Merge tag 'regulator-fix-v5.17-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53         struct list_head list;
54         const char *dev_name;   /* The dev_name() for the consumer */
55         const char *supply;
56         struct regulator_dev *regulator;
57 };
58
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65         struct list_head list;
66         struct gpio_desc *gpiod;
67         u32 enable_count;       /* a number of enabled shared GPIO */
68         u32 request_count;      /* a number of requested shared GPIO */
69 };
70
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77         struct list_head list;
78         struct device *src_dev;
79         const char *src_supply;
80         struct device *alias_dev;
81         const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_current_limit(struct regulator_dev *rdev);
87 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88 static int _notifier_call_chain(struct regulator_dev *rdev,
89                                   unsigned long event, void *data);
90 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
91                                      int min_uV, int max_uV);
92 static int regulator_balance_voltage(struct regulator_dev *rdev,
93                                      suspend_state_t state);
94 static struct regulator *create_regulator(struct regulator_dev *rdev,
95                                           struct device *dev,
96                                           const char *supply_name);
97 static void destroy_regulator(struct regulator *regulator);
98 static void _regulator_put(struct regulator *regulator);
99
100 const char *rdev_get_name(struct regulator_dev *rdev)
101 {
102         if (rdev->constraints && rdev->constraints->name)
103                 return rdev->constraints->name;
104         else if (rdev->desc->name)
105                 return rdev->desc->name;
106         else
107                 return "";
108 }
109 EXPORT_SYMBOL_GPL(rdev_get_name);
110
111 static bool have_full_constraints(void)
112 {
113         return has_full_constraints || of_have_populated_dt();
114 }
115
116 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
117 {
118         if (!rdev->constraints) {
119                 rdev_err(rdev, "no constraints\n");
120                 return false;
121         }
122
123         if (rdev->constraints->valid_ops_mask & ops)
124                 return true;
125
126         return false;
127 }
128
129 /**
130  * regulator_lock_nested - lock a single regulator
131  * @rdev:               regulator source
132  * @ww_ctx:             w/w mutex acquire context
133  *
134  * This function can be called many times by one task on
135  * a single regulator and its mutex will be locked only
136  * once. If a task, which is calling this function is other
137  * than the one, which initially locked the mutex, it will
138  * wait on mutex.
139  */
140 static inline int regulator_lock_nested(struct regulator_dev *rdev,
141                                         struct ww_acquire_ctx *ww_ctx)
142 {
143         bool lock = false;
144         int ret = 0;
145
146         mutex_lock(&regulator_nesting_mutex);
147
148         if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
149                 if (rdev->mutex_owner == current)
150                         rdev->ref_cnt++;
151                 else
152                         lock = true;
153
154                 if (lock) {
155                         mutex_unlock(&regulator_nesting_mutex);
156                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
157                         mutex_lock(&regulator_nesting_mutex);
158                 }
159         } else {
160                 lock = true;
161         }
162
163         if (lock && ret != -EDEADLK) {
164                 rdev->ref_cnt++;
165                 rdev->mutex_owner = current;
166         }
167
168         mutex_unlock(&regulator_nesting_mutex);
169
170         return ret;
171 }
172
173 /**
174  * regulator_lock - lock a single regulator
175  * @rdev:               regulator source
176  *
177  * This function can be called many times by one task on
178  * a single regulator and its mutex will be locked only
179  * once. If a task, which is calling this function is other
180  * than the one, which initially locked the mutex, it will
181  * wait on mutex.
182  */
183 static void regulator_lock(struct regulator_dev *rdev)
184 {
185         regulator_lock_nested(rdev, NULL);
186 }
187
188 /**
189  * regulator_unlock - unlock a single regulator
190  * @rdev:               regulator_source
191  *
192  * This function unlocks the mutex when the
193  * reference counter reaches 0.
194  */
195 static void regulator_unlock(struct regulator_dev *rdev)
196 {
197         mutex_lock(&regulator_nesting_mutex);
198
199         if (--rdev->ref_cnt == 0) {
200                 rdev->mutex_owner = NULL;
201                 ww_mutex_unlock(&rdev->mutex);
202         }
203
204         WARN_ON_ONCE(rdev->ref_cnt < 0);
205
206         mutex_unlock(&regulator_nesting_mutex);
207 }
208
209 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210 {
211         struct regulator_dev *c_rdev;
212         int i;
213
214         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
215                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216
217                 if (rdev->supply->rdev == c_rdev)
218                         return true;
219         }
220
221         return false;
222 }
223
224 static void regulator_unlock_recursive(struct regulator_dev *rdev,
225                                        unsigned int n_coupled)
226 {
227         struct regulator_dev *c_rdev, *supply_rdev;
228         int i, supply_n_coupled;
229
230         for (i = n_coupled; i > 0; i--) {
231                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232
233                 if (!c_rdev)
234                         continue;
235
236                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
237                         supply_rdev = c_rdev->supply->rdev;
238                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
239
240                         regulator_unlock_recursive(supply_rdev,
241                                                    supply_n_coupled);
242                 }
243
244                 regulator_unlock(c_rdev);
245         }
246 }
247
248 static int regulator_lock_recursive(struct regulator_dev *rdev,
249                                     struct regulator_dev **new_contended_rdev,
250                                     struct regulator_dev **old_contended_rdev,
251                                     struct ww_acquire_ctx *ww_ctx)
252 {
253         struct regulator_dev *c_rdev;
254         int i, err;
255
256         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
257                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258
259                 if (!c_rdev)
260                         continue;
261
262                 if (c_rdev != *old_contended_rdev) {
263                         err = regulator_lock_nested(c_rdev, ww_ctx);
264                         if (err) {
265                                 if (err == -EDEADLK) {
266                                         *new_contended_rdev = c_rdev;
267                                         goto err_unlock;
268                                 }
269
270                                 /* shouldn't happen */
271                                 WARN_ON_ONCE(err != -EALREADY);
272                         }
273                 } else {
274                         *old_contended_rdev = NULL;
275                 }
276
277                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278                         err = regulator_lock_recursive(c_rdev->supply->rdev,
279                                                        new_contended_rdev,
280                                                        old_contended_rdev,
281                                                        ww_ctx);
282                         if (err) {
283                                 regulator_unlock(c_rdev);
284                                 goto err_unlock;
285                         }
286                 }
287         }
288
289         return 0;
290
291 err_unlock:
292         regulator_unlock_recursive(rdev, i);
293
294         return err;
295 }
296
297 /**
298  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
299  *                              regulators
300  * @rdev:                       regulator source
301  * @ww_ctx:                     w/w mutex acquire context
302  *
303  * Unlock all regulators related with rdev by coupling or supplying.
304  */
305 static void regulator_unlock_dependent(struct regulator_dev *rdev,
306                                        struct ww_acquire_ctx *ww_ctx)
307 {
308         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
309         ww_acquire_fini(ww_ctx);
310 }
311
312 /**
313  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
314  * @rdev:                       regulator source
315  * @ww_ctx:                     w/w mutex acquire context
316  *
317  * This function as a wrapper on regulator_lock_recursive(), which locks
318  * all regulators related with rdev by coupling or supplying.
319  */
320 static void regulator_lock_dependent(struct regulator_dev *rdev,
321                                      struct ww_acquire_ctx *ww_ctx)
322 {
323         struct regulator_dev *new_contended_rdev = NULL;
324         struct regulator_dev *old_contended_rdev = NULL;
325         int err;
326
327         mutex_lock(&regulator_list_mutex);
328
329         ww_acquire_init(ww_ctx, &regulator_ww_class);
330
331         do {
332                 if (new_contended_rdev) {
333                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
334                         old_contended_rdev = new_contended_rdev;
335                         old_contended_rdev->ref_cnt++;
336                 }
337
338                 err = regulator_lock_recursive(rdev,
339                                                &new_contended_rdev,
340                                                &old_contended_rdev,
341                                                ww_ctx);
342
343                 if (old_contended_rdev)
344                         regulator_unlock(old_contended_rdev);
345
346         } while (err == -EDEADLK);
347
348         ww_acquire_done(ww_ctx);
349
350         mutex_unlock(&regulator_list_mutex);
351 }
352
353 /**
354  * of_get_child_regulator - get a child regulator device node
355  * based on supply name
356  * @parent: Parent device node
357  * @prop_name: Combination regulator supply name and "-supply"
358  *
359  * Traverse all child nodes.
360  * Extract the child regulator device node corresponding to the supply name.
361  * returns the device node corresponding to the regulator if found, else
362  * returns NULL.
363  */
364 static struct device_node *of_get_child_regulator(struct device_node *parent,
365                                                   const char *prop_name)
366 {
367         struct device_node *regnode = NULL;
368         struct device_node *child = NULL;
369
370         for_each_child_of_node(parent, child) {
371                 regnode = of_parse_phandle(child, prop_name, 0);
372
373                 if (!regnode) {
374                         regnode = of_get_child_regulator(child, prop_name);
375                         if (regnode)
376                                 goto err_node_put;
377                 } else {
378                         goto err_node_put;
379                 }
380         }
381         return NULL;
382
383 err_node_put:
384         of_node_put(child);
385         return regnode;
386 }
387
388 /**
389  * of_get_regulator - get a regulator device node based on supply name
390  * @dev: Device pointer for the consumer (of regulator) device
391  * @supply: regulator supply name
392  *
393  * Extract the regulator device node corresponding to the supply name.
394  * returns the device node corresponding to the regulator if found, else
395  * returns NULL.
396  */
397 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
398 {
399         struct device_node *regnode = NULL;
400         char prop_name[64]; /* 64 is max size of property name */
401
402         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
403
404         snprintf(prop_name, 64, "%s-supply", supply);
405         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
406
407         if (!regnode) {
408                 regnode = of_get_child_regulator(dev->of_node, prop_name);
409                 if (regnode)
410                         return regnode;
411
412                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
413                                 prop_name, dev->of_node);
414                 return NULL;
415         }
416         return regnode;
417 }
418
419 /* Platform voltage constraint check */
420 int regulator_check_voltage(struct regulator_dev *rdev,
421                             int *min_uV, int *max_uV)
422 {
423         BUG_ON(*min_uV > *max_uV);
424
425         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426                 rdev_err(rdev, "voltage operation not allowed\n");
427                 return -EPERM;
428         }
429
430         if (*max_uV > rdev->constraints->max_uV)
431                 *max_uV = rdev->constraints->max_uV;
432         if (*min_uV < rdev->constraints->min_uV)
433                 *min_uV = rdev->constraints->min_uV;
434
435         if (*min_uV > *max_uV) {
436                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437                          *min_uV, *max_uV);
438                 return -EINVAL;
439         }
440
441         return 0;
442 }
443
444 /* return 0 if the state is valid */
445 static int regulator_check_states(suspend_state_t state)
446 {
447         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
448 }
449
450 /* Make sure we select a voltage that suits the needs of all
451  * regulator consumers
452  */
453 int regulator_check_consumers(struct regulator_dev *rdev,
454                               int *min_uV, int *max_uV,
455                               suspend_state_t state)
456 {
457         struct regulator *regulator;
458         struct regulator_voltage *voltage;
459
460         list_for_each_entry(regulator, &rdev->consumer_list, list) {
461                 voltage = &regulator->voltage[state];
462                 /*
463                  * Assume consumers that didn't say anything are OK
464                  * with anything in the constraint range.
465                  */
466                 if (!voltage->min_uV && !voltage->max_uV)
467                         continue;
468
469                 if (*max_uV > voltage->max_uV)
470                         *max_uV = voltage->max_uV;
471                 if (*min_uV < voltage->min_uV)
472                         *min_uV = voltage->min_uV;
473         }
474
475         if (*min_uV > *max_uV) {
476                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
477                         *min_uV, *max_uV);
478                 return -EINVAL;
479         }
480
481         return 0;
482 }
483
484 /* current constraint check */
485 static int regulator_check_current_limit(struct regulator_dev *rdev,
486                                         int *min_uA, int *max_uA)
487 {
488         BUG_ON(*min_uA > *max_uA);
489
490         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491                 rdev_err(rdev, "current operation not allowed\n");
492                 return -EPERM;
493         }
494
495         if (*max_uA > rdev->constraints->max_uA)
496                 *max_uA = rdev->constraints->max_uA;
497         if (*min_uA < rdev->constraints->min_uA)
498                 *min_uA = rdev->constraints->min_uA;
499
500         if (*min_uA > *max_uA) {
501                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502                          *min_uA, *max_uA);
503                 return -EINVAL;
504         }
505
506         return 0;
507 }
508
509 /* operating mode constraint check */
510 static int regulator_mode_constrain(struct regulator_dev *rdev,
511                                     unsigned int *mode)
512 {
513         switch (*mode) {
514         case REGULATOR_MODE_FAST:
515         case REGULATOR_MODE_NORMAL:
516         case REGULATOR_MODE_IDLE:
517         case REGULATOR_MODE_STANDBY:
518                 break;
519         default:
520                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
521                 return -EINVAL;
522         }
523
524         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525                 rdev_err(rdev, "mode operation not allowed\n");
526                 return -EPERM;
527         }
528
529         /* The modes are bitmasks, the most power hungry modes having
530          * the lowest values. If the requested mode isn't supported
531          * try higher modes.
532          */
533         while (*mode) {
534                 if (rdev->constraints->valid_modes_mask & *mode)
535                         return 0;
536                 *mode /= 2;
537         }
538
539         return -EINVAL;
540 }
541
542 static inline struct regulator_state *
543 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
544 {
545         if (rdev->constraints == NULL)
546                 return NULL;
547
548         switch (state) {
549         case PM_SUSPEND_STANDBY:
550                 return &rdev->constraints->state_standby;
551         case PM_SUSPEND_MEM:
552                 return &rdev->constraints->state_mem;
553         case PM_SUSPEND_MAX:
554                 return &rdev->constraints->state_disk;
555         default:
556                 return NULL;
557         }
558 }
559
560 static const struct regulator_state *
561 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
562 {
563         const struct regulator_state *rstate;
564
565         rstate = regulator_get_suspend_state(rdev, state);
566         if (rstate == NULL)
567                 return NULL;
568
569         /* If we have no suspend mode configuration don't set anything;
570          * only warn if the driver implements set_suspend_voltage or
571          * set_suspend_mode callback.
572          */
573         if (rstate->enabled != ENABLE_IN_SUSPEND &&
574             rstate->enabled != DISABLE_IN_SUSPEND) {
575                 if (rdev->desc->ops->set_suspend_voltage ||
576                     rdev->desc->ops->set_suspend_mode)
577                         rdev_warn(rdev, "No configuration\n");
578                 return NULL;
579         }
580
581         return rstate;
582 }
583
584 static ssize_t microvolts_show(struct device *dev,
585                                struct device_attribute *attr, char *buf)
586 {
587         struct regulator_dev *rdev = dev_get_drvdata(dev);
588         int uV;
589
590         regulator_lock(rdev);
591         uV = regulator_get_voltage_rdev(rdev);
592         regulator_unlock(rdev);
593
594         if (uV < 0)
595                 return uV;
596         return sprintf(buf, "%d\n", uV);
597 }
598 static DEVICE_ATTR_RO(microvolts);
599
600 static ssize_t microamps_show(struct device *dev,
601                               struct device_attribute *attr, char *buf)
602 {
603         struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
606 }
607 static DEVICE_ATTR_RO(microamps);
608
609 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
610                          char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614         return sprintf(buf, "%s\n", rdev_get_name(rdev));
615 }
616 static DEVICE_ATTR_RO(name);
617
618 static const char *regulator_opmode_to_str(int mode)
619 {
620         switch (mode) {
621         case REGULATOR_MODE_FAST:
622                 return "fast";
623         case REGULATOR_MODE_NORMAL:
624                 return "normal";
625         case REGULATOR_MODE_IDLE:
626                 return "idle";
627         case REGULATOR_MODE_STANDBY:
628                 return "standby";
629         }
630         return "unknown";
631 }
632
633 static ssize_t regulator_print_opmode(char *buf, int mode)
634 {
635         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636 }
637
638 static ssize_t opmode_show(struct device *dev,
639                            struct device_attribute *attr, char *buf)
640 {
641         struct regulator_dev *rdev = dev_get_drvdata(dev);
642
643         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
644 }
645 static DEVICE_ATTR_RO(opmode);
646
647 static ssize_t regulator_print_state(char *buf, int state)
648 {
649         if (state > 0)
650                 return sprintf(buf, "enabled\n");
651         else if (state == 0)
652                 return sprintf(buf, "disabled\n");
653         else
654                 return sprintf(buf, "unknown\n");
655 }
656
657 static ssize_t state_show(struct device *dev,
658                           struct device_attribute *attr, char *buf)
659 {
660         struct regulator_dev *rdev = dev_get_drvdata(dev);
661         ssize_t ret;
662
663         regulator_lock(rdev);
664         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665         regulator_unlock(rdev);
666
667         return ret;
668 }
669 static DEVICE_ATTR_RO(state);
670
671 static ssize_t status_show(struct device *dev,
672                            struct device_attribute *attr, char *buf)
673 {
674         struct regulator_dev *rdev = dev_get_drvdata(dev);
675         int status;
676         char *label;
677
678         status = rdev->desc->ops->get_status(rdev);
679         if (status < 0)
680                 return status;
681
682         switch (status) {
683         case REGULATOR_STATUS_OFF:
684                 label = "off";
685                 break;
686         case REGULATOR_STATUS_ON:
687                 label = "on";
688                 break;
689         case REGULATOR_STATUS_ERROR:
690                 label = "error";
691                 break;
692         case REGULATOR_STATUS_FAST:
693                 label = "fast";
694                 break;
695         case REGULATOR_STATUS_NORMAL:
696                 label = "normal";
697                 break;
698         case REGULATOR_STATUS_IDLE:
699                 label = "idle";
700                 break;
701         case REGULATOR_STATUS_STANDBY:
702                 label = "standby";
703                 break;
704         case REGULATOR_STATUS_BYPASS:
705                 label = "bypass";
706                 break;
707         case REGULATOR_STATUS_UNDEFINED:
708                 label = "undefined";
709                 break;
710         default:
711                 return -ERANGE;
712         }
713
714         return sprintf(buf, "%s\n", label);
715 }
716 static DEVICE_ATTR_RO(status);
717
718 static ssize_t min_microamps_show(struct device *dev,
719                                   struct device_attribute *attr, char *buf)
720 {
721         struct regulator_dev *rdev = dev_get_drvdata(dev);
722
723         if (!rdev->constraints)
724                 return sprintf(buf, "constraint not defined\n");
725
726         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
727 }
728 static DEVICE_ATTR_RO(min_microamps);
729
730 static ssize_t max_microamps_show(struct device *dev,
731                                   struct device_attribute *attr, char *buf)
732 {
733         struct regulator_dev *rdev = dev_get_drvdata(dev);
734
735         if (!rdev->constraints)
736                 return sprintf(buf, "constraint not defined\n");
737
738         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
739 }
740 static DEVICE_ATTR_RO(max_microamps);
741
742 static ssize_t min_microvolts_show(struct device *dev,
743                                    struct device_attribute *attr, char *buf)
744 {
745         struct regulator_dev *rdev = dev_get_drvdata(dev);
746
747         if (!rdev->constraints)
748                 return sprintf(buf, "constraint not defined\n");
749
750         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
751 }
752 static DEVICE_ATTR_RO(min_microvolts);
753
754 static ssize_t max_microvolts_show(struct device *dev,
755                                    struct device_attribute *attr, char *buf)
756 {
757         struct regulator_dev *rdev = dev_get_drvdata(dev);
758
759         if (!rdev->constraints)
760                 return sprintf(buf, "constraint not defined\n");
761
762         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
763 }
764 static DEVICE_ATTR_RO(max_microvolts);
765
766 static ssize_t requested_microamps_show(struct device *dev,
767                                         struct device_attribute *attr, char *buf)
768 {
769         struct regulator_dev *rdev = dev_get_drvdata(dev);
770         struct regulator *regulator;
771         int uA = 0;
772
773         regulator_lock(rdev);
774         list_for_each_entry(regulator, &rdev->consumer_list, list) {
775                 if (regulator->enable_count)
776                         uA += regulator->uA_load;
777         }
778         regulator_unlock(rdev);
779         return sprintf(buf, "%d\n", uA);
780 }
781 static DEVICE_ATTR_RO(requested_microamps);
782
783 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
784                               char *buf)
785 {
786         struct regulator_dev *rdev = dev_get_drvdata(dev);
787         return sprintf(buf, "%d\n", rdev->use_count);
788 }
789 static DEVICE_ATTR_RO(num_users);
790
791 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
792                          char *buf)
793 {
794         struct regulator_dev *rdev = dev_get_drvdata(dev);
795
796         switch (rdev->desc->type) {
797         case REGULATOR_VOLTAGE:
798                 return sprintf(buf, "voltage\n");
799         case REGULATOR_CURRENT:
800                 return sprintf(buf, "current\n");
801         }
802         return sprintf(buf, "unknown\n");
803 }
804 static DEVICE_ATTR_RO(type);
805
806 static ssize_t suspend_mem_microvolts_show(struct device *dev,
807                                            struct device_attribute *attr, char *buf)
808 {
809         struct regulator_dev *rdev = dev_get_drvdata(dev);
810
811         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
812 }
813 static DEVICE_ATTR_RO(suspend_mem_microvolts);
814
815 static ssize_t suspend_disk_microvolts_show(struct device *dev,
816                                             struct device_attribute *attr, char *buf)
817 {
818         struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
821 }
822 static DEVICE_ATTR_RO(suspend_disk_microvolts);
823
824 static ssize_t suspend_standby_microvolts_show(struct device *dev,
825                                                struct device_attribute *attr, char *buf)
826 {
827         struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
830 }
831 static DEVICE_ATTR_RO(suspend_standby_microvolts);
832
833 static ssize_t suspend_mem_mode_show(struct device *dev,
834                                      struct device_attribute *attr, char *buf)
835 {
836         struct regulator_dev *rdev = dev_get_drvdata(dev);
837
838         return regulator_print_opmode(buf,
839                 rdev->constraints->state_mem.mode);
840 }
841 static DEVICE_ATTR_RO(suspend_mem_mode);
842
843 static ssize_t suspend_disk_mode_show(struct device *dev,
844                                       struct device_attribute *attr, char *buf)
845 {
846         struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848         return regulator_print_opmode(buf,
849                 rdev->constraints->state_disk.mode);
850 }
851 static DEVICE_ATTR_RO(suspend_disk_mode);
852
853 static ssize_t suspend_standby_mode_show(struct device *dev,
854                                          struct device_attribute *attr, char *buf)
855 {
856         struct regulator_dev *rdev = dev_get_drvdata(dev);
857
858         return regulator_print_opmode(buf,
859                 rdev->constraints->state_standby.mode);
860 }
861 static DEVICE_ATTR_RO(suspend_standby_mode);
862
863 static ssize_t suspend_mem_state_show(struct device *dev,
864                                       struct device_attribute *attr, char *buf)
865 {
866         struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868         return regulator_print_state(buf,
869                         rdev->constraints->state_mem.enabled);
870 }
871 static DEVICE_ATTR_RO(suspend_mem_state);
872
873 static ssize_t suspend_disk_state_show(struct device *dev,
874                                        struct device_attribute *attr, char *buf)
875 {
876         struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878         return regulator_print_state(buf,
879                         rdev->constraints->state_disk.enabled);
880 }
881 static DEVICE_ATTR_RO(suspend_disk_state);
882
883 static ssize_t suspend_standby_state_show(struct device *dev,
884                                           struct device_attribute *attr, char *buf)
885 {
886         struct regulator_dev *rdev = dev_get_drvdata(dev);
887
888         return regulator_print_state(buf,
889                         rdev->constraints->state_standby.enabled);
890 }
891 static DEVICE_ATTR_RO(suspend_standby_state);
892
893 static ssize_t bypass_show(struct device *dev,
894                            struct device_attribute *attr, char *buf)
895 {
896         struct regulator_dev *rdev = dev_get_drvdata(dev);
897         const char *report;
898         bool bypass;
899         int ret;
900
901         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
902
903         if (ret != 0)
904                 report = "unknown";
905         else if (bypass)
906                 report = "enabled";
907         else
908                 report = "disabled";
909
910         return sprintf(buf, "%s\n", report);
911 }
912 static DEVICE_ATTR_RO(bypass);
913
914 /* Calculate the new optimum regulator operating mode based on the new total
915  * consumer load. All locks held by caller
916  */
917 static int drms_uA_update(struct regulator_dev *rdev)
918 {
919         struct regulator *sibling;
920         int current_uA = 0, output_uV, input_uV, err;
921         unsigned int mode;
922
923         /*
924          * first check to see if we can set modes at all, otherwise just
925          * tell the consumer everything is OK.
926          */
927         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
928                 rdev_dbg(rdev, "DRMS operation not allowed\n");
929                 return 0;
930         }
931
932         if (!rdev->desc->ops->get_optimum_mode &&
933             !rdev->desc->ops->set_load)
934                 return 0;
935
936         if (!rdev->desc->ops->set_mode &&
937             !rdev->desc->ops->set_load)
938                 return -EINVAL;
939
940         /* calc total requested load */
941         list_for_each_entry(sibling, &rdev->consumer_list, list) {
942                 if (sibling->enable_count)
943                         current_uA += sibling->uA_load;
944         }
945
946         current_uA += rdev->constraints->system_load;
947
948         if (rdev->desc->ops->set_load) {
949                 /* set the optimum mode for our new total regulator load */
950                 err = rdev->desc->ops->set_load(rdev, current_uA);
951                 if (err < 0)
952                         rdev_err(rdev, "failed to set load %d: %pe\n",
953                                  current_uA, ERR_PTR(err));
954         } else {
955                 /* get output voltage */
956                 output_uV = regulator_get_voltage_rdev(rdev);
957                 if (output_uV <= 0) {
958                         rdev_err(rdev, "invalid output voltage found\n");
959                         return -EINVAL;
960                 }
961
962                 /* get input voltage */
963                 input_uV = 0;
964                 if (rdev->supply)
965                         input_uV = regulator_get_voltage(rdev->supply);
966                 if (input_uV <= 0)
967                         input_uV = rdev->constraints->input_uV;
968                 if (input_uV <= 0) {
969                         rdev_err(rdev, "invalid input voltage found\n");
970                         return -EINVAL;
971                 }
972
973                 /* now get the optimum mode for our new total regulator load */
974                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
975                                                          output_uV, current_uA);
976
977                 /* check the new mode is allowed */
978                 err = regulator_mode_constrain(rdev, &mode);
979                 if (err < 0) {
980                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
981                                  current_uA, input_uV, output_uV, ERR_PTR(err));
982                         return err;
983                 }
984
985                 err = rdev->desc->ops->set_mode(rdev, mode);
986                 if (err < 0)
987                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
988                                  mode, ERR_PTR(err));
989         }
990
991         return err;
992 }
993
994 static int __suspend_set_state(struct regulator_dev *rdev,
995                                const struct regulator_state *rstate)
996 {
997         int ret = 0;
998
999         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000                 rdev->desc->ops->set_suspend_enable)
1001                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1002         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003                 rdev->desc->ops->set_suspend_disable)
1004                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1005         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006                 ret = 0;
1007
1008         if (ret < 0) {
1009                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010                 return ret;
1011         }
1012
1013         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015                 if (ret < 0) {
1016                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017                         return ret;
1018                 }
1019         }
1020
1021         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023                 if (ret < 0) {
1024                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025                         return ret;
1026                 }
1027         }
1028
1029         return ret;
1030 }
1031
1032 static int suspend_set_initial_state(struct regulator_dev *rdev)
1033 {
1034         const struct regulator_state *rstate;
1035
1036         rstate = regulator_get_suspend_state_check(rdev,
1037                         rdev->constraints->initial_state);
1038         if (!rstate)
1039                 return 0;
1040
1041         return __suspend_set_state(rdev, rstate);
1042 }
1043
1044 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045 static void print_constraints_debug(struct regulator_dev *rdev)
1046 {
1047         struct regulation_constraints *constraints = rdev->constraints;
1048         char buf[160] = "";
1049         size_t len = sizeof(buf) - 1;
1050         int count = 0;
1051         int ret;
1052
1053         if (constraints->min_uV && constraints->max_uV) {
1054                 if (constraints->min_uV == constraints->max_uV)
1055                         count += scnprintf(buf + count, len - count, "%d mV ",
1056                                            constraints->min_uV / 1000);
1057                 else
1058                         count += scnprintf(buf + count, len - count,
1059                                            "%d <--> %d mV ",
1060                                            constraints->min_uV / 1000,
1061                                            constraints->max_uV / 1000);
1062         }
1063
1064         if (!constraints->min_uV ||
1065             constraints->min_uV != constraints->max_uV) {
1066                 ret = regulator_get_voltage_rdev(rdev);
1067                 if (ret > 0)
1068                         count += scnprintf(buf + count, len - count,
1069                                            "at %d mV ", ret / 1000);
1070         }
1071
1072         if (constraints->uV_offset)
1073                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1074                                    constraints->uV_offset / 1000);
1075
1076         if (constraints->min_uA && constraints->max_uA) {
1077                 if (constraints->min_uA == constraints->max_uA)
1078                         count += scnprintf(buf + count, len - count, "%d mA ",
1079                                            constraints->min_uA / 1000);
1080                 else
1081                         count += scnprintf(buf + count, len - count,
1082                                            "%d <--> %d mA ",
1083                                            constraints->min_uA / 1000,
1084                                            constraints->max_uA / 1000);
1085         }
1086
1087         if (!constraints->min_uA ||
1088             constraints->min_uA != constraints->max_uA) {
1089                 ret = _regulator_get_current_limit(rdev);
1090                 if (ret > 0)
1091                         count += scnprintf(buf + count, len - count,
1092                                            "at %d mA ", ret / 1000);
1093         }
1094
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096                 count += scnprintf(buf + count, len - count, "fast ");
1097         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098                 count += scnprintf(buf + count, len - count, "normal ");
1099         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100                 count += scnprintf(buf + count, len - count, "idle ");
1101         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102                 count += scnprintf(buf + count, len - count, "standby ");
1103
1104         if (!count)
1105                 count = scnprintf(buf, len, "no parameters");
1106         else
1107                 --count;
1108
1109         count += scnprintf(buf + count, len - count, ", %s",
1110                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111
1112         rdev_dbg(rdev, "%s\n", buf);
1113 }
1114 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117
1118 static void print_constraints(struct regulator_dev *rdev)
1119 {
1120         struct regulation_constraints *constraints = rdev->constraints;
1121
1122         print_constraints_debug(rdev);
1123
1124         if ((constraints->min_uV != constraints->max_uV) &&
1125             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126                 rdev_warn(rdev,
1127                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128 }
1129
1130 static int machine_constraints_voltage(struct regulator_dev *rdev,
1131         struct regulation_constraints *constraints)
1132 {
1133         const struct regulator_ops *ops = rdev->desc->ops;
1134         int ret;
1135
1136         /* do we need to apply the constraint voltage */
1137         if (rdev->constraints->apply_uV &&
1138             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139                 int target_min, target_max;
1140                 int current_uV = regulator_get_voltage_rdev(rdev);
1141
1142                 if (current_uV == -ENOTRECOVERABLE) {
1143                         /* This regulator can't be read and must be initialized */
1144                         rdev_info(rdev, "Setting %d-%duV\n",
1145                                   rdev->constraints->min_uV,
1146                                   rdev->constraints->max_uV);
1147                         _regulator_do_set_voltage(rdev,
1148                                                   rdev->constraints->min_uV,
1149                                                   rdev->constraints->max_uV);
1150                         current_uV = regulator_get_voltage_rdev(rdev);
1151                 }
1152
1153                 if (current_uV < 0) {
1154                         if (current_uV != -EPROBE_DEFER)
1155                                 rdev_err(rdev,
1156                                          "failed to get the current voltage: %pe\n",
1157                                          ERR_PTR(current_uV));
1158                         return current_uV;
1159                 }
1160
1161                 /*
1162                  * If we're below the minimum voltage move up to the
1163                  * minimum voltage, if we're above the maximum voltage
1164                  * then move down to the maximum.
1165                  */
1166                 target_min = current_uV;
1167                 target_max = current_uV;
1168
1169                 if (current_uV < rdev->constraints->min_uV) {
1170                         target_min = rdev->constraints->min_uV;
1171                         target_max = rdev->constraints->min_uV;
1172                 }
1173
1174                 if (current_uV > rdev->constraints->max_uV) {
1175                         target_min = rdev->constraints->max_uV;
1176                         target_max = rdev->constraints->max_uV;
1177                 }
1178
1179                 if (target_min != current_uV || target_max != current_uV) {
1180                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1181                                   current_uV, target_min, target_max);
1182                         ret = _regulator_do_set_voltage(
1183                                 rdev, target_min, target_max);
1184                         if (ret < 0) {
1185                                 rdev_err(rdev,
1186                                         "failed to apply %d-%duV constraint: %pe\n",
1187                                         target_min, target_max, ERR_PTR(ret));
1188                                 return ret;
1189                         }
1190                 }
1191         }
1192
1193         /* constrain machine-level voltage specs to fit
1194          * the actual range supported by this regulator.
1195          */
1196         if (ops->list_voltage && rdev->desc->n_voltages) {
1197                 int     count = rdev->desc->n_voltages;
1198                 int     i;
1199                 int     min_uV = INT_MAX;
1200                 int     max_uV = INT_MIN;
1201                 int     cmin = constraints->min_uV;
1202                 int     cmax = constraints->max_uV;
1203
1204                 /* it's safe to autoconfigure fixed-voltage supplies
1205                  * and the constraints are used by list_voltage.
1206                  */
1207                 if (count == 1 && !cmin) {
1208                         cmin = 1;
1209                         cmax = INT_MAX;
1210                         constraints->min_uV = cmin;
1211                         constraints->max_uV = cmax;
1212                 }
1213
1214                 /* voltage constraints are optional */
1215                 if ((cmin == 0) && (cmax == 0))
1216                         return 0;
1217
1218                 /* else require explicit machine-level constraints */
1219                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1220                         rdev_err(rdev, "invalid voltage constraints\n");
1221                         return -EINVAL;
1222                 }
1223
1224                 /* no need to loop voltages if range is continuous */
1225                 if (rdev->desc->continuous_voltage_range)
1226                         return 0;
1227
1228                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1229                 for (i = 0; i < count; i++) {
1230                         int     value;
1231
1232                         value = ops->list_voltage(rdev, i);
1233                         if (value <= 0)
1234                                 continue;
1235
1236                         /* maybe adjust [min_uV..max_uV] */
1237                         if (value >= cmin && value < min_uV)
1238                                 min_uV = value;
1239                         if (value <= cmax && value > max_uV)
1240                                 max_uV = value;
1241                 }
1242
1243                 /* final: [min_uV..max_uV] valid iff constraints valid */
1244                 if (max_uV < min_uV) {
1245                         rdev_err(rdev,
1246                                  "unsupportable voltage constraints %u-%uuV\n",
1247                                  min_uV, max_uV);
1248                         return -EINVAL;
1249                 }
1250
1251                 /* use regulator's subset of machine constraints */
1252                 if (constraints->min_uV < min_uV) {
1253                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1254                                  constraints->min_uV, min_uV);
1255                         constraints->min_uV = min_uV;
1256                 }
1257                 if (constraints->max_uV > max_uV) {
1258                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1259                                  constraints->max_uV, max_uV);
1260                         constraints->max_uV = max_uV;
1261                 }
1262         }
1263
1264         return 0;
1265 }
1266
1267 static int machine_constraints_current(struct regulator_dev *rdev,
1268         struct regulation_constraints *constraints)
1269 {
1270         const struct regulator_ops *ops = rdev->desc->ops;
1271         int ret;
1272
1273         if (!constraints->min_uA && !constraints->max_uA)
1274                 return 0;
1275
1276         if (constraints->min_uA > constraints->max_uA) {
1277                 rdev_err(rdev, "Invalid current constraints\n");
1278                 return -EINVAL;
1279         }
1280
1281         if (!ops->set_current_limit || !ops->get_current_limit) {
1282                 rdev_warn(rdev, "Operation of current configuration missing\n");
1283                 return 0;
1284         }
1285
1286         /* Set regulator current in constraints range */
1287         ret = ops->set_current_limit(rdev, constraints->min_uA,
1288                         constraints->max_uA);
1289         if (ret < 0) {
1290                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1291                 return ret;
1292         }
1293
1294         return 0;
1295 }
1296
1297 static int _regulator_do_enable(struct regulator_dev *rdev);
1298
1299 static int notif_set_limit(struct regulator_dev *rdev,
1300                            int (*set)(struct regulator_dev *, int, int, bool),
1301                            int limit, int severity)
1302 {
1303         bool enable;
1304
1305         if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1306                 enable = false;
1307                 limit = 0;
1308         } else {
1309                 enable = true;
1310         }
1311
1312         if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1313                 limit = 0;
1314
1315         return set(rdev, limit, severity, enable);
1316 }
1317
1318 static int handle_notify_limits(struct regulator_dev *rdev,
1319                         int (*set)(struct regulator_dev *, int, int, bool),
1320                         struct notification_limit *limits)
1321 {
1322         int ret = 0;
1323
1324         if (!set)
1325                 return -EOPNOTSUPP;
1326
1327         if (limits->prot)
1328                 ret = notif_set_limit(rdev, set, limits->prot,
1329                                       REGULATOR_SEVERITY_PROT);
1330         if (ret)
1331                 return ret;
1332
1333         if (limits->err)
1334                 ret = notif_set_limit(rdev, set, limits->err,
1335                                       REGULATOR_SEVERITY_ERR);
1336         if (ret)
1337                 return ret;
1338
1339         if (limits->warn)
1340                 ret = notif_set_limit(rdev, set, limits->warn,
1341                                       REGULATOR_SEVERITY_WARN);
1342
1343         return ret;
1344 }
1345 /**
1346  * set_machine_constraints - sets regulator constraints
1347  * @rdev: regulator source
1348  *
1349  * Allows platform initialisation code to define and constrain
1350  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1351  * Constraints *must* be set by platform code in order for some
1352  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1353  * set_mode.
1354  */
1355 static int set_machine_constraints(struct regulator_dev *rdev)
1356 {
1357         int ret = 0;
1358         const struct regulator_ops *ops = rdev->desc->ops;
1359
1360         ret = machine_constraints_voltage(rdev, rdev->constraints);
1361         if (ret != 0)
1362                 return ret;
1363
1364         ret = machine_constraints_current(rdev, rdev->constraints);
1365         if (ret != 0)
1366                 return ret;
1367
1368         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1369                 ret = ops->set_input_current_limit(rdev,
1370                                                    rdev->constraints->ilim_uA);
1371                 if (ret < 0) {
1372                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1373                         return ret;
1374                 }
1375         }
1376
1377         /* do we need to setup our suspend state */
1378         if (rdev->constraints->initial_state) {
1379                 ret = suspend_set_initial_state(rdev);
1380                 if (ret < 0) {
1381                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1382                         return ret;
1383                 }
1384         }
1385
1386         if (rdev->constraints->initial_mode) {
1387                 if (!ops->set_mode) {
1388                         rdev_err(rdev, "no set_mode operation\n");
1389                         return -EINVAL;
1390                 }
1391
1392                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1393                 if (ret < 0) {
1394                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1395                         return ret;
1396                 }
1397         } else if (rdev->constraints->system_load) {
1398                 /*
1399                  * We'll only apply the initial system load if an
1400                  * initial mode wasn't specified.
1401                  */
1402                 drms_uA_update(rdev);
1403         }
1404
1405         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1406                 && ops->set_ramp_delay) {
1407                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1408                 if (ret < 0) {
1409                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1410                         return ret;
1411                 }
1412         }
1413
1414         if (rdev->constraints->pull_down && ops->set_pull_down) {
1415                 ret = ops->set_pull_down(rdev);
1416                 if (ret < 0) {
1417                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1418                         return ret;
1419                 }
1420         }
1421
1422         if (rdev->constraints->soft_start && ops->set_soft_start) {
1423                 ret = ops->set_soft_start(rdev);
1424                 if (ret < 0) {
1425                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1426                         return ret;
1427                 }
1428         }
1429
1430         /*
1431          * Existing logic does not warn if over_current_protection is given as
1432          * a constraint but driver does not support that. I think we should
1433          * warn about this type of issues as it is possible someone changes
1434          * PMIC on board to another type - and the another PMIC's driver does
1435          * not support setting protection. Board composer may happily believe
1436          * the DT limits are respected - especially if the new PMIC HW also
1437          * supports protection but the driver does not. I won't change the logic
1438          * without hearing more experienced opinion on this though.
1439          *
1440          * If warning is seen as a good idea then we can merge handling the
1441          * over-curret protection and detection and get rid of this special
1442          * handling.
1443          */
1444         if (rdev->constraints->over_current_protection
1445                 && ops->set_over_current_protection) {
1446                 int lim = rdev->constraints->over_curr_limits.prot;
1447
1448                 ret = ops->set_over_current_protection(rdev, lim,
1449                                                        REGULATOR_SEVERITY_PROT,
1450                                                        true);
1451                 if (ret < 0) {
1452                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1453                                  ERR_PTR(ret));
1454                         return ret;
1455                 }
1456         }
1457
1458         if (rdev->constraints->over_current_detection)
1459                 ret = handle_notify_limits(rdev,
1460                                            ops->set_over_current_protection,
1461                                            &rdev->constraints->over_curr_limits);
1462         if (ret) {
1463                 if (ret != -EOPNOTSUPP) {
1464                         rdev_err(rdev, "failed to set over current limits: %pe\n",
1465                                  ERR_PTR(ret));
1466                         return ret;
1467                 }
1468                 rdev_warn(rdev,
1469                           "IC does not support requested over-current limits\n");
1470         }
1471
1472         if (rdev->constraints->over_voltage_detection)
1473                 ret = handle_notify_limits(rdev,
1474                                            ops->set_over_voltage_protection,
1475                                            &rdev->constraints->over_voltage_limits);
1476         if (ret) {
1477                 if (ret != -EOPNOTSUPP) {
1478                         rdev_err(rdev, "failed to set over voltage limits %pe\n",
1479                                  ERR_PTR(ret));
1480                         return ret;
1481                 }
1482                 rdev_warn(rdev,
1483                           "IC does not support requested over voltage limits\n");
1484         }
1485
1486         if (rdev->constraints->under_voltage_detection)
1487                 ret = handle_notify_limits(rdev,
1488                                            ops->set_under_voltage_protection,
1489                                            &rdev->constraints->under_voltage_limits);
1490         if (ret) {
1491                 if (ret != -EOPNOTSUPP) {
1492                         rdev_err(rdev, "failed to set under voltage limits %pe\n",
1493                                  ERR_PTR(ret));
1494                         return ret;
1495                 }
1496                 rdev_warn(rdev,
1497                           "IC does not support requested under voltage limits\n");
1498         }
1499
1500         if (rdev->constraints->over_temp_detection)
1501                 ret = handle_notify_limits(rdev,
1502                                            ops->set_thermal_protection,
1503                                            &rdev->constraints->temp_limits);
1504         if (ret) {
1505                 if (ret != -EOPNOTSUPP) {
1506                         rdev_err(rdev, "failed to set temperature limits %pe\n",
1507                                  ERR_PTR(ret));
1508                         return ret;
1509                 }
1510                 rdev_warn(rdev,
1511                           "IC does not support requested temperature limits\n");
1512         }
1513
1514         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1515                 bool ad_state = (rdev->constraints->active_discharge ==
1516                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1517
1518                 ret = ops->set_active_discharge(rdev, ad_state);
1519                 if (ret < 0) {
1520                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1521                         return ret;
1522                 }
1523         }
1524
1525         /* If the constraints say the regulator should be on at this point
1526          * and we have control then make sure it is enabled.
1527          */
1528         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1529                 /* If we want to enable this regulator, make sure that we know
1530                  * the supplying regulator.
1531                  */
1532                 if (rdev->supply_name && !rdev->supply)
1533                         return -EPROBE_DEFER;
1534
1535                 if (rdev->supply) {
1536                         ret = regulator_enable(rdev->supply);
1537                         if (ret < 0) {
1538                                 _regulator_put(rdev->supply);
1539                                 rdev->supply = NULL;
1540                                 return ret;
1541                         }
1542                 }
1543
1544                 ret = _regulator_do_enable(rdev);
1545                 if (ret < 0 && ret != -EINVAL) {
1546                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1547                         return ret;
1548                 }
1549
1550                 if (rdev->constraints->always_on)
1551                         rdev->use_count++;
1552         } else if (rdev->desc->off_on_delay) {
1553                 rdev->last_off = ktime_get();
1554         }
1555
1556         print_constraints(rdev);
1557         return 0;
1558 }
1559
1560 /**
1561  * set_supply - set regulator supply regulator
1562  * @rdev: regulator name
1563  * @supply_rdev: supply regulator name
1564  *
1565  * Called by platform initialisation code to set the supply regulator for this
1566  * regulator. This ensures that a regulators supply will also be enabled by the
1567  * core if it's child is enabled.
1568  */
1569 static int set_supply(struct regulator_dev *rdev,
1570                       struct regulator_dev *supply_rdev)
1571 {
1572         int err;
1573
1574         rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1575
1576         if (!try_module_get(supply_rdev->owner))
1577                 return -ENODEV;
1578
1579         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1580         if (rdev->supply == NULL) {
1581                 err = -ENOMEM;
1582                 return err;
1583         }
1584         supply_rdev->open_count++;
1585
1586         return 0;
1587 }
1588
1589 /**
1590  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1591  * @rdev:         regulator source
1592  * @consumer_dev_name: dev_name() string for device supply applies to
1593  * @supply:       symbolic name for supply
1594  *
1595  * Allows platform initialisation code to map physical regulator
1596  * sources to symbolic names for supplies for use by devices.  Devices
1597  * should use these symbolic names to request regulators, avoiding the
1598  * need to provide board-specific regulator names as platform data.
1599  */
1600 static int set_consumer_device_supply(struct regulator_dev *rdev,
1601                                       const char *consumer_dev_name,
1602                                       const char *supply)
1603 {
1604         struct regulator_map *node, *new_node;
1605         int has_dev;
1606
1607         if (supply == NULL)
1608                 return -EINVAL;
1609
1610         if (consumer_dev_name != NULL)
1611                 has_dev = 1;
1612         else
1613                 has_dev = 0;
1614
1615         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1616         if (new_node == NULL)
1617                 return -ENOMEM;
1618
1619         new_node->regulator = rdev;
1620         new_node->supply = supply;
1621
1622         if (has_dev) {
1623                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1624                 if (new_node->dev_name == NULL) {
1625                         kfree(new_node);
1626                         return -ENOMEM;
1627                 }
1628         }
1629
1630         mutex_lock(&regulator_list_mutex);
1631         list_for_each_entry(node, &regulator_map_list, list) {
1632                 if (node->dev_name && consumer_dev_name) {
1633                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1634                                 continue;
1635                 } else if (node->dev_name || consumer_dev_name) {
1636                         continue;
1637                 }
1638
1639                 if (strcmp(node->supply, supply) != 0)
1640                         continue;
1641
1642                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1643                          consumer_dev_name,
1644                          dev_name(&node->regulator->dev),
1645                          node->regulator->desc->name,
1646                          supply,
1647                          dev_name(&rdev->dev), rdev_get_name(rdev));
1648                 goto fail;
1649         }
1650
1651         list_add(&new_node->list, &regulator_map_list);
1652         mutex_unlock(&regulator_list_mutex);
1653
1654         return 0;
1655
1656 fail:
1657         mutex_unlock(&regulator_list_mutex);
1658         kfree(new_node->dev_name);
1659         kfree(new_node);
1660         return -EBUSY;
1661 }
1662
1663 static void unset_regulator_supplies(struct regulator_dev *rdev)
1664 {
1665         struct regulator_map *node, *n;
1666
1667         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1668                 if (rdev == node->regulator) {
1669                         list_del(&node->list);
1670                         kfree(node->dev_name);
1671                         kfree(node);
1672                 }
1673         }
1674 }
1675
1676 #ifdef CONFIG_DEBUG_FS
1677 static ssize_t constraint_flags_read_file(struct file *file,
1678                                           char __user *user_buf,
1679                                           size_t count, loff_t *ppos)
1680 {
1681         const struct regulator *regulator = file->private_data;
1682         const struct regulation_constraints *c = regulator->rdev->constraints;
1683         char *buf;
1684         ssize_t ret;
1685
1686         if (!c)
1687                 return 0;
1688
1689         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1690         if (!buf)
1691                 return -ENOMEM;
1692
1693         ret = snprintf(buf, PAGE_SIZE,
1694                         "always_on: %u\n"
1695                         "boot_on: %u\n"
1696                         "apply_uV: %u\n"
1697                         "ramp_disable: %u\n"
1698                         "soft_start: %u\n"
1699                         "pull_down: %u\n"
1700                         "over_current_protection: %u\n",
1701                         c->always_on,
1702                         c->boot_on,
1703                         c->apply_uV,
1704                         c->ramp_disable,
1705                         c->soft_start,
1706                         c->pull_down,
1707                         c->over_current_protection);
1708
1709         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1710         kfree(buf);
1711
1712         return ret;
1713 }
1714
1715 #endif
1716
1717 static const struct file_operations constraint_flags_fops = {
1718 #ifdef CONFIG_DEBUG_FS
1719         .open = simple_open,
1720         .read = constraint_flags_read_file,
1721         .llseek = default_llseek,
1722 #endif
1723 };
1724
1725 #define REG_STR_SIZE    64
1726
1727 static struct regulator *create_regulator(struct regulator_dev *rdev,
1728                                           struct device *dev,
1729                                           const char *supply_name)
1730 {
1731         struct regulator *regulator;
1732         int err = 0;
1733
1734         if (dev) {
1735                 char buf[REG_STR_SIZE];
1736                 int size;
1737
1738                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1739                                 dev->kobj.name, supply_name);
1740                 if (size >= REG_STR_SIZE)
1741                         return NULL;
1742
1743                 supply_name = kstrdup(buf, GFP_KERNEL);
1744                 if (supply_name == NULL)
1745                         return NULL;
1746         } else {
1747                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1748                 if (supply_name == NULL)
1749                         return NULL;
1750         }
1751
1752         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1753         if (regulator == NULL) {
1754                 kfree(supply_name);
1755                 return NULL;
1756         }
1757
1758         regulator->rdev = rdev;
1759         regulator->supply_name = supply_name;
1760
1761         regulator_lock(rdev);
1762         list_add(&regulator->list, &rdev->consumer_list);
1763         regulator_unlock(rdev);
1764
1765         if (dev) {
1766                 regulator->dev = dev;
1767
1768                 /* Add a link to the device sysfs entry */
1769                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1770                                                supply_name);
1771                 if (err) {
1772                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1773                                   dev->kobj.name, ERR_PTR(err));
1774                         /* non-fatal */
1775                 }
1776         }
1777
1778         if (err != -EEXIST)
1779                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1780         if (!regulator->debugfs) {
1781                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1782         } else {
1783                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1784                                    &regulator->uA_load);
1785                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1786                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1787                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1788                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1789                 debugfs_create_file("constraint_flags", 0444,
1790                                     regulator->debugfs, regulator,
1791                                     &constraint_flags_fops);
1792         }
1793
1794         /*
1795          * Check now if the regulator is an always on regulator - if
1796          * it is then we don't need to do nearly so much work for
1797          * enable/disable calls.
1798          */
1799         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1800             _regulator_is_enabled(rdev))
1801                 regulator->always_on = true;
1802
1803         return regulator;
1804 }
1805
1806 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1807 {
1808         if (rdev->constraints && rdev->constraints->enable_time)
1809                 return rdev->constraints->enable_time;
1810         if (rdev->desc->ops->enable_time)
1811                 return rdev->desc->ops->enable_time(rdev);
1812         return rdev->desc->enable_time;
1813 }
1814
1815 static struct regulator_supply_alias *regulator_find_supply_alias(
1816                 struct device *dev, const char *supply)
1817 {
1818         struct regulator_supply_alias *map;
1819
1820         list_for_each_entry(map, &regulator_supply_alias_list, list)
1821                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1822                         return map;
1823
1824         return NULL;
1825 }
1826
1827 static void regulator_supply_alias(struct device **dev, const char **supply)
1828 {
1829         struct regulator_supply_alias *map;
1830
1831         map = regulator_find_supply_alias(*dev, *supply);
1832         if (map) {
1833                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1834                                 *supply, map->alias_supply,
1835                                 dev_name(map->alias_dev));
1836                 *dev = map->alias_dev;
1837                 *supply = map->alias_supply;
1838         }
1839 }
1840
1841 static int regulator_match(struct device *dev, const void *data)
1842 {
1843         struct regulator_dev *r = dev_to_rdev(dev);
1844
1845         return strcmp(rdev_get_name(r), data) == 0;
1846 }
1847
1848 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1849 {
1850         struct device *dev;
1851
1852         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1853
1854         return dev ? dev_to_rdev(dev) : NULL;
1855 }
1856
1857 /**
1858  * regulator_dev_lookup - lookup a regulator device.
1859  * @dev: device for regulator "consumer".
1860  * @supply: Supply name or regulator ID.
1861  *
1862  * If successful, returns a struct regulator_dev that corresponds to the name
1863  * @supply and with the embedded struct device refcount incremented by one.
1864  * The refcount must be dropped by calling put_device().
1865  * On failure one of the following ERR-PTR-encoded values is returned:
1866  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1867  * in the future.
1868  */
1869 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1870                                                   const char *supply)
1871 {
1872         struct regulator_dev *r = NULL;
1873         struct device_node *node;
1874         struct regulator_map *map;
1875         const char *devname = NULL;
1876
1877         regulator_supply_alias(&dev, &supply);
1878
1879         /* first do a dt based lookup */
1880         if (dev && dev->of_node) {
1881                 node = of_get_regulator(dev, supply);
1882                 if (node) {
1883                         r = of_find_regulator_by_node(node);
1884                         if (r)
1885                                 return r;
1886
1887                         /*
1888                          * We have a node, but there is no device.
1889                          * assume it has not registered yet.
1890                          */
1891                         return ERR_PTR(-EPROBE_DEFER);
1892                 }
1893         }
1894
1895         /* if not found, try doing it non-dt way */
1896         if (dev)
1897                 devname = dev_name(dev);
1898
1899         mutex_lock(&regulator_list_mutex);
1900         list_for_each_entry(map, &regulator_map_list, list) {
1901                 /* If the mapping has a device set up it must match */
1902                 if (map->dev_name &&
1903                     (!devname || strcmp(map->dev_name, devname)))
1904                         continue;
1905
1906                 if (strcmp(map->supply, supply) == 0 &&
1907                     get_device(&map->regulator->dev)) {
1908                         r = map->regulator;
1909                         break;
1910                 }
1911         }
1912         mutex_unlock(&regulator_list_mutex);
1913
1914         if (r)
1915                 return r;
1916
1917         r = regulator_lookup_by_name(supply);
1918         if (r)
1919                 return r;
1920
1921         return ERR_PTR(-ENODEV);
1922 }
1923
1924 static int regulator_resolve_supply(struct regulator_dev *rdev)
1925 {
1926         struct regulator_dev *r;
1927         struct device *dev = rdev->dev.parent;
1928         int ret = 0;
1929
1930         /* No supply to resolve? */
1931         if (!rdev->supply_name)
1932                 return 0;
1933
1934         /* Supply already resolved? (fast-path without locking contention) */
1935         if (rdev->supply)
1936                 return 0;
1937
1938         r = regulator_dev_lookup(dev, rdev->supply_name);
1939         if (IS_ERR(r)) {
1940                 ret = PTR_ERR(r);
1941
1942                 /* Did the lookup explicitly defer for us? */
1943                 if (ret == -EPROBE_DEFER)
1944                         goto out;
1945
1946                 if (have_full_constraints()) {
1947                         r = dummy_regulator_rdev;
1948                         get_device(&r->dev);
1949                 } else {
1950                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1951                                 rdev->supply_name, rdev->desc->name);
1952                         ret = -EPROBE_DEFER;
1953                         goto out;
1954                 }
1955         }
1956
1957         if (r == rdev) {
1958                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1959                         rdev->desc->name, rdev->supply_name);
1960                 if (!have_full_constraints()) {
1961                         ret = -EINVAL;
1962                         goto out;
1963                 }
1964                 r = dummy_regulator_rdev;
1965                 get_device(&r->dev);
1966         }
1967
1968         /*
1969          * If the supply's parent device is not the same as the
1970          * regulator's parent device, then ensure the parent device
1971          * is bound before we resolve the supply, in case the parent
1972          * device get probe deferred and unregisters the supply.
1973          */
1974         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1975                 if (!device_is_bound(r->dev.parent)) {
1976                         put_device(&r->dev);
1977                         ret = -EPROBE_DEFER;
1978                         goto out;
1979                 }
1980         }
1981
1982         /* Recursively resolve the supply of the supply */
1983         ret = regulator_resolve_supply(r);
1984         if (ret < 0) {
1985                 put_device(&r->dev);
1986                 goto out;
1987         }
1988
1989         /*
1990          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1991          * between rdev->supply null check and setting rdev->supply in
1992          * set_supply() from concurrent tasks.
1993          */
1994         regulator_lock(rdev);
1995
1996         /* Supply just resolved by a concurrent task? */
1997         if (rdev->supply) {
1998                 regulator_unlock(rdev);
1999                 put_device(&r->dev);
2000                 goto out;
2001         }
2002
2003         ret = set_supply(rdev, r);
2004         if (ret < 0) {
2005                 regulator_unlock(rdev);
2006                 put_device(&r->dev);
2007                 goto out;
2008         }
2009
2010         regulator_unlock(rdev);
2011
2012         /*
2013          * In set_machine_constraints() we may have turned this regulator on
2014          * but we couldn't propagate to the supply if it hadn't been resolved
2015          * yet.  Do it now.
2016          */
2017         if (rdev->use_count) {
2018                 ret = regulator_enable(rdev->supply);
2019                 if (ret < 0) {
2020                         _regulator_put(rdev->supply);
2021                         rdev->supply = NULL;
2022                         goto out;
2023                 }
2024         }
2025
2026 out:
2027         return ret;
2028 }
2029
2030 /* Internal regulator request function */
2031 struct regulator *_regulator_get(struct device *dev, const char *id,
2032                                  enum regulator_get_type get_type)
2033 {
2034         struct regulator_dev *rdev;
2035         struct regulator *regulator;
2036         struct device_link *link;
2037         int ret;
2038
2039         if (get_type >= MAX_GET_TYPE) {
2040                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2041                 return ERR_PTR(-EINVAL);
2042         }
2043
2044         if (id == NULL) {
2045                 pr_err("get() with no identifier\n");
2046                 return ERR_PTR(-EINVAL);
2047         }
2048
2049         rdev = regulator_dev_lookup(dev, id);
2050         if (IS_ERR(rdev)) {
2051                 ret = PTR_ERR(rdev);
2052
2053                 /*
2054                  * If regulator_dev_lookup() fails with error other
2055                  * than -ENODEV our job here is done, we simply return it.
2056                  */
2057                 if (ret != -ENODEV)
2058                         return ERR_PTR(ret);
2059
2060                 if (!have_full_constraints()) {
2061                         dev_warn(dev,
2062                                  "incomplete constraints, dummy supplies not allowed\n");
2063                         return ERR_PTR(-ENODEV);
2064                 }
2065
2066                 switch (get_type) {
2067                 case NORMAL_GET:
2068                         /*
2069                          * Assume that a regulator is physically present and
2070                          * enabled, even if it isn't hooked up, and just
2071                          * provide a dummy.
2072                          */
2073                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2074                         rdev = dummy_regulator_rdev;
2075                         get_device(&rdev->dev);
2076                         break;
2077
2078                 case EXCLUSIVE_GET:
2079                         dev_warn(dev,
2080                                  "dummy supplies not allowed for exclusive requests\n");
2081                         fallthrough;
2082
2083                 default:
2084                         return ERR_PTR(-ENODEV);
2085                 }
2086         }
2087
2088         if (rdev->exclusive) {
2089                 regulator = ERR_PTR(-EPERM);
2090                 put_device(&rdev->dev);
2091                 return regulator;
2092         }
2093
2094         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2095                 regulator = ERR_PTR(-EBUSY);
2096                 put_device(&rdev->dev);
2097                 return regulator;
2098         }
2099
2100         mutex_lock(&regulator_list_mutex);
2101         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2102         mutex_unlock(&regulator_list_mutex);
2103
2104         if (ret != 0) {
2105                 regulator = ERR_PTR(-EPROBE_DEFER);
2106                 put_device(&rdev->dev);
2107                 return regulator;
2108         }
2109
2110         ret = regulator_resolve_supply(rdev);
2111         if (ret < 0) {
2112                 regulator = ERR_PTR(ret);
2113                 put_device(&rdev->dev);
2114                 return regulator;
2115         }
2116
2117         if (!try_module_get(rdev->owner)) {
2118                 regulator = ERR_PTR(-EPROBE_DEFER);
2119                 put_device(&rdev->dev);
2120                 return regulator;
2121         }
2122
2123         regulator = create_regulator(rdev, dev, id);
2124         if (regulator == NULL) {
2125                 regulator = ERR_PTR(-ENOMEM);
2126                 module_put(rdev->owner);
2127                 put_device(&rdev->dev);
2128                 return regulator;
2129         }
2130
2131         rdev->open_count++;
2132         if (get_type == EXCLUSIVE_GET) {
2133                 rdev->exclusive = 1;
2134
2135                 ret = _regulator_is_enabled(rdev);
2136                 if (ret > 0)
2137                         rdev->use_count = 1;
2138                 else
2139                         rdev->use_count = 0;
2140         }
2141
2142         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2143         if (!IS_ERR_OR_NULL(link))
2144                 regulator->device_link = true;
2145
2146         return regulator;
2147 }
2148
2149 /**
2150  * regulator_get - lookup and obtain a reference to a regulator.
2151  * @dev: device for regulator "consumer"
2152  * @id: Supply name or regulator ID.
2153  *
2154  * Returns a struct regulator corresponding to the regulator producer,
2155  * or IS_ERR() condition containing errno.
2156  *
2157  * Use of supply names configured via set_consumer_device_supply() is
2158  * strongly encouraged.  It is recommended that the supply name used
2159  * should match the name used for the supply and/or the relevant
2160  * device pins in the datasheet.
2161  */
2162 struct regulator *regulator_get(struct device *dev, const char *id)
2163 {
2164         return _regulator_get(dev, id, NORMAL_GET);
2165 }
2166 EXPORT_SYMBOL_GPL(regulator_get);
2167
2168 /**
2169  * regulator_get_exclusive - obtain exclusive access to a regulator.
2170  * @dev: device for regulator "consumer"
2171  * @id: Supply name or regulator ID.
2172  *
2173  * Returns a struct regulator corresponding to the regulator producer,
2174  * or IS_ERR() condition containing errno.  Other consumers will be
2175  * unable to obtain this regulator while this reference is held and the
2176  * use count for the regulator will be initialised to reflect the current
2177  * state of the regulator.
2178  *
2179  * This is intended for use by consumers which cannot tolerate shared
2180  * use of the regulator such as those which need to force the
2181  * regulator off for correct operation of the hardware they are
2182  * controlling.
2183  *
2184  * Use of supply names configured via set_consumer_device_supply() is
2185  * strongly encouraged.  It is recommended that the supply name used
2186  * should match the name used for the supply and/or the relevant
2187  * device pins in the datasheet.
2188  */
2189 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2190 {
2191         return _regulator_get(dev, id, EXCLUSIVE_GET);
2192 }
2193 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2194
2195 /**
2196  * regulator_get_optional - obtain optional access to a regulator.
2197  * @dev: device for regulator "consumer"
2198  * @id: Supply name or regulator ID.
2199  *
2200  * Returns a struct regulator corresponding to the regulator producer,
2201  * or IS_ERR() condition containing errno.
2202  *
2203  * This is intended for use by consumers for devices which can have
2204  * some supplies unconnected in normal use, such as some MMC devices.
2205  * It can allow the regulator core to provide stub supplies for other
2206  * supplies requested using normal regulator_get() calls without
2207  * disrupting the operation of drivers that can handle absent
2208  * supplies.
2209  *
2210  * Use of supply names configured via set_consumer_device_supply() is
2211  * strongly encouraged.  It is recommended that the supply name used
2212  * should match the name used for the supply and/or the relevant
2213  * device pins in the datasheet.
2214  */
2215 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2216 {
2217         return _regulator_get(dev, id, OPTIONAL_GET);
2218 }
2219 EXPORT_SYMBOL_GPL(regulator_get_optional);
2220
2221 static void destroy_regulator(struct regulator *regulator)
2222 {
2223         struct regulator_dev *rdev = regulator->rdev;
2224
2225         debugfs_remove_recursive(regulator->debugfs);
2226
2227         if (regulator->dev) {
2228                 if (regulator->device_link)
2229                         device_link_remove(regulator->dev, &rdev->dev);
2230
2231                 /* remove any sysfs entries */
2232                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2233         }
2234
2235         regulator_lock(rdev);
2236         list_del(&regulator->list);
2237
2238         rdev->open_count--;
2239         rdev->exclusive = 0;
2240         regulator_unlock(rdev);
2241
2242         kfree_const(regulator->supply_name);
2243         kfree(regulator);
2244 }
2245
2246 /* regulator_list_mutex lock held by regulator_put() */
2247 static void _regulator_put(struct regulator *regulator)
2248 {
2249         struct regulator_dev *rdev;
2250
2251         if (IS_ERR_OR_NULL(regulator))
2252                 return;
2253
2254         lockdep_assert_held_once(&regulator_list_mutex);
2255
2256         /* Docs say you must disable before calling regulator_put() */
2257         WARN_ON(regulator->enable_count);
2258
2259         rdev = regulator->rdev;
2260
2261         destroy_regulator(regulator);
2262
2263         module_put(rdev->owner);
2264         put_device(&rdev->dev);
2265 }
2266
2267 /**
2268  * regulator_put - "free" the regulator source
2269  * @regulator: regulator source
2270  *
2271  * Note: drivers must ensure that all regulator_enable calls made on this
2272  * regulator source are balanced by regulator_disable calls prior to calling
2273  * this function.
2274  */
2275 void regulator_put(struct regulator *regulator)
2276 {
2277         mutex_lock(&regulator_list_mutex);
2278         _regulator_put(regulator);
2279         mutex_unlock(&regulator_list_mutex);
2280 }
2281 EXPORT_SYMBOL_GPL(regulator_put);
2282
2283 /**
2284  * regulator_register_supply_alias - Provide device alias for supply lookup
2285  *
2286  * @dev: device that will be given as the regulator "consumer"
2287  * @id: Supply name or regulator ID
2288  * @alias_dev: device that should be used to lookup the supply
2289  * @alias_id: Supply name or regulator ID that should be used to lookup the
2290  * supply
2291  *
2292  * All lookups for id on dev will instead be conducted for alias_id on
2293  * alias_dev.
2294  */
2295 int regulator_register_supply_alias(struct device *dev, const char *id,
2296                                     struct device *alias_dev,
2297                                     const char *alias_id)
2298 {
2299         struct regulator_supply_alias *map;
2300
2301         map = regulator_find_supply_alias(dev, id);
2302         if (map)
2303                 return -EEXIST;
2304
2305         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2306         if (!map)
2307                 return -ENOMEM;
2308
2309         map->src_dev = dev;
2310         map->src_supply = id;
2311         map->alias_dev = alias_dev;
2312         map->alias_supply = alias_id;
2313
2314         list_add(&map->list, &regulator_supply_alias_list);
2315
2316         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2317                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2318
2319         return 0;
2320 }
2321 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2322
2323 /**
2324  * regulator_unregister_supply_alias - Remove device alias
2325  *
2326  * @dev: device that will be given as the regulator "consumer"
2327  * @id: Supply name or regulator ID
2328  *
2329  * Remove a lookup alias if one exists for id on dev.
2330  */
2331 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2332 {
2333         struct regulator_supply_alias *map;
2334
2335         map = regulator_find_supply_alias(dev, id);
2336         if (map) {
2337                 list_del(&map->list);
2338                 kfree(map);
2339         }
2340 }
2341 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2342
2343 /**
2344  * regulator_bulk_register_supply_alias - register multiple aliases
2345  *
2346  * @dev: device that will be given as the regulator "consumer"
2347  * @id: List of supply names or regulator IDs
2348  * @alias_dev: device that should be used to lookup the supply
2349  * @alias_id: List of supply names or regulator IDs that should be used to
2350  * lookup the supply
2351  * @num_id: Number of aliases to register
2352  *
2353  * @return 0 on success, an errno on failure.
2354  *
2355  * This helper function allows drivers to register several supply
2356  * aliases in one operation.  If any of the aliases cannot be
2357  * registered any aliases that were registered will be removed
2358  * before returning to the caller.
2359  */
2360 int regulator_bulk_register_supply_alias(struct device *dev,
2361                                          const char *const *id,
2362                                          struct device *alias_dev,
2363                                          const char *const *alias_id,
2364                                          int num_id)
2365 {
2366         int i;
2367         int ret;
2368
2369         for (i = 0; i < num_id; ++i) {
2370                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2371                                                       alias_id[i]);
2372                 if (ret < 0)
2373                         goto err;
2374         }
2375
2376         return 0;
2377
2378 err:
2379         dev_err(dev,
2380                 "Failed to create supply alias %s,%s -> %s,%s\n",
2381                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2382
2383         while (--i >= 0)
2384                 regulator_unregister_supply_alias(dev, id[i]);
2385
2386         return ret;
2387 }
2388 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2389
2390 /**
2391  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2392  *
2393  * @dev: device that will be given as the regulator "consumer"
2394  * @id: List of supply names or regulator IDs
2395  * @num_id: Number of aliases to unregister
2396  *
2397  * This helper function allows drivers to unregister several supply
2398  * aliases in one operation.
2399  */
2400 void regulator_bulk_unregister_supply_alias(struct device *dev,
2401                                             const char *const *id,
2402                                             int num_id)
2403 {
2404         int i;
2405
2406         for (i = 0; i < num_id; ++i)
2407                 regulator_unregister_supply_alias(dev, id[i]);
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2410
2411
2412 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2413 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2414                                 const struct regulator_config *config)
2415 {
2416         struct regulator_enable_gpio *pin, *new_pin;
2417         struct gpio_desc *gpiod;
2418
2419         gpiod = config->ena_gpiod;
2420         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2421
2422         mutex_lock(&regulator_list_mutex);
2423
2424         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2425                 if (pin->gpiod == gpiod) {
2426                         rdev_dbg(rdev, "GPIO is already used\n");
2427                         goto update_ena_gpio_to_rdev;
2428                 }
2429         }
2430
2431         if (new_pin == NULL) {
2432                 mutex_unlock(&regulator_list_mutex);
2433                 return -ENOMEM;
2434         }
2435
2436         pin = new_pin;
2437         new_pin = NULL;
2438
2439         pin->gpiod = gpiod;
2440         list_add(&pin->list, &regulator_ena_gpio_list);
2441
2442 update_ena_gpio_to_rdev:
2443         pin->request_count++;
2444         rdev->ena_pin = pin;
2445
2446         mutex_unlock(&regulator_list_mutex);
2447         kfree(new_pin);
2448
2449         return 0;
2450 }
2451
2452 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2453 {
2454         struct regulator_enable_gpio *pin, *n;
2455
2456         if (!rdev->ena_pin)
2457                 return;
2458
2459         /* Free the GPIO only in case of no use */
2460         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2461                 if (pin != rdev->ena_pin)
2462                         continue;
2463
2464                 if (--pin->request_count)
2465                         break;
2466
2467                 gpiod_put(pin->gpiod);
2468                 list_del(&pin->list);
2469                 kfree(pin);
2470                 break;
2471         }
2472
2473         rdev->ena_pin = NULL;
2474 }
2475
2476 /**
2477  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2478  * @rdev: regulator_dev structure
2479  * @enable: enable GPIO at initial use?
2480  *
2481  * GPIO is enabled in case of initial use. (enable_count is 0)
2482  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2483  */
2484 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2485 {
2486         struct regulator_enable_gpio *pin = rdev->ena_pin;
2487
2488         if (!pin)
2489                 return -EINVAL;
2490
2491         if (enable) {
2492                 /* Enable GPIO at initial use */
2493                 if (pin->enable_count == 0)
2494                         gpiod_set_value_cansleep(pin->gpiod, 1);
2495
2496                 pin->enable_count++;
2497         } else {
2498                 if (pin->enable_count > 1) {
2499                         pin->enable_count--;
2500                         return 0;
2501                 }
2502
2503                 /* Disable GPIO if not used */
2504                 if (pin->enable_count <= 1) {
2505                         gpiod_set_value_cansleep(pin->gpiod, 0);
2506                         pin->enable_count = 0;
2507                 }
2508         }
2509
2510         return 0;
2511 }
2512
2513 /**
2514  * _regulator_enable_delay - a delay helper function
2515  * @delay: time to delay in microseconds
2516  *
2517  * Delay for the requested amount of time as per the guidelines in:
2518  *
2519  *     Documentation/timers/timers-howto.rst
2520  *
2521  * The assumption here is that regulators will never be enabled in
2522  * atomic context and therefore sleeping functions can be used.
2523  */
2524 static void _regulator_enable_delay(unsigned int delay)
2525 {
2526         unsigned int ms = delay / 1000;
2527         unsigned int us = delay % 1000;
2528
2529         if (ms > 0) {
2530                 /*
2531                  * For small enough values, handle super-millisecond
2532                  * delays in the usleep_range() call below.
2533                  */
2534                 if (ms < 20)
2535                         us += ms * 1000;
2536                 else
2537                         msleep(ms);
2538         }
2539
2540         /*
2541          * Give the scheduler some room to coalesce with any other
2542          * wakeup sources. For delays shorter than 10 us, don't even
2543          * bother setting up high-resolution timers and just busy-
2544          * loop.
2545          */
2546         if (us >= 10)
2547                 usleep_range(us, us + 100);
2548         else
2549                 udelay(us);
2550 }
2551
2552 /**
2553  * _regulator_check_status_enabled
2554  *
2555  * A helper function to check if the regulator status can be interpreted
2556  * as 'regulator is enabled'.
2557  * @rdev: the regulator device to check
2558  *
2559  * Return:
2560  * * 1                  - if status shows regulator is in enabled state
2561  * * 0                  - if not enabled state
2562  * * Error Value        - as received from ops->get_status()
2563  */
2564 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2565 {
2566         int ret = rdev->desc->ops->get_status(rdev);
2567
2568         if (ret < 0) {
2569                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2570                 return ret;
2571         }
2572
2573         switch (ret) {
2574         case REGULATOR_STATUS_OFF:
2575         case REGULATOR_STATUS_ERROR:
2576         case REGULATOR_STATUS_UNDEFINED:
2577                 return 0;
2578         default:
2579                 return 1;
2580         }
2581 }
2582
2583 static int _regulator_do_enable(struct regulator_dev *rdev)
2584 {
2585         int ret, delay;
2586
2587         /* Query before enabling in case configuration dependent.  */
2588         ret = _regulator_get_enable_time(rdev);
2589         if (ret >= 0) {
2590                 delay = ret;
2591         } else {
2592                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2593                 delay = 0;
2594         }
2595
2596         trace_regulator_enable(rdev_get_name(rdev));
2597
2598         if (rdev->desc->off_on_delay && rdev->last_off) {
2599                 /* if needed, keep a distance of off_on_delay from last time
2600                  * this regulator was disabled.
2601                  */
2602                 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2603                 s64 remaining = ktime_us_delta(end, ktime_get());
2604
2605                 if (remaining > 0)
2606                         _regulator_enable_delay(remaining);
2607         }
2608
2609         if (rdev->ena_pin) {
2610                 if (!rdev->ena_gpio_state) {
2611                         ret = regulator_ena_gpio_ctrl(rdev, true);
2612                         if (ret < 0)
2613                                 return ret;
2614                         rdev->ena_gpio_state = 1;
2615                 }
2616         } else if (rdev->desc->ops->enable) {
2617                 ret = rdev->desc->ops->enable(rdev);
2618                 if (ret < 0)
2619                         return ret;
2620         } else {
2621                 return -EINVAL;
2622         }
2623
2624         /* Allow the regulator to ramp; it would be useful to extend
2625          * this for bulk operations so that the regulators can ramp
2626          * together.
2627          */
2628         trace_regulator_enable_delay(rdev_get_name(rdev));
2629
2630         /* If poll_enabled_time is set, poll upto the delay calculated
2631          * above, delaying poll_enabled_time uS to check if the regulator
2632          * actually got enabled.
2633          * If the regulator isn't enabled after enable_delay has
2634          * expired, return -ETIMEDOUT.
2635          */
2636         if (rdev->desc->poll_enabled_time) {
2637                 unsigned int time_remaining = delay;
2638
2639                 while (time_remaining > 0) {
2640                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2641
2642                         if (rdev->desc->ops->get_status) {
2643                                 ret = _regulator_check_status_enabled(rdev);
2644                                 if (ret < 0)
2645                                         return ret;
2646                                 else if (ret)
2647                                         break;
2648                         } else if (rdev->desc->ops->is_enabled(rdev))
2649                                 break;
2650
2651                         time_remaining -= rdev->desc->poll_enabled_time;
2652                 }
2653
2654                 if (time_remaining <= 0) {
2655                         rdev_err(rdev, "Enabled check timed out\n");
2656                         return -ETIMEDOUT;
2657                 }
2658         } else {
2659                 _regulator_enable_delay(delay);
2660         }
2661
2662         trace_regulator_enable_complete(rdev_get_name(rdev));
2663
2664         return 0;
2665 }
2666
2667 /**
2668  * _regulator_handle_consumer_enable - handle that a consumer enabled
2669  * @regulator: regulator source
2670  *
2671  * Some things on a regulator consumer (like the contribution towards total
2672  * load on the regulator) only have an effect when the consumer wants the
2673  * regulator enabled.  Explained in example with two consumers of the same
2674  * regulator:
2675  *   consumer A: set_load(100);       => total load = 0
2676  *   consumer A: regulator_enable();  => total load = 100
2677  *   consumer B: set_load(1000);      => total load = 100
2678  *   consumer B: regulator_enable();  => total load = 1100
2679  *   consumer A: regulator_disable(); => total_load = 1000
2680  *
2681  * This function (together with _regulator_handle_consumer_disable) is
2682  * responsible for keeping track of the refcount for a given regulator consumer
2683  * and applying / unapplying these things.
2684  *
2685  * Returns 0 upon no error; -error upon error.
2686  */
2687 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2688 {
2689         struct regulator_dev *rdev = regulator->rdev;
2690
2691         lockdep_assert_held_once(&rdev->mutex.base);
2692
2693         regulator->enable_count++;
2694         if (regulator->uA_load && regulator->enable_count == 1)
2695                 return drms_uA_update(rdev);
2696
2697         return 0;
2698 }
2699
2700 /**
2701  * _regulator_handle_consumer_disable - handle that a consumer disabled
2702  * @regulator: regulator source
2703  *
2704  * The opposite of _regulator_handle_consumer_enable().
2705  *
2706  * Returns 0 upon no error; -error upon error.
2707  */
2708 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2709 {
2710         struct regulator_dev *rdev = regulator->rdev;
2711
2712         lockdep_assert_held_once(&rdev->mutex.base);
2713
2714         if (!regulator->enable_count) {
2715                 rdev_err(rdev, "Underflow of regulator enable count\n");
2716                 return -EINVAL;
2717         }
2718
2719         regulator->enable_count--;
2720         if (regulator->uA_load && regulator->enable_count == 0)
2721                 return drms_uA_update(rdev);
2722
2723         return 0;
2724 }
2725
2726 /* locks held by regulator_enable() */
2727 static int _regulator_enable(struct regulator *regulator)
2728 {
2729         struct regulator_dev *rdev = regulator->rdev;
2730         int ret;
2731
2732         lockdep_assert_held_once(&rdev->mutex.base);
2733
2734         if (rdev->use_count == 0 && rdev->supply) {
2735                 ret = _regulator_enable(rdev->supply);
2736                 if (ret < 0)
2737                         return ret;
2738         }
2739
2740         /* balance only if there are regulators coupled */
2741         if (rdev->coupling_desc.n_coupled > 1) {
2742                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2743                 if (ret < 0)
2744                         goto err_disable_supply;
2745         }
2746
2747         ret = _regulator_handle_consumer_enable(regulator);
2748         if (ret < 0)
2749                 goto err_disable_supply;
2750
2751         if (rdev->use_count == 0) {
2752                 /*
2753                  * The regulator may already be enabled if it's not switchable
2754                  * or was left on
2755                  */
2756                 ret = _regulator_is_enabled(rdev);
2757                 if (ret == -EINVAL || ret == 0) {
2758                         if (!regulator_ops_is_valid(rdev,
2759                                         REGULATOR_CHANGE_STATUS)) {
2760                                 ret = -EPERM;
2761                                 goto err_consumer_disable;
2762                         }
2763
2764                         ret = _regulator_do_enable(rdev);
2765                         if (ret < 0)
2766                                 goto err_consumer_disable;
2767
2768                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2769                                              NULL);
2770                 } else if (ret < 0) {
2771                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2772                         goto err_consumer_disable;
2773                 }
2774                 /* Fallthrough on positive return values - already enabled */
2775         }
2776
2777         rdev->use_count++;
2778
2779         return 0;
2780
2781 err_consumer_disable:
2782         _regulator_handle_consumer_disable(regulator);
2783
2784 err_disable_supply:
2785         if (rdev->use_count == 0 && rdev->supply)
2786                 _regulator_disable(rdev->supply);
2787
2788         return ret;
2789 }
2790
2791 /**
2792  * regulator_enable - enable regulator output
2793  * @regulator: regulator source
2794  *
2795  * Request that the regulator be enabled with the regulator output at
2796  * the predefined voltage or current value.  Calls to regulator_enable()
2797  * must be balanced with calls to regulator_disable().
2798  *
2799  * NOTE: the output value can be set by other drivers, boot loader or may be
2800  * hardwired in the regulator.
2801  */
2802 int regulator_enable(struct regulator *regulator)
2803 {
2804         struct regulator_dev *rdev = regulator->rdev;
2805         struct ww_acquire_ctx ww_ctx;
2806         int ret;
2807
2808         regulator_lock_dependent(rdev, &ww_ctx);
2809         ret = _regulator_enable(regulator);
2810         regulator_unlock_dependent(rdev, &ww_ctx);
2811
2812         return ret;
2813 }
2814 EXPORT_SYMBOL_GPL(regulator_enable);
2815
2816 static int _regulator_do_disable(struct regulator_dev *rdev)
2817 {
2818         int ret;
2819
2820         trace_regulator_disable(rdev_get_name(rdev));
2821
2822         if (rdev->ena_pin) {
2823                 if (rdev->ena_gpio_state) {
2824                         ret = regulator_ena_gpio_ctrl(rdev, false);
2825                         if (ret < 0)
2826                                 return ret;
2827                         rdev->ena_gpio_state = 0;
2828                 }
2829
2830         } else if (rdev->desc->ops->disable) {
2831                 ret = rdev->desc->ops->disable(rdev);
2832                 if (ret != 0)
2833                         return ret;
2834         }
2835
2836         if (rdev->desc->off_on_delay)
2837                 rdev->last_off = ktime_get();
2838
2839         trace_regulator_disable_complete(rdev_get_name(rdev));
2840
2841         return 0;
2842 }
2843
2844 /* locks held by regulator_disable() */
2845 static int _regulator_disable(struct regulator *regulator)
2846 {
2847         struct regulator_dev *rdev = regulator->rdev;
2848         int ret = 0;
2849
2850         lockdep_assert_held_once(&rdev->mutex.base);
2851
2852         if (WARN(rdev->use_count <= 0,
2853                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2854                 return -EIO;
2855
2856         /* are we the last user and permitted to disable ? */
2857         if (rdev->use_count == 1 &&
2858             (rdev->constraints && !rdev->constraints->always_on)) {
2859
2860                 /* we are last user */
2861                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2862                         ret = _notifier_call_chain(rdev,
2863                                                    REGULATOR_EVENT_PRE_DISABLE,
2864                                                    NULL);
2865                         if (ret & NOTIFY_STOP_MASK)
2866                                 return -EINVAL;
2867
2868                         ret = _regulator_do_disable(rdev);
2869                         if (ret < 0) {
2870                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2871                                 _notifier_call_chain(rdev,
2872                                                 REGULATOR_EVENT_ABORT_DISABLE,
2873                                                 NULL);
2874                                 return ret;
2875                         }
2876                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2877                                         NULL);
2878                 }
2879
2880                 rdev->use_count = 0;
2881         } else if (rdev->use_count > 1) {
2882                 rdev->use_count--;
2883         }
2884
2885         if (ret == 0)
2886                 ret = _regulator_handle_consumer_disable(regulator);
2887
2888         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2889                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2890
2891         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2892                 ret = _regulator_disable(rdev->supply);
2893
2894         return ret;
2895 }
2896
2897 /**
2898  * regulator_disable - disable regulator output
2899  * @regulator: regulator source
2900  *
2901  * Disable the regulator output voltage or current.  Calls to
2902  * regulator_enable() must be balanced with calls to
2903  * regulator_disable().
2904  *
2905  * NOTE: this will only disable the regulator output if no other consumer
2906  * devices have it enabled, the regulator device supports disabling and
2907  * machine constraints permit this operation.
2908  */
2909 int regulator_disable(struct regulator *regulator)
2910 {
2911         struct regulator_dev *rdev = regulator->rdev;
2912         struct ww_acquire_ctx ww_ctx;
2913         int ret;
2914
2915         regulator_lock_dependent(rdev, &ww_ctx);
2916         ret = _regulator_disable(regulator);
2917         regulator_unlock_dependent(rdev, &ww_ctx);
2918
2919         return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(regulator_disable);
2922
2923 /* locks held by regulator_force_disable() */
2924 static int _regulator_force_disable(struct regulator_dev *rdev)
2925 {
2926         int ret = 0;
2927
2928         lockdep_assert_held_once(&rdev->mutex.base);
2929
2930         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2931                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2932         if (ret & NOTIFY_STOP_MASK)
2933                 return -EINVAL;
2934
2935         ret = _regulator_do_disable(rdev);
2936         if (ret < 0) {
2937                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2938                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2939                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2940                 return ret;
2941         }
2942
2943         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2944                         REGULATOR_EVENT_DISABLE, NULL);
2945
2946         return 0;
2947 }
2948
2949 /**
2950  * regulator_force_disable - force disable regulator output
2951  * @regulator: regulator source
2952  *
2953  * Forcibly disable the regulator output voltage or current.
2954  * NOTE: this *will* disable the regulator output even if other consumer
2955  * devices have it enabled. This should be used for situations when device
2956  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2957  */
2958 int regulator_force_disable(struct regulator *regulator)
2959 {
2960         struct regulator_dev *rdev = regulator->rdev;
2961         struct ww_acquire_ctx ww_ctx;
2962         int ret;
2963
2964         regulator_lock_dependent(rdev, &ww_ctx);
2965
2966         ret = _regulator_force_disable(regulator->rdev);
2967
2968         if (rdev->coupling_desc.n_coupled > 1)
2969                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2970
2971         if (regulator->uA_load) {
2972                 regulator->uA_load = 0;
2973                 ret = drms_uA_update(rdev);
2974         }
2975
2976         if (rdev->use_count != 0 && rdev->supply)
2977                 _regulator_disable(rdev->supply);
2978
2979         regulator_unlock_dependent(rdev, &ww_ctx);
2980
2981         return ret;
2982 }
2983 EXPORT_SYMBOL_GPL(regulator_force_disable);
2984
2985 static void regulator_disable_work(struct work_struct *work)
2986 {
2987         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2988                                                   disable_work.work);
2989         struct ww_acquire_ctx ww_ctx;
2990         int count, i, ret;
2991         struct regulator *regulator;
2992         int total_count = 0;
2993
2994         regulator_lock_dependent(rdev, &ww_ctx);
2995
2996         /*
2997          * Workqueue functions queue the new work instance while the previous
2998          * work instance is being processed. Cancel the queued work instance
2999          * as the work instance under processing does the job of the queued
3000          * work instance.
3001          */
3002         cancel_delayed_work(&rdev->disable_work);
3003
3004         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3005                 count = regulator->deferred_disables;
3006
3007                 if (!count)
3008                         continue;
3009
3010                 total_count += count;
3011                 regulator->deferred_disables = 0;
3012
3013                 for (i = 0; i < count; i++) {
3014                         ret = _regulator_disable(regulator);
3015                         if (ret != 0)
3016                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
3017                                          ERR_PTR(ret));
3018                 }
3019         }
3020         WARN_ON(!total_count);
3021
3022         if (rdev->coupling_desc.n_coupled > 1)
3023                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3024
3025         regulator_unlock_dependent(rdev, &ww_ctx);
3026 }
3027
3028 /**
3029  * regulator_disable_deferred - disable regulator output with delay
3030  * @regulator: regulator source
3031  * @ms: milliseconds until the regulator is disabled
3032  *
3033  * Execute regulator_disable() on the regulator after a delay.  This
3034  * is intended for use with devices that require some time to quiesce.
3035  *
3036  * NOTE: this will only disable the regulator output if no other consumer
3037  * devices have it enabled, the regulator device supports disabling and
3038  * machine constraints permit this operation.
3039  */
3040 int regulator_disable_deferred(struct regulator *regulator, int ms)
3041 {
3042         struct regulator_dev *rdev = regulator->rdev;
3043
3044         if (!ms)
3045                 return regulator_disable(regulator);
3046
3047         regulator_lock(rdev);
3048         regulator->deferred_disables++;
3049         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3050                          msecs_to_jiffies(ms));
3051         regulator_unlock(rdev);
3052
3053         return 0;
3054 }
3055 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3056
3057 static int _regulator_is_enabled(struct regulator_dev *rdev)
3058 {
3059         /* A GPIO control always takes precedence */
3060         if (rdev->ena_pin)
3061                 return rdev->ena_gpio_state;
3062
3063         /* If we don't know then assume that the regulator is always on */
3064         if (!rdev->desc->ops->is_enabled)
3065                 return 1;
3066
3067         return rdev->desc->ops->is_enabled(rdev);
3068 }
3069
3070 static int _regulator_list_voltage(struct regulator_dev *rdev,
3071                                    unsigned selector, int lock)
3072 {
3073         const struct regulator_ops *ops = rdev->desc->ops;
3074         int ret;
3075
3076         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3077                 return rdev->desc->fixed_uV;
3078
3079         if (ops->list_voltage) {
3080                 if (selector >= rdev->desc->n_voltages)
3081                         return -EINVAL;
3082                 if (selector < rdev->desc->linear_min_sel)
3083                         return 0;
3084                 if (lock)
3085                         regulator_lock(rdev);
3086                 ret = ops->list_voltage(rdev, selector);
3087                 if (lock)
3088                         regulator_unlock(rdev);
3089         } else if (rdev->is_switch && rdev->supply) {
3090                 ret = _regulator_list_voltage(rdev->supply->rdev,
3091                                               selector, lock);
3092         } else {
3093                 return -EINVAL;
3094         }
3095
3096         if (ret > 0) {
3097                 if (ret < rdev->constraints->min_uV)
3098                         ret = 0;
3099                 else if (ret > rdev->constraints->max_uV)
3100                         ret = 0;
3101         }
3102
3103         return ret;
3104 }
3105
3106 /**
3107  * regulator_is_enabled - is the regulator output enabled
3108  * @regulator: regulator source
3109  *
3110  * Returns positive if the regulator driver backing the source/client
3111  * has requested that the device be enabled, zero if it hasn't, else a
3112  * negative errno code.
3113  *
3114  * Note that the device backing this regulator handle can have multiple
3115  * users, so it might be enabled even if regulator_enable() was never
3116  * called for this particular source.
3117  */
3118 int regulator_is_enabled(struct regulator *regulator)
3119 {
3120         int ret;
3121
3122         if (regulator->always_on)
3123                 return 1;
3124
3125         regulator_lock(regulator->rdev);
3126         ret = _regulator_is_enabled(regulator->rdev);
3127         regulator_unlock(regulator->rdev);
3128
3129         return ret;
3130 }
3131 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3132
3133 /**
3134  * regulator_count_voltages - count regulator_list_voltage() selectors
3135  * @regulator: regulator source
3136  *
3137  * Returns number of selectors, or negative errno.  Selectors are
3138  * numbered starting at zero, and typically correspond to bitfields
3139  * in hardware registers.
3140  */
3141 int regulator_count_voltages(struct regulator *regulator)
3142 {
3143         struct regulator_dev    *rdev = regulator->rdev;
3144
3145         if (rdev->desc->n_voltages)
3146                 return rdev->desc->n_voltages;
3147
3148         if (!rdev->is_switch || !rdev->supply)
3149                 return -EINVAL;
3150
3151         return regulator_count_voltages(rdev->supply);
3152 }
3153 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3154
3155 /**
3156  * regulator_list_voltage - enumerate supported voltages
3157  * @regulator: regulator source
3158  * @selector: identify voltage to list
3159  * Context: can sleep
3160  *
3161  * Returns a voltage that can be passed to @regulator_set_voltage(),
3162  * zero if this selector code can't be used on this system, or a
3163  * negative errno.
3164  */
3165 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3166 {
3167         return _regulator_list_voltage(regulator->rdev, selector, 1);
3168 }
3169 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3170
3171 /**
3172  * regulator_get_regmap - get the regulator's register map
3173  * @regulator: regulator source
3174  *
3175  * Returns the register map for the given regulator, or an ERR_PTR value
3176  * if the regulator doesn't use regmap.
3177  */
3178 struct regmap *regulator_get_regmap(struct regulator *regulator)
3179 {
3180         struct regmap *map = regulator->rdev->regmap;
3181
3182         return map ? map : ERR_PTR(-EOPNOTSUPP);
3183 }
3184
3185 /**
3186  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3187  * @regulator: regulator source
3188  * @vsel_reg: voltage selector register, output parameter
3189  * @vsel_mask: mask for voltage selector bitfield, output parameter
3190  *
3191  * Returns the hardware register offset and bitmask used for setting the
3192  * regulator voltage. This might be useful when configuring voltage-scaling
3193  * hardware or firmware that can make I2C requests behind the kernel's back,
3194  * for example.
3195  *
3196  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3197  * and 0 is returned, otherwise a negative errno is returned.
3198  */
3199 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3200                                          unsigned *vsel_reg,
3201                                          unsigned *vsel_mask)
3202 {
3203         struct regulator_dev *rdev = regulator->rdev;
3204         const struct regulator_ops *ops = rdev->desc->ops;
3205
3206         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3207                 return -EOPNOTSUPP;
3208
3209         *vsel_reg = rdev->desc->vsel_reg;
3210         *vsel_mask = rdev->desc->vsel_mask;
3211
3212         return 0;
3213 }
3214 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3215
3216 /**
3217  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3218  * @regulator: regulator source
3219  * @selector: identify voltage to list
3220  *
3221  * Converts the selector to a hardware-specific voltage selector that can be
3222  * directly written to the regulator registers. The address of the voltage
3223  * register can be determined by calling @regulator_get_hardware_vsel_register.
3224  *
3225  * On error a negative errno is returned.
3226  */
3227 int regulator_list_hardware_vsel(struct regulator *regulator,
3228                                  unsigned selector)
3229 {
3230         struct regulator_dev *rdev = regulator->rdev;
3231         const struct regulator_ops *ops = rdev->desc->ops;
3232
3233         if (selector >= rdev->desc->n_voltages)
3234                 return -EINVAL;
3235         if (selector < rdev->desc->linear_min_sel)
3236                 return 0;
3237         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3238                 return -EOPNOTSUPP;
3239
3240         return selector;
3241 }
3242 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3243
3244 /**
3245  * regulator_get_linear_step - return the voltage step size between VSEL values
3246  * @regulator: regulator source
3247  *
3248  * Returns the voltage step size between VSEL values for linear
3249  * regulators, or return 0 if the regulator isn't a linear regulator.
3250  */
3251 unsigned int regulator_get_linear_step(struct regulator *regulator)
3252 {
3253         struct regulator_dev *rdev = regulator->rdev;
3254
3255         return rdev->desc->uV_step;
3256 }
3257 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3258
3259 /**
3260  * regulator_is_supported_voltage - check if a voltage range can be supported
3261  *
3262  * @regulator: Regulator to check.
3263  * @min_uV: Minimum required voltage in uV.
3264  * @max_uV: Maximum required voltage in uV.
3265  *
3266  * Returns a boolean.
3267  */
3268 int regulator_is_supported_voltage(struct regulator *regulator,
3269                                    int min_uV, int max_uV)
3270 {
3271         struct regulator_dev *rdev = regulator->rdev;
3272         int i, voltages, ret;
3273
3274         /* If we can't change voltage check the current voltage */
3275         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3276                 ret = regulator_get_voltage(regulator);
3277                 if (ret >= 0)
3278                         return min_uV <= ret && ret <= max_uV;
3279                 else
3280                         return ret;
3281         }
3282
3283         /* Any voltage within constrains range is fine? */
3284         if (rdev->desc->continuous_voltage_range)
3285                 return min_uV >= rdev->constraints->min_uV &&
3286                                 max_uV <= rdev->constraints->max_uV;
3287
3288         ret = regulator_count_voltages(regulator);
3289         if (ret < 0)
3290                 return 0;
3291         voltages = ret;
3292
3293         for (i = 0; i < voltages; i++) {
3294                 ret = regulator_list_voltage(regulator, i);
3295
3296                 if (ret >= min_uV && ret <= max_uV)
3297                         return 1;
3298         }
3299
3300         return 0;
3301 }
3302 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3303
3304 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3305                                  int max_uV)
3306 {
3307         const struct regulator_desc *desc = rdev->desc;
3308
3309         if (desc->ops->map_voltage)
3310                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3311
3312         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3313                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3314
3315         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3316                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3317
3318         if (desc->ops->list_voltage ==
3319                 regulator_list_voltage_pickable_linear_range)
3320                 return regulator_map_voltage_pickable_linear_range(rdev,
3321                                                         min_uV, max_uV);
3322
3323         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3324 }
3325
3326 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3327                                        int min_uV, int max_uV,
3328                                        unsigned *selector)
3329 {
3330         struct pre_voltage_change_data data;
3331         int ret;
3332
3333         data.old_uV = regulator_get_voltage_rdev(rdev);
3334         data.min_uV = min_uV;
3335         data.max_uV = max_uV;
3336         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3337                                    &data);
3338         if (ret & NOTIFY_STOP_MASK)
3339                 return -EINVAL;
3340
3341         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3342         if (ret >= 0)
3343                 return ret;
3344
3345         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3346                              (void *)data.old_uV);
3347
3348         return ret;
3349 }
3350
3351 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3352                                            int uV, unsigned selector)
3353 {
3354         struct pre_voltage_change_data data;
3355         int ret;
3356
3357         data.old_uV = regulator_get_voltage_rdev(rdev);
3358         data.min_uV = uV;
3359         data.max_uV = uV;
3360         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3361                                    &data);
3362         if (ret & NOTIFY_STOP_MASK)
3363                 return -EINVAL;
3364
3365         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3366         if (ret >= 0)
3367                 return ret;
3368
3369         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3370                              (void *)data.old_uV);
3371
3372         return ret;
3373 }
3374
3375 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3376                                            int uV, int new_selector)
3377 {
3378         const struct regulator_ops *ops = rdev->desc->ops;
3379         int diff, old_sel, curr_sel, ret;
3380
3381         /* Stepping is only needed if the regulator is enabled. */
3382         if (!_regulator_is_enabled(rdev))
3383                 goto final_set;
3384
3385         if (!ops->get_voltage_sel)
3386                 return -EINVAL;
3387
3388         old_sel = ops->get_voltage_sel(rdev);
3389         if (old_sel < 0)
3390                 return old_sel;
3391
3392         diff = new_selector - old_sel;
3393         if (diff == 0)
3394                 return 0; /* No change needed. */
3395
3396         if (diff > 0) {
3397                 /* Stepping up. */
3398                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3399                      curr_sel < new_selector;
3400                      curr_sel += rdev->desc->vsel_step) {
3401                         /*
3402                          * Call the callback directly instead of using
3403                          * _regulator_call_set_voltage_sel() as we don't
3404                          * want to notify anyone yet. Same in the branch
3405                          * below.
3406                          */
3407                         ret = ops->set_voltage_sel(rdev, curr_sel);
3408                         if (ret)
3409                                 goto try_revert;
3410                 }
3411         } else {
3412                 /* Stepping down. */
3413                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3414                      curr_sel > new_selector;
3415                      curr_sel -= rdev->desc->vsel_step) {
3416                         ret = ops->set_voltage_sel(rdev, curr_sel);
3417                         if (ret)
3418                                 goto try_revert;
3419                 }
3420         }
3421
3422 final_set:
3423         /* The final selector will trigger the notifiers. */
3424         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3425
3426 try_revert:
3427         /*
3428          * At least try to return to the previous voltage if setting a new
3429          * one failed.
3430          */
3431         (void)ops->set_voltage_sel(rdev, old_sel);
3432         return ret;
3433 }
3434
3435 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3436                                        int old_uV, int new_uV)
3437 {
3438         unsigned int ramp_delay = 0;
3439
3440         if (rdev->constraints->ramp_delay)
3441                 ramp_delay = rdev->constraints->ramp_delay;
3442         else if (rdev->desc->ramp_delay)
3443                 ramp_delay = rdev->desc->ramp_delay;
3444         else if (rdev->constraints->settling_time)
3445                 return rdev->constraints->settling_time;
3446         else if (rdev->constraints->settling_time_up &&
3447                  (new_uV > old_uV))
3448                 return rdev->constraints->settling_time_up;
3449         else if (rdev->constraints->settling_time_down &&
3450                  (new_uV < old_uV))
3451                 return rdev->constraints->settling_time_down;
3452
3453         if (ramp_delay == 0) {
3454                 rdev_dbg(rdev, "ramp_delay not set\n");
3455                 return 0;
3456         }
3457
3458         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3459 }
3460
3461 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3462                                      int min_uV, int max_uV)
3463 {
3464         int ret;
3465         int delay = 0;
3466         int best_val = 0;
3467         unsigned int selector;
3468         int old_selector = -1;
3469         const struct regulator_ops *ops = rdev->desc->ops;
3470         int old_uV = regulator_get_voltage_rdev(rdev);
3471
3472         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3473
3474         min_uV += rdev->constraints->uV_offset;
3475         max_uV += rdev->constraints->uV_offset;
3476
3477         /*
3478          * If we can't obtain the old selector there is not enough
3479          * info to call set_voltage_time_sel().
3480          */
3481         if (_regulator_is_enabled(rdev) &&
3482             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3483                 old_selector = ops->get_voltage_sel(rdev);
3484                 if (old_selector < 0)
3485                         return old_selector;
3486         }
3487
3488         if (ops->set_voltage) {
3489                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3490                                                   &selector);
3491
3492                 if (ret >= 0) {
3493                         if (ops->list_voltage)
3494                                 best_val = ops->list_voltage(rdev,
3495                                                              selector);
3496                         else
3497                                 best_val = regulator_get_voltage_rdev(rdev);
3498                 }
3499
3500         } else if (ops->set_voltage_sel) {
3501                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3502                 if (ret >= 0) {
3503                         best_val = ops->list_voltage(rdev, ret);
3504                         if (min_uV <= best_val && max_uV >= best_val) {
3505                                 selector = ret;
3506                                 if (old_selector == selector)
3507                                         ret = 0;
3508                                 else if (rdev->desc->vsel_step)
3509                                         ret = _regulator_set_voltage_sel_step(
3510                                                 rdev, best_val, selector);
3511                                 else
3512                                         ret = _regulator_call_set_voltage_sel(
3513                                                 rdev, best_val, selector);
3514                         } else {
3515                                 ret = -EINVAL;
3516                         }
3517                 }
3518         } else {
3519                 ret = -EINVAL;
3520         }
3521
3522         if (ret)
3523                 goto out;
3524
3525         if (ops->set_voltage_time_sel) {
3526                 /*
3527                  * Call set_voltage_time_sel if successfully obtained
3528                  * old_selector
3529                  */
3530                 if (old_selector >= 0 && old_selector != selector)
3531                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3532                                                           selector);
3533         } else {
3534                 if (old_uV != best_val) {
3535                         if (ops->set_voltage_time)
3536                                 delay = ops->set_voltage_time(rdev, old_uV,
3537                                                               best_val);
3538                         else
3539                                 delay = _regulator_set_voltage_time(rdev,
3540                                                                     old_uV,
3541                                                                     best_val);
3542                 }
3543         }
3544
3545         if (delay < 0) {
3546                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3547                 delay = 0;
3548         }
3549
3550         /* Insert any necessary delays */
3551         if (delay >= 1000) {
3552                 mdelay(delay / 1000);
3553                 udelay(delay % 1000);
3554         } else if (delay) {
3555                 udelay(delay);
3556         }
3557
3558         if (best_val >= 0) {
3559                 unsigned long data = best_val;
3560
3561                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3562                                      (void *)data);
3563         }
3564
3565 out:
3566         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3567
3568         return ret;
3569 }
3570
3571 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3572                                   int min_uV, int max_uV, suspend_state_t state)
3573 {
3574         struct regulator_state *rstate;
3575         int uV, sel;
3576
3577         rstate = regulator_get_suspend_state(rdev, state);
3578         if (rstate == NULL)
3579                 return -EINVAL;
3580
3581         if (min_uV < rstate->min_uV)
3582                 min_uV = rstate->min_uV;
3583         if (max_uV > rstate->max_uV)
3584                 max_uV = rstate->max_uV;
3585
3586         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3587         if (sel < 0)
3588                 return sel;
3589
3590         uV = rdev->desc->ops->list_voltage(rdev, sel);
3591         if (uV >= min_uV && uV <= max_uV)
3592                 rstate->uV = uV;
3593
3594         return 0;
3595 }
3596
3597 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3598                                           int min_uV, int max_uV,
3599                                           suspend_state_t state)
3600 {
3601         struct regulator_dev *rdev = regulator->rdev;
3602         struct regulator_voltage *voltage = &regulator->voltage[state];
3603         int ret = 0;
3604         int old_min_uV, old_max_uV;
3605         int current_uV;
3606
3607         /* If we're setting the same range as last time the change
3608          * should be a noop (some cpufreq implementations use the same
3609          * voltage for multiple frequencies, for example).
3610          */
3611         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3612                 goto out;
3613
3614         /* If we're trying to set a range that overlaps the current voltage,
3615          * return successfully even though the regulator does not support
3616          * changing the voltage.
3617          */
3618         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3619                 current_uV = regulator_get_voltage_rdev(rdev);
3620                 if (min_uV <= current_uV && current_uV <= max_uV) {
3621                         voltage->min_uV = min_uV;
3622                         voltage->max_uV = max_uV;
3623                         goto out;
3624                 }
3625         }
3626
3627         /* sanity check */
3628         if (!rdev->desc->ops->set_voltage &&
3629             !rdev->desc->ops->set_voltage_sel) {
3630                 ret = -EINVAL;
3631                 goto out;
3632         }
3633
3634         /* constraints check */
3635         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3636         if (ret < 0)
3637                 goto out;
3638
3639         /* restore original values in case of error */
3640         old_min_uV = voltage->min_uV;
3641         old_max_uV = voltage->max_uV;
3642         voltage->min_uV = min_uV;
3643         voltage->max_uV = max_uV;
3644
3645         /* for not coupled regulators this will just set the voltage */
3646         ret = regulator_balance_voltage(rdev, state);
3647         if (ret < 0) {
3648                 voltage->min_uV = old_min_uV;
3649                 voltage->max_uV = old_max_uV;
3650         }
3651
3652 out:
3653         return ret;
3654 }
3655
3656 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3657                                int max_uV, suspend_state_t state)
3658 {
3659         int best_supply_uV = 0;
3660         int supply_change_uV = 0;
3661         int ret;
3662
3663         if (rdev->supply &&
3664             regulator_ops_is_valid(rdev->supply->rdev,
3665                                    REGULATOR_CHANGE_VOLTAGE) &&
3666             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3667                                            rdev->desc->ops->get_voltage_sel))) {
3668                 int current_supply_uV;
3669                 int selector;
3670
3671                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3672                 if (selector < 0) {
3673                         ret = selector;
3674                         goto out;
3675                 }
3676
3677                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3678                 if (best_supply_uV < 0) {
3679                         ret = best_supply_uV;
3680                         goto out;
3681                 }
3682
3683                 best_supply_uV += rdev->desc->min_dropout_uV;
3684
3685                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3686                 if (current_supply_uV < 0) {
3687                         ret = current_supply_uV;
3688                         goto out;
3689                 }
3690
3691                 supply_change_uV = best_supply_uV - current_supply_uV;
3692         }
3693
3694         if (supply_change_uV > 0) {
3695                 ret = regulator_set_voltage_unlocked(rdev->supply,
3696                                 best_supply_uV, INT_MAX, state);
3697                 if (ret) {
3698                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3699                                 ERR_PTR(ret));
3700                         goto out;
3701                 }
3702         }
3703
3704         if (state == PM_SUSPEND_ON)
3705                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3706         else
3707                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3708                                                         max_uV, state);
3709         if (ret < 0)
3710                 goto out;
3711
3712         if (supply_change_uV < 0) {
3713                 ret = regulator_set_voltage_unlocked(rdev->supply,
3714                                 best_supply_uV, INT_MAX, state);
3715                 if (ret)
3716                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3717                                  ERR_PTR(ret));
3718                 /* No need to fail here */
3719                 ret = 0;
3720         }
3721
3722 out:
3723         return ret;
3724 }
3725 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3726
3727 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3728                                         int *current_uV, int *min_uV)
3729 {
3730         struct regulation_constraints *constraints = rdev->constraints;
3731
3732         /* Limit voltage change only if necessary */
3733         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3734                 return 1;
3735
3736         if (*current_uV < 0) {
3737                 *current_uV = regulator_get_voltage_rdev(rdev);
3738
3739                 if (*current_uV < 0)
3740                         return *current_uV;
3741         }
3742
3743         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3744                 return 1;
3745
3746         /* Clamp target voltage within the given step */
3747         if (*current_uV < *min_uV)
3748                 *min_uV = min(*current_uV + constraints->max_uV_step,
3749                               *min_uV);
3750         else
3751                 *min_uV = max(*current_uV - constraints->max_uV_step,
3752                               *min_uV);
3753
3754         return 0;
3755 }
3756
3757 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3758                                          int *current_uV,
3759                                          int *min_uV, int *max_uV,
3760                                          suspend_state_t state,
3761                                          int n_coupled)
3762 {
3763         struct coupling_desc *c_desc = &rdev->coupling_desc;
3764         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3765         struct regulation_constraints *constraints = rdev->constraints;
3766         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3767         int max_current_uV = 0, min_current_uV = INT_MAX;
3768         int highest_min_uV = 0, target_uV, possible_uV;
3769         int i, ret, max_spread;
3770         bool done;
3771
3772         *current_uV = -1;
3773
3774         /*
3775          * If there are no coupled regulators, simply set the voltage
3776          * demanded by consumers.
3777          */
3778         if (n_coupled == 1) {
3779                 /*
3780                  * If consumers don't provide any demands, set voltage
3781                  * to min_uV
3782                  */
3783                 desired_min_uV = constraints->min_uV;
3784                 desired_max_uV = constraints->max_uV;
3785
3786                 ret = regulator_check_consumers(rdev,
3787                                                 &desired_min_uV,
3788                                                 &desired_max_uV, state);
3789                 if (ret < 0)
3790                         return ret;
3791
3792                 possible_uV = desired_min_uV;
3793                 done = true;
3794
3795                 goto finish;
3796         }
3797
3798         /* Find highest min desired voltage */
3799         for (i = 0; i < n_coupled; i++) {
3800                 int tmp_min = 0;
3801                 int tmp_max = INT_MAX;
3802
3803                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3804
3805                 ret = regulator_check_consumers(c_rdevs[i],
3806                                                 &tmp_min,
3807                                                 &tmp_max, state);
3808                 if (ret < 0)
3809                         return ret;
3810
3811                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3812                 if (ret < 0)
3813                         return ret;
3814
3815                 highest_min_uV = max(highest_min_uV, tmp_min);
3816
3817                 if (i == 0) {
3818                         desired_min_uV = tmp_min;
3819                         desired_max_uV = tmp_max;
3820                 }
3821         }
3822
3823         max_spread = constraints->max_spread[0];
3824
3825         /*
3826          * Let target_uV be equal to the desired one if possible.
3827          * If not, set it to minimum voltage, allowed by other coupled
3828          * regulators.
3829          */
3830         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3831
3832         /*
3833          * Find min and max voltages, which currently aren't violating
3834          * max_spread.
3835          */
3836         for (i = 1; i < n_coupled; i++) {
3837                 int tmp_act;
3838
3839                 if (!_regulator_is_enabled(c_rdevs[i]))
3840                         continue;
3841
3842                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3843                 if (tmp_act < 0)
3844                         return tmp_act;
3845
3846                 min_current_uV = min(tmp_act, min_current_uV);
3847                 max_current_uV = max(tmp_act, max_current_uV);
3848         }
3849
3850         /* There aren't any other regulators enabled */
3851         if (max_current_uV == 0) {
3852                 possible_uV = target_uV;
3853         } else {
3854                 /*
3855                  * Correct target voltage, so as it currently isn't
3856                  * violating max_spread
3857                  */
3858                 possible_uV = max(target_uV, max_current_uV - max_spread);
3859                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3860         }
3861
3862         if (possible_uV > desired_max_uV)
3863                 return -EINVAL;
3864
3865         done = (possible_uV == target_uV);
3866         desired_min_uV = possible_uV;
3867
3868 finish:
3869         /* Apply max_uV_step constraint if necessary */
3870         if (state == PM_SUSPEND_ON) {
3871                 ret = regulator_limit_voltage_step(rdev, current_uV,
3872                                                    &desired_min_uV);
3873                 if (ret < 0)
3874                         return ret;
3875
3876                 if (ret == 0)
3877                         done = false;
3878         }
3879
3880         /* Set current_uV if wasn't done earlier in the code and if necessary */
3881         if (n_coupled > 1 && *current_uV == -1) {
3882
3883                 if (_regulator_is_enabled(rdev)) {
3884                         ret = regulator_get_voltage_rdev(rdev);
3885                         if (ret < 0)
3886                                 return ret;
3887
3888                         *current_uV = ret;
3889                 } else {
3890                         *current_uV = desired_min_uV;
3891                 }
3892         }
3893
3894         *min_uV = desired_min_uV;
3895         *max_uV = desired_max_uV;
3896
3897         return done;
3898 }
3899
3900 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3901                                  suspend_state_t state, bool skip_coupled)
3902 {
3903         struct regulator_dev **c_rdevs;
3904         struct regulator_dev *best_rdev;
3905         struct coupling_desc *c_desc = &rdev->coupling_desc;
3906         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3907         unsigned int delta, best_delta;
3908         unsigned long c_rdev_done = 0;
3909         bool best_c_rdev_done;
3910
3911         c_rdevs = c_desc->coupled_rdevs;
3912         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3913
3914         /*
3915          * Find the best possible voltage change on each loop. Leave the loop
3916          * if there isn't any possible change.
3917          */
3918         do {
3919                 best_c_rdev_done = false;
3920                 best_delta = 0;
3921                 best_min_uV = 0;
3922                 best_max_uV = 0;
3923                 best_c_rdev = 0;
3924                 best_rdev = NULL;
3925
3926                 /*
3927                  * Find highest difference between optimal voltage
3928                  * and current voltage.
3929                  */
3930                 for (i = 0; i < n_coupled; i++) {
3931                         /*
3932                          * optimal_uV is the best voltage that can be set for
3933                          * i-th regulator at the moment without violating
3934                          * max_spread constraint in order to balance
3935                          * the coupled voltages.
3936                          */
3937                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3938
3939                         if (test_bit(i, &c_rdev_done))
3940                                 continue;
3941
3942                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3943                                                             &current_uV,
3944                                                             &optimal_uV,
3945                                                             &optimal_max_uV,
3946                                                             state, n_coupled);
3947                         if (ret < 0)
3948                                 goto out;
3949
3950                         delta = abs(optimal_uV - current_uV);
3951
3952                         if (delta && best_delta <= delta) {
3953                                 best_c_rdev_done = ret;
3954                                 best_delta = delta;
3955                                 best_rdev = c_rdevs[i];
3956                                 best_min_uV = optimal_uV;
3957                                 best_max_uV = optimal_max_uV;
3958                                 best_c_rdev = i;
3959                         }
3960                 }
3961
3962                 /* Nothing to change, return successfully */
3963                 if (!best_rdev) {
3964                         ret = 0;
3965                         goto out;
3966                 }
3967
3968                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3969                                                  best_max_uV, state);
3970
3971                 if (ret < 0)
3972                         goto out;
3973
3974                 if (best_c_rdev_done)
3975                         set_bit(best_c_rdev, &c_rdev_done);
3976
3977         } while (n_coupled > 1);
3978
3979 out:
3980         return ret;
3981 }
3982
3983 static int regulator_balance_voltage(struct regulator_dev *rdev,
3984                                      suspend_state_t state)
3985 {
3986         struct coupling_desc *c_desc = &rdev->coupling_desc;
3987         struct regulator_coupler *coupler = c_desc->coupler;
3988         bool skip_coupled = false;
3989
3990         /*
3991          * If system is in a state other than PM_SUSPEND_ON, don't check
3992          * other coupled regulators.
3993          */
3994         if (state != PM_SUSPEND_ON)
3995                 skip_coupled = true;
3996
3997         if (c_desc->n_resolved < c_desc->n_coupled) {
3998                 rdev_err(rdev, "Not all coupled regulators registered\n");
3999                 return -EPERM;
4000         }
4001
4002         /* Invoke custom balancer for customized couplers */
4003         if (coupler && coupler->balance_voltage)
4004                 return coupler->balance_voltage(coupler, rdev, state);
4005
4006         return regulator_do_balance_voltage(rdev, state, skip_coupled);
4007 }
4008
4009 /**
4010  * regulator_set_voltage - set regulator output voltage
4011  * @regulator: regulator source
4012  * @min_uV: Minimum required voltage in uV
4013  * @max_uV: Maximum acceptable voltage in uV
4014  *
4015  * Sets a voltage regulator to the desired output voltage. This can be set
4016  * during any regulator state. IOW, regulator can be disabled or enabled.
4017  *
4018  * If the regulator is enabled then the voltage will change to the new value
4019  * immediately otherwise if the regulator is disabled the regulator will
4020  * output at the new voltage when enabled.
4021  *
4022  * NOTE: If the regulator is shared between several devices then the lowest
4023  * request voltage that meets the system constraints will be used.
4024  * Regulator system constraints must be set for this regulator before
4025  * calling this function otherwise this call will fail.
4026  */
4027 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4028 {
4029         struct ww_acquire_ctx ww_ctx;
4030         int ret;
4031
4032         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4033
4034         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4035                                              PM_SUSPEND_ON);
4036
4037         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4038
4039         return ret;
4040 }
4041 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4042
4043 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4044                                            suspend_state_t state, bool en)
4045 {
4046         struct regulator_state *rstate;
4047
4048         rstate = regulator_get_suspend_state(rdev, state);
4049         if (rstate == NULL)
4050                 return -EINVAL;
4051
4052         if (!rstate->changeable)
4053                 return -EPERM;
4054
4055         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4056
4057         return 0;
4058 }
4059
4060 int regulator_suspend_enable(struct regulator_dev *rdev,
4061                                     suspend_state_t state)
4062 {
4063         return regulator_suspend_toggle(rdev, state, true);
4064 }
4065 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4066
4067 int regulator_suspend_disable(struct regulator_dev *rdev,
4068                                      suspend_state_t state)
4069 {
4070         struct regulator *regulator;
4071         struct regulator_voltage *voltage;
4072
4073         /*
4074          * if any consumer wants this regulator device keeping on in
4075          * suspend states, don't set it as disabled.
4076          */
4077         list_for_each_entry(regulator, &rdev->consumer_list, list) {
4078                 voltage = &regulator->voltage[state];
4079                 if (voltage->min_uV || voltage->max_uV)
4080                         return 0;
4081         }
4082
4083         return regulator_suspend_toggle(rdev, state, false);
4084 }
4085 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4086
4087 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4088                                           int min_uV, int max_uV,
4089                                           suspend_state_t state)
4090 {
4091         struct regulator_dev *rdev = regulator->rdev;
4092         struct regulator_state *rstate;
4093
4094         rstate = regulator_get_suspend_state(rdev, state);
4095         if (rstate == NULL)
4096                 return -EINVAL;
4097
4098         if (rstate->min_uV == rstate->max_uV) {
4099                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4100                 return -EPERM;
4101         }
4102
4103         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4104 }
4105
4106 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4107                                   int max_uV, suspend_state_t state)
4108 {
4109         struct ww_acquire_ctx ww_ctx;
4110         int ret;
4111
4112         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4113         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4114                 return -EINVAL;
4115
4116         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4117
4118         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4119                                              max_uV, state);
4120
4121         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4122
4123         return ret;
4124 }
4125 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4126
4127 /**
4128  * regulator_set_voltage_time - get raise/fall time
4129  * @regulator: regulator source
4130  * @old_uV: starting voltage in microvolts
4131  * @new_uV: target voltage in microvolts
4132  *
4133  * Provided with the starting and ending voltage, this function attempts to
4134  * calculate the time in microseconds required to rise or fall to this new
4135  * voltage.
4136  */
4137 int regulator_set_voltage_time(struct regulator *regulator,
4138                                int old_uV, int new_uV)
4139 {
4140         struct regulator_dev *rdev = regulator->rdev;
4141         const struct regulator_ops *ops = rdev->desc->ops;
4142         int old_sel = -1;
4143         int new_sel = -1;
4144         int voltage;
4145         int i;
4146
4147         if (ops->set_voltage_time)
4148                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4149         else if (!ops->set_voltage_time_sel)
4150                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4151
4152         /* Currently requires operations to do this */
4153         if (!ops->list_voltage || !rdev->desc->n_voltages)
4154                 return -EINVAL;
4155
4156         for (i = 0; i < rdev->desc->n_voltages; i++) {
4157                 /* We only look for exact voltage matches here */
4158                 if (i < rdev->desc->linear_min_sel)
4159                         continue;
4160
4161                 if (old_sel >= 0 && new_sel >= 0)
4162                         break;
4163
4164                 voltage = regulator_list_voltage(regulator, i);
4165                 if (voltage < 0)
4166                         return -EINVAL;
4167                 if (voltage == 0)
4168                         continue;
4169                 if (voltage == old_uV)
4170                         old_sel = i;
4171                 if (voltage == new_uV)
4172                         new_sel = i;
4173         }
4174
4175         if (old_sel < 0 || new_sel < 0)
4176                 return -EINVAL;
4177
4178         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4179 }
4180 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4181
4182 /**
4183  * regulator_set_voltage_time_sel - get raise/fall time
4184  * @rdev: regulator source device
4185  * @old_selector: selector for starting voltage
4186  * @new_selector: selector for target voltage
4187  *
4188  * Provided with the starting and target voltage selectors, this function
4189  * returns time in microseconds required to rise or fall to this new voltage
4190  *
4191  * Drivers providing ramp_delay in regulation_constraints can use this as their
4192  * set_voltage_time_sel() operation.
4193  */
4194 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4195                                    unsigned int old_selector,
4196                                    unsigned int new_selector)
4197 {
4198         int old_volt, new_volt;
4199
4200         /* sanity check */
4201         if (!rdev->desc->ops->list_voltage)
4202                 return -EINVAL;
4203
4204         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4205         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4206
4207         if (rdev->desc->ops->set_voltage_time)
4208                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4209                                                          new_volt);
4210         else
4211                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4212 }
4213 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4214
4215 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4216 {
4217         int ret;
4218
4219         regulator_lock(rdev);
4220
4221         if (!rdev->desc->ops->set_voltage &&
4222             !rdev->desc->ops->set_voltage_sel) {
4223                 ret = -EINVAL;
4224                 goto out;
4225         }
4226
4227         /* balance only, if regulator is coupled */
4228         if (rdev->coupling_desc.n_coupled > 1)
4229                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4230         else
4231                 ret = -EOPNOTSUPP;
4232
4233 out:
4234         regulator_unlock(rdev);
4235         return ret;
4236 }
4237
4238 /**
4239  * regulator_sync_voltage - re-apply last regulator output voltage
4240  * @regulator: regulator source
4241  *
4242  * Re-apply the last configured voltage.  This is intended to be used
4243  * where some external control source the consumer is cooperating with
4244  * has caused the configured voltage to change.
4245  */
4246 int regulator_sync_voltage(struct regulator *regulator)
4247 {
4248         struct regulator_dev *rdev = regulator->rdev;
4249         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4250         int ret, min_uV, max_uV;
4251
4252         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4253                 return 0;
4254
4255         regulator_lock(rdev);
4256
4257         if (!rdev->desc->ops->set_voltage &&
4258             !rdev->desc->ops->set_voltage_sel) {
4259                 ret = -EINVAL;
4260                 goto out;
4261         }
4262
4263         /* This is only going to work if we've had a voltage configured. */
4264         if (!voltage->min_uV && !voltage->max_uV) {
4265                 ret = -EINVAL;
4266                 goto out;
4267         }
4268
4269         min_uV = voltage->min_uV;
4270         max_uV = voltage->max_uV;
4271
4272         /* This should be a paranoia check... */
4273         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4274         if (ret < 0)
4275                 goto out;
4276
4277         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4278         if (ret < 0)
4279                 goto out;
4280
4281         /* balance only, if regulator is coupled */
4282         if (rdev->coupling_desc.n_coupled > 1)
4283                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4284         else
4285                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4286
4287 out:
4288         regulator_unlock(rdev);
4289         return ret;
4290 }
4291 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4292
4293 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4294 {
4295         int sel, ret;
4296         bool bypassed;
4297
4298         if (rdev->desc->ops->get_bypass) {
4299                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4300                 if (ret < 0)
4301                         return ret;
4302                 if (bypassed) {
4303                         /* if bypassed the regulator must have a supply */
4304                         if (!rdev->supply) {
4305                                 rdev_err(rdev,
4306                                          "bypassed regulator has no supply!\n");
4307                                 return -EPROBE_DEFER;
4308                         }
4309
4310                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4311                 }
4312         }
4313
4314         if (rdev->desc->ops->get_voltage_sel) {
4315                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4316                 if (sel < 0)
4317                         return sel;
4318                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4319         } else if (rdev->desc->ops->get_voltage) {
4320                 ret = rdev->desc->ops->get_voltage(rdev);
4321         } else if (rdev->desc->ops->list_voltage) {
4322                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4323         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4324                 ret = rdev->desc->fixed_uV;
4325         } else if (rdev->supply) {
4326                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4327         } else if (rdev->supply_name) {
4328                 return -EPROBE_DEFER;
4329         } else {
4330                 return -EINVAL;
4331         }
4332
4333         if (ret < 0)
4334                 return ret;
4335         return ret - rdev->constraints->uV_offset;
4336 }
4337 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4338
4339 /**
4340  * regulator_get_voltage - get regulator output voltage
4341  * @regulator: regulator source
4342  *
4343  * This returns the current regulator voltage in uV.
4344  *
4345  * NOTE: If the regulator is disabled it will return the voltage value. This
4346  * function should not be used to determine regulator state.
4347  */
4348 int regulator_get_voltage(struct regulator *regulator)
4349 {
4350         struct ww_acquire_ctx ww_ctx;
4351         int ret;
4352
4353         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4354         ret = regulator_get_voltage_rdev(regulator->rdev);
4355         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4356
4357         return ret;
4358 }
4359 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4360
4361 /**
4362  * regulator_set_current_limit - set regulator output current limit
4363  * @regulator: regulator source
4364  * @min_uA: Minimum supported current in uA
4365  * @max_uA: Maximum supported current in uA
4366  *
4367  * Sets current sink to the desired output current. This can be set during
4368  * any regulator state. IOW, regulator can be disabled or enabled.
4369  *
4370  * If the regulator is enabled then the current will change to the new value
4371  * immediately otherwise if the regulator is disabled the regulator will
4372  * output at the new current when enabled.
4373  *
4374  * NOTE: Regulator system constraints must be set for this regulator before
4375  * calling this function otherwise this call will fail.
4376  */
4377 int regulator_set_current_limit(struct regulator *regulator,
4378                                int min_uA, int max_uA)
4379 {
4380         struct regulator_dev *rdev = regulator->rdev;
4381         int ret;
4382
4383         regulator_lock(rdev);
4384
4385         /* sanity check */
4386         if (!rdev->desc->ops->set_current_limit) {
4387                 ret = -EINVAL;
4388                 goto out;
4389         }
4390
4391         /* constraints check */
4392         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4393         if (ret < 0)
4394                 goto out;
4395
4396         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4397 out:
4398         regulator_unlock(rdev);
4399         return ret;
4400 }
4401 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4402
4403 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4404 {
4405         /* sanity check */
4406         if (!rdev->desc->ops->get_current_limit)
4407                 return -EINVAL;
4408
4409         return rdev->desc->ops->get_current_limit(rdev);
4410 }
4411
4412 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4413 {
4414         int ret;
4415
4416         regulator_lock(rdev);
4417         ret = _regulator_get_current_limit_unlocked(rdev);
4418         regulator_unlock(rdev);
4419
4420         return ret;
4421 }
4422
4423 /**
4424  * regulator_get_current_limit - get regulator output current
4425  * @regulator: regulator source
4426  *
4427  * This returns the current supplied by the specified current sink in uA.
4428  *
4429  * NOTE: If the regulator is disabled it will return the current value. This
4430  * function should not be used to determine regulator state.
4431  */
4432 int regulator_get_current_limit(struct regulator *regulator)
4433 {
4434         return _regulator_get_current_limit(regulator->rdev);
4435 }
4436 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4437
4438 /**
4439  * regulator_set_mode - set regulator operating mode
4440  * @regulator: regulator source
4441  * @mode: operating mode - one of the REGULATOR_MODE constants
4442  *
4443  * Set regulator operating mode to increase regulator efficiency or improve
4444  * regulation performance.
4445  *
4446  * NOTE: Regulator system constraints must be set for this regulator before
4447  * calling this function otherwise this call will fail.
4448  */
4449 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4450 {
4451         struct regulator_dev *rdev = regulator->rdev;
4452         int ret;
4453         int regulator_curr_mode;
4454
4455         regulator_lock(rdev);
4456
4457         /* sanity check */
4458         if (!rdev->desc->ops->set_mode) {
4459                 ret = -EINVAL;
4460                 goto out;
4461         }
4462
4463         /* return if the same mode is requested */
4464         if (rdev->desc->ops->get_mode) {
4465                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4466                 if (regulator_curr_mode == mode) {
4467                         ret = 0;
4468                         goto out;
4469                 }
4470         }
4471
4472         /* constraints check */
4473         ret = regulator_mode_constrain(rdev, &mode);
4474         if (ret < 0)
4475                 goto out;
4476
4477         ret = rdev->desc->ops->set_mode(rdev, mode);
4478 out:
4479         regulator_unlock(rdev);
4480         return ret;
4481 }
4482 EXPORT_SYMBOL_GPL(regulator_set_mode);
4483
4484 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4485 {
4486         /* sanity check */
4487         if (!rdev->desc->ops->get_mode)
4488                 return -EINVAL;
4489
4490         return rdev->desc->ops->get_mode(rdev);
4491 }
4492
4493 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4494 {
4495         int ret;
4496
4497         regulator_lock(rdev);
4498         ret = _regulator_get_mode_unlocked(rdev);
4499         regulator_unlock(rdev);
4500
4501         return ret;
4502 }
4503
4504 /**
4505  * regulator_get_mode - get regulator operating mode
4506  * @regulator: regulator source
4507  *
4508  * Get the current regulator operating mode.
4509  */
4510 unsigned int regulator_get_mode(struct regulator *regulator)
4511 {
4512         return _regulator_get_mode(regulator->rdev);
4513 }
4514 EXPORT_SYMBOL_GPL(regulator_get_mode);
4515
4516 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4517 {
4518         int ret = 0;
4519
4520         if (rdev->use_cached_err) {
4521                 spin_lock(&rdev->err_lock);
4522                 ret = rdev->cached_err;
4523                 spin_unlock(&rdev->err_lock);
4524         }
4525         return ret;
4526 }
4527
4528 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4529                                         unsigned int *flags)
4530 {
4531         int cached_flags, ret = 0;
4532
4533         regulator_lock(rdev);
4534
4535         cached_flags = rdev_get_cached_err_flags(rdev);
4536
4537         if (rdev->desc->ops->get_error_flags)
4538                 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4539         else if (!rdev->use_cached_err)
4540                 ret = -EINVAL;
4541
4542         *flags |= cached_flags;
4543
4544         regulator_unlock(rdev);
4545
4546         return ret;
4547 }
4548
4549 /**
4550  * regulator_get_error_flags - get regulator error information
4551  * @regulator: regulator source
4552  * @flags: pointer to store error flags
4553  *
4554  * Get the current regulator error information.
4555  */
4556 int regulator_get_error_flags(struct regulator *regulator,
4557                                 unsigned int *flags)
4558 {
4559         return _regulator_get_error_flags(regulator->rdev, flags);
4560 }
4561 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4562
4563 /**
4564  * regulator_set_load - set regulator load
4565  * @regulator: regulator source
4566  * @uA_load: load current
4567  *
4568  * Notifies the regulator core of a new device load. This is then used by
4569  * DRMS (if enabled by constraints) to set the most efficient regulator
4570  * operating mode for the new regulator loading.
4571  *
4572  * Consumer devices notify their supply regulator of the maximum power
4573  * they will require (can be taken from device datasheet in the power
4574  * consumption tables) when they change operational status and hence power
4575  * state. Examples of operational state changes that can affect power
4576  * consumption are :-
4577  *
4578  *    o Device is opened / closed.
4579  *    o Device I/O is about to begin or has just finished.
4580  *    o Device is idling in between work.
4581  *
4582  * This information is also exported via sysfs to userspace.
4583  *
4584  * DRMS will sum the total requested load on the regulator and change
4585  * to the most efficient operating mode if platform constraints allow.
4586  *
4587  * NOTE: when a regulator consumer requests to have a regulator
4588  * disabled then any load that consumer requested no longer counts
4589  * toward the total requested load.  If the regulator is re-enabled
4590  * then the previously requested load will start counting again.
4591  *
4592  * If a regulator is an always-on regulator then an individual consumer's
4593  * load will still be removed if that consumer is fully disabled.
4594  *
4595  * On error a negative errno is returned.
4596  */
4597 int regulator_set_load(struct regulator *regulator, int uA_load)
4598 {
4599         struct regulator_dev *rdev = regulator->rdev;
4600         int old_uA_load;
4601         int ret = 0;
4602
4603         regulator_lock(rdev);
4604         old_uA_load = regulator->uA_load;
4605         regulator->uA_load = uA_load;
4606         if (regulator->enable_count && old_uA_load != uA_load) {
4607                 ret = drms_uA_update(rdev);
4608                 if (ret < 0)
4609                         regulator->uA_load = old_uA_load;
4610         }
4611         regulator_unlock(rdev);
4612
4613         return ret;
4614 }
4615 EXPORT_SYMBOL_GPL(regulator_set_load);
4616
4617 /**
4618  * regulator_allow_bypass - allow the regulator to go into bypass mode
4619  *
4620  * @regulator: Regulator to configure
4621  * @enable: enable or disable bypass mode
4622  *
4623  * Allow the regulator to go into bypass mode if all other consumers
4624  * for the regulator also enable bypass mode and the machine
4625  * constraints allow this.  Bypass mode means that the regulator is
4626  * simply passing the input directly to the output with no regulation.
4627  */
4628 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4629 {
4630         struct regulator_dev *rdev = regulator->rdev;
4631         const char *name = rdev_get_name(rdev);
4632         int ret = 0;
4633
4634         if (!rdev->desc->ops->set_bypass)
4635                 return 0;
4636
4637         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4638                 return 0;
4639
4640         regulator_lock(rdev);
4641
4642         if (enable && !regulator->bypass) {
4643                 rdev->bypass_count++;
4644
4645                 if (rdev->bypass_count == rdev->open_count) {
4646                         trace_regulator_bypass_enable(name);
4647
4648                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4649                         if (ret != 0)
4650                                 rdev->bypass_count--;
4651                         else
4652                                 trace_regulator_bypass_enable_complete(name);
4653                 }
4654
4655         } else if (!enable && regulator->bypass) {
4656                 rdev->bypass_count--;
4657
4658                 if (rdev->bypass_count != rdev->open_count) {
4659                         trace_regulator_bypass_disable(name);
4660
4661                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4662                         if (ret != 0)
4663                                 rdev->bypass_count++;
4664                         else
4665                                 trace_regulator_bypass_disable_complete(name);
4666                 }
4667         }
4668
4669         if (ret == 0)
4670                 regulator->bypass = enable;
4671
4672         regulator_unlock(rdev);
4673
4674         return ret;
4675 }
4676 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4677
4678 /**
4679  * regulator_register_notifier - register regulator event notifier
4680  * @regulator: regulator source
4681  * @nb: notifier block
4682  *
4683  * Register notifier block to receive regulator events.
4684  */
4685 int regulator_register_notifier(struct regulator *regulator,
4686                               struct notifier_block *nb)
4687 {
4688         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4689                                                 nb);
4690 }
4691 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4692
4693 /**
4694  * regulator_unregister_notifier - unregister regulator event notifier
4695  * @regulator: regulator source
4696  * @nb: notifier block
4697  *
4698  * Unregister regulator event notifier block.
4699  */
4700 int regulator_unregister_notifier(struct regulator *regulator,
4701                                 struct notifier_block *nb)
4702 {
4703         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4704                                                   nb);
4705 }
4706 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4707
4708 /* notify regulator consumers and downstream regulator consumers.
4709  * Note mutex must be held by caller.
4710  */
4711 static int _notifier_call_chain(struct regulator_dev *rdev,
4712                                   unsigned long event, void *data)
4713 {
4714         /* call rdev chain first */
4715         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4716 }
4717
4718 /**
4719  * regulator_bulk_get - get multiple regulator consumers
4720  *
4721  * @dev:           Device to supply
4722  * @num_consumers: Number of consumers to register
4723  * @consumers:     Configuration of consumers; clients are stored here.
4724  *
4725  * @return 0 on success, an errno on failure.
4726  *
4727  * This helper function allows drivers to get several regulator
4728  * consumers in one operation.  If any of the regulators cannot be
4729  * acquired then any regulators that were allocated will be freed
4730  * before returning to the caller.
4731  */
4732 int regulator_bulk_get(struct device *dev, int num_consumers,
4733                        struct regulator_bulk_data *consumers)
4734 {
4735         int i;
4736         int ret;
4737
4738         for (i = 0; i < num_consumers; i++)
4739                 consumers[i].consumer = NULL;
4740
4741         for (i = 0; i < num_consumers; i++) {
4742                 consumers[i].consumer = regulator_get(dev,
4743                                                       consumers[i].supply);
4744                 if (IS_ERR(consumers[i].consumer)) {
4745                         ret = PTR_ERR(consumers[i].consumer);
4746                         consumers[i].consumer = NULL;
4747                         goto err;
4748                 }
4749         }
4750
4751         return 0;
4752
4753 err:
4754         if (ret != -EPROBE_DEFER)
4755                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4756                         consumers[i].supply, ERR_PTR(ret));
4757         else
4758                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4759                         consumers[i].supply);
4760
4761         while (--i >= 0)
4762                 regulator_put(consumers[i].consumer);
4763
4764         return ret;
4765 }
4766 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4767
4768 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4769 {
4770         struct regulator_bulk_data *bulk = data;
4771
4772         bulk->ret = regulator_enable(bulk->consumer);
4773 }
4774
4775 /**
4776  * regulator_bulk_enable - enable multiple regulator consumers
4777  *
4778  * @num_consumers: Number of consumers
4779  * @consumers:     Consumer data; clients are stored here.
4780  * @return         0 on success, an errno on failure
4781  *
4782  * This convenience API allows consumers to enable multiple regulator
4783  * clients in a single API call.  If any consumers cannot be enabled
4784  * then any others that were enabled will be disabled again prior to
4785  * return.
4786  */
4787 int regulator_bulk_enable(int num_consumers,
4788                           struct regulator_bulk_data *consumers)
4789 {
4790         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4791         int i;
4792         int ret = 0;
4793
4794         for (i = 0; i < num_consumers; i++) {
4795                 async_schedule_domain(regulator_bulk_enable_async,
4796                                       &consumers[i], &async_domain);
4797         }
4798
4799         async_synchronize_full_domain(&async_domain);
4800
4801         /* If any consumer failed we need to unwind any that succeeded */
4802         for (i = 0; i < num_consumers; i++) {
4803                 if (consumers[i].ret != 0) {
4804                         ret = consumers[i].ret;
4805                         goto err;
4806                 }
4807         }
4808
4809         return 0;
4810
4811 err:
4812         for (i = 0; i < num_consumers; i++) {
4813                 if (consumers[i].ret < 0)
4814                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4815                                ERR_PTR(consumers[i].ret));
4816                 else
4817                         regulator_disable(consumers[i].consumer);
4818         }
4819
4820         return ret;
4821 }
4822 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4823
4824 /**
4825  * regulator_bulk_disable - disable multiple regulator consumers
4826  *
4827  * @num_consumers: Number of consumers
4828  * @consumers:     Consumer data; clients are stored here.
4829  * @return         0 on success, an errno on failure
4830  *
4831  * This convenience API allows consumers to disable multiple regulator
4832  * clients in a single API call.  If any consumers cannot be disabled
4833  * then any others that were disabled will be enabled again prior to
4834  * return.
4835  */
4836 int regulator_bulk_disable(int num_consumers,
4837                            struct regulator_bulk_data *consumers)
4838 {
4839         int i;
4840         int ret, r;
4841
4842         for (i = num_consumers - 1; i >= 0; --i) {
4843                 ret = regulator_disable(consumers[i].consumer);
4844                 if (ret != 0)
4845                         goto err;
4846         }
4847
4848         return 0;
4849
4850 err:
4851         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4852         for (++i; i < num_consumers; ++i) {
4853                 r = regulator_enable(consumers[i].consumer);
4854                 if (r != 0)
4855                         pr_err("Failed to re-enable %s: %pe\n",
4856                                consumers[i].supply, ERR_PTR(r));
4857         }
4858
4859         return ret;
4860 }
4861 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4862
4863 /**
4864  * regulator_bulk_force_disable - force disable multiple regulator consumers
4865  *
4866  * @num_consumers: Number of consumers
4867  * @consumers:     Consumer data; clients are stored here.
4868  * @return         0 on success, an errno on failure
4869  *
4870  * This convenience API allows consumers to forcibly disable multiple regulator
4871  * clients in a single API call.
4872  * NOTE: This should be used for situations when device damage will
4873  * likely occur if the regulators are not disabled (e.g. over temp).
4874  * Although regulator_force_disable function call for some consumers can
4875  * return error numbers, the function is called for all consumers.
4876  */
4877 int regulator_bulk_force_disable(int num_consumers,
4878                            struct regulator_bulk_data *consumers)
4879 {
4880         int i;
4881         int ret = 0;
4882
4883         for (i = 0; i < num_consumers; i++) {
4884                 consumers[i].ret =
4885                             regulator_force_disable(consumers[i].consumer);
4886
4887                 /* Store first error for reporting */
4888                 if (consumers[i].ret && !ret)
4889                         ret = consumers[i].ret;
4890         }
4891
4892         return ret;
4893 }
4894 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4895
4896 /**
4897  * regulator_bulk_free - free multiple regulator consumers
4898  *
4899  * @num_consumers: Number of consumers
4900  * @consumers:     Consumer data; clients are stored here.
4901  *
4902  * This convenience API allows consumers to free multiple regulator
4903  * clients in a single API call.
4904  */
4905 void regulator_bulk_free(int num_consumers,
4906                          struct regulator_bulk_data *consumers)
4907 {
4908         int i;
4909
4910         for (i = 0; i < num_consumers; i++) {
4911                 regulator_put(consumers[i].consumer);
4912                 consumers[i].consumer = NULL;
4913         }
4914 }
4915 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4916
4917 /**
4918  * regulator_notifier_call_chain - call regulator event notifier
4919  * @rdev: regulator source
4920  * @event: notifier block
4921  * @data: callback-specific data.
4922  *
4923  * Called by regulator drivers to notify clients a regulator event has
4924  * occurred.
4925  */
4926 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4927                                   unsigned long event, void *data)
4928 {
4929         _notifier_call_chain(rdev, event, data);
4930         return NOTIFY_DONE;
4931
4932 }
4933 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4934
4935 /**
4936  * regulator_mode_to_status - convert a regulator mode into a status
4937  *
4938  * @mode: Mode to convert
4939  *
4940  * Convert a regulator mode into a status.
4941  */
4942 int regulator_mode_to_status(unsigned int mode)
4943 {
4944         switch (mode) {
4945         case REGULATOR_MODE_FAST:
4946                 return REGULATOR_STATUS_FAST;
4947         case REGULATOR_MODE_NORMAL:
4948                 return REGULATOR_STATUS_NORMAL;
4949         case REGULATOR_MODE_IDLE:
4950                 return REGULATOR_STATUS_IDLE;
4951         case REGULATOR_MODE_STANDBY:
4952                 return REGULATOR_STATUS_STANDBY;
4953         default:
4954                 return REGULATOR_STATUS_UNDEFINED;
4955         }
4956 }
4957 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4958
4959 static struct attribute *regulator_dev_attrs[] = {
4960         &dev_attr_name.attr,
4961         &dev_attr_num_users.attr,
4962         &dev_attr_type.attr,
4963         &dev_attr_microvolts.attr,
4964         &dev_attr_microamps.attr,
4965         &dev_attr_opmode.attr,
4966         &dev_attr_state.attr,
4967         &dev_attr_status.attr,
4968         &dev_attr_bypass.attr,
4969         &dev_attr_requested_microamps.attr,
4970         &dev_attr_min_microvolts.attr,
4971         &dev_attr_max_microvolts.attr,
4972         &dev_attr_min_microamps.attr,
4973         &dev_attr_max_microamps.attr,
4974         &dev_attr_suspend_standby_state.attr,
4975         &dev_attr_suspend_mem_state.attr,
4976         &dev_attr_suspend_disk_state.attr,
4977         &dev_attr_suspend_standby_microvolts.attr,
4978         &dev_attr_suspend_mem_microvolts.attr,
4979         &dev_attr_suspend_disk_microvolts.attr,
4980         &dev_attr_suspend_standby_mode.attr,
4981         &dev_attr_suspend_mem_mode.attr,
4982         &dev_attr_suspend_disk_mode.attr,
4983         NULL
4984 };
4985
4986 /*
4987  * To avoid cluttering sysfs (and memory) with useless state, only
4988  * create attributes that can be meaningfully displayed.
4989  */
4990 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4991                                          struct attribute *attr, int idx)
4992 {
4993         struct device *dev = kobj_to_dev(kobj);
4994         struct regulator_dev *rdev = dev_to_rdev(dev);
4995         const struct regulator_ops *ops = rdev->desc->ops;
4996         umode_t mode = attr->mode;
4997
4998         /* these three are always present */
4999         if (attr == &dev_attr_name.attr ||
5000             attr == &dev_attr_num_users.attr ||
5001             attr == &dev_attr_type.attr)
5002                 return mode;
5003
5004         /* some attributes need specific methods to be displayed */
5005         if (attr == &dev_attr_microvolts.attr) {
5006                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5007                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5008                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5009                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5010                         return mode;
5011                 return 0;
5012         }
5013
5014         if (attr == &dev_attr_microamps.attr)
5015                 return ops->get_current_limit ? mode : 0;
5016
5017         if (attr == &dev_attr_opmode.attr)
5018                 return ops->get_mode ? mode : 0;
5019
5020         if (attr == &dev_attr_state.attr)
5021                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5022
5023         if (attr == &dev_attr_status.attr)
5024                 return ops->get_status ? mode : 0;
5025
5026         if (attr == &dev_attr_bypass.attr)
5027                 return ops->get_bypass ? mode : 0;
5028
5029         /* constraints need specific supporting methods */
5030         if (attr == &dev_attr_min_microvolts.attr ||
5031             attr == &dev_attr_max_microvolts.attr)
5032                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5033
5034         if (attr == &dev_attr_min_microamps.attr ||
5035             attr == &dev_attr_max_microamps.attr)
5036                 return ops->set_current_limit ? mode : 0;
5037
5038         if (attr == &dev_attr_suspend_standby_state.attr ||
5039             attr == &dev_attr_suspend_mem_state.attr ||
5040             attr == &dev_attr_suspend_disk_state.attr)
5041                 return mode;
5042
5043         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5044             attr == &dev_attr_suspend_mem_microvolts.attr ||
5045             attr == &dev_attr_suspend_disk_microvolts.attr)
5046                 return ops->set_suspend_voltage ? mode : 0;
5047
5048         if (attr == &dev_attr_suspend_standby_mode.attr ||
5049             attr == &dev_attr_suspend_mem_mode.attr ||
5050             attr == &dev_attr_suspend_disk_mode.attr)
5051                 return ops->set_suspend_mode ? mode : 0;
5052
5053         return mode;
5054 }
5055
5056 static const struct attribute_group regulator_dev_group = {
5057         .attrs = regulator_dev_attrs,
5058         .is_visible = regulator_attr_is_visible,
5059 };
5060
5061 static const struct attribute_group *regulator_dev_groups[] = {
5062         &regulator_dev_group,
5063         NULL
5064 };
5065
5066 static void regulator_dev_release(struct device *dev)
5067 {
5068         struct regulator_dev *rdev = dev_get_drvdata(dev);
5069
5070         kfree(rdev->constraints);
5071         of_node_put(rdev->dev.of_node);
5072         kfree(rdev);
5073 }
5074
5075 static void rdev_init_debugfs(struct regulator_dev *rdev)
5076 {
5077         struct device *parent = rdev->dev.parent;
5078         const char *rname = rdev_get_name(rdev);
5079         char name[NAME_MAX];
5080
5081         /* Avoid duplicate debugfs directory names */
5082         if (parent && rname == rdev->desc->name) {
5083                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5084                          rname);
5085                 rname = name;
5086         }
5087
5088         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5089         if (!rdev->debugfs) {
5090                 rdev_warn(rdev, "Failed to create debugfs directory\n");
5091                 return;
5092         }
5093
5094         debugfs_create_u32("use_count", 0444, rdev->debugfs,
5095                            &rdev->use_count);
5096         debugfs_create_u32("open_count", 0444, rdev->debugfs,
5097                            &rdev->open_count);
5098         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5099                            &rdev->bypass_count);
5100 }
5101
5102 static int regulator_register_resolve_supply(struct device *dev, void *data)
5103 {
5104         struct regulator_dev *rdev = dev_to_rdev(dev);
5105
5106         if (regulator_resolve_supply(rdev))
5107                 rdev_dbg(rdev, "unable to resolve supply\n");
5108
5109         return 0;
5110 }
5111
5112 int regulator_coupler_register(struct regulator_coupler *coupler)
5113 {
5114         mutex_lock(&regulator_list_mutex);
5115         list_add_tail(&coupler->list, &regulator_coupler_list);
5116         mutex_unlock(&regulator_list_mutex);
5117
5118         return 0;
5119 }
5120
5121 static struct regulator_coupler *
5122 regulator_find_coupler(struct regulator_dev *rdev)
5123 {
5124         struct regulator_coupler *coupler;
5125         int err;
5126
5127         /*
5128          * Note that regulators are appended to the list and the generic
5129          * coupler is registered first, hence it will be attached at last
5130          * if nobody cared.
5131          */
5132         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5133                 err = coupler->attach_regulator(coupler, rdev);
5134                 if (!err) {
5135                         if (!coupler->balance_voltage &&
5136                             rdev->coupling_desc.n_coupled > 2)
5137                                 goto err_unsupported;
5138
5139                         return coupler;
5140                 }
5141
5142                 if (err < 0)
5143                         return ERR_PTR(err);
5144
5145                 if (err == 1)
5146                         continue;
5147
5148                 break;
5149         }
5150
5151         return ERR_PTR(-EINVAL);
5152
5153 err_unsupported:
5154         if (coupler->detach_regulator)
5155                 coupler->detach_regulator(coupler, rdev);
5156
5157         rdev_err(rdev,
5158                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5159
5160         return ERR_PTR(-EPERM);
5161 }
5162
5163 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5164 {
5165         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5166         struct coupling_desc *c_desc = &rdev->coupling_desc;
5167         int n_coupled = c_desc->n_coupled;
5168         struct regulator_dev *c_rdev;
5169         int i;
5170
5171         for (i = 1; i < n_coupled; i++) {
5172                 /* already resolved */
5173                 if (c_desc->coupled_rdevs[i])
5174                         continue;
5175
5176                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5177
5178                 if (!c_rdev)
5179                         continue;
5180
5181                 if (c_rdev->coupling_desc.coupler != coupler) {
5182                         rdev_err(rdev, "coupler mismatch with %s\n",
5183                                  rdev_get_name(c_rdev));
5184                         return;
5185                 }
5186
5187                 c_desc->coupled_rdevs[i] = c_rdev;
5188                 c_desc->n_resolved++;
5189
5190                 regulator_resolve_coupling(c_rdev);
5191         }
5192 }
5193
5194 static void regulator_remove_coupling(struct regulator_dev *rdev)
5195 {
5196         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5197         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5198         struct regulator_dev *__c_rdev, *c_rdev;
5199         unsigned int __n_coupled, n_coupled;
5200         int i, k;
5201         int err;
5202
5203         n_coupled = c_desc->n_coupled;
5204
5205         for (i = 1; i < n_coupled; i++) {
5206                 c_rdev = c_desc->coupled_rdevs[i];
5207
5208                 if (!c_rdev)
5209                         continue;
5210
5211                 regulator_lock(c_rdev);
5212
5213                 __c_desc = &c_rdev->coupling_desc;
5214                 __n_coupled = __c_desc->n_coupled;
5215
5216                 for (k = 1; k < __n_coupled; k++) {
5217                         __c_rdev = __c_desc->coupled_rdevs[k];
5218
5219                         if (__c_rdev == rdev) {
5220                                 __c_desc->coupled_rdevs[k] = NULL;
5221                                 __c_desc->n_resolved--;
5222                                 break;
5223                         }
5224                 }
5225
5226                 regulator_unlock(c_rdev);
5227
5228                 c_desc->coupled_rdevs[i] = NULL;
5229                 c_desc->n_resolved--;
5230         }
5231
5232         if (coupler && coupler->detach_regulator) {
5233                 err = coupler->detach_regulator(coupler, rdev);
5234                 if (err)
5235                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5236                                  ERR_PTR(err));
5237         }
5238
5239         kfree(rdev->coupling_desc.coupled_rdevs);
5240         rdev->coupling_desc.coupled_rdevs = NULL;
5241 }
5242
5243 static int regulator_init_coupling(struct regulator_dev *rdev)
5244 {
5245         struct regulator_dev **coupled;
5246         int err, n_phandles;
5247
5248         if (!IS_ENABLED(CONFIG_OF))
5249                 n_phandles = 0;
5250         else
5251                 n_phandles = of_get_n_coupled(rdev);
5252
5253         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5254         if (!coupled)
5255                 return -ENOMEM;
5256
5257         rdev->coupling_desc.coupled_rdevs = coupled;
5258
5259         /*
5260          * Every regulator should always have coupling descriptor filled with
5261          * at least pointer to itself.
5262          */
5263         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5264         rdev->coupling_desc.n_coupled = n_phandles + 1;
5265         rdev->coupling_desc.n_resolved++;
5266
5267         /* regulator isn't coupled */
5268         if (n_phandles == 0)
5269                 return 0;
5270
5271         if (!of_check_coupling_data(rdev))
5272                 return -EPERM;
5273
5274         mutex_lock(&regulator_list_mutex);
5275         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5276         mutex_unlock(&regulator_list_mutex);
5277
5278         if (IS_ERR(rdev->coupling_desc.coupler)) {
5279                 err = PTR_ERR(rdev->coupling_desc.coupler);
5280                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5281                 return err;
5282         }
5283
5284         return 0;
5285 }
5286
5287 static int generic_coupler_attach(struct regulator_coupler *coupler,
5288                                   struct regulator_dev *rdev)
5289 {
5290         if (rdev->coupling_desc.n_coupled > 2) {
5291                 rdev_err(rdev,
5292                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5293                 return -EPERM;
5294         }
5295
5296         if (!rdev->constraints->always_on) {
5297                 rdev_err(rdev,
5298                          "Coupling of a non always-on regulator is unimplemented\n");
5299                 return -ENOTSUPP;
5300         }
5301
5302         return 0;
5303 }
5304
5305 static struct regulator_coupler generic_regulator_coupler = {
5306         .attach_regulator = generic_coupler_attach,
5307 };
5308
5309 /**
5310  * regulator_register - register regulator
5311  * @regulator_desc: regulator to register
5312  * @cfg: runtime configuration for regulator
5313  *
5314  * Called by regulator drivers to register a regulator.
5315  * Returns a valid pointer to struct regulator_dev on success
5316  * or an ERR_PTR() on error.
5317  */
5318 struct regulator_dev *
5319 regulator_register(const struct regulator_desc *regulator_desc,
5320                    const struct regulator_config *cfg)
5321 {
5322         const struct regulator_init_data *init_data;
5323         struct regulator_config *config = NULL;
5324         static atomic_t regulator_no = ATOMIC_INIT(-1);
5325         struct regulator_dev *rdev;
5326         bool dangling_cfg_gpiod = false;
5327         bool dangling_of_gpiod = false;
5328         struct device *dev;
5329         int ret, i;
5330
5331         if (cfg == NULL)
5332                 return ERR_PTR(-EINVAL);
5333         if (cfg->ena_gpiod)
5334                 dangling_cfg_gpiod = true;
5335         if (regulator_desc == NULL) {
5336                 ret = -EINVAL;
5337                 goto rinse;
5338         }
5339
5340         dev = cfg->dev;
5341         WARN_ON(!dev);
5342
5343         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5344                 ret = -EINVAL;
5345                 goto rinse;
5346         }
5347
5348         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5349             regulator_desc->type != REGULATOR_CURRENT) {
5350                 ret = -EINVAL;
5351                 goto rinse;
5352         }
5353
5354         /* Only one of each should be implemented */
5355         WARN_ON(regulator_desc->ops->get_voltage &&
5356                 regulator_desc->ops->get_voltage_sel);
5357         WARN_ON(regulator_desc->ops->set_voltage &&
5358                 regulator_desc->ops->set_voltage_sel);
5359
5360         /* If we're using selectors we must implement list_voltage. */
5361         if (regulator_desc->ops->get_voltage_sel &&
5362             !regulator_desc->ops->list_voltage) {
5363                 ret = -EINVAL;
5364                 goto rinse;
5365         }
5366         if (regulator_desc->ops->set_voltage_sel &&
5367             !regulator_desc->ops->list_voltage) {
5368                 ret = -EINVAL;
5369                 goto rinse;
5370         }
5371
5372         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5373         if (rdev == NULL) {
5374                 ret = -ENOMEM;
5375                 goto rinse;
5376         }
5377         device_initialize(&rdev->dev);
5378         spin_lock_init(&rdev->err_lock);
5379
5380         /*
5381          * Duplicate the config so the driver could override it after
5382          * parsing init data.
5383          */
5384         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5385         if (config == NULL) {
5386                 ret = -ENOMEM;
5387                 goto clean;
5388         }
5389
5390         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5391                                                &rdev->dev.of_node);
5392
5393         /*
5394          * Sometimes not all resources are probed already so we need to take
5395          * that into account. This happens most the time if the ena_gpiod comes
5396          * from a gpio extender or something else.
5397          */
5398         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5399                 ret = -EPROBE_DEFER;
5400                 goto clean;
5401         }
5402
5403         /*
5404          * We need to keep track of any GPIO descriptor coming from the
5405          * device tree until we have handled it over to the core. If the
5406          * config that was passed in to this function DOES NOT contain
5407          * a descriptor, and the config after this call DOES contain
5408          * a descriptor, we definitely got one from parsing the device
5409          * tree.
5410          */
5411         if (!cfg->ena_gpiod && config->ena_gpiod)
5412                 dangling_of_gpiod = true;
5413         if (!init_data) {
5414                 init_data = config->init_data;
5415                 rdev->dev.of_node = of_node_get(config->of_node);
5416         }
5417
5418         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5419         rdev->reg_data = config->driver_data;
5420         rdev->owner = regulator_desc->owner;
5421         rdev->desc = regulator_desc;
5422         if (config->regmap)
5423                 rdev->regmap = config->regmap;
5424         else if (dev_get_regmap(dev, NULL))
5425                 rdev->regmap = dev_get_regmap(dev, NULL);
5426         else if (dev->parent)
5427                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5428         INIT_LIST_HEAD(&rdev->consumer_list);
5429         INIT_LIST_HEAD(&rdev->list);
5430         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5431         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5432
5433         /* preform any regulator specific init */
5434         if (init_data && init_data->regulator_init) {
5435                 ret = init_data->regulator_init(rdev->reg_data);
5436                 if (ret < 0)
5437                         goto clean;
5438         }
5439
5440         if (config->ena_gpiod) {
5441                 ret = regulator_ena_gpio_request(rdev, config);
5442                 if (ret != 0) {
5443                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5444                                  ERR_PTR(ret));
5445                         goto clean;
5446                 }
5447                 /* The regulator core took over the GPIO descriptor */
5448                 dangling_cfg_gpiod = false;
5449                 dangling_of_gpiod = false;
5450         }
5451
5452         /* register with sysfs */
5453         rdev->dev.class = &regulator_class;
5454         rdev->dev.parent = dev;
5455         dev_set_name(&rdev->dev, "regulator.%lu",
5456                     (unsigned long) atomic_inc_return(&regulator_no));
5457         dev_set_drvdata(&rdev->dev, rdev);
5458
5459         /* set regulator constraints */
5460         if (init_data)
5461                 rdev->constraints = kmemdup(&init_data->constraints,
5462                                             sizeof(*rdev->constraints),
5463                                             GFP_KERNEL);
5464         else
5465                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5466                                             GFP_KERNEL);
5467         if (!rdev->constraints) {
5468                 ret = -ENOMEM;
5469                 goto wash;
5470         }
5471
5472         if (init_data && init_data->supply_regulator)
5473                 rdev->supply_name = init_data->supply_regulator;
5474         else if (regulator_desc->supply_name)
5475                 rdev->supply_name = regulator_desc->supply_name;
5476
5477         ret = set_machine_constraints(rdev);
5478         if (ret == -EPROBE_DEFER) {
5479                 /* Regulator might be in bypass mode and so needs its supply
5480                  * to set the constraints
5481                  */
5482                 /* FIXME: this currently triggers a chicken-and-egg problem
5483                  * when creating -SUPPLY symlink in sysfs to a regulator
5484                  * that is just being created
5485                  */
5486                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5487                          rdev->supply_name);
5488                 ret = regulator_resolve_supply(rdev);
5489                 if (!ret)
5490                         ret = set_machine_constraints(rdev);
5491                 else
5492                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5493                                  ERR_PTR(ret));
5494         }
5495         if (ret < 0)
5496                 goto wash;
5497
5498         ret = regulator_init_coupling(rdev);
5499         if (ret < 0)
5500                 goto wash;
5501
5502         /* add consumers devices */
5503         if (init_data) {
5504                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5505                         ret = set_consumer_device_supply(rdev,
5506                                 init_data->consumer_supplies[i].dev_name,
5507                                 init_data->consumer_supplies[i].supply);
5508                         if (ret < 0) {
5509                                 dev_err(dev, "Failed to set supply %s\n",
5510                                         init_data->consumer_supplies[i].supply);
5511                                 goto unset_supplies;
5512                         }
5513                 }
5514         }
5515
5516         if (!rdev->desc->ops->get_voltage &&
5517             !rdev->desc->ops->list_voltage &&
5518             !rdev->desc->fixed_uV)
5519                 rdev->is_switch = true;
5520
5521         ret = device_add(&rdev->dev);
5522         if (ret != 0)
5523                 goto unset_supplies;
5524
5525         rdev_init_debugfs(rdev);
5526
5527         /* try to resolve regulators coupling since a new one was registered */
5528         mutex_lock(&regulator_list_mutex);
5529         regulator_resolve_coupling(rdev);
5530         mutex_unlock(&regulator_list_mutex);
5531
5532         /* try to resolve regulators supply since a new one was registered */
5533         class_for_each_device(&regulator_class, NULL, NULL,
5534                               regulator_register_resolve_supply);
5535         kfree(config);
5536         return rdev;
5537
5538 unset_supplies:
5539         mutex_lock(&regulator_list_mutex);
5540         unset_regulator_supplies(rdev);
5541         regulator_remove_coupling(rdev);
5542         mutex_unlock(&regulator_list_mutex);
5543 wash:
5544         kfree(rdev->coupling_desc.coupled_rdevs);
5545         mutex_lock(&regulator_list_mutex);
5546         regulator_ena_gpio_free(rdev);
5547         mutex_unlock(&regulator_list_mutex);
5548 clean:
5549         if (dangling_of_gpiod)
5550                 gpiod_put(config->ena_gpiod);
5551         kfree(config);
5552         put_device(&rdev->dev);
5553 rinse:
5554         if (dangling_cfg_gpiod)
5555                 gpiod_put(cfg->ena_gpiod);
5556         return ERR_PTR(ret);
5557 }
5558 EXPORT_SYMBOL_GPL(regulator_register);
5559
5560 /**
5561  * regulator_unregister - unregister regulator
5562  * @rdev: regulator to unregister
5563  *
5564  * Called by regulator drivers to unregister a regulator.
5565  */
5566 void regulator_unregister(struct regulator_dev *rdev)
5567 {
5568         if (rdev == NULL)
5569                 return;
5570
5571         if (rdev->supply) {
5572                 while (rdev->use_count--)
5573                         regulator_disable(rdev->supply);
5574                 regulator_put(rdev->supply);
5575         }
5576
5577         flush_work(&rdev->disable_work.work);
5578
5579         mutex_lock(&regulator_list_mutex);
5580
5581         debugfs_remove_recursive(rdev->debugfs);
5582         WARN_ON(rdev->open_count);
5583         regulator_remove_coupling(rdev);
5584         unset_regulator_supplies(rdev);
5585         list_del(&rdev->list);
5586         regulator_ena_gpio_free(rdev);
5587         device_unregister(&rdev->dev);
5588
5589         mutex_unlock(&regulator_list_mutex);
5590 }
5591 EXPORT_SYMBOL_GPL(regulator_unregister);
5592
5593 #ifdef CONFIG_SUSPEND
5594 /**
5595  * regulator_suspend - prepare regulators for system wide suspend
5596  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5597  *
5598  * Configure each regulator with it's suspend operating parameters for state.
5599  */
5600 static int regulator_suspend(struct device *dev)
5601 {
5602         struct regulator_dev *rdev = dev_to_rdev(dev);
5603         suspend_state_t state = pm_suspend_target_state;
5604         int ret;
5605         const struct regulator_state *rstate;
5606
5607         rstate = regulator_get_suspend_state_check(rdev, state);
5608         if (!rstate)
5609                 return 0;
5610
5611         regulator_lock(rdev);
5612         ret = __suspend_set_state(rdev, rstate);
5613         regulator_unlock(rdev);
5614
5615         return ret;
5616 }
5617
5618 static int regulator_resume(struct device *dev)
5619 {
5620         suspend_state_t state = pm_suspend_target_state;
5621         struct regulator_dev *rdev = dev_to_rdev(dev);
5622         struct regulator_state *rstate;
5623         int ret = 0;
5624
5625         rstate = regulator_get_suspend_state(rdev, state);
5626         if (rstate == NULL)
5627                 return 0;
5628
5629         /* Avoid grabbing the lock if we don't need to */
5630         if (!rdev->desc->ops->resume)
5631                 return 0;
5632
5633         regulator_lock(rdev);
5634
5635         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5636             rstate->enabled == DISABLE_IN_SUSPEND)
5637                 ret = rdev->desc->ops->resume(rdev);
5638
5639         regulator_unlock(rdev);
5640
5641         return ret;
5642 }
5643 #else /* !CONFIG_SUSPEND */
5644
5645 #define regulator_suspend       NULL
5646 #define regulator_resume        NULL
5647
5648 #endif /* !CONFIG_SUSPEND */
5649
5650 #ifdef CONFIG_PM
5651 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5652         .suspend        = regulator_suspend,
5653         .resume         = regulator_resume,
5654 };
5655 #endif
5656
5657 struct class regulator_class = {
5658         .name = "regulator",
5659         .dev_release = regulator_dev_release,
5660         .dev_groups = regulator_dev_groups,
5661 #ifdef CONFIG_PM
5662         .pm = &regulator_pm_ops,
5663 #endif
5664 };
5665 /**
5666  * regulator_has_full_constraints - the system has fully specified constraints
5667  *
5668  * Calling this function will cause the regulator API to disable all
5669  * regulators which have a zero use count and don't have an always_on
5670  * constraint in a late_initcall.
5671  *
5672  * The intention is that this will become the default behaviour in a
5673  * future kernel release so users are encouraged to use this facility
5674  * now.
5675  */
5676 void regulator_has_full_constraints(void)
5677 {
5678         has_full_constraints = 1;
5679 }
5680 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5681
5682 /**
5683  * rdev_get_drvdata - get rdev regulator driver data
5684  * @rdev: regulator
5685  *
5686  * Get rdev regulator driver private data. This call can be used in the
5687  * regulator driver context.
5688  */
5689 void *rdev_get_drvdata(struct regulator_dev *rdev)
5690 {
5691         return rdev->reg_data;
5692 }
5693 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5694
5695 /**
5696  * regulator_get_drvdata - get regulator driver data
5697  * @regulator: regulator
5698  *
5699  * Get regulator driver private data. This call can be used in the consumer
5700  * driver context when non API regulator specific functions need to be called.
5701  */
5702 void *regulator_get_drvdata(struct regulator *regulator)
5703 {
5704         return regulator->rdev->reg_data;
5705 }
5706 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5707
5708 /**
5709  * regulator_set_drvdata - set regulator driver data
5710  * @regulator: regulator
5711  * @data: data
5712  */
5713 void regulator_set_drvdata(struct regulator *regulator, void *data)
5714 {
5715         regulator->rdev->reg_data = data;
5716 }
5717 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5718
5719 /**
5720  * rdev_get_id - get regulator ID
5721  * @rdev: regulator
5722  */
5723 int rdev_get_id(struct regulator_dev *rdev)
5724 {
5725         return rdev->desc->id;
5726 }
5727 EXPORT_SYMBOL_GPL(rdev_get_id);
5728
5729 struct device *rdev_get_dev(struct regulator_dev *rdev)
5730 {
5731         return &rdev->dev;
5732 }
5733 EXPORT_SYMBOL_GPL(rdev_get_dev);
5734
5735 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5736 {
5737         return rdev->regmap;
5738 }
5739 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5740
5741 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5742 {
5743         return reg_init_data->driver_data;
5744 }
5745 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5746
5747 #ifdef CONFIG_DEBUG_FS
5748 static int supply_map_show(struct seq_file *sf, void *data)
5749 {
5750         struct regulator_map *map;
5751
5752         list_for_each_entry(map, &regulator_map_list, list) {
5753                 seq_printf(sf, "%s -> %s.%s\n",
5754                                 rdev_get_name(map->regulator), map->dev_name,
5755                                 map->supply);
5756         }
5757
5758         return 0;
5759 }
5760 DEFINE_SHOW_ATTRIBUTE(supply_map);
5761
5762 struct summary_data {
5763         struct seq_file *s;
5764         struct regulator_dev *parent;
5765         int level;
5766 };
5767
5768 static void regulator_summary_show_subtree(struct seq_file *s,
5769                                            struct regulator_dev *rdev,
5770                                            int level);
5771
5772 static int regulator_summary_show_children(struct device *dev, void *data)
5773 {
5774         struct regulator_dev *rdev = dev_to_rdev(dev);
5775         struct summary_data *summary_data = data;
5776
5777         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5778                 regulator_summary_show_subtree(summary_data->s, rdev,
5779                                                summary_data->level + 1);
5780
5781         return 0;
5782 }
5783
5784 static void regulator_summary_show_subtree(struct seq_file *s,
5785                                            struct regulator_dev *rdev,
5786                                            int level)
5787 {
5788         struct regulation_constraints *c;
5789         struct regulator *consumer;
5790         struct summary_data summary_data;
5791         unsigned int opmode;
5792
5793         if (!rdev)
5794                 return;
5795
5796         opmode = _regulator_get_mode_unlocked(rdev);
5797         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5798                    level * 3 + 1, "",
5799                    30 - level * 3, rdev_get_name(rdev),
5800                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5801                    regulator_opmode_to_str(opmode));
5802
5803         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5804         seq_printf(s, "%5dmA ",
5805                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5806
5807         c = rdev->constraints;
5808         if (c) {
5809                 switch (rdev->desc->type) {
5810                 case REGULATOR_VOLTAGE:
5811                         seq_printf(s, "%5dmV %5dmV ",
5812                                    c->min_uV / 1000, c->max_uV / 1000);
5813                         break;
5814                 case REGULATOR_CURRENT:
5815                         seq_printf(s, "%5dmA %5dmA ",
5816                                    c->min_uA / 1000, c->max_uA / 1000);
5817                         break;
5818                 }
5819         }
5820
5821         seq_puts(s, "\n");
5822
5823         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5824                 if (consumer->dev && consumer->dev->class == &regulator_class)
5825                         continue;
5826
5827                 seq_printf(s, "%*s%-*s ",
5828                            (level + 1) * 3 + 1, "",
5829                            30 - (level + 1) * 3,
5830                            consumer->supply_name ? consumer->supply_name :
5831                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5832
5833                 switch (rdev->desc->type) {
5834                 case REGULATOR_VOLTAGE:
5835                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5836                                    consumer->enable_count,
5837                                    consumer->uA_load / 1000,
5838                                    consumer->uA_load && !consumer->enable_count ?
5839                                    '*' : ' ',
5840                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5841                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5842                         break;
5843                 case REGULATOR_CURRENT:
5844                         break;
5845                 }
5846
5847                 seq_puts(s, "\n");
5848         }
5849
5850         summary_data.s = s;
5851         summary_data.level = level;
5852         summary_data.parent = rdev;
5853
5854         class_for_each_device(&regulator_class, NULL, &summary_data,
5855                               regulator_summary_show_children);
5856 }
5857
5858 struct summary_lock_data {
5859         struct ww_acquire_ctx *ww_ctx;
5860         struct regulator_dev **new_contended_rdev;
5861         struct regulator_dev **old_contended_rdev;
5862 };
5863
5864 static int regulator_summary_lock_one(struct device *dev, void *data)
5865 {
5866         struct regulator_dev *rdev = dev_to_rdev(dev);
5867         struct summary_lock_data *lock_data = data;
5868         int ret = 0;
5869
5870         if (rdev != *lock_data->old_contended_rdev) {
5871                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5872
5873                 if (ret == -EDEADLK)
5874                         *lock_data->new_contended_rdev = rdev;
5875                 else
5876                         WARN_ON_ONCE(ret);
5877         } else {
5878                 *lock_data->old_contended_rdev = NULL;
5879         }
5880
5881         return ret;
5882 }
5883
5884 static int regulator_summary_unlock_one(struct device *dev, void *data)
5885 {
5886         struct regulator_dev *rdev = dev_to_rdev(dev);
5887         struct summary_lock_data *lock_data = data;
5888
5889         if (lock_data) {
5890                 if (rdev == *lock_data->new_contended_rdev)
5891                         return -EDEADLK;
5892         }
5893
5894         regulator_unlock(rdev);
5895
5896         return 0;
5897 }
5898
5899 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5900                                       struct regulator_dev **new_contended_rdev,
5901                                       struct regulator_dev **old_contended_rdev)
5902 {
5903         struct summary_lock_data lock_data;
5904         int ret;
5905
5906         lock_data.ww_ctx = ww_ctx;
5907         lock_data.new_contended_rdev = new_contended_rdev;
5908         lock_data.old_contended_rdev = old_contended_rdev;
5909
5910         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5911                                     regulator_summary_lock_one);
5912         if (ret)
5913                 class_for_each_device(&regulator_class, NULL, &lock_data,
5914                                       regulator_summary_unlock_one);
5915
5916         return ret;
5917 }
5918
5919 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5920 {
5921         struct regulator_dev *new_contended_rdev = NULL;
5922         struct regulator_dev *old_contended_rdev = NULL;
5923         int err;
5924
5925         mutex_lock(&regulator_list_mutex);
5926
5927         ww_acquire_init(ww_ctx, &regulator_ww_class);
5928
5929         do {
5930                 if (new_contended_rdev) {
5931                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5932                         old_contended_rdev = new_contended_rdev;
5933                         old_contended_rdev->ref_cnt++;
5934                 }
5935
5936                 err = regulator_summary_lock_all(ww_ctx,
5937                                                  &new_contended_rdev,
5938                                                  &old_contended_rdev);
5939
5940                 if (old_contended_rdev)
5941                         regulator_unlock(old_contended_rdev);
5942
5943         } while (err == -EDEADLK);
5944
5945         ww_acquire_done(ww_ctx);
5946 }
5947
5948 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5949 {
5950         class_for_each_device(&regulator_class, NULL, NULL,
5951                               regulator_summary_unlock_one);
5952         ww_acquire_fini(ww_ctx);
5953
5954         mutex_unlock(&regulator_list_mutex);
5955 }
5956
5957 static int regulator_summary_show_roots(struct device *dev, void *data)
5958 {
5959         struct regulator_dev *rdev = dev_to_rdev(dev);
5960         struct seq_file *s = data;
5961
5962         if (!rdev->supply)
5963                 regulator_summary_show_subtree(s, rdev, 0);
5964
5965         return 0;
5966 }
5967
5968 static int regulator_summary_show(struct seq_file *s, void *data)
5969 {
5970         struct ww_acquire_ctx ww_ctx;
5971
5972         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5973         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5974
5975         regulator_summary_lock(&ww_ctx);
5976
5977         class_for_each_device(&regulator_class, NULL, s,
5978                               regulator_summary_show_roots);
5979
5980         regulator_summary_unlock(&ww_ctx);
5981
5982         return 0;
5983 }
5984 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5985 #endif /* CONFIG_DEBUG_FS */
5986
5987 static int __init regulator_init(void)
5988 {
5989         int ret;
5990
5991         ret = class_register(&regulator_class);
5992
5993         debugfs_root = debugfs_create_dir("regulator", NULL);
5994         if (!debugfs_root)
5995                 pr_warn("regulator: Failed to create debugfs directory\n");
5996
5997 #ifdef CONFIG_DEBUG_FS
5998         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5999                             &supply_map_fops);
6000
6001         debugfs_create_file("regulator_summary", 0444, debugfs_root,
6002                             NULL, &regulator_summary_fops);
6003 #endif
6004         regulator_dummy_init();
6005
6006         regulator_coupler_register(&generic_regulator_coupler);
6007
6008         return ret;
6009 }
6010
6011 /* init early to allow our consumers to complete system booting */
6012 core_initcall(regulator_init);
6013
6014 static int regulator_late_cleanup(struct device *dev, void *data)
6015 {
6016         struct regulator_dev *rdev = dev_to_rdev(dev);
6017         const struct regulator_ops *ops = rdev->desc->ops;
6018         struct regulation_constraints *c = rdev->constraints;
6019         int enabled, ret;
6020
6021         if (c && c->always_on)
6022                 return 0;
6023
6024         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6025                 return 0;
6026
6027         regulator_lock(rdev);
6028
6029         if (rdev->use_count)
6030                 goto unlock;
6031
6032         /* If we can't read the status assume it's always on. */
6033         if (ops->is_enabled)
6034                 enabled = ops->is_enabled(rdev);
6035         else
6036                 enabled = 1;
6037
6038         /* But if reading the status failed, assume that it's off. */
6039         if (enabled <= 0)
6040                 goto unlock;
6041
6042         if (have_full_constraints()) {
6043                 /* We log since this may kill the system if it goes
6044                  * wrong.
6045                  */
6046                 rdev_info(rdev, "disabling\n");
6047                 ret = _regulator_do_disable(rdev);
6048                 if (ret != 0)
6049                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6050         } else {
6051                 /* The intention is that in future we will
6052                  * assume that full constraints are provided
6053                  * so warn even if we aren't going to do
6054                  * anything here.
6055                  */
6056                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6057         }
6058
6059 unlock:
6060         regulator_unlock(rdev);
6061
6062         return 0;
6063 }
6064
6065 static void regulator_init_complete_work_function(struct work_struct *work)
6066 {
6067         /*
6068          * Regulators may had failed to resolve their input supplies
6069          * when were registered, either because the input supply was
6070          * not registered yet or because its parent device was not
6071          * bound yet. So attempt to resolve the input supplies for
6072          * pending regulators before trying to disable unused ones.
6073          */
6074         class_for_each_device(&regulator_class, NULL, NULL,
6075                               regulator_register_resolve_supply);
6076
6077         /* If we have a full configuration then disable any regulators
6078          * we have permission to change the status for and which are
6079          * not in use or always_on.  This is effectively the default
6080          * for DT and ACPI as they have full constraints.
6081          */
6082         class_for_each_device(&regulator_class, NULL, NULL,
6083                               regulator_late_cleanup);
6084 }
6085
6086 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6087                             regulator_init_complete_work_function);
6088
6089 static int __init regulator_init_complete(void)
6090 {
6091         /*
6092          * Since DT doesn't provide an idiomatic mechanism for
6093          * enabling full constraints and since it's much more natural
6094          * with DT to provide them just assume that a DT enabled
6095          * system has full constraints.
6096          */
6097         if (of_have_populated_dt())
6098                 has_full_constraints = true;
6099
6100         /*
6101          * We punt completion for an arbitrary amount of time since
6102          * systems like distros will load many drivers from userspace
6103          * so consumers might not always be ready yet, this is
6104          * particularly an issue with laptops where this might bounce
6105          * the display off then on.  Ideally we'd get a notification
6106          * from userspace when this happens but we don't so just wait
6107          * a bit and hope we waited long enough.  It'd be better if
6108          * we'd only do this on systems that need it, and a kernel
6109          * command line option might be useful.
6110          */
6111         schedule_delayed_work(&regulator_init_complete_work,
6112                               msecs_to_jiffies(30000));
6113
6114         return 0;
6115 }
6116 late_initcall_sync(regulator_init_complete);