staging: exfat: Ensure we unlock upon error in ffsReadFile
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void _regulator_put(struct regulator *regulator);
109
110 const char *rdev_get_name(struct regulator_dev *rdev)
111 {
112         if (rdev->constraints && rdev->constraints->name)
113                 return rdev->constraints->name;
114         else if (rdev->desc->name)
115                 return rdev->desc->name;
116         else
117                 return "";
118 }
119
120 static bool have_full_constraints(void)
121 {
122         return has_full_constraints || of_have_populated_dt();
123 }
124
125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
126 {
127         if (!rdev->constraints) {
128                 rdev_err(rdev, "no constraints\n");
129                 return false;
130         }
131
132         if (rdev->constraints->valid_ops_mask & ops)
133                 return true;
134
135         return false;
136 }
137
138 /**
139  * regulator_lock_nested - lock a single regulator
140  * @rdev:               regulator source
141  * @ww_ctx:             w/w mutex acquire context
142  *
143  * This function can be called many times by one task on
144  * a single regulator and its mutex will be locked only
145  * once. If a task, which is calling this function is other
146  * than the one, which initially locked the mutex, it will
147  * wait on mutex.
148  */
149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
150                                         struct ww_acquire_ctx *ww_ctx)
151 {
152         bool lock = false;
153         int ret = 0;
154
155         mutex_lock(&regulator_nesting_mutex);
156
157         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158                 if (rdev->mutex_owner == current)
159                         rdev->ref_cnt++;
160                 else
161                         lock = true;
162
163                 if (lock) {
164                         mutex_unlock(&regulator_nesting_mutex);
165                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166                         mutex_lock(&regulator_nesting_mutex);
167                 }
168         } else {
169                 lock = true;
170         }
171
172         if (lock && ret != -EDEADLK) {
173                 rdev->ref_cnt++;
174                 rdev->mutex_owner = current;
175         }
176
177         mutex_unlock(&regulator_nesting_mutex);
178
179         return ret;
180 }
181
182 /**
183  * regulator_lock - lock a single regulator
184  * @rdev:               regulator source
185  *
186  * This function can be called many times by one task on
187  * a single regulator and its mutex will be locked only
188  * once. If a task, which is calling this function is other
189  * than the one, which initially locked the mutex, it will
190  * wait on mutex.
191  */
192 void regulator_lock(struct regulator_dev *rdev)
193 {
194         regulator_lock_nested(rdev, NULL);
195 }
196 EXPORT_SYMBOL_GPL(regulator_lock);
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218 EXPORT_SYMBOL_GPL(regulator_unlock);
219
220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221 {
222         struct regulator_dev *c_rdev;
223         int i;
224
225         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227
228                 if (rdev->supply->rdev == c_rdev)
229                         return true;
230         }
231
232         return false;
233 }
234
235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
236                                        unsigned int n_coupled)
237 {
238         struct regulator_dev *c_rdev;
239         int i;
240
241         for (i = n_coupled; i > 0; i--) {
242                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243
244                 if (!c_rdev)
245                         continue;
246
247                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248                         regulator_unlock_recursive(
249                                         c_rdev->supply->rdev,
250                                         c_rdev->coupling_desc.n_coupled);
251
252                 regulator_unlock(c_rdev);
253         }
254 }
255
256 static int regulator_lock_recursive(struct regulator_dev *rdev,
257                                     struct regulator_dev **new_contended_rdev,
258                                     struct regulator_dev **old_contended_rdev,
259                                     struct ww_acquire_ctx *ww_ctx)
260 {
261         struct regulator_dev *c_rdev;
262         int i, err;
263
264         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266
267                 if (!c_rdev)
268                         continue;
269
270                 if (c_rdev != *old_contended_rdev) {
271                         err = regulator_lock_nested(c_rdev, ww_ctx);
272                         if (err) {
273                                 if (err == -EDEADLK) {
274                                         *new_contended_rdev = c_rdev;
275                                         goto err_unlock;
276                                 }
277
278                                 /* shouldn't happen */
279                                 WARN_ON_ONCE(err != -EALREADY);
280                         }
281                 } else {
282                         *old_contended_rdev = NULL;
283                 }
284
285                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286                         err = regulator_lock_recursive(c_rdev->supply->rdev,
287                                                        new_contended_rdev,
288                                                        old_contended_rdev,
289                                                        ww_ctx);
290                         if (err) {
291                                 regulator_unlock(c_rdev);
292                                 goto err_unlock;
293                         }
294                 }
295         }
296
297         return 0;
298
299 err_unlock:
300         regulator_unlock_recursive(rdev, i);
301
302         return err;
303 }
304
305 /**
306  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307  *                              regulators
308  * @rdev:                       regulator source
309  * @ww_ctx:                     w/w mutex acquire context
310  *
311  * Unlock all regulators related with rdev by coupling or supplying.
312  */
313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
314                                        struct ww_acquire_ctx *ww_ctx)
315 {
316         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317         ww_acquire_fini(ww_ctx);
318 }
319
320 /**
321  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322  * @rdev:                       regulator source
323  * @ww_ctx:                     w/w mutex acquire context
324  *
325  * This function as a wrapper on regulator_lock_recursive(), which locks
326  * all regulators related with rdev by coupling or supplying.
327  */
328 static void regulator_lock_dependent(struct regulator_dev *rdev,
329                                      struct ww_acquire_ctx *ww_ctx)
330 {
331         struct regulator_dev *new_contended_rdev = NULL;
332         struct regulator_dev *old_contended_rdev = NULL;
333         int err;
334
335         mutex_lock(&regulator_list_mutex);
336
337         ww_acquire_init(ww_ctx, &regulator_ww_class);
338
339         do {
340                 if (new_contended_rdev) {
341                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342                         old_contended_rdev = new_contended_rdev;
343                         old_contended_rdev->ref_cnt++;
344                 }
345
346                 err = regulator_lock_recursive(rdev,
347                                                &new_contended_rdev,
348                                                &old_contended_rdev,
349                                                ww_ctx);
350
351                 if (old_contended_rdev)
352                         regulator_unlock(old_contended_rdev);
353
354         } while (err == -EDEADLK);
355
356         ww_acquire_done(ww_ctx);
357
358         mutex_unlock(&regulator_list_mutex);
359 }
360
361 /**
362  * of_get_child_regulator - get a child regulator device node
363  * based on supply name
364  * @parent: Parent device node
365  * @prop_name: Combination regulator supply name and "-supply"
366  *
367  * Traverse all child nodes.
368  * Extract the child regulator device node corresponding to the supply name.
369  * returns the device node corresponding to the regulator if found, else
370  * returns NULL.
371  */
372 static struct device_node *of_get_child_regulator(struct device_node *parent,
373                                                   const char *prop_name)
374 {
375         struct device_node *regnode = NULL;
376         struct device_node *child = NULL;
377
378         for_each_child_of_node(parent, child) {
379                 regnode = of_parse_phandle(child, prop_name, 0);
380
381                 if (!regnode) {
382                         regnode = of_get_child_regulator(child, prop_name);
383                         if (regnode)
384                                 goto err_node_put;
385                 } else {
386                         goto err_node_put;
387                 }
388         }
389         return NULL;
390
391 err_node_put:
392         of_node_put(child);
393         return regnode;
394 }
395
396 /**
397  * of_get_regulator - get a regulator device node based on supply name
398  * @dev: Device pointer for the consumer (of regulator) device
399  * @supply: regulator supply name
400  *
401  * Extract the regulator device node corresponding to the supply name.
402  * returns the device node corresponding to the regulator if found, else
403  * returns NULL.
404  */
405 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
406 {
407         struct device_node *regnode = NULL;
408         char prop_name[32]; /* 32 is max size of property name */
409
410         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
411
412         snprintf(prop_name, 32, "%s-supply", supply);
413         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
414
415         if (!regnode) {
416                 regnode = of_get_child_regulator(dev->of_node, prop_name);
417                 if (regnode)
418                         return regnode;
419
420                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421                                 prop_name, dev->of_node);
422                 return NULL;
423         }
424         return regnode;
425 }
426
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev *rdev,
429                             int *min_uV, int *max_uV)
430 {
431         BUG_ON(*min_uV > *max_uV);
432
433         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434                 rdev_err(rdev, "voltage operation not allowed\n");
435                 return -EPERM;
436         }
437
438         if (*max_uV > rdev->constraints->max_uV)
439                 *max_uV = rdev->constraints->max_uV;
440         if (*min_uV < rdev->constraints->min_uV)
441                 *min_uV = rdev->constraints->min_uV;
442
443         if (*min_uV > *max_uV) {
444                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445                          *min_uV, *max_uV);
446                 return -EINVAL;
447         }
448
449         return 0;
450 }
451
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state)
454 {
455         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
456 }
457
458 /* Make sure we select a voltage that suits the needs of all
459  * regulator consumers
460  */
461 int regulator_check_consumers(struct regulator_dev *rdev,
462                               int *min_uV, int *max_uV,
463                               suspend_state_t state)
464 {
465         struct regulator *regulator;
466         struct regulator_voltage *voltage;
467
468         list_for_each_entry(regulator, &rdev->consumer_list, list) {
469                 voltage = &regulator->voltage[state];
470                 /*
471                  * Assume consumers that didn't say anything are OK
472                  * with anything in the constraint range.
473                  */
474                 if (!voltage->min_uV && !voltage->max_uV)
475                         continue;
476
477                 if (*max_uV > voltage->max_uV)
478                         *max_uV = voltage->max_uV;
479                 if (*min_uV < voltage->min_uV)
480                         *min_uV = voltage->min_uV;
481         }
482
483         if (*min_uV > *max_uV) {
484                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
485                         *min_uV, *max_uV);
486                 return -EINVAL;
487         }
488
489         return 0;
490 }
491
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev *rdev,
494                                         int *min_uA, int *max_uA)
495 {
496         BUG_ON(*min_uA > *max_uA);
497
498         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499                 rdev_err(rdev, "current operation not allowed\n");
500                 return -EPERM;
501         }
502
503         if (*max_uA > rdev->constraints->max_uA)
504                 *max_uA = rdev->constraints->max_uA;
505         if (*min_uA < rdev->constraints->min_uA)
506                 *min_uA = rdev->constraints->min_uA;
507
508         if (*min_uA > *max_uA) {
509                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510                          *min_uA, *max_uA);
511                 return -EINVAL;
512         }
513
514         return 0;
515 }
516
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev *rdev,
519                                     unsigned int *mode)
520 {
521         switch (*mode) {
522         case REGULATOR_MODE_FAST:
523         case REGULATOR_MODE_NORMAL:
524         case REGULATOR_MODE_IDLE:
525         case REGULATOR_MODE_STANDBY:
526                 break;
527         default:
528                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
529                 return -EINVAL;
530         }
531
532         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533                 rdev_err(rdev, "mode operation not allowed\n");
534                 return -EPERM;
535         }
536
537         /* The modes are bitmasks, the most power hungry modes having
538          * the lowest values. If the requested mode isn't supported
539          * try higher modes. */
540         while (*mode) {
541                 if (rdev->constraints->valid_modes_mask & *mode)
542                         return 0;
543                 *mode /= 2;
544         }
545
546         return -EINVAL;
547 }
548
549 static inline struct regulator_state *
550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
551 {
552         if (rdev->constraints == NULL)
553                 return NULL;
554
555         switch (state) {
556         case PM_SUSPEND_STANDBY:
557                 return &rdev->constraints->state_standby;
558         case PM_SUSPEND_MEM:
559                 return &rdev->constraints->state_mem;
560         case PM_SUSPEND_MAX:
561                 return &rdev->constraints->state_disk;
562         default:
563                 return NULL;
564         }
565 }
566
567 static ssize_t regulator_uV_show(struct device *dev,
568                                 struct device_attribute *attr, char *buf)
569 {
570         struct regulator_dev *rdev = dev_get_drvdata(dev);
571         int uV;
572
573         regulator_lock(rdev);
574         uV = regulator_get_voltage_rdev(rdev);
575         regulator_unlock(rdev);
576
577         if (uV < 0)
578                 return uV;
579         return sprintf(buf, "%d\n", uV);
580 }
581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582
583 static ssize_t regulator_uA_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
589 }
590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591
592 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
593                          char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return sprintf(buf, "%s\n", rdev_get_name(rdev));
598 }
599 static DEVICE_ATTR_RO(name);
600
601 static const char *regulator_opmode_to_str(int mode)
602 {
603         switch (mode) {
604         case REGULATOR_MODE_FAST:
605                 return "fast";
606         case REGULATOR_MODE_NORMAL:
607                 return "normal";
608         case REGULATOR_MODE_IDLE:
609                 return "idle";
610         case REGULATOR_MODE_STANDBY:
611                 return "standby";
612         }
613         return "unknown";
614 }
615
616 static ssize_t regulator_print_opmode(char *buf, int mode)
617 {
618         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619 }
620
621 static ssize_t regulator_opmode_show(struct device *dev,
622                                     struct device_attribute *attr, char *buf)
623 {
624         struct regulator_dev *rdev = dev_get_drvdata(dev);
625
626         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
627 }
628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
629
630 static ssize_t regulator_print_state(char *buf, int state)
631 {
632         if (state > 0)
633                 return sprintf(buf, "enabled\n");
634         else if (state == 0)
635                 return sprintf(buf, "disabled\n");
636         else
637                 return sprintf(buf, "unknown\n");
638 }
639
640 static ssize_t regulator_state_show(struct device *dev,
641                                    struct device_attribute *attr, char *buf)
642 {
643         struct regulator_dev *rdev = dev_get_drvdata(dev);
644         ssize_t ret;
645
646         regulator_lock(rdev);
647         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648         regulator_unlock(rdev);
649
650         return ret;
651 }
652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
653
654 static ssize_t regulator_status_show(struct device *dev,
655                                    struct device_attribute *attr, char *buf)
656 {
657         struct regulator_dev *rdev = dev_get_drvdata(dev);
658         int status;
659         char *label;
660
661         status = rdev->desc->ops->get_status(rdev);
662         if (status < 0)
663                 return status;
664
665         switch (status) {
666         case REGULATOR_STATUS_OFF:
667                 label = "off";
668                 break;
669         case REGULATOR_STATUS_ON:
670                 label = "on";
671                 break;
672         case REGULATOR_STATUS_ERROR:
673                 label = "error";
674                 break;
675         case REGULATOR_STATUS_FAST:
676                 label = "fast";
677                 break;
678         case REGULATOR_STATUS_NORMAL:
679                 label = "normal";
680                 break;
681         case REGULATOR_STATUS_IDLE:
682                 label = "idle";
683                 break;
684         case REGULATOR_STATUS_STANDBY:
685                 label = "standby";
686                 break;
687         case REGULATOR_STATUS_BYPASS:
688                 label = "bypass";
689                 break;
690         case REGULATOR_STATUS_UNDEFINED:
691                 label = "undefined";
692                 break;
693         default:
694                 return -ERANGE;
695         }
696
697         return sprintf(buf, "%s\n", label);
698 }
699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
700
701 static ssize_t regulator_min_uA_show(struct device *dev,
702                                     struct device_attribute *attr, char *buf)
703 {
704         struct regulator_dev *rdev = dev_get_drvdata(dev);
705
706         if (!rdev->constraints)
707                 return sprintf(buf, "constraint not defined\n");
708
709         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
710 }
711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712
713 static ssize_t regulator_max_uA_show(struct device *dev,
714                                     struct device_attribute *attr, char *buf)
715 {
716         struct regulator_dev *rdev = dev_get_drvdata(dev);
717
718         if (!rdev->constraints)
719                 return sprintf(buf, "constraint not defined\n");
720
721         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
722 }
723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724
725 static ssize_t regulator_min_uV_show(struct device *dev,
726                                     struct device_attribute *attr, char *buf)
727 {
728         struct regulator_dev *rdev = dev_get_drvdata(dev);
729
730         if (!rdev->constraints)
731                 return sprintf(buf, "constraint not defined\n");
732
733         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
734 }
735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736
737 static ssize_t regulator_max_uV_show(struct device *dev,
738                                     struct device_attribute *attr, char *buf)
739 {
740         struct regulator_dev *rdev = dev_get_drvdata(dev);
741
742         if (!rdev->constraints)
743                 return sprintf(buf, "constraint not defined\n");
744
745         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
746 }
747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748
749 static ssize_t regulator_total_uA_show(struct device *dev,
750                                       struct device_attribute *attr, char *buf)
751 {
752         struct regulator_dev *rdev = dev_get_drvdata(dev);
753         struct regulator *regulator;
754         int uA = 0;
755
756         regulator_lock(rdev);
757         list_for_each_entry(regulator, &rdev->consumer_list, list) {
758                 if (regulator->enable_count)
759                         uA += regulator->uA_load;
760         }
761         regulator_unlock(rdev);
762         return sprintf(buf, "%d\n", uA);
763 }
764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765
766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
767                               char *buf)
768 {
769         struct regulator_dev *rdev = dev_get_drvdata(dev);
770         return sprintf(buf, "%d\n", rdev->use_count);
771 }
772 static DEVICE_ATTR_RO(num_users);
773
774 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
775                          char *buf)
776 {
777         struct regulator_dev *rdev = dev_get_drvdata(dev);
778
779         switch (rdev->desc->type) {
780         case REGULATOR_VOLTAGE:
781                 return sprintf(buf, "voltage\n");
782         case REGULATOR_CURRENT:
783                 return sprintf(buf, "current\n");
784         }
785         return sprintf(buf, "unknown\n");
786 }
787 static DEVICE_ATTR_RO(type);
788
789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790                                 struct device_attribute *attr, char *buf)
791 {
792         struct regulator_dev *rdev = dev_get_drvdata(dev);
793
794         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
795 }
796 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797                 regulator_suspend_mem_uV_show, NULL);
798
799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800                                 struct device_attribute *attr, char *buf)
801 {
802         struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
805 }
806 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807                 regulator_suspend_disk_uV_show, NULL);
808
809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810                                 struct device_attribute *attr, char *buf)
811 {
812         struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
815 }
816 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817                 regulator_suspend_standby_uV_show, NULL);
818
819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820                                 struct device_attribute *attr, char *buf)
821 {
822         struct regulator_dev *rdev = dev_get_drvdata(dev);
823
824         return regulator_print_opmode(buf,
825                 rdev->constraints->state_mem.mode);
826 }
827 static DEVICE_ATTR(suspend_mem_mode, 0444,
828                 regulator_suspend_mem_mode_show, NULL);
829
830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831                                 struct device_attribute *attr, char *buf)
832 {
833         struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835         return regulator_print_opmode(buf,
836                 rdev->constraints->state_disk.mode);
837 }
838 static DEVICE_ATTR(suspend_disk_mode, 0444,
839                 regulator_suspend_disk_mode_show, NULL);
840
841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842                                 struct device_attribute *attr, char *buf)
843 {
844         struct regulator_dev *rdev = dev_get_drvdata(dev);
845
846         return regulator_print_opmode(buf,
847                 rdev->constraints->state_standby.mode);
848 }
849 static DEVICE_ATTR(suspend_standby_mode, 0444,
850                 regulator_suspend_standby_mode_show, NULL);
851
852 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853                                    struct device_attribute *attr, char *buf)
854 {
855         struct regulator_dev *rdev = dev_get_drvdata(dev);
856
857         return regulator_print_state(buf,
858                         rdev->constraints->state_mem.enabled);
859 }
860 static DEVICE_ATTR(suspend_mem_state, 0444,
861                 regulator_suspend_mem_state_show, NULL);
862
863 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864                                    struct device_attribute *attr, char *buf)
865 {
866         struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868         return regulator_print_state(buf,
869                         rdev->constraints->state_disk.enabled);
870 }
871 static DEVICE_ATTR(suspend_disk_state, 0444,
872                 regulator_suspend_disk_state_show, NULL);
873
874 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875                                    struct device_attribute *attr, char *buf)
876 {
877         struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879         return regulator_print_state(buf,
880                         rdev->constraints->state_standby.enabled);
881 }
882 static DEVICE_ATTR(suspend_standby_state, 0444,
883                 regulator_suspend_standby_state_show, NULL);
884
885 static ssize_t regulator_bypass_show(struct device *dev,
886                                      struct device_attribute *attr, char *buf)
887 {
888         struct regulator_dev *rdev = dev_get_drvdata(dev);
889         const char *report;
890         bool bypass;
891         int ret;
892
893         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
894
895         if (ret != 0)
896                 report = "unknown";
897         else if (bypass)
898                 report = "enabled";
899         else
900                 report = "disabled";
901
902         return sprintf(buf, "%s\n", report);
903 }
904 static DEVICE_ATTR(bypass, 0444,
905                    regulator_bypass_show, NULL);
906
907 /* Calculate the new optimum regulator operating mode based on the new total
908  * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev *rdev)
910 {
911         struct regulator *sibling;
912         int current_uA = 0, output_uV, input_uV, err;
913         unsigned int mode;
914
915         /*
916          * first check to see if we can set modes at all, otherwise just
917          * tell the consumer everything is OK.
918          */
919         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920                 rdev_dbg(rdev, "DRMS operation not allowed\n");
921                 return 0;
922         }
923
924         if (!rdev->desc->ops->get_optimum_mode &&
925             !rdev->desc->ops->set_load)
926                 return 0;
927
928         if (!rdev->desc->ops->set_mode &&
929             !rdev->desc->ops->set_load)
930                 return -EINVAL;
931
932         /* calc total requested load */
933         list_for_each_entry(sibling, &rdev->consumer_list, list) {
934                 if (sibling->enable_count)
935                         current_uA += sibling->uA_load;
936         }
937
938         current_uA += rdev->constraints->system_load;
939
940         if (rdev->desc->ops->set_load) {
941                 /* set the optimum mode for our new total regulator load */
942                 err = rdev->desc->ops->set_load(rdev, current_uA);
943                 if (err < 0)
944                         rdev_err(rdev, "failed to set load %d\n", current_uA);
945         } else {
946                 /* get output voltage */
947                 output_uV = regulator_get_voltage_rdev(rdev);
948                 if (output_uV <= 0) {
949                         rdev_err(rdev, "invalid output voltage found\n");
950                         return -EINVAL;
951                 }
952
953                 /* get input voltage */
954                 input_uV = 0;
955                 if (rdev->supply)
956                         input_uV = regulator_get_voltage(rdev->supply);
957                 if (input_uV <= 0)
958                         input_uV = rdev->constraints->input_uV;
959                 if (input_uV <= 0) {
960                         rdev_err(rdev, "invalid input voltage found\n");
961                         return -EINVAL;
962                 }
963
964                 /* now get the optimum mode for our new total regulator load */
965                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966                                                          output_uV, current_uA);
967
968                 /* check the new mode is allowed */
969                 err = regulator_mode_constrain(rdev, &mode);
970                 if (err < 0) {
971                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972                                  current_uA, input_uV, output_uV);
973                         return err;
974                 }
975
976                 err = rdev->desc->ops->set_mode(rdev, mode);
977                 if (err < 0)
978                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979         }
980
981         return err;
982 }
983
984 static int suspend_set_state(struct regulator_dev *rdev,
985                                     suspend_state_t state)
986 {
987         int ret = 0;
988         struct regulator_state *rstate;
989
990         rstate = regulator_get_suspend_state(rdev, state);
991         if (rstate == NULL)
992                 return 0;
993
994         /* If we have no suspend mode configuration don't set anything;
995          * only warn if the driver implements set_suspend_voltage or
996          * set_suspend_mode callback.
997          */
998         if (rstate->enabled != ENABLE_IN_SUSPEND &&
999             rstate->enabled != DISABLE_IN_SUSPEND) {
1000                 if (rdev->desc->ops->set_suspend_voltage ||
1001                     rdev->desc->ops->set_suspend_mode)
1002                         rdev_warn(rdev, "No configuration\n");
1003                 return 0;
1004         }
1005
1006         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007                 rdev->desc->ops->set_suspend_enable)
1008                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1009         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010                 rdev->desc->ops->set_suspend_disable)
1011                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1012         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013                 ret = 0;
1014
1015         if (ret < 0) {
1016                 rdev_err(rdev, "failed to enabled/disable\n");
1017                 return ret;
1018         }
1019
1020         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022                 if (ret < 0) {
1023                         rdev_err(rdev, "failed to set voltage\n");
1024                         return ret;
1025                 }
1026         }
1027
1028         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030                 if (ret < 0) {
1031                         rdev_err(rdev, "failed to set mode\n");
1032                         return ret;
1033                 }
1034         }
1035
1036         return ret;
1037 }
1038
1039 static void print_constraints(struct regulator_dev *rdev)
1040 {
1041         struct regulation_constraints *constraints = rdev->constraints;
1042         char buf[160] = "";
1043         size_t len = sizeof(buf) - 1;
1044         int count = 0;
1045         int ret;
1046
1047         if (constraints->min_uV && constraints->max_uV) {
1048                 if (constraints->min_uV == constraints->max_uV)
1049                         count += scnprintf(buf + count, len - count, "%d mV ",
1050                                            constraints->min_uV / 1000);
1051                 else
1052                         count += scnprintf(buf + count, len - count,
1053                                            "%d <--> %d mV ",
1054                                            constraints->min_uV / 1000,
1055                                            constraints->max_uV / 1000);
1056         }
1057
1058         if (!constraints->min_uV ||
1059             constraints->min_uV != constraints->max_uV) {
1060                 ret = regulator_get_voltage_rdev(rdev);
1061                 if (ret > 0)
1062                         count += scnprintf(buf + count, len - count,
1063                                            "at %d mV ", ret / 1000);
1064         }
1065
1066         if (constraints->uV_offset)
1067                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1068                                    constraints->uV_offset / 1000);
1069
1070         if (constraints->min_uA && constraints->max_uA) {
1071                 if (constraints->min_uA == constraints->max_uA)
1072                         count += scnprintf(buf + count, len - count, "%d mA ",
1073                                            constraints->min_uA / 1000);
1074                 else
1075                         count += scnprintf(buf + count, len - count,
1076                                            "%d <--> %d mA ",
1077                                            constraints->min_uA / 1000,
1078                                            constraints->max_uA / 1000);
1079         }
1080
1081         if (!constraints->min_uA ||
1082             constraints->min_uA != constraints->max_uA) {
1083                 ret = _regulator_get_current_limit(rdev);
1084                 if (ret > 0)
1085                         count += scnprintf(buf + count, len - count,
1086                                            "at %d mA ", ret / 1000);
1087         }
1088
1089         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090                 count += scnprintf(buf + count, len - count, "fast ");
1091         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092                 count += scnprintf(buf + count, len - count, "normal ");
1093         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094                 count += scnprintf(buf + count, len - count, "idle ");
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096                 count += scnprintf(buf + count, len - count, "standby");
1097
1098         if (!count)
1099                 scnprintf(buf, len, "no parameters");
1100
1101         rdev_dbg(rdev, "%s\n", buf);
1102
1103         if ((constraints->min_uV != constraints->max_uV) &&
1104             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105                 rdev_warn(rdev,
1106                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 }
1108
1109 static int machine_constraints_voltage(struct regulator_dev *rdev,
1110         struct regulation_constraints *constraints)
1111 {
1112         const struct regulator_ops *ops = rdev->desc->ops;
1113         int ret;
1114
1115         /* do we need to apply the constraint voltage */
1116         if (rdev->constraints->apply_uV &&
1117             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118                 int target_min, target_max;
1119                 int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121                 if (current_uV == -ENOTRECOVERABLE) {
1122                         /* This regulator can't be read and must be initialized */
1123                         rdev_info(rdev, "Setting %d-%duV\n",
1124                                   rdev->constraints->min_uV,
1125                                   rdev->constraints->max_uV);
1126                         _regulator_do_set_voltage(rdev,
1127                                                   rdev->constraints->min_uV,
1128                                                   rdev->constraints->max_uV);
1129                         current_uV = regulator_get_voltage_rdev(rdev);
1130                 }
1131
1132                 if (current_uV < 0) {
1133                         rdev_err(rdev,
1134                                  "failed to get the current voltage(%d)\n",
1135                                  current_uV);
1136                         return current_uV;
1137                 }
1138
1139                 /*
1140                  * If we're below the minimum voltage move up to the
1141                  * minimum voltage, if we're above the maximum voltage
1142                  * then move down to the maximum.
1143                  */
1144                 target_min = current_uV;
1145                 target_max = current_uV;
1146
1147                 if (current_uV < rdev->constraints->min_uV) {
1148                         target_min = rdev->constraints->min_uV;
1149                         target_max = rdev->constraints->min_uV;
1150                 }
1151
1152                 if (current_uV > rdev->constraints->max_uV) {
1153                         target_min = rdev->constraints->max_uV;
1154                         target_max = rdev->constraints->max_uV;
1155                 }
1156
1157                 if (target_min != current_uV || target_max != current_uV) {
1158                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159                                   current_uV, target_min, target_max);
1160                         ret = _regulator_do_set_voltage(
1161                                 rdev, target_min, target_max);
1162                         if (ret < 0) {
1163                                 rdev_err(rdev,
1164                                         "failed to apply %d-%duV constraint(%d)\n",
1165                                         target_min, target_max, ret);
1166                                 return ret;
1167                         }
1168                 }
1169         }
1170
1171         /* constrain machine-level voltage specs to fit
1172          * the actual range supported by this regulator.
1173          */
1174         if (ops->list_voltage && rdev->desc->n_voltages) {
1175                 int     count = rdev->desc->n_voltages;
1176                 int     i;
1177                 int     min_uV = INT_MAX;
1178                 int     max_uV = INT_MIN;
1179                 int     cmin = constraints->min_uV;
1180                 int     cmax = constraints->max_uV;
1181
1182                 /* it's safe to autoconfigure fixed-voltage supplies
1183                    and the constraints are used by list_voltage. */
1184                 if (count == 1 && !cmin) {
1185                         cmin = 1;
1186                         cmax = INT_MAX;
1187                         constraints->min_uV = cmin;
1188                         constraints->max_uV = cmax;
1189                 }
1190
1191                 /* voltage constraints are optional */
1192                 if ((cmin == 0) && (cmax == 0))
1193                         return 0;
1194
1195                 /* else require explicit machine-level constraints */
1196                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197                         rdev_err(rdev, "invalid voltage constraints\n");
1198                         return -EINVAL;
1199                 }
1200
1201                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202                 for (i = 0; i < count; i++) {
1203                         int     value;
1204
1205                         value = ops->list_voltage(rdev, i);
1206                         if (value <= 0)
1207                                 continue;
1208
1209                         /* maybe adjust [min_uV..max_uV] */
1210                         if (value >= cmin && value < min_uV)
1211                                 min_uV = value;
1212                         if (value <= cmax && value > max_uV)
1213                                 max_uV = value;
1214                 }
1215
1216                 /* final: [min_uV..max_uV] valid iff constraints valid */
1217                 if (max_uV < min_uV) {
1218                         rdev_err(rdev,
1219                                  "unsupportable voltage constraints %u-%uuV\n",
1220                                  min_uV, max_uV);
1221                         return -EINVAL;
1222                 }
1223
1224                 /* use regulator's subset of machine constraints */
1225                 if (constraints->min_uV < min_uV) {
1226                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227                                  constraints->min_uV, min_uV);
1228                         constraints->min_uV = min_uV;
1229                 }
1230                 if (constraints->max_uV > max_uV) {
1231                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232                                  constraints->max_uV, max_uV);
1233                         constraints->max_uV = max_uV;
1234                 }
1235         }
1236
1237         return 0;
1238 }
1239
1240 static int machine_constraints_current(struct regulator_dev *rdev,
1241         struct regulation_constraints *constraints)
1242 {
1243         const struct regulator_ops *ops = rdev->desc->ops;
1244         int ret;
1245
1246         if (!constraints->min_uA && !constraints->max_uA)
1247                 return 0;
1248
1249         if (constraints->min_uA > constraints->max_uA) {
1250                 rdev_err(rdev, "Invalid current constraints\n");
1251                 return -EINVAL;
1252         }
1253
1254         if (!ops->set_current_limit || !ops->get_current_limit) {
1255                 rdev_warn(rdev, "Operation of current configuration missing\n");
1256                 return 0;
1257         }
1258
1259         /* Set regulator current in constraints range */
1260         ret = ops->set_current_limit(rdev, constraints->min_uA,
1261                         constraints->max_uA);
1262         if (ret < 0) {
1263                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1264                 return ret;
1265         }
1266
1267         return 0;
1268 }
1269
1270 static int _regulator_do_enable(struct regulator_dev *rdev);
1271
1272 /**
1273  * set_machine_constraints - sets regulator constraints
1274  * @rdev: regulator source
1275  * @constraints: constraints to apply
1276  *
1277  * Allows platform initialisation code to define and constrain
1278  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1279  * Constraints *must* be set by platform code in order for some
1280  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1281  * set_mode.
1282  */
1283 static int set_machine_constraints(struct regulator_dev *rdev,
1284         const struct regulation_constraints *constraints)
1285 {
1286         int ret = 0;
1287         const struct regulator_ops *ops = rdev->desc->ops;
1288
1289         if (constraints)
1290                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1291                                             GFP_KERNEL);
1292         else
1293                 rdev->constraints = kzalloc(sizeof(*constraints),
1294                                             GFP_KERNEL);
1295         if (!rdev->constraints)
1296                 return -ENOMEM;
1297
1298         ret = machine_constraints_voltage(rdev, rdev->constraints);
1299         if (ret != 0)
1300                 return ret;
1301
1302         ret = machine_constraints_current(rdev, rdev->constraints);
1303         if (ret != 0)
1304                 return ret;
1305
1306         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307                 ret = ops->set_input_current_limit(rdev,
1308                                                    rdev->constraints->ilim_uA);
1309                 if (ret < 0) {
1310                         rdev_err(rdev, "failed to set input limit\n");
1311                         return ret;
1312                 }
1313         }
1314
1315         /* do we need to setup our suspend state */
1316         if (rdev->constraints->initial_state) {
1317                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318                 if (ret < 0) {
1319                         rdev_err(rdev, "failed to set suspend state\n");
1320                         return ret;
1321                 }
1322         }
1323
1324         if (rdev->constraints->initial_mode) {
1325                 if (!ops->set_mode) {
1326                         rdev_err(rdev, "no set_mode operation\n");
1327                         return -EINVAL;
1328                 }
1329
1330                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331                 if (ret < 0) {
1332                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333                         return ret;
1334                 }
1335         } else if (rdev->constraints->system_load) {
1336                 /*
1337                  * We'll only apply the initial system load if an
1338                  * initial mode wasn't specified.
1339                  */
1340                 drms_uA_update(rdev);
1341         }
1342
1343         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344                 && ops->set_ramp_delay) {
1345                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1346                 if (ret < 0) {
1347                         rdev_err(rdev, "failed to set ramp_delay\n");
1348                         return ret;
1349                 }
1350         }
1351
1352         if (rdev->constraints->pull_down && ops->set_pull_down) {
1353                 ret = ops->set_pull_down(rdev);
1354                 if (ret < 0) {
1355                         rdev_err(rdev, "failed to set pull down\n");
1356                         return ret;
1357                 }
1358         }
1359
1360         if (rdev->constraints->soft_start && ops->set_soft_start) {
1361                 ret = ops->set_soft_start(rdev);
1362                 if (ret < 0) {
1363                         rdev_err(rdev, "failed to set soft start\n");
1364                         return ret;
1365                 }
1366         }
1367
1368         if (rdev->constraints->over_current_protection
1369                 && ops->set_over_current_protection) {
1370                 ret = ops->set_over_current_protection(rdev);
1371                 if (ret < 0) {
1372                         rdev_err(rdev, "failed to set over current protection\n");
1373                         return ret;
1374                 }
1375         }
1376
1377         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378                 bool ad_state = (rdev->constraints->active_discharge ==
1379                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1380
1381                 ret = ops->set_active_discharge(rdev, ad_state);
1382                 if (ret < 0) {
1383                         rdev_err(rdev, "failed to set active discharge\n");
1384                         return ret;
1385                 }
1386         }
1387
1388         /* If the constraints say the regulator should be on at this point
1389          * and we have control then make sure it is enabled.
1390          */
1391         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392                 if (rdev->supply) {
1393                         ret = regulator_enable(rdev->supply);
1394                         if (ret < 0) {
1395                                 _regulator_put(rdev->supply);
1396                                 rdev->supply = NULL;
1397                                 return ret;
1398                         }
1399                 }
1400
1401                 ret = _regulator_do_enable(rdev);
1402                 if (ret < 0 && ret != -EINVAL) {
1403                         rdev_err(rdev, "failed to enable\n");
1404                         return ret;
1405                 }
1406                 rdev->use_count++;
1407         }
1408
1409         print_constraints(rdev);
1410         return 0;
1411 }
1412
1413 /**
1414  * set_supply - set regulator supply regulator
1415  * @rdev: regulator name
1416  * @supply_rdev: supply regulator name
1417  *
1418  * Called by platform initialisation code to set the supply regulator for this
1419  * regulator. This ensures that a regulators supply will also be enabled by the
1420  * core if it's child is enabled.
1421  */
1422 static int set_supply(struct regulator_dev *rdev,
1423                       struct regulator_dev *supply_rdev)
1424 {
1425         int err;
1426
1427         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1428
1429         if (!try_module_get(supply_rdev->owner))
1430                 return -ENODEV;
1431
1432         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1433         if (rdev->supply == NULL) {
1434                 err = -ENOMEM;
1435                 return err;
1436         }
1437         supply_rdev->open_count++;
1438
1439         return 0;
1440 }
1441
1442 /**
1443  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1444  * @rdev:         regulator source
1445  * @consumer_dev_name: dev_name() string for device supply applies to
1446  * @supply:       symbolic name for supply
1447  *
1448  * Allows platform initialisation code to map physical regulator
1449  * sources to symbolic names for supplies for use by devices.  Devices
1450  * should use these symbolic names to request regulators, avoiding the
1451  * need to provide board-specific regulator names as platform data.
1452  */
1453 static int set_consumer_device_supply(struct regulator_dev *rdev,
1454                                       const char *consumer_dev_name,
1455                                       const char *supply)
1456 {
1457         struct regulator_map *node;
1458         int has_dev;
1459
1460         if (supply == NULL)
1461                 return -EINVAL;
1462
1463         if (consumer_dev_name != NULL)
1464                 has_dev = 1;
1465         else
1466                 has_dev = 0;
1467
1468         list_for_each_entry(node, &regulator_map_list, list) {
1469                 if (node->dev_name && consumer_dev_name) {
1470                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1471                                 continue;
1472                 } else if (node->dev_name || consumer_dev_name) {
1473                         continue;
1474                 }
1475
1476                 if (strcmp(node->supply, supply) != 0)
1477                         continue;
1478
1479                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1480                          consumer_dev_name,
1481                          dev_name(&node->regulator->dev),
1482                          node->regulator->desc->name,
1483                          supply,
1484                          dev_name(&rdev->dev), rdev_get_name(rdev));
1485                 return -EBUSY;
1486         }
1487
1488         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1489         if (node == NULL)
1490                 return -ENOMEM;
1491
1492         node->regulator = rdev;
1493         node->supply = supply;
1494
1495         if (has_dev) {
1496                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1497                 if (node->dev_name == NULL) {
1498                         kfree(node);
1499                         return -ENOMEM;
1500                 }
1501         }
1502
1503         list_add(&node->list, &regulator_map_list);
1504         return 0;
1505 }
1506
1507 static void unset_regulator_supplies(struct regulator_dev *rdev)
1508 {
1509         struct regulator_map *node, *n;
1510
1511         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1512                 if (rdev == node->regulator) {
1513                         list_del(&node->list);
1514                         kfree(node->dev_name);
1515                         kfree(node);
1516                 }
1517         }
1518 }
1519
1520 #ifdef CONFIG_DEBUG_FS
1521 static ssize_t constraint_flags_read_file(struct file *file,
1522                                           char __user *user_buf,
1523                                           size_t count, loff_t *ppos)
1524 {
1525         const struct regulator *regulator = file->private_data;
1526         const struct regulation_constraints *c = regulator->rdev->constraints;
1527         char *buf;
1528         ssize_t ret;
1529
1530         if (!c)
1531                 return 0;
1532
1533         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1534         if (!buf)
1535                 return -ENOMEM;
1536
1537         ret = snprintf(buf, PAGE_SIZE,
1538                         "always_on: %u\n"
1539                         "boot_on: %u\n"
1540                         "apply_uV: %u\n"
1541                         "ramp_disable: %u\n"
1542                         "soft_start: %u\n"
1543                         "pull_down: %u\n"
1544                         "over_current_protection: %u\n",
1545                         c->always_on,
1546                         c->boot_on,
1547                         c->apply_uV,
1548                         c->ramp_disable,
1549                         c->soft_start,
1550                         c->pull_down,
1551                         c->over_current_protection);
1552
1553         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1554         kfree(buf);
1555
1556         return ret;
1557 }
1558
1559 #endif
1560
1561 static const struct file_operations constraint_flags_fops = {
1562 #ifdef CONFIG_DEBUG_FS
1563         .open = simple_open,
1564         .read = constraint_flags_read_file,
1565         .llseek = default_llseek,
1566 #endif
1567 };
1568
1569 #define REG_STR_SIZE    64
1570
1571 static struct regulator *create_regulator(struct regulator_dev *rdev,
1572                                           struct device *dev,
1573                                           const char *supply_name)
1574 {
1575         struct regulator *regulator;
1576         char buf[REG_STR_SIZE];
1577         int err, size;
1578
1579         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1580         if (regulator == NULL)
1581                 return NULL;
1582
1583         regulator_lock(rdev);
1584         regulator->rdev = rdev;
1585         list_add(&regulator->list, &rdev->consumer_list);
1586
1587         if (dev) {
1588                 regulator->dev = dev;
1589
1590                 /* Add a link to the device sysfs entry */
1591                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1592                                 dev->kobj.name, supply_name);
1593                 if (size >= REG_STR_SIZE)
1594                         goto overflow_err;
1595
1596                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1597                 if (regulator->supply_name == NULL)
1598                         goto overflow_err;
1599
1600                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1601                                         buf);
1602                 if (err) {
1603                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1604                                   dev->kobj.name, err);
1605                         /* non-fatal */
1606                 }
1607         } else {
1608                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1609                 if (regulator->supply_name == NULL)
1610                         goto overflow_err;
1611         }
1612
1613         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1614                                                 rdev->debugfs);
1615         if (!regulator->debugfs) {
1616                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1617         } else {
1618                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1619                                    &regulator->uA_load);
1620                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1621                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1622                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1623                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1624                 debugfs_create_file("constraint_flags", 0444,
1625                                     regulator->debugfs, regulator,
1626                                     &constraint_flags_fops);
1627         }
1628
1629         /*
1630          * Check now if the regulator is an always on regulator - if
1631          * it is then we don't need to do nearly so much work for
1632          * enable/disable calls.
1633          */
1634         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1635             _regulator_is_enabled(rdev))
1636                 regulator->always_on = true;
1637
1638         regulator_unlock(rdev);
1639         return regulator;
1640 overflow_err:
1641         list_del(&regulator->list);
1642         kfree(regulator);
1643         regulator_unlock(rdev);
1644         return NULL;
1645 }
1646
1647 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1648 {
1649         if (rdev->constraints && rdev->constraints->enable_time)
1650                 return rdev->constraints->enable_time;
1651         if (rdev->desc->ops->enable_time)
1652                 return rdev->desc->ops->enable_time(rdev);
1653         return rdev->desc->enable_time;
1654 }
1655
1656 static struct regulator_supply_alias *regulator_find_supply_alias(
1657                 struct device *dev, const char *supply)
1658 {
1659         struct regulator_supply_alias *map;
1660
1661         list_for_each_entry(map, &regulator_supply_alias_list, list)
1662                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1663                         return map;
1664
1665         return NULL;
1666 }
1667
1668 static void regulator_supply_alias(struct device **dev, const char **supply)
1669 {
1670         struct regulator_supply_alias *map;
1671
1672         map = regulator_find_supply_alias(*dev, *supply);
1673         if (map) {
1674                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1675                                 *supply, map->alias_supply,
1676                                 dev_name(map->alias_dev));
1677                 *dev = map->alias_dev;
1678                 *supply = map->alias_supply;
1679         }
1680 }
1681
1682 static int regulator_match(struct device *dev, const void *data)
1683 {
1684         struct regulator_dev *r = dev_to_rdev(dev);
1685
1686         return strcmp(rdev_get_name(r), data) == 0;
1687 }
1688
1689 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1690 {
1691         struct device *dev;
1692
1693         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1694
1695         return dev ? dev_to_rdev(dev) : NULL;
1696 }
1697
1698 /**
1699  * regulator_dev_lookup - lookup a regulator device.
1700  * @dev: device for regulator "consumer".
1701  * @supply: Supply name or regulator ID.
1702  *
1703  * If successful, returns a struct regulator_dev that corresponds to the name
1704  * @supply and with the embedded struct device refcount incremented by one.
1705  * The refcount must be dropped by calling put_device().
1706  * On failure one of the following ERR-PTR-encoded values is returned:
1707  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1708  * in the future.
1709  */
1710 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1711                                                   const char *supply)
1712 {
1713         struct regulator_dev *r = NULL;
1714         struct device_node *node;
1715         struct regulator_map *map;
1716         const char *devname = NULL;
1717
1718         regulator_supply_alias(&dev, &supply);
1719
1720         /* first do a dt based lookup */
1721         if (dev && dev->of_node) {
1722                 node = of_get_regulator(dev, supply);
1723                 if (node) {
1724                         r = of_find_regulator_by_node(node);
1725                         if (r)
1726                                 return r;
1727
1728                         /*
1729                          * We have a node, but there is no device.
1730                          * assume it has not registered yet.
1731                          */
1732                         return ERR_PTR(-EPROBE_DEFER);
1733                 }
1734         }
1735
1736         /* if not found, try doing it non-dt way */
1737         if (dev)
1738                 devname = dev_name(dev);
1739
1740         mutex_lock(&regulator_list_mutex);
1741         list_for_each_entry(map, &regulator_map_list, list) {
1742                 /* If the mapping has a device set up it must match */
1743                 if (map->dev_name &&
1744                     (!devname || strcmp(map->dev_name, devname)))
1745                         continue;
1746
1747                 if (strcmp(map->supply, supply) == 0 &&
1748                     get_device(&map->regulator->dev)) {
1749                         r = map->regulator;
1750                         break;
1751                 }
1752         }
1753         mutex_unlock(&regulator_list_mutex);
1754
1755         if (r)
1756                 return r;
1757
1758         r = regulator_lookup_by_name(supply);
1759         if (r)
1760                 return r;
1761
1762         return ERR_PTR(-ENODEV);
1763 }
1764
1765 static int regulator_resolve_supply(struct regulator_dev *rdev)
1766 {
1767         struct regulator_dev *r;
1768         struct device *dev = rdev->dev.parent;
1769         int ret;
1770
1771         /* No supply to resolve? */
1772         if (!rdev->supply_name)
1773                 return 0;
1774
1775         /* Supply already resolved? */
1776         if (rdev->supply)
1777                 return 0;
1778
1779         r = regulator_dev_lookup(dev, rdev->supply_name);
1780         if (IS_ERR(r)) {
1781                 ret = PTR_ERR(r);
1782
1783                 /* Did the lookup explicitly defer for us? */
1784                 if (ret == -EPROBE_DEFER)
1785                         return ret;
1786
1787                 if (have_full_constraints()) {
1788                         r = dummy_regulator_rdev;
1789                         get_device(&r->dev);
1790                 } else {
1791                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1792                                 rdev->supply_name, rdev->desc->name);
1793                         return -EPROBE_DEFER;
1794                 }
1795         }
1796
1797         /*
1798          * If the supply's parent device is not the same as the
1799          * regulator's parent device, then ensure the parent device
1800          * is bound before we resolve the supply, in case the parent
1801          * device get probe deferred and unregisters the supply.
1802          */
1803         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1804                 if (!device_is_bound(r->dev.parent)) {
1805                         put_device(&r->dev);
1806                         return -EPROBE_DEFER;
1807                 }
1808         }
1809
1810         /* Recursively resolve the supply of the supply */
1811         ret = regulator_resolve_supply(r);
1812         if (ret < 0) {
1813                 put_device(&r->dev);
1814                 return ret;
1815         }
1816
1817         ret = set_supply(rdev, r);
1818         if (ret < 0) {
1819                 put_device(&r->dev);
1820                 return ret;
1821         }
1822
1823         /*
1824          * In set_machine_constraints() we may have turned this regulator on
1825          * but we couldn't propagate to the supply if it hadn't been resolved
1826          * yet.  Do it now.
1827          */
1828         if (rdev->use_count) {
1829                 ret = regulator_enable(rdev->supply);
1830                 if (ret < 0) {
1831                         _regulator_put(rdev->supply);
1832                         rdev->supply = NULL;
1833                         return ret;
1834                 }
1835         }
1836
1837         return 0;
1838 }
1839
1840 /* Internal regulator request function */
1841 struct regulator *_regulator_get(struct device *dev, const char *id,
1842                                  enum regulator_get_type get_type)
1843 {
1844         struct regulator_dev *rdev;
1845         struct regulator *regulator;
1846         const char *devname = dev ? dev_name(dev) : "deviceless";
1847         int ret;
1848
1849         if (get_type >= MAX_GET_TYPE) {
1850                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1851                 return ERR_PTR(-EINVAL);
1852         }
1853
1854         if (id == NULL) {
1855                 pr_err("get() with no identifier\n");
1856                 return ERR_PTR(-EINVAL);
1857         }
1858
1859         rdev = regulator_dev_lookup(dev, id);
1860         if (IS_ERR(rdev)) {
1861                 ret = PTR_ERR(rdev);
1862
1863                 /*
1864                  * If regulator_dev_lookup() fails with error other
1865                  * than -ENODEV our job here is done, we simply return it.
1866                  */
1867                 if (ret != -ENODEV)
1868                         return ERR_PTR(ret);
1869
1870                 if (!have_full_constraints()) {
1871                         dev_warn(dev,
1872                                  "incomplete constraints, dummy supplies not allowed\n");
1873                         return ERR_PTR(-ENODEV);
1874                 }
1875
1876                 switch (get_type) {
1877                 case NORMAL_GET:
1878                         /*
1879                          * Assume that a regulator is physically present and
1880                          * enabled, even if it isn't hooked up, and just
1881                          * provide a dummy.
1882                          */
1883                         dev_warn(dev,
1884                                  "%s supply %s not found, using dummy regulator\n",
1885                                  devname, id);
1886                         rdev = dummy_regulator_rdev;
1887                         get_device(&rdev->dev);
1888                         break;
1889
1890                 case EXCLUSIVE_GET:
1891                         dev_warn(dev,
1892                                  "dummy supplies not allowed for exclusive requests\n");
1893                         /* fall through */
1894
1895                 default:
1896                         return ERR_PTR(-ENODEV);
1897                 }
1898         }
1899
1900         if (rdev->exclusive) {
1901                 regulator = ERR_PTR(-EPERM);
1902                 put_device(&rdev->dev);
1903                 return regulator;
1904         }
1905
1906         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1907                 regulator = ERR_PTR(-EBUSY);
1908                 put_device(&rdev->dev);
1909                 return regulator;
1910         }
1911
1912         mutex_lock(&regulator_list_mutex);
1913         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1914         mutex_unlock(&regulator_list_mutex);
1915
1916         if (ret != 0) {
1917                 regulator = ERR_PTR(-EPROBE_DEFER);
1918                 put_device(&rdev->dev);
1919                 return regulator;
1920         }
1921
1922         ret = regulator_resolve_supply(rdev);
1923         if (ret < 0) {
1924                 regulator = ERR_PTR(ret);
1925                 put_device(&rdev->dev);
1926                 return regulator;
1927         }
1928
1929         if (!try_module_get(rdev->owner)) {
1930                 regulator = ERR_PTR(-EPROBE_DEFER);
1931                 put_device(&rdev->dev);
1932                 return regulator;
1933         }
1934
1935         regulator = create_regulator(rdev, dev, id);
1936         if (regulator == NULL) {
1937                 regulator = ERR_PTR(-ENOMEM);
1938                 put_device(&rdev->dev);
1939                 module_put(rdev->owner);
1940                 return regulator;
1941         }
1942
1943         rdev->open_count++;
1944         if (get_type == EXCLUSIVE_GET) {
1945                 rdev->exclusive = 1;
1946
1947                 ret = _regulator_is_enabled(rdev);
1948                 if (ret > 0)
1949                         rdev->use_count = 1;
1950                 else
1951                         rdev->use_count = 0;
1952         }
1953
1954         device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1955
1956         return regulator;
1957 }
1958
1959 /**
1960  * regulator_get - lookup and obtain a reference to a regulator.
1961  * @dev: device for regulator "consumer"
1962  * @id: Supply name or regulator ID.
1963  *
1964  * Returns a struct regulator corresponding to the regulator producer,
1965  * or IS_ERR() condition containing errno.
1966  *
1967  * Use of supply names configured via regulator_set_device_supply() is
1968  * strongly encouraged.  It is recommended that the supply name used
1969  * should match the name used for the supply and/or the relevant
1970  * device pins in the datasheet.
1971  */
1972 struct regulator *regulator_get(struct device *dev, const char *id)
1973 {
1974         return _regulator_get(dev, id, NORMAL_GET);
1975 }
1976 EXPORT_SYMBOL_GPL(regulator_get);
1977
1978 /**
1979  * regulator_get_exclusive - obtain exclusive access to a regulator.
1980  * @dev: device for regulator "consumer"
1981  * @id: Supply name or regulator ID.
1982  *
1983  * Returns a struct regulator corresponding to the regulator producer,
1984  * or IS_ERR() condition containing errno.  Other consumers will be
1985  * unable to obtain this regulator while this reference is held and the
1986  * use count for the regulator will be initialised to reflect the current
1987  * state of the regulator.
1988  *
1989  * This is intended for use by consumers which cannot tolerate shared
1990  * use of the regulator such as those which need to force the
1991  * regulator off for correct operation of the hardware they are
1992  * controlling.
1993  *
1994  * Use of supply names configured via regulator_set_device_supply() is
1995  * strongly encouraged.  It is recommended that the supply name used
1996  * should match the name used for the supply and/or the relevant
1997  * device pins in the datasheet.
1998  */
1999 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2000 {
2001         return _regulator_get(dev, id, EXCLUSIVE_GET);
2002 }
2003 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2004
2005 /**
2006  * regulator_get_optional - obtain optional access to a regulator.
2007  * @dev: device for regulator "consumer"
2008  * @id: Supply name or regulator ID.
2009  *
2010  * Returns a struct regulator corresponding to the regulator producer,
2011  * or IS_ERR() condition containing errno.
2012  *
2013  * This is intended for use by consumers for devices which can have
2014  * some supplies unconnected in normal use, such as some MMC devices.
2015  * It can allow the regulator core to provide stub supplies for other
2016  * supplies requested using normal regulator_get() calls without
2017  * disrupting the operation of drivers that can handle absent
2018  * supplies.
2019  *
2020  * Use of supply names configured via regulator_set_device_supply() is
2021  * strongly encouraged.  It is recommended that the supply name used
2022  * should match the name used for the supply and/or the relevant
2023  * device pins in the datasheet.
2024  */
2025 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2026 {
2027         return _regulator_get(dev, id, OPTIONAL_GET);
2028 }
2029 EXPORT_SYMBOL_GPL(regulator_get_optional);
2030
2031 /* regulator_list_mutex lock held by regulator_put() */
2032 static void _regulator_put(struct regulator *regulator)
2033 {
2034         struct regulator_dev *rdev;
2035
2036         if (IS_ERR_OR_NULL(regulator))
2037                 return;
2038
2039         lockdep_assert_held_once(&regulator_list_mutex);
2040
2041         /* Docs say you must disable before calling regulator_put() */
2042         WARN_ON(regulator->enable_count);
2043
2044         rdev = regulator->rdev;
2045
2046         debugfs_remove_recursive(regulator->debugfs);
2047
2048         if (regulator->dev) {
2049                 device_link_remove(regulator->dev, &rdev->dev);
2050
2051                 /* remove any sysfs entries */
2052                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2053         }
2054
2055         regulator_lock(rdev);
2056         list_del(&regulator->list);
2057
2058         rdev->open_count--;
2059         rdev->exclusive = 0;
2060         put_device(&rdev->dev);
2061         regulator_unlock(rdev);
2062
2063         kfree_const(regulator->supply_name);
2064         kfree(regulator);
2065
2066         module_put(rdev->owner);
2067 }
2068
2069 /**
2070  * regulator_put - "free" the regulator source
2071  * @regulator: regulator source
2072  *
2073  * Note: drivers must ensure that all regulator_enable calls made on this
2074  * regulator source are balanced by regulator_disable calls prior to calling
2075  * this function.
2076  */
2077 void regulator_put(struct regulator *regulator)
2078 {
2079         mutex_lock(&regulator_list_mutex);
2080         _regulator_put(regulator);
2081         mutex_unlock(&regulator_list_mutex);
2082 }
2083 EXPORT_SYMBOL_GPL(regulator_put);
2084
2085 /**
2086  * regulator_register_supply_alias - Provide device alias for supply lookup
2087  *
2088  * @dev: device that will be given as the regulator "consumer"
2089  * @id: Supply name or regulator ID
2090  * @alias_dev: device that should be used to lookup the supply
2091  * @alias_id: Supply name or regulator ID that should be used to lookup the
2092  * supply
2093  *
2094  * All lookups for id on dev will instead be conducted for alias_id on
2095  * alias_dev.
2096  */
2097 int regulator_register_supply_alias(struct device *dev, const char *id,
2098                                     struct device *alias_dev,
2099                                     const char *alias_id)
2100 {
2101         struct regulator_supply_alias *map;
2102
2103         map = regulator_find_supply_alias(dev, id);
2104         if (map)
2105                 return -EEXIST;
2106
2107         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2108         if (!map)
2109                 return -ENOMEM;
2110
2111         map->src_dev = dev;
2112         map->src_supply = id;
2113         map->alias_dev = alias_dev;
2114         map->alias_supply = alias_id;
2115
2116         list_add(&map->list, &regulator_supply_alias_list);
2117
2118         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2119                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2120
2121         return 0;
2122 }
2123 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2124
2125 /**
2126  * regulator_unregister_supply_alias - Remove device alias
2127  *
2128  * @dev: device that will be given as the regulator "consumer"
2129  * @id: Supply name or regulator ID
2130  *
2131  * Remove a lookup alias if one exists for id on dev.
2132  */
2133 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2134 {
2135         struct regulator_supply_alias *map;
2136
2137         map = regulator_find_supply_alias(dev, id);
2138         if (map) {
2139                 list_del(&map->list);
2140                 kfree(map);
2141         }
2142 }
2143 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2144
2145 /**
2146  * regulator_bulk_register_supply_alias - register multiple aliases
2147  *
2148  * @dev: device that will be given as the regulator "consumer"
2149  * @id: List of supply names or regulator IDs
2150  * @alias_dev: device that should be used to lookup the supply
2151  * @alias_id: List of supply names or regulator IDs that should be used to
2152  * lookup the supply
2153  * @num_id: Number of aliases to register
2154  *
2155  * @return 0 on success, an errno on failure.
2156  *
2157  * This helper function allows drivers to register several supply
2158  * aliases in one operation.  If any of the aliases cannot be
2159  * registered any aliases that were registered will be removed
2160  * before returning to the caller.
2161  */
2162 int regulator_bulk_register_supply_alias(struct device *dev,
2163                                          const char *const *id,
2164                                          struct device *alias_dev,
2165                                          const char *const *alias_id,
2166                                          int num_id)
2167 {
2168         int i;
2169         int ret;
2170
2171         for (i = 0; i < num_id; ++i) {
2172                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2173                                                       alias_id[i]);
2174                 if (ret < 0)
2175                         goto err;
2176         }
2177
2178         return 0;
2179
2180 err:
2181         dev_err(dev,
2182                 "Failed to create supply alias %s,%s -> %s,%s\n",
2183                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2184
2185         while (--i >= 0)
2186                 regulator_unregister_supply_alias(dev, id[i]);
2187
2188         return ret;
2189 }
2190 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2191
2192 /**
2193  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2194  *
2195  * @dev: device that will be given as the regulator "consumer"
2196  * @id: List of supply names or regulator IDs
2197  * @num_id: Number of aliases to unregister
2198  *
2199  * This helper function allows drivers to unregister several supply
2200  * aliases in one operation.
2201  */
2202 void regulator_bulk_unregister_supply_alias(struct device *dev,
2203                                             const char *const *id,
2204                                             int num_id)
2205 {
2206         int i;
2207
2208         for (i = 0; i < num_id; ++i)
2209                 regulator_unregister_supply_alias(dev, id[i]);
2210 }
2211 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2212
2213
2214 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2215 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2216                                 const struct regulator_config *config)
2217 {
2218         struct regulator_enable_gpio *pin;
2219         struct gpio_desc *gpiod;
2220
2221         gpiod = config->ena_gpiod;
2222
2223         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2224                 if (pin->gpiod == gpiod) {
2225                         rdev_dbg(rdev, "GPIO is already used\n");
2226                         goto update_ena_gpio_to_rdev;
2227                 }
2228         }
2229
2230         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2231         if (pin == NULL)
2232                 return -ENOMEM;
2233
2234         pin->gpiod = gpiod;
2235         list_add(&pin->list, &regulator_ena_gpio_list);
2236
2237 update_ena_gpio_to_rdev:
2238         pin->request_count++;
2239         rdev->ena_pin = pin;
2240         return 0;
2241 }
2242
2243 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2244 {
2245         struct regulator_enable_gpio *pin, *n;
2246
2247         if (!rdev->ena_pin)
2248                 return;
2249
2250         /* Free the GPIO only in case of no use */
2251         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2252                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2253                         if (pin->request_count <= 1) {
2254                                 pin->request_count = 0;
2255                                 gpiod_put(pin->gpiod);
2256                                 list_del(&pin->list);
2257                                 kfree(pin);
2258                                 rdev->ena_pin = NULL;
2259                                 return;
2260                         } else {
2261                                 pin->request_count--;
2262                         }
2263                 }
2264         }
2265 }
2266
2267 /**
2268  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2269  * @rdev: regulator_dev structure
2270  * @enable: enable GPIO at initial use?
2271  *
2272  * GPIO is enabled in case of initial use. (enable_count is 0)
2273  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2274  */
2275 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2276 {
2277         struct regulator_enable_gpio *pin = rdev->ena_pin;
2278
2279         if (!pin)
2280                 return -EINVAL;
2281
2282         if (enable) {
2283                 /* Enable GPIO at initial use */
2284                 if (pin->enable_count == 0)
2285                         gpiod_set_value_cansleep(pin->gpiod, 1);
2286
2287                 pin->enable_count++;
2288         } else {
2289                 if (pin->enable_count > 1) {
2290                         pin->enable_count--;
2291                         return 0;
2292                 }
2293
2294                 /* Disable GPIO if not used */
2295                 if (pin->enable_count <= 1) {
2296                         gpiod_set_value_cansleep(pin->gpiod, 0);
2297                         pin->enable_count = 0;
2298                 }
2299         }
2300
2301         return 0;
2302 }
2303
2304 /**
2305  * _regulator_enable_delay - a delay helper function
2306  * @delay: time to delay in microseconds
2307  *
2308  * Delay for the requested amount of time as per the guidelines in:
2309  *
2310  *     Documentation/timers/timers-howto.rst
2311  *
2312  * The assumption here is that regulators will never be enabled in
2313  * atomic context and therefore sleeping functions can be used.
2314  */
2315 static void _regulator_enable_delay(unsigned int delay)
2316 {
2317         unsigned int ms = delay / 1000;
2318         unsigned int us = delay % 1000;
2319
2320         if (ms > 0) {
2321                 /*
2322                  * For small enough values, handle super-millisecond
2323                  * delays in the usleep_range() call below.
2324                  */
2325                 if (ms < 20)
2326                         us += ms * 1000;
2327                 else
2328                         msleep(ms);
2329         }
2330
2331         /*
2332          * Give the scheduler some room to coalesce with any other
2333          * wakeup sources. For delays shorter than 10 us, don't even
2334          * bother setting up high-resolution timers and just busy-
2335          * loop.
2336          */
2337         if (us >= 10)
2338                 usleep_range(us, us + 100);
2339         else
2340                 udelay(us);
2341 }
2342
2343 static int _regulator_do_enable(struct regulator_dev *rdev)
2344 {
2345         int ret, delay;
2346
2347         /* Query before enabling in case configuration dependent.  */
2348         ret = _regulator_get_enable_time(rdev);
2349         if (ret >= 0) {
2350                 delay = ret;
2351         } else {
2352                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2353                 delay = 0;
2354         }
2355
2356         trace_regulator_enable(rdev_get_name(rdev));
2357
2358         if (rdev->desc->off_on_delay) {
2359                 /* if needed, keep a distance of off_on_delay from last time
2360                  * this regulator was disabled.
2361                  */
2362                 unsigned long start_jiffy = jiffies;
2363                 unsigned long intended, max_delay, remaining;
2364
2365                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2366                 intended = rdev->last_off_jiffy + max_delay;
2367
2368                 if (time_before(start_jiffy, intended)) {
2369                         /* calc remaining jiffies to deal with one-time
2370                          * timer wrapping.
2371                          * in case of multiple timer wrapping, either it can be
2372                          * detected by out-of-range remaining, or it cannot be
2373                          * detected and we get a penalty of
2374                          * _regulator_enable_delay().
2375                          */
2376                         remaining = intended - start_jiffy;
2377                         if (remaining <= max_delay)
2378                                 _regulator_enable_delay(
2379                                                 jiffies_to_usecs(remaining));
2380                 }
2381         }
2382
2383         if (rdev->ena_pin) {
2384                 if (!rdev->ena_gpio_state) {
2385                         ret = regulator_ena_gpio_ctrl(rdev, true);
2386                         if (ret < 0)
2387                                 return ret;
2388                         rdev->ena_gpio_state = 1;
2389                 }
2390         } else if (rdev->desc->ops->enable) {
2391                 ret = rdev->desc->ops->enable(rdev);
2392                 if (ret < 0)
2393                         return ret;
2394         } else {
2395                 return -EINVAL;
2396         }
2397
2398         /* Allow the regulator to ramp; it would be useful to extend
2399          * this for bulk operations so that the regulators can ramp
2400          * together.  */
2401         trace_regulator_enable_delay(rdev_get_name(rdev));
2402
2403         _regulator_enable_delay(delay);
2404
2405         trace_regulator_enable_complete(rdev_get_name(rdev));
2406
2407         return 0;
2408 }
2409
2410 /**
2411  * _regulator_handle_consumer_enable - handle that a consumer enabled
2412  * @regulator: regulator source
2413  *
2414  * Some things on a regulator consumer (like the contribution towards total
2415  * load on the regulator) only have an effect when the consumer wants the
2416  * regulator enabled.  Explained in example with two consumers of the same
2417  * regulator:
2418  *   consumer A: set_load(100);       => total load = 0
2419  *   consumer A: regulator_enable();  => total load = 100
2420  *   consumer B: set_load(1000);      => total load = 100
2421  *   consumer B: regulator_enable();  => total load = 1100
2422  *   consumer A: regulator_disable(); => total_load = 1000
2423  *
2424  * This function (together with _regulator_handle_consumer_disable) is
2425  * responsible for keeping track of the refcount for a given regulator consumer
2426  * and applying / unapplying these things.
2427  *
2428  * Returns 0 upon no error; -error upon error.
2429  */
2430 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2431 {
2432         struct regulator_dev *rdev = regulator->rdev;
2433
2434         lockdep_assert_held_once(&rdev->mutex.base);
2435
2436         regulator->enable_count++;
2437         if (regulator->uA_load && regulator->enable_count == 1)
2438                 return drms_uA_update(rdev);
2439
2440         return 0;
2441 }
2442
2443 /**
2444  * _regulator_handle_consumer_disable - handle that a consumer disabled
2445  * @regulator: regulator source
2446  *
2447  * The opposite of _regulator_handle_consumer_enable().
2448  *
2449  * Returns 0 upon no error; -error upon error.
2450  */
2451 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2452 {
2453         struct regulator_dev *rdev = regulator->rdev;
2454
2455         lockdep_assert_held_once(&rdev->mutex.base);
2456
2457         if (!regulator->enable_count) {
2458                 rdev_err(rdev, "Underflow of regulator enable count\n");
2459                 return -EINVAL;
2460         }
2461
2462         regulator->enable_count--;
2463         if (regulator->uA_load && regulator->enable_count == 0)
2464                 return drms_uA_update(rdev);
2465
2466         return 0;
2467 }
2468
2469 /* locks held by regulator_enable() */
2470 static int _regulator_enable(struct regulator *regulator)
2471 {
2472         struct regulator_dev *rdev = regulator->rdev;
2473         int ret;
2474
2475         lockdep_assert_held_once(&rdev->mutex.base);
2476
2477         if (rdev->use_count == 0 && rdev->supply) {
2478                 ret = _regulator_enable(rdev->supply);
2479                 if (ret < 0)
2480                         return ret;
2481         }
2482
2483         /* balance only if there are regulators coupled */
2484         if (rdev->coupling_desc.n_coupled > 1) {
2485                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2486                 if (ret < 0)
2487                         goto err_disable_supply;
2488         }
2489
2490         ret = _regulator_handle_consumer_enable(regulator);
2491         if (ret < 0)
2492                 goto err_disable_supply;
2493
2494         if (rdev->use_count == 0) {
2495                 /* The regulator may on if it's not switchable or left on */
2496                 ret = _regulator_is_enabled(rdev);
2497                 if (ret == -EINVAL || ret == 0) {
2498                         if (!regulator_ops_is_valid(rdev,
2499                                         REGULATOR_CHANGE_STATUS)) {
2500                                 ret = -EPERM;
2501                                 goto err_consumer_disable;
2502                         }
2503
2504                         ret = _regulator_do_enable(rdev);
2505                         if (ret < 0)
2506                                 goto err_consumer_disable;
2507
2508                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2509                                              NULL);
2510                 } else if (ret < 0) {
2511                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2512                         goto err_consumer_disable;
2513                 }
2514                 /* Fallthrough on positive return values - already enabled */
2515         }
2516
2517         rdev->use_count++;
2518
2519         return 0;
2520
2521 err_consumer_disable:
2522         _regulator_handle_consumer_disable(regulator);
2523
2524 err_disable_supply:
2525         if (rdev->use_count == 0 && rdev->supply)
2526                 _regulator_disable(rdev->supply);
2527
2528         return ret;
2529 }
2530
2531 /**
2532  * regulator_enable - enable regulator output
2533  * @regulator: regulator source
2534  *
2535  * Request that the regulator be enabled with the regulator output at
2536  * the predefined voltage or current value.  Calls to regulator_enable()
2537  * must be balanced with calls to regulator_disable().
2538  *
2539  * NOTE: the output value can be set by other drivers, boot loader or may be
2540  * hardwired in the regulator.
2541  */
2542 int regulator_enable(struct regulator *regulator)
2543 {
2544         struct regulator_dev *rdev = regulator->rdev;
2545         struct ww_acquire_ctx ww_ctx;
2546         int ret;
2547
2548         regulator_lock_dependent(rdev, &ww_ctx);
2549         ret = _regulator_enable(regulator);
2550         regulator_unlock_dependent(rdev, &ww_ctx);
2551
2552         return ret;
2553 }
2554 EXPORT_SYMBOL_GPL(regulator_enable);
2555
2556 static int _regulator_do_disable(struct regulator_dev *rdev)
2557 {
2558         int ret;
2559
2560         trace_regulator_disable(rdev_get_name(rdev));
2561
2562         if (rdev->ena_pin) {
2563                 if (rdev->ena_gpio_state) {
2564                         ret = regulator_ena_gpio_ctrl(rdev, false);
2565                         if (ret < 0)
2566                                 return ret;
2567                         rdev->ena_gpio_state = 0;
2568                 }
2569
2570         } else if (rdev->desc->ops->disable) {
2571                 ret = rdev->desc->ops->disable(rdev);
2572                 if (ret != 0)
2573                         return ret;
2574         }
2575
2576         /* cares about last_off_jiffy only if off_on_delay is required by
2577          * device.
2578          */
2579         if (rdev->desc->off_on_delay)
2580                 rdev->last_off_jiffy = jiffies;
2581
2582         trace_regulator_disable_complete(rdev_get_name(rdev));
2583
2584         return 0;
2585 }
2586
2587 /* locks held by regulator_disable() */
2588 static int _regulator_disable(struct regulator *regulator)
2589 {
2590         struct regulator_dev *rdev = regulator->rdev;
2591         int ret = 0;
2592
2593         lockdep_assert_held_once(&rdev->mutex.base);
2594
2595         if (WARN(rdev->use_count <= 0,
2596                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2597                 return -EIO;
2598
2599         /* are we the last user and permitted to disable ? */
2600         if (rdev->use_count == 1 &&
2601             (rdev->constraints && !rdev->constraints->always_on)) {
2602
2603                 /* we are last user */
2604                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2605                         ret = _notifier_call_chain(rdev,
2606                                                    REGULATOR_EVENT_PRE_DISABLE,
2607                                                    NULL);
2608                         if (ret & NOTIFY_STOP_MASK)
2609                                 return -EINVAL;
2610
2611                         ret = _regulator_do_disable(rdev);
2612                         if (ret < 0) {
2613                                 rdev_err(rdev, "failed to disable\n");
2614                                 _notifier_call_chain(rdev,
2615                                                 REGULATOR_EVENT_ABORT_DISABLE,
2616                                                 NULL);
2617                                 return ret;
2618                         }
2619                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2620                                         NULL);
2621                 }
2622
2623                 rdev->use_count = 0;
2624         } else if (rdev->use_count > 1) {
2625                 rdev->use_count--;
2626         }
2627
2628         if (ret == 0)
2629                 ret = _regulator_handle_consumer_disable(regulator);
2630
2631         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2632                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2633
2634         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2635                 ret = _regulator_disable(rdev->supply);
2636
2637         return ret;
2638 }
2639
2640 /**
2641  * regulator_disable - disable regulator output
2642  * @regulator: regulator source
2643  *
2644  * Disable the regulator output voltage or current.  Calls to
2645  * regulator_enable() must be balanced with calls to
2646  * regulator_disable().
2647  *
2648  * NOTE: this will only disable the regulator output if no other consumer
2649  * devices have it enabled, the regulator device supports disabling and
2650  * machine constraints permit this operation.
2651  */
2652 int regulator_disable(struct regulator *regulator)
2653 {
2654         struct regulator_dev *rdev = regulator->rdev;
2655         struct ww_acquire_ctx ww_ctx;
2656         int ret;
2657
2658         regulator_lock_dependent(rdev, &ww_ctx);
2659         ret = _regulator_disable(regulator);
2660         regulator_unlock_dependent(rdev, &ww_ctx);
2661
2662         return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(regulator_disable);
2665
2666 /* locks held by regulator_force_disable() */
2667 static int _regulator_force_disable(struct regulator_dev *rdev)
2668 {
2669         int ret = 0;
2670
2671         lockdep_assert_held_once(&rdev->mutex.base);
2672
2673         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2674                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2675         if (ret & NOTIFY_STOP_MASK)
2676                 return -EINVAL;
2677
2678         ret = _regulator_do_disable(rdev);
2679         if (ret < 0) {
2680                 rdev_err(rdev, "failed to force disable\n");
2681                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2682                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2683                 return ret;
2684         }
2685
2686         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2687                         REGULATOR_EVENT_DISABLE, NULL);
2688
2689         return 0;
2690 }
2691
2692 /**
2693  * regulator_force_disable - force disable regulator output
2694  * @regulator: regulator source
2695  *
2696  * Forcibly disable the regulator output voltage or current.
2697  * NOTE: this *will* disable the regulator output even if other consumer
2698  * devices have it enabled. This should be used for situations when device
2699  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2700  */
2701 int regulator_force_disable(struct regulator *regulator)
2702 {
2703         struct regulator_dev *rdev = regulator->rdev;
2704         struct ww_acquire_ctx ww_ctx;
2705         int ret;
2706
2707         regulator_lock_dependent(rdev, &ww_ctx);
2708
2709         ret = _regulator_force_disable(regulator->rdev);
2710
2711         if (rdev->coupling_desc.n_coupled > 1)
2712                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2713
2714         if (regulator->uA_load) {
2715                 regulator->uA_load = 0;
2716                 ret = drms_uA_update(rdev);
2717         }
2718
2719         if (rdev->use_count != 0 && rdev->supply)
2720                 _regulator_disable(rdev->supply);
2721
2722         regulator_unlock_dependent(rdev, &ww_ctx);
2723
2724         return ret;
2725 }
2726 EXPORT_SYMBOL_GPL(regulator_force_disable);
2727
2728 static void regulator_disable_work(struct work_struct *work)
2729 {
2730         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2731                                                   disable_work.work);
2732         struct ww_acquire_ctx ww_ctx;
2733         int count, i, ret;
2734         struct regulator *regulator;
2735         int total_count = 0;
2736
2737         regulator_lock_dependent(rdev, &ww_ctx);
2738
2739         /*
2740          * Workqueue functions queue the new work instance while the previous
2741          * work instance is being processed. Cancel the queued work instance
2742          * as the work instance under processing does the job of the queued
2743          * work instance.
2744          */
2745         cancel_delayed_work(&rdev->disable_work);
2746
2747         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2748                 count = regulator->deferred_disables;
2749
2750                 if (!count)
2751                         continue;
2752
2753                 total_count += count;
2754                 regulator->deferred_disables = 0;
2755
2756                 for (i = 0; i < count; i++) {
2757                         ret = _regulator_disable(regulator);
2758                         if (ret != 0)
2759                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2760                 }
2761         }
2762         WARN_ON(!total_count);
2763
2764         if (rdev->coupling_desc.n_coupled > 1)
2765                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2766
2767         regulator_unlock_dependent(rdev, &ww_ctx);
2768 }
2769
2770 /**
2771  * regulator_disable_deferred - disable regulator output with delay
2772  * @regulator: regulator source
2773  * @ms: milliseconds until the regulator is disabled
2774  *
2775  * Execute regulator_disable() on the regulator after a delay.  This
2776  * is intended for use with devices that require some time to quiesce.
2777  *
2778  * NOTE: this will only disable the regulator output if no other consumer
2779  * devices have it enabled, the regulator device supports disabling and
2780  * machine constraints permit this operation.
2781  */
2782 int regulator_disable_deferred(struct regulator *regulator, int ms)
2783 {
2784         struct regulator_dev *rdev = regulator->rdev;
2785
2786         if (!ms)
2787                 return regulator_disable(regulator);
2788
2789         regulator_lock(rdev);
2790         regulator->deferred_disables++;
2791         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2792                          msecs_to_jiffies(ms));
2793         regulator_unlock(rdev);
2794
2795         return 0;
2796 }
2797 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2798
2799 static int _regulator_is_enabled(struct regulator_dev *rdev)
2800 {
2801         /* A GPIO control always takes precedence */
2802         if (rdev->ena_pin)
2803                 return rdev->ena_gpio_state;
2804
2805         /* If we don't know then assume that the regulator is always on */
2806         if (!rdev->desc->ops->is_enabled)
2807                 return 1;
2808
2809         return rdev->desc->ops->is_enabled(rdev);
2810 }
2811
2812 static int _regulator_list_voltage(struct regulator_dev *rdev,
2813                                    unsigned selector, int lock)
2814 {
2815         const struct regulator_ops *ops = rdev->desc->ops;
2816         int ret;
2817
2818         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2819                 return rdev->desc->fixed_uV;
2820
2821         if (ops->list_voltage) {
2822                 if (selector >= rdev->desc->n_voltages)
2823                         return -EINVAL;
2824                 if (lock)
2825                         regulator_lock(rdev);
2826                 ret = ops->list_voltage(rdev, selector);
2827                 if (lock)
2828                         regulator_unlock(rdev);
2829         } else if (rdev->is_switch && rdev->supply) {
2830                 ret = _regulator_list_voltage(rdev->supply->rdev,
2831                                               selector, lock);
2832         } else {
2833                 return -EINVAL;
2834         }
2835
2836         if (ret > 0) {
2837                 if (ret < rdev->constraints->min_uV)
2838                         ret = 0;
2839                 else if (ret > rdev->constraints->max_uV)
2840                         ret = 0;
2841         }
2842
2843         return ret;
2844 }
2845
2846 /**
2847  * regulator_is_enabled - is the regulator output enabled
2848  * @regulator: regulator source
2849  *
2850  * Returns positive if the regulator driver backing the source/client
2851  * has requested that the device be enabled, zero if it hasn't, else a
2852  * negative errno code.
2853  *
2854  * Note that the device backing this regulator handle can have multiple
2855  * users, so it might be enabled even if regulator_enable() was never
2856  * called for this particular source.
2857  */
2858 int regulator_is_enabled(struct regulator *regulator)
2859 {
2860         int ret;
2861
2862         if (regulator->always_on)
2863                 return 1;
2864
2865         regulator_lock(regulator->rdev);
2866         ret = _regulator_is_enabled(regulator->rdev);
2867         regulator_unlock(regulator->rdev);
2868
2869         return ret;
2870 }
2871 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2872
2873 /**
2874  * regulator_count_voltages - count regulator_list_voltage() selectors
2875  * @regulator: regulator source
2876  *
2877  * Returns number of selectors, or negative errno.  Selectors are
2878  * numbered starting at zero, and typically correspond to bitfields
2879  * in hardware registers.
2880  */
2881 int regulator_count_voltages(struct regulator *regulator)
2882 {
2883         struct regulator_dev    *rdev = regulator->rdev;
2884
2885         if (rdev->desc->n_voltages)
2886                 return rdev->desc->n_voltages;
2887
2888         if (!rdev->is_switch || !rdev->supply)
2889                 return -EINVAL;
2890
2891         return regulator_count_voltages(rdev->supply);
2892 }
2893 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2894
2895 /**
2896  * regulator_list_voltage - enumerate supported voltages
2897  * @regulator: regulator source
2898  * @selector: identify voltage to list
2899  * Context: can sleep
2900  *
2901  * Returns a voltage that can be passed to @regulator_set_voltage(),
2902  * zero if this selector code can't be used on this system, or a
2903  * negative errno.
2904  */
2905 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2906 {
2907         return _regulator_list_voltage(regulator->rdev, selector, 1);
2908 }
2909 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2910
2911 /**
2912  * regulator_get_regmap - get the regulator's register map
2913  * @regulator: regulator source
2914  *
2915  * Returns the register map for the given regulator, or an ERR_PTR value
2916  * if the regulator doesn't use regmap.
2917  */
2918 struct regmap *regulator_get_regmap(struct regulator *regulator)
2919 {
2920         struct regmap *map = regulator->rdev->regmap;
2921
2922         return map ? map : ERR_PTR(-EOPNOTSUPP);
2923 }
2924
2925 /**
2926  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2927  * @regulator: regulator source
2928  * @vsel_reg: voltage selector register, output parameter
2929  * @vsel_mask: mask for voltage selector bitfield, output parameter
2930  *
2931  * Returns the hardware register offset and bitmask used for setting the
2932  * regulator voltage. This might be useful when configuring voltage-scaling
2933  * hardware or firmware that can make I2C requests behind the kernel's back,
2934  * for example.
2935  *
2936  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2937  * and 0 is returned, otherwise a negative errno is returned.
2938  */
2939 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2940                                          unsigned *vsel_reg,
2941                                          unsigned *vsel_mask)
2942 {
2943         struct regulator_dev *rdev = regulator->rdev;
2944         const struct regulator_ops *ops = rdev->desc->ops;
2945
2946         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2947                 return -EOPNOTSUPP;
2948
2949         *vsel_reg = rdev->desc->vsel_reg;
2950         *vsel_mask = rdev->desc->vsel_mask;
2951
2952          return 0;
2953 }
2954 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2955
2956 /**
2957  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2958  * @regulator: regulator source
2959  * @selector: identify voltage to list
2960  *
2961  * Converts the selector to a hardware-specific voltage selector that can be
2962  * directly written to the regulator registers. The address of the voltage
2963  * register can be determined by calling @regulator_get_hardware_vsel_register.
2964  *
2965  * On error a negative errno is returned.
2966  */
2967 int regulator_list_hardware_vsel(struct regulator *regulator,
2968                                  unsigned selector)
2969 {
2970         struct regulator_dev *rdev = regulator->rdev;
2971         const struct regulator_ops *ops = rdev->desc->ops;
2972
2973         if (selector >= rdev->desc->n_voltages)
2974                 return -EINVAL;
2975         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2976                 return -EOPNOTSUPP;
2977
2978         return selector;
2979 }
2980 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2981
2982 /**
2983  * regulator_get_linear_step - return the voltage step size between VSEL values
2984  * @regulator: regulator source
2985  *
2986  * Returns the voltage step size between VSEL values for linear
2987  * regulators, or return 0 if the regulator isn't a linear regulator.
2988  */
2989 unsigned int regulator_get_linear_step(struct regulator *regulator)
2990 {
2991         struct regulator_dev *rdev = regulator->rdev;
2992
2993         return rdev->desc->uV_step;
2994 }
2995 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2996
2997 /**
2998  * regulator_is_supported_voltage - check if a voltage range can be supported
2999  *
3000  * @regulator: Regulator to check.
3001  * @min_uV: Minimum required voltage in uV.
3002  * @max_uV: Maximum required voltage in uV.
3003  *
3004  * Returns a boolean.
3005  */
3006 int regulator_is_supported_voltage(struct regulator *regulator,
3007                                    int min_uV, int max_uV)
3008 {
3009         struct regulator_dev *rdev = regulator->rdev;
3010         int i, voltages, ret;
3011
3012         /* If we can't change voltage check the current voltage */
3013         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3014                 ret = regulator_get_voltage(regulator);
3015                 if (ret >= 0)
3016                         return min_uV <= ret && ret <= max_uV;
3017                 else
3018                         return ret;
3019         }
3020
3021         /* Any voltage within constrains range is fine? */
3022         if (rdev->desc->continuous_voltage_range)
3023                 return min_uV >= rdev->constraints->min_uV &&
3024                                 max_uV <= rdev->constraints->max_uV;
3025
3026         ret = regulator_count_voltages(regulator);
3027         if (ret < 0)
3028                 return 0;
3029         voltages = ret;
3030
3031         for (i = 0; i < voltages; i++) {
3032                 ret = regulator_list_voltage(regulator, i);
3033
3034                 if (ret >= min_uV && ret <= max_uV)
3035                         return 1;
3036         }
3037
3038         return 0;
3039 }
3040 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3041
3042 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3043                                  int max_uV)
3044 {
3045         const struct regulator_desc *desc = rdev->desc;
3046
3047         if (desc->ops->map_voltage)
3048                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3049
3050         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3051                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3052
3053         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3054                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3055
3056         if (desc->ops->list_voltage ==
3057                 regulator_list_voltage_pickable_linear_range)
3058                 return regulator_map_voltage_pickable_linear_range(rdev,
3059                                                         min_uV, max_uV);
3060
3061         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3062 }
3063
3064 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3065                                        int min_uV, int max_uV,
3066                                        unsigned *selector)
3067 {
3068         struct pre_voltage_change_data data;
3069         int ret;
3070
3071         data.old_uV = regulator_get_voltage_rdev(rdev);
3072         data.min_uV = min_uV;
3073         data.max_uV = max_uV;
3074         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3075                                    &data);
3076         if (ret & NOTIFY_STOP_MASK)
3077                 return -EINVAL;
3078
3079         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3080         if (ret >= 0)
3081                 return ret;
3082
3083         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3084                              (void *)data.old_uV);
3085
3086         return ret;
3087 }
3088
3089 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3090                                            int uV, unsigned selector)
3091 {
3092         struct pre_voltage_change_data data;
3093         int ret;
3094
3095         data.old_uV = regulator_get_voltage_rdev(rdev);
3096         data.min_uV = uV;
3097         data.max_uV = uV;
3098         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3099                                    &data);
3100         if (ret & NOTIFY_STOP_MASK)
3101                 return -EINVAL;
3102
3103         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3104         if (ret >= 0)
3105                 return ret;
3106
3107         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3108                              (void *)data.old_uV);
3109
3110         return ret;
3111 }
3112
3113 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3114                                            int uV, int new_selector)
3115 {
3116         const struct regulator_ops *ops = rdev->desc->ops;
3117         int diff, old_sel, curr_sel, ret;
3118
3119         /* Stepping is only needed if the regulator is enabled. */
3120         if (!_regulator_is_enabled(rdev))
3121                 goto final_set;
3122
3123         if (!ops->get_voltage_sel)
3124                 return -EINVAL;
3125
3126         old_sel = ops->get_voltage_sel(rdev);
3127         if (old_sel < 0)
3128                 return old_sel;
3129
3130         diff = new_selector - old_sel;
3131         if (diff == 0)
3132                 return 0; /* No change needed. */
3133
3134         if (diff > 0) {
3135                 /* Stepping up. */
3136                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3137                      curr_sel < new_selector;
3138                      curr_sel += rdev->desc->vsel_step) {
3139                         /*
3140                          * Call the callback directly instead of using
3141                          * _regulator_call_set_voltage_sel() as we don't
3142                          * want to notify anyone yet. Same in the branch
3143                          * below.
3144                          */
3145                         ret = ops->set_voltage_sel(rdev, curr_sel);
3146                         if (ret)
3147                                 goto try_revert;
3148                 }
3149         } else {
3150                 /* Stepping down. */
3151                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3152                      curr_sel > new_selector;
3153                      curr_sel -= rdev->desc->vsel_step) {
3154                         ret = ops->set_voltage_sel(rdev, curr_sel);
3155                         if (ret)
3156                                 goto try_revert;
3157                 }
3158         }
3159
3160 final_set:
3161         /* The final selector will trigger the notifiers. */
3162         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3163
3164 try_revert:
3165         /*
3166          * At least try to return to the previous voltage if setting a new
3167          * one failed.
3168          */
3169         (void)ops->set_voltage_sel(rdev, old_sel);
3170         return ret;
3171 }
3172
3173 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3174                                        int old_uV, int new_uV)
3175 {
3176         unsigned int ramp_delay = 0;
3177
3178         if (rdev->constraints->ramp_delay)
3179                 ramp_delay = rdev->constraints->ramp_delay;
3180         else if (rdev->desc->ramp_delay)
3181                 ramp_delay = rdev->desc->ramp_delay;
3182         else if (rdev->constraints->settling_time)
3183                 return rdev->constraints->settling_time;
3184         else if (rdev->constraints->settling_time_up &&
3185                  (new_uV > old_uV))
3186                 return rdev->constraints->settling_time_up;
3187         else if (rdev->constraints->settling_time_down &&
3188                  (new_uV < old_uV))
3189                 return rdev->constraints->settling_time_down;
3190
3191         if (ramp_delay == 0) {
3192                 rdev_dbg(rdev, "ramp_delay not set\n");
3193                 return 0;
3194         }
3195
3196         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3197 }
3198
3199 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3200                                      int min_uV, int max_uV)
3201 {
3202         int ret;
3203         int delay = 0;
3204         int best_val = 0;
3205         unsigned int selector;
3206         int old_selector = -1;
3207         const struct regulator_ops *ops = rdev->desc->ops;
3208         int old_uV = regulator_get_voltage_rdev(rdev);
3209
3210         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3211
3212         min_uV += rdev->constraints->uV_offset;
3213         max_uV += rdev->constraints->uV_offset;
3214
3215         /*
3216          * If we can't obtain the old selector there is not enough
3217          * info to call set_voltage_time_sel().
3218          */
3219         if (_regulator_is_enabled(rdev) &&
3220             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3221                 old_selector = ops->get_voltage_sel(rdev);
3222                 if (old_selector < 0)
3223                         return old_selector;
3224         }
3225
3226         if (ops->set_voltage) {
3227                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3228                                                   &selector);
3229
3230                 if (ret >= 0) {
3231                         if (ops->list_voltage)
3232                                 best_val = ops->list_voltage(rdev,
3233                                                              selector);
3234                         else
3235                                 best_val = regulator_get_voltage_rdev(rdev);
3236                 }
3237
3238         } else if (ops->set_voltage_sel) {
3239                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3240                 if (ret >= 0) {
3241                         best_val = ops->list_voltage(rdev, ret);
3242                         if (min_uV <= best_val && max_uV >= best_val) {
3243                                 selector = ret;
3244                                 if (old_selector == selector)
3245                                         ret = 0;
3246                                 else if (rdev->desc->vsel_step)
3247                                         ret = _regulator_set_voltage_sel_step(
3248                                                 rdev, best_val, selector);
3249                                 else
3250                                         ret = _regulator_call_set_voltage_sel(
3251                                                 rdev, best_val, selector);
3252                         } else {
3253                                 ret = -EINVAL;
3254                         }
3255                 }
3256         } else {
3257                 ret = -EINVAL;
3258         }
3259
3260         if (ret)
3261                 goto out;
3262
3263         if (ops->set_voltage_time_sel) {
3264                 /*
3265                  * Call set_voltage_time_sel if successfully obtained
3266                  * old_selector
3267                  */
3268                 if (old_selector >= 0 && old_selector != selector)
3269                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3270                                                           selector);
3271         } else {
3272                 if (old_uV != best_val) {
3273                         if (ops->set_voltage_time)
3274                                 delay = ops->set_voltage_time(rdev, old_uV,
3275                                                               best_val);
3276                         else
3277                                 delay = _regulator_set_voltage_time(rdev,
3278                                                                     old_uV,
3279                                                                     best_val);
3280                 }
3281         }
3282
3283         if (delay < 0) {
3284                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3285                 delay = 0;
3286         }
3287
3288         /* Insert any necessary delays */
3289         if (delay >= 1000) {
3290                 mdelay(delay / 1000);
3291                 udelay(delay % 1000);
3292         } else if (delay) {
3293                 udelay(delay);
3294         }
3295
3296         if (best_val >= 0) {
3297                 unsigned long data = best_val;
3298
3299                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3300                                      (void *)data);
3301         }
3302
3303 out:
3304         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3305
3306         return ret;
3307 }
3308
3309 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3310                                   int min_uV, int max_uV, suspend_state_t state)
3311 {
3312         struct regulator_state *rstate;
3313         int uV, sel;
3314
3315         rstate = regulator_get_suspend_state(rdev, state);
3316         if (rstate == NULL)
3317                 return -EINVAL;
3318
3319         if (min_uV < rstate->min_uV)
3320                 min_uV = rstate->min_uV;
3321         if (max_uV > rstate->max_uV)
3322                 max_uV = rstate->max_uV;
3323
3324         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3325         if (sel < 0)
3326                 return sel;
3327
3328         uV = rdev->desc->ops->list_voltage(rdev, sel);
3329         if (uV >= min_uV && uV <= max_uV)
3330                 rstate->uV = uV;
3331
3332         return 0;
3333 }
3334
3335 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3336                                           int min_uV, int max_uV,
3337                                           suspend_state_t state)
3338 {
3339         struct regulator_dev *rdev = regulator->rdev;
3340         struct regulator_voltage *voltage = &regulator->voltage[state];
3341         int ret = 0;
3342         int old_min_uV, old_max_uV;
3343         int current_uV;
3344
3345         /* If we're setting the same range as last time the change
3346          * should be a noop (some cpufreq implementations use the same
3347          * voltage for multiple frequencies, for example).
3348          */
3349         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3350                 goto out;
3351
3352         /* If we're trying to set a range that overlaps the current voltage,
3353          * return successfully even though the regulator does not support
3354          * changing the voltage.
3355          */
3356         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3357                 current_uV = regulator_get_voltage_rdev(rdev);
3358                 if (min_uV <= current_uV && current_uV <= max_uV) {
3359                         voltage->min_uV = min_uV;
3360                         voltage->max_uV = max_uV;
3361                         goto out;
3362                 }
3363         }
3364
3365         /* sanity check */
3366         if (!rdev->desc->ops->set_voltage &&
3367             !rdev->desc->ops->set_voltage_sel) {
3368                 ret = -EINVAL;
3369                 goto out;
3370         }
3371
3372         /* constraints check */
3373         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3374         if (ret < 0)
3375                 goto out;
3376
3377         /* restore original values in case of error */
3378         old_min_uV = voltage->min_uV;
3379         old_max_uV = voltage->max_uV;
3380         voltage->min_uV = min_uV;
3381         voltage->max_uV = max_uV;
3382
3383         /* for not coupled regulators this will just set the voltage */
3384         ret = regulator_balance_voltage(rdev, state);
3385         if (ret < 0) {
3386                 voltage->min_uV = old_min_uV;
3387                 voltage->max_uV = old_max_uV;
3388         }
3389
3390 out:
3391         return ret;
3392 }
3393
3394 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3395                                int max_uV, suspend_state_t state)
3396 {
3397         int best_supply_uV = 0;
3398         int supply_change_uV = 0;
3399         int ret;
3400
3401         if (rdev->supply &&
3402             regulator_ops_is_valid(rdev->supply->rdev,
3403                                    REGULATOR_CHANGE_VOLTAGE) &&
3404             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3405                                            rdev->desc->ops->get_voltage_sel))) {
3406                 int current_supply_uV;
3407                 int selector;
3408
3409                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3410                 if (selector < 0) {
3411                         ret = selector;
3412                         goto out;
3413                 }
3414
3415                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3416                 if (best_supply_uV < 0) {
3417                         ret = best_supply_uV;
3418                         goto out;
3419                 }
3420
3421                 best_supply_uV += rdev->desc->min_dropout_uV;
3422
3423                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3424                 if (current_supply_uV < 0) {
3425                         ret = current_supply_uV;
3426                         goto out;
3427                 }
3428
3429                 supply_change_uV = best_supply_uV - current_supply_uV;
3430         }
3431
3432         if (supply_change_uV > 0) {
3433                 ret = regulator_set_voltage_unlocked(rdev->supply,
3434                                 best_supply_uV, INT_MAX, state);
3435                 if (ret) {
3436                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3437                                         ret);
3438                         goto out;
3439                 }
3440         }
3441
3442         if (state == PM_SUSPEND_ON)
3443                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3444         else
3445                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3446                                                         max_uV, state);
3447         if (ret < 0)
3448                 goto out;
3449
3450         if (supply_change_uV < 0) {
3451                 ret = regulator_set_voltage_unlocked(rdev->supply,
3452                                 best_supply_uV, INT_MAX, state);
3453                 if (ret)
3454                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3455                                         ret);
3456                 /* No need to fail here */
3457                 ret = 0;
3458         }
3459
3460 out:
3461         return ret;
3462 }
3463
3464 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3465                                         int *current_uV, int *min_uV)
3466 {
3467         struct regulation_constraints *constraints = rdev->constraints;
3468
3469         /* Limit voltage change only if necessary */
3470         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3471                 return 1;
3472
3473         if (*current_uV < 0) {
3474                 *current_uV = regulator_get_voltage_rdev(rdev);
3475
3476                 if (*current_uV < 0)
3477                         return *current_uV;
3478         }
3479
3480         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3481                 return 1;
3482
3483         /* Clamp target voltage within the given step */
3484         if (*current_uV < *min_uV)
3485                 *min_uV = min(*current_uV + constraints->max_uV_step,
3486                               *min_uV);
3487         else
3488                 *min_uV = max(*current_uV - constraints->max_uV_step,
3489                               *min_uV);
3490
3491         return 0;
3492 }
3493
3494 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3495                                          int *current_uV,
3496                                          int *min_uV, int *max_uV,
3497                                          suspend_state_t state,
3498                                          int n_coupled)
3499 {
3500         struct coupling_desc *c_desc = &rdev->coupling_desc;
3501         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3502         struct regulation_constraints *constraints = rdev->constraints;
3503         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3504         int max_current_uV = 0, min_current_uV = INT_MAX;
3505         int highest_min_uV = 0, target_uV, possible_uV;
3506         int i, ret, max_spread;
3507         bool done;
3508
3509         *current_uV = -1;
3510
3511         /*
3512          * If there are no coupled regulators, simply set the voltage
3513          * demanded by consumers.
3514          */
3515         if (n_coupled == 1) {
3516                 /*
3517                  * If consumers don't provide any demands, set voltage
3518                  * to min_uV
3519                  */
3520                 desired_min_uV = constraints->min_uV;
3521                 desired_max_uV = constraints->max_uV;
3522
3523                 ret = regulator_check_consumers(rdev,
3524                                                 &desired_min_uV,
3525                                                 &desired_max_uV, state);
3526                 if (ret < 0)
3527                         return ret;
3528
3529                 possible_uV = desired_min_uV;
3530                 done = true;
3531
3532                 goto finish;
3533         }
3534
3535         /* Find highest min desired voltage */
3536         for (i = 0; i < n_coupled; i++) {
3537                 int tmp_min = 0;
3538                 int tmp_max = INT_MAX;
3539
3540                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3541
3542                 ret = regulator_check_consumers(c_rdevs[i],
3543                                                 &tmp_min,
3544                                                 &tmp_max, state);
3545                 if (ret < 0)
3546                         return ret;
3547
3548                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3549                 if (ret < 0)
3550                         return ret;
3551
3552                 highest_min_uV = max(highest_min_uV, tmp_min);
3553
3554                 if (i == 0) {
3555                         desired_min_uV = tmp_min;
3556                         desired_max_uV = tmp_max;
3557                 }
3558         }
3559
3560         max_spread = constraints->max_spread[0];
3561
3562         /*
3563          * Let target_uV be equal to the desired one if possible.
3564          * If not, set it to minimum voltage, allowed by other coupled
3565          * regulators.
3566          */
3567         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3568
3569         /*
3570          * Find min and max voltages, which currently aren't violating
3571          * max_spread.
3572          */
3573         for (i = 1; i < n_coupled; i++) {
3574                 int tmp_act;
3575
3576                 if (!_regulator_is_enabled(c_rdevs[i]))
3577                         continue;
3578
3579                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3580                 if (tmp_act < 0)
3581                         return tmp_act;
3582
3583                 min_current_uV = min(tmp_act, min_current_uV);
3584                 max_current_uV = max(tmp_act, max_current_uV);
3585         }
3586
3587         /* There aren't any other regulators enabled */
3588         if (max_current_uV == 0) {
3589                 possible_uV = target_uV;
3590         } else {
3591                 /*
3592                  * Correct target voltage, so as it currently isn't
3593                  * violating max_spread
3594                  */
3595                 possible_uV = max(target_uV, max_current_uV - max_spread);
3596                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3597         }
3598
3599         if (possible_uV > desired_max_uV)
3600                 return -EINVAL;
3601
3602         done = (possible_uV == target_uV);
3603         desired_min_uV = possible_uV;
3604
3605 finish:
3606         /* Apply max_uV_step constraint if necessary */
3607         if (state == PM_SUSPEND_ON) {
3608                 ret = regulator_limit_voltage_step(rdev, current_uV,
3609                                                    &desired_min_uV);
3610                 if (ret < 0)
3611                         return ret;
3612
3613                 if (ret == 0)
3614                         done = false;
3615         }
3616
3617         /* Set current_uV if wasn't done earlier in the code and if necessary */
3618         if (n_coupled > 1 && *current_uV == -1) {
3619
3620                 if (_regulator_is_enabled(rdev)) {
3621                         ret = regulator_get_voltage_rdev(rdev);
3622                         if (ret < 0)
3623                                 return ret;
3624
3625                         *current_uV = ret;
3626                 } else {
3627                         *current_uV = desired_min_uV;
3628                 }
3629         }
3630
3631         *min_uV = desired_min_uV;
3632         *max_uV = desired_max_uV;
3633
3634         return done;
3635 }
3636
3637 static int regulator_balance_voltage(struct regulator_dev *rdev,
3638                                      suspend_state_t state)
3639 {
3640         struct regulator_dev **c_rdevs;
3641         struct regulator_dev *best_rdev;
3642         struct coupling_desc *c_desc = &rdev->coupling_desc;
3643         struct regulator_coupler *coupler = c_desc->coupler;
3644         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3645         unsigned int delta, best_delta;
3646         unsigned long c_rdev_done = 0;
3647         bool best_c_rdev_done;
3648
3649         c_rdevs = c_desc->coupled_rdevs;
3650         n_coupled = c_desc->n_coupled;
3651
3652         /*
3653          * If system is in a state other than PM_SUSPEND_ON, don't check
3654          * other coupled regulators.
3655          */
3656         if (state != PM_SUSPEND_ON)
3657                 n_coupled = 1;
3658
3659         if (c_desc->n_resolved < n_coupled) {
3660                 rdev_err(rdev, "Not all coupled regulators registered\n");
3661                 return -EPERM;
3662         }
3663
3664         /* Invoke custom balancer for customized couplers */
3665         if (coupler && coupler->balance_voltage)
3666                 return coupler->balance_voltage(coupler, rdev, state);
3667
3668         /*
3669          * Find the best possible voltage change on each loop. Leave the loop
3670          * if there isn't any possible change.
3671          */
3672         do {
3673                 best_c_rdev_done = false;
3674                 best_delta = 0;
3675                 best_min_uV = 0;
3676                 best_max_uV = 0;
3677                 best_c_rdev = 0;
3678                 best_rdev = NULL;
3679
3680                 /*
3681                  * Find highest difference between optimal voltage
3682                  * and current voltage.
3683                  */
3684                 for (i = 0; i < n_coupled; i++) {
3685                         /*
3686                          * optimal_uV is the best voltage that can be set for
3687                          * i-th regulator at the moment without violating
3688                          * max_spread constraint in order to balance
3689                          * the coupled voltages.
3690                          */
3691                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3692
3693                         if (test_bit(i, &c_rdev_done))
3694                                 continue;
3695
3696                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3697                                                             &current_uV,
3698                                                             &optimal_uV,
3699                                                             &optimal_max_uV,
3700                                                             state, n_coupled);
3701                         if (ret < 0)
3702                                 goto out;
3703
3704                         delta = abs(optimal_uV - current_uV);
3705
3706                         if (delta && best_delta <= delta) {
3707                                 best_c_rdev_done = ret;
3708                                 best_delta = delta;
3709                                 best_rdev = c_rdevs[i];
3710                                 best_min_uV = optimal_uV;
3711                                 best_max_uV = optimal_max_uV;
3712                                 best_c_rdev = i;
3713                         }
3714                 }
3715
3716                 /* Nothing to change, return successfully */
3717                 if (!best_rdev) {
3718                         ret = 0;
3719                         goto out;
3720                 }
3721
3722                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3723                                                  best_max_uV, state);
3724
3725                 if (ret < 0)
3726                         goto out;
3727
3728                 if (best_c_rdev_done)
3729                         set_bit(best_c_rdev, &c_rdev_done);
3730
3731         } while (n_coupled > 1);
3732
3733 out:
3734         return ret;
3735 }
3736
3737 /**
3738  * regulator_set_voltage - set regulator output voltage
3739  * @regulator: regulator source
3740  * @min_uV: Minimum required voltage in uV
3741  * @max_uV: Maximum acceptable voltage in uV
3742  *
3743  * Sets a voltage regulator to the desired output voltage. This can be set
3744  * during any regulator state. IOW, regulator can be disabled or enabled.
3745  *
3746  * If the regulator is enabled then the voltage will change to the new value
3747  * immediately otherwise if the regulator is disabled the regulator will
3748  * output at the new voltage when enabled.
3749  *
3750  * NOTE: If the regulator is shared between several devices then the lowest
3751  * request voltage that meets the system constraints will be used.
3752  * Regulator system constraints must be set for this regulator before
3753  * calling this function otherwise this call will fail.
3754  */
3755 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3756 {
3757         struct ww_acquire_ctx ww_ctx;
3758         int ret;
3759
3760         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3761
3762         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3763                                              PM_SUSPEND_ON);
3764
3765         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3766
3767         return ret;
3768 }
3769 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3770
3771 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3772                                            suspend_state_t state, bool en)
3773 {
3774         struct regulator_state *rstate;
3775
3776         rstate = regulator_get_suspend_state(rdev, state);
3777         if (rstate == NULL)
3778                 return -EINVAL;
3779
3780         if (!rstate->changeable)
3781                 return -EPERM;
3782
3783         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3784
3785         return 0;
3786 }
3787
3788 int regulator_suspend_enable(struct regulator_dev *rdev,
3789                                     suspend_state_t state)
3790 {
3791         return regulator_suspend_toggle(rdev, state, true);
3792 }
3793 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3794
3795 int regulator_suspend_disable(struct regulator_dev *rdev,
3796                                      suspend_state_t state)
3797 {
3798         struct regulator *regulator;
3799         struct regulator_voltage *voltage;
3800
3801         /*
3802          * if any consumer wants this regulator device keeping on in
3803          * suspend states, don't set it as disabled.
3804          */
3805         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3806                 voltage = &regulator->voltage[state];
3807                 if (voltage->min_uV || voltage->max_uV)
3808                         return 0;
3809         }
3810
3811         return regulator_suspend_toggle(rdev, state, false);
3812 }
3813 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3814
3815 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3816                                           int min_uV, int max_uV,
3817                                           suspend_state_t state)
3818 {
3819         struct regulator_dev *rdev = regulator->rdev;
3820         struct regulator_state *rstate;
3821
3822         rstate = regulator_get_suspend_state(rdev, state);
3823         if (rstate == NULL)
3824                 return -EINVAL;
3825
3826         if (rstate->min_uV == rstate->max_uV) {
3827                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3828                 return -EPERM;
3829         }
3830
3831         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3832 }
3833
3834 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3835                                   int max_uV, suspend_state_t state)
3836 {
3837         struct ww_acquire_ctx ww_ctx;
3838         int ret;
3839
3840         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3841         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3842                 return -EINVAL;
3843
3844         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3845
3846         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3847                                              max_uV, state);
3848
3849         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3850
3851         return ret;
3852 }
3853 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3854
3855 /**
3856  * regulator_set_voltage_time - get raise/fall time
3857  * @regulator: regulator source
3858  * @old_uV: starting voltage in microvolts
3859  * @new_uV: target voltage in microvolts
3860  *
3861  * Provided with the starting and ending voltage, this function attempts to
3862  * calculate the time in microseconds required to rise or fall to this new
3863  * voltage.
3864  */
3865 int regulator_set_voltage_time(struct regulator *regulator,
3866                                int old_uV, int new_uV)
3867 {
3868         struct regulator_dev *rdev = regulator->rdev;
3869         const struct regulator_ops *ops = rdev->desc->ops;
3870         int old_sel = -1;
3871         int new_sel = -1;
3872         int voltage;
3873         int i;
3874
3875         if (ops->set_voltage_time)
3876                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3877         else if (!ops->set_voltage_time_sel)
3878                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3879
3880         /* Currently requires operations to do this */
3881         if (!ops->list_voltage || !rdev->desc->n_voltages)
3882                 return -EINVAL;
3883
3884         for (i = 0; i < rdev->desc->n_voltages; i++) {
3885                 /* We only look for exact voltage matches here */
3886                 voltage = regulator_list_voltage(regulator, i);
3887                 if (voltage < 0)
3888                         return -EINVAL;
3889                 if (voltage == 0)
3890                         continue;
3891                 if (voltage == old_uV)
3892                         old_sel = i;
3893                 if (voltage == new_uV)
3894                         new_sel = i;
3895         }
3896
3897         if (old_sel < 0 || new_sel < 0)
3898                 return -EINVAL;
3899
3900         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3901 }
3902 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3903
3904 /**
3905  * regulator_set_voltage_time_sel - get raise/fall time
3906  * @rdev: regulator source device
3907  * @old_selector: selector for starting voltage
3908  * @new_selector: selector for target voltage
3909  *
3910  * Provided with the starting and target voltage selectors, this function
3911  * returns time in microseconds required to rise or fall to this new voltage
3912  *
3913  * Drivers providing ramp_delay in regulation_constraints can use this as their
3914  * set_voltage_time_sel() operation.
3915  */
3916 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3917                                    unsigned int old_selector,
3918                                    unsigned int new_selector)
3919 {
3920         int old_volt, new_volt;
3921
3922         /* sanity check */
3923         if (!rdev->desc->ops->list_voltage)
3924                 return -EINVAL;
3925
3926         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3927         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3928
3929         if (rdev->desc->ops->set_voltage_time)
3930                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3931                                                          new_volt);
3932         else
3933                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3934 }
3935 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3936
3937 /**
3938  * regulator_sync_voltage - re-apply last regulator output voltage
3939  * @regulator: regulator source
3940  *
3941  * Re-apply the last configured voltage.  This is intended to be used
3942  * where some external control source the consumer is cooperating with
3943  * has caused the configured voltage to change.
3944  */
3945 int regulator_sync_voltage(struct regulator *regulator)
3946 {
3947         struct regulator_dev *rdev = regulator->rdev;
3948         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3949         int ret, min_uV, max_uV;
3950
3951         regulator_lock(rdev);
3952
3953         if (!rdev->desc->ops->set_voltage &&
3954             !rdev->desc->ops->set_voltage_sel) {
3955                 ret = -EINVAL;
3956                 goto out;
3957         }
3958
3959         /* This is only going to work if we've had a voltage configured. */
3960         if (!voltage->min_uV && !voltage->max_uV) {
3961                 ret = -EINVAL;
3962                 goto out;
3963         }
3964
3965         min_uV = voltage->min_uV;
3966         max_uV = voltage->max_uV;
3967
3968         /* This should be a paranoia check... */
3969         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3970         if (ret < 0)
3971                 goto out;
3972
3973         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3974         if (ret < 0)
3975                 goto out;
3976
3977         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3978
3979 out:
3980         regulator_unlock(rdev);
3981         return ret;
3982 }
3983 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3984
3985 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3986 {
3987         int sel, ret;
3988         bool bypassed;
3989
3990         if (rdev->desc->ops->get_bypass) {
3991                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3992                 if (ret < 0)
3993                         return ret;
3994                 if (bypassed) {
3995                         /* if bypassed the regulator must have a supply */
3996                         if (!rdev->supply) {
3997                                 rdev_err(rdev,
3998                                          "bypassed regulator has no supply!\n");
3999                                 return -EPROBE_DEFER;
4000                         }
4001
4002                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4003                 }
4004         }
4005
4006         if (rdev->desc->ops->get_voltage_sel) {
4007                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4008                 if (sel < 0)
4009                         return sel;
4010                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4011         } else if (rdev->desc->ops->get_voltage) {
4012                 ret = rdev->desc->ops->get_voltage(rdev);
4013         } else if (rdev->desc->ops->list_voltage) {
4014                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4015         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4016                 ret = rdev->desc->fixed_uV;
4017         } else if (rdev->supply) {
4018                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4019         } else {
4020                 return -EINVAL;
4021         }
4022
4023         if (ret < 0)
4024                 return ret;
4025         return ret - rdev->constraints->uV_offset;
4026 }
4027
4028 /**
4029  * regulator_get_voltage - get regulator output voltage
4030  * @regulator: regulator source
4031  *
4032  * This returns the current regulator voltage in uV.
4033  *
4034  * NOTE: If the regulator is disabled it will return the voltage value. This
4035  * function should not be used to determine regulator state.
4036  */
4037 int regulator_get_voltage(struct regulator *regulator)
4038 {
4039         struct ww_acquire_ctx ww_ctx;
4040         int ret;
4041
4042         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4043         ret = regulator_get_voltage_rdev(regulator->rdev);
4044         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4045
4046         return ret;
4047 }
4048 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4049
4050 /**
4051  * regulator_set_current_limit - set regulator output current limit
4052  * @regulator: regulator source
4053  * @min_uA: Minimum supported current in uA
4054  * @max_uA: Maximum supported current in uA
4055  *
4056  * Sets current sink to the desired output current. This can be set during
4057  * any regulator state. IOW, regulator can be disabled or enabled.
4058  *
4059  * If the regulator is enabled then the current will change to the new value
4060  * immediately otherwise if the regulator is disabled the regulator will
4061  * output at the new current when enabled.
4062  *
4063  * NOTE: Regulator system constraints must be set for this regulator before
4064  * calling this function otherwise this call will fail.
4065  */
4066 int regulator_set_current_limit(struct regulator *regulator,
4067                                int min_uA, int max_uA)
4068 {
4069         struct regulator_dev *rdev = regulator->rdev;
4070         int ret;
4071
4072         regulator_lock(rdev);
4073
4074         /* sanity check */
4075         if (!rdev->desc->ops->set_current_limit) {
4076                 ret = -EINVAL;
4077                 goto out;
4078         }
4079
4080         /* constraints check */
4081         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4082         if (ret < 0)
4083                 goto out;
4084
4085         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4086 out:
4087         regulator_unlock(rdev);
4088         return ret;
4089 }
4090 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4091
4092 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4093 {
4094         /* sanity check */
4095         if (!rdev->desc->ops->get_current_limit)
4096                 return -EINVAL;
4097
4098         return rdev->desc->ops->get_current_limit(rdev);
4099 }
4100
4101 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4102 {
4103         int ret;
4104
4105         regulator_lock(rdev);
4106         ret = _regulator_get_current_limit_unlocked(rdev);
4107         regulator_unlock(rdev);
4108
4109         return ret;
4110 }
4111
4112 /**
4113  * regulator_get_current_limit - get regulator output current
4114  * @regulator: regulator source
4115  *
4116  * This returns the current supplied by the specified current sink in uA.
4117  *
4118  * NOTE: If the regulator is disabled it will return the current value. This
4119  * function should not be used to determine regulator state.
4120  */
4121 int regulator_get_current_limit(struct regulator *regulator)
4122 {
4123         return _regulator_get_current_limit(regulator->rdev);
4124 }
4125 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4126
4127 /**
4128  * regulator_set_mode - set regulator operating mode
4129  * @regulator: regulator source
4130  * @mode: operating mode - one of the REGULATOR_MODE constants
4131  *
4132  * Set regulator operating mode to increase regulator efficiency or improve
4133  * regulation performance.
4134  *
4135  * NOTE: Regulator system constraints must be set for this regulator before
4136  * calling this function otherwise this call will fail.
4137  */
4138 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4139 {
4140         struct regulator_dev *rdev = regulator->rdev;
4141         int ret;
4142         int regulator_curr_mode;
4143
4144         regulator_lock(rdev);
4145
4146         /* sanity check */
4147         if (!rdev->desc->ops->set_mode) {
4148                 ret = -EINVAL;
4149                 goto out;
4150         }
4151
4152         /* return if the same mode is requested */
4153         if (rdev->desc->ops->get_mode) {
4154                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4155                 if (regulator_curr_mode == mode) {
4156                         ret = 0;
4157                         goto out;
4158                 }
4159         }
4160
4161         /* constraints check */
4162         ret = regulator_mode_constrain(rdev, &mode);
4163         if (ret < 0)
4164                 goto out;
4165
4166         ret = rdev->desc->ops->set_mode(rdev, mode);
4167 out:
4168         regulator_unlock(rdev);
4169         return ret;
4170 }
4171 EXPORT_SYMBOL_GPL(regulator_set_mode);
4172
4173 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4174 {
4175         /* sanity check */
4176         if (!rdev->desc->ops->get_mode)
4177                 return -EINVAL;
4178
4179         return rdev->desc->ops->get_mode(rdev);
4180 }
4181
4182 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4183 {
4184         int ret;
4185
4186         regulator_lock(rdev);
4187         ret = _regulator_get_mode_unlocked(rdev);
4188         regulator_unlock(rdev);
4189
4190         return ret;
4191 }
4192
4193 /**
4194  * regulator_get_mode - get regulator operating mode
4195  * @regulator: regulator source
4196  *
4197  * Get the current regulator operating mode.
4198  */
4199 unsigned int regulator_get_mode(struct regulator *regulator)
4200 {
4201         return _regulator_get_mode(regulator->rdev);
4202 }
4203 EXPORT_SYMBOL_GPL(regulator_get_mode);
4204
4205 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4206                                         unsigned int *flags)
4207 {
4208         int ret;
4209
4210         regulator_lock(rdev);
4211
4212         /* sanity check */
4213         if (!rdev->desc->ops->get_error_flags) {
4214                 ret = -EINVAL;
4215                 goto out;
4216         }
4217
4218         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4219 out:
4220         regulator_unlock(rdev);
4221         return ret;
4222 }
4223
4224 /**
4225  * regulator_get_error_flags - get regulator error information
4226  * @regulator: regulator source
4227  * @flags: pointer to store error flags
4228  *
4229  * Get the current regulator error information.
4230  */
4231 int regulator_get_error_flags(struct regulator *regulator,
4232                                 unsigned int *flags)
4233 {
4234         return _regulator_get_error_flags(regulator->rdev, flags);
4235 }
4236 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4237
4238 /**
4239  * regulator_set_load - set regulator load
4240  * @regulator: regulator source
4241  * @uA_load: load current
4242  *
4243  * Notifies the regulator core of a new device load. This is then used by
4244  * DRMS (if enabled by constraints) to set the most efficient regulator
4245  * operating mode for the new regulator loading.
4246  *
4247  * Consumer devices notify their supply regulator of the maximum power
4248  * they will require (can be taken from device datasheet in the power
4249  * consumption tables) when they change operational status and hence power
4250  * state. Examples of operational state changes that can affect power
4251  * consumption are :-
4252  *
4253  *    o Device is opened / closed.
4254  *    o Device I/O is about to begin or has just finished.
4255  *    o Device is idling in between work.
4256  *
4257  * This information is also exported via sysfs to userspace.
4258  *
4259  * DRMS will sum the total requested load on the regulator and change
4260  * to the most efficient operating mode if platform constraints allow.
4261  *
4262  * NOTE: when a regulator consumer requests to have a regulator
4263  * disabled then any load that consumer requested no longer counts
4264  * toward the total requested load.  If the regulator is re-enabled
4265  * then the previously requested load will start counting again.
4266  *
4267  * If a regulator is an always-on regulator then an individual consumer's
4268  * load will still be removed if that consumer is fully disabled.
4269  *
4270  * On error a negative errno is returned.
4271  */
4272 int regulator_set_load(struct regulator *regulator, int uA_load)
4273 {
4274         struct regulator_dev *rdev = regulator->rdev;
4275         int old_uA_load;
4276         int ret = 0;
4277
4278         regulator_lock(rdev);
4279         old_uA_load = regulator->uA_load;
4280         regulator->uA_load = uA_load;
4281         if (regulator->enable_count && old_uA_load != uA_load) {
4282                 ret = drms_uA_update(rdev);
4283                 if (ret < 0)
4284                         regulator->uA_load = old_uA_load;
4285         }
4286         regulator_unlock(rdev);
4287
4288         return ret;
4289 }
4290 EXPORT_SYMBOL_GPL(regulator_set_load);
4291
4292 /**
4293  * regulator_allow_bypass - allow the regulator to go into bypass mode
4294  *
4295  * @regulator: Regulator to configure
4296  * @enable: enable or disable bypass mode
4297  *
4298  * Allow the regulator to go into bypass mode if all other consumers
4299  * for the regulator also enable bypass mode and the machine
4300  * constraints allow this.  Bypass mode means that the regulator is
4301  * simply passing the input directly to the output with no regulation.
4302  */
4303 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4304 {
4305         struct regulator_dev *rdev = regulator->rdev;
4306         int ret = 0;
4307
4308         if (!rdev->desc->ops->set_bypass)
4309                 return 0;
4310
4311         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4312                 return 0;
4313
4314         regulator_lock(rdev);
4315
4316         if (enable && !regulator->bypass) {
4317                 rdev->bypass_count++;
4318
4319                 if (rdev->bypass_count == rdev->open_count) {
4320                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4321                         if (ret != 0)
4322                                 rdev->bypass_count--;
4323                 }
4324
4325         } else if (!enable && regulator->bypass) {
4326                 rdev->bypass_count--;
4327
4328                 if (rdev->bypass_count != rdev->open_count) {
4329                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4330                         if (ret != 0)
4331                                 rdev->bypass_count++;
4332                 }
4333         }
4334
4335         if (ret == 0)
4336                 regulator->bypass = enable;
4337
4338         regulator_unlock(rdev);
4339
4340         return ret;
4341 }
4342 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4343
4344 /**
4345  * regulator_register_notifier - register regulator event notifier
4346  * @regulator: regulator source
4347  * @nb: notifier block
4348  *
4349  * Register notifier block to receive regulator events.
4350  */
4351 int regulator_register_notifier(struct regulator *regulator,
4352                               struct notifier_block *nb)
4353 {
4354         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4355                                                 nb);
4356 }
4357 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4358
4359 /**
4360  * regulator_unregister_notifier - unregister regulator event notifier
4361  * @regulator: regulator source
4362  * @nb: notifier block
4363  *
4364  * Unregister regulator event notifier block.
4365  */
4366 int regulator_unregister_notifier(struct regulator *regulator,
4367                                 struct notifier_block *nb)
4368 {
4369         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4370                                                   nb);
4371 }
4372 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4373
4374 /* notify regulator consumers and downstream regulator consumers.
4375  * Note mutex must be held by caller.
4376  */
4377 static int _notifier_call_chain(struct regulator_dev *rdev,
4378                                   unsigned long event, void *data)
4379 {
4380         /* call rdev chain first */
4381         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4382 }
4383
4384 /**
4385  * regulator_bulk_get - get multiple regulator consumers
4386  *
4387  * @dev:           Device to supply
4388  * @num_consumers: Number of consumers to register
4389  * @consumers:     Configuration of consumers; clients are stored here.
4390  *
4391  * @return 0 on success, an errno on failure.
4392  *
4393  * This helper function allows drivers to get several regulator
4394  * consumers in one operation.  If any of the regulators cannot be
4395  * acquired then any regulators that were allocated will be freed
4396  * before returning to the caller.
4397  */
4398 int regulator_bulk_get(struct device *dev, int num_consumers,
4399                        struct regulator_bulk_data *consumers)
4400 {
4401         int i;
4402         int ret;
4403
4404         for (i = 0; i < num_consumers; i++)
4405                 consumers[i].consumer = NULL;
4406
4407         for (i = 0; i < num_consumers; i++) {
4408                 consumers[i].consumer = regulator_get(dev,
4409                                                       consumers[i].supply);
4410                 if (IS_ERR(consumers[i].consumer)) {
4411                         ret = PTR_ERR(consumers[i].consumer);
4412                         consumers[i].consumer = NULL;
4413                         goto err;
4414                 }
4415         }
4416
4417         return 0;
4418
4419 err:
4420         if (ret != -EPROBE_DEFER)
4421                 dev_err(dev, "Failed to get supply '%s': %d\n",
4422                         consumers[i].supply, ret);
4423         else
4424                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4425                         consumers[i].supply);
4426
4427         while (--i >= 0)
4428                 regulator_put(consumers[i].consumer);
4429
4430         return ret;
4431 }
4432 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4433
4434 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4435 {
4436         struct regulator_bulk_data *bulk = data;
4437
4438         bulk->ret = regulator_enable(bulk->consumer);
4439 }
4440
4441 /**
4442  * regulator_bulk_enable - enable multiple regulator consumers
4443  *
4444  * @num_consumers: Number of consumers
4445  * @consumers:     Consumer data; clients are stored here.
4446  * @return         0 on success, an errno on failure
4447  *
4448  * This convenience API allows consumers to enable multiple regulator
4449  * clients in a single API call.  If any consumers cannot be enabled
4450  * then any others that were enabled will be disabled again prior to
4451  * return.
4452  */
4453 int regulator_bulk_enable(int num_consumers,
4454                           struct regulator_bulk_data *consumers)
4455 {
4456         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4457         int i;
4458         int ret = 0;
4459
4460         for (i = 0; i < num_consumers; i++) {
4461                 async_schedule_domain(regulator_bulk_enable_async,
4462                                       &consumers[i], &async_domain);
4463         }
4464
4465         async_synchronize_full_domain(&async_domain);
4466
4467         /* If any consumer failed we need to unwind any that succeeded */
4468         for (i = 0; i < num_consumers; i++) {
4469                 if (consumers[i].ret != 0) {
4470                         ret = consumers[i].ret;
4471                         goto err;
4472                 }
4473         }
4474
4475         return 0;
4476
4477 err:
4478         for (i = 0; i < num_consumers; i++) {
4479                 if (consumers[i].ret < 0)
4480                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4481                                consumers[i].ret);
4482                 else
4483                         regulator_disable(consumers[i].consumer);
4484         }
4485
4486         return ret;
4487 }
4488 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4489
4490 /**
4491  * regulator_bulk_disable - disable multiple regulator consumers
4492  *
4493  * @num_consumers: Number of consumers
4494  * @consumers:     Consumer data; clients are stored here.
4495  * @return         0 on success, an errno on failure
4496  *
4497  * This convenience API allows consumers to disable multiple regulator
4498  * clients in a single API call.  If any consumers cannot be disabled
4499  * then any others that were disabled will be enabled again prior to
4500  * return.
4501  */
4502 int regulator_bulk_disable(int num_consumers,
4503                            struct regulator_bulk_data *consumers)
4504 {
4505         int i;
4506         int ret, r;
4507
4508         for (i = num_consumers - 1; i >= 0; --i) {
4509                 ret = regulator_disable(consumers[i].consumer);
4510                 if (ret != 0)
4511                         goto err;
4512         }
4513
4514         return 0;
4515
4516 err:
4517         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4518         for (++i; i < num_consumers; ++i) {
4519                 r = regulator_enable(consumers[i].consumer);
4520                 if (r != 0)
4521                         pr_err("Failed to re-enable %s: %d\n",
4522                                consumers[i].supply, r);
4523         }
4524
4525         return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4528
4529 /**
4530  * regulator_bulk_force_disable - force disable multiple regulator consumers
4531  *
4532  * @num_consumers: Number of consumers
4533  * @consumers:     Consumer data; clients are stored here.
4534  * @return         0 on success, an errno on failure
4535  *
4536  * This convenience API allows consumers to forcibly disable multiple regulator
4537  * clients in a single API call.
4538  * NOTE: This should be used for situations when device damage will
4539  * likely occur if the regulators are not disabled (e.g. over temp).
4540  * Although regulator_force_disable function call for some consumers can
4541  * return error numbers, the function is called for all consumers.
4542  */
4543 int regulator_bulk_force_disable(int num_consumers,
4544                            struct regulator_bulk_data *consumers)
4545 {
4546         int i;
4547         int ret = 0;
4548
4549         for (i = 0; i < num_consumers; i++) {
4550                 consumers[i].ret =
4551                             regulator_force_disable(consumers[i].consumer);
4552
4553                 /* Store first error for reporting */
4554                 if (consumers[i].ret && !ret)
4555                         ret = consumers[i].ret;
4556         }
4557
4558         return ret;
4559 }
4560 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4561
4562 /**
4563  * regulator_bulk_free - free multiple regulator consumers
4564  *
4565  * @num_consumers: Number of consumers
4566  * @consumers:     Consumer data; clients are stored here.
4567  *
4568  * This convenience API allows consumers to free multiple regulator
4569  * clients in a single API call.
4570  */
4571 void regulator_bulk_free(int num_consumers,
4572                          struct regulator_bulk_data *consumers)
4573 {
4574         int i;
4575
4576         for (i = 0; i < num_consumers; i++) {
4577                 regulator_put(consumers[i].consumer);
4578                 consumers[i].consumer = NULL;
4579         }
4580 }
4581 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4582
4583 /**
4584  * regulator_notifier_call_chain - call regulator event notifier
4585  * @rdev: regulator source
4586  * @event: notifier block
4587  * @data: callback-specific data.
4588  *
4589  * Called by regulator drivers to notify clients a regulator event has
4590  * occurred. We also notify regulator clients downstream.
4591  * Note lock must be held by caller.
4592  */
4593 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4594                                   unsigned long event, void *data)
4595 {
4596         lockdep_assert_held_once(&rdev->mutex.base);
4597
4598         _notifier_call_chain(rdev, event, data);
4599         return NOTIFY_DONE;
4600
4601 }
4602 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4603
4604 /**
4605  * regulator_mode_to_status - convert a regulator mode into a status
4606  *
4607  * @mode: Mode to convert
4608  *
4609  * Convert a regulator mode into a status.
4610  */
4611 int regulator_mode_to_status(unsigned int mode)
4612 {
4613         switch (mode) {
4614         case REGULATOR_MODE_FAST:
4615                 return REGULATOR_STATUS_FAST;
4616         case REGULATOR_MODE_NORMAL:
4617                 return REGULATOR_STATUS_NORMAL;
4618         case REGULATOR_MODE_IDLE:
4619                 return REGULATOR_STATUS_IDLE;
4620         case REGULATOR_MODE_STANDBY:
4621                 return REGULATOR_STATUS_STANDBY;
4622         default:
4623                 return REGULATOR_STATUS_UNDEFINED;
4624         }
4625 }
4626 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4627
4628 static struct attribute *regulator_dev_attrs[] = {
4629         &dev_attr_name.attr,
4630         &dev_attr_num_users.attr,
4631         &dev_attr_type.attr,
4632         &dev_attr_microvolts.attr,
4633         &dev_attr_microamps.attr,
4634         &dev_attr_opmode.attr,
4635         &dev_attr_state.attr,
4636         &dev_attr_status.attr,
4637         &dev_attr_bypass.attr,
4638         &dev_attr_requested_microamps.attr,
4639         &dev_attr_min_microvolts.attr,
4640         &dev_attr_max_microvolts.attr,
4641         &dev_attr_min_microamps.attr,
4642         &dev_attr_max_microamps.attr,
4643         &dev_attr_suspend_standby_state.attr,
4644         &dev_attr_suspend_mem_state.attr,
4645         &dev_attr_suspend_disk_state.attr,
4646         &dev_attr_suspend_standby_microvolts.attr,
4647         &dev_attr_suspend_mem_microvolts.attr,
4648         &dev_attr_suspend_disk_microvolts.attr,
4649         &dev_attr_suspend_standby_mode.attr,
4650         &dev_attr_suspend_mem_mode.attr,
4651         &dev_attr_suspend_disk_mode.attr,
4652         NULL
4653 };
4654
4655 /*
4656  * To avoid cluttering sysfs (and memory) with useless state, only
4657  * create attributes that can be meaningfully displayed.
4658  */
4659 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4660                                          struct attribute *attr, int idx)
4661 {
4662         struct device *dev = kobj_to_dev(kobj);
4663         struct regulator_dev *rdev = dev_to_rdev(dev);
4664         const struct regulator_ops *ops = rdev->desc->ops;
4665         umode_t mode = attr->mode;
4666
4667         /* these three are always present */
4668         if (attr == &dev_attr_name.attr ||
4669             attr == &dev_attr_num_users.attr ||
4670             attr == &dev_attr_type.attr)
4671                 return mode;
4672
4673         /* some attributes need specific methods to be displayed */
4674         if (attr == &dev_attr_microvolts.attr) {
4675                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4676                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4677                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4678                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4679                         return mode;
4680                 return 0;
4681         }
4682
4683         if (attr == &dev_attr_microamps.attr)
4684                 return ops->get_current_limit ? mode : 0;
4685
4686         if (attr == &dev_attr_opmode.attr)
4687                 return ops->get_mode ? mode : 0;
4688
4689         if (attr == &dev_attr_state.attr)
4690                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4691
4692         if (attr == &dev_attr_status.attr)
4693                 return ops->get_status ? mode : 0;
4694
4695         if (attr == &dev_attr_bypass.attr)
4696                 return ops->get_bypass ? mode : 0;
4697
4698         /* constraints need specific supporting methods */
4699         if (attr == &dev_attr_min_microvolts.attr ||
4700             attr == &dev_attr_max_microvolts.attr)
4701                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4702
4703         if (attr == &dev_attr_min_microamps.attr ||
4704             attr == &dev_attr_max_microamps.attr)
4705                 return ops->set_current_limit ? mode : 0;
4706
4707         if (attr == &dev_attr_suspend_standby_state.attr ||
4708             attr == &dev_attr_suspend_mem_state.attr ||
4709             attr == &dev_attr_suspend_disk_state.attr)
4710                 return mode;
4711
4712         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4713             attr == &dev_attr_suspend_mem_microvolts.attr ||
4714             attr == &dev_attr_suspend_disk_microvolts.attr)
4715                 return ops->set_suspend_voltage ? mode : 0;
4716
4717         if (attr == &dev_attr_suspend_standby_mode.attr ||
4718             attr == &dev_attr_suspend_mem_mode.attr ||
4719             attr == &dev_attr_suspend_disk_mode.attr)
4720                 return ops->set_suspend_mode ? mode : 0;
4721
4722         return mode;
4723 }
4724
4725 static const struct attribute_group regulator_dev_group = {
4726         .attrs = regulator_dev_attrs,
4727         .is_visible = regulator_attr_is_visible,
4728 };
4729
4730 static const struct attribute_group *regulator_dev_groups[] = {
4731         &regulator_dev_group,
4732         NULL
4733 };
4734
4735 static void regulator_dev_release(struct device *dev)
4736 {
4737         struct regulator_dev *rdev = dev_get_drvdata(dev);
4738
4739         kfree(rdev->constraints);
4740         of_node_put(rdev->dev.of_node);
4741         kfree(rdev);
4742 }
4743
4744 static void rdev_init_debugfs(struct regulator_dev *rdev)
4745 {
4746         struct device *parent = rdev->dev.parent;
4747         const char *rname = rdev_get_name(rdev);
4748         char name[NAME_MAX];
4749
4750         /* Avoid duplicate debugfs directory names */
4751         if (parent && rname == rdev->desc->name) {
4752                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4753                          rname);
4754                 rname = name;
4755         }
4756
4757         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4758         if (!rdev->debugfs) {
4759                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4760                 return;
4761         }
4762
4763         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4764                            &rdev->use_count);
4765         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4766                            &rdev->open_count);
4767         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4768                            &rdev->bypass_count);
4769 }
4770
4771 static int regulator_register_resolve_supply(struct device *dev, void *data)
4772 {
4773         struct regulator_dev *rdev = dev_to_rdev(dev);
4774
4775         if (regulator_resolve_supply(rdev))
4776                 rdev_dbg(rdev, "unable to resolve supply\n");
4777
4778         return 0;
4779 }
4780
4781 int regulator_coupler_register(struct regulator_coupler *coupler)
4782 {
4783         mutex_lock(&regulator_list_mutex);
4784         list_add_tail(&coupler->list, &regulator_coupler_list);
4785         mutex_unlock(&regulator_list_mutex);
4786
4787         return 0;
4788 }
4789
4790 static struct regulator_coupler *
4791 regulator_find_coupler(struct regulator_dev *rdev)
4792 {
4793         struct regulator_coupler *coupler;
4794         int err;
4795
4796         /*
4797          * Note that regulators are appended to the list and the generic
4798          * coupler is registered first, hence it will be attached at last
4799          * if nobody cared.
4800          */
4801         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4802                 err = coupler->attach_regulator(coupler, rdev);
4803                 if (!err) {
4804                         if (!coupler->balance_voltage &&
4805                             rdev->coupling_desc.n_coupled > 2)
4806                                 goto err_unsupported;
4807
4808                         return coupler;
4809                 }
4810
4811                 if (err < 0)
4812                         return ERR_PTR(err);
4813
4814                 if (err == 1)
4815                         continue;
4816
4817                 break;
4818         }
4819
4820         return ERR_PTR(-EINVAL);
4821
4822 err_unsupported:
4823         if (coupler->detach_regulator)
4824                 coupler->detach_regulator(coupler, rdev);
4825
4826         rdev_err(rdev,
4827                 "Voltage balancing for multiple regulator couples is unimplemented\n");
4828
4829         return ERR_PTR(-EPERM);
4830 }
4831
4832 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4833 {
4834         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4835         struct coupling_desc *c_desc = &rdev->coupling_desc;
4836         int n_coupled = c_desc->n_coupled;
4837         struct regulator_dev *c_rdev;
4838         int i;
4839
4840         for (i = 1; i < n_coupled; i++) {
4841                 /* already resolved */
4842                 if (c_desc->coupled_rdevs[i])
4843                         continue;
4844
4845                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4846
4847                 if (!c_rdev)
4848                         continue;
4849
4850                 if (c_rdev->coupling_desc.coupler != coupler) {
4851                         rdev_err(rdev, "coupler mismatch with %s\n",
4852                                  rdev_get_name(c_rdev));
4853                         return;
4854                 }
4855
4856                 regulator_lock(c_rdev);
4857
4858                 c_desc->coupled_rdevs[i] = c_rdev;
4859                 c_desc->n_resolved++;
4860
4861                 regulator_unlock(c_rdev);
4862
4863                 regulator_resolve_coupling(c_rdev);
4864         }
4865 }
4866
4867 static void regulator_remove_coupling(struct regulator_dev *rdev)
4868 {
4869         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4870         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4871         struct regulator_dev *__c_rdev, *c_rdev;
4872         unsigned int __n_coupled, n_coupled;
4873         int i, k;
4874         int err;
4875
4876         n_coupled = c_desc->n_coupled;
4877
4878         for (i = 1; i < n_coupled; i++) {
4879                 c_rdev = c_desc->coupled_rdevs[i];
4880
4881                 if (!c_rdev)
4882                         continue;
4883
4884                 regulator_lock(c_rdev);
4885
4886                 __c_desc = &c_rdev->coupling_desc;
4887                 __n_coupled = __c_desc->n_coupled;
4888
4889                 for (k = 1; k < __n_coupled; k++) {
4890                         __c_rdev = __c_desc->coupled_rdevs[k];
4891
4892                         if (__c_rdev == rdev) {
4893                                 __c_desc->coupled_rdevs[k] = NULL;
4894                                 __c_desc->n_resolved--;
4895                                 break;
4896                         }
4897                 }
4898
4899                 regulator_unlock(c_rdev);
4900
4901                 c_desc->coupled_rdevs[i] = NULL;
4902                 c_desc->n_resolved--;
4903         }
4904
4905         if (coupler && coupler->detach_regulator) {
4906                 err = coupler->detach_regulator(coupler, rdev);
4907                 if (err)
4908                         rdev_err(rdev, "failed to detach from coupler: %d\n",
4909                                  err);
4910         }
4911
4912         kfree(rdev->coupling_desc.coupled_rdevs);
4913         rdev->coupling_desc.coupled_rdevs = NULL;
4914 }
4915
4916 static int regulator_init_coupling(struct regulator_dev *rdev)
4917 {
4918         int err, n_phandles;
4919         size_t alloc_size;
4920
4921         if (!IS_ENABLED(CONFIG_OF))
4922                 n_phandles = 0;
4923         else
4924                 n_phandles = of_get_n_coupled(rdev);
4925
4926         alloc_size = sizeof(*rdev) * (n_phandles + 1);
4927
4928         rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4929         if (!rdev->coupling_desc.coupled_rdevs)
4930                 return -ENOMEM;
4931
4932         /*
4933          * Every regulator should always have coupling descriptor filled with
4934          * at least pointer to itself.
4935          */
4936         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4937         rdev->coupling_desc.n_coupled = n_phandles + 1;
4938         rdev->coupling_desc.n_resolved++;
4939
4940         /* regulator isn't coupled */
4941         if (n_phandles == 0)
4942                 return 0;
4943
4944         if (!of_check_coupling_data(rdev))
4945                 return -EPERM;
4946
4947         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4948         if (IS_ERR(rdev->coupling_desc.coupler)) {
4949                 err = PTR_ERR(rdev->coupling_desc.coupler);
4950                 rdev_err(rdev, "failed to get coupler: %d\n", err);
4951                 return err;
4952         }
4953
4954         return 0;
4955 }
4956
4957 static int generic_coupler_attach(struct regulator_coupler *coupler,
4958                                   struct regulator_dev *rdev)
4959 {
4960         if (rdev->coupling_desc.n_coupled > 2) {
4961                 rdev_err(rdev,
4962                          "Voltage balancing for multiple regulator couples is unimplemented\n");
4963                 return -EPERM;
4964         }
4965
4966         return 0;
4967 }
4968
4969 static struct regulator_coupler generic_regulator_coupler = {
4970         .attach_regulator = generic_coupler_attach,
4971 };
4972
4973 /**
4974  * regulator_register - register regulator
4975  * @regulator_desc: regulator to register
4976  * @cfg: runtime configuration for regulator
4977  *
4978  * Called by regulator drivers to register a regulator.
4979  * Returns a valid pointer to struct regulator_dev on success
4980  * or an ERR_PTR() on error.
4981  */
4982 struct regulator_dev *
4983 regulator_register(const struct regulator_desc *regulator_desc,
4984                    const struct regulator_config *cfg)
4985 {
4986         const struct regulation_constraints *constraints = NULL;
4987         const struct regulator_init_data *init_data;
4988         struct regulator_config *config = NULL;
4989         static atomic_t regulator_no = ATOMIC_INIT(-1);
4990         struct regulator_dev *rdev;
4991         bool dangling_cfg_gpiod = false;
4992         bool dangling_of_gpiod = false;
4993         struct device *dev;
4994         int ret, i;
4995
4996         if (cfg == NULL)
4997                 return ERR_PTR(-EINVAL);
4998         if (cfg->ena_gpiod)
4999                 dangling_cfg_gpiod = true;
5000         if (regulator_desc == NULL) {
5001                 ret = -EINVAL;
5002                 goto rinse;
5003         }
5004
5005         dev = cfg->dev;
5006         WARN_ON(!dev);
5007
5008         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5009                 ret = -EINVAL;
5010                 goto rinse;
5011         }
5012
5013         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5014             regulator_desc->type != REGULATOR_CURRENT) {
5015                 ret = -EINVAL;
5016                 goto rinse;
5017         }
5018
5019         /* Only one of each should be implemented */
5020         WARN_ON(regulator_desc->ops->get_voltage &&
5021                 regulator_desc->ops->get_voltage_sel);
5022         WARN_ON(regulator_desc->ops->set_voltage &&
5023                 regulator_desc->ops->set_voltage_sel);
5024
5025         /* If we're using selectors we must implement list_voltage. */
5026         if (regulator_desc->ops->get_voltage_sel &&
5027             !regulator_desc->ops->list_voltage) {
5028                 ret = -EINVAL;
5029                 goto rinse;
5030         }
5031         if (regulator_desc->ops->set_voltage_sel &&
5032             !regulator_desc->ops->list_voltage) {
5033                 ret = -EINVAL;
5034                 goto rinse;
5035         }
5036
5037         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5038         if (rdev == NULL) {
5039                 ret = -ENOMEM;
5040                 goto rinse;
5041         }
5042
5043         /*
5044          * Duplicate the config so the driver could override it after
5045          * parsing init data.
5046          */
5047         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5048         if (config == NULL) {
5049                 kfree(rdev);
5050                 ret = -ENOMEM;
5051                 goto rinse;
5052         }
5053
5054         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5055                                                &rdev->dev.of_node);
5056
5057         /*
5058          * Sometimes not all resources are probed already so we need to take
5059          * that into account. This happens most the time if the ena_gpiod comes
5060          * from a gpio extender or something else.
5061          */
5062         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5063                 kfree(config);
5064                 kfree(rdev);
5065                 ret = -EPROBE_DEFER;
5066                 goto rinse;
5067         }
5068
5069         /*
5070          * We need to keep track of any GPIO descriptor coming from the
5071          * device tree until we have handled it over to the core. If the
5072          * config that was passed in to this function DOES NOT contain
5073          * a descriptor, and the config after this call DOES contain
5074          * a descriptor, we definitely got one from parsing the device
5075          * tree.
5076          */
5077         if (!cfg->ena_gpiod && config->ena_gpiod)
5078                 dangling_of_gpiod = true;
5079         if (!init_data) {
5080                 init_data = config->init_data;
5081                 rdev->dev.of_node = of_node_get(config->of_node);
5082         }
5083
5084         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5085         rdev->reg_data = config->driver_data;
5086         rdev->owner = regulator_desc->owner;
5087         rdev->desc = regulator_desc;
5088         if (config->regmap)
5089                 rdev->regmap = config->regmap;
5090         else if (dev_get_regmap(dev, NULL))
5091                 rdev->regmap = dev_get_regmap(dev, NULL);
5092         else if (dev->parent)
5093                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5094         INIT_LIST_HEAD(&rdev->consumer_list);
5095         INIT_LIST_HEAD(&rdev->list);
5096         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5097         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5098
5099         /* preform any regulator specific init */
5100         if (init_data && init_data->regulator_init) {
5101                 ret = init_data->regulator_init(rdev->reg_data);
5102                 if (ret < 0)
5103                         goto clean;
5104         }
5105
5106         if (config->ena_gpiod) {
5107                 mutex_lock(&regulator_list_mutex);
5108                 ret = regulator_ena_gpio_request(rdev, config);
5109                 mutex_unlock(&regulator_list_mutex);
5110                 if (ret != 0) {
5111                         rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5112                                  ret);
5113                         goto clean;
5114                 }
5115                 /* The regulator core took over the GPIO descriptor */
5116                 dangling_cfg_gpiod = false;
5117                 dangling_of_gpiod = false;
5118         }
5119
5120         /* register with sysfs */
5121         rdev->dev.class = &regulator_class;
5122         rdev->dev.parent = dev;
5123         dev_set_name(&rdev->dev, "regulator.%lu",
5124                     (unsigned long) atomic_inc_return(&regulator_no));
5125
5126         /* set regulator constraints */
5127         if (init_data)
5128                 constraints = &init_data->constraints;
5129
5130         if (init_data && init_data->supply_regulator)
5131                 rdev->supply_name = init_data->supply_regulator;
5132         else if (regulator_desc->supply_name)
5133                 rdev->supply_name = regulator_desc->supply_name;
5134
5135         /*
5136          * Attempt to resolve the regulator supply, if specified,
5137          * but don't return an error if we fail because we will try
5138          * to resolve it again later as more regulators are added.
5139          */
5140         if (regulator_resolve_supply(rdev))
5141                 rdev_dbg(rdev, "unable to resolve supply\n");
5142
5143         ret = set_machine_constraints(rdev, constraints);
5144         if (ret < 0)
5145                 goto wash;
5146
5147         mutex_lock(&regulator_list_mutex);
5148         ret = regulator_init_coupling(rdev);
5149         mutex_unlock(&regulator_list_mutex);
5150         if (ret < 0)
5151                 goto wash;
5152
5153         /* add consumers devices */
5154         if (init_data) {
5155                 mutex_lock(&regulator_list_mutex);
5156                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5157                         ret = set_consumer_device_supply(rdev,
5158                                 init_data->consumer_supplies[i].dev_name,
5159                                 init_data->consumer_supplies[i].supply);
5160                         if (ret < 0) {
5161                                 mutex_unlock(&regulator_list_mutex);
5162                                 dev_err(dev, "Failed to set supply %s\n",
5163                                         init_data->consumer_supplies[i].supply);
5164                                 goto unset_supplies;
5165                         }
5166                 }
5167                 mutex_unlock(&regulator_list_mutex);
5168         }
5169
5170         if (!rdev->desc->ops->get_voltage &&
5171             !rdev->desc->ops->list_voltage &&
5172             !rdev->desc->fixed_uV)
5173                 rdev->is_switch = true;
5174
5175         dev_set_drvdata(&rdev->dev, rdev);
5176         ret = device_register(&rdev->dev);
5177         if (ret != 0) {
5178                 put_device(&rdev->dev);
5179                 goto unset_supplies;
5180         }
5181
5182         rdev_init_debugfs(rdev);
5183
5184         /* try to resolve regulators coupling since a new one was registered */
5185         mutex_lock(&regulator_list_mutex);
5186         regulator_resolve_coupling(rdev);
5187         mutex_unlock(&regulator_list_mutex);
5188
5189         /* try to resolve regulators supply since a new one was registered */
5190         class_for_each_device(&regulator_class, NULL, NULL,
5191                               regulator_register_resolve_supply);
5192         kfree(config);
5193         return rdev;
5194
5195 unset_supplies:
5196         mutex_lock(&regulator_list_mutex);
5197         unset_regulator_supplies(rdev);
5198         regulator_remove_coupling(rdev);
5199         mutex_unlock(&regulator_list_mutex);
5200 wash:
5201         kfree(rdev->constraints);
5202         mutex_lock(&regulator_list_mutex);
5203         regulator_ena_gpio_free(rdev);
5204         mutex_unlock(&regulator_list_mutex);
5205 clean:
5206         if (dangling_of_gpiod)
5207                 gpiod_put(config->ena_gpiod);
5208         kfree(rdev);
5209         kfree(config);
5210 rinse:
5211         if (dangling_cfg_gpiod)
5212                 gpiod_put(cfg->ena_gpiod);
5213         return ERR_PTR(ret);
5214 }
5215 EXPORT_SYMBOL_GPL(regulator_register);
5216
5217 /**
5218  * regulator_unregister - unregister regulator
5219  * @rdev: regulator to unregister
5220  *
5221  * Called by regulator drivers to unregister a regulator.
5222  */
5223 void regulator_unregister(struct regulator_dev *rdev)
5224 {
5225         if (rdev == NULL)
5226                 return;
5227
5228         if (rdev->supply) {
5229                 while (rdev->use_count--)
5230                         regulator_disable(rdev->supply);
5231                 regulator_put(rdev->supply);
5232         }
5233
5234         flush_work(&rdev->disable_work.work);
5235
5236         mutex_lock(&regulator_list_mutex);
5237
5238         debugfs_remove_recursive(rdev->debugfs);
5239         WARN_ON(rdev->open_count);
5240         regulator_remove_coupling(rdev);
5241         unset_regulator_supplies(rdev);
5242         list_del(&rdev->list);
5243         regulator_ena_gpio_free(rdev);
5244         device_unregister(&rdev->dev);
5245
5246         mutex_unlock(&regulator_list_mutex);
5247 }
5248 EXPORT_SYMBOL_GPL(regulator_unregister);
5249
5250 #ifdef CONFIG_SUSPEND
5251 /**
5252  * regulator_suspend - prepare regulators for system wide suspend
5253  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5254  *
5255  * Configure each regulator with it's suspend operating parameters for state.
5256  */
5257 static int regulator_suspend(struct device *dev)
5258 {
5259         struct regulator_dev *rdev = dev_to_rdev(dev);
5260         suspend_state_t state = pm_suspend_target_state;
5261         int ret;
5262
5263         regulator_lock(rdev);
5264         ret = suspend_set_state(rdev, state);
5265         regulator_unlock(rdev);
5266
5267         return ret;
5268 }
5269
5270 static int regulator_resume(struct device *dev)
5271 {
5272         suspend_state_t state = pm_suspend_target_state;
5273         struct regulator_dev *rdev = dev_to_rdev(dev);
5274         struct regulator_state *rstate;
5275         int ret = 0;
5276
5277         rstate = regulator_get_suspend_state(rdev, state);
5278         if (rstate == NULL)
5279                 return 0;
5280
5281         regulator_lock(rdev);
5282
5283         if (rdev->desc->ops->resume &&
5284             (rstate->enabled == ENABLE_IN_SUSPEND ||
5285              rstate->enabled == DISABLE_IN_SUSPEND))
5286                 ret = rdev->desc->ops->resume(rdev);
5287
5288         regulator_unlock(rdev);
5289
5290         return ret;
5291 }
5292 #else /* !CONFIG_SUSPEND */
5293
5294 #define regulator_suspend       NULL
5295 #define regulator_resume        NULL
5296
5297 #endif /* !CONFIG_SUSPEND */
5298
5299 #ifdef CONFIG_PM
5300 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5301         .suspend        = regulator_suspend,
5302         .resume         = regulator_resume,
5303 };
5304 #endif
5305
5306 struct class regulator_class = {
5307         .name = "regulator",
5308         .dev_release = regulator_dev_release,
5309         .dev_groups = regulator_dev_groups,
5310 #ifdef CONFIG_PM
5311         .pm = &regulator_pm_ops,
5312 #endif
5313 };
5314 /**
5315  * regulator_has_full_constraints - the system has fully specified constraints
5316  *
5317  * Calling this function will cause the regulator API to disable all
5318  * regulators which have a zero use count and don't have an always_on
5319  * constraint in a late_initcall.
5320  *
5321  * The intention is that this will become the default behaviour in a
5322  * future kernel release so users are encouraged to use this facility
5323  * now.
5324  */
5325 void regulator_has_full_constraints(void)
5326 {
5327         has_full_constraints = 1;
5328 }
5329 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5330
5331 /**
5332  * rdev_get_drvdata - get rdev regulator driver data
5333  * @rdev: regulator
5334  *
5335  * Get rdev regulator driver private data. This call can be used in the
5336  * regulator driver context.
5337  */
5338 void *rdev_get_drvdata(struct regulator_dev *rdev)
5339 {
5340         return rdev->reg_data;
5341 }
5342 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5343
5344 /**
5345  * regulator_get_drvdata - get regulator driver data
5346  * @regulator: regulator
5347  *
5348  * Get regulator driver private data. This call can be used in the consumer
5349  * driver context when non API regulator specific functions need to be called.
5350  */
5351 void *regulator_get_drvdata(struct regulator *regulator)
5352 {
5353         return regulator->rdev->reg_data;
5354 }
5355 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5356
5357 /**
5358  * regulator_set_drvdata - set regulator driver data
5359  * @regulator: regulator
5360  * @data: data
5361  */
5362 void regulator_set_drvdata(struct regulator *regulator, void *data)
5363 {
5364         regulator->rdev->reg_data = data;
5365 }
5366 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5367
5368 /**
5369  * regulator_get_id - get regulator ID
5370  * @rdev: regulator
5371  */
5372 int rdev_get_id(struct regulator_dev *rdev)
5373 {
5374         return rdev->desc->id;
5375 }
5376 EXPORT_SYMBOL_GPL(rdev_get_id);
5377
5378 struct device *rdev_get_dev(struct regulator_dev *rdev)
5379 {
5380         return &rdev->dev;
5381 }
5382 EXPORT_SYMBOL_GPL(rdev_get_dev);
5383
5384 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5385 {
5386         return rdev->regmap;
5387 }
5388 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5389
5390 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5391 {
5392         return reg_init_data->driver_data;
5393 }
5394 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5395
5396 #ifdef CONFIG_DEBUG_FS
5397 static int supply_map_show(struct seq_file *sf, void *data)
5398 {
5399         struct regulator_map *map;
5400
5401         list_for_each_entry(map, &regulator_map_list, list) {
5402                 seq_printf(sf, "%s -> %s.%s\n",
5403                                 rdev_get_name(map->regulator), map->dev_name,
5404                                 map->supply);
5405         }
5406
5407         return 0;
5408 }
5409 DEFINE_SHOW_ATTRIBUTE(supply_map);
5410
5411 struct summary_data {
5412         struct seq_file *s;
5413         struct regulator_dev *parent;
5414         int level;
5415 };
5416
5417 static void regulator_summary_show_subtree(struct seq_file *s,
5418                                            struct regulator_dev *rdev,
5419                                            int level);
5420
5421 static int regulator_summary_show_children(struct device *dev, void *data)
5422 {
5423         struct regulator_dev *rdev = dev_to_rdev(dev);
5424         struct summary_data *summary_data = data;
5425
5426         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5427                 regulator_summary_show_subtree(summary_data->s, rdev,
5428                                                summary_data->level + 1);
5429
5430         return 0;
5431 }
5432
5433 static void regulator_summary_show_subtree(struct seq_file *s,
5434                                            struct regulator_dev *rdev,
5435                                            int level)
5436 {
5437         struct regulation_constraints *c;
5438         struct regulator *consumer;
5439         struct summary_data summary_data;
5440         unsigned int opmode;
5441
5442         if (!rdev)
5443                 return;
5444
5445         opmode = _regulator_get_mode_unlocked(rdev);
5446         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5447                    level * 3 + 1, "",
5448                    30 - level * 3, rdev_get_name(rdev),
5449                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5450                    regulator_opmode_to_str(opmode));
5451
5452         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5453         seq_printf(s, "%5dmA ",
5454                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5455
5456         c = rdev->constraints;
5457         if (c) {
5458                 switch (rdev->desc->type) {
5459                 case REGULATOR_VOLTAGE:
5460                         seq_printf(s, "%5dmV %5dmV ",
5461                                    c->min_uV / 1000, c->max_uV / 1000);
5462                         break;
5463                 case REGULATOR_CURRENT:
5464                         seq_printf(s, "%5dmA %5dmA ",
5465                                    c->min_uA / 1000, c->max_uA / 1000);
5466                         break;
5467                 }
5468         }
5469
5470         seq_puts(s, "\n");
5471
5472         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5473                 if (consumer->dev && consumer->dev->class == &regulator_class)
5474                         continue;
5475
5476                 seq_printf(s, "%*s%-*s ",
5477                            (level + 1) * 3 + 1, "",
5478                            30 - (level + 1) * 3,
5479                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5480
5481                 switch (rdev->desc->type) {
5482                 case REGULATOR_VOLTAGE:
5483                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5484                                    consumer->enable_count,
5485                                    consumer->uA_load / 1000,
5486                                    consumer->uA_load && !consumer->enable_count ?
5487                                    '*' : ' ',
5488                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5489                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5490                         break;
5491                 case REGULATOR_CURRENT:
5492                         break;
5493                 }
5494
5495                 seq_puts(s, "\n");
5496         }
5497
5498         summary_data.s = s;
5499         summary_data.level = level;
5500         summary_data.parent = rdev;
5501
5502         class_for_each_device(&regulator_class, NULL, &summary_data,
5503                               regulator_summary_show_children);
5504 }
5505
5506 struct summary_lock_data {
5507         struct ww_acquire_ctx *ww_ctx;
5508         struct regulator_dev **new_contended_rdev;
5509         struct regulator_dev **old_contended_rdev;
5510 };
5511
5512 static int regulator_summary_lock_one(struct device *dev, void *data)
5513 {
5514         struct regulator_dev *rdev = dev_to_rdev(dev);
5515         struct summary_lock_data *lock_data = data;
5516         int ret = 0;
5517
5518         if (rdev != *lock_data->old_contended_rdev) {
5519                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5520
5521                 if (ret == -EDEADLK)
5522                         *lock_data->new_contended_rdev = rdev;
5523                 else
5524                         WARN_ON_ONCE(ret);
5525         } else {
5526                 *lock_data->old_contended_rdev = NULL;
5527         }
5528
5529         return ret;
5530 }
5531
5532 static int regulator_summary_unlock_one(struct device *dev, void *data)
5533 {
5534         struct regulator_dev *rdev = dev_to_rdev(dev);
5535         struct summary_lock_data *lock_data = data;
5536
5537         if (lock_data) {
5538                 if (rdev == *lock_data->new_contended_rdev)
5539                         return -EDEADLK;
5540         }
5541
5542         regulator_unlock(rdev);
5543
5544         return 0;
5545 }
5546
5547 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5548                                       struct regulator_dev **new_contended_rdev,
5549                                       struct regulator_dev **old_contended_rdev)
5550 {
5551         struct summary_lock_data lock_data;
5552         int ret;
5553
5554         lock_data.ww_ctx = ww_ctx;
5555         lock_data.new_contended_rdev = new_contended_rdev;
5556         lock_data.old_contended_rdev = old_contended_rdev;
5557
5558         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5559                                     regulator_summary_lock_one);
5560         if (ret)
5561                 class_for_each_device(&regulator_class, NULL, &lock_data,
5562                                       regulator_summary_unlock_one);
5563
5564         return ret;
5565 }
5566
5567 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5568 {
5569         struct regulator_dev *new_contended_rdev = NULL;
5570         struct regulator_dev *old_contended_rdev = NULL;
5571         int err;
5572
5573         mutex_lock(&regulator_list_mutex);
5574
5575         ww_acquire_init(ww_ctx, &regulator_ww_class);
5576
5577         do {
5578                 if (new_contended_rdev) {
5579                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5580                         old_contended_rdev = new_contended_rdev;
5581                         old_contended_rdev->ref_cnt++;
5582                 }
5583
5584                 err = regulator_summary_lock_all(ww_ctx,
5585                                                  &new_contended_rdev,
5586                                                  &old_contended_rdev);
5587
5588                 if (old_contended_rdev)
5589                         regulator_unlock(old_contended_rdev);
5590
5591         } while (err == -EDEADLK);
5592
5593         ww_acquire_done(ww_ctx);
5594 }
5595
5596 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5597 {
5598         class_for_each_device(&regulator_class, NULL, NULL,
5599                               regulator_summary_unlock_one);
5600         ww_acquire_fini(ww_ctx);
5601
5602         mutex_unlock(&regulator_list_mutex);
5603 }
5604
5605 static int regulator_summary_show_roots(struct device *dev, void *data)
5606 {
5607         struct regulator_dev *rdev = dev_to_rdev(dev);
5608         struct seq_file *s = data;
5609
5610         if (!rdev->supply)
5611                 regulator_summary_show_subtree(s, rdev, 0);
5612
5613         return 0;
5614 }
5615
5616 static int regulator_summary_show(struct seq_file *s, void *data)
5617 {
5618         struct ww_acquire_ctx ww_ctx;
5619
5620         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5621         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5622
5623         regulator_summary_lock(&ww_ctx);
5624
5625         class_for_each_device(&regulator_class, NULL, s,
5626                               regulator_summary_show_roots);
5627
5628         regulator_summary_unlock(&ww_ctx);
5629
5630         return 0;
5631 }
5632 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5633 #endif /* CONFIG_DEBUG_FS */
5634
5635 static int __init regulator_init(void)
5636 {
5637         int ret;
5638
5639         ret = class_register(&regulator_class);
5640
5641         debugfs_root = debugfs_create_dir("regulator", NULL);
5642         if (!debugfs_root)
5643                 pr_warn("regulator: Failed to create debugfs directory\n");
5644
5645 #ifdef CONFIG_DEBUG_FS
5646         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5647                             &supply_map_fops);
5648
5649         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5650                             NULL, &regulator_summary_fops);
5651 #endif
5652         regulator_dummy_init();
5653
5654         regulator_coupler_register(&generic_regulator_coupler);
5655
5656         return ret;
5657 }
5658
5659 /* init early to allow our consumers to complete system booting */
5660 core_initcall(regulator_init);
5661
5662 static int regulator_late_cleanup(struct device *dev, void *data)
5663 {
5664         struct regulator_dev *rdev = dev_to_rdev(dev);
5665         const struct regulator_ops *ops = rdev->desc->ops;
5666         struct regulation_constraints *c = rdev->constraints;
5667         int enabled, ret;
5668
5669         if (c && c->always_on)
5670                 return 0;
5671
5672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5673                 return 0;
5674
5675         regulator_lock(rdev);
5676
5677         if (rdev->use_count)
5678                 goto unlock;
5679
5680         /* If we can't read the status assume it's on. */
5681         if (ops->is_enabled)
5682                 enabled = ops->is_enabled(rdev);
5683         else
5684                 enabled = 1;
5685
5686         if (!enabled)
5687                 goto unlock;
5688
5689         if (have_full_constraints()) {
5690                 /* We log since this may kill the system if it goes
5691                  * wrong. */
5692                 rdev_info(rdev, "disabling\n");
5693                 ret = _regulator_do_disable(rdev);
5694                 if (ret != 0)
5695                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5696         } else {
5697                 /* The intention is that in future we will
5698                  * assume that full constraints are provided
5699                  * so warn even if we aren't going to do
5700                  * anything here.
5701                  */
5702                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5703         }
5704
5705 unlock:
5706         regulator_unlock(rdev);
5707
5708         return 0;
5709 }
5710
5711 static void regulator_init_complete_work_function(struct work_struct *work)
5712 {
5713         /*
5714          * Regulators may had failed to resolve their input supplies
5715          * when were registered, either because the input supply was
5716          * not registered yet or because its parent device was not
5717          * bound yet. So attempt to resolve the input supplies for
5718          * pending regulators before trying to disable unused ones.
5719          */
5720         class_for_each_device(&regulator_class, NULL, NULL,
5721                               regulator_register_resolve_supply);
5722
5723         /* If we have a full configuration then disable any regulators
5724          * we have permission to change the status for and which are
5725          * not in use or always_on.  This is effectively the default
5726          * for DT and ACPI as they have full constraints.
5727          */
5728         class_for_each_device(&regulator_class, NULL, NULL,
5729                               regulator_late_cleanup);
5730 }
5731
5732 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5733                             regulator_init_complete_work_function);
5734
5735 static int __init regulator_init_complete(void)
5736 {
5737         /*
5738          * Since DT doesn't provide an idiomatic mechanism for
5739          * enabling full constraints and since it's much more natural
5740          * with DT to provide them just assume that a DT enabled
5741          * system has full constraints.
5742          */
5743         if (of_have_populated_dt())
5744                 has_full_constraints = true;
5745
5746         /*
5747          * We punt completion for an arbitrary amount of time since
5748          * systems like distros will load many drivers from userspace
5749          * so consumers might not always be ready yet, this is
5750          * particularly an issue with laptops where this might bounce
5751          * the display off then on.  Ideally we'd get a notification
5752          * from userspace when this happens but we don't so just wait
5753          * a bit and hope we waited long enough.  It'd be better if
5754          * we'd only do this on systems that need it, and a kernel
5755          * command line option might be useful.
5756          */
5757         schedule_delayed_work(&regulator_init_complete_work,
5758                               msecs_to_jiffies(30000));
5759
5760         return 0;
5761 }
5762 late_initcall_sync(regulator_init_complete);