_uV: Maximum acceptable voltage in uV
3716  *
3717  * Sets a voltage regulator to the desired output voltage. This can be set
3718  * during any regulator state. IOW, regulator can be disabled or enabled.
3719  *
3720  * If the regulator is enabled then the voltage will change to the new value
3721  * immediately otherwise if the regulator is disabled the regulator will
3722  * output at the new voltage when enabled.
3723  *
3724  * NOTE: If the regulator is shared between several devices then the lowest
3725  * request voltage that meets the system constraints will be used.
3726  * Regulator system constraints must be set for this regulator before
3727  * calling this function otherwise this call will fail.
3728  */
3729 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3730 {
3731         struct ww_acquire_ctx ww_ctx;
3732         int ret;
3733
3734         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3735
3736         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3737                                              PM_SUSPEND_ON);
3738
3739         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3740
3741         return ret;
3742 }
3743 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3744
3745 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3746                                            suspend_state_t state, bool en)
3747 {
3748         struct regulator_state *rstate;
3749
3750         rstate = regulator_get_suspend_state(rdev, state);
3751         if (rstate == NULL)
3752                 return -EINVAL;
3753
3754         if (!rstate->changeable)
3755                 return -EPERM;
3756
3757         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3758
3759         return 0;
3760 }
3761
3762 int regulator_suspend_enable(struct regulator_dev *rdev,
3763                                     suspend_state_t state)
3764 {
3765         return regulator_suspend_toggle(rdev, state, true);
3766 }
3767 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3768
3769 int regulator_suspend_disable(struct regulator_dev *rdev,
3770                                      suspend_state_t state)
3771 {
3772         struct regulator *regulator;
3773         struct regulator_voltage *voltage;
3774
3775         /*
3776          * if any consumer wants this regulator device keeping on in
3777          * suspend states, don't set it as disabled.
3778          */
3779         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3780                 voltage = &regulator->voltage[state];
3781                 if (voltage->min_uV || voltage->max_uV)
3782                         return 0;
3783         }
3784
3785         return regulator_suspend_toggle(rdev, state, false);
3786 }
3787 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3788
3789 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3790                                           int min_uV, int max_uV,
3791                                           suspend_state_t state)
3792 {
3793         struct regulator_dev *rdev = regulator->rdev;
3794         struct regulator_state *rstate;
3795
3796         rstate = regulator_get_suspend_state(rdev, state);
3797         if (rstate == NULL)
3798                 return -EINVAL;
3799
3800         if (rstate->min_uV == rstate->max_uV) {
3801                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3802                 return -EPERM;
3803         }
3804
3805         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3806 }
3807
3808 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3809                                   int max_uV, suspend_state_t state)
3810 {
3811         struct ww_acquire_ctx ww_ctx;
3812         int ret;
3813
3814         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3815         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3816                 return -EINVAL;
3817
3818         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3819
3820         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3821                                              max_uV, state);
3822
3823         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3824
3825         return ret;
3826 }
3827 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3828
3829 /**
3830  * regulator_set_voltage_time - get raise/fall time
3831  * @regulator: regulator source
3832  * @old_uV: starting voltage in microvolts
3833  * @new_uV: target voltage in microvolts
3834  *
3835  * Provided with the starting and ending voltage, this function attempts to
3836  * calculate the time in microseconds required to rise or fall to this new
3837  * voltage.
3838  */
3839 int regulator_set_voltage_time(struct regulator *regulator,
3840                                int old_uV, int new_uV)
3841 {
3842         struct regulator_dev *rdev = regulator->rdev;
3843         const struct regulator_ops *ops = rdev->desc->ops;
3844         int old_sel = -1;
3845         int new_sel = -1;
3846         int voltage;
3847         int i;
3848
3849         if (ops->set_voltage_time)
3850                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3851         else if (!ops->set_voltage_time_sel)
3852                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3853
3854         /* Currently requires operations to do this */
3855         if (!ops->list_voltage || !rdev->desc->n_voltages)
3856                 return -EINVAL;
3857
3858         for (i = 0; i < rdev->desc->n_voltages; i++) {
3859                 /* We only look for exact voltage matches here */
3860                 voltage = regulator_list_voltage(regulator, i);
3861                 if (voltage < 0)
3862                         return -EINVAL;
3863                 if (voltage == 0)
3864                         continue;
3865                 if (voltage == old_uV)
3866                         old_sel = i;
3867                 if (voltage == new_uV)
3868                         new_sel = i;
3869         }
3870
3871         if (old_sel < 0 || new_sel < 0)
3872                 return -EINVAL;
3873
3874         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3875 }
3876 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3877
3878 /**
3879  * regulator_set_voltage_time_sel - get raise/fall time
3880  * @rdev: regulator source device
3881  * @old_selector: selector for starting voltage
3882  * @new_selector: selector for target voltage
3883  *
3884  * Provided with the starting and target voltage selectors, this function
3885  * returns time in microseconds required to rise or fall to this new voltage
3886  *
3887  * Drivers providing ramp_delay in regulation_constraints can use this as their
3888  * set_voltage_time_sel() operation.
3889  */
3890 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3891                                    unsigned int old_selector,
3892                                    unsigned int new_selector)
3893 {
3894         int old_volt, new_volt;
3895
3896         /* sanity check */
3897         if (!rdev->desc->ops->list_voltage)
3898                 return -EINVAL;
3899
3900         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3901         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3902
3903         if (rdev->desc->ops->set_voltage_time)
3904                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3905                                                          new_volt);
3906         else
3907                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3908 }
3909 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3910
3911 /**
3912  * regulator_sync_voltage - re-apply last regulator output voltage
3913  * @regulator: regulator source
3914  *
3915  * Re-apply the last configured voltage.  This is intended to be used
3916  * where some external control source the consumer is cooperating with
3917  * has caused the configured voltage to change.
3918  */
3919 int regulator_sync_voltage(struct regulator *regulator)
3920 {
3921         struct regulator_dev *rdev = regulator->rdev;
3922         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3923         int ret, min_uV, max_uV;
3924
3925         regulator_lock(rdev);
3926
3927         if (!rdev->desc->ops->set_voltage &&
3928             !rdev->desc->ops->set_voltage_sel) {
3929                 ret = -EINVAL;
3930                 goto out;
3931         }
3932
3933         /* This is only going to work if we've had a voltage configured. */
3934         if (!voltage->min_uV && !voltage->max_uV) {
3935                 ret = -EINVAL;
3936                 goto out;
3937         }
3938
3939         min_uV = voltage->min_uV;
3940         max_uV = voltage->max_uV;
3941
3942         /* This should be a paranoia check... */
3943         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3944         if (ret < 0)
3945                 goto out;
3946
3947         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3948         if (ret < 0)
3949                 goto out;
3950
3951         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3952
3953 out:
3954         regulator_unlock(rdev);
3955         return ret;
3956 }
3957 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3958
3959 static int _regulator_get_voltage(struct regulator_dev *rdev)
3960 {
3961         int sel, ret;
3962         bool bypassed;
3963
3964         if (rdev->desc->ops->get_bypass) {
3965                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3966                 if (ret < 0)
3967                         return ret;
3968                 if (bypassed) {
3969                         /* if bypassed the regulator must have a supply */
3970                         if (!rdev->supply) {
3971                                 rdev_err(rdev,
3972                                          "bypassed regulator has no supply!\n");
3973                                 return -EPROBE_DEFER;
3974                         }
3975
3976                         return _regulator_get_voltage(rdev->supply->rdev);
3977                 }
3978         }
3979
3980         if (rdev->desc->ops->get_voltage_sel) {
3981                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3982                 if (sel < 0)
3983                         return sel;
3984                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3985         } else if (rdev->desc->ops->get_voltage) {
3986                 ret = rdev->desc->ops->get_voltage(rdev);
3987         } else if (rdev->desc->ops->list_voltage) {
3988                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3989         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3990                 ret = rdev->desc->fixed_uV;
3991         } else if (rdev->supply) {
3992                 ret = _regulator_get_voltage(rdev->supply->rdev);
3993         } else {
3994                 return -EINVAL;
3995         }
3996
3997         if (ret < 0)
3998                 return ret;
3999         return ret - rdev->constraints->uV_offset;
4000 }
4001
4002 /**
4003  * regulator_get_voltage - get regulator output voltage
4004  * @regulator: regulator source
4005  *
4006  * This returns the current regulator voltage in uV.
4007  *
4008  * NOTE: If the regulator is disabled it will return the voltage value. This
4009  * function should not be used to determine regulator state.
4010  */
4011 int regulator_get_voltage(struct regulator *regulator)
4012 {
4013         struct ww_acquire_ctx ww_ctx;
4014         int ret;
4015
4016         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4017         ret = _regulator_get_voltage(regulator->rdev);
4018         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4019
4020         return ret;
4021 }
4022 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4023
4024 /**
4025  * regulator_set_current_limit - set regulator output current limit
4026  * @regulator: regulator source
4027  * @min_uA: Minimum supported current in uA
4028  * @max_uA: Maximum supported current in uA
4029  *
4030  * Sets current sink to the desired output current. This can be set during
4031  * any regulator state. IOW, regulator can be disabled or enabled.
4032  *
4033  * If the regulator is enabled then the current will change to the new value
4034  * immediately otherwise if the regulator is disabled the regulator will
4035  * output at the new current when enabled.
4036  *
4037  * NOTE: Regulator system constraints must be set for this regulator before
4038  * calling this function otherwise this call will fail.
4039  */
4040 int regulator_set_current_limit(struct regulator *regulator,
4041                                int min_uA, int max_uA)
4042 {
4043         struct regulator_dev *rdev = regulator->rdev;
4044         int ret;
4045
4046         regulator_lock(rdev);
4047
4048         /* sanity check */
4049         if (!rdev->desc->ops->set_current_limit) {
4050                 ret = -EINVAL;
4051                 goto out;
4052         }
4053
4054         /* constraints check */
4055         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4056         if (ret < 0)
4057                 goto out;
4058
4059         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4060 out:
4061         regulator_unlock(rdev);
4062         return ret;
4063 }
4064 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4065
4066 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4067 {
4068         /* sanity check */
4069         if (!rdev->desc->ops->get_current_limit)
4070                 return -EINVAL;
4071
4072         return rdev->desc->ops->get_current_limit(rdev);
4073 }
4074
4075 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4076 {
4077         int ret;
4078
4079         regulator_lock(rdev);
4080         ret = _regulator_get_current_limit_unlocked(rdev);
4081         regulator_unlock(rdev);
4082
4083         return ret;
4084 }
4085
4086 /**
4087  * regulator_get_current_limit - get regulator output current
4088  * @regulator: regulator source
4089  *
4090  * This returns the current supplied by the specified current sink in uA.
4091  *
4092  * NOTE: If the regulator is disabled it will return the current value. This
4093  * function should not be used to determine regulator state.
4094  */
4095 int regulator_get_current_limit(struct regulator *regulator)
4096 {
4097         return _regulator_get_current_limit(regulator->rdev);
4098 }
4099 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4100
4101 /**
4102  * regulator_set_mode - set regulator operating mode
4103  * @regulator: regulator source
4104  * @mode: operating mode - one of the REGULATOR_MODE constants
4105  *
4106  * Set regulator operating mode to increase regulator efficiency or improve
4107  * regulation performance.
4108  *
4109  * NOTE: Regulator system constraints must be set for this regulator before
4110  * calling this function otherwise this call will fail.
4111  */
4112 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4113 {
4114         struct regulator_dev *rdev = regulator->rdev;
4115         int ret;
4116         int regulator_curr_mode;
4117
4118         regulator_lock(rdev);
4119
4120         /* sanity check */
4121         if (!rdev->desc->ops->set_mode) {
4122                 ret = -EINVAL;
4123                 goto out;
4124         }
4125
4126         /* return if the same mode is requested */
4127         if (rdev->desc->ops->get_mode) {
4128                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4129                 if (regulator_curr_mode == mode) {
4130                         ret = 0;
4131                         goto out;
4132                 }
4133         }
4134
4135         /* constraints check */
4136         ret = regulator_mode_constrain(rdev, &mode);
4137         if (ret < 0)
4138                 goto out;
4139
4140         ret = rdev->desc->ops->set_mode(rdev, mode);
4141 out:
4142         regulator_unlock(rdev);
4143         return ret;
4144 }
4145 EXPORT_SYMBOL_GPL(regulator_set_mode);
4146
4147 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4148 {
4149         /* sanity check */
4150         if (!rdev->desc->ops->get_mode)
4151                 return -EINVAL;
4152
4153         return rdev->desc->ops->get_mode(rdev);
4154 }
4155
4156 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4157 {
4158         int ret;
4159
4160         regulator_lock(rdev);
4161         ret = _regulator_get_mode_unlocked(rdev);
4162         regulator_unlock(rdev);
4163
4164         return ret;
4165 }
4166
4167 /**
4168  * regulator_get_mode - get regulator operating mode
4169  * @regulator: regulator source
4170  *
4171  * Get the current regulator operating mode.
4172  */
4173 unsigned int regulator_get_mode(struct regulator *regulator)
4174 {
4175         return _regulator_get_mode(regulator->rdev);
4176 }
4177 EXPORT_SYMBOL_GPL(regulator_get_mode);
4178
4179 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4180                                         unsigned int *flags)
4181 {
4182         int ret;
4183
4184         regulator_lock(rdev);
4185
4186         /* sanity check */
4187         if (!rdev->desc->ops->get_error_flags) {
4188                 ret = -EINVAL;
4189                 goto out;
4190         }
4191
4192         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4193 out:
4194         regulator_unlock(rdev);
4195         return ret;
4196 }
4197
4198 /**
4199  * regulator_get_error_flags - get regulator error information
4200  * @regulator: regulator source
4201  * @flags: pointer to store error flags
4202  *
4203  * Get the current regulator error information.
4204  */
4205 int regulator_get_error_flags(struct regulator *regulator,
4206                                 unsigned int *flags)
4207 {
4208         return _regulator_get_error_flags(regulator->rdev, flags);
4209 }
4210 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4211
4212 /**
4213  * regulator_set_load - set regulator load
4214  * @regulator: regulator source
4215  * @uA_load: load current
4216  *
4217  * Notifies the regulator core of a new device load. This is then used by
4218  * DRMS (if enabled by constraints) to set the most efficient regulator
4219  * operating mode for the new regulator loading.
4220  *
4221  * Consumer devices notify their supply regulator of the maximum power
4222  * they will require (can be taken from device datasheet in the power
4223  * consumption tables) when they change operational status and hence power
4224  * state. Examples of operational state changes that can affect power
4225  * consumption are :-
4226  *
4227  *    o Device is opened / closed.
4228  *    o Device I/O is about to begin or has just finished.
4229  *    o Device is idling in between work.
4230  *
4231  * This information is also exported via sysfs to userspace.
4232  *
4233  * DRMS will sum the total requested load on the regulator and change
4234  * to the most efficient operating mode if platform constraints allow.
4235  *
4236  * NOTE: when a regulator consumer requests to have a regulator
4237  * disabled then any load that consumer requested no longer counts
4238  * toward the total requested load.  If the regulator is re-enabled
4239  * then the previously requested load will start counting again.
4240  *
4241  * If a regulator is an always-on regulator then an individual consumer's
4242  * load will still be removed if that consumer is fully disabled.
4243  *
4244  * On error a negative errno is returned.
4245  */
4246 int regulator_set_load(struct regulator *regulator, int uA_load)
4247 {
4248         struct regulator_dev *rdev = regulator->rdev;
4249         int old_uA_load;
4250         int ret = 0;
4251
4252         regulator_lock(rdev);
4253         old_uA_load = regulator->uA_load;
4254         regulator->uA_load = uA_load;
4255         if (regulator->enable_count && old_uA_load != uA_load) {
4256                 ret = drms_uA_update(rdev);
4257                 if (ret < 0)
4258                         regulator->uA_load = old_uA_load;
4259         }
4260         regulator_unlock(rdev);
4261
4262         return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(regulator_set_load);
4265
4266 /**
4267  * regulator_allow_bypass - allow the regulator to go into bypass mode
4268  *
4269  * @regulator: Regulator to configure
4270  * @enable: enable or disable bypass mode
4271  *
4272  * Allow the regulator to go into bypass mode if all other consumers
4273  * for the regulator also enable bypass mode and the machine
4274  * constraints allow this.  Bypass mode means that the regulator is
4275  * simply passing the input directly to the output with no regulation.
4276  */
4277 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4278 {
4279         struct regulator_dev *rdev = regulator->rdev;
4280         int ret = 0;
4281
4282         if (!rdev->desc->ops->set_bypass)
4283                 return 0;
4284
4285         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4286                 return 0;
4287
4288         regulator_lock(rdev);
4289
4290         if (enable && !regulator->bypass) {
4291                 rdev->bypass_count++;
4292
4293                 if (rdev->bypass_count == rdev->open_count) {
4294                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4295                         if (ret != 0)
4296                                 rdev->bypass_count--;
4297                 }
4298
4299         } else if (!enable && regulator->bypass) {
4300                 rdev->bypass_count--;
4301
4302                 if (rdev->bypass_count != rdev->open_count) {
4303                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4304                         if (ret != 0)
4305                                 rdev->bypass_count++;
4306                 }
4307         }
4308
4309         if (ret == 0)
4310                 regulator->bypass = enable;
4311
4312         regulator_unlock(rdev);
4313
4314         return ret;
4315 }
4316 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4317
4318 /**
4319  * regulator_register_notifier - register regulator event notifier
4320  * @regulator: regulator source
4321  * @nb: notifier block
4322  *
4323  * Register notifier block to receive regulator events.
4324  */
4325 int regulator_register_notifier(struct regulator *regulator,
4326                               struct notifier_block *nb)
4327 {
4328         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4329                                                 nb);
4330 }
4331 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4332
4333 /**
4334  * regulator_unregister_notifier - unregister regulator event notifier
4335  * @regulator: regulator source
4336  * @nb: notifier block
4337  *
4338  * Unregister regulator event notifier block.
4339  */
4340 int regulator_unregister_notifier(struct regulator *regulator,
4341                                 struct notifier_block *nb)
4342 {
4343         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4344                                                   nb);
4345 }
4346 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4347
4348 /* notify regulator consumers and downstream regulator consumers.
4349  * Note mutex must be held by caller.
4350  */
4351 static int _notifier_call_chain(struct regulator_dev *rdev,
4352                                   unsigned long event, void *data)
4353 {
4354         /* call rdev chain first */
4355         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4356 }
4357
4358 /**
4359  * regulator_bulk_get - get multiple regulator consumers
4360  *
4361  * @dev:           Device to supply
4362  * @num_consumers: Number of consumers to register
4363  * @consumers:     Configuration of consumers; clients are stored here.
4364  *
4365  * @return 0 on success, an errno on failure.
4366  *
4367  * This helper function allows drivers to get several regulator
4368  * consumers in one operation.  If any of the regulators cannot be
4369  * acquired then any regulators that were allocated will be freed
4370  * before returning to the caller.
4371  */
4372 int regulator_bulk_get(struct device *dev, int num_consumers,
4373                        struct regulator_bulk_data *consumers)
4374 {
4375         int i;
4376         int ret;
4377
4378         for (i = 0; i < num_consumers; i++)
4379                 consumers[i].consumer = NULL;
4380
4381         for (i = 0; i < num_consumers; i++) {
4382                 consumers[i].consumer = regulator_get(dev,
4383                                                       consumers[i].supply);
4384                 if (IS_ERR(consumers[i].consumer)) {
4385                         ret = PTR_ERR(consumers[i].consumer);
4386                         dev_err(dev, "Failed to get supply '%s': %d\n",
4387                                 consumers[i].supply, ret);
4388                         consumers[i].consumer = NULL;
4389                         goto err;
4390                 }
4391         }
4392
4393         return 0;
4394
4395 err:
4396         while (--i >= 0)
4397                 regulator_put(consumers[i].consumer);
4398
4399         return ret;
4400 }
4401 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4402
4403 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4404 {
4405         struct regulator_bulk_data *bulk = data;
4406
4407         bulk->ret = regulator_enable(bulk->consumer);
4408 }
4409
4410 /**
4411  * regulator_bulk_enable - enable multiple regulator consumers
4412  *
4413  * @num_consumers: Number of consumers
4414  * @consumers:     Consumer data; clients are stored here.
4415  * @return         0 on success, an errno on failure
4416  *
4417  * This convenience API allows consumers to enable multiple regulator
4418  * clients in a single API call.  If any consumers cannot be enabled
4419  * then any others that were enabled will be disabled again prior to
4420  * return.
4421  */
4422 int regulator_bulk_enable(int num_consumers,
4423                           struct regulator_bulk_data *consumers)
4424 {
4425         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4426         int i;
4427         int ret = 0;
4428
4429         for (i = 0; i < num_consumers; i++) {
4430                 async_schedule_domain(regulator_bulk_enable_async,
4431                                       &consumers[i], &async_domain);
4432         }
4433
4434         async_synchronize_full_domain(&async_domain);
4435
4436         /* If any consumer failed we need to unwind any that succeeded */
4437         for (i = 0; i < num_consumers; i++) {
4438                 if (consumers[i].ret != 0) {
4439                         ret = consumers[i].ret;
4440                         goto err;
4441                 }
4442         }
4443
4444         return 0;
4445
4446 err:
4447         for (i = 0; i < num_consumers; i++) {
4448                 if (consumers[i].ret < 0)
4449                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4450                                consumers[i].ret);
4451                 else
4452                         regulator_disable(consumers[i].consumer);
4453         }
4454
4455         return ret;
4456 }
4457 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4458
4459 /**
4460  * regulator_bulk_disable - disable multiple regulator consumers
4461  *
4462  * @num_consumers: Number of consumers
4463  * @consumers:     Consumer data; clients are stored here.
4464  * @return         0 on success, an errno on failure
4465  *
4466  * This convenience API allows consumers to disable multiple regulator
4467  * clients in a single API call.  If any consumers cannot be disabled
4468  * then any others that were disabled will be enabled again prior to
4469  * return.
4470  */
4471 int regulator_bulk_disable(int num_consumers,
4472                            struct regulator_bulk_data *consumers)
4473 {
4474         int i;
4475         int ret, r;
4476
4477         for (i = num_consumers - 1; i >= 0; --i) {
4478                 ret = regulator_disable(consumers[i].consumer);
4479                 if (ret != 0)
4480                         goto err;
4481         }
4482
4483         return 0;
4484
4485 err:
4486         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4487         for (++i; i < num_consumers; ++i) {
4488                 r = regulator_enable(consumers[i].consumer);
4489                 if (r != 0)
4490                         pr_err("Failed to re-enable %s: %d\n",
4491                                consumers[i].supply, r);
4492         }
4493
4494         return ret;
4495 }
4496 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4497
4498 /**
4499  * regulator_bulk_force_disable - force disable multiple regulator consumers
4500  *
4501  * @num_consumers: Number of consumers
4502  * @consumers:     Consumer data; clients are stored here.
4503  * @return         0 on success, an errno on failure
4504  *
4505  * This convenience API allows consumers to forcibly disable multiple regulator
4506  * clients in a single API call.
4507  * NOTE: This should be used for situations when device damage will
4508  * likely occur if the regulators are not disabled (e.g. over temp).
4509  * Although regulator_force_disable function call for some consumers can
4510  * return error numbers, the function is called for all consumers.
4511  */
4512 int regulator_bulk_force_disable(int num_consumers,
4513                            struct regulator_bulk_data *consumers)
4514 {
4515         int i;
4516         int ret = 0;
4517
4518         for (i = 0; i < num_consumers; i++) {
4519                 consumers[i].ret =
4520                             regulator_force_disable(consumers[i].consumer);
4521
4522                 /* Store first error for reporting */
4523                 if (consumers[i].ret && !ret)
4524                         ret = consumers[i].ret;
4525         }
4526
4527         return ret;
4528 }
4529 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4530
4531 /**
4532  * regulator_bulk_free - free multiple regulator consumers
4533  *
4534  * @num_consumers: Number of consumers
4535  * @consumers:     Consumer data; clients are stored here.
4536  *
4537  * This convenience API allows consumers to free multiple regulator
4538  * clients in a single API call.
4539  */
4540 void regulator_bulk_free(int num_consumers,
4541                          struct regulator_bulk_data *consumers)
4542 {
4543         int i;
4544
4545         for (i = 0; i < num_consumers; i++) {
4546                 regulator_put(consumers[i].consumer);
4547                 consumers[i].consumer = NULL;
4548         }
4549 }
4550 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4551
4552 /**
4553  * regulator_notifier_call_chain - call regulator event notifier
4554  * @rdev: regulator source
4555  * @event: notifier block
4556  * @data: callback-specific data.
4557  *
4558  * Called by regulator drivers to notify clients a regulator event has
4559  * occurred. We also notify regulator clients downstream.
4560  * Note lock must be held by caller.
4561  */
4562 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4563                                   unsigned long event, void *data)
4564 {
4565         lockdep_assert_held_once(&rdev->mutex.base);
4566
4567         _notifier_call_chain(rdev, event, data);
4568         return NOTIFY_DONE;
4569
4570 }
4571 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4572
4573 /**
4574  * regulator_mode_to_status - convert a regulator mode into a status
4575  *
4576  * @mode: Mode to convert
4577  *
4578  * Convert a regulator mode into a status.
4579  */
4580 int regulator_mode_to_status(unsigned int mode)
4581 {
4582         switch (mode) {
4583         case REGULATOR_MODE_FAST:
4584                 return REGULATOR_STATUS_FAST;
4585         case REGULATOR_MODE_NORMAL:
4586                 return REGULATOR_STATUS_NORMAL;
4587         case REGULATOR_MODE_IDLE:
4588                 return REGULATOR_STATUS_IDLE;
4589         case REGULATOR_MODE_STANDBY:
4590                 return REGULATOR_STATUS_STANDBY;
4591         default:
4592                 return REGULATOR_STATUS_UNDEFINED;
4593         }
4594 }
4595 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4596
4597 static struct attribute *regulator_dev_attrs[] = {
4598         &dev_attr_name.attr,
4599         &dev_attr_num_users.attr,
4600         &dev_attr_type.attr,
4601         &dev_attr_microvolts.attr,
4602         &dev_attr_microamps.attr,
4603         &dev_attr_opmode.attr,
4604         &dev_attr_state.attr,
4605         &dev_attr_status.attr,
4606         &dev_attr_bypass.attr,
4607         &dev_attr_requested_microamps.attr,
4608         &dev_attr_min_microvolts.attr,
4609         &dev_attr_max_microvolts.attr,
4610         &dev_attr_min_microamps.attr,
4611         &dev_attr_max_microamps.attr,
4612         &dev_attr_suspend_standby_state.attr,
4613         &dev_attr_suspend_mem_state.attr,
4614         &dev_attr_suspend_disk_state.attr,
4615         &dev_attr_suspend_standby_microvolts.attr,
4616         &dev_attr_suspend_mem_microvolts.attr,
4617         &dev_attr_suspend_disk_microvolts.attr,
4618         &dev_attr_suspend_standby_mode.attr,
4619         &dev_attr_suspend_mem_mode.attr,
4620         &dev_attr_suspend_disk_mode.attr,
4621         NULL
4622 };
4623
4624 /*
4625  * To avoid cluttering sysfs (and memory) with useless state, only
4626  * create attributes that can be meaningfully displayed.
4627  */
4628 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4629                                          struct attribute *attr, int idx)
4630 {
4631         struct device *dev = kobj_to_dev(kobj);
4632         struct regulator_dev *rdev = dev_to_rdev(dev);
4633         const struct regulator_ops *ops = rdev->desc->ops;
4634         umode_t mode = attr->mode;
4635
4636         /* these three are always present */
4637         if (attr == &dev_attr_name.attr ||
4638             attr == &dev_attr_num_users.attr ||
4639             attr == &dev_attr_type.attr)
4640                 return mode;
4641
4642         /* some attributes need specific methods to be displayed */
4643         if (attr == &dev_attr_microvolts.attr) {
4644                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4645                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4646                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4647                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4648                         return mode;
4649                 return 0;
4650         }
4651
4652         if (attr == &dev_attr_microamps.attr)
4653                 return ops->get_current_limit ? mode : 0;
4654
4655         if (attr == &dev_attr_opmode.attr)
4656                 return ops->get_mode ? mode : 0;
4657
4658         if (attr == &dev_attr_state.attr)
4659                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4660
4661         if (attr == &dev_attr_status.attr)
4662                 return ops->get_status ? mode : 0;
4663
4664         if (attr == &dev_attr_bypass.attr)
4665                 return ops->get_bypass ? mode : 0;
4666
4667         /* constraints need specific supporting methods */
4668         if (attr == &dev_attr_min_microvolts.attr ||
4669             attr == &dev_attr_max_microvolts.attr)
4670                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4671
4672         if (attr == &dev_attr_min_microamps.attr ||
4673             attr == &dev_attr_max_microamps.attr)
4674                 return ops->set_current_limit ? mode : 0;
4675
4676         if (attr == &dev_attr_suspend_standby_state.attr ||
4677             attr == &dev_attr_suspend_mem_state.attr ||
4678             attr == &dev_attr_suspend_disk_state.attr)
4679                 return mode;
4680
4681         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4682             attr == &dev_attr_suspend_mem_microvolts.attr ||
4683             attr == &dev_attr_suspend_disk_microvolts.attr)
4684                 return ops->set_suspend_voltage ? mode : 0;
4685
4686         if (attr == &dev_attr_suspend_standby_mode.attr ||
4687             attr == &dev_attr_suspend_mem_mode.attr ||
4688             attr == &dev_attr_suspend_disk_mode.attr)
4689                 return ops->set_suspend_mode ? mode : 0;
4690
4691         return mode;
4692 }
4693
4694 static const struct attribute_group regulator_dev_group = {
4695         .attrs = regulator_dev_attrs,
4696         .is_visible = regulator_attr_is_visible,
4697 };
4698
4699 static const struct attribute_group *regulator_dev_groups[] = {
4700         &regulator_dev_group,
4701         NULL
4702 };
4703
4704 static void regulator_dev_release(struct device *dev)
4705 {
4706         struct regulator_dev *rdev = dev_get_drvdata(dev);
4707
4708         kfree(rdev->constraints);
4709         of_node_put(rdev->dev.of_node);
4710         kfree(rdev);
4711 }
4712
4713 static void rdev_init_debugfs(struct regulator_dev *rdev)
4714 {
4715         struct device *parent = rdev->dev.parent;
4716         const char *rname = rdev_get_name(rdev);
4717         char name[NAME_MAX];
4718
4719         /* Avoid duplicate debugfs directory names */
4720         if (parent && rname == rdev->desc->name) {
4721                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4722                          rname);
4723                 rname = name;
4724         }
4725
4726         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4727         if (!rdev->debugfs) {
4728                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4729                 return;
4730         }
4731
4732         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4733                            &rdev->use_count);
4734         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4735                            &rdev->open_count);
4736         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4737                            &rdev->bypass_count);
4738 }
4739
4740 static int regulator_register_resolve_supply(struct device *dev, void *data)
4741 {
4742         struct regulator_dev *rdev = dev_to_rdev(dev);
4743
4744         if (regulator_resolve_supply(rdev))
4745                 rdev_dbg(rdev, "unable to resolve supply\n");
4746
4747         return 0;
4748 }
4749
4750 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4751 {
4752         struct coupling_desc *c_desc = &rdev->coupling_desc;
4753         int n_coupled = c_desc->n_coupled;
4754         struct regulator_dev *c_rdev;
4755         int i;
4756
4757         for (i = 1; i < n_coupled; i++) {
4758                 /* already resolved */
4759                 if (c_desc->coupled_rdevs[i])
4760                         continue;
4761
4762                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4763
4764                 if (!c_rdev)
4765                         continue;
4766
4767                 regulator_lock(c_rdev);
4768
4769                 c_desc->coupled_rdevs[i] = c_rdev;
4770                 c_desc->n_resolved++;
4771
4772                 regulator_unlock(c_rdev);
4773
4774                 regulator_resolve_coupling(c_rdev);
4775         }
4776 }
4777
4778 static void regulator_remove_coupling(struct regulator_dev *rdev)
4779 {
4780         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4781         struct regulator_dev *__c_rdev, *c_rdev;
4782         unsigned int __n_coupled, n_coupled;
4783         int i, k;
4784
4785         n_coupled = c_desc->n_coupled;
4786
4787         for (i = 1; i < n_coupled; i++) {
4788                 c_rdev = c_desc->coupled_rdevs[i];
4789
4790                 if (!c_rdev)
4791                         continue;
4792
4793                 regulator_lock(c_rdev);
4794
4795                 __c_desc = &c_rdev->coupling_desc;
4796                 __n_coupled = __c_desc->n_coupled;
4797
4798                 for (k = 1; k < __n_coupled; k++) {
4799                         __c_rdev = __c_desc->coupled_rdevs[k];
4800
4801                         if (__c_rdev == rdev) {
4802                                 __c_desc->coupled_rdevs[k] = NULL;
4803                                 __c_desc->n_resolved--;
4804                                 break;
4805                         }
4806                 }
4807
4808                 regulator_unlock(c_rdev);
4809
4810                 c_desc->coupled_rdevs[i] = NULL;
4811                 c_desc->n_resolved--;
4812         }
4813 }
4814
4815 static int regulator_init_coupling(struct regulator_dev *rdev)
4816 {
4817         int n_phandles;
4818
4819         if (!IS_ENABLED(CONFIG_OF))
4820                 n_phandles = 0;
4821         else
4822                 n_phandles = of_get_n_coupled(rdev);
4823
4824         if (n_phandles + 1 > MAX_COUPLED) {
4825                 rdev_err(rdev, "too many regulators coupled\n");
4826                 return -EPERM;
4827         }
4828
4829         /*
4830          * Every regulator should always have coupling descriptor filled with
4831          * at least pointer to itself.
4832          */
4833         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4834         rdev->coupling_desc.n_coupled = n_phandles + 1;
4835         rdev->coupling_desc.n_resolved++;
4836
4837         /* regulator isn't coupled */
4838         if (n_phandles == 0)
4839                 return 0;
4840
4841         /* regulator, which can't change its voltage, can't be coupled */
4842         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4843                 rdev_err(rdev, "voltage operation not allowed\n");
4844                 return -EPERM;
4845         }
4846
4847         if (rdev->constraints->max_spread <= 0) {
4848                 rdev_err(rdev, "wrong max_spread value\n");
4849                 return -EPERM;
4850         }
4851
4852         if (!of_check_coupling_data(rdev))
4853                 return -EPERM;
4854
4855         return 0;
4856 }
4857
4858 /**
4859  * regulator_register - register regulator
4860  * @regulator_desc: regulator to register
4861  * @cfg: runtime configuration for regulator
4862  *
4863  * Called by regulator drivers to register a regulator.
4864  * Returns a valid pointer to struct regulator_dev on success
4865  * or an ERR_PTR() on error.
4866  */
4867 struct regulator_dev *
4868 regulator_register(const struct regulator_desc *regulator_desc,
4869                    const struct regulator_config *cfg)
4870 {
4871         const struct regulation_constraints *constraints = NULL;
4872         const struct regulator_init_data *init_data;
4873         struct regulator_config *config = NULL;
4874         static atomic_t regulator_no = ATOMIC_INIT(-1);
4875         struct regulator_dev *rdev;
4876         bool dangling_cfg_gpiod = false;
4877         bool dangling_of_gpiod = false;
4878         struct device *dev;
4879         int ret, i;
4880
4881         if (cfg == NULL)
4882                 return ERR_PTR(-EINVAL);
4883         if (cfg->ena_gpiod)
4884                 dangling_cfg_gpiod = true;
4885         if (regulator_desc == NULL) {
4886                 ret = -EINVAL;
4887                 goto rinse;
4888         }
4889
4890         dev = cfg->dev;
4891         WARN_ON(!dev);
4892
4893         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
4894                 ret = -EINVAL;
4895                 goto rinse;
4896         }
4897
4898         if (regulator_desc->type != REGULATOR_VOLTAGE &&
4899             regulator_desc->type != REGULATOR_CURRENT) {
4900                 ret = -EINVAL;
4901                 goto rinse;
4902         }
4903
4904         /* Only one of each should be implemented */
4905         WARN_ON(regulator_desc->ops->get_voltage &&
4906                 regulator_desc->ops->get_voltage_sel);
4907         WARN_ON(regulator_desc->ops->set_voltage &&
4908                 regulator_desc->ops->set_voltage_sel);
4909
4910         /* If we're using selectors we must implement list_voltage. */
4911         if (regulator_desc->ops->get_voltage_sel &&
4912             !regulator_desc->ops->list_voltage) {
4913                 ret = -EINVAL;
4914                 goto rinse;
4915         }
4916         if (regulator_desc->ops->set_voltage_sel &&
4917             !regulator_desc->ops->list_voltage) {
4918                 ret = -EINVAL;
4919                 goto rinse;
4920         }
4921
4922         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4923         if (rdev == NULL) {
4924                 ret = -ENOMEM;
4925                 goto rinse;
4926         }
4927
4928         /*
4929          * Duplicate the config so the driver could override it after
4930          * parsing init data.
4931          */
4932         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4933         if (config == NULL) {
4934                 kfree(rdev);
4935                 ret = -ENOMEM;
4936                 goto rinse;
4937         }
4938
4939         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4940                                                &rdev->dev.of_node);
4941         /*
4942          * We need to keep track of any GPIO descriptor coming from the
4943          * device tree until we have handled it over to the core. If the
4944          * config that was passed in to this function DOES NOT contain
4945          * a descriptor, and the config after this call DOES contain
4946          * a descriptor, we definately got one from parsing the device
4947          * tree.
4948          */
4949         if (!cfg->ena_gpiod && config->ena_gpiod)
4950                 dangling_of_gpiod = true;
4951         if (!init_data) {
4952                 init_data = config->init_data;
4953                 rdev->dev.of_node = of_node_get(config->of_node);
4954         }
4955
4956         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4957         rdev->reg_data = config->driver_data;
4958         rdev->owner = regulator_desc->owner;
4959         rdev->desc = regulator_desc;
4960         if (config->regmap)
4961                 rdev->regmap = config->regmap;
4962         else if (dev_get_regmap(dev, NULL))
4963                 rdev->regmap = dev_get_regmap(dev, NULL);
4964         else if (dev->parent)
4965                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4966         INIT_LIST_HEAD(&rdev->consumer_list);
4967         INIT_LIST_HEAD(&rdev->list);
4968         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4969         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4970
4971         /* preform any regulator specific init */
4972         if (init_data && init_data->regulator_init) {
4973                 ret = init_data->regulator_init(rdev->reg_data);
4974                 if (ret < 0)
4975                         goto clean;
4976         }
4977
4978         if (config->ena_gpiod ||
4979             ((config->ena_gpio || config->ena_gpio_initialized) &&
4980              gpio_is_valid(config->ena_gpio))) {
4981                 mutex_lock(&regulator_list_mutex);
4982                 ret = regulator_ena_gpio_request(rdev, config);
4983                 mutex_unlock(&regulator_list_mutex);
4984                 if (ret != 0) {
4985                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4986                                  config->ena_gpio, ret);
4987                         goto clean;
4988                 }
4989                 /* The regulator core took over the GPIO descriptor */
4990                 dangling_cfg_gpiod = false;
4991                 dangling_of_gpiod = false;
4992         }
4993
4994         /* register with sysfs */
4995         rdev->dev.class = &regulator_class;
4996         rdev->dev.parent = dev;
4997         dev_set_name(&rdev->dev, "regulator.%lu",
4998                     (unsigned long) atomic_inc_return(&regulator_no));
4999
5000         /* set regulator constraints */
5001         if (init_data)
5002                 constraints = &init_data->constraints;
5003
5004         if (init_data && init_data->supply_regulator)
5005                 rdev->supply_name = init_data->supply_regulator;
5006         else if (regulator_desc->supply_name)
5007                 rdev->supply_name = regulator_desc->supply_name;
5008
5009         /*
5010          * Attempt to resolve the regulator supply, if specified,
5011          * but don't return an error if we fail because we will try
5012          * to resolve it again later as more regulators are added.
5013          */
5014         if (regulator_resolve_supply(rdev))
5015                 rdev_dbg(rdev, "unable to resolve supply\n");
5016
5017         ret = set_machine_constraints(rdev, constraints);
5018         if (ret < 0)
5019                 goto wash;
5020
5021         ret = regulator_init_coupling(rdev);
5022         if (ret < 0)
5023                 goto wash;
5024
5025         /* add consumers devices */
5026         if (init_data) {
5027                 mutex_lock(&regulator_list_mutex);
5028                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5029                         ret = set_consumer_device_supply(rdev,
5030                                 init_data->consumer_supplies[i].dev_name,
5031                                 init_data->consumer_supplies[i].supply);
5032                         if (ret < 0) {
5033                                 mutex_unlock(&regulator_list_mutex);
5034                                 dev_err(dev, "Failed to set supply %s\n",
5035                                         init_data->consumer_supplies[i].supply);
5036                                 goto unset_supplies;
5037                         }
5038                 }
5039                 mutex_unlock(&regulator_list_mutex);
5040         }
5041
5042         if (!rdev->desc->ops->get_voltage &&
5043             !rdev->desc->ops->list_voltage &&
5044             !rdev->desc->fixed_uV)
5045                 rdev->is_switch = true;
5046
5047         dev_set_drvdata(&rdev->dev, rdev);
5048         ret = device_register(&rdev->dev);
5049         if (ret != 0) {
5050                 put_device(&rdev->dev);
5051                 goto unset_supplies;
5052         }
5053
5054         rdev_init_debugfs(rdev);
5055
5056         /* try to resolve regulators coupling since a new one was registered */
5057         mutex_lock(&regulator_list_mutex);
5058         regulator_resolve_coupling(rdev);
5059         mutex_unlock(&regulator_list_mutex);
5060
5061         /* try to resolve regulators supply since a new one was registered */
5062         class_for_each_device(&regulator_class, NULL, NULL,
5063                               regulator_register_resolve_supply);
5064         kfree(config);
5065         return rdev;
5066
5067 unset_supplies:
5068         mutex_lock(&regulator_list_mutex);
5069         unset_regulator_supplies(rdev);
5070         mutex_unlock(&regulator_list_mutex);
5071 wash:
5072         kfree(rdev->constraints);
5073         mutex_lock(&regulator_list_mutex);
5074         regulator_ena_gpio_free(rdev);
5075         mutex_unlock(&regulator_list_mutex);
5076 clean:
5077         if (dangling_of_gpiod)
5078                 gpiod_put(config->ena_gpiod);
5079         kfree(rdev);
5080         kfree(config);
5081 rinse:
5082         if (dangling_cfg_gpiod)
5083                 gpiod_put(cfg->ena_gpiod);
5084         return ERR_PTR(ret);
5085 }
5086 EXPORT_SYMBOL_GPL(regulator_register);
5087
5088 /**
5089  * regulator_unregister - unregister regulator
5090  * @rdev: regulator to unregister
5091  *
5092  * Called by regulator drivers to unregister a regulator.
5093  */
5094 void regulator_unregister(struct regulator_dev *rdev)
5095 {
5096         if (rdev == NULL)
5097                 return;
5098
5099         if (rdev->supply) {
5100                 while (rdev->use_count--)
5101                         regulator_disable(rdev->supply);
5102                 regulator_put(rdev->supply);
5103         }
5104
5105         mutex_lock(&regulator_list_mutex);
5106
5107         debugfs_remove_recursive(rdev->debugfs);
5108         flush_work(&rdev->disable_work.work);
5109         WARN_ON(rdev->open_count);
5110         regulator_remove_coupling(rdev);
5111         unset_regulator_supplies(rdev);
5112         list_del(&rdev->list);
5113         regulator_ena_gpio_free(rdev);
5114         device_unregister(&rdev->dev);
5115
5116         mutex_unlock(&regulator_list_mutex);
5117 }
5118 EXPORT_SYMBOL_GPL(regulator_unregister);
5119
5120 #ifdef CONFIG_SUSPEND
5121 /**
5122  * regulator_suspend - prepare regulators for system wide suspend
5123  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5124  *
5125  * Configure each regulator with it's suspend operating parameters for state.
5126  */
5127 static int regulator_suspend(struct device *dev)
5128 {
5129         struct regulator_dev *rdev = dev_to_rdev(dev);
5130         suspend_state_t state = pm_suspend_target_state;
5131         int ret;
5132
5133         regulator_lock(rdev);
5134         ret = suspend_set_state(rdev, state);
5135         regulator_unlock(rdev);
5136
5137         return ret;
5138 }
5139
5140 static int regulator_resume(struct device *dev)
5141 {
5142         suspend_state_t state = pm_suspend_target_state;
5143         struct regulator_dev *rdev = dev_to_rdev(dev);
5144         struct regulator_state *rstate;
5145         int ret = 0;
5146
5147         rstate = regulator_get_suspend_state(rdev, state);
5148         if (rstate == NULL)
5149                 return 0;
5150
5151         regulator_lock(rdev);
5152
5153         if (rdev->desc->ops->resume &&
5154             (rstate->enabled == ENABLE_IN_SUSPEND ||
5155              rstate->enabled == DISABLE_IN_SUSPEND))
5156                 ret = rdev->desc->ops->resume(rdev);
5157
5158         regulator_unlock(rdev);
5159
5160         return ret;
5161 }
5162 #else /* !CONFIG_SUSPEND */
5163
5164 #define regulator_suspend       NULL
5165 #define regulator_resume        NULL
5166
5167 #endif /* !CONFIG_SUSPEND */
5168
5169 #ifdef CONFIG_PM
5170 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5171         .suspend        = regulator_suspend,
5172         .resume         = regulator_resume,
5173 };
5174 #endif
5175
5176 struct class regulator_class = {
5177         .name = "regulator",
5178         .dev_release = regulator_dev_release,
5179         .dev_groups = regulator_dev_groups,
5180 #ifdef CONFIG_PM
5181         .pm = &regulator_pm_ops,
5182 #endif
5183 };
5184 /**
5185  * regulator_has_full_constraints - the system has fully specified constraints
5186  *
5187  * Calling this function will cause the regulator API to disable all
5188  * regulators which have a zero use count and don't have an always_on
5189  * constraint in a late_initcall.
5190  *
5191  * The intention is that this will become the default behaviour in a
5192  * future kernel release so users are encouraged to use this facility
5193  * now.
5194  */
5195 void regulator_has_full_constraints(void)
5196 {
5197         has_full_constraints = 1;
5198 }
5199 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5200
5201 /**
5202  * rdev_get_drvdata - get rdev regulator driver data
5203  * @rdev: regulator
5204  *
5205  * Get rdev regulator driver private data. This call can be used in the
5206  * regulator driver context.
5207  */
5208 void *rdev_get_drvdata(struct regulator_dev *rdev)
5209 {
5210         return rdev->reg_data;
5211 }
5212 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5213
5214 /**
5215  * regulator_get_drvdata - get regulator driver data
5216  * @regulator: regulator
5217  *
5218  * Get regulator driver private data. This call can be used in the consumer
5219  * driver context when non API regulator specific functions need to be called.
5220  */
5221 void *regulator_get_drvdata(struct regulator *regulator)
5222 {
5223         return regulator->rdev->reg_data;
5224 }
5225 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5226
5227 /**
5228  * regulator_set_drvdata - set regulator driver data
5229  * @regulator: regulator
5230  * @data: data
5231  */
5232 void regulator_set_drvdata(struct regulator *regulator, void *data)
5233 {
5234         regulator->rdev->reg_data = data;
5235 }
5236 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5237
5238 /**
5239  * regulator_get_id - get regulator ID
5240  * @rdev: regulator
5241  */
5242 int rdev_get_id(struct regulator_dev *rdev)
5243 {
5244         return rdev->desc->id;
5245 }
5246 EXPORT_SYMBOL_GPL(rdev_get_id);
5247
5248 struct device *rdev_get_dev(struct regulator_dev *rdev)
5249 {
5250         return &rdev->dev;
5251 }
5252 EXPORT_SYMBOL_GPL(rdev_get_dev);
5253
5254 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5255 {
5256         return reg_init_data->driver_data;
5257 }
5258 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5259
5260 #ifdef CONFIG_DEBUG_FS
5261 static int supply_map_show(struct seq_file *sf, void *data)
5262 {
5263         struct regulator_map *map;
5264
5265         list_for_each_entry(map, &regulator_map_list, list) {
5266                 seq_printf(sf, "%s -> %s.%s\n",
5267                                 rdev_get_name(map->regulator), map->dev_name,
5268                                 map->supply);
5269         }
5270
5271         return 0;
5272 }
5273 DEFINE_SHOW_ATTRIBUTE(supply_map);
5274
5275 struct summary_data {
5276         struct seq_file *s;
5277         struct regulator_dev *parent;
5278         int level;
5279 };
5280
5281 static void regulator_summary_show_subtree(struct seq_file *s,
5282                                            struct regulator_dev *rdev,
5283                                            int level);
5284
5285 static int regulator_summary_show_children(struct device *dev, void *data)
5286 {
5287         struct regulator_dev *rdev = dev_to_rdev(dev);
5288         struct summary_data *summary_data = data;
5289
5290         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5291                 regulator_summary_show_subtree(summary_data->s, rdev,
5292                                                summary_data->level + 1);
5293
5294         return 0;
5295 }
5296
5297 static void regulator_summary_show_subtree(struct seq_file *s,
5298                                            struct regulator_dev *rdev,
5299                                            int level)
5300 {
5301         struct regulation_constraints *c;
5302         struct regulator *consumer;
5303         struct summary_data summary_data;
5304         unsigned int opmode;
5305
5306         if (!rdev)
5307                 return;
5308
5309         opmode = _regulator_get_mode_unlocked(rdev);
5310         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5311                    level * 3 + 1, "",
5312                    30 - level * 3, rdev_get_name(rdev),
5313                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5314                    regulator_opmode_to_str(opmode));
5315
5316         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5317         seq_printf(s, "%5dmA ",
5318                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5319
5320         c = rdev->constraints;
5321         if (c) {
5322                 switch (rdev->desc->type) {
5323                 case REGULATOR_VOLTAGE:
5324                         seq_printf(s, "%5dmV %5dmV ",
5325                                    c->min_uV / 1000, c->max_uV / 1000);
5326                         break;
5327                 case REGULATOR_CURRENT:
5328                         seq_printf(s, "%5dmA %5dmA ",
5329                                    c->min_uA / 1000, c->max_uA / 1000);
5330                         break;
5331                 }
5332         }
5333
5334         seq_puts(s, "\n");
5335
5336         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5337                 if (consumer->dev && consumer->dev->class == &regulator_class)
5338                         continue;
5339
5340                 seq_printf(s, "%*s%-*s ",
5341                            (level + 1) * 3 + 1, "",
5342                            30 - (level + 1) * 3,
5343                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5344
5345                 switch (rdev->desc->type) {
5346                 case REGULATOR_VOLTAGE:
5347                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5348                                    consumer->enable_count,
5349                                    consumer->uA_load / 1000,
5350                                    consumer->uA_load && !consumer->enable_count ?
5351                                    '*' : ' ',
5352                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5353                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5354                         break;
5355                 case REGULATOR_CURRENT:
5356                         break;
5357                 }
5358
5359                 seq_puts(s, "\n");
5360         }
5361
5362         summary_data.s = s;
5363         summary_data.level = level;
5364         summary_data.parent = rdev;
5365
5366         class_for_each_device(&regulator_class, NULL, &summary_data,
5367                               regulator_summary_show_children);
5368 }
5369
5370 struct summary_lock_data {
5371         struct ww_acquire_ctx *ww_ctx;
5372         struct regulator_dev **new_contended_rdev;
5373         struct regulator_dev **old_contended_rdev;
5374 };
5375
5376 static int regulator_summary_lock_one(struct device *dev, void *data)
5377 {
5378         struct regulator_dev *rdev = dev_to_rdev(dev);
5379         struct summary_lock_data *lock_data = data;
5380         int ret = 0;
5381
5382         if (rdev != *lock_data->old_contended_rdev) {
5383                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5384
5385                 if (ret == -EDEADLK)
5386                         *lock_data->new_contended_rdev = rdev;
5387                 else
5388                         WARN_ON_ONCE(ret);
5389         } else {
5390                 *lock_data->old_contended_rdev = NULL;
5391         }
5392
5393         return ret;
5394 }
5395
5396 static int regulator_summary_unlock_one(struct device *dev, void *data)
5397 {
5398         struct regulator_dev *rdev = dev_to_rdev(dev);
5399         struct summary_lock_data *lock_data = data;
5400
5401         if (lock_data) {
5402                 if (rdev == *lock_data->new_contended_rdev)
5403                         return -EDEADLK;
5404         }
5405
5406         regulator_unlock(rdev);
5407
5408         return 0;
5409 }
5410
5411 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5412                                       struct regulator_dev **new_contended_rdev,
5413                                       struct regulator_dev **old_contended_rdev)
5414 {
5415         struct summary_lock_data lock_data;
5416         int ret;
5417
5418         lock_data.ww_ctx = ww_ctx;
5419         lock_data.new_contended_rdev = new_contended_rdev;
5420         lock_data.old_contended_rdev = old_contended_rdev;
5421
5422         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5423                                     regulator_summary_lock_one);
5424         if (ret)
5425                 class_for_each_device(&regulator_class, NULL, &lock_data,
5426                                       regulator_summary_unlock_one);
5427
5428         return ret;
5429 }
5430
5431 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5432 {
5433         struct regulator_dev *new_contended_rdev = NULL;
5434         struct regulator_dev *old_contended_rdev = NULL;
5435         int err;
5436
5437         mutex_lock(&regulator_list_mutex);
5438
5439         ww_acquire_init(ww_ctx, &regulator_ww_class);
5440
5441         do {
5442                 if (new_contended_rdev) {
5443                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5444                         old_contended_rdev = new_contended_rdev;
5445                         old_contended_rdev->ref_cnt++;
5446                 }
5447
5448                 err = regulator_summary_lock_all(ww_ctx,
5449                                                  &new_contended_rdev,
5450                                                  &old_contended_rdev);
5451
5452                 if (old_contended_rdev)
5453                         regulator_unlock(old_contended_rdev);
5454
5455         } while (err == -EDEADLK);
5456
5457         ww_acquire_done(ww_ctx);
5458 }
5459
5460 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5461 {
5462         class_for_each_device(&regulator_class, NULL, NULL,
5463                               regulator_summary_unlock_one);
5464         ww_acquire_fini(ww_ctx);
5465
5466         mutex_unlock(&regulator_list_mutex);
5467 }
5468
5469 static int regulator_summary_show_roots(struct device *dev, void *data)
5470 {
5471         struct regulator_dev *rdev = dev_to_rdev(dev);
5472         struct seq_file *s = data;
5473
5474         if (!rdev->supply)
5475                 regulator_summary_show_subtree(s, rdev, 0);
5476
5477         return 0;
5478 }
5479
5480 static int regulator_summary_show(struct seq_file *s, void *data)
5481 {
5482         struct ww_acquire_ctx ww_ctx;
5483
5484         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5485         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5486
5487         regulator_summary_lock(&ww_ctx);
5488
5489         class_for_each_device(&regulator_class, NULL, s,
5490                               regulator_summary_show_roots);
5491
5492         regulator_summary_unlock(&ww_ctx);
5493
5494         return 0;
5495 }
5496 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5497 #endif /* CONFIG_DEBUG_FS */
5498
5499 static int __init regulator_init(void)
5500 {
5501         int ret;
5502
5503         ret = class_register(&regulator_class);
5504
5505         debugfs_root = debugfs_create_dir("regulator", NULL);
5506         if (!debugfs_root)
5507                 pr_warn("regulator: Failed to create debugfs directory\n");
5508
5509 #ifdef CONFIG_DEBUG_FS
5510         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5511                             &supply_map_fops);
5512
5513         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5514                             NULL, &regulator_summary_fops);
5515 #endif
5516         regulator_dummy_init();
5517
5518         return ret;
5519 }
5520
5521 /* init early to allow our consumers to complete system booting */
5522 core_initcall(regulator_init);
5523
5524 static int __init regulator_late_cleanup(struct device *dev, void *data)
5525 {
5526         struct regulator_dev *rdev = dev_to_rdev(dev);
5527         const struct regulator_ops *ops = rdev->desc->ops;
5528         struct regulation_constraints *c = rdev->constraints;
5529         int enabled, ret;
5530
5531         if (c && c->always_on)
5532                 return 0;
5533
5534         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5535                 return 0;
5536
5537         regulator_lock(rdev);
5538
5539         if (rdev->use_count)
5540                 goto unlock;
5541
5542         /* If we can't read the status assume it's on. */
5543         if (ops->is_enabled)
5544                 enabled = ops->is_enabled(rdev);
5545         else
5546                 enabled = 1;
5547
5548         if (!enabled)
5549                 goto unlock;
5550
5551         if (have_full_constraints()) {
5552                 /* We log since this may kill the system if it goes
5553                  * wrong. */
5554                 rdev_info(rdev, "disabling\n");
5555                 ret = _regulator_do_disable(rdev);
5556                 if (ret != 0)
5557                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5558         } else {
5559                 /* The intention is that in future we will
5560                  * assume that full constraints are provided
5561                  * so warn even if we aren't going to do
5562                  * anything here.
5563                  */
5564                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5565         }
5566
5567 unlock:
5568         regulator_unlock(rdev);
5569
5570         return 0;
5571 }
5572
5573 static int __init regulator_init_complete(void)
5574 {
5575         /*
5576          * Since DT doesn't provide an idiomatic mechanism for
5577          * enabling full constraints and since it's much more natural
5578          * with DT to provide them just assume that a DT enabled
5579          * system has full constraints.
5580          */
5581         if (of_have_populated_dt())
5582                 has_full_constraints = true;
5583
5584         /*
5585          * Regulators may had failed to resolve their input supplies
5586          * when were registered, either because the input supply was
5587          * not registered yet or because its parent device was not
5588          * bound yet. So attempt to resolve the input supplies for
5589          * pending regulators before trying to disable unused ones.
5590          */
5591         class_for_each_device(&regulator_class, NULL, NULL,
5592                               regulator_register_resolve_supply);
5593
5594         /* If we have a full configuration then disable any regulators
5595          * we have permission to change the status for and which are
5596          * not in use or always_on.  This is effectively the default
5597          * for DT and ACPI as they have full constraints.
5598          */
5599         class_for_each_device(&regulator_class, NULL, NULL,
5600                               regulator_late_cleanup);
5601
5602         return 0;
5603 }
5604 late_initcall_sync(regulator_init_complete);