firmware: smccc: Add function to fetch SMCCC version
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void _regulator_put(struct regulator *regulator);
109
110 const char *rdev_get_name(struct regulator_dev *rdev)
111 {
112         if (rdev->constraints && rdev->constraints->name)
113                 return rdev->constraints->name;
114         else if (rdev->desc->name)
115                 return rdev->desc->name;
116         else
117                 return "";
118 }
119
120 static bool have_full_constraints(void)
121 {
122         return has_full_constraints || of_have_populated_dt();
123 }
124
125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
126 {
127         if (!rdev->constraints) {
128                 rdev_err(rdev, "no constraints\n");
129                 return false;
130         }
131
132         if (rdev->constraints->valid_ops_mask & ops)
133                 return true;
134
135         return false;
136 }
137
138 /**
139  * regulator_lock_nested - lock a single regulator
140  * @rdev:               regulator source
141  * @ww_ctx:             w/w mutex acquire context
142  *
143  * This function can be called many times by one task on
144  * a single regulator and its mutex will be locked only
145  * once. If a task, which is calling this function is other
146  * than the one, which initially locked the mutex, it will
147  * wait on mutex.
148  */
149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
150                                         struct ww_acquire_ctx *ww_ctx)
151 {
152         bool lock = false;
153         int ret = 0;
154
155         mutex_lock(&regulator_nesting_mutex);
156
157         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158                 if (rdev->mutex_owner == current)
159                         rdev->ref_cnt++;
160                 else
161                         lock = true;
162
163                 if (lock) {
164                         mutex_unlock(&regulator_nesting_mutex);
165                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166                         mutex_lock(&regulator_nesting_mutex);
167                 }
168         } else {
169                 lock = true;
170         }
171
172         if (lock && ret != -EDEADLK) {
173                 rdev->ref_cnt++;
174                 rdev->mutex_owner = current;
175         }
176
177         mutex_unlock(&regulator_nesting_mutex);
178
179         return ret;
180 }
181
182 /**
183  * regulator_lock - lock a single regulator
184  * @rdev:               regulator source
185  *
186  * This function can be called many times by one task on
187  * a single regulator and its mutex will be locked only
188  * once. If a task, which is calling this function is other
189  * than the one, which initially locked the mutex, it will
190  * wait on mutex.
191  */
192 void regulator_lock(struct regulator_dev *rdev)
193 {
194         regulator_lock_nested(rdev, NULL);
195 }
196 EXPORT_SYMBOL_GPL(regulator_lock);
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218 EXPORT_SYMBOL_GPL(regulator_unlock);
219
220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221 {
222         struct regulator_dev *c_rdev;
223         int i;
224
225         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227
228                 if (rdev->supply->rdev == c_rdev)
229                         return true;
230         }
231
232         return false;
233 }
234
235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
236                                        unsigned int n_coupled)
237 {
238         struct regulator_dev *c_rdev;
239         int i;
240
241         for (i = n_coupled; i > 0; i--) {
242                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243
244                 if (!c_rdev)
245                         continue;
246
247                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248                         regulator_unlock_recursive(
249                                         c_rdev->supply->rdev,
250                                         c_rdev->coupling_desc.n_coupled);
251
252                 regulator_unlock(c_rdev);
253         }
254 }
255
256 static int regulator_lock_recursive(struct regulator_dev *rdev,
257                                     struct regulator_dev **new_contended_rdev,
258                                     struct regulator_dev **old_contended_rdev,
259                                     struct ww_acquire_ctx *ww_ctx)
260 {
261         struct regulator_dev *c_rdev;
262         int i, err;
263
264         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266
267                 if (!c_rdev)
268                         continue;
269
270                 if (c_rdev != *old_contended_rdev) {
271                         err = regulator_lock_nested(c_rdev, ww_ctx);
272                         if (err) {
273                                 if (err == -EDEADLK) {
274                                         *new_contended_rdev = c_rdev;
275                                         goto err_unlock;
276                                 }
277
278                                 /* shouldn't happen */
279                                 WARN_ON_ONCE(err != -EALREADY);
280                         }
281                 } else {
282                         *old_contended_rdev = NULL;
283                 }
284
285                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286                         err = regulator_lock_recursive(c_rdev->supply->rdev,
287                                                        new_contended_rdev,
288                                                        old_contended_rdev,
289                                                        ww_ctx);
290                         if (err) {
291                                 regulator_unlock(c_rdev);
292                                 goto err_unlock;
293                         }
294                 }
295         }
296
297         return 0;
298
299 err_unlock:
300         regulator_unlock_recursive(rdev, i);
301
302         return err;
303 }
304
305 /**
306  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307  *                              regulators
308  * @rdev:                       regulator source
309  * @ww_ctx:                     w/w mutex acquire context
310  *
311  * Unlock all regulators related with rdev by coupling or supplying.
312  */
313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
314                                        struct ww_acquire_ctx *ww_ctx)
315 {
316         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317         ww_acquire_fini(ww_ctx);
318 }
319
320 /**
321  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322  * @rdev:                       regulator source
323  * @ww_ctx:                     w/w mutex acquire context
324  *
325  * This function as a wrapper on regulator_lock_recursive(), which locks
326  * all regulators related with rdev by coupling or supplying.
327  */
328 static void regulator_lock_dependent(struct regulator_dev *rdev,
329                                      struct ww_acquire_ctx *ww_ctx)
330 {
331         struct regulator_dev *new_contended_rdev = NULL;
332         struct regulator_dev *old_contended_rdev = NULL;
333         int err;
334
335         mutex_lock(&regulator_list_mutex);
336
337         ww_acquire_init(ww_ctx, &regulator_ww_class);
338
339         do {
340                 if (new_contended_rdev) {
341                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342                         old_contended_rdev = new_contended_rdev;
343                         old_contended_rdev->ref_cnt++;
344                 }
345
346                 err = regulator_lock_recursive(rdev,
347                                                &new_contended_rdev,
348                                                &old_contended_rdev,
349                                                ww_ctx);
350
351                 if (old_contended_rdev)
352                         regulator_unlock(old_contended_rdev);
353
354         } while (err == -EDEADLK);
355
356         ww_acquire_done(ww_ctx);
357
358         mutex_unlock(&regulator_list_mutex);
359 }
360
361 /**
362  * of_get_child_regulator - get a child regulator device node
363  * based on supply name
364  * @parent: Parent device node
365  * @prop_name: Combination regulator supply name and "-supply"
366  *
367  * Traverse all child nodes.
368  * Extract the child regulator device node corresponding to the supply name.
369  * returns the device node corresponding to the regulator if found, else
370  * returns NULL.
371  */
372 static struct device_node *of_get_child_regulator(struct device_node *parent,
373                                                   const char *prop_name)
374 {
375         struct device_node *regnode = NULL;
376         struct device_node *child = NULL;
377
378         for_each_child_of_node(parent, child) {
379                 regnode = of_parse_phandle(child, prop_name, 0);
380
381                 if (!regnode) {
382                         regnode = of_get_child_regulator(child, prop_name);
383                         if (regnode)
384                                 goto err_node_put;
385                 } else {
386                         goto err_node_put;
387                 }
388         }
389         return NULL;
390
391 err_node_put:
392         of_node_put(child);
393         return regnode;
394 }
395
396 /**
397  * of_get_regulator - get a regulator device node based on supply name
398  * @dev: Device pointer for the consumer (of regulator) device
399  * @supply: regulator supply name
400  *
401  * Extract the regulator device node corresponding to the supply name.
402  * returns the device node corresponding to the regulator if found, else
403  * returns NULL.
404  */
405 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
406 {
407         struct device_node *regnode = NULL;
408         char prop_name[32]; /* 32 is max size of property name */
409
410         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
411
412         snprintf(prop_name, 32, "%s-supply", supply);
413         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
414
415         if (!regnode) {
416                 regnode = of_get_child_regulator(dev->of_node, prop_name);
417                 if (regnode)
418                         return regnode;
419
420                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421                                 prop_name, dev->of_node);
422                 return NULL;
423         }
424         return regnode;
425 }
426
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev *rdev,
429                             int *min_uV, int *max_uV)
430 {
431         BUG_ON(*min_uV > *max_uV);
432
433         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434                 rdev_err(rdev, "voltage operation not allowed\n");
435                 return -EPERM;
436         }
437
438         if (*max_uV > rdev->constraints->max_uV)
439                 *max_uV = rdev->constraints->max_uV;
440         if (*min_uV < rdev->constraints->min_uV)
441                 *min_uV = rdev->constraints->min_uV;
442
443         if (*min_uV > *max_uV) {
444                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445                          *min_uV, *max_uV);
446                 return -EINVAL;
447         }
448
449         return 0;
450 }
451
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state)
454 {
455         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
456 }
457
458 /* Make sure we select a voltage that suits the needs of all
459  * regulator consumers
460  */
461 int regulator_check_consumers(struct regulator_dev *rdev,
462                               int *min_uV, int *max_uV,
463                               suspend_state_t state)
464 {
465         struct regulator *regulator;
466         struct regulator_voltage *voltage;
467
468         list_for_each_entry(regulator, &rdev->consumer_list, list) {
469                 voltage = &regulator->voltage[state];
470                 /*
471                  * Assume consumers that didn't say anything are OK
472                  * with anything in the constraint range.
473                  */
474                 if (!voltage->min_uV && !voltage->max_uV)
475                         continue;
476
477                 if (*max_uV > voltage->max_uV)
478                         *max_uV = voltage->max_uV;
479                 if (*min_uV < voltage->min_uV)
480                         *min_uV = voltage->min_uV;
481         }
482
483         if (*min_uV > *max_uV) {
484                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
485                         *min_uV, *max_uV);
486                 return -EINVAL;
487         }
488
489         return 0;
490 }
491
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev *rdev,
494                                         int *min_uA, int *max_uA)
495 {
496         BUG_ON(*min_uA > *max_uA);
497
498         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499                 rdev_err(rdev, "current operation not allowed\n");
500                 return -EPERM;
501         }
502
503         if (*max_uA > rdev->constraints->max_uA)
504                 *max_uA = rdev->constraints->max_uA;
505         if (*min_uA < rdev->constraints->min_uA)
506                 *min_uA = rdev->constraints->min_uA;
507
508         if (*min_uA > *max_uA) {
509                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510                          *min_uA, *max_uA);
511                 return -EINVAL;
512         }
513
514         return 0;
515 }
516
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev *rdev,
519                                     unsigned int *mode)
520 {
521         switch (*mode) {
522         case REGULATOR_MODE_FAST:
523         case REGULATOR_MODE_NORMAL:
524         case REGULATOR_MODE_IDLE:
525         case REGULATOR_MODE_STANDBY:
526                 break;
527         default:
528                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
529                 return -EINVAL;
530         }
531
532         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533                 rdev_err(rdev, "mode operation not allowed\n");
534                 return -EPERM;
535         }
536
537         /* The modes are bitmasks, the most power hungry modes having
538          * the lowest values. If the requested mode isn't supported
539          * try higher modes. */
540         while (*mode) {
541                 if (rdev->constraints->valid_modes_mask & *mode)
542                         return 0;
543                 *mode /= 2;
544         }
545
546         return -EINVAL;
547 }
548
549 static inline struct regulator_state *
550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
551 {
552         if (rdev->constraints == NULL)
553                 return NULL;
554
555         switch (state) {
556         case PM_SUSPEND_STANDBY:
557                 return &rdev->constraints->state_standby;
558         case PM_SUSPEND_MEM:
559                 return &rdev->constraints->state_mem;
560         case PM_SUSPEND_MAX:
561                 return &rdev->constraints->state_disk;
562         default:
563                 return NULL;
564         }
565 }
566
567 static ssize_t regulator_uV_show(struct device *dev,
568                                 struct device_attribute *attr, char *buf)
569 {
570         struct regulator_dev *rdev = dev_get_drvdata(dev);
571         int uV;
572
573         regulator_lock(rdev);
574         uV = regulator_get_voltage_rdev(rdev);
575         regulator_unlock(rdev);
576
577         if (uV < 0)
578                 return uV;
579         return sprintf(buf, "%d\n", uV);
580 }
581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582
583 static ssize_t regulator_uA_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
589 }
590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591
592 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
593                          char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return sprintf(buf, "%s\n", rdev_get_name(rdev));
598 }
599 static DEVICE_ATTR_RO(name);
600
601 static const char *regulator_opmode_to_str(int mode)
602 {
603         switch (mode) {
604         case REGULATOR_MODE_FAST:
605                 return "fast";
606         case REGULATOR_MODE_NORMAL:
607                 return "normal";
608         case REGULATOR_MODE_IDLE:
609                 return "idle";
610         case REGULATOR_MODE_STANDBY:
611                 return "standby";
612         }
613         return "unknown";
614 }
615
616 static ssize_t regulator_print_opmode(char *buf, int mode)
617 {
618         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619 }
620
621 static ssize_t regulator_opmode_show(struct device *dev,
622                                     struct device_attribute *attr, char *buf)
623 {
624         struct regulator_dev *rdev = dev_get_drvdata(dev);
625
626         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
627 }
628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
629
630 static ssize_t regulator_print_state(char *buf, int state)
631 {
632         if (state > 0)
633                 return sprintf(buf, "enabled\n");
634         else if (state == 0)
635                 return sprintf(buf, "disabled\n");
636         else
637                 return sprintf(buf, "unknown\n");
638 }
639
640 static ssize_t regulator_state_show(struct device *dev,
641                                    struct device_attribute *attr, char *buf)
642 {
643         struct regulator_dev *rdev = dev_get_drvdata(dev);
644         ssize_t ret;
645
646         regulator_lock(rdev);
647         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648         regulator_unlock(rdev);
649
650         return ret;
651 }
652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
653
654 static ssize_t regulator_status_show(struct device *dev,
655                                    struct device_attribute *attr, char *buf)
656 {
657         struct regulator_dev *rdev = dev_get_drvdata(dev);
658         int status;
659         char *label;
660
661         status = rdev->desc->ops->get_status(rdev);
662         if (status < 0)
663                 return status;
664
665         switch (status) {
666         case REGULATOR_STATUS_OFF:
667                 label = "off";
668                 break;
669         case REGULATOR_STATUS_ON:
670                 label = "on";
671                 break;
672         case REGULATOR_STATUS_ERROR:
673                 label = "error";
674                 break;
675         case REGULATOR_STATUS_FAST:
676                 label = "fast";
677                 break;
678         case REGULATOR_STATUS_NORMAL:
679                 label = "normal";
680                 break;
681         case REGULATOR_STATUS_IDLE:
682                 label = "idle";
683                 break;
684         case REGULATOR_STATUS_STANDBY:
685                 label = "standby";
686                 break;
687         case REGULATOR_STATUS_BYPASS:
688                 label = "bypass";
689                 break;
690         case REGULATOR_STATUS_UNDEFINED:
691                 label = "undefined";
692                 break;
693         default:
694                 return -ERANGE;
695         }
696
697         return sprintf(buf, "%s\n", label);
698 }
699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
700
701 static ssize_t regulator_min_uA_show(struct device *dev,
702                                     struct device_attribute *attr, char *buf)
703 {
704         struct regulator_dev *rdev = dev_get_drvdata(dev);
705
706         if (!rdev->constraints)
707                 return sprintf(buf, "constraint not defined\n");
708
709         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
710 }
711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712
713 static ssize_t regulator_max_uA_show(struct device *dev,
714                                     struct device_attribute *attr, char *buf)
715 {
716         struct regulator_dev *rdev = dev_get_drvdata(dev);
717
718         if (!rdev->constraints)
719                 return sprintf(buf, "constraint not defined\n");
720
721         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
722 }
723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724
725 static ssize_t regulator_min_uV_show(struct device *dev,
726                                     struct device_attribute *attr, char *buf)
727 {
728         struct regulator_dev *rdev = dev_get_drvdata(dev);
729
730         if (!rdev->constraints)
731                 return sprintf(buf, "constraint not defined\n");
732
733         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
734 }
735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736
737 static ssize_t regulator_max_uV_show(struct device *dev,
738                                     struct device_attribute *attr, char *buf)
739 {
740         struct regulator_dev *rdev = dev_get_drvdata(dev);
741
742         if (!rdev->constraints)
743                 return sprintf(buf, "constraint not defined\n");
744
745         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
746 }
747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748
749 static ssize_t regulator_total_uA_show(struct device *dev,
750                                       struct device_attribute *attr, char *buf)
751 {
752         struct regulator_dev *rdev = dev_get_drvdata(dev);
753         struct regulator *regulator;
754         int uA = 0;
755
756         regulator_lock(rdev);
757         list_for_each_entry(regulator, &rdev->consumer_list, list) {
758                 if (regulator->enable_count)
759                         uA += regulator->uA_load;
760         }
761         regulator_unlock(rdev);
762         return sprintf(buf, "%d\n", uA);
763 }
764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765
766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
767                               char *buf)
768 {
769         struct regulator_dev *rdev = dev_get_drvdata(dev);
770         return sprintf(buf, "%d\n", rdev->use_count);
771 }
772 static DEVICE_ATTR_RO(num_users);
773
774 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
775                          char *buf)
776 {
777         struct regulator_dev *rdev = dev_get_drvdata(dev);
778
779         switch (rdev->desc->type) {
780         case REGULATOR_VOLTAGE:
781                 return sprintf(buf, "voltage\n");
782         case REGULATOR_CURRENT:
783                 return sprintf(buf, "current\n");
784         }
785         return sprintf(buf, "unknown\n");
786 }
787 static DEVICE_ATTR_RO(type);
788
789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790                                 struct device_attribute *attr, char *buf)
791 {
792         struct regulator_dev *rdev = dev_get_drvdata(dev);
793
794         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
795 }
796 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797                 regulator_suspend_mem_uV_show, NULL);
798
799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800                                 struct device_attribute *attr, char *buf)
801 {
802         struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
805 }
806 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807                 regulator_suspend_disk_uV_show, NULL);
808
809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810                                 struct device_attribute *attr, char *buf)
811 {
812         struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
815 }
816 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817                 regulator_suspend_standby_uV_show, NULL);
818
819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820                                 struct device_attribute *attr, char *buf)
821 {
822         struct regulator_dev *rdev = dev_get_drvdata(dev);
823
824         return regulator_print_opmode(buf,
825                 rdev->constraints->state_mem.mode);
826 }
827 static DEVICE_ATTR(suspend_mem_mode, 0444,
828                 regulator_suspend_mem_mode_show, NULL);
829
830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831                                 struct device_attribute *attr, char *buf)
832 {
833         struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835         return regulator_print_opmode(buf,
836                 rdev->constraints->state_disk.mode);
837 }
838 static DEVICE_ATTR(suspend_disk_mode, 0444,
839                 regulator_suspend_disk_mode_show, NULL);
840
841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842                                 struct device_attribute *attr, char *buf)
843 {
844         struct regulator_dev *rdev = dev_get_drvdata(dev);
845
846         return regulator_print_opmode(buf,
847                 rdev->constraints->state_standby.mode);
848 }
849 static DEVICE_ATTR(suspend_standby_mode, 0444,
850                 regulator_suspend_standby_mode_show, NULL);
851
852 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853                                    struct device_attribute *attr, char *buf)
854 {
855         struct regulator_dev *rdev = dev_get_drvdata(dev);
856
857         return regulator_print_state(buf,
858                         rdev->constraints->state_mem.enabled);
859 }
860 static DEVICE_ATTR(suspend_mem_state, 0444,
861                 regulator_suspend_mem_state_show, NULL);
862
863 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864                                    struct device_attribute *attr, char *buf)
865 {
866         struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868         return regulator_print_state(buf,
869                         rdev->constraints->state_disk.enabled);
870 }
871 static DEVICE_ATTR(suspend_disk_state, 0444,
872                 regulator_suspend_disk_state_show, NULL);
873
874 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875                                    struct device_attribute *attr, char *buf)
876 {
877         struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879         return regulator_print_state(buf,
880                         rdev->constraints->state_standby.enabled);
881 }
882 static DEVICE_ATTR(suspend_standby_state, 0444,
883                 regulator_suspend_standby_state_show, NULL);
884
885 static ssize_t regulator_bypass_show(struct device *dev,
886                                      struct device_attribute *attr, char *buf)
887 {
888         struct regulator_dev *rdev = dev_get_drvdata(dev);
889         const char *report;
890         bool bypass;
891         int ret;
892
893         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
894
895         if (ret != 0)
896                 report = "unknown";
897         else if (bypass)
898                 report = "enabled";
899         else
900                 report = "disabled";
901
902         return sprintf(buf, "%s\n", report);
903 }
904 static DEVICE_ATTR(bypass, 0444,
905                    regulator_bypass_show, NULL);
906
907 /* Calculate the new optimum regulator operating mode based on the new total
908  * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev *rdev)
910 {
911         struct regulator *sibling;
912         int current_uA = 0, output_uV, input_uV, err;
913         unsigned int mode;
914
915         /*
916          * first check to see if we can set modes at all, otherwise just
917          * tell the consumer everything is OK.
918          */
919         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920                 rdev_dbg(rdev, "DRMS operation not allowed\n");
921                 return 0;
922         }
923
924         if (!rdev->desc->ops->get_optimum_mode &&
925             !rdev->desc->ops->set_load)
926                 return 0;
927
928         if (!rdev->desc->ops->set_mode &&
929             !rdev->desc->ops->set_load)
930                 return -EINVAL;
931
932         /* calc total requested load */
933         list_for_each_entry(sibling, &rdev->consumer_list, list) {
934                 if (sibling->enable_count)
935                         current_uA += sibling->uA_load;
936         }
937
938         current_uA += rdev->constraints->system_load;
939
940         if (rdev->desc->ops->set_load) {
941                 /* set the optimum mode for our new total regulator load */
942                 err = rdev->desc->ops->set_load(rdev, current_uA);
943                 if (err < 0)
944                         rdev_err(rdev, "failed to set load %d\n", current_uA);
945         } else {
946                 /* get output voltage */
947                 output_uV = regulator_get_voltage_rdev(rdev);
948                 if (output_uV <= 0) {
949                         rdev_err(rdev, "invalid output voltage found\n");
950                         return -EINVAL;
951                 }
952
953                 /* get input voltage */
954                 input_uV = 0;
955                 if (rdev->supply)
956                         input_uV = regulator_get_voltage(rdev->supply);
957                 if (input_uV <= 0)
958                         input_uV = rdev->constraints->input_uV;
959                 if (input_uV <= 0) {
960                         rdev_err(rdev, "invalid input voltage found\n");
961                         return -EINVAL;
962                 }
963
964                 /* now get the optimum mode for our new total regulator load */
965                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966                                                          output_uV, current_uA);
967
968                 /* check the new mode is allowed */
969                 err = regulator_mode_constrain(rdev, &mode);
970                 if (err < 0) {
971                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972                                  current_uA, input_uV, output_uV);
973                         return err;
974                 }
975
976                 err = rdev->desc->ops->set_mode(rdev, mode);
977                 if (err < 0)
978                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979         }
980
981         return err;
982 }
983
984 static int suspend_set_state(struct regulator_dev *rdev,
985                                     suspend_state_t state)
986 {
987         int ret = 0;
988         struct regulator_state *rstate;
989
990         rstate = regulator_get_suspend_state(rdev, state);
991         if (rstate == NULL)
992                 return 0;
993
994         /* If we have no suspend mode configuration don't set anything;
995          * only warn if the driver implements set_suspend_voltage or
996          * set_suspend_mode callback.
997          */
998         if (rstate->enabled != ENABLE_IN_SUSPEND &&
999             rstate->enabled != DISABLE_IN_SUSPEND) {
1000                 if (rdev->desc->ops->set_suspend_voltage ||
1001                     rdev->desc->ops->set_suspend_mode)
1002                         rdev_warn(rdev, "No configuration\n");
1003                 return 0;
1004         }
1005
1006         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007                 rdev->desc->ops->set_suspend_enable)
1008                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1009         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010                 rdev->desc->ops->set_suspend_disable)
1011                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1012         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013                 ret = 0;
1014
1015         if (ret < 0) {
1016                 rdev_err(rdev, "failed to enabled/disable\n");
1017                 return ret;
1018         }
1019
1020         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022                 if (ret < 0) {
1023                         rdev_err(rdev, "failed to set voltage\n");
1024                         return ret;
1025                 }
1026         }
1027
1028         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030                 if (ret < 0) {
1031                         rdev_err(rdev, "failed to set mode\n");
1032                         return ret;
1033                 }
1034         }
1035
1036         return ret;
1037 }
1038
1039 static void print_constraints(struct regulator_dev *rdev)
1040 {
1041         struct regulation_constraints *constraints = rdev->constraints;
1042         char buf[160] = "";
1043         size_t len = sizeof(buf) - 1;
1044         int count = 0;
1045         int ret;
1046
1047         if (constraints->min_uV && constraints->max_uV) {
1048                 if (constraints->min_uV == constraints->max_uV)
1049                         count += scnprintf(buf + count, len - count, "%d mV ",
1050                                            constraints->min_uV / 1000);
1051                 else
1052                         count += scnprintf(buf + count, len - count,
1053                                            "%d <--> %d mV ",
1054                                            constraints->min_uV / 1000,
1055                                            constraints->max_uV / 1000);
1056         }
1057
1058         if (!constraints->min_uV ||
1059             constraints->min_uV != constraints->max_uV) {
1060                 ret = regulator_get_voltage_rdev(rdev);
1061                 if (ret > 0)
1062                         count += scnprintf(buf + count, len - count,
1063                                            "at %d mV ", ret / 1000);
1064         }
1065
1066         if (constraints->uV_offset)
1067                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1068                                    constraints->uV_offset / 1000);
1069
1070         if (constraints->min_uA && constraints->max_uA) {
1071                 if (constraints->min_uA == constraints->max_uA)
1072                         count += scnprintf(buf + count, len - count, "%d mA ",
1073                                            constraints->min_uA / 1000);
1074                 else
1075                         count += scnprintf(buf + count, len - count,
1076                                            "%d <--> %d mA ",
1077                                            constraints->min_uA / 1000,
1078                                            constraints->max_uA / 1000);
1079         }
1080
1081         if (!constraints->min_uA ||
1082             constraints->min_uA != constraints->max_uA) {
1083                 ret = _regulator_get_current_limit(rdev);
1084                 if (ret > 0)
1085                         count += scnprintf(buf + count, len - count,
1086                                            "at %d mA ", ret / 1000);
1087         }
1088
1089         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090                 count += scnprintf(buf + count, len - count, "fast ");
1091         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092                 count += scnprintf(buf + count, len - count, "normal ");
1093         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094                 count += scnprintf(buf + count, len - count, "idle ");
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096                 count += scnprintf(buf + count, len - count, "standby");
1097
1098         if (!count)
1099                 scnprintf(buf, len, "no parameters");
1100
1101         rdev_dbg(rdev, "%s\n", buf);
1102
1103         if ((constraints->min_uV != constraints->max_uV) &&
1104             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105                 rdev_warn(rdev,
1106                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 }
1108
1109 static int machine_constraints_voltage(struct regulator_dev *rdev,
1110         struct regulation_constraints *constraints)
1111 {
1112         const struct regulator_ops *ops = rdev->desc->ops;
1113         int ret;
1114
1115         /* do we need to apply the constraint voltage */
1116         if (rdev->constraints->apply_uV &&
1117             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118                 int target_min, target_max;
1119                 int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121                 if (current_uV == -ENOTRECOVERABLE) {
1122                         /* This regulator can't be read and must be initialized */
1123                         rdev_info(rdev, "Setting %d-%duV\n",
1124                                   rdev->constraints->min_uV,
1125                                   rdev->constraints->max_uV);
1126                         _regulator_do_set_voltage(rdev,
1127                                                   rdev->constraints->min_uV,
1128                                                   rdev->constraints->max_uV);
1129                         current_uV = regulator_get_voltage_rdev(rdev);
1130                 }
1131
1132                 if (current_uV < 0) {
1133                         rdev_err(rdev,
1134                                  "failed to get the current voltage(%d)\n",
1135                                  current_uV);
1136                         return current_uV;
1137                 }
1138
1139                 /*
1140                  * If we're below the minimum voltage move up to the
1141                  * minimum voltage, if we're above the maximum voltage
1142                  * then move down to the maximum.
1143                  */
1144                 target_min = current_uV;
1145                 target_max = current_uV;
1146
1147                 if (current_uV < rdev->constraints->min_uV) {
1148                         target_min = rdev->constraints->min_uV;
1149                         target_max = rdev->constraints->min_uV;
1150                 }
1151
1152                 if (current_uV > rdev->constraints->max_uV) {
1153                         target_min = rdev->constraints->max_uV;
1154                         target_max = rdev->constraints->max_uV;
1155                 }
1156
1157                 if (target_min != current_uV || target_max != current_uV) {
1158                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159                                   current_uV, target_min, target_max);
1160                         ret = _regulator_do_set_voltage(
1161                                 rdev, target_min, target_max);
1162                         if (ret < 0) {
1163                                 rdev_err(rdev,
1164                                         "failed to apply %d-%duV constraint(%d)\n",
1165                                         target_min, target_max, ret);
1166                                 return ret;
1167                         }
1168                 }
1169         }
1170
1171         /* constrain machine-level voltage specs to fit
1172          * the actual range supported by this regulator.
1173          */
1174         if (ops->list_voltage && rdev->desc->n_voltages) {
1175                 int     count = rdev->desc->n_voltages;
1176                 int     i;
1177                 int     min_uV = INT_MAX;
1178                 int     max_uV = INT_MIN;
1179                 int     cmin = constraints->min_uV;
1180                 int     cmax = constraints->max_uV;
1181
1182                 /* it's safe to autoconfigure fixed-voltage supplies
1183                    and the constraints are used by list_voltage. */
1184                 if (count == 1 && !cmin) {
1185                         cmin = 1;
1186                         cmax = INT_MAX;
1187                         constraints->min_uV = cmin;
1188                         constraints->max_uV = cmax;
1189                 }
1190
1191                 /* voltage constraints are optional */
1192                 if ((cmin == 0) && (cmax == 0))
1193                         return 0;
1194
1195                 /* else require explicit machine-level constraints */
1196                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197                         rdev_err(rdev, "invalid voltage constraints\n");
1198                         return -EINVAL;
1199                 }
1200
1201                 /* no need to loop voltages if range is continuous */
1202                 if (rdev->desc->continuous_voltage_range)
1203                         return 0;
1204
1205                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1206                 for (i = 0; i < count; i++) {
1207                         int     value;
1208
1209                         value = ops->list_voltage(rdev, i);
1210                         if (value <= 0)
1211                                 continue;
1212
1213                         /* maybe adjust [min_uV..max_uV] */
1214                         if (value >= cmin && value < min_uV)
1215                                 min_uV = value;
1216                         if (value <= cmax && value > max_uV)
1217                                 max_uV = value;
1218                 }
1219
1220                 /* final: [min_uV..max_uV] valid iff constraints valid */
1221                 if (max_uV < min_uV) {
1222                         rdev_err(rdev,
1223                                  "unsupportable voltage constraints %u-%uuV\n",
1224                                  min_uV, max_uV);
1225                         return -EINVAL;
1226                 }
1227
1228                 /* use regulator's subset of machine constraints */
1229                 if (constraints->min_uV < min_uV) {
1230                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1231                                  constraints->min_uV, min_uV);
1232                         constraints->min_uV = min_uV;
1233                 }
1234                 if (constraints->max_uV > max_uV) {
1235                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1236                                  constraints->max_uV, max_uV);
1237                         constraints->max_uV = max_uV;
1238                 }
1239         }
1240
1241         return 0;
1242 }
1243
1244 static int machine_constraints_current(struct regulator_dev *rdev,
1245         struct regulation_constraints *constraints)
1246 {
1247         const struct regulator_ops *ops = rdev->desc->ops;
1248         int ret;
1249
1250         if (!constraints->min_uA && !constraints->max_uA)
1251                 return 0;
1252
1253         if (constraints->min_uA > constraints->max_uA) {
1254                 rdev_err(rdev, "Invalid current constraints\n");
1255                 return -EINVAL;
1256         }
1257
1258         if (!ops->set_current_limit || !ops->get_current_limit) {
1259                 rdev_warn(rdev, "Operation of current configuration missing\n");
1260                 return 0;
1261         }
1262
1263         /* Set regulator current in constraints range */
1264         ret = ops->set_current_limit(rdev, constraints->min_uA,
1265                         constraints->max_uA);
1266         if (ret < 0) {
1267                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1268                 return ret;
1269         }
1270
1271         return 0;
1272 }
1273
1274 static int _regulator_do_enable(struct regulator_dev *rdev);
1275
1276 /**
1277  * set_machine_constraints - sets regulator constraints
1278  * @rdev: regulator source
1279  * @constraints: constraints to apply
1280  *
1281  * Allows platform initialisation code to define and constrain
1282  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1283  * Constraints *must* be set by platform code in order for some
1284  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1285  * set_mode.
1286  */
1287 static int set_machine_constraints(struct regulator_dev *rdev,
1288         const struct regulation_constraints *constraints)
1289 {
1290         int ret = 0;
1291         const struct regulator_ops *ops = rdev->desc->ops;
1292
1293         if (constraints)
1294                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1295                                             GFP_KERNEL);
1296         else
1297                 rdev->constraints = kzalloc(sizeof(*constraints),
1298                                             GFP_KERNEL);
1299         if (!rdev->constraints)
1300                 return -ENOMEM;
1301
1302         ret = machine_constraints_voltage(rdev, rdev->constraints);
1303         if (ret != 0)
1304                 return ret;
1305
1306         ret = machine_constraints_current(rdev, rdev->constraints);
1307         if (ret != 0)
1308                 return ret;
1309
1310         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1311                 ret = ops->set_input_current_limit(rdev,
1312                                                    rdev->constraints->ilim_uA);
1313                 if (ret < 0) {
1314                         rdev_err(rdev, "failed to set input limit\n");
1315                         return ret;
1316                 }
1317         }
1318
1319         /* do we need to setup our suspend state */
1320         if (rdev->constraints->initial_state) {
1321                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1322                 if (ret < 0) {
1323                         rdev_err(rdev, "failed to set suspend state\n");
1324                         return ret;
1325                 }
1326         }
1327
1328         if (rdev->constraints->initial_mode) {
1329                 if (!ops->set_mode) {
1330                         rdev_err(rdev, "no set_mode operation\n");
1331                         return -EINVAL;
1332                 }
1333
1334                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1335                 if (ret < 0) {
1336                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1337                         return ret;
1338                 }
1339         } else if (rdev->constraints->system_load) {
1340                 /*
1341                  * We'll only apply the initial system load if an
1342                  * initial mode wasn't specified.
1343                  */
1344                 drms_uA_update(rdev);
1345         }
1346
1347         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1348                 && ops->set_ramp_delay) {
1349                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1350                 if (ret < 0) {
1351                         rdev_err(rdev, "failed to set ramp_delay\n");
1352                         return ret;
1353                 }
1354         }
1355
1356         if (rdev->constraints->pull_down && ops->set_pull_down) {
1357                 ret = ops->set_pull_down(rdev);
1358                 if (ret < 0) {
1359                         rdev_err(rdev, "failed to set pull down\n");
1360                         return ret;
1361                 }
1362         }
1363
1364         if (rdev->constraints->soft_start && ops->set_soft_start) {
1365                 ret = ops->set_soft_start(rdev);
1366                 if (ret < 0) {
1367                         rdev_err(rdev, "failed to set soft start\n");
1368                         return ret;
1369                 }
1370         }
1371
1372         if (rdev->constraints->over_current_protection
1373                 && ops->set_over_current_protection) {
1374                 ret = ops->set_over_current_protection(rdev);
1375                 if (ret < 0) {
1376                         rdev_err(rdev, "failed to set over current protection\n");
1377                         return ret;
1378                 }
1379         }
1380
1381         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1382                 bool ad_state = (rdev->constraints->active_discharge ==
1383                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1384
1385                 ret = ops->set_active_discharge(rdev, ad_state);
1386                 if (ret < 0) {
1387                         rdev_err(rdev, "failed to set active discharge\n");
1388                         return ret;
1389                 }
1390         }
1391
1392         /* If the constraints say the regulator should be on at this point
1393          * and we have control then make sure it is enabled.
1394          */
1395         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1396                 if (rdev->supply) {
1397                         ret = regulator_enable(rdev->supply);
1398                         if (ret < 0) {
1399                                 _regulator_put(rdev->supply);
1400                                 rdev->supply = NULL;
1401                                 return ret;
1402                         }
1403                 }
1404
1405                 ret = _regulator_do_enable(rdev);
1406                 if (ret < 0 && ret != -EINVAL) {
1407                         rdev_err(rdev, "failed to enable\n");
1408                         return ret;
1409                 }
1410
1411                 if (rdev->constraints->always_on)
1412                         rdev->use_count++;
1413         }
1414
1415         print_constraints(rdev);
1416         return 0;
1417 }
1418
1419 /**
1420  * set_supply - set regulator supply regulator
1421  * @rdev: regulator name
1422  * @supply_rdev: supply regulator name
1423  *
1424  * Called by platform initialisation code to set the supply regulator for this
1425  * regulator. This ensures that a regulators supply will also be enabled by the
1426  * core if it's child is enabled.
1427  */
1428 static int set_supply(struct regulator_dev *rdev,
1429                       struct regulator_dev *supply_rdev)
1430 {
1431         int err;
1432
1433         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1434
1435         if (!try_module_get(supply_rdev->owner))
1436                 return -ENODEV;
1437
1438         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1439         if (rdev->supply == NULL) {
1440                 err = -ENOMEM;
1441                 return err;
1442         }
1443         supply_rdev->open_count++;
1444
1445         return 0;
1446 }
1447
1448 /**
1449  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1450  * @rdev:         regulator source
1451  * @consumer_dev_name: dev_name() string for device supply applies to
1452  * @supply:       symbolic name for supply
1453  *
1454  * Allows platform initialisation code to map physical regulator
1455  * sources to symbolic names for supplies for use by devices.  Devices
1456  * should use these symbolic names to request regulators, avoiding the
1457  * need to provide board-specific regulator names as platform data.
1458  */
1459 static int set_consumer_device_supply(struct regulator_dev *rdev,
1460                                       const char *consumer_dev_name,
1461                                       const char *supply)
1462 {
1463         struct regulator_map *node;
1464         int has_dev;
1465
1466         if (supply == NULL)
1467                 return -EINVAL;
1468
1469         if (consumer_dev_name != NULL)
1470                 has_dev = 1;
1471         else
1472                 has_dev = 0;
1473
1474         list_for_each_entry(node, &regulator_map_list, list) {
1475                 if (node->dev_name && consumer_dev_name) {
1476                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1477                                 continue;
1478                 } else if (node->dev_name || consumer_dev_name) {
1479                         continue;
1480                 }
1481
1482                 if (strcmp(node->supply, supply) != 0)
1483                         continue;
1484
1485                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1486                          consumer_dev_name,
1487                          dev_name(&node->regulator->dev),
1488                          node->regulator->desc->name,
1489                          supply,
1490                          dev_name(&rdev->dev), rdev_get_name(rdev));
1491                 return -EBUSY;
1492         }
1493
1494         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1495         if (node == NULL)
1496                 return -ENOMEM;
1497
1498         node->regulator = rdev;
1499         node->supply = supply;
1500
1501         if (has_dev) {
1502                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1503                 if (node->dev_name == NULL) {
1504                         kfree(node);
1505                         return -ENOMEM;
1506                 }
1507         }
1508
1509         list_add(&node->list, &regulator_map_list);
1510         return 0;
1511 }
1512
1513 static void unset_regulator_supplies(struct regulator_dev *rdev)
1514 {
1515         struct regulator_map *node, *n;
1516
1517         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1518                 if (rdev == node->regulator) {
1519                         list_del(&node->list);
1520                         kfree(node->dev_name);
1521                         kfree(node);
1522                 }
1523         }
1524 }
1525
1526 #ifdef CONFIG_DEBUG_FS
1527 static ssize_t constraint_flags_read_file(struct file *file,
1528                                           char __user *user_buf,
1529                                           size_t count, loff_t *ppos)
1530 {
1531         const struct regulator *regulator = file->private_data;
1532         const struct regulation_constraints *c = regulator->rdev->constraints;
1533         char *buf;
1534         ssize_t ret;
1535
1536         if (!c)
1537                 return 0;
1538
1539         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1540         if (!buf)
1541                 return -ENOMEM;
1542
1543         ret = snprintf(buf, PAGE_SIZE,
1544                         "always_on: %u\n"
1545                         "boot_on: %u\n"
1546                         "apply_uV: %u\n"
1547                         "ramp_disable: %u\n"
1548                         "soft_start: %u\n"
1549                         "pull_down: %u\n"
1550                         "over_current_protection: %u\n",
1551                         c->always_on,
1552                         c->boot_on,
1553                         c->apply_uV,
1554                         c->ramp_disable,
1555                         c->soft_start,
1556                         c->pull_down,
1557                         c->over_current_protection);
1558
1559         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1560         kfree(buf);
1561
1562         return ret;
1563 }
1564
1565 #endif
1566
1567 static const struct file_operations constraint_flags_fops = {
1568 #ifdef CONFIG_DEBUG_FS
1569         .open = simple_open,
1570         .read = constraint_flags_read_file,
1571         .llseek = default_llseek,
1572 #endif
1573 };
1574
1575 #define REG_STR_SIZE    64
1576
1577 static struct regulator *create_regulator(struct regulator_dev *rdev,
1578                                           struct device *dev,
1579                                           const char *supply_name)
1580 {
1581         struct regulator *regulator;
1582         char buf[REG_STR_SIZE];
1583         int err, size;
1584
1585         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1586         if (regulator == NULL)
1587                 return NULL;
1588
1589         regulator_lock(rdev);
1590         regulator->rdev = rdev;
1591         list_add(&regulator->list, &rdev->consumer_list);
1592
1593         if (dev) {
1594                 regulator->dev = dev;
1595
1596                 /* Add a link to the device sysfs entry */
1597                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1598                                 dev->kobj.name, supply_name);
1599                 if (size >= REG_STR_SIZE)
1600                         goto overflow_err;
1601
1602                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1603                 if (regulator->supply_name == NULL)
1604                         goto overflow_err;
1605
1606                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1607                                         buf);
1608                 if (err) {
1609                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1610                                   dev->kobj.name, err);
1611                         /* non-fatal */
1612                 }
1613         } else {
1614                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1615                 if (regulator->supply_name == NULL)
1616                         goto overflow_err;
1617         }
1618
1619         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1620                                                 rdev->debugfs);
1621         if (!regulator->debugfs) {
1622                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1623         } else {
1624                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1625                                    &regulator->uA_load);
1626                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1627                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1628                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1629                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1630                 debugfs_create_file("constraint_flags", 0444,
1631                                     regulator->debugfs, regulator,
1632                                     &constraint_flags_fops);
1633         }
1634
1635         /*
1636          * Check now if the regulator is an always on regulator - if
1637          * it is then we don't need to do nearly so much work for
1638          * enable/disable calls.
1639          */
1640         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1641             _regulator_is_enabled(rdev))
1642                 regulator->always_on = true;
1643
1644         regulator_unlock(rdev);
1645         return regulator;
1646 overflow_err:
1647         list_del(&regulator->list);
1648         kfree(regulator);
1649         regulator_unlock(rdev);
1650         return NULL;
1651 }
1652
1653 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1654 {
1655         if (rdev->constraints && rdev->constraints->enable_time)
1656                 return rdev->constraints->enable_time;
1657         if (rdev->desc->ops->enable_time)
1658                 return rdev->desc->ops->enable_time(rdev);
1659         return rdev->desc->enable_time;
1660 }
1661
1662 static struct regulator_supply_alias *regulator_find_supply_alias(
1663                 struct device *dev, const char *supply)
1664 {
1665         struct regulator_supply_alias *map;
1666
1667         list_for_each_entry(map, &regulator_supply_alias_list, list)
1668                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1669                         return map;
1670
1671         return NULL;
1672 }
1673
1674 static void regulator_supply_alias(struct device **dev, const char **supply)
1675 {
1676         struct regulator_supply_alias *map;
1677
1678         map = regulator_find_supply_alias(*dev, *supply);
1679         if (map) {
1680                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1681                                 *supply, map->alias_supply,
1682                                 dev_name(map->alias_dev));
1683                 *dev = map->alias_dev;
1684                 *supply = map->alias_supply;
1685         }
1686 }
1687
1688 static int regulator_match(struct device *dev, const void *data)
1689 {
1690         struct regulator_dev *r = dev_to_rdev(dev);
1691
1692         return strcmp(rdev_get_name(r), data) == 0;
1693 }
1694
1695 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1696 {
1697         struct device *dev;
1698
1699         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1700
1701         return dev ? dev_to_rdev(dev) : NULL;
1702 }
1703
1704 /**
1705  * regulator_dev_lookup - lookup a regulator device.
1706  * @dev: device for regulator "consumer".
1707  * @supply: Supply name or regulator ID.
1708  *
1709  * If successful, returns a struct regulator_dev that corresponds to the name
1710  * @supply and with the embedded struct device refcount incremented by one.
1711  * The refcount must be dropped by calling put_device().
1712  * On failure one of the following ERR-PTR-encoded values is returned:
1713  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1714  * in the future.
1715  */
1716 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1717                                                   const char *supply)
1718 {
1719         struct regulator_dev *r = NULL;
1720         struct device_node *node;
1721         struct regulator_map *map;
1722         const char *devname = NULL;
1723
1724         regulator_supply_alias(&dev, &supply);
1725
1726         /* first do a dt based lookup */
1727         if (dev && dev->of_node) {
1728                 node = of_get_regulator(dev, supply);
1729                 if (node) {
1730                         r = of_find_regulator_by_node(node);
1731                         if (r)
1732                                 return r;
1733
1734                         /*
1735                          * We have a node, but there is no device.
1736                          * assume it has not registered yet.
1737                          */
1738                         return ERR_PTR(-EPROBE_DEFER);
1739                 }
1740         }
1741
1742         /* if not found, try doing it non-dt way */
1743         if (dev)
1744                 devname = dev_name(dev);
1745
1746         mutex_lock(&regulator_list_mutex);
1747         list_for_each_entry(map, &regulator_map_list, list) {
1748                 /* If the mapping has a device set up it must match */
1749                 if (map->dev_name &&
1750                     (!devname || strcmp(map->dev_name, devname)))
1751                         continue;
1752
1753                 if (strcmp(map->supply, supply) == 0 &&
1754                     get_device(&map->regulator->dev)) {
1755                         r = map->regulator;
1756                         break;
1757                 }
1758         }
1759         mutex_unlock(&regulator_list_mutex);
1760
1761         if (r)
1762                 return r;
1763
1764         r = regulator_lookup_by_name(supply);
1765         if (r)
1766                 return r;
1767
1768         return ERR_PTR(-ENODEV);
1769 }
1770
1771 static int regulator_resolve_supply(struct regulator_dev *rdev)
1772 {
1773         struct regulator_dev *r;
1774         struct device *dev = rdev->dev.parent;
1775         int ret;
1776
1777         /* No supply to resolve? */
1778         if (!rdev->supply_name)
1779                 return 0;
1780
1781         /* Supply already resolved? */
1782         if (rdev->supply)
1783                 return 0;
1784
1785         r = regulator_dev_lookup(dev, rdev->supply_name);
1786         if (IS_ERR(r)) {
1787                 ret = PTR_ERR(r);
1788
1789                 /* Did the lookup explicitly defer for us? */
1790                 if (ret == -EPROBE_DEFER)
1791                         return ret;
1792
1793                 if (have_full_constraints()) {
1794                         r = dummy_regulator_rdev;
1795                         get_device(&r->dev);
1796                 } else {
1797                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1798                                 rdev->supply_name, rdev->desc->name);
1799                         return -EPROBE_DEFER;
1800                 }
1801         }
1802
1803         /*
1804          * If the supply's parent device is not the same as the
1805          * regulator's parent device, then ensure the parent device
1806          * is bound before we resolve the supply, in case the parent
1807          * device get probe deferred and unregisters the supply.
1808          */
1809         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1810                 if (!device_is_bound(r->dev.parent)) {
1811                         put_device(&r->dev);
1812                         return -EPROBE_DEFER;
1813                 }
1814         }
1815
1816         /* Recursively resolve the supply of the supply */
1817         ret = regulator_resolve_supply(r);
1818         if (ret < 0) {
1819                 put_device(&r->dev);
1820                 return ret;
1821         }
1822
1823         ret = set_supply(rdev, r);
1824         if (ret < 0) {
1825                 put_device(&r->dev);
1826                 return ret;
1827         }
1828
1829         /*
1830          * In set_machine_constraints() we may have turned this regulator on
1831          * but we couldn't propagate to the supply if it hadn't been resolved
1832          * yet.  Do it now.
1833          */
1834         if (rdev->use_count) {
1835                 ret = regulator_enable(rdev->supply);
1836                 if (ret < 0) {
1837                         _regulator_put(rdev->supply);
1838                         rdev->supply = NULL;
1839                         return ret;
1840                 }
1841         }
1842
1843         return 0;
1844 }
1845
1846 /* Internal regulator request function */
1847 struct regulator *_regulator_get(struct device *dev, const char *id,
1848                                  enum regulator_get_type get_type)
1849 {
1850         struct regulator_dev *rdev;
1851         struct regulator *regulator;
1852         struct device_link *link;
1853         int ret;
1854
1855         if (get_type >= MAX_GET_TYPE) {
1856                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1857                 return ERR_PTR(-EINVAL);
1858         }
1859
1860         if (id == NULL) {
1861                 pr_err("get() with no identifier\n");
1862                 return ERR_PTR(-EINVAL);
1863         }
1864
1865         rdev = regulator_dev_lookup(dev, id);
1866         if (IS_ERR(rdev)) {
1867                 ret = PTR_ERR(rdev);
1868
1869                 /*
1870                  * If regulator_dev_lookup() fails with error other
1871                  * than -ENODEV our job here is done, we simply return it.
1872                  */
1873                 if (ret != -ENODEV)
1874                         return ERR_PTR(ret);
1875
1876                 if (!have_full_constraints()) {
1877                         dev_warn(dev,
1878                                  "incomplete constraints, dummy supplies not allowed\n");
1879                         return ERR_PTR(-ENODEV);
1880                 }
1881
1882                 switch (get_type) {
1883                 case NORMAL_GET:
1884                         /*
1885                          * Assume that a regulator is physically present and
1886                          * enabled, even if it isn't hooked up, and just
1887                          * provide a dummy.
1888                          */
1889                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1890                         rdev = dummy_regulator_rdev;
1891                         get_device(&rdev->dev);
1892                         break;
1893
1894                 case EXCLUSIVE_GET:
1895                         dev_warn(dev,
1896                                  "dummy supplies not allowed for exclusive requests\n");
1897                         /* fall through */
1898
1899                 default:
1900                         return ERR_PTR(-ENODEV);
1901                 }
1902         }
1903
1904         if (rdev->exclusive) {
1905                 regulator = ERR_PTR(-EPERM);
1906                 put_device(&rdev->dev);
1907                 return regulator;
1908         }
1909
1910         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1911                 regulator = ERR_PTR(-EBUSY);
1912                 put_device(&rdev->dev);
1913                 return regulator;
1914         }
1915
1916         mutex_lock(&regulator_list_mutex);
1917         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1918         mutex_unlock(&regulator_list_mutex);
1919
1920         if (ret != 0) {
1921                 regulator = ERR_PTR(-EPROBE_DEFER);
1922                 put_device(&rdev->dev);
1923                 return regulator;
1924         }
1925
1926         ret = regulator_resolve_supply(rdev);
1927         if (ret < 0) {
1928                 regulator = ERR_PTR(ret);
1929                 put_device(&rdev->dev);
1930                 return regulator;
1931         }
1932
1933         if (!try_module_get(rdev->owner)) {
1934                 regulator = ERR_PTR(-EPROBE_DEFER);
1935                 put_device(&rdev->dev);
1936                 return regulator;
1937         }
1938
1939         regulator = create_regulator(rdev, dev, id);
1940         if (regulator == NULL) {
1941                 regulator = ERR_PTR(-ENOMEM);
1942                 module_put(rdev->owner);
1943                 put_device(&rdev->dev);
1944                 return regulator;
1945         }
1946
1947         rdev->open_count++;
1948         if (get_type == EXCLUSIVE_GET) {
1949                 rdev->exclusive = 1;
1950
1951                 ret = _regulator_is_enabled(rdev);
1952                 if (ret > 0)
1953                         rdev->use_count = 1;
1954                 else
1955                         rdev->use_count = 0;
1956         }
1957
1958         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1959         if (!IS_ERR_OR_NULL(link))
1960                 regulator->device_link = true;
1961
1962         return regulator;
1963 }
1964
1965 /**
1966  * regulator_get - lookup and obtain a reference to a regulator.
1967  * @dev: device for regulator "consumer"
1968  * @id: Supply name or regulator ID.
1969  *
1970  * Returns a struct regulator corresponding to the regulator producer,
1971  * or IS_ERR() condition containing errno.
1972  *
1973  * Use of supply names configured via regulator_set_device_supply() is
1974  * strongly encouraged.  It is recommended that the supply name used
1975  * should match the name used for the supply and/or the relevant
1976  * device pins in the datasheet.
1977  */
1978 struct regulator *regulator_get(struct device *dev, const char *id)
1979 {
1980         return _regulator_get(dev, id, NORMAL_GET);
1981 }
1982 EXPORT_SYMBOL_GPL(regulator_get);
1983
1984 /**
1985  * regulator_get_exclusive - obtain exclusive access to a regulator.
1986  * @dev: device for regulator "consumer"
1987  * @id: Supply name or regulator ID.
1988  *
1989  * Returns a struct regulator corresponding to the regulator producer,
1990  * or IS_ERR() condition containing errno.  Other consumers will be
1991  * unable to obtain this regulator while this reference is held and the
1992  * use count for the regulator will be initialised to reflect the current
1993  * state of the regulator.
1994  *
1995  * This is intended for use by consumers which cannot tolerate shared
1996  * use of the regulator such as those which need to force the
1997  * regulator off for correct operation of the hardware they are
1998  * controlling.
1999  *
2000  * Use of supply names configured via regulator_set_device_supply() is
2001  * strongly encouraged.  It is recommended that the supply name used
2002  * should match the name used for the supply and/or the relevant
2003  * device pins in the datasheet.
2004  */
2005 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2006 {
2007         return _regulator_get(dev, id, EXCLUSIVE_GET);
2008 }
2009 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2010
2011 /**
2012  * regulator_get_optional - obtain optional access to a regulator.
2013  * @dev: device for regulator "consumer"
2014  * @id: Supply name or regulator ID.
2015  *
2016  * Returns a struct regulator corresponding to the regulator producer,
2017  * or IS_ERR() condition containing errno.
2018  *
2019  * This is intended for use by consumers for devices which can have
2020  * some supplies unconnected in normal use, such as some MMC devices.
2021  * It can allow the regulator core to provide stub supplies for other
2022  * supplies requested using normal regulator_get() calls without
2023  * disrupting the operation of drivers that can handle absent
2024  * supplies.
2025  *
2026  * Use of supply names configured via regulator_set_device_supply() is
2027  * strongly encouraged.  It is recommended that the supply name used
2028  * should match the name used for the supply and/or the relevant
2029  * device pins in the datasheet.
2030  */
2031 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2032 {
2033         return _regulator_get(dev, id, OPTIONAL_GET);
2034 }
2035 EXPORT_SYMBOL_GPL(regulator_get_optional);
2036
2037 /* regulator_list_mutex lock held by regulator_put() */
2038 static void _regulator_put(struct regulator *regulator)
2039 {
2040         struct regulator_dev *rdev;
2041
2042         if (IS_ERR_OR_NULL(regulator))
2043                 return;
2044
2045         lockdep_assert_held_once(&regulator_list_mutex);
2046
2047         /* Docs say you must disable before calling regulator_put() */
2048         WARN_ON(regulator->enable_count);
2049
2050         rdev = regulator->rdev;
2051
2052         debugfs_remove_recursive(regulator->debugfs);
2053
2054         if (regulator->dev) {
2055                 if (regulator->device_link)
2056                         device_link_remove(regulator->dev, &rdev->dev);
2057
2058                 /* remove any sysfs entries */
2059                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2060         }
2061
2062         regulator_lock(rdev);
2063         list_del(&regulator->list);
2064
2065         rdev->open_count--;
2066         rdev->exclusive = 0;
2067         regulator_unlock(rdev);
2068
2069         kfree_const(regulator->supply_name);
2070         kfree(regulator);
2071
2072         module_put(rdev->owner);
2073         put_device(&rdev->dev);
2074 }
2075
2076 /**
2077  * regulator_put - "free" the regulator source
2078  * @regulator: regulator source
2079  *
2080  * Note: drivers must ensure that all regulator_enable calls made on this
2081  * regulator source are balanced by regulator_disable calls prior to calling
2082  * this function.
2083  */
2084 void regulator_put(struct regulator *regulator)
2085 {
2086         mutex_lock(&regulator_list_mutex);
2087         _regulator_put(regulator);
2088         mutex_unlock(&regulator_list_mutex);
2089 }
2090 EXPORT_SYMBOL_GPL(regulator_put);
2091
2092 /**
2093  * regulator_register_supply_alias - Provide device alias for supply lookup
2094  *
2095  * @dev: device that will be given as the regulator "consumer"
2096  * @id: Supply name or regulator ID
2097  * @alias_dev: device that should be used to lookup the supply
2098  * @alias_id: Supply name or regulator ID that should be used to lookup the
2099  * supply
2100  *
2101  * All lookups for id on dev will instead be conducted for alias_id on
2102  * alias_dev.
2103  */
2104 int regulator_register_supply_alias(struct device *dev, const char *id,
2105                                     struct device *alias_dev,
2106                                     const char *alias_id)
2107 {
2108         struct regulator_supply_alias *map;
2109
2110         map = regulator_find_supply_alias(dev, id);
2111         if (map)
2112                 return -EEXIST;
2113
2114         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2115         if (!map)
2116                 return -ENOMEM;
2117
2118         map->src_dev = dev;
2119         map->src_supply = id;
2120         map->alias_dev = alias_dev;
2121         map->alias_supply = alias_id;
2122
2123         list_add(&map->list, &regulator_supply_alias_list);
2124
2125         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2126                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2127
2128         return 0;
2129 }
2130 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2131
2132 /**
2133  * regulator_unregister_supply_alias - Remove device alias
2134  *
2135  * @dev: device that will be given as the regulator "consumer"
2136  * @id: Supply name or regulator ID
2137  *
2138  * Remove a lookup alias if one exists for id on dev.
2139  */
2140 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2141 {
2142         struct regulator_supply_alias *map;
2143
2144         map = regulator_find_supply_alias(dev, id);
2145         if (map) {
2146                 list_del(&map->list);
2147                 kfree(map);
2148         }
2149 }
2150 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2151
2152 /**
2153  * regulator_bulk_register_supply_alias - register multiple aliases
2154  *
2155  * @dev: device that will be given as the regulator "consumer"
2156  * @id: List of supply names or regulator IDs
2157  * @alias_dev: device that should be used to lookup the supply
2158  * @alias_id: List of supply names or regulator IDs that should be used to
2159  * lookup the supply
2160  * @num_id: Number of aliases to register
2161  *
2162  * @return 0 on success, an errno on failure.
2163  *
2164  * This helper function allows drivers to register several supply
2165  * aliases in one operation.  If any of the aliases cannot be
2166  * registered any aliases that were registered will be removed
2167  * before returning to the caller.
2168  */
2169 int regulator_bulk_register_supply_alias(struct device *dev,
2170                                          const char *const *id,
2171                                          struct device *alias_dev,
2172                                          const char *const *alias_id,
2173                                          int num_id)
2174 {
2175         int i;
2176         int ret;
2177
2178         for (i = 0; i < num_id; ++i) {
2179                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2180                                                       alias_id[i]);
2181                 if (ret < 0)
2182                         goto err;
2183         }
2184
2185         return 0;
2186
2187 err:
2188         dev_err(dev,
2189                 "Failed to create supply alias %s,%s -> %s,%s\n",
2190                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2191
2192         while (--i >= 0)
2193                 regulator_unregister_supply_alias(dev, id[i]);
2194
2195         return ret;
2196 }
2197 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2198
2199 /**
2200  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2201  *
2202  * @dev: device that will be given as the regulator "consumer"
2203  * @id: List of supply names or regulator IDs
2204  * @num_id: Number of aliases to unregister
2205  *
2206  * This helper function allows drivers to unregister several supply
2207  * aliases in one operation.
2208  */
2209 void regulator_bulk_unregister_supply_alias(struct device *dev,
2210                                             const char *const *id,
2211                                             int num_id)
2212 {
2213         int i;
2214
2215         for (i = 0; i < num_id; ++i)
2216                 regulator_unregister_supply_alias(dev, id[i]);
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2219
2220
2221 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2222 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2223                                 const struct regulator_config *config)
2224 {
2225         struct regulator_enable_gpio *pin;
2226         struct gpio_desc *gpiod;
2227
2228         gpiod = config->ena_gpiod;
2229
2230         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2231                 if (pin->gpiod == gpiod) {
2232                         rdev_dbg(rdev, "GPIO is already used\n");
2233                         goto update_ena_gpio_to_rdev;
2234                 }
2235         }
2236
2237         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2238         if (pin == NULL)
2239                 return -ENOMEM;
2240
2241         pin->gpiod = gpiod;
2242         list_add(&pin->list, &regulator_ena_gpio_list);
2243
2244 update_ena_gpio_to_rdev:
2245         pin->request_count++;
2246         rdev->ena_pin = pin;
2247         return 0;
2248 }
2249
2250 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2251 {
2252         struct regulator_enable_gpio *pin, *n;
2253
2254         if (!rdev->ena_pin)
2255                 return;
2256
2257         /* Free the GPIO only in case of no use */
2258         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2259                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2260                         if (pin->request_count <= 1) {
2261                                 pin->request_count = 0;
2262                                 gpiod_put(pin->gpiod);
2263                                 list_del(&pin->list);
2264                                 kfree(pin);
2265                                 rdev->ena_pin = NULL;
2266                                 return;
2267                         } else {
2268                                 pin->request_count--;
2269                         }
2270                 }
2271         }
2272 }
2273
2274 /**
2275  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2276  * @rdev: regulator_dev structure
2277  * @enable: enable GPIO at initial use?
2278  *
2279  * GPIO is enabled in case of initial use. (enable_count is 0)
2280  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2281  */
2282 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2283 {
2284         struct regulator_enable_gpio *pin = rdev->ena_pin;
2285
2286         if (!pin)
2287                 return -EINVAL;
2288
2289         if (enable) {
2290                 /* Enable GPIO at initial use */
2291                 if (pin->enable_count == 0)
2292                         gpiod_set_value_cansleep(pin->gpiod, 1);
2293
2294                 pin->enable_count++;
2295         } else {
2296                 if (pin->enable_count > 1) {
2297                         pin->enable_count--;
2298                         return 0;
2299                 }
2300
2301                 /* Disable GPIO if not used */
2302                 if (pin->enable_count <= 1) {
2303                         gpiod_set_value_cansleep(pin->gpiod, 0);
2304                         pin->enable_count = 0;
2305                 }
2306         }
2307
2308         return 0;
2309 }
2310
2311 /**
2312  * _regulator_enable_delay - a delay helper function
2313  * @delay: time to delay in microseconds
2314  *
2315  * Delay for the requested amount of time as per the guidelines in:
2316  *
2317  *     Documentation/timers/timers-howto.rst
2318  *
2319  * The assumption here is that regulators will never be enabled in
2320  * atomic context and therefore sleeping functions can be used.
2321  */
2322 static void _regulator_enable_delay(unsigned int delay)
2323 {
2324         unsigned int ms = delay / 1000;
2325         unsigned int us = delay % 1000;
2326
2327         if (ms > 0) {
2328                 /*
2329                  * For small enough values, handle super-millisecond
2330                  * delays in the usleep_range() call below.
2331                  */
2332                 if (ms < 20)
2333                         us += ms * 1000;
2334                 else
2335                         msleep(ms);
2336         }
2337
2338         /*
2339          * Give the scheduler some room to coalesce with any other
2340          * wakeup sources. For delays shorter than 10 us, don't even
2341          * bother setting up high-resolution timers and just busy-
2342          * loop.
2343          */
2344         if (us >= 10)
2345                 usleep_range(us, us + 100);
2346         else
2347                 udelay(us);
2348 }
2349
2350 static int _regulator_do_enable(struct regulator_dev *rdev)
2351 {
2352         int ret, delay;
2353
2354         /* Query before enabling in case configuration dependent.  */
2355         ret = _regulator_get_enable_time(rdev);
2356         if (ret >= 0) {
2357                 delay = ret;
2358         } else {
2359                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2360                 delay = 0;
2361         }
2362
2363         trace_regulator_enable(rdev_get_name(rdev));
2364
2365         if (rdev->desc->off_on_delay) {
2366                 /* if needed, keep a distance of off_on_delay from last time
2367                  * this regulator was disabled.
2368                  */
2369                 unsigned long start_jiffy = jiffies;
2370                 unsigned long intended, max_delay, remaining;
2371
2372                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2373                 intended = rdev->last_off_jiffy + max_delay;
2374
2375                 if (time_before(start_jiffy, intended)) {
2376                         /* calc remaining jiffies to deal with one-time
2377                          * timer wrapping.
2378                          * in case of multiple timer wrapping, either it can be
2379                          * detected by out-of-range remaining, or it cannot be
2380                          * detected and we get a penalty of
2381                          * _regulator_enable_delay().
2382                          */
2383                         remaining = intended - start_jiffy;
2384                         if (remaining <= max_delay)
2385                                 _regulator_enable_delay(
2386                                                 jiffies_to_usecs(remaining));
2387                 }
2388         }
2389
2390         if (rdev->ena_pin) {
2391                 if (!rdev->ena_gpio_state) {
2392                         ret = regulator_ena_gpio_ctrl(rdev, true);
2393                         if (ret < 0)
2394                                 return ret;
2395                         rdev->ena_gpio_state = 1;
2396                 }
2397         } else if (rdev->desc->ops->enable) {
2398                 ret = rdev->desc->ops->enable(rdev);
2399                 if (ret < 0)
2400                         return ret;
2401         } else {
2402                 return -EINVAL;
2403         }
2404
2405         /* Allow the regulator to ramp; it would be useful to extend
2406          * this for bulk operations so that the regulators can ramp
2407          * together.  */
2408         trace_regulator_enable_delay(rdev_get_name(rdev));
2409
2410         _regulator_enable_delay(delay);
2411
2412         trace_regulator_enable_complete(rdev_get_name(rdev));
2413
2414         return 0;
2415 }
2416
2417 /**
2418  * _regulator_handle_consumer_enable - handle that a consumer enabled
2419  * @regulator: regulator source
2420  *
2421  * Some things on a regulator consumer (like the contribution towards total
2422  * load on the regulator) only have an effect when the consumer wants the
2423  * regulator enabled.  Explained in example with two consumers of the same
2424  * regulator:
2425  *   consumer A: set_load(100);       => total load = 0
2426  *   consumer A: regulator_enable();  => total load = 100
2427  *   consumer B: set_load(1000);      => total load = 100
2428  *   consumer B: regulator_enable();  => total load = 1100
2429  *   consumer A: regulator_disable(); => total_load = 1000
2430  *
2431  * This function (together with _regulator_handle_consumer_disable) is
2432  * responsible for keeping track of the refcount for a given regulator consumer
2433  * and applying / unapplying these things.
2434  *
2435  * Returns 0 upon no error; -error upon error.
2436  */
2437 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2438 {
2439         struct regulator_dev *rdev = regulator->rdev;
2440
2441         lockdep_assert_held_once(&rdev->mutex.base);
2442
2443         regulator->enable_count++;
2444         if (regulator->uA_load && regulator->enable_count == 1)
2445                 return drms_uA_update(rdev);
2446
2447         return 0;
2448 }
2449
2450 /**
2451  * _regulator_handle_consumer_disable - handle that a consumer disabled
2452  * @regulator: regulator source
2453  *
2454  * The opposite of _regulator_handle_consumer_enable().
2455  *
2456  * Returns 0 upon no error; -error upon error.
2457  */
2458 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2459 {
2460         struct regulator_dev *rdev = regulator->rdev;
2461
2462         lockdep_assert_held_once(&rdev->mutex.base);
2463
2464         if (!regulator->enable_count) {
2465                 rdev_err(rdev, "Underflow of regulator enable count\n");
2466                 return -EINVAL;
2467         }
2468
2469         regulator->enable_count--;
2470         if (regulator->uA_load && regulator->enable_count == 0)
2471                 return drms_uA_update(rdev);
2472
2473         return 0;
2474 }
2475
2476 /* locks held by regulator_enable() */
2477 static int _regulator_enable(struct regulator *regulator)
2478 {
2479         struct regulator_dev *rdev = regulator->rdev;
2480         int ret;
2481
2482         lockdep_assert_held_once(&rdev->mutex.base);
2483
2484         if (rdev->use_count == 0 && rdev->supply) {
2485                 ret = _regulator_enable(rdev->supply);
2486                 if (ret < 0)
2487                         return ret;
2488         }
2489
2490         /* balance only if there are regulators coupled */
2491         if (rdev->coupling_desc.n_coupled > 1) {
2492                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2493                 if (ret < 0)
2494                         goto err_disable_supply;
2495         }
2496
2497         ret = _regulator_handle_consumer_enable(regulator);
2498         if (ret < 0)
2499                 goto err_disable_supply;
2500
2501         if (rdev->use_count == 0) {
2502                 /* The regulator may on if it's not switchable or left on */
2503                 ret = _regulator_is_enabled(rdev);
2504                 if (ret == -EINVAL || ret == 0) {
2505                         if (!regulator_ops_is_valid(rdev,
2506                                         REGULATOR_CHANGE_STATUS)) {
2507                                 ret = -EPERM;
2508                                 goto err_consumer_disable;
2509                         }
2510
2511                         ret = _regulator_do_enable(rdev);
2512                         if (ret < 0)
2513                                 goto err_consumer_disable;
2514
2515                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2516                                              NULL);
2517                 } else if (ret < 0) {
2518                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2519                         goto err_consumer_disable;
2520                 }
2521                 /* Fallthrough on positive return values - already enabled */
2522         }
2523
2524         rdev->use_count++;
2525
2526         return 0;
2527
2528 err_consumer_disable:
2529         _regulator_handle_consumer_disable(regulator);
2530
2531 err_disable_supply:
2532         if (rdev->use_count == 0 && rdev->supply)
2533                 _regulator_disable(rdev->supply);
2534
2535         return ret;
2536 }
2537
2538 /**
2539  * regulator_enable - enable regulator output
2540  * @regulator: regulator source
2541  *
2542  * Request that the regulator be enabled with the regulator output at
2543  * the predefined voltage or current value.  Calls to regulator_enable()
2544  * must be balanced with calls to regulator_disable().
2545  *
2546  * NOTE: the output value can be set by other drivers, boot loader or may be
2547  * hardwired in the regulator.
2548  */
2549 int regulator_enable(struct regulator *regulator)
2550 {
2551         struct regulator_dev *rdev = regulator->rdev;
2552         struct ww_acquire_ctx ww_ctx;
2553         int ret;
2554
2555         regulator_lock_dependent(rdev, &ww_ctx);
2556         ret = _regulator_enable(regulator);
2557         regulator_unlock_dependent(rdev, &ww_ctx);
2558
2559         return ret;
2560 }
2561 EXPORT_SYMBOL_GPL(regulator_enable);
2562
2563 static int _regulator_do_disable(struct regulator_dev *rdev)
2564 {
2565         int ret;
2566
2567         trace_regulator_disable(rdev_get_name(rdev));
2568
2569         if (rdev->ena_pin) {
2570                 if (rdev->ena_gpio_state) {
2571                         ret = regulator_ena_gpio_ctrl(rdev, false);
2572                         if (ret < 0)
2573                                 return ret;
2574                         rdev->ena_gpio_state = 0;
2575                 }
2576
2577         } else if (rdev->desc->ops->disable) {
2578                 ret = rdev->desc->ops->disable(rdev);
2579                 if (ret != 0)
2580                         return ret;
2581         }
2582
2583         /* cares about last_off_jiffy only if off_on_delay is required by
2584          * device.
2585          */
2586         if (rdev->desc->off_on_delay)
2587                 rdev->last_off_jiffy = jiffies;
2588
2589         trace_regulator_disable_complete(rdev_get_name(rdev));
2590
2591         return 0;
2592 }
2593
2594 /* locks held by regulator_disable() */
2595 static int _regulator_disable(struct regulator *regulator)
2596 {
2597         struct regulator_dev *rdev = regulator->rdev;
2598         int ret = 0;
2599
2600         lockdep_assert_held_once(&rdev->mutex.base);
2601
2602         if (WARN(rdev->use_count <= 0,
2603                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2604                 return -EIO;
2605
2606         /* are we the last user and permitted to disable ? */
2607         if (rdev->use_count == 1 &&
2608             (rdev->constraints && !rdev->constraints->always_on)) {
2609
2610                 /* we are last user */
2611                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2612                         ret = _notifier_call_chain(rdev,
2613                                                    REGULATOR_EVENT_PRE_DISABLE,
2614                                                    NULL);
2615                         if (ret & NOTIFY_STOP_MASK)
2616                                 return -EINVAL;
2617
2618                         ret = _regulator_do_disable(rdev);
2619                         if (ret < 0) {
2620                                 rdev_err(rdev, "failed to disable\n");
2621                                 _notifier_call_chain(rdev,
2622                                                 REGULATOR_EVENT_ABORT_DISABLE,
2623                                                 NULL);
2624                                 return ret;
2625                         }
2626                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2627                                         NULL);
2628                 }
2629
2630                 rdev->use_count = 0;
2631         } else if (rdev->use_count > 1) {
2632                 rdev->use_count--;
2633         }
2634
2635         if (ret == 0)
2636                 ret = _regulator_handle_consumer_disable(regulator);
2637
2638         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2639                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2640
2641         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2642                 ret = _regulator_disable(rdev->supply);
2643
2644         return ret;
2645 }
2646
2647 /**
2648  * regulator_disable - disable regulator output
2649  * @regulator: regulator source
2650  *
2651  * Disable the regulator output voltage or current.  Calls to
2652  * regulator_enable() must be balanced with calls to
2653  * regulator_disable().
2654  *
2655  * NOTE: this will only disable the regulator output if no other consumer
2656  * devices have it enabled, the regulator device supports disabling and
2657  * machine constraints permit this operation.
2658  */
2659 int regulator_disable(struct regulator *regulator)
2660 {
2661         struct regulator_dev *rdev = regulator->rdev;
2662         struct ww_acquire_ctx ww_ctx;
2663         int ret;
2664
2665         regulator_lock_dependent(rdev, &ww_ctx);
2666         ret = _regulator_disable(regulator);
2667         regulator_unlock_dependent(rdev, &ww_ctx);
2668
2669         return ret;
2670 }
2671 EXPORT_SYMBOL_GPL(regulator_disable);
2672
2673 /* locks held by regulator_force_disable() */
2674 static int _regulator_force_disable(struct regulator_dev *rdev)
2675 {
2676         int ret = 0;
2677
2678         lockdep_assert_held_once(&rdev->mutex.base);
2679
2680         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2681                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2682         if (ret & NOTIFY_STOP_MASK)
2683                 return -EINVAL;
2684
2685         ret = _regulator_do_disable(rdev);
2686         if (ret < 0) {
2687                 rdev_err(rdev, "failed to force disable\n");
2688                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2689                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2690                 return ret;
2691         }
2692
2693         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2694                         REGULATOR_EVENT_DISABLE, NULL);
2695
2696         return 0;
2697 }
2698
2699 /**
2700  * regulator_force_disable - force disable regulator output
2701  * @regulator: regulator source
2702  *
2703  * Forcibly disable the regulator output voltage or current.
2704  * NOTE: this *will* disable the regulator output even if other consumer
2705  * devices have it enabled. This should be used for situations when device
2706  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2707  */
2708 int regulator_force_disable(struct regulator *regulator)
2709 {
2710         struct regulator_dev *rdev = regulator->rdev;
2711         struct ww_acquire_ctx ww_ctx;
2712         int ret;
2713
2714         regulator_lock_dependent(rdev, &ww_ctx);
2715
2716         ret = _regulator_force_disable(regulator->rdev);
2717
2718         if (rdev->coupling_desc.n_coupled > 1)
2719                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2720
2721         if (regulator->uA_load) {
2722                 regulator->uA_load = 0;
2723                 ret = drms_uA_update(rdev);
2724         }
2725
2726         if (rdev->use_count != 0 && rdev->supply)
2727                 _regulator_disable(rdev->supply);
2728
2729         regulator_unlock_dependent(rdev, &ww_ctx);
2730
2731         return ret;
2732 }
2733 EXPORT_SYMBOL_GPL(regulator_force_disable);
2734
2735 static void regulator_disable_work(struct work_struct *work)
2736 {
2737         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2738                                                   disable_work.work);
2739         struct ww_acquire_ctx ww_ctx;
2740         int count, i, ret;
2741         struct regulator *regulator;
2742         int total_count = 0;
2743
2744         regulator_lock_dependent(rdev, &ww_ctx);
2745
2746         /*
2747          * Workqueue functions queue the new work instance while the previous
2748          * work instance is being processed. Cancel the queued work instance
2749          * as the work instance under processing does the job of the queued
2750          * work instance.
2751          */
2752         cancel_delayed_work(&rdev->disable_work);
2753
2754         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2755                 count = regulator->deferred_disables;
2756
2757                 if (!count)
2758                         continue;
2759
2760                 total_count += count;
2761                 regulator->deferred_disables = 0;
2762
2763                 for (i = 0; i < count; i++) {
2764                         ret = _regulator_disable(regulator);
2765                         if (ret != 0)
2766                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2767                 }
2768         }
2769         WARN_ON(!total_count);
2770
2771         if (rdev->coupling_desc.n_coupled > 1)
2772                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2773
2774         regulator_unlock_dependent(rdev, &ww_ctx);
2775 }
2776
2777 /**
2778  * regulator_disable_deferred - disable regulator output with delay
2779  * @regulator: regulator source
2780  * @ms: milliseconds until the regulator is disabled
2781  *
2782  * Execute regulator_disable() on the regulator after a delay.  This
2783  * is intended for use with devices that require some time to quiesce.
2784  *
2785  * NOTE: this will only disable the regulator output if no other consumer
2786  * devices have it enabled, the regulator device supports disabling and
2787  * machine constraints permit this operation.
2788  */
2789 int regulator_disable_deferred(struct regulator *regulator, int ms)
2790 {
2791         struct regulator_dev *rdev = regulator->rdev;
2792
2793         if (!ms)
2794                 return regulator_disable(regulator);
2795
2796         regulator_lock(rdev);
2797         regulator->deferred_disables++;
2798         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2799                          msecs_to_jiffies(ms));
2800         regulator_unlock(rdev);
2801
2802         return 0;
2803 }
2804 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2805
2806 static int _regulator_is_enabled(struct regulator_dev *rdev)
2807 {
2808         /* A GPIO control always takes precedence */
2809         if (rdev->ena_pin)
2810                 return rdev->ena_gpio_state;
2811
2812         /* If we don't know then assume that the regulator is always on */
2813         if (!rdev->desc->ops->is_enabled)
2814                 return 1;
2815
2816         return rdev->desc->ops->is_enabled(rdev);
2817 }
2818
2819 static int _regulator_list_voltage(struct regulator_dev *rdev,
2820                                    unsigned selector, int lock)
2821 {
2822         const struct regulator_ops *ops = rdev->desc->ops;
2823         int ret;
2824
2825         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2826                 return rdev->desc->fixed_uV;
2827
2828         if (ops->list_voltage) {
2829                 if (selector >= rdev->desc->n_voltages)
2830                         return -EINVAL;
2831                 if (lock)
2832                         regulator_lock(rdev);
2833                 ret = ops->list_voltage(rdev, selector);
2834                 if (lock)
2835                         regulator_unlock(rdev);
2836         } else if (rdev->is_switch && rdev->supply) {
2837                 ret = _regulator_list_voltage(rdev->supply->rdev,
2838                                               selector, lock);
2839         } else {
2840                 return -EINVAL;
2841         }
2842
2843         if (ret > 0) {
2844                 if (ret < rdev->constraints->min_uV)
2845                         ret = 0;
2846                 else if (ret > rdev->constraints->max_uV)
2847                         ret = 0;
2848         }
2849
2850         return ret;
2851 }
2852
2853 /**
2854  * regulator_is_enabled - is the regulator output enabled
2855  * @regulator: regulator source
2856  *
2857  * Returns positive if the regulator driver backing the source/client
2858  * has requested that the device be enabled, zero if it hasn't, else a
2859  * negative errno code.
2860  *
2861  * Note that the device backing this regulator handle can have multiple
2862  * users, so it might be enabled even if regulator_enable() was never
2863  * called for this particular source.
2864  */
2865 int regulator_is_enabled(struct regulator *regulator)
2866 {
2867         int ret;
2868
2869         if (regulator->always_on)
2870                 return 1;
2871
2872         regulator_lock(regulator->rdev);
2873         ret = _regulator_is_enabled(regulator->rdev);
2874         regulator_unlock(regulator->rdev);
2875
2876         return ret;
2877 }
2878 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2879
2880 /**
2881  * regulator_count_voltages - count regulator_list_voltage() selectors
2882  * @regulator: regulator source
2883  *
2884  * Returns number of selectors, or negative errno.  Selectors are
2885  * numbered starting at zero, and typically correspond to bitfields
2886  * in hardware registers.
2887  */
2888 int regulator_count_voltages(struct regulator *regulator)
2889 {
2890         struct regulator_dev    *rdev = regulator->rdev;
2891
2892         if (rdev->desc->n_voltages)
2893                 return rdev->desc->n_voltages;
2894
2895         if (!rdev->is_switch || !rdev->supply)
2896                 return -EINVAL;
2897
2898         return regulator_count_voltages(rdev->supply);
2899 }
2900 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2901
2902 /**
2903  * regulator_list_voltage - enumerate supported voltages
2904  * @regulator: regulator source
2905  * @selector: identify voltage to list
2906  * Context: can sleep
2907  *
2908  * Returns a voltage that can be passed to @regulator_set_voltage(),
2909  * zero if this selector code can't be used on this system, or a
2910  * negative errno.
2911  */
2912 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2913 {
2914         return _regulator_list_voltage(regulator->rdev, selector, 1);
2915 }
2916 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2917
2918 /**
2919  * regulator_get_regmap - get the regulator's register map
2920  * @regulator: regulator source
2921  *
2922  * Returns the register map for the given regulator, or an ERR_PTR value
2923  * if the regulator doesn't use regmap.
2924  */
2925 struct regmap *regulator_get_regmap(struct regulator *regulator)
2926 {
2927         struct regmap *map = regulator->rdev->regmap;
2928
2929         return map ? map : ERR_PTR(-EOPNOTSUPP);
2930 }
2931
2932 /**
2933  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2934  * @regulator: regulator source
2935  * @vsel_reg: voltage selector register, output parameter
2936  * @vsel_mask: mask for voltage selector bitfield, output parameter
2937  *
2938  * Returns the hardware register offset and bitmask used for setting the
2939  * regulator voltage. This might be useful when configuring voltage-scaling
2940  * hardware or firmware that can make I2C requests behind the kernel's back,
2941  * for example.
2942  *
2943  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2944  * and 0 is returned, otherwise a negative errno is returned.
2945  */
2946 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2947                                          unsigned *vsel_reg,
2948                                          unsigned *vsel_mask)
2949 {
2950         struct regulator_dev *rdev = regulator->rdev;
2951         const struct regulator_ops *ops = rdev->desc->ops;
2952
2953         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2954                 return -EOPNOTSUPP;
2955
2956         *vsel_reg = rdev->desc->vsel_reg;
2957         *vsel_mask = rdev->desc->vsel_mask;
2958
2959          return 0;
2960 }
2961 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2962
2963 /**
2964  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2965  * @regulator: regulator source
2966  * @selector: identify voltage to list
2967  *
2968  * Converts the selector to a hardware-specific voltage selector that can be
2969  * directly written to the regulator registers. The address of the voltage
2970  * register can be determined by calling @regulator_get_hardware_vsel_register.
2971  *
2972  * On error a negative errno is returned.
2973  */
2974 int regulator_list_hardware_vsel(struct regulator *regulator,
2975                                  unsigned selector)
2976 {
2977         struct regulator_dev *rdev = regulator->rdev;
2978         const struct regulator_ops *ops = rdev->desc->ops;
2979
2980         if (selector >= rdev->desc->n_voltages)
2981                 return -EINVAL;
2982         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2983                 return -EOPNOTSUPP;
2984
2985         return selector;
2986 }
2987 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2988
2989 /**
2990  * regulator_get_linear_step - return the voltage step size between VSEL values
2991  * @regulator: regulator source
2992  *
2993  * Returns the voltage step size between VSEL values for linear
2994  * regulators, or return 0 if the regulator isn't a linear regulator.
2995  */
2996 unsigned int regulator_get_linear_step(struct regulator *regulator)
2997 {
2998         struct regulator_dev *rdev = regulator->rdev;
2999
3000         return rdev->desc->uV_step;
3001 }
3002 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3003
3004 /**
3005  * regulator_is_supported_voltage - check if a voltage range can be supported
3006  *
3007  * @regulator: Regulator to check.
3008  * @min_uV: Minimum required voltage in uV.
3009  * @max_uV: Maximum required voltage in uV.
3010  *
3011  * Returns a boolean.
3012  */
3013 int regulator_is_supported_voltage(struct regulator *regulator,
3014                                    int min_uV, int max_uV)
3015 {
3016         struct regulator_dev *rdev = regulator->rdev;
3017         int i, voltages, ret;
3018
3019         /* If we can't change voltage check the current voltage */
3020         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3021                 ret = regulator_get_voltage(regulator);
3022                 if (ret >= 0)
3023                         return min_uV <= ret && ret <= max_uV;
3024                 else
3025                         return ret;
3026         }
3027
3028         /* Any voltage within constrains range is fine? */
3029         if (rdev->desc->continuous_voltage_range)
3030                 return min_uV >= rdev->constraints->min_uV &&
3031                                 max_uV <= rdev->constraints->max_uV;
3032
3033         ret = regulator_count_voltages(regulator);
3034         if (ret < 0)
3035                 return 0;
3036         voltages = ret;
3037
3038         for (i = 0; i < voltages; i++) {
3039                 ret = regulator_list_voltage(regulator, i);
3040
3041                 if (ret >= min_uV && ret <= max_uV)
3042                         return 1;
3043         }
3044
3045         return 0;
3046 }
3047 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3048
3049 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3050                                  int max_uV)
3051 {
3052         const struct regulator_desc *desc = rdev->desc;
3053
3054         if (desc->ops->map_voltage)
3055                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3056
3057         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3058                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3059
3060         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3061                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3062
3063         if (desc->ops->list_voltage ==
3064                 regulator_list_voltage_pickable_linear_range)
3065                 return regulator_map_voltage_pickable_linear_range(rdev,
3066                                                         min_uV, max_uV);
3067
3068         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3069 }
3070
3071 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3072                                        int min_uV, int max_uV,
3073                                        unsigned *selector)
3074 {
3075         struct pre_voltage_change_data data;
3076         int ret;
3077
3078         data.old_uV = regulator_get_voltage_rdev(rdev);
3079         data.min_uV = min_uV;
3080         data.max_uV = max_uV;
3081         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3082                                    &data);
3083         if (ret & NOTIFY_STOP_MASK)
3084                 return -EINVAL;
3085
3086         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3087         if (ret >= 0)
3088                 return ret;
3089
3090         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3091                              (void *)data.old_uV);
3092
3093         return ret;
3094 }
3095
3096 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3097                                            int uV, unsigned selector)
3098 {
3099         struct pre_voltage_change_data data;
3100         int ret;
3101
3102         data.old_uV = regulator_get_voltage_rdev(rdev);
3103         data.min_uV = uV;
3104         data.max_uV = uV;
3105         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3106                                    &data);
3107         if (ret & NOTIFY_STOP_MASK)
3108                 return -EINVAL;
3109
3110         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3111         if (ret >= 0)
3112                 return ret;
3113
3114         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3115                              (void *)data.old_uV);
3116
3117         return ret;
3118 }
3119
3120 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3121                                            int uV, int new_selector)
3122 {
3123         const struct regulator_ops *ops = rdev->desc->ops;
3124         int diff, old_sel, curr_sel, ret;
3125
3126         /* Stepping is only needed if the regulator is enabled. */
3127         if (!_regulator_is_enabled(rdev))
3128                 goto final_set;
3129
3130         if (!ops->get_voltage_sel)
3131                 return -EINVAL;
3132
3133         old_sel = ops->get_voltage_sel(rdev);
3134         if (old_sel < 0)
3135                 return old_sel;
3136
3137         diff = new_selector - old_sel;
3138         if (diff == 0)
3139                 return 0; /* No change needed. */
3140
3141         if (diff > 0) {
3142                 /* Stepping up. */
3143                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3144                      curr_sel < new_selector;
3145                      curr_sel += rdev->desc->vsel_step) {
3146                         /*
3147                          * Call the callback directly instead of using
3148                          * _regulator_call_set_voltage_sel() as we don't
3149                          * want to notify anyone yet. Same in the branch
3150                          * below.
3151                          */
3152                         ret = ops->set_voltage_sel(rdev, curr_sel);
3153                         if (ret)
3154                                 goto try_revert;
3155                 }
3156         } else {
3157                 /* Stepping down. */
3158                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3159                      curr_sel > new_selector;
3160                      curr_sel -= rdev->desc->vsel_step) {
3161                         ret = ops->set_voltage_sel(rdev, curr_sel);
3162                         if (ret)
3163                                 goto try_revert;
3164                 }
3165         }
3166
3167 final_set:
3168         /* The final selector will trigger the notifiers. */
3169         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3170
3171 try_revert:
3172         /*
3173          * At least try to return to the previous voltage if setting a new
3174          * one failed.
3175          */
3176         (void)ops->set_voltage_sel(rdev, old_sel);
3177         return ret;
3178 }
3179
3180 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3181                                        int old_uV, int new_uV)
3182 {
3183         unsigned int ramp_delay = 0;
3184
3185         if (rdev->constraints->ramp_delay)
3186                 ramp_delay = rdev->constraints->ramp_delay;
3187         else if (rdev->desc->ramp_delay)
3188                 ramp_delay = rdev->desc->ramp_delay;
3189         else if (rdev->constraints->settling_time)
3190                 return rdev->constraints->settling_time;
3191         else if (rdev->constraints->settling_time_up &&
3192                  (new_uV > old_uV))
3193                 return rdev->constraints->settling_time_up;
3194         else if (rdev->constraints->settling_time_down &&
3195                  (new_uV < old_uV))
3196                 return rdev->constraints->settling_time_down;
3197
3198         if (ramp_delay == 0) {
3199                 rdev_dbg(rdev, "ramp_delay not set\n");
3200                 return 0;
3201         }
3202
3203         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3204 }
3205
3206 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3207                                      int min_uV, int max_uV)
3208 {
3209         int ret;
3210         int delay = 0;
3211         int best_val = 0;
3212         unsigned int selector;
3213         int old_selector = -1;
3214         const struct regulator_ops *ops = rdev->desc->ops;
3215         int old_uV = regulator_get_voltage_rdev(rdev);
3216
3217         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3218
3219         min_uV += rdev->constraints->uV_offset;
3220         max_uV += rdev->constraints->uV_offset;
3221
3222         /*
3223          * If we can't obtain the old selector there is not enough
3224          * info to call set_voltage_time_sel().
3225          */
3226         if (_regulator_is_enabled(rdev) &&
3227             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3228                 old_selector = ops->get_voltage_sel(rdev);
3229                 if (old_selector < 0)
3230                         return old_selector;
3231         }
3232
3233         if (ops->set_voltage) {
3234                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3235                                                   &selector);
3236
3237                 if (ret >= 0) {
3238                         if (ops->list_voltage)
3239                                 best_val = ops->list_voltage(rdev,
3240                                                              selector);
3241                         else
3242                                 best_val = regulator_get_voltage_rdev(rdev);
3243                 }
3244
3245         } else if (ops->set_voltage_sel) {
3246                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3247                 if (ret >= 0) {
3248                         best_val = ops->list_voltage(rdev, ret);
3249                         if (min_uV <= best_val && max_uV >= best_val) {
3250                                 selector = ret;
3251                                 if (old_selector == selector)
3252                                         ret = 0;
3253                                 else if (rdev->desc->vsel_step)
3254                                         ret = _regulator_set_voltage_sel_step(
3255                                                 rdev, best_val, selector);
3256                                 else
3257                                         ret = _regulator_call_set_voltage_sel(
3258                                                 rdev, best_val, selector);
3259                         } else {
3260                                 ret = -EINVAL;
3261                         }
3262                 }
3263         } else {
3264                 ret = -EINVAL;
3265         }
3266
3267         if (ret)
3268                 goto out;
3269
3270         if (ops->set_voltage_time_sel) {
3271                 /*
3272                  * Call set_voltage_time_sel if successfully obtained
3273                  * old_selector
3274                  */
3275                 if (old_selector >= 0 && old_selector != selector)
3276                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3277                                                           selector);
3278         } else {
3279                 if (old_uV != best_val) {
3280                         if (ops->set_voltage_time)
3281                                 delay = ops->set_voltage_time(rdev, old_uV,
3282                                                               best_val);
3283                         else
3284                                 delay = _regulator_set_voltage_time(rdev,
3285                                                                     old_uV,
3286                                                                     best_val);
3287                 }
3288         }
3289
3290         if (delay < 0) {
3291                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3292                 delay = 0;
3293         }
3294
3295         /* Insert any necessary delays */
3296         if (delay >= 1000) {
3297                 mdelay(delay / 1000);
3298                 udelay(delay % 1000);
3299         } else if (delay) {
3300                 udelay(delay);
3301         }
3302
3303         if (best_val >= 0) {
3304                 unsigned long data = best_val;
3305
3306                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3307                                      (void *)data);
3308         }
3309
3310 out:
3311         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3312
3313         return ret;
3314 }
3315
3316 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3317                                   int min_uV, int max_uV, suspend_state_t state)
3318 {
3319         struct regulator_state *rstate;
3320         int uV, sel;
3321
3322         rstate = regulator_get_suspend_state(rdev, state);
3323         if (rstate == NULL)
3324                 return -EINVAL;
3325
3326         if (min_uV < rstate->min_uV)
3327                 min_uV = rstate->min_uV;
3328         if (max_uV > rstate->max_uV)
3329                 max_uV = rstate->max_uV;
3330
3331         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3332         if (sel < 0)
3333                 return sel;
3334
3335         uV = rdev->desc->ops->list_voltage(rdev, sel);
3336         if (uV >= min_uV && uV <= max_uV)
3337                 rstate->uV = uV;
3338
3339         return 0;
3340 }
3341
3342 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3343                                           int min_uV, int max_uV,
3344                                           suspend_state_t state)
3345 {
3346         struct regulator_dev *rdev = regulator->rdev;
3347         struct regulator_voltage *voltage = &regulator->voltage[state];
3348         int ret = 0;
3349         int old_min_uV, old_max_uV;
3350         int current_uV;
3351
3352         /* If we're setting the same range as last time the change
3353          * should be a noop (some cpufreq implementations use the same
3354          * voltage for multiple frequencies, for example).
3355          */
3356         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3357                 goto out;
3358
3359         /* If we're trying to set a range that overlaps the current voltage,
3360          * return successfully even though the regulator does not support
3361          * changing the voltage.
3362          */
3363         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3364                 current_uV = regulator_get_voltage_rdev(rdev);
3365                 if (min_uV <= current_uV && current_uV <= max_uV) {
3366                         voltage->min_uV = min_uV;
3367                         voltage->max_uV = max_uV;
3368                         goto out;
3369                 }
3370         }
3371
3372         /* sanity check */
3373         if (!rdev->desc->ops->set_voltage &&
3374             !rdev->desc->ops->set_voltage_sel) {
3375                 ret = -EINVAL;
3376                 goto out;
3377         }
3378
3379         /* constraints check */
3380         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3381         if (ret < 0)
3382                 goto out;
3383
3384         /* restore original values in case of error */
3385         old_min_uV = voltage->min_uV;
3386         old_max_uV = voltage->max_uV;
3387         voltage->min_uV = min_uV;
3388         voltage->max_uV = max_uV;
3389
3390         /* for not coupled regulators this will just set the voltage */
3391         ret = regulator_balance_voltage(rdev, state);
3392         if (ret < 0) {
3393                 voltage->min_uV = old_min_uV;
3394                 voltage->max_uV = old_max_uV;
3395         }
3396
3397 out:
3398         return ret;
3399 }
3400
3401 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3402                                int max_uV, suspend_state_t state)
3403 {
3404         int best_supply_uV = 0;
3405         int supply_change_uV = 0;
3406         int ret;
3407
3408         if (rdev->supply &&
3409             regulator_ops_is_valid(rdev->supply->rdev,
3410                                    REGULATOR_CHANGE_VOLTAGE) &&
3411             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3412                                            rdev->desc->ops->get_voltage_sel))) {
3413                 int current_supply_uV;
3414                 int selector;
3415
3416                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3417                 if (selector < 0) {
3418                         ret = selector;
3419                         goto out;
3420                 }
3421
3422                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3423                 if (best_supply_uV < 0) {
3424                         ret = best_supply_uV;
3425                         goto out;
3426                 }
3427
3428                 best_supply_uV += rdev->desc->min_dropout_uV;
3429
3430                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3431                 if (current_supply_uV < 0) {
3432                         ret = current_supply_uV;
3433                         goto out;
3434                 }
3435
3436                 supply_change_uV = best_supply_uV - current_supply_uV;
3437         }
3438
3439         if (supply_change_uV > 0) {
3440                 ret = regulator_set_voltage_unlocked(rdev->supply,
3441                                 best_supply_uV, INT_MAX, state);
3442                 if (ret) {
3443                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3444                                         ret);
3445                         goto out;
3446                 }
3447         }
3448
3449         if (state == PM_SUSPEND_ON)
3450                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3451         else
3452                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3453                                                         max_uV, state);
3454         if (ret < 0)
3455                 goto out;
3456
3457         if (supply_change_uV < 0) {
3458                 ret = regulator_set_voltage_unlocked(rdev->supply,
3459                                 best_supply_uV, INT_MAX, state);
3460                 if (ret)
3461                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3462                                         ret);
3463                 /* No need to fail here */
3464                 ret = 0;
3465         }
3466
3467 out:
3468         return ret;
3469 }
3470 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3471
3472 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3473                                         int *current_uV, int *min_uV)
3474 {
3475         struct regulation_constraints *constraints = rdev->constraints;
3476
3477         /* Limit voltage change only if necessary */
3478         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3479                 return 1;
3480
3481         if (*current_uV < 0) {
3482                 *current_uV = regulator_get_voltage_rdev(rdev);
3483
3484                 if (*current_uV < 0)
3485                         return *current_uV;
3486         }
3487
3488         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3489                 return 1;
3490
3491         /* Clamp target voltage within the given step */
3492         if (*current_uV < *min_uV)
3493                 *min_uV = min(*current_uV + constraints->max_uV_step,
3494                               *min_uV);
3495         else
3496                 *min_uV = max(*current_uV - constraints->max_uV_step,
3497                               *min_uV);
3498
3499         return 0;
3500 }
3501
3502 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3503                                          int *current_uV,
3504                                          int *min_uV, int *max_uV,
3505                                          suspend_state_t state,
3506                                          int n_coupled)
3507 {
3508         struct coupling_desc *c_desc = &rdev->coupling_desc;
3509         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3510         struct regulation_constraints *constraints = rdev->constraints;
3511         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3512         int max_current_uV = 0, min_current_uV = INT_MAX;
3513         int highest_min_uV = 0, target_uV, possible_uV;
3514         int i, ret, max_spread;
3515         bool done;
3516
3517         *current_uV = -1;
3518
3519         /*
3520          * If there are no coupled regulators, simply set the voltage
3521          * demanded by consumers.
3522          */
3523         if (n_coupled == 1) {
3524                 /*
3525                  * If consumers don't provide any demands, set voltage
3526                  * to min_uV
3527                  */
3528                 desired_min_uV = constraints->min_uV;
3529                 desired_max_uV = constraints->max_uV;
3530
3531                 ret = regulator_check_consumers(rdev,
3532                                                 &desired_min_uV,
3533                                                 &desired_max_uV, state);
3534                 if (ret < 0)
3535                         return ret;
3536
3537                 possible_uV = desired_min_uV;
3538                 done = true;
3539
3540                 goto finish;
3541         }
3542
3543         /* Find highest min desired voltage */
3544         for (i = 0; i < n_coupled; i++) {
3545                 int tmp_min = 0;
3546                 int tmp_max = INT_MAX;
3547
3548                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3549
3550                 ret = regulator_check_consumers(c_rdevs[i],
3551                                                 &tmp_min,
3552                                                 &tmp_max, state);
3553                 if (ret < 0)
3554                         return ret;
3555
3556                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3557                 if (ret < 0)
3558                         return ret;
3559
3560                 highest_min_uV = max(highest_min_uV, tmp_min);
3561
3562                 if (i == 0) {
3563                         desired_min_uV = tmp_min;
3564                         desired_max_uV = tmp_max;
3565                 }
3566         }
3567
3568         max_spread = constraints->max_spread[0];
3569
3570         /*
3571          * Let target_uV be equal to the desired one if possible.
3572          * If not, set it to minimum voltage, allowed by other coupled
3573          * regulators.
3574          */
3575         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3576
3577         /*
3578          * Find min and max voltages, which currently aren't violating
3579          * max_spread.
3580          */
3581         for (i = 1; i < n_coupled; i++) {
3582                 int tmp_act;
3583
3584                 if (!_regulator_is_enabled(c_rdevs[i]))
3585                         continue;
3586
3587                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3588                 if (tmp_act < 0)
3589                         return tmp_act;
3590
3591                 min_current_uV = min(tmp_act, min_current_uV);
3592                 max_current_uV = max(tmp_act, max_current_uV);
3593         }
3594
3595         /* There aren't any other regulators enabled */
3596         if (max_current_uV == 0) {
3597                 possible_uV = target_uV;
3598         } else {
3599                 /*
3600                  * Correct target voltage, so as it currently isn't
3601                  * violating max_spread
3602                  */
3603                 possible_uV = max(target_uV, max_current_uV - max_spread);
3604                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3605         }
3606
3607         if (possible_uV > desired_max_uV)
3608                 return -EINVAL;
3609
3610         done = (possible_uV == target_uV);
3611         desired_min_uV = possible_uV;
3612
3613 finish:
3614         /* Apply max_uV_step constraint if necessary */
3615         if (state == PM_SUSPEND_ON) {
3616                 ret = regulator_limit_voltage_step(rdev, current_uV,
3617                                                    &desired_min_uV);
3618                 if (ret < 0)
3619                         return ret;
3620
3621                 if (ret == 0)
3622                         done = false;
3623         }
3624
3625         /* Set current_uV if wasn't done earlier in the code and if necessary */
3626         if (n_coupled > 1 && *current_uV == -1) {
3627
3628                 if (_regulator_is_enabled(rdev)) {
3629                         ret = regulator_get_voltage_rdev(rdev);
3630                         if (ret < 0)
3631                                 return ret;
3632
3633                         *current_uV = ret;
3634                 } else {
3635                         *current_uV = desired_min_uV;
3636                 }
3637         }
3638
3639         *min_uV = desired_min_uV;
3640         *max_uV = desired_max_uV;
3641
3642         return done;
3643 }
3644
3645 static int regulator_balance_voltage(struct regulator_dev *rdev,
3646                                      suspend_state_t state)
3647 {
3648         struct regulator_dev **c_rdevs;
3649         struct regulator_dev *best_rdev;
3650         struct coupling_desc *c_desc = &rdev->coupling_desc;
3651         struct regulator_coupler *coupler = c_desc->coupler;
3652         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3653         unsigned int delta, best_delta;
3654         unsigned long c_rdev_done = 0;
3655         bool best_c_rdev_done;
3656
3657         c_rdevs = c_desc->coupled_rdevs;
3658         n_coupled = c_desc->n_coupled;
3659
3660         /*
3661          * If system is in a state other than PM_SUSPEND_ON, don't check
3662          * other coupled regulators.
3663          */
3664         if (state != PM_SUSPEND_ON)
3665                 n_coupled = 1;
3666
3667         if (c_desc->n_resolved < n_coupled) {
3668                 rdev_err(rdev, "Not all coupled regulators registered\n");
3669                 return -EPERM;
3670         }
3671
3672         /* Invoke custom balancer for customized couplers */
3673         if (coupler && coupler->balance_voltage)
3674                 return coupler->balance_voltage(coupler, rdev, state);
3675
3676         /*
3677          * Find the best possible voltage change on each loop. Leave the loop
3678          * if there isn't any possible change.
3679          */
3680         do {
3681                 best_c_rdev_done = false;
3682                 best_delta = 0;
3683                 best_min_uV = 0;
3684                 best_max_uV = 0;
3685                 best_c_rdev = 0;
3686                 best_rdev = NULL;
3687
3688                 /*
3689                  * Find highest difference between optimal voltage
3690                  * and current voltage.
3691                  */
3692                 for (i = 0; i < n_coupled; i++) {
3693                         /*
3694                          * optimal_uV is the best voltage that can be set for
3695                          * i-th regulator at the moment without violating
3696                          * max_spread constraint in order to balance
3697                          * the coupled voltages.
3698                          */
3699                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3700
3701                         if (test_bit(i, &c_rdev_done))
3702                                 continue;
3703
3704                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3705                                                             &current_uV,
3706                                                             &optimal_uV,
3707                                                             &optimal_max_uV,
3708                                                             state, n_coupled);
3709                         if (ret < 0)
3710                                 goto out;
3711
3712                         delta = abs(optimal_uV - current_uV);
3713
3714                         if (delta && best_delta <= delta) {
3715                                 best_c_rdev_done = ret;
3716                                 best_delta = delta;
3717                                 best_rdev = c_rdevs[i];
3718                                 best_min_uV = optimal_uV;
3719                                 best_max_uV = optimal_max_uV;
3720                                 best_c_rdev = i;
3721                         }
3722                 }
3723
3724                 /* Nothing to change, return successfully */
3725                 if (!best_rdev) {
3726                         ret = 0;
3727                         goto out;
3728                 }
3729
3730                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3731                                                  best_max_uV, state);
3732
3733                 if (ret < 0)
3734                         goto out;
3735
3736                 if (best_c_rdev_done)
3737                         set_bit(best_c_rdev, &c_rdev_done);
3738
3739         } while (n_coupled > 1);
3740
3741 out:
3742         return ret;
3743 }
3744
3745 /**
3746  * regulator_set_voltage - set regulator output voltage
3747  * @regulator: regulator source
3748  * @min_uV: Minimum required voltage in uV
3749  * @max_uV: Maximum acceptable voltage in uV
3750  *
3751  * Sets a voltage regulator to the desired output voltage. This can be set
3752  * during any regulator state. IOW, regulator can be disabled or enabled.
3753  *
3754  * If the regulator is enabled then the voltage will change to the new value
3755  * immediately otherwise if the regulator is disabled the regulator will
3756  * output at the new voltage when enabled.
3757  *
3758  * NOTE: If the regulator is shared between several devices then the lowest
3759  * request voltage that meets the system constraints will be used.
3760  * Regulator system constraints must be set for this regulator before
3761  * calling this function otherwise this call will fail.
3762  */
3763 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3764 {
3765         struct ww_acquire_ctx ww_ctx;
3766         int ret;
3767
3768         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3769
3770         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3771                                              PM_SUSPEND_ON);
3772
3773         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3774
3775         return ret;
3776 }
3777 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3778
3779 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3780                                            suspend_state_t state, bool en)
3781 {
3782         struct regulator_state *rstate;
3783
3784         rstate = regulator_get_suspend_state(rdev, state);
3785         if (rstate == NULL)
3786                 return -EINVAL;
3787
3788         if (!rstate->changeable)
3789                 return -EPERM;
3790
3791         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3792
3793         return 0;
3794 }
3795
3796 int regulator_suspend_enable(struct regulator_dev *rdev,
3797                                     suspend_state_t state)
3798 {
3799         return regulator_suspend_toggle(rdev, state, true);
3800 }
3801 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3802
3803 int regulator_suspend_disable(struct regulator_dev *rdev,
3804                                      suspend_state_t state)
3805 {
3806         struct regulator *regulator;
3807         struct regulator_voltage *voltage;
3808
3809         /*
3810          * if any consumer wants this regulator device keeping on in
3811          * suspend states, don't set it as disabled.
3812          */
3813         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3814                 voltage = &regulator->voltage[state];
3815                 if (voltage->min_uV || voltage->max_uV)
3816                         return 0;
3817         }
3818
3819         return regulator_suspend_toggle(rdev, state, false);
3820 }
3821 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3822
3823 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3824                                           int min_uV, int max_uV,
3825                                           suspend_state_t state)
3826 {
3827         struct regulator_dev *rdev = regulator->rdev;
3828         struct regulator_state *rstate;
3829
3830         rstate = regulator_get_suspend_state(rdev, state);
3831         if (rstate == NULL)
3832                 return -EINVAL;
3833
3834         if (rstate->min_uV == rstate->max_uV) {
3835                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3836                 return -EPERM;
3837         }
3838
3839         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3840 }
3841
3842 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3843                                   int max_uV, suspend_state_t state)
3844 {
3845         struct ww_acquire_ctx ww_ctx;
3846         int ret;
3847
3848         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3849         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3850                 return -EINVAL;
3851
3852         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3853
3854         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3855                                              max_uV, state);
3856
3857         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3858
3859         return ret;
3860 }
3861 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3862
3863 /**
3864  * regulator_set_voltage_time - get raise/fall time
3865  * @regulator: regulator source
3866  * @old_uV: starting voltage in microvolts
3867  * @new_uV: target voltage in microvolts
3868  *
3869  * Provided with the starting and ending voltage, this function attempts to
3870  * calculate the time in microseconds required to rise or fall to this new
3871  * voltage.
3872  */
3873 int regulator_set_voltage_time(struct regulator *regulator,
3874                                int old_uV, int new_uV)
3875 {
3876         struct regulator_dev *rdev = regulator->rdev;
3877         const struct regulator_ops *ops = rdev->desc->ops;
3878         int old_sel = -1;
3879         int new_sel = -1;
3880         int voltage;
3881         int i;
3882
3883         if (ops->set_voltage_time)
3884                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3885         else if (!ops->set_voltage_time_sel)
3886                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3887
3888         /* Currently requires operations to do this */
3889         if (!ops->list_voltage || !rdev->desc->n_voltages)
3890                 return -EINVAL;
3891
3892         for (i = 0; i < rdev->desc->n_voltages; i++) {
3893                 /* We only look for exact voltage matches here */
3894                 voltage = regulator_list_voltage(regulator, i);
3895                 if (voltage < 0)
3896                         return -EINVAL;
3897                 if (voltage == 0)
3898                         continue;
3899                 if (voltage == old_uV)
3900                         old_sel = i;
3901                 if (voltage == new_uV)
3902                         new_sel = i;
3903         }
3904
3905         if (old_sel < 0 || new_sel < 0)
3906                 return -EINVAL;
3907
3908         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3909 }
3910 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3911
3912 /**
3913  * regulator_set_voltage_time_sel - get raise/fall time
3914  * @rdev: regulator source device
3915  * @old_selector: selector for starting voltage
3916  * @new_selector: selector for target voltage
3917  *
3918  * Provided with the starting and target voltage selectors, this function
3919  * returns time in microseconds required to rise or fall to this new voltage
3920  *
3921  * Drivers providing ramp_delay in regulation_constraints can use this as their
3922  * set_voltage_time_sel() operation.
3923  */
3924 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3925                                    unsigned int old_selector,
3926                                    unsigned int new_selector)
3927 {
3928         int old_volt, new_volt;
3929
3930         /* sanity check */
3931         if (!rdev->desc->ops->list_voltage)
3932                 return -EINVAL;
3933
3934         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3935         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3936
3937         if (rdev->desc->ops->set_voltage_time)
3938                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3939                                                          new_volt);
3940         else
3941                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3942 }
3943 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3944
3945 /**
3946  * regulator_sync_voltage - re-apply last regulator output voltage
3947  * @regulator: regulator source
3948  *
3949  * Re-apply the last configured voltage.  This is intended to be used
3950  * where some external control source the consumer is cooperating with
3951  * has caused the configured voltage to change.
3952  */
3953 int regulator_sync_voltage(struct regulator *regulator)
3954 {
3955         struct regulator_dev *rdev = regulator->rdev;
3956         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3957         int ret, min_uV, max_uV;
3958
3959         regulator_lock(rdev);
3960
3961         if (!rdev->desc->ops->set_voltage &&
3962             !rdev->desc->ops->set_voltage_sel) {
3963                 ret = -EINVAL;
3964                 goto out;
3965         }
3966
3967         /* This is only going to work if we've had a voltage configured. */
3968         if (!voltage->min_uV && !voltage->max_uV) {
3969                 ret = -EINVAL;
3970                 goto out;
3971         }
3972
3973         min_uV = voltage->min_uV;
3974         max_uV = voltage->max_uV;
3975
3976         /* This should be a paranoia check... */
3977         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3978         if (ret < 0)
3979                 goto out;
3980
3981         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3982         if (ret < 0)
3983                 goto out;
3984
3985         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3986
3987 out:
3988         regulator_unlock(rdev);
3989         return ret;
3990 }
3991 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3992
3993 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3994 {
3995         int sel, ret;
3996         bool bypassed;
3997
3998         if (rdev->desc->ops->get_bypass) {
3999                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4000                 if (ret < 0)
4001                         return ret;
4002                 if (bypassed) {
4003                         /* if bypassed the regulator must have a supply */
4004                         if (!rdev->supply) {
4005                                 rdev_err(rdev,
4006                                          "bypassed regulator has no supply!\n");
4007                                 return -EPROBE_DEFER;
4008                         }
4009
4010                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4011                 }
4012         }
4013
4014         if (rdev->desc->ops->get_voltage_sel) {
4015                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4016                 if (sel < 0)
4017                         return sel;
4018                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4019         } else if (rdev->desc->ops->get_voltage) {
4020                 ret = rdev->desc->ops->get_voltage(rdev);
4021         } else if (rdev->desc->ops->list_voltage) {
4022                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4023         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4024                 ret = rdev->desc->fixed_uV;
4025         } else if (rdev->supply) {
4026                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4027         } else {
4028                 return -EINVAL;
4029         }
4030
4031         if (ret < 0)
4032                 return ret;
4033         return ret - rdev->constraints->uV_offset;
4034 }
4035 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4036
4037 /**
4038  * regulator_get_voltage - get regulator output voltage
4039  * @regulator: regulator source
4040  *
4041  * This returns the current regulator voltage in uV.
4042  *
4043  * NOTE: If the regulator is disabled it will return the voltage value. This
4044  * function should not be used to determine regulator state.
4045  */
4046 int regulator_get_voltage(struct regulator *regulator)
4047 {
4048         struct ww_acquire_ctx ww_ctx;
4049         int ret;
4050
4051         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4052         ret = regulator_get_voltage_rdev(regulator->rdev);
4053         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4054
4055         return ret;
4056 }
4057 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4058
4059 /**
4060  * regulator_set_current_limit - set regulator output current limit
4061  * @regulator: regulator source
4062  * @min_uA: Minimum supported current in uA
4063  * @max_uA: Maximum supported current in uA
4064  *
4065  * Sets current sink to the desired output current. This can be set during
4066  * any regulator state. IOW, regulator can be disabled or enabled.
4067  *
4068  * If the regulator is enabled then the current will change to the new value
4069  * immediately otherwise if the regulator is disabled the regulator will
4070  * output at the new current when enabled.
4071  *
4072  * NOTE: Regulator system constraints must be set for this regulator before
4073  * calling this function otherwise this call will fail.
4074  */
4075 int regulator_set_current_limit(struct regulator *regulator,
4076                                int min_uA, int max_uA)
4077 {
4078         struct regulator_dev *rdev = regulator->rdev;
4079         int ret;
4080
4081         regulator_lock(rdev);
4082
4083         /* sanity check */
4084         if (!rdev->desc->ops->set_current_limit) {
4085                 ret = -EINVAL;
4086                 goto out;
4087         }
4088
4089         /* constraints check */
4090         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4091         if (ret < 0)
4092                 goto out;
4093
4094         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4095 out:
4096         regulator_unlock(rdev);
4097         return ret;
4098 }
4099 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4100
4101 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4102 {
4103         /* sanity check */
4104         if (!rdev->desc->ops->get_current_limit)
4105                 return -EINVAL;
4106
4107         return rdev->desc->ops->get_current_limit(rdev);
4108 }
4109
4110 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4111 {
4112         int ret;
4113
4114         regulator_lock(rdev);
4115         ret = _regulator_get_current_limit_unlocked(rdev);
4116         regulator_unlock(rdev);
4117
4118         return ret;
4119 }
4120
4121 /**
4122  * regulator_get_current_limit - get regulator output current
4123  * @regulator: regulator source
4124  *
4125  * This returns the current supplied by the specified current sink in uA.
4126  *
4127  * NOTE: If the regulator is disabled it will return the current value. This
4128  * function should not be used to determine regulator state.
4129  */
4130 int regulator_get_current_limit(struct regulator *regulator)
4131 {
4132         return _regulator_get_current_limit(regulator->rdev);
4133 }
4134 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4135
4136 /**
4137  * regulator_set_mode - set regulator operating mode
4138  * @regulator: regulator source
4139  * @mode: operating mode - one of the REGULATOR_MODE constants
4140  *
4141  * Set regulator operating mode to increase regulator efficiency or improve
4142  * regulation performance.
4143  *
4144  * NOTE: Regulator system constraints must be set for this regulator before
4145  * calling this function otherwise this call will fail.
4146  */
4147 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4148 {
4149         struct regulator_dev *rdev = regulator->rdev;
4150         int ret;
4151         int regulator_curr_mode;
4152
4153         regulator_lock(rdev);
4154
4155         /* sanity check */
4156         if (!rdev->desc->ops->set_mode) {
4157                 ret = -EINVAL;
4158                 goto out;
4159         }
4160
4161         /* return if the same mode is requested */
4162         if (rdev->desc->ops->get_mode) {
4163                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4164                 if (regulator_curr_mode == mode) {
4165                         ret = 0;
4166                         goto out;
4167                 }
4168         }
4169
4170         /* constraints check */
4171         ret = regulator_mode_constrain(rdev, &mode);
4172         if (ret < 0)
4173                 goto out;
4174
4175         ret = rdev->desc->ops->set_mode(rdev, mode);
4176 out:
4177         regulator_unlock(rdev);
4178         return ret;
4179 }
4180 EXPORT_SYMBOL_GPL(regulator_set_mode);
4181
4182 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4183 {
4184         /* sanity check */
4185         if (!rdev->desc->ops->get_mode)
4186                 return -EINVAL;
4187
4188         return rdev->desc->ops->get_mode(rdev);
4189 }
4190
4191 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4192 {
4193         int ret;
4194
4195         regulator_lock(rdev);
4196         ret = _regulator_get_mode_unlocked(rdev);
4197         regulator_unlock(rdev);
4198
4199         return ret;
4200 }
4201
4202 /**
4203  * regulator_get_mode - get regulator operating mode
4204  * @regulator: regulator source
4205  *
4206  * Get the current regulator operating mode.
4207  */
4208 unsigned int regulator_get_mode(struct regulator *regulator)
4209 {
4210         return _regulator_get_mode(regulator->rdev);
4211 }
4212 EXPORT_SYMBOL_GPL(regulator_get_mode);
4213
4214 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4215                                         unsigned int *flags)
4216 {
4217         int ret;
4218
4219         regulator_lock(rdev);
4220
4221         /* sanity check */
4222         if (!rdev->desc->ops->get_error_flags) {
4223                 ret = -EINVAL;
4224                 goto out;
4225         }
4226
4227         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4228 out:
4229         regulator_unlock(rdev);
4230         return ret;
4231 }
4232
4233 /**
4234  * regulator_get_error_flags - get regulator error information
4235  * @regulator: regulator source
4236  * @flags: pointer to store error flags
4237  *
4238  * Get the current regulator error information.
4239  */
4240 int regulator_get_error_flags(struct regulator *regulator,
4241                                 unsigned int *flags)
4242 {
4243         return _regulator_get_error_flags(regulator->rdev, flags);
4244 }
4245 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4246
4247 /**
4248  * regulator_set_load - set regulator load
4249  * @regulator: regulator source
4250  * @uA_load: load current
4251  *
4252  * Notifies the regulator core of a new device load. This is then used by
4253  * DRMS (if enabled by constraints) to set the most efficient regulator
4254  * operating mode for the new regulator loading.
4255  *
4256  * Consumer devices notify their supply regulator of the maximum power
4257  * they will require (can be taken from device datasheet in the power
4258  * consumption tables) when they change operational status and hence power
4259  * state. Examples of operational state changes that can affect power
4260  * consumption are :-
4261  *
4262  *    o Device is opened / closed.
4263  *    o Device I/O is about to begin or has just finished.
4264  *    o Device is idling in between work.
4265  *
4266  * This information is also exported via sysfs to userspace.
4267  *
4268  * DRMS will sum the total requested load on the regulator and change
4269  * to the most efficient operating mode if platform constraints allow.
4270  *
4271  * NOTE: when a regulator consumer requests to have a regulator
4272  * disabled then any load that consumer requested no longer counts
4273  * toward the total requested load.  If the regulator is re-enabled
4274  * then the previously requested load will start counting again.
4275  *
4276  * If a regulator is an always-on regulator then an individual consumer's
4277  * load will still be removed if that consumer is fully disabled.
4278  *
4279  * On error a negative errno is returned.
4280  */
4281 int regulator_set_load(struct regulator *regulator, int uA_load)
4282 {
4283         struct regulator_dev *rdev = regulator->rdev;
4284         int old_uA_load;
4285         int ret = 0;
4286
4287         regulator_lock(rdev);
4288         old_uA_load = regulator->uA_load;
4289         regulator->uA_load = uA_load;
4290         if (regulator->enable_count && old_uA_load != uA_load) {
4291                 ret = drms_uA_update(rdev);
4292                 if (ret < 0)
4293                         regulator->uA_load = old_uA_load;
4294         }
4295         regulator_unlock(rdev);
4296
4297         return ret;
4298 }
4299 EXPORT_SYMBOL_GPL(regulator_set_load);
4300
4301 /**
4302  * regulator_allow_bypass - allow the regulator to go into bypass mode
4303  *
4304  * @regulator: Regulator to configure
4305  * @enable: enable or disable bypass mode
4306  *
4307  * Allow the regulator to go into bypass mode if all other consumers
4308  * for the regulator also enable bypass mode and the machine
4309  * constraints allow this.  Bypass mode means that the regulator is
4310  * simply passing the input directly to the output with no regulation.
4311  */
4312 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4313 {
4314         struct regulator_dev *rdev = regulator->rdev;
4315         int ret = 0;
4316
4317         if (!rdev->desc->ops->set_bypass)
4318                 return 0;
4319
4320         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4321                 return 0;
4322
4323         regulator_lock(rdev);
4324
4325         if (enable && !regulator->bypass) {
4326                 rdev->bypass_count++;
4327
4328                 if (rdev->bypass_count == rdev->open_count) {
4329                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4330                         if (ret != 0)
4331                                 rdev->bypass_count--;
4332                 }
4333
4334         } else if (!enable && regulator->bypass) {
4335                 rdev->bypass_count--;
4336
4337                 if (rdev->bypass_count != rdev->open_count) {
4338                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4339                         if (ret != 0)
4340                                 rdev->bypass_count++;
4341                 }
4342         }
4343
4344         if (ret == 0)
4345                 regulator->bypass = enable;
4346
4347         regulator_unlock(rdev);
4348
4349         return ret;
4350 }
4351 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4352
4353 /**
4354  * regulator_register_notifier - register regulator event notifier
4355  * @regulator: regulator source
4356  * @nb: notifier block
4357  *
4358  * Register notifier block to receive regulator events.
4359  */
4360 int regulator_register_notifier(struct regulator *regulator,
4361                               struct notifier_block *nb)
4362 {
4363         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4364                                                 nb);
4365 }
4366 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4367
4368 /**
4369  * regulator_unregister_notifier - unregister regulator event notifier
4370  * @regulator: regulator source
4371  * @nb: notifier block
4372  *
4373  * Unregister regulator event notifier block.
4374  */
4375 int regulator_unregister_notifier(struct regulator *regulator,
4376                                 struct notifier_block *nb)
4377 {
4378         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4379                                                   nb);
4380 }
4381 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4382
4383 /* notify regulator consumers and downstream regulator consumers.
4384  * Note mutex must be held by caller.
4385  */
4386 static int _notifier_call_chain(struct regulator_dev *rdev,
4387                                   unsigned long event, void *data)
4388 {
4389         /* call rdev chain first */
4390         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4391 }
4392
4393 /**
4394  * regulator_bulk_get - get multiple regulator consumers
4395  *
4396  * @dev:           Device to supply
4397  * @num_consumers: Number of consumers to register
4398  * @consumers:     Configuration of consumers; clients are stored here.
4399  *
4400  * @return 0 on success, an errno on failure.
4401  *
4402  * This helper function allows drivers to get several regulator
4403  * consumers in one operation.  If any of the regulators cannot be
4404  * acquired then any regulators that were allocated will be freed
4405  * before returning to the caller.
4406  */
4407 int regulator_bulk_get(struct device *dev, int num_consumers,
4408                        struct regulator_bulk_data *consumers)
4409 {
4410         int i;
4411         int ret;
4412
4413         for (i = 0; i < num_consumers; i++)
4414                 consumers[i].consumer = NULL;
4415
4416         for (i = 0; i < num_consumers; i++) {
4417                 consumers[i].consumer = regulator_get(dev,
4418                                                       consumers[i].supply);
4419                 if (IS_ERR(consumers[i].consumer)) {
4420                         ret = PTR_ERR(consumers[i].consumer);
4421                         consumers[i].consumer = NULL;
4422                         goto err;
4423                 }
4424         }
4425
4426         return 0;
4427
4428 err:
4429         if (ret != -EPROBE_DEFER)
4430                 dev_err(dev, "Failed to get supply '%s': %d\n",
4431                         consumers[i].supply, ret);
4432         else
4433                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4434                         consumers[i].supply);
4435
4436         while (--i >= 0)
4437                 regulator_put(consumers[i].consumer);
4438
4439         return ret;
4440 }
4441 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4442
4443 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4444 {
4445         struct regulator_bulk_data *bulk = data;
4446
4447         bulk->ret = regulator_enable(bulk->consumer);
4448 }
4449
4450 /**
4451  * regulator_bulk_enable - enable multiple regulator consumers
4452  *
4453  * @num_consumers: Number of consumers
4454  * @consumers:     Consumer data; clients are stored here.
4455  * @return         0 on success, an errno on failure
4456  *
4457  * This convenience API allows consumers to enable multiple regulator
4458  * clients in a single API call.  If any consumers cannot be enabled
4459  * then any others that were enabled will be disabled again prior to
4460  * return.
4461  */
4462 int regulator_bulk_enable(int num_consumers,
4463                           struct regulator_bulk_data *consumers)
4464 {
4465         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4466         int i;
4467         int ret = 0;
4468
4469         for (i = 0; i < num_consumers; i++) {
4470                 async_schedule_domain(regulator_bulk_enable_async,
4471                                       &consumers[i], &async_domain);
4472         }
4473
4474         async_synchronize_full_domain(&async_domain);
4475
4476         /* If any consumer failed we need to unwind any that succeeded */
4477         for (i = 0; i < num_consumers; i++) {
4478                 if (consumers[i].ret != 0) {
4479                         ret = consumers[i].ret;
4480                         goto err;
4481                 }
4482         }
4483
4484         return 0;
4485
4486 err:
4487         for (i = 0; i < num_consumers; i++) {
4488                 if (consumers[i].ret < 0)
4489                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4490                                consumers[i].ret);
4491                 else
4492                         regulator_disable(consumers[i].consumer);
4493         }
4494
4495         return ret;
4496 }
4497 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4498
4499 /**
4500  * regulator_bulk_disable - disable multiple regulator consumers
4501  *
4502  * @num_consumers: Number of consumers
4503  * @consumers:     Consumer data; clients are stored here.
4504  * @return         0 on success, an errno on failure
4505  *
4506  * This convenience API allows consumers to disable multiple regulator
4507  * clients in a single API call.  If any consumers cannot be disabled
4508  * then any others that were disabled will be enabled again prior to
4509  * return.
4510  */
4511 int regulator_bulk_disable(int num_consumers,
4512                            struct regulator_bulk_data *consumers)
4513 {
4514         int i;
4515         int ret, r;
4516
4517         for (i = num_consumers - 1; i >= 0; --i) {
4518                 ret = regulator_disable(consumers[i].consumer);
4519                 if (ret != 0)
4520                         goto err;
4521         }
4522
4523         return 0;
4524
4525 err:
4526         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4527         for (++i; i < num_consumers; ++i) {
4528                 r = regulator_enable(consumers[i].consumer);
4529                 if (r != 0)
4530                         pr_err("Failed to re-enable %s: %d\n",
4531                                consumers[i].supply, r);
4532         }
4533
4534         return ret;
4535 }
4536 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4537
4538 /**
4539  * regulator_bulk_force_disable - force disable multiple regulator consumers
4540  *
4541  * @num_consumers: Number of consumers
4542  * @consumers:     Consumer data; clients are stored here.
4543  * @return         0 on success, an errno on failure
4544  *
4545  * This convenience API allows consumers to forcibly disable multiple regulator
4546  * clients in a single API call.
4547  * NOTE: This should be used for situations when device damage will
4548  * likely occur if the regulators are not disabled (e.g. over temp).
4549  * Although regulator_force_disable function call for some consumers can
4550  * return error numbers, the function is called for all consumers.
4551  */
4552 int regulator_bulk_force_disable(int num_consumers,
4553                            struct regulator_bulk_data *consumers)
4554 {
4555         int i;
4556         int ret = 0;
4557
4558         for (i = 0; i < num_consumers; i++) {
4559                 consumers[i].ret =
4560                             regulator_force_disable(consumers[i].consumer);
4561
4562                 /* Store first error for reporting */
4563                 if (consumers[i].ret && !ret)
4564                         ret = consumers[i].ret;
4565         }
4566
4567         return ret;
4568 }
4569 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4570
4571 /**
4572  * regulator_bulk_free - free multiple regulator consumers
4573  *
4574  * @num_consumers: Number of consumers
4575  * @consumers:     Consumer data; clients are stored here.
4576  *
4577  * This convenience API allows consumers to free multiple regulator
4578  * clients in a single API call.
4579  */
4580 void regulator_bulk_free(int num_consumers,
4581                          struct regulator_bulk_data *consumers)
4582 {
4583         int i;
4584
4585         for (i = 0; i < num_consumers; i++) {
4586                 regulator_put(consumers[i].consumer);
4587                 consumers[i].consumer = NULL;
4588         }
4589 }
4590 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4591
4592 /**
4593  * regulator_notifier_call_chain - call regulator event notifier
4594  * @rdev: regulator source
4595  * @event: notifier block
4596  * @data: callback-specific data.
4597  *
4598  * Called by regulator drivers to notify clients a regulator event has
4599  * occurred. We also notify regulator clients downstream.
4600  * Note lock must be held by caller.
4601  */
4602 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4603                                   unsigned long event, void *data)
4604 {
4605         lockdep_assert_held_once(&rdev->mutex.base);
4606
4607         _notifier_call_chain(rdev, event, data);
4608         return NOTIFY_DONE;
4609
4610 }
4611 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4612
4613 /**
4614  * regulator_mode_to_status - convert a regulator mode into a status
4615  *
4616  * @mode: Mode to convert
4617  *
4618  * Convert a regulator mode into a status.
4619  */
4620 int regulator_mode_to_status(unsigned int mode)
4621 {
4622         switch (mode) {
4623         case REGULATOR_MODE_FAST:
4624                 return REGULATOR_STATUS_FAST;
4625         case REGULATOR_MODE_NORMAL:
4626                 return REGULATOR_STATUS_NORMAL;
4627         case REGULATOR_MODE_IDLE:
4628                 return REGULATOR_STATUS_IDLE;
4629         case REGULATOR_MODE_STANDBY:
4630                 return REGULATOR_STATUS_STANDBY;
4631         default:
4632                 return REGULATOR_STATUS_UNDEFINED;
4633         }
4634 }
4635 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4636
4637 static struct attribute *regulator_dev_attrs[] = {
4638         &dev_attr_name.attr,
4639         &dev_attr_num_users.attr,
4640         &dev_attr_type.attr,
4641         &dev_attr_microvolts.attr,
4642         &dev_attr_microamps.attr,
4643         &dev_attr_opmode.attr,
4644         &dev_attr_state.attr,
4645         &dev_attr_status.attr,
4646         &dev_attr_bypass.attr,
4647         &dev_attr_requested_microamps.attr,
4648         &dev_attr_min_microvolts.attr,
4649         &dev_attr_max_microvolts.attr,
4650         &dev_attr_min_microamps.attr,
4651         &dev_attr_max_microamps.attr,
4652         &dev_attr_suspend_standby_state.attr,
4653         &dev_attr_suspend_mem_state.attr,
4654         &dev_attr_suspend_disk_state.attr,
4655         &dev_attr_suspend_standby_microvolts.attr,
4656         &dev_attr_suspend_mem_microvolts.attr,
4657         &dev_attr_suspend_disk_microvolts.attr,
4658         &dev_attr_suspend_standby_mode.attr,
4659         &dev_attr_suspend_mem_mode.attr,
4660         &dev_attr_suspend_disk_mode.attr,
4661         NULL
4662 };
4663
4664 /*
4665  * To avoid cluttering sysfs (and memory) with useless state, only
4666  * create attributes that can be meaningfully displayed.
4667  */
4668 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4669                                          struct attribute *attr, int idx)
4670 {
4671         struct device *dev = kobj_to_dev(kobj);
4672         struct regulator_dev *rdev = dev_to_rdev(dev);
4673         const struct regulator_ops *ops = rdev->desc->ops;
4674         umode_t mode = attr->mode;
4675
4676         /* these three are always present */
4677         if (attr == &dev_attr_name.attr ||
4678             attr == &dev_attr_num_users.attr ||
4679             attr == &dev_attr_type.attr)
4680                 return mode;
4681
4682         /* some attributes need specific methods to be displayed */
4683         if (attr == &dev_attr_microvolts.attr) {
4684                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4685                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4686                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4687                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4688                         return mode;
4689                 return 0;
4690         }
4691
4692         if (attr == &dev_attr_microamps.attr)
4693                 return ops->get_current_limit ? mode : 0;
4694
4695         if (attr == &dev_attr_opmode.attr)
4696                 return ops->get_mode ? mode : 0;
4697
4698         if (attr == &dev_attr_state.attr)
4699                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4700
4701         if (attr == &dev_attr_status.attr)
4702                 return ops->get_status ? mode : 0;
4703
4704         if (attr == &dev_attr_bypass.attr)
4705                 return ops->get_bypass ? mode : 0;
4706
4707         /* constraints need specific supporting methods */
4708         if (attr == &dev_attr_min_microvolts.attr ||
4709             attr == &dev_attr_max_microvolts.attr)
4710                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4711
4712         if (attr == &dev_attr_min_microamps.attr ||
4713             attr == &dev_attr_max_microamps.attr)
4714                 return ops->set_current_limit ? mode : 0;
4715
4716         if (attr == &dev_attr_suspend_standby_state.attr ||
4717             attr == &dev_attr_suspend_mem_state.attr ||
4718             attr == &dev_attr_suspend_disk_state.attr)
4719                 return mode;
4720
4721         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4722             attr == &dev_attr_suspend_mem_microvolts.attr ||
4723             attr == &dev_attr_suspend_disk_microvolts.attr)
4724                 return ops->set_suspend_voltage ? mode : 0;
4725
4726         if (attr == &dev_attr_suspend_standby_mode.attr ||
4727             attr == &dev_attr_suspend_mem_mode.attr ||
4728             attr == &dev_attr_suspend_disk_mode.attr)
4729                 return ops->set_suspend_mode ? mode : 0;
4730
4731         return mode;
4732 }
4733
4734 static const struct attribute_group regulator_dev_group = {
4735         .attrs = regulator_dev_attrs,
4736         .is_visible = regulator_attr_is_visible,
4737 };
4738
4739 static const struct attribute_group *regulator_dev_groups[] = {
4740         &regulator_dev_group,
4741         NULL
4742 };
4743
4744 static void regulator_dev_release(struct device *dev)
4745 {
4746         struct regulator_dev *rdev = dev_get_drvdata(dev);
4747
4748         kfree(rdev->constraints);
4749         of_node_put(rdev->dev.of_node);
4750         kfree(rdev);
4751 }
4752
4753 static void rdev_init_debugfs(struct regulator_dev *rdev)
4754 {
4755         struct device *parent = rdev->dev.parent;
4756         const char *rname = rdev_get_name(rdev);
4757         char name[NAME_MAX];
4758
4759         /* Avoid duplicate debugfs directory names */
4760         if (parent && rname == rdev->desc->name) {
4761                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4762                          rname);
4763                 rname = name;
4764         }
4765
4766         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4767         if (!rdev->debugfs) {
4768                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4769                 return;
4770         }
4771
4772         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4773                            &rdev->use_count);
4774         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4775                            &rdev->open_count);
4776         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4777                            &rdev->bypass_count);
4778 }
4779
4780 static int regulator_register_resolve_supply(struct device *dev, void *data)
4781 {
4782         struct regulator_dev *rdev = dev_to_rdev(dev);
4783
4784         if (regulator_resolve_supply(rdev))
4785                 rdev_dbg(rdev, "unable to resolve supply\n");
4786
4787         return 0;
4788 }
4789
4790 int regulator_coupler_register(struct regulator_coupler *coupler)
4791 {
4792         mutex_lock(&regulator_list_mutex);
4793         list_add_tail(&coupler->list, &regulator_coupler_list);
4794         mutex_unlock(&regulator_list_mutex);
4795
4796         return 0;
4797 }
4798
4799 static struct regulator_coupler *
4800 regulator_find_coupler(struct regulator_dev *rdev)
4801 {
4802         struct regulator_coupler *coupler;
4803         int err;
4804
4805         /*
4806          * Note that regulators are appended to the list and the generic
4807          * coupler is registered first, hence it will be attached at last
4808          * if nobody cared.
4809          */
4810         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4811                 err = coupler->attach_regulator(coupler, rdev);
4812                 if (!err) {
4813                         if (!coupler->balance_voltage &&
4814                             rdev->coupling_desc.n_coupled > 2)
4815                                 goto err_unsupported;
4816
4817                         return coupler;
4818                 }
4819
4820                 if (err < 0)
4821                         return ERR_PTR(err);
4822
4823                 if (err == 1)
4824                         continue;
4825
4826                 break;
4827         }
4828
4829         return ERR_PTR(-EINVAL);
4830
4831 err_unsupported:
4832         if (coupler->detach_regulator)
4833                 coupler->detach_regulator(coupler, rdev);
4834
4835         rdev_err(rdev,
4836                 "Voltage balancing for multiple regulator couples is unimplemented\n");
4837
4838         return ERR_PTR(-EPERM);
4839 }
4840
4841 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4842 {
4843         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4844         struct coupling_desc *c_desc = &rdev->coupling_desc;
4845         int n_coupled = c_desc->n_coupled;
4846         struct regulator_dev *c_rdev;
4847         int i;
4848
4849         for (i = 1; i < n_coupled; i++) {
4850                 /* already resolved */
4851                 if (c_desc->coupled_rdevs[i])
4852                         continue;
4853
4854                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4855
4856                 if (!c_rdev)
4857                         continue;
4858
4859                 if (c_rdev->coupling_desc.coupler != coupler) {
4860                         rdev_err(rdev, "coupler mismatch with %s\n",
4861                                  rdev_get_name(c_rdev));
4862                         return;
4863                 }
4864
4865                 regulator_lock(c_rdev);
4866
4867                 c_desc->coupled_rdevs[i] = c_rdev;
4868                 c_desc->n_resolved++;
4869
4870                 regulator_unlock(c_rdev);
4871
4872                 regulator_resolve_coupling(c_rdev);
4873         }
4874 }
4875
4876 static void regulator_remove_coupling(struct regulator_dev *rdev)
4877 {
4878         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4879         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4880         struct regulator_dev *__c_rdev, *c_rdev;
4881         unsigned int __n_coupled, n_coupled;
4882         int i, k;
4883         int err;
4884
4885         n_coupled = c_desc->n_coupled;
4886
4887         for (i = 1; i < n_coupled; i++) {
4888                 c_rdev = c_desc->coupled_rdevs[i];
4889
4890                 if (!c_rdev)
4891                         continue;
4892
4893                 regulator_lock(c_rdev);
4894
4895                 __c_desc = &c_rdev->coupling_desc;
4896                 __n_coupled = __c_desc->n_coupled;
4897
4898                 for (k = 1; k < __n_coupled; k++) {
4899                         __c_rdev = __c_desc->coupled_rdevs[k];
4900
4901                         if (__c_rdev == rdev) {
4902                                 __c_desc->coupled_rdevs[k] = NULL;
4903                                 __c_desc->n_resolved--;
4904                                 break;
4905                         }
4906                 }
4907
4908                 regulator_unlock(c_rdev);
4909
4910                 c_desc->coupled_rdevs[i] = NULL;
4911                 c_desc->n_resolved--;
4912         }
4913
4914         if (coupler && coupler->detach_regulator) {
4915                 err = coupler->detach_regulator(coupler, rdev);
4916                 if (err)
4917                         rdev_err(rdev, "failed to detach from coupler: %d\n",
4918                                  err);
4919         }
4920
4921         kfree(rdev->coupling_desc.coupled_rdevs);
4922         rdev->coupling_desc.coupled_rdevs = NULL;
4923 }
4924
4925 static int regulator_init_coupling(struct regulator_dev *rdev)
4926 {
4927         int err, n_phandles;
4928         size_t alloc_size;
4929
4930         if (!IS_ENABLED(CONFIG_OF))
4931                 n_phandles = 0;
4932         else
4933                 n_phandles = of_get_n_coupled(rdev);
4934
4935         alloc_size = sizeof(*rdev) * (n_phandles + 1);
4936
4937         rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4938         if (!rdev->coupling_desc.coupled_rdevs)
4939                 return -ENOMEM;
4940
4941         /*
4942          * Every regulator should always have coupling descriptor filled with
4943          * at least pointer to itself.
4944          */
4945         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4946         rdev->coupling_desc.n_coupled = n_phandles + 1;
4947         rdev->coupling_desc.n_resolved++;
4948
4949         /* regulator isn't coupled */
4950         if (n_phandles == 0)
4951                 return 0;
4952
4953         if (!of_check_coupling_data(rdev))
4954                 return -EPERM;
4955
4956         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4957         if (IS_ERR(rdev->coupling_desc.coupler)) {
4958                 err = PTR_ERR(rdev->coupling_desc.coupler);
4959                 rdev_err(rdev, "failed to get coupler: %d\n", err);
4960                 return err;
4961         }
4962
4963         return 0;
4964 }
4965
4966 static int generic_coupler_attach(struct regulator_coupler *coupler,
4967                                   struct regulator_dev *rdev)
4968 {
4969         if (rdev->coupling_desc.n_coupled > 2) {
4970                 rdev_err(rdev,
4971                          "Voltage balancing for multiple regulator couples is unimplemented\n");
4972                 return -EPERM;
4973         }
4974
4975         if (!rdev->constraints->always_on) {
4976                 rdev_err(rdev,
4977                          "Coupling of a non always-on regulator is unimplemented\n");
4978                 return -ENOTSUPP;
4979         }
4980
4981         return 0;
4982 }
4983
4984 static struct regulator_coupler generic_regulator_coupler = {
4985         .attach_regulator = generic_coupler_attach,
4986 };
4987
4988 /**
4989  * regulator_register - register regulator
4990  * @regulator_desc: regulator to register
4991  * @cfg: runtime configuration for regulator
4992  *
4993  * Called by regulator drivers to register a regulator.
4994  * Returns a valid pointer to struct regulator_dev on success
4995  * or an ERR_PTR() on error.
4996  */
4997 struct regulator_dev *
4998 regulator_register(const struct regulator_desc *regulator_desc,
4999                    const struct regulator_config *cfg)
5000 {
5001         const struct regulation_constraints *constraints = NULL;
5002         const struct regulator_init_data *init_data;
5003         struct regulator_config *config = NULL;
5004         static atomic_t regulator_no = ATOMIC_INIT(-1);
5005         struct regulator_dev *rdev;
5006         bool dangling_cfg_gpiod = false;
5007         bool dangling_of_gpiod = false;
5008         bool reg_device_fail = false;
5009         struct device *dev;
5010         int ret, i;
5011
5012         if (cfg == NULL)
5013                 return ERR_PTR(-EINVAL);
5014         if (cfg->ena_gpiod)
5015                 dangling_cfg_gpiod = true;
5016         if (regulator_desc == NULL) {
5017                 ret = -EINVAL;
5018                 goto rinse;
5019         }
5020
5021         dev = cfg->dev;
5022         WARN_ON(!dev);
5023
5024         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5025                 ret = -EINVAL;
5026                 goto rinse;
5027         }
5028
5029         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5030             regulator_desc->type != REGULATOR_CURRENT) {
5031                 ret = -EINVAL;
5032                 goto rinse;
5033         }
5034
5035         /* Only one of each should be implemented */
5036         WARN_ON(regulator_desc->ops->get_voltage &&
5037                 regulator_desc->ops->get_voltage_sel);
5038         WARN_ON(regulator_desc->ops->set_voltage &&
5039                 regulator_desc->ops->set_voltage_sel);
5040
5041         /* If we're using selectors we must implement list_voltage. */
5042         if (regulator_desc->ops->get_voltage_sel &&
5043             !regulator_desc->ops->list_voltage) {
5044                 ret = -EINVAL;
5045                 goto rinse;
5046         }
5047         if (regulator_desc->ops->set_voltage_sel &&
5048             !regulator_desc->ops->list_voltage) {
5049                 ret = -EINVAL;
5050                 goto rinse;
5051         }
5052
5053         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5054         if (rdev == NULL) {
5055                 ret = -ENOMEM;
5056                 goto rinse;
5057         }
5058
5059         /*
5060          * Duplicate the config so the driver could override it after
5061          * parsing init data.
5062          */
5063         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5064         if (config == NULL) {
5065                 kfree(rdev);
5066                 ret = -ENOMEM;
5067                 goto rinse;
5068         }
5069
5070         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5071                                                &rdev->dev.of_node);
5072
5073         /*
5074          * Sometimes not all resources are probed already so we need to take
5075          * that into account. This happens most the time if the ena_gpiod comes
5076          * from a gpio extender or something else.
5077          */
5078         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5079                 kfree(config);
5080                 kfree(rdev);
5081                 ret = -EPROBE_DEFER;
5082                 goto rinse;
5083         }
5084
5085         /*
5086          * We need to keep track of any GPIO descriptor coming from the
5087          * device tree until we have handled it over to the core. If the
5088          * config that was passed in to this function DOES NOT contain
5089          * a descriptor, and the config after this call DOES contain
5090          * a descriptor, we definitely got one from parsing the device
5091          * tree.
5092          */
5093         if (!cfg->ena_gpiod && config->ena_gpiod)
5094                 dangling_of_gpiod = true;
5095         if (!init_data) {
5096                 init_data = config->init_data;
5097                 rdev->dev.of_node = of_node_get(config->of_node);
5098         }
5099
5100         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5101         rdev->reg_data = config->driver_data;
5102         rdev->owner = regulator_desc->owner;
5103         rdev->desc = regulator_desc;
5104         if (config->regmap)
5105                 rdev->regmap = config->regmap;
5106         else if (dev_get_regmap(dev, NULL))
5107                 rdev->regmap = dev_get_regmap(dev, NULL);
5108         else if (dev->parent)
5109                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5110         INIT_LIST_HEAD(&rdev->consumer_list);
5111         INIT_LIST_HEAD(&rdev->list);
5112         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5113         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5114
5115         /* preform any regulator specific init */
5116         if (init_data && init_data->regulator_init) {
5117                 ret = init_data->regulator_init(rdev->reg_data);
5118                 if (ret < 0)
5119                         goto clean;
5120         }
5121
5122         if (config->ena_gpiod) {
5123                 mutex_lock(&regulator_list_mutex);
5124                 ret = regulator_ena_gpio_request(rdev, config);
5125                 mutex_unlock(&regulator_list_mutex);
5126                 if (ret != 0) {
5127                         rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5128                                  ret);
5129                         goto clean;
5130                 }
5131                 /* The regulator core took over the GPIO descriptor */
5132                 dangling_cfg_gpiod = false;
5133                 dangling_of_gpiod = false;
5134         }
5135
5136         /* register with sysfs */
5137         rdev->dev.class = &regulator_class;
5138         rdev->dev.parent = dev;
5139         dev_set_name(&rdev->dev, "regulator.%lu",
5140                     (unsigned long) atomic_inc_return(&regulator_no));
5141
5142         /* set regulator constraints */
5143         if (init_data)
5144                 constraints = &init_data->constraints;
5145
5146         if (init_data && init_data->supply_regulator)
5147                 rdev->supply_name = init_data->supply_regulator;
5148         else if (regulator_desc->supply_name)
5149                 rdev->supply_name = regulator_desc->supply_name;
5150
5151         /*
5152          * Attempt to resolve the regulator supply, if specified,
5153          * but don't return an error if we fail because we will try
5154          * to resolve it again later as more regulators are added.
5155          */
5156         if (regulator_resolve_supply(rdev))
5157                 rdev_dbg(rdev, "unable to resolve supply\n");
5158
5159         ret = set_machine_constraints(rdev, constraints);
5160         if (ret < 0)
5161                 goto wash;
5162
5163         mutex_lock(&regulator_list_mutex);
5164         ret = regulator_init_coupling(rdev);
5165         mutex_unlock(&regulator_list_mutex);
5166         if (ret < 0)
5167                 goto wash;
5168
5169         /* add consumers devices */
5170         if (init_data) {
5171                 mutex_lock(&regulator_list_mutex);
5172                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5173                         ret = set_consumer_device_supply(rdev,
5174                                 init_data->consumer_supplies[i].dev_name,
5175                                 init_data->consumer_supplies[i].supply);
5176                         if (ret < 0) {
5177                                 mutex_unlock(&regulator_list_mutex);
5178                                 dev_err(dev, "Failed to set supply %s\n",
5179                                         init_data->consumer_supplies[i].supply);
5180                                 goto unset_supplies;
5181                         }
5182                 }
5183                 mutex_unlock(&regulator_list_mutex);
5184         }
5185
5186         if (!rdev->desc->ops->get_voltage &&
5187             !rdev->desc->ops->list_voltage &&
5188             !rdev->desc->fixed_uV)
5189                 rdev->is_switch = true;
5190
5191         dev_set_drvdata(&rdev->dev, rdev);
5192         ret = device_register(&rdev->dev);
5193         if (ret != 0) {
5194                 reg_device_fail = true;
5195                 goto unset_supplies;
5196         }
5197
5198         rdev_init_debugfs(rdev);
5199
5200         /* try to resolve regulators coupling since a new one was registered */
5201         mutex_lock(&regulator_list_mutex);
5202         regulator_resolve_coupling(rdev);
5203         mutex_unlock(&regulator_list_mutex);
5204
5205         /* try to resolve regulators supply since a new one was registered */
5206         class_for_each_device(&regulator_class, NULL, NULL,
5207                               regulator_register_resolve_supply);
5208         kfree(config);
5209         return rdev;
5210
5211 unset_supplies:
5212         mutex_lock(&regulator_list_mutex);
5213         unset_regulator_supplies(rdev);
5214         regulator_remove_coupling(rdev);
5215         mutex_unlock(&regulator_list_mutex);
5216 wash:
5217         kfree(rdev->coupling_desc.coupled_rdevs);
5218         kfree(rdev->constraints);
5219         mutex_lock(&regulator_list_mutex);
5220         regulator_ena_gpio_free(rdev);
5221         mutex_unlock(&regulator_list_mutex);
5222 clean:
5223         if (dangling_of_gpiod)
5224                 gpiod_put(config->ena_gpiod);
5225         if (reg_device_fail)
5226                 put_device(&rdev->dev);
5227         else
5228                 kfree(rdev);
5229         kfree(config);
5230 rinse:
5231         if (dangling_cfg_gpiod)
5232                 gpiod_put(cfg->ena_gpiod);
5233         return ERR_PTR(ret);
5234 }
5235 EXPORT_SYMBOL_GPL(regulator_register);
5236
5237 /**
5238  * regulator_unregister - unregister regulator
5239  * @rdev: regulator to unregister
5240  *
5241  * Called by regulator drivers to unregister a regulator.
5242  */
5243 void regulator_unregister(struct regulator_dev *rdev)
5244 {
5245         if (rdev == NULL)
5246                 return;
5247
5248         if (rdev->supply) {
5249                 while (rdev->use_count--)
5250                         regulator_disable(rdev->supply);
5251                 regulator_put(rdev->supply);
5252         }
5253
5254         flush_work(&rdev->disable_work.work);
5255
5256         mutex_lock(&regulator_list_mutex);
5257
5258         debugfs_remove_recursive(rdev->debugfs);
5259         WARN_ON(rdev->open_count);
5260         regulator_remove_coupling(rdev);
5261         unset_regulator_supplies(rdev);
5262         list_del(&rdev->list);
5263         regulator_ena_gpio_free(rdev);
5264         device_unregister(&rdev->dev);
5265
5266         mutex_unlock(&regulator_list_mutex);
5267 }
5268 EXPORT_SYMBOL_GPL(regulator_unregister);
5269
5270 #ifdef CONFIG_SUSPEND
5271 /**
5272  * regulator_suspend - prepare regulators for system wide suspend
5273  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5274  *
5275  * Configure each regulator with it's suspend operating parameters for state.
5276  */
5277 static int regulator_suspend(struct device *dev)
5278 {
5279         struct regulator_dev *rdev = dev_to_rdev(dev);
5280         suspend_state_t state = pm_suspend_target_state;
5281         int ret;
5282
5283         regulator_lock(rdev);
5284         ret = suspend_set_state(rdev, state);
5285         regulator_unlock(rdev);
5286
5287         return ret;
5288 }
5289
5290 static int regulator_resume(struct device *dev)
5291 {
5292         suspend_state_t state = pm_suspend_target_state;
5293         struct regulator_dev *rdev = dev_to_rdev(dev);
5294         struct regulator_state *rstate;
5295         int ret = 0;
5296
5297         rstate = regulator_get_suspend_state(rdev, state);
5298         if (rstate == NULL)
5299                 return 0;
5300
5301         regulator_lock(rdev);
5302
5303         if (rdev->desc->ops->resume &&
5304             (rstate->enabled == ENABLE_IN_SUSPEND ||
5305              rstate->enabled == DISABLE_IN_SUSPEND))
5306                 ret = rdev->desc->ops->resume(rdev);
5307
5308         regulator_unlock(rdev);
5309
5310         return ret;
5311 }
5312 #else /* !CONFIG_SUSPEND */
5313
5314 #define regulator_suspend       NULL
5315 #define regulator_resume        NULL
5316
5317 #endif /* !CONFIG_SUSPEND */
5318
5319 #ifdef CONFIG_PM
5320 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5321         .suspend        = regulator_suspend,
5322         .resume         = regulator_resume,
5323 };
5324 #endif
5325
5326 struct class regulator_class = {
5327         .name = "regulator",
5328         .dev_release = regulator_dev_release,
5329         .dev_groups = regulator_dev_groups,
5330 #ifdef CONFIG_PM
5331         .pm = &regulator_pm_ops,
5332 #endif
5333 };
5334 /**
5335  * regulator_has_full_constraints - the system has fully specified constraints
5336  *
5337  * Calling this function will cause the regulator API to disable all
5338  * regulators which have a zero use count and don't have an always_on
5339  * constraint in a late_initcall.
5340  *
5341  * The intention is that this will become the default behaviour in a
5342  * future kernel release so users are encouraged to use this facility
5343  * now.
5344  */
5345 void regulator_has_full_constraints(void)
5346 {
5347         has_full_constraints = 1;
5348 }
5349 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5350
5351 /**
5352  * rdev_get_drvdata - get rdev regulator driver data
5353  * @rdev: regulator
5354  *
5355  * Get rdev regulator driver private data. This call can be used in the
5356  * regulator driver context.
5357  */
5358 void *rdev_get_drvdata(struct regulator_dev *rdev)
5359 {
5360         return rdev->reg_data;
5361 }
5362 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5363
5364 /**
5365  * regulator_get_drvdata - get regulator driver data
5366  * @regulator: regulator
5367  *
5368  * Get regulator driver private data. This call can be used in the consumer
5369  * driver context when non API regulator specific functions need to be called.
5370  */
5371 void *regulator_get_drvdata(struct regulator *regulator)
5372 {
5373         return regulator->rdev->reg_data;
5374 }
5375 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5376
5377 /**
5378  * regulator_set_drvdata - set regulator driver data
5379  * @regulator: regulator
5380  * @data: data
5381  */
5382 void regulator_set_drvdata(struct regulator *regulator, void *data)
5383 {
5384         regulator->rdev->reg_data = data;
5385 }
5386 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5387
5388 /**
5389  * regulator_get_id - get regulator ID
5390  * @rdev: regulator
5391  */
5392 int rdev_get_id(struct regulator_dev *rdev)
5393 {
5394         return rdev->desc->id;
5395 }
5396 EXPORT_SYMBOL_GPL(rdev_get_id);
5397
5398 struct device *rdev_get_dev(struct regulator_dev *rdev)
5399 {
5400         return &rdev->dev;
5401 }
5402 EXPORT_SYMBOL_GPL(rdev_get_dev);
5403
5404 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5405 {
5406         return rdev->regmap;
5407 }
5408 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5409
5410 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5411 {
5412         return reg_init_data->driver_data;
5413 }
5414 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5415
5416 #ifdef CONFIG_DEBUG_FS
5417 static int supply_map_show(struct seq_file *sf, void *data)
5418 {
5419         struct regulator_map *map;
5420
5421         list_for_each_entry(map, &regulator_map_list, list) {
5422                 seq_printf(sf, "%s -> %s.%s\n",
5423                                 rdev_get_name(map->regulator), map->dev_name,
5424                                 map->supply);
5425         }
5426
5427         return 0;
5428 }
5429 DEFINE_SHOW_ATTRIBUTE(supply_map);
5430
5431 struct summary_data {
5432         struct seq_file *s;
5433         struct regulator_dev *parent;
5434         int level;
5435 };
5436
5437 static void regulator_summary_show_subtree(struct seq_file *s,
5438                                            struct regulator_dev *rdev,
5439                                            int level);
5440
5441 static int regulator_summary_show_children(struct device *dev, void *data)
5442 {
5443         struct regulator_dev *rdev = dev_to_rdev(dev);
5444         struct summary_data *summary_data = data;
5445
5446         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5447                 regulator_summary_show_subtree(summary_data->s, rdev,
5448                                                summary_data->level + 1);
5449
5450         return 0;
5451 }
5452
5453 static void regulator_summary_show_subtree(struct seq_file *s,
5454                                            struct regulator_dev *rdev,
5455                                            int level)
5456 {
5457         struct regulation_constraints *c;
5458         struct regulator *consumer;
5459         struct summary_data summary_data;
5460         unsigned int opmode;
5461
5462         if (!rdev)
5463                 return;
5464
5465         opmode = _regulator_get_mode_unlocked(rdev);
5466         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5467                    level * 3 + 1, "",
5468                    30 - level * 3, rdev_get_name(rdev),
5469                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5470                    regulator_opmode_to_str(opmode));
5471
5472         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5473         seq_printf(s, "%5dmA ",
5474                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5475
5476         c = rdev->constraints;
5477         if (c) {
5478                 switch (rdev->desc->type) {
5479                 case REGULATOR_VOLTAGE:
5480                         seq_printf(s, "%5dmV %5dmV ",
5481                                    c->min_uV / 1000, c->max_uV / 1000);
5482                         break;
5483                 case REGULATOR_CURRENT:
5484                         seq_printf(s, "%5dmA %5dmA ",
5485                                    c->min_uA / 1000, c->max_uA / 1000);
5486                         break;
5487                 }
5488         }
5489
5490         seq_puts(s, "\n");
5491
5492         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5493                 if (consumer->dev && consumer->dev->class == &regulator_class)
5494                         continue;
5495
5496                 seq_printf(s, "%*s%-*s ",
5497                            (level + 1) * 3 + 1, "",
5498                            30 - (level + 1) * 3,
5499                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5500
5501                 switch (rdev->desc->type) {
5502                 case REGULATOR_VOLTAGE:
5503                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5504                                    consumer->enable_count,
5505                                    consumer->uA_load / 1000,
5506                                    consumer->uA_load && !consumer->enable_count ?
5507                                    '*' : ' ',
5508                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5509                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5510                         break;
5511                 case REGULATOR_CURRENT:
5512                         break;
5513                 }
5514
5515                 seq_puts(s, "\n");
5516         }
5517
5518         summary_data.s = s;
5519         summary_data.level = level;
5520         summary_data.parent = rdev;
5521
5522         class_for_each_device(&regulator_class, NULL, &summary_data,
5523                               regulator_summary_show_children);
5524 }
5525
5526 struct summary_lock_data {
5527         struct ww_acquire_ctx *ww_ctx;
5528         struct regulator_dev **new_contended_rdev;
5529         struct regulator_dev **old_contended_rdev;
5530 };
5531
5532 static int regulator_summary_lock_one(struct device *dev, void *data)
5533 {
5534         struct regulator_dev *rdev = dev_to_rdev(dev);
5535         struct summary_lock_data *lock_data = data;
5536         int ret = 0;
5537
5538         if (rdev != *lock_data->old_contended_rdev) {
5539                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5540
5541                 if (ret == -EDEADLK)
5542                         *lock_data->new_contended_rdev = rdev;
5543                 else
5544                         WARN_ON_ONCE(ret);
5545         } else {
5546                 *lock_data->old_contended_rdev = NULL;
5547         }
5548
5549         return ret;
5550 }
5551
5552 static int regulator_summary_unlock_one(struct device *dev, void *data)
5553 {
5554         struct regulator_dev *rdev = dev_to_rdev(dev);
5555         struct summary_lock_data *lock_data = data;
5556
5557         if (lock_data) {
5558                 if (rdev == *lock_data->new_contended_rdev)
5559                         return -EDEADLK;
5560         }
5561
5562         regulator_unlock(rdev);
5563
5564         return 0;
5565 }
5566
5567 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5568                                       struct regulator_dev **new_contended_rdev,
5569                                       struct regulator_dev **old_contended_rdev)
5570 {
5571         struct summary_lock_data lock_data;
5572         int ret;
5573
5574         lock_data.ww_ctx = ww_ctx;
5575         lock_data.new_contended_rdev = new_contended_rdev;
5576         lock_data.old_contended_rdev = old_contended_rdev;
5577
5578         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5579                                     regulator_summary_lock_one);
5580         if (ret)
5581                 class_for_each_device(&regulator_class, NULL, &lock_data,
5582                                       regulator_summary_unlock_one);
5583
5584         return ret;
5585 }
5586
5587 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5588 {
5589         struct regulator_dev *new_contended_rdev = NULL;
5590         struct regulator_dev *old_contended_rdev = NULL;
5591         int err;
5592
5593         mutex_lock(&regulator_list_mutex);
5594
5595         ww_acquire_init(ww_ctx, &regulator_ww_class);
5596
5597         do {
5598                 if (new_contended_rdev) {
5599                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5600                         old_contended_rdev = new_contended_rdev;
5601                         old_contended_rdev->ref_cnt++;
5602                 }
5603
5604                 err = regulator_summary_lock_all(ww_ctx,
5605                                                  &new_contended_rdev,
5606                                                  &old_contended_rdev);
5607
5608                 if (old_contended_rdev)
5609                         regulator_unlock(old_contended_rdev);
5610
5611         } while (err == -EDEADLK);
5612
5613         ww_acquire_done(ww_ctx);
5614 }
5615
5616 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5617 {
5618         class_for_each_device(&regulator_class, NULL, NULL,
5619                               regulator_summary_unlock_one);
5620         ww_acquire_fini(ww_ctx);
5621
5622         mutex_unlock(&regulator_list_mutex);
5623 }
5624
5625 static int regulator_summary_show_roots(struct device *dev, void *data)
5626 {
5627         struct regulator_dev *rdev = dev_to_rdev(dev);
5628         struct seq_file *s = data;
5629
5630         if (!rdev->supply)
5631                 regulator_summary_show_subtree(s, rdev, 0);
5632
5633         return 0;
5634 }
5635
5636 static int regulator_summary_show(struct seq_file *s, void *data)
5637 {
5638         struct ww_acquire_ctx ww_ctx;
5639
5640         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5641         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5642
5643         regulator_summary_lock(&ww_ctx);
5644
5645         class_for_each_device(&regulator_class, NULL, s,
5646                               regulator_summary_show_roots);
5647
5648         regulator_summary_unlock(&ww_ctx);
5649
5650         return 0;
5651 }
5652 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5653 #endif /* CONFIG_DEBUG_FS */
5654
5655 static int __init regulator_init(void)
5656 {
5657         int ret;
5658
5659         ret = class_register(&regulator_class);
5660
5661         debugfs_root = debugfs_create_dir("regulator", NULL);
5662         if (!debugfs_root)
5663                 pr_warn("regulator: Failed to create debugfs directory\n");
5664
5665 #ifdef CONFIG_DEBUG_FS
5666         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5667                             &supply_map_fops);
5668
5669         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5670                             NULL, &regulator_summary_fops);
5671 #endif
5672         regulator_dummy_init();
5673
5674         regulator_coupler_register(&generic_regulator_coupler);
5675
5676         return ret;
5677 }
5678
5679 /* init early to allow our consumers to complete system booting */
5680 core_initcall(regulator_init);
5681
5682 static int regulator_late_cleanup(struct device *dev, void *data)
5683 {
5684         struct regulator_dev *rdev = dev_to_rdev(dev);
5685         const struct regulator_ops *ops = rdev->desc->ops;
5686         struct regulation_constraints *c = rdev->constraints;
5687         int enabled, ret;
5688
5689         if (c && c->always_on)
5690                 return 0;
5691
5692         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5693                 return 0;
5694
5695         regulator_lock(rdev);
5696
5697         if (rdev->use_count)
5698                 goto unlock;
5699
5700         /* If we can't read the status assume it's on. */
5701         if (ops->is_enabled)
5702                 enabled = ops->is_enabled(rdev);
5703         else
5704                 enabled = 1;
5705
5706         if (!enabled)
5707                 goto unlock;
5708
5709         if (have_full_constraints()) {
5710                 /* We log since this may kill the system if it goes
5711                  * wrong. */
5712                 rdev_info(rdev, "disabling\n");
5713                 ret = _regulator_do_disable(rdev);
5714                 if (ret != 0)
5715                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5716         } else {
5717                 /* The intention is that in future we will
5718                  * assume that full constraints are provided
5719                  * so warn even if we aren't going to do
5720                  * anything here.
5721                  */
5722                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5723         }
5724
5725 unlock:
5726         regulator_unlock(rdev);
5727
5728         return 0;
5729 }
5730
5731 static void regulator_init_complete_work_function(struct work_struct *work)
5732 {
5733         /*
5734          * Regulators may had failed to resolve their input supplies
5735          * when were registered, either because the input supply was
5736          * not registered yet or because its parent device was not
5737          * bound yet. So attempt to resolve the input supplies for
5738          * pending regulators before trying to disable unused ones.
5739          */
5740         class_for_each_device(&regulator_class, NULL, NULL,
5741                               regulator_register_resolve_supply);
5742
5743         /* If we have a full configuration then disable any regulators
5744          * we have permission to change the status for and which are
5745          * not in use or always_on.  This is effectively the default
5746          * for DT and ACPI as they have full constraints.
5747          */
5748         class_for_each_device(&regulator_class, NULL, NULL,
5749                               regulator_late_cleanup);
5750 }
5751
5752 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5753                             regulator_init_complete_work_function);
5754
5755 static int __init regulator_init_complete(void)
5756 {
5757         int delay = driver_deferred_probe_timeout;
5758
5759         if (delay < 0)
5760                 delay = 0;
5761         /*
5762          * Since DT doesn't provide an idiomatic mechanism for
5763          * enabling full constraints and since it's much more natural
5764          * with DT to provide them just assume that a DT enabled
5765          * system has full constraints.
5766          */
5767         if (of_have_populated_dt())
5768                 has_full_constraints = true;
5769
5770         /*
5771          * If driver_deferred_probe_timeout is set, we punt
5772          * completion for that many seconds since systems like
5773          * distros will load many drivers from userspace so consumers
5774          * might not always be ready yet, this is particularly an
5775          * issue with laptops where this might bounce the display off
5776          * then on.  Ideally we'd get a notification from userspace
5777          * when this happens but we don't so just wait a bit and hope
5778          * we waited long enough.  It'd be better if we'd only do
5779          * this on systems that need it.
5780          */
5781         schedule_delayed_work(&regulator_init_complete_work, delay * HZ);
5782
5783         return 0;
5784 }
5785 late_initcall_sync(regulator_init_complete);