Merge tag 'regulator-fix-v5.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113         if (rdev->constraints && rdev->constraints->name)
114                 return rdev->constraints->name;
115         else if (rdev->desc->name)
116                 return rdev->desc->name;
117         else
118                 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123         return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128         if (!rdev->constraints) {
129                 rdev_err(rdev, "no constraints\n");
130                 return false;
131         }
132
133         if (rdev->constraints->valid_ops_mask & ops)
134                 return true;
135
136         return false;
137 }
138
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:               regulator source
142  * @ww_ctx:             w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151                                         struct ww_acquire_ctx *ww_ctx)
152 {
153         bool lock = false;
154         int ret = 0;
155
156         mutex_lock(&regulator_nesting_mutex);
157
158         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159                 if (rdev->mutex_owner == current)
160                         rdev->ref_cnt++;
161                 else
162                         lock = true;
163
164                 if (lock) {
165                         mutex_unlock(&regulator_nesting_mutex);
166                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167                         mutex_lock(&regulator_nesting_mutex);
168                 }
169         } else {
170                 lock = true;
171         }
172
173         if (lock && ret != -EDEADLK) {
174                 rdev->ref_cnt++;
175                 rdev->mutex_owner = current;
176         }
177
178         mutex_unlock(&regulator_nesting_mutex);
179
180         return ret;
181 }
182
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:               regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 void regulator_lock(struct regulator_dev *rdev)
194 {
195         regulator_lock_nested(rdev, NULL);
196 }
197 EXPORT_SYMBOL_GPL(regulator_lock);
198
199 /**
200  * regulator_unlock - unlock a single regulator
201  * @rdev:               regulator_source
202  *
203  * This function unlocks the mutex when the
204  * reference counter reaches 0.
205  */
206 void regulator_unlock(struct regulator_dev *rdev)
207 {
208         mutex_lock(&regulator_nesting_mutex);
209
210         if (--rdev->ref_cnt == 0) {
211                 rdev->mutex_owner = NULL;
212                 ww_mutex_unlock(&rdev->mutex);
213         }
214
215         WARN_ON_ONCE(rdev->ref_cnt < 0);
216
217         mutex_unlock(&regulator_nesting_mutex);
218 }
219 EXPORT_SYMBOL_GPL(regulator_unlock);
220
221 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222 {
223         struct regulator_dev *c_rdev;
224         int i;
225
226         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
227                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228
229                 if (rdev->supply->rdev == c_rdev)
230                         return true;
231         }
232
233         return false;
234 }
235
236 static void regulator_unlock_recursive(struct regulator_dev *rdev,
237                                        unsigned int n_coupled)
238 {
239         struct regulator_dev *c_rdev, *supply_rdev;
240         int i, supply_n_coupled;
241
242         for (i = n_coupled; i > 0; i--) {
243                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244
245                 if (!c_rdev)
246                         continue;
247
248                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
249                         supply_rdev = c_rdev->supply->rdev;
250                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
251
252                         regulator_unlock_recursive(supply_rdev,
253                                                    supply_n_coupled);
254                 }
255
256                 regulator_unlock(c_rdev);
257         }
258 }
259
260 static int regulator_lock_recursive(struct regulator_dev *rdev,
261                                     struct regulator_dev **new_contended_rdev,
262                                     struct regulator_dev **old_contended_rdev,
263                                     struct ww_acquire_ctx *ww_ctx)
264 {
265         struct regulator_dev *c_rdev;
266         int i, err;
267
268         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
269                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
270
271                 if (!c_rdev)
272                         continue;
273
274                 if (c_rdev != *old_contended_rdev) {
275                         err = regulator_lock_nested(c_rdev, ww_ctx);
276                         if (err) {
277                                 if (err == -EDEADLK) {
278                                         *new_contended_rdev = c_rdev;
279                                         goto err_unlock;
280                                 }
281
282                                 /* shouldn't happen */
283                                 WARN_ON_ONCE(err != -EALREADY);
284                         }
285                 } else {
286                         *old_contended_rdev = NULL;
287                 }
288
289                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
290                         err = regulator_lock_recursive(c_rdev->supply->rdev,
291                                                        new_contended_rdev,
292                                                        old_contended_rdev,
293                                                        ww_ctx);
294                         if (err) {
295                                 regulator_unlock(c_rdev);
296                                 goto err_unlock;
297                         }
298                 }
299         }
300
301         return 0;
302
303 err_unlock:
304         regulator_unlock_recursive(rdev, i);
305
306         return err;
307 }
308
309 /**
310  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
311  *                              regulators
312  * @rdev:                       regulator source
313  * @ww_ctx:                     w/w mutex acquire context
314  *
315  * Unlock all regulators related with rdev by coupling or supplying.
316  */
317 static void regulator_unlock_dependent(struct regulator_dev *rdev,
318                                        struct ww_acquire_ctx *ww_ctx)
319 {
320         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
321         ww_acquire_fini(ww_ctx);
322 }
323
324 /**
325  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
326  * @rdev:                       regulator source
327  * @ww_ctx:                     w/w mutex acquire context
328  *
329  * This function as a wrapper on regulator_lock_recursive(), which locks
330  * all regulators related with rdev by coupling or supplying.
331  */
332 static void regulator_lock_dependent(struct regulator_dev *rdev,
333                                      struct ww_acquire_ctx *ww_ctx)
334 {
335         struct regulator_dev *new_contended_rdev = NULL;
336         struct regulator_dev *old_contended_rdev = NULL;
337         int err;
338
339         mutex_lock(&regulator_list_mutex);
340
341         ww_acquire_init(ww_ctx, &regulator_ww_class);
342
343         do {
344                 if (new_contended_rdev) {
345                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
346                         old_contended_rdev = new_contended_rdev;
347                         old_contended_rdev->ref_cnt++;
348                 }
349
350                 err = regulator_lock_recursive(rdev,
351                                                &new_contended_rdev,
352                                                &old_contended_rdev,
353                                                ww_ctx);
354
355                 if (old_contended_rdev)
356                         regulator_unlock(old_contended_rdev);
357
358         } while (err == -EDEADLK);
359
360         ww_acquire_done(ww_ctx);
361
362         mutex_unlock(&regulator_list_mutex);
363 }
364
365 /**
366  * of_get_child_regulator - get a child regulator device node
367  * based on supply name
368  * @parent: Parent device node
369  * @prop_name: Combination regulator supply name and "-supply"
370  *
371  * Traverse all child nodes.
372  * Extract the child regulator device node corresponding to the supply name.
373  * returns the device node corresponding to the regulator if found, else
374  * returns NULL.
375  */
376 static struct device_node *of_get_child_regulator(struct device_node *parent,
377                                                   const char *prop_name)
378 {
379         struct device_node *regnode = NULL;
380         struct device_node *child = NULL;
381
382         for_each_child_of_node(parent, child) {
383                 regnode = of_parse_phandle(child, prop_name, 0);
384
385                 if (!regnode) {
386                         regnode = of_get_child_regulator(child, prop_name);
387                         if (regnode)
388                                 goto err_node_put;
389                 } else {
390                         goto err_node_put;
391                 }
392         }
393         return NULL;
394
395 err_node_put:
396         of_node_put(child);
397         return regnode;
398 }
399
400 /**
401  * of_get_regulator - get a regulator device node based on supply name
402  * @dev: Device pointer for the consumer (of regulator) device
403  * @supply: regulator supply name
404  *
405  * Extract the regulator device node corresponding to the supply name.
406  * returns the device node corresponding to the regulator if found, else
407  * returns NULL.
408  */
409 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410 {
411         struct device_node *regnode = NULL;
412         char prop_name[32]; /* 32 is max size of property name */
413
414         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415
416         snprintf(prop_name, 32, "%s-supply", supply);
417         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418
419         if (!regnode) {
420                 regnode = of_get_child_regulator(dev->of_node, prop_name);
421                 if (regnode)
422                         return regnode;
423
424                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425                                 prop_name, dev->of_node);
426                 return NULL;
427         }
428         return regnode;
429 }
430
431 /* Platform voltage constraint check */
432 int regulator_check_voltage(struct regulator_dev *rdev,
433                             int *min_uV, int *max_uV)
434 {
435         BUG_ON(*min_uV > *max_uV);
436
437         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438                 rdev_err(rdev, "voltage operation not allowed\n");
439                 return -EPERM;
440         }
441
442         if (*max_uV > rdev->constraints->max_uV)
443                 *max_uV = rdev->constraints->max_uV;
444         if (*min_uV < rdev->constraints->min_uV)
445                 *min_uV = rdev->constraints->min_uV;
446
447         if (*min_uV > *max_uV) {
448                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449                          *min_uV, *max_uV);
450                 return -EINVAL;
451         }
452
453         return 0;
454 }
455
456 /* return 0 if the state is valid */
457 static int regulator_check_states(suspend_state_t state)
458 {
459         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460 }
461
462 /* Make sure we select a voltage that suits the needs of all
463  * regulator consumers
464  */
465 int regulator_check_consumers(struct regulator_dev *rdev,
466                               int *min_uV, int *max_uV,
467                               suspend_state_t state)
468 {
469         struct regulator *regulator;
470         struct regulator_voltage *voltage;
471
472         list_for_each_entry(regulator, &rdev->consumer_list, list) {
473                 voltage = &regulator->voltage[state];
474                 /*
475                  * Assume consumers that didn't say anything are OK
476                  * with anything in the constraint range.
477                  */
478                 if (!voltage->min_uV && !voltage->max_uV)
479                         continue;
480
481                 if (*max_uV > voltage->max_uV)
482                         *max_uV = voltage->max_uV;
483                 if (*min_uV < voltage->min_uV)
484                         *min_uV = voltage->min_uV;
485         }
486
487         if (*min_uV > *max_uV) {
488                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489                         *min_uV, *max_uV);
490                 return -EINVAL;
491         }
492
493         return 0;
494 }
495
496 /* current constraint check */
497 static int regulator_check_current_limit(struct regulator_dev *rdev,
498                                         int *min_uA, int *max_uA)
499 {
500         BUG_ON(*min_uA > *max_uA);
501
502         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503                 rdev_err(rdev, "current operation not allowed\n");
504                 return -EPERM;
505         }
506
507         if (*max_uA > rdev->constraints->max_uA)
508                 *max_uA = rdev->constraints->max_uA;
509         if (*min_uA < rdev->constraints->min_uA)
510                 *min_uA = rdev->constraints->min_uA;
511
512         if (*min_uA > *max_uA) {
513                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514                          *min_uA, *max_uA);
515                 return -EINVAL;
516         }
517
518         return 0;
519 }
520
521 /* operating mode constraint check */
522 static int regulator_mode_constrain(struct regulator_dev *rdev,
523                                     unsigned int *mode)
524 {
525         switch (*mode) {
526         case REGULATOR_MODE_FAST:
527         case REGULATOR_MODE_NORMAL:
528         case REGULATOR_MODE_IDLE:
529         case REGULATOR_MODE_STANDBY:
530                 break;
531         default:
532                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
533                 return -EINVAL;
534         }
535
536         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537                 rdev_err(rdev, "mode operation not allowed\n");
538                 return -EPERM;
539         }
540
541         /* The modes are bitmasks, the most power hungry modes having
542          * the lowest values. If the requested mode isn't supported
543          * try higher modes. */
544         while (*mode) {
545                 if (rdev->constraints->valid_modes_mask & *mode)
546                         return 0;
547                 *mode /= 2;
548         }
549
550         return -EINVAL;
551 }
552
553 static inline struct regulator_state *
554 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555 {
556         if (rdev->constraints == NULL)
557                 return NULL;
558
559         switch (state) {
560         case PM_SUSPEND_STANDBY:
561                 return &rdev->constraints->state_standby;
562         case PM_SUSPEND_MEM:
563                 return &rdev->constraints->state_mem;
564         case PM_SUSPEND_MAX:
565                 return &rdev->constraints->state_disk;
566         default:
567                 return NULL;
568         }
569 }
570
571 static ssize_t regulator_uV_show(struct device *dev,
572                                 struct device_attribute *attr, char *buf)
573 {
574         struct regulator_dev *rdev = dev_get_drvdata(dev);
575         int uV;
576
577         regulator_lock(rdev);
578         uV = regulator_get_voltage_rdev(rdev);
579         regulator_unlock(rdev);
580
581         if (uV < 0)
582                 return uV;
583         return sprintf(buf, "%d\n", uV);
584 }
585 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
586
587 static ssize_t regulator_uA_show(struct device *dev,
588                                 struct device_attribute *attr, char *buf)
589 {
590         struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
593 }
594 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
595
596 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
597                          char *buf)
598 {
599         struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601         return sprintf(buf, "%s\n", rdev_get_name(rdev));
602 }
603 static DEVICE_ATTR_RO(name);
604
605 static const char *regulator_opmode_to_str(int mode)
606 {
607         switch (mode) {
608         case REGULATOR_MODE_FAST:
609                 return "fast";
610         case REGULATOR_MODE_NORMAL:
611                 return "normal";
612         case REGULATOR_MODE_IDLE:
613                 return "idle";
614         case REGULATOR_MODE_STANDBY:
615                 return "standby";
616         }
617         return "unknown";
618 }
619
620 static ssize_t regulator_print_opmode(char *buf, int mode)
621 {
622         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
623 }
624
625 static ssize_t regulator_opmode_show(struct device *dev,
626                                     struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
631 }
632 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
633
634 static ssize_t regulator_print_state(char *buf, int state)
635 {
636         if (state > 0)
637                 return sprintf(buf, "enabled\n");
638         else if (state == 0)
639                 return sprintf(buf, "disabled\n");
640         else
641                 return sprintf(buf, "unknown\n");
642 }
643
644 static ssize_t regulator_state_show(struct device *dev,
645                                    struct device_attribute *attr, char *buf)
646 {
647         struct regulator_dev *rdev = dev_get_drvdata(dev);
648         ssize_t ret;
649
650         regulator_lock(rdev);
651         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
652         regulator_unlock(rdev);
653
654         return ret;
655 }
656 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
657
658 static ssize_t regulator_status_show(struct device *dev,
659                                    struct device_attribute *attr, char *buf)
660 {
661         struct regulator_dev *rdev = dev_get_drvdata(dev);
662         int status;
663         char *label;
664
665         status = rdev->desc->ops->get_status(rdev);
666         if (status < 0)
667                 return status;
668
669         switch (status) {
670         case REGULATOR_STATUS_OFF:
671                 label = "off";
672                 break;
673         case REGULATOR_STATUS_ON:
674                 label = "on";
675                 break;
676         case REGULATOR_STATUS_ERROR:
677                 label = "error";
678                 break;
679         case REGULATOR_STATUS_FAST:
680                 label = "fast";
681                 break;
682         case REGULATOR_STATUS_NORMAL:
683                 label = "normal";
684                 break;
685         case REGULATOR_STATUS_IDLE:
686                 label = "idle";
687                 break;
688         case REGULATOR_STATUS_STANDBY:
689                 label = "standby";
690                 break;
691         case REGULATOR_STATUS_BYPASS:
692                 label = "bypass";
693                 break;
694         case REGULATOR_STATUS_UNDEFINED:
695                 label = "undefined";
696                 break;
697         default:
698                 return -ERANGE;
699         }
700
701         return sprintf(buf, "%s\n", label);
702 }
703 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
704
705 static ssize_t regulator_min_uA_show(struct device *dev,
706                                     struct device_attribute *attr, char *buf)
707 {
708         struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710         if (!rdev->constraints)
711                 return sprintf(buf, "constraint not defined\n");
712
713         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
714 }
715 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
716
717 static ssize_t regulator_max_uA_show(struct device *dev,
718                                     struct device_attribute *attr, char *buf)
719 {
720         struct regulator_dev *rdev = dev_get_drvdata(dev);
721
722         if (!rdev->constraints)
723                 return sprintf(buf, "constraint not defined\n");
724
725         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
726 }
727 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
728
729 static ssize_t regulator_min_uV_show(struct device *dev,
730                                     struct device_attribute *attr, char *buf)
731 {
732         struct regulator_dev *rdev = dev_get_drvdata(dev);
733
734         if (!rdev->constraints)
735                 return sprintf(buf, "constraint not defined\n");
736
737         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
738 }
739 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
740
741 static ssize_t regulator_max_uV_show(struct device *dev,
742                                     struct device_attribute *attr, char *buf)
743 {
744         struct regulator_dev *rdev = dev_get_drvdata(dev);
745
746         if (!rdev->constraints)
747                 return sprintf(buf, "constraint not defined\n");
748
749         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
750 }
751 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
752
753 static ssize_t regulator_total_uA_show(struct device *dev,
754                                       struct device_attribute *attr, char *buf)
755 {
756         struct regulator_dev *rdev = dev_get_drvdata(dev);
757         struct regulator *regulator;
758         int uA = 0;
759
760         regulator_lock(rdev);
761         list_for_each_entry(regulator, &rdev->consumer_list, list) {
762                 if (regulator->enable_count)
763                         uA += regulator->uA_load;
764         }
765         regulator_unlock(rdev);
766         return sprintf(buf, "%d\n", uA);
767 }
768 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
769
770 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
771                               char *buf)
772 {
773         struct regulator_dev *rdev = dev_get_drvdata(dev);
774         return sprintf(buf, "%d\n", rdev->use_count);
775 }
776 static DEVICE_ATTR_RO(num_users);
777
778 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
779                          char *buf)
780 {
781         struct regulator_dev *rdev = dev_get_drvdata(dev);
782
783         switch (rdev->desc->type) {
784         case REGULATOR_VOLTAGE:
785                 return sprintf(buf, "voltage\n");
786         case REGULATOR_CURRENT:
787                 return sprintf(buf, "current\n");
788         }
789         return sprintf(buf, "unknown\n");
790 }
791 static DEVICE_ATTR_RO(type);
792
793 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
794                                 struct device_attribute *attr, char *buf)
795 {
796         struct regulator_dev *rdev = dev_get_drvdata(dev);
797
798         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
799 }
800 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
801                 regulator_suspend_mem_uV_show, NULL);
802
803 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
804                                 struct device_attribute *attr, char *buf)
805 {
806         struct regulator_dev *rdev = dev_get_drvdata(dev);
807
808         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
809 }
810 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
811                 regulator_suspend_disk_uV_show, NULL);
812
813 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
814                                 struct device_attribute *attr, char *buf)
815 {
816         struct regulator_dev *rdev = dev_get_drvdata(dev);
817
818         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
819 }
820 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
821                 regulator_suspend_standby_uV_show, NULL);
822
823 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
824                                 struct device_attribute *attr, char *buf)
825 {
826         struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828         return regulator_print_opmode(buf,
829                 rdev->constraints->state_mem.mode);
830 }
831 static DEVICE_ATTR(suspend_mem_mode, 0444,
832                 regulator_suspend_mem_mode_show, NULL);
833
834 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
835                                 struct device_attribute *attr, char *buf)
836 {
837         struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839         return regulator_print_opmode(buf,
840                 rdev->constraints->state_disk.mode);
841 }
842 static DEVICE_ATTR(suspend_disk_mode, 0444,
843                 regulator_suspend_disk_mode_show, NULL);
844
845 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
846                                 struct device_attribute *attr, char *buf)
847 {
848         struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850         return regulator_print_opmode(buf,
851                 rdev->constraints->state_standby.mode);
852 }
853 static DEVICE_ATTR(suspend_standby_mode, 0444,
854                 regulator_suspend_standby_mode_show, NULL);
855
856 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
857                                    struct device_attribute *attr, char *buf)
858 {
859         struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861         return regulator_print_state(buf,
862                         rdev->constraints->state_mem.enabled);
863 }
864 static DEVICE_ATTR(suspend_mem_state, 0444,
865                 regulator_suspend_mem_state_show, NULL);
866
867 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
868                                    struct device_attribute *attr, char *buf)
869 {
870         struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872         return regulator_print_state(buf,
873                         rdev->constraints->state_disk.enabled);
874 }
875 static DEVICE_ATTR(suspend_disk_state, 0444,
876                 regulator_suspend_disk_state_show, NULL);
877
878 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
879                                    struct device_attribute *attr, char *buf)
880 {
881         struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883         return regulator_print_state(buf,
884                         rdev->constraints->state_standby.enabled);
885 }
886 static DEVICE_ATTR(suspend_standby_state, 0444,
887                 regulator_suspend_standby_state_show, NULL);
888
889 static ssize_t regulator_bypass_show(struct device *dev,
890                                      struct device_attribute *attr, char *buf)
891 {
892         struct regulator_dev *rdev = dev_get_drvdata(dev);
893         const char *report;
894         bool bypass;
895         int ret;
896
897         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
898
899         if (ret != 0)
900                 report = "unknown";
901         else if (bypass)
902                 report = "enabled";
903         else
904                 report = "disabled";
905
906         return sprintf(buf, "%s\n", report);
907 }
908 static DEVICE_ATTR(bypass, 0444,
909                    regulator_bypass_show, NULL);
910
911 /* Calculate the new optimum regulator operating mode based on the new total
912  * consumer load. All locks held by caller */
913 static int drms_uA_update(struct regulator_dev *rdev)
914 {
915         struct regulator *sibling;
916         int current_uA = 0, output_uV, input_uV, err;
917         unsigned int mode;
918
919         /*
920          * first check to see if we can set modes at all, otherwise just
921          * tell the consumer everything is OK.
922          */
923         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
924                 rdev_dbg(rdev, "DRMS operation not allowed\n");
925                 return 0;
926         }
927
928         if (!rdev->desc->ops->get_optimum_mode &&
929             !rdev->desc->ops->set_load)
930                 return 0;
931
932         if (!rdev->desc->ops->set_mode &&
933             !rdev->desc->ops->set_load)
934                 return -EINVAL;
935
936         /* calc total requested load */
937         list_for_each_entry(sibling, &rdev->consumer_list, list) {
938                 if (sibling->enable_count)
939                         current_uA += sibling->uA_load;
940         }
941
942         current_uA += rdev->constraints->system_load;
943
944         if (rdev->desc->ops->set_load) {
945                 /* set the optimum mode for our new total regulator load */
946                 err = rdev->desc->ops->set_load(rdev, current_uA);
947                 if (err < 0)
948                         rdev_err(rdev, "failed to set load %d\n", current_uA);
949         } else {
950                 /* get output voltage */
951                 output_uV = regulator_get_voltage_rdev(rdev);
952                 if (output_uV <= 0) {
953                         rdev_err(rdev, "invalid output voltage found\n");
954                         return -EINVAL;
955                 }
956
957                 /* get input voltage */
958                 input_uV = 0;
959                 if (rdev->supply)
960                         input_uV = regulator_get_voltage(rdev->supply);
961                 if (input_uV <= 0)
962                         input_uV = rdev->constraints->input_uV;
963                 if (input_uV <= 0) {
964                         rdev_err(rdev, "invalid input voltage found\n");
965                         return -EINVAL;
966                 }
967
968                 /* now get the optimum mode for our new total regulator load */
969                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
970                                                          output_uV, current_uA);
971
972                 /* check the new mode is allowed */
973                 err = regulator_mode_constrain(rdev, &mode);
974                 if (err < 0) {
975                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
976                                  current_uA, input_uV, output_uV);
977                         return err;
978                 }
979
980                 err = rdev->desc->ops->set_mode(rdev, mode);
981                 if (err < 0)
982                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
983         }
984
985         return err;
986 }
987
988 static int suspend_set_state(struct regulator_dev *rdev,
989                                     suspend_state_t state)
990 {
991         int ret = 0;
992         struct regulator_state *rstate;
993
994         rstate = regulator_get_suspend_state(rdev, state);
995         if (rstate == NULL)
996                 return 0;
997
998         /* If we have no suspend mode configuration don't set anything;
999          * only warn if the driver implements set_suspend_voltage or
1000          * set_suspend_mode callback.
1001          */
1002         if (rstate->enabled != ENABLE_IN_SUSPEND &&
1003             rstate->enabled != DISABLE_IN_SUSPEND) {
1004                 if (rdev->desc->ops->set_suspend_voltage ||
1005                     rdev->desc->ops->set_suspend_mode)
1006                         rdev_warn(rdev, "No configuration\n");
1007                 return 0;
1008         }
1009
1010         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1011                 rdev->desc->ops->set_suspend_enable)
1012                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1013         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1014                 rdev->desc->ops->set_suspend_disable)
1015                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1016         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1017                 ret = 0;
1018
1019         if (ret < 0) {
1020                 rdev_err(rdev, "failed to enabled/disable\n");
1021                 return ret;
1022         }
1023
1024         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1025                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1026                 if (ret < 0) {
1027                         rdev_err(rdev, "failed to set voltage\n");
1028                         return ret;
1029                 }
1030         }
1031
1032         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1033                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1034                 if (ret < 0) {
1035                         rdev_err(rdev, "failed to set mode\n");
1036                         return ret;
1037                 }
1038         }
1039
1040         return ret;
1041 }
1042
1043 static void print_constraints(struct regulator_dev *rdev)
1044 {
1045         struct regulation_constraints *constraints = rdev->constraints;
1046         char buf[160] = "";
1047         size_t len = sizeof(buf) - 1;
1048         int count = 0;
1049         int ret;
1050
1051         if (constraints->min_uV && constraints->max_uV) {
1052                 if (constraints->min_uV == constraints->max_uV)
1053                         count += scnprintf(buf + count, len - count, "%d mV ",
1054                                            constraints->min_uV / 1000);
1055                 else
1056                         count += scnprintf(buf + count, len - count,
1057                                            "%d <--> %d mV ",
1058                                            constraints->min_uV / 1000,
1059                                            constraints->max_uV / 1000);
1060         }
1061
1062         if (!constraints->min_uV ||
1063             constraints->min_uV != constraints->max_uV) {
1064                 ret = regulator_get_voltage_rdev(rdev);
1065                 if (ret > 0)
1066                         count += scnprintf(buf + count, len - count,
1067                                            "at %d mV ", ret / 1000);
1068         }
1069
1070         if (constraints->uV_offset)
1071                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1072                                    constraints->uV_offset / 1000);
1073
1074         if (constraints->min_uA && constraints->max_uA) {
1075                 if (constraints->min_uA == constraints->max_uA)
1076                         count += scnprintf(buf + count, len - count, "%d mA ",
1077                                            constraints->min_uA / 1000);
1078                 else
1079                         count += scnprintf(buf + count, len - count,
1080                                            "%d <--> %d mA ",
1081                                            constraints->min_uA / 1000,
1082                                            constraints->max_uA / 1000);
1083         }
1084
1085         if (!constraints->min_uA ||
1086             constraints->min_uA != constraints->max_uA) {
1087                 ret = _regulator_get_current_limit(rdev);
1088                 if (ret > 0)
1089                         count += scnprintf(buf + count, len - count,
1090                                            "at %d mA ", ret / 1000);
1091         }
1092
1093         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094                 count += scnprintf(buf + count, len - count, "fast ");
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096                 count += scnprintf(buf + count, len - count, "normal ");
1097         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098                 count += scnprintf(buf + count, len - count, "idle ");
1099         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100                 count += scnprintf(buf + count, len - count, "standby");
1101
1102         if (!count)
1103                 scnprintf(buf, len, "no parameters");
1104
1105         rdev_dbg(rdev, "%s\n", buf);
1106
1107         if ((constraints->min_uV != constraints->max_uV) &&
1108             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109                 rdev_warn(rdev,
1110                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111 }
1112
1113 static int machine_constraints_voltage(struct regulator_dev *rdev,
1114         struct regulation_constraints *constraints)
1115 {
1116         const struct regulator_ops *ops = rdev->desc->ops;
1117         int ret;
1118
1119         /* do we need to apply the constraint voltage */
1120         if (rdev->constraints->apply_uV &&
1121             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1122                 int target_min, target_max;
1123                 int current_uV = regulator_get_voltage_rdev(rdev);
1124
1125                 if (current_uV == -ENOTRECOVERABLE) {
1126                         /* This regulator can't be read and must be initialized */
1127                         rdev_info(rdev, "Setting %d-%duV\n",
1128                                   rdev->constraints->min_uV,
1129                                   rdev->constraints->max_uV);
1130                         _regulator_do_set_voltage(rdev,
1131                                                   rdev->constraints->min_uV,
1132                                                   rdev->constraints->max_uV);
1133                         current_uV = regulator_get_voltage_rdev(rdev);
1134                 }
1135
1136                 if (current_uV < 0) {
1137                         rdev_err(rdev,
1138                                  "failed to get the current voltage(%d)\n",
1139                                  current_uV);
1140                         return current_uV;
1141                 }
1142
1143                 /*
1144                  * If we're below the minimum voltage move up to the
1145                  * minimum voltage, if we're above the maximum voltage
1146                  * then move down to the maximum.
1147                  */
1148                 target_min = current_uV;
1149                 target_max = current_uV;
1150
1151                 if (current_uV < rdev->constraints->min_uV) {
1152                         target_min = rdev->constraints->min_uV;
1153                         target_max = rdev->constraints->min_uV;
1154                 }
1155
1156                 if (current_uV > rdev->constraints->max_uV) {
1157                         target_min = rdev->constraints->max_uV;
1158                         target_max = rdev->constraints->max_uV;
1159                 }
1160
1161                 if (target_min != current_uV || target_max != current_uV) {
1162                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1163                                   current_uV, target_min, target_max);
1164                         ret = _regulator_do_set_voltage(
1165                                 rdev, target_min, target_max);
1166                         if (ret < 0) {
1167                                 rdev_err(rdev,
1168                                         "failed to apply %d-%duV constraint(%d)\n",
1169                                         target_min, target_max, ret);
1170                                 return ret;
1171                         }
1172                 }
1173         }
1174
1175         /* constrain machine-level voltage specs to fit
1176          * the actual range supported by this regulator.
1177          */
1178         if (ops->list_voltage && rdev->desc->n_voltages) {
1179                 int     count = rdev->desc->n_voltages;
1180                 int     i;
1181                 int     min_uV = INT_MAX;
1182                 int     max_uV = INT_MIN;
1183                 int     cmin = constraints->min_uV;
1184                 int     cmax = constraints->max_uV;
1185
1186                 /* it's safe to autoconfigure fixed-voltage supplies
1187                    and the constraints are used by list_voltage. */
1188                 if (count == 1 && !cmin) {
1189                         cmin = 1;
1190                         cmax = INT_MAX;
1191                         constraints->min_uV = cmin;
1192                         constraints->max_uV = cmax;
1193                 }
1194
1195                 /* voltage constraints are optional */
1196                 if ((cmin == 0) && (cmax == 0))
1197                         return 0;
1198
1199                 /* else require explicit machine-level constraints */
1200                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201                         rdev_err(rdev, "invalid voltage constraints\n");
1202                         return -EINVAL;
1203                 }
1204
1205                 /* no need to loop voltages if range is continuous */
1206                 if (rdev->desc->continuous_voltage_range)
1207                         return 0;
1208
1209                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210                 for (i = 0; i < count; i++) {
1211                         int     value;
1212
1213                         value = ops->list_voltage(rdev, i);
1214                         if (value <= 0)
1215                                 continue;
1216
1217                         /* maybe adjust [min_uV..max_uV] */
1218                         if (value >= cmin && value < min_uV)
1219                                 min_uV = value;
1220                         if (value <= cmax && value > max_uV)
1221                                 max_uV = value;
1222                 }
1223
1224                 /* final: [min_uV..max_uV] valid iff constraints valid */
1225                 if (max_uV < min_uV) {
1226                         rdev_err(rdev,
1227                                  "unsupportable voltage constraints %u-%uuV\n",
1228                                  min_uV, max_uV);
1229                         return -EINVAL;
1230                 }
1231
1232                 /* use regulator's subset of machine constraints */
1233                 if (constraints->min_uV < min_uV) {
1234                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1235                                  constraints->min_uV, min_uV);
1236                         constraints->min_uV = min_uV;
1237                 }
1238                 if (constraints->max_uV > max_uV) {
1239                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1240                                  constraints->max_uV, max_uV);
1241                         constraints->max_uV = max_uV;
1242                 }
1243         }
1244
1245         return 0;
1246 }
1247
1248 static int machine_constraints_current(struct regulator_dev *rdev,
1249         struct regulation_constraints *constraints)
1250 {
1251         const struct regulator_ops *ops = rdev->desc->ops;
1252         int ret;
1253
1254         if (!constraints->min_uA && !constraints->max_uA)
1255                 return 0;
1256
1257         if (constraints->min_uA > constraints->max_uA) {
1258                 rdev_err(rdev, "Invalid current constraints\n");
1259                 return -EINVAL;
1260         }
1261
1262         if (!ops->set_current_limit || !ops->get_current_limit) {
1263                 rdev_warn(rdev, "Operation of current configuration missing\n");
1264                 return 0;
1265         }
1266
1267         /* Set regulator current in constraints range */
1268         ret = ops->set_current_limit(rdev, constraints->min_uA,
1269                         constraints->max_uA);
1270         if (ret < 0) {
1271                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1272                 return ret;
1273         }
1274
1275         return 0;
1276 }
1277
1278 static int _regulator_do_enable(struct regulator_dev *rdev);
1279
1280 /**
1281  * set_machine_constraints - sets regulator constraints
1282  * @rdev: regulator source
1283  * @constraints: constraints to apply
1284  *
1285  * Allows platform initialisation code to define and constrain
1286  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1287  * Constraints *must* be set by platform code in order for some
1288  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1289  * set_mode.
1290  */
1291 static int set_machine_constraints(struct regulator_dev *rdev,
1292         const struct regulation_constraints *constraints)
1293 {
1294         int ret = 0;
1295         const struct regulator_ops *ops = rdev->desc->ops;
1296
1297         if (constraints)
1298                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1299                                             GFP_KERNEL);
1300         else
1301                 rdev->constraints = kzalloc(sizeof(*constraints),
1302                                             GFP_KERNEL);
1303         if (!rdev->constraints)
1304                 return -ENOMEM;
1305
1306         ret = machine_constraints_voltage(rdev, rdev->constraints);
1307         if (ret != 0)
1308                 return ret;
1309
1310         ret = machine_constraints_current(rdev, rdev->constraints);
1311         if (ret != 0)
1312                 return ret;
1313
1314         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1315                 ret = ops->set_input_current_limit(rdev,
1316                                                    rdev->constraints->ilim_uA);
1317                 if (ret < 0) {
1318                         rdev_err(rdev, "failed to set input limit\n");
1319                         return ret;
1320                 }
1321         }
1322
1323         /* do we need to setup our suspend state */
1324         if (rdev->constraints->initial_state) {
1325                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1326                 if (ret < 0) {
1327                         rdev_err(rdev, "failed to set suspend state\n");
1328                         return ret;
1329                 }
1330         }
1331
1332         if (rdev->constraints->initial_mode) {
1333                 if (!ops->set_mode) {
1334                         rdev_err(rdev, "no set_mode operation\n");
1335                         return -EINVAL;
1336                 }
1337
1338                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1339                 if (ret < 0) {
1340                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1341                         return ret;
1342                 }
1343         } else if (rdev->constraints->system_load) {
1344                 /*
1345                  * We'll only apply the initial system load if an
1346                  * initial mode wasn't specified.
1347                  */
1348                 drms_uA_update(rdev);
1349         }
1350
1351         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1352                 && ops->set_ramp_delay) {
1353                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1354                 if (ret < 0) {
1355                         rdev_err(rdev, "failed to set ramp_delay\n");
1356                         return ret;
1357                 }
1358         }
1359
1360         if (rdev->constraints->pull_down && ops->set_pull_down) {
1361                 ret = ops->set_pull_down(rdev);
1362                 if (ret < 0) {
1363                         rdev_err(rdev, "failed to set pull down\n");
1364                         return ret;
1365                 }
1366         }
1367
1368         if (rdev->constraints->soft_start && ops->set_soft_start) {
1369                 ret = ops->set_soft_start(rdev);
1370                 if (ret < 0) {
1371                         rdev_err(rdev, "failed to set soft start\n");
1372                         return ret;
1373                 }
1374         }
1375
1376         if (rdev->constraints->over_current_protection
1377                 && ops->set_over_current_protection) {
1378                 ret = ops->set_over_current_protection(rdev);
1379                 if (ret < 0) {
1380                         rdev_err(rdev, "failed to set over current protection\n");
1381                         return ret;
1382                 }
1383         }
1384
1385         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1386                 bool ad_state = (rdev->constraints->active_discharge ==
1387                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1388
1389                 ret = ops->set_active_discharge(rdev, ad_state);
1390                 if (ret < 0) {
1391                         rdev_err(rdev, "failed to set active discharge\n");
1392                         return ret;
1393                 }
1394         }
1395
1396         /* If the constraints say the regulator should be on at this point
1397          * and we have control then make sure it is enabled.
1398          */
1399         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1400                 if (rdev->supply) {
1401                         ret = regulator_enable(rdev->supply);
1402                         if (ret < 0) {
1403                                 _regulator_put(rdev->supply);
1404                                 rdev->supply = NULL;
1405                                 return ret;
1406                         }
1407                 }
1408
1409                 ret = _regulator_do_enable(rdev);
1410                 if (ret < 0 && ret != -EINVAL) {
1411                         rdev_err(rdev, "failed to enable\n");
1412                         return ret;
1413                 }
1414
1415                 if (rdev->constraints->always_on)
1416                         rdev->use_count++;
1417         }
1418
1419         print_constraints(rdev);
1420         return 0;
1421 }
1422
1423 /**
1424  * set_supply - set regulator supply regulator
1425  * @rdev: regulator name
1426  * @supply_rdev: supply regulator name
1427  *
1428  * Called by platform initialisation code to set the supply regulator for this
1429  * regulator. This ensures that a regulators supply will also be enabled by the
1430  * core if it's child is enabled.
1431  */
1432 static int set_supply(struct regulator_dev *rdev,
1433                       struct regulator_dev *supply_rdev)
1434 {
1435         int err;
1436
1437         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1438
1439         if (!try_module_get(supply_rdev->owner))
1440                 return -ENODEV;
1441
1442         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1443         if (rdev->supply == NULL) {
1444                 err = -ENOMEM;
1445                 return err;
1446         }
1447         supply_rdev->open_count++;
1448
1449         return 0;
1450 }
1451
1452 /**
1453  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454  * @rdev:         regulator source
1455  * @consumer_dev_name: dev_name() string for device supply applies to
1456  * @supply:       symbolic name for supply
1457  *
1458  * Allows platform initialisation code to map physical regulator
1459  * sources to symbolic names for supplies for use by devices.  Devices
1460  * should use these symbolic names to request regulators, avoiding the
1461  * need to provide board-specific regulator names as platform data.
1462  */
1463 static int set_consumer_device_supply(struct regulator_dev *rdev,
1464                                       const char *consumer_dev_name,
1465                                       const char *supply)
1466 {
1467         struct regulator_map *node, *new_node;
1468         int has_dev;
1469
1470         if (supply == NULL)
1471                 return -EINVAL;
1472
1473         if (consumer_dev_name != NULL)
1474                 has_dev = 1;
1475         else
1476                 has_dev = 0;
1477
1478         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1479         if (new_node == NULL)
1480                 return -ENOMEM;
1481
1482         new_node->regulator = rdev;
1483         new_node->supply = supply;
1484
1485         if (has_dev) {
1486                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1487                 if (new_node->dev_name == NULL) {
1488                         kfree(new_node);
1489                         return -ENOMEM;
1490                 }
1491         }
1492
1493         mutex_lock(&regulator_list_mutex);
1494         list_for_each_entry(node, &regulator_map_list, list) {
1495                 if (node->dev_name && consumer_dev_name) {
1496                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1497                                 continue;
1498                 } else if (node->dev_name || consumer_dev_name) {
1499                         continue;
1500                 }
1501
1502                 if (strcmp(node->supply, supply) != 0)
1503                         continue;
1504
1505                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1506                          consumer_dev_name,
1507                          dev_name(&node->regulator->dev),
1508                          node->regulator->desc->name,
1509                          supply,
1510                          dev_name(&rdev->dev), rdev_get_name(rdev));
1511                 goto fail;
1512         }
1513
1514         list_add(&new_node->list, &regulator_map_list);
1515         mutex_unlock(&regulator_list_mutex);
1516
1517         return 0;
1518
1519 fail:
1520         mutex_unlock(&regulator_list_mutex);
1521         kfree(new_node->dev_name);
1522         kfree(new_node);
1523         return -EBUSY;
1524 }
1525
1526 static void unset_regulator_supplies(struct regulator_dev *rdev)
1527 {
1528         struct regulator_map *node, *n;
1529
1530         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1531                 if (rdev == node->regulator) {
1532                         list_del(&node->list);
1533                         kfree(node->dev_name);
1534                         kfree(node);
1535                 }
1536         }
1537 }
1538
1539 #ifdef CONFIG_DEBUG_FS
1540 static ssize_t constraint_flags_read_file(struct file *file,
1541                                           char __user *user_buf,
1542                                           size_t count, loff_t *ppos)
1543 {
1544         const struct regulator *regulator = file->private_data;
1545         const struct regulation_constraints *c = regulator->rdev->constraints;
1546         char *buf;
1547         ssize_t ret;
1548
1549         if (!c)
1550                 return 0;
1551
1552         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1553         if (!buf)
1554                 return -ENOMEM;
1555
1556         ret = snprintf(buf, PAGE_SIZE,
1557                         "always_on: %u\n"
1558                         "boot_on: %u\n"
1559                         "apply_uV: %u\n"
1560                         "ramp_disable: %u\n"
1561                         "soft_start: %u\n"
1562                         "pull_down: %u\n"
1563                         "over_current_protection: %u\n",
1564                         c->always_on,
1565                         c->boot_on,
1566                         c->apply_uV,
1567                         c->ramp_disable,
1568                         c->soft_start,
1569                         c->pull_down,
1570                         c->over_current_protection);
1571
1572         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1573         kfree(buf);
1574
1575         return ret;
1576 }
1577
1578 #endif
1579
1580 static const struct file_operations constraint_flags_fops = {
1581 #ifdef CONFIG_DEBUG_FS
1582         .open = simple_open,
1583         .read = constraint_flags_read_file,
1584         .llseek = default_llseek,
1585 #endif
1586 };
1587
1588 #define REG_STR_SIZE    64
1589
1590 static struct regulator *create_regulator(struct regulator_dev *rdev,
1591                                           struct device *dev,
1592                                           const char *supply_name)
1593 {
1594         struct regulator *regulator;
1595         int err;
1596
1597         if (dev) {
1598                 char buf[REG_STR_SIZE];
1599                 int size;
1600
1601                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1602                                 dev->kobj.name, supply_name);
1603                 if (size >= REG_STR_SIZE)
1604                         return NULL;
1605
1606                 supply_name = kstrdup(buf, GFP_KERNEL);
1607                 if (supply_name == NULL)
1608                         return NULL;
1609         } else {
1610                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611                 if (supply_name == NULL)
1612                         return NULL;
1613         }
1614
1615         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1616         if (regulator == NULL) {
1617                 kfree(supply_name);
1618                 return NULL;
1619         }
1620
1621         regulator->rdev = rdev;
1622         regulator->supply_name = supply_name;
1623
1624         regulator_lock(rdev);
1625         list_add(&regulator->list, &rdev->consumer_list);
1626         regulator_unlock(rdev);
1627
1628         if (dev) {
1629                 regulator->dev = dev;
1630
1631                 /* Add a link to the device sysfs entry */
1632                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1633                                                supply_name);
1634                 if (err) {
1635                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1636                                   dev->kobj.name, err);
1637                         /* non-fatal */
1638                 }
1639         }
1640
1641         regulator->debugfs = debugfs_create_dir(supply_name,
1642                                                 rdev->debugfs);
1643         if (!regulator->debugfs) {
1644                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1645         } else {
1646                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1647                                    &regulator->uA_load);
1648                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1649                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1650                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1651                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1652                 debugfs_create_file("constraint_flags", 0444,
1653                                     regulator->debugfs, regulator,
1654                                     &constraint_flags_fops);
1655         }
1656
1657         /*
1658          * Check now if the regulator is an always on regulator - if
1659          * it is then we don't need to do nearly so much work for
1660          * enable/disable calls.
1661          */
1662         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1663             _regulator_is_enabled(rdev))
1664                 regulator->always_on = true;
1665
1666         return regulator;
1667 }
1668
1669 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1670 {
1671         if (rdev->constraints && rdev->constraints->enable_time)
1672                 return rdev->constraints->enable_time;
1673         if (rdev->desc->ops->enable_time)
1674                 return rdev->desc->ops->enable_time(rdev);
1675         return rdev->desc->enable_time;
1676 }
1677
1678 static struct regulator_supply_alias *regulator_find_supply_alias(
1679                 struct device *dev, const char *supply)
1680 {
1681         struct regulator_supply_alias *map;
1682
1683         list_for_each_entry(map, &regulator_supply_alias_list, list)
1684                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1685                         return map;
1686
1687         return NULL;
1688 }
1689
1690 static void regulator_supply_alias(struct device **dev, const char **supply)
1691 {
1692         struct regulator_supply_alias *map;
1693
1694         map = regulator_find_supply_alias(*dev, *supply);
1695         if (map) {
1696                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1697                                 *supply, map->alias_supply,
1698                                 dev_name(map->alias_dev));
1699                 *dev = map->alias_dev;
1700                 *supply = map->alias_supply;
1701         }
1702 }
1703
1704 static int regulator_match(struct device *dev, const void *data)
1705 {
1706         struct regulator_dev *r = dev_to_rdev(dev);
1707
1708         return strcmp(rdev_get_name(r), data) == 0;
1709 }
1710
1711 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1712 {
1713         struct device *dev;
1714
1715         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1716
1717         return dev ? dev_to_rdev(dev) : NULL;
1718 }
1719
1720 /**
1721  * regulator_dev_lookup - lookup a regulator device.
1722  * @dev: device for regulator "consumer".
1723  * @supply: Supply name or regulator ID.
1724  *
1725  * If successful, returns a struct regulator_dev that corresponds to the name
1726  * @supply and with the embedded struct device refcount incremented by one.
1727  * The refcount must be dropped by calling put_device().
1728  * On failure one of the following ERR-PTR-encoded values is returned:
1729  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1730  * in the future.
1731  */
1732 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1733                                                   const char *supply)
1734 {
1735         struct regulator_dev *r = NULL;
1736         struct device_node *node;
1737         struct regulator_map *map;
1738         const char *devname = NULL;
1739
1740         regulator_supply_alias(&dev, &supply);
1741
1742         /* first do a dt based lookup */
1743         if (dev && dev->of_node) {
1744                 node = of_get_regulator(dev, supply);
1745                 if (node) {
1746                         r = of_find_regulator_by_node(node);
1747                         if (r)
1748                                 return r;
1749
1750                         /*
1751                          * We have a node, but there is no device.
1752                          * assume it has not registered yet.
1753                          */
1754                         return ERR_PTR(-EPROBE_DEFER);
1755                 }
1756         }
1757
1758         /* if not found, try doing it non-dt way */
1759         if (dev)
1760                 devname = dev_name(dev);
1761
1762         mutex_lock(&regulator_list_mutex);
1763         list_for_each_entry(map, &regulator_map_list, list) {
1764                 /* If the mapping has a device set up it must match */
1765                 if (map->dev_name &&
1766                     (!devname || strcmp(map->dev_name, devname)))
1767                         continue;
1768
1769                 if (strcmp(map->supply, supply) == 0 &&
1770                     get_device(&map->regulator->dev)) {
1771                         r = map->regulator;
1772                         break;
1773                 }
1774         }
1775         mutex_unlock(&regulator_list_mutex);
1776
1777         if (r)
1778                 return r;
1779
1780         r = regulator_lookup_by_name(supply);
1781         if (r)
1782                 return r;
1783
1784         return ERR_PTR(-ENODEV);
1785 }
1786
1787 static int regulator_resolve_supply(struct regulator_dev *rdev)
1788 {
1789         struct regulator_dev *r;
1790         struct device *dev = rdev->dev.parent;
1791         int ret;
1792
1793         /* No supply to resolve? */
1794         if (!rdev->supply_name)
1795                 return 0;
1796
1797         /* Supply already resolved? */
1798         if (rdev->supply)
1799                 return 0;
1800
1801         r = regulator_dev_lookup(dev, rdev->supply_name);
1802         if (IS_ERR(r)) {
1803                 ret = PTR_ERR(r);
1804
1805                 /* Did the lookup explicitly defer for us? */
1806                 if (ret == -EPROBE_DEFER)
1807                         return ret;
1808
1809                 if (have_full_constraints()) {
1810                         r = dummy_regulator_rdev;
1811                         get_device(&r->dev);
1812                 } else {
1813                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1814                                 rdev->supply_name, rdev->desc->name);
1815                         return -EPROBE_DEFER;
1816                 }
1817         }
1818
1819         /*
1820          * If the supply's parent device is not the same as the
1821          * regulator's parent device, then ensure the parent device
1822          * is bound before we resolve the supply, in case the parent
1823          * device get probe deferred and unregisters the supply.
1824          */
1825         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1826                 if (!device_is_bound(r->dev.parent)) {
1827                         put_device(&r->dev);
1828                         return -EPROBE_DEFER;
1829                 }
1830         }
1831
1832         /* Recursively resolve the supply of the supply */
1833         ret = regulator_resolve_supply(r);
1834         if (ret < 0) {
1835                 put_device(&r->dev);
1836                 return ret;
1837         }
1838
1839         ret = set_supply(rdev, r);
1840         if (ret < 0) {
1841                 put_device(&r->dev);
1842                 return ret;
1843         }
1844
1845         /*
1846          * In set_machine_constraints() we may have turned this regulator on
1847          * but we couldn't propagate to the supply if it hadn't been resolved
1848          * yet.  Do it now.
1849          */
1850         if (rdev->use_count) {
1851                 ret = regulator_enable(rdev->supply);
1852                 if (ret < 0) {
1853                         _regulator_put(rdev->supply);
1854                         rdev->supply = NULL;
1855                         return ret;
1856                 }
1857         }
1858
1859         return 0;
1860 }
1861
1862 /* Internal regulator request function */
1863 struct regulator *_regulator_get(struct device *dev, const char *id,
1864                                  enum regulator_get_type get_type)
1865 {
1866         struct regulator_dev *rdev;
1867         struct regulator *regulator;
1868         struct device_link *link;
1869         int ret;
1870
1871         if (get_type >= MAX_GET_TYPE) {
1872                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1873                 return ERR_PTR(-EINVAL);
1874         }
1875
1876         if (id == NULL) {
1877                 pr_err("get() with no identifier\n");
1878                 return ERR_PTR(-EINVAL);
1879         }
1880
1881         rdev = regulator_dev_lookup(dev, id);
1882         if (IS_ERR(rdev)) {
1883                 ret = PTR_ERR(rdev);
1884
1885                 /*
1886                  * If regulator_dev_lookup() fails with error other
1887                  * than -ENODEV our job here is done, we simply return it.
1888                  */
1889                 if (ret != -ENODEV)
1890                         return ERR_PTR(ret);
1891
1892                 if (!have_full_constraints()) {
1893                         dev_warn(dev,
1894                                  "incomplete constraints, dummy supplies not allowed\n");
1895                         return ERR_PTR(-ENODEV);
1896                 }
1897
1898                 switch (get_type) {
1899                 case NORMAL_GET:
1900                         /*
1901                          * Assume that a regulator is physically present and
1902                          * enabled, even if it isn't hooked up, and just
1903                          * provide a dummy.
1904                          */
1905                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1906                         rdev = dummy_regulator_rdev;
1907                         get_device(&rdev->dev);
1908                         break;
1909
1910                 case EXCLUSIVE_GET:
1911                         dev_warn(dev,
1912                                  "dummy supplies not allowed for exclusive requests\n");
1913                         fallthrough;
1914
1915                 default:
1916                         return ERR_PTR(-ENODEV);
1917                 }
1918         }
1919
1920         if (rdev->exclusive) {
1921                 regulator = ERR_PTR(-EPERM);
1922                 put_device(&rdev->dev);
1923                 return regulator;
1924         }
1925
1926         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1927                 regulator = ERR_PTR(-EBUSY);
1928                 put_device(&rdev->dev);
1929                 return regulator;
1930         }
1931
1932         mutex_lock(&regulator_list_mutex);
1933         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1934         mutex_unlock(&regulator_list_mutex);
1935
1936         if (ret != 0) {
1937                 regulator = ERR_PTR(-EPROBE_DEFER);
1938                 put_device(&rdev->dev);
1939                 return regulator;
1940         }
1941
1942         ret = regulator_resolve_supply(rdev);
1943         if (ret < 0) {
1944                 regulator = ERR_PTR(ret);
1945                 put_device(&rdev->dev);
1946                 return regulator;
1947         }
1948
1949         if (!try_module_get(rdev->owner)) {
1950                 regulator = ERR_PTR(-EPROBE_DEFER);
1951                 put_device(&rdev->dev);
1952                 return regulator;
1953         }
1954
1955         regulator = create_regulator(rdev, dev, id);
1956         if (regulator == NULL) {
1957                 regulator = ERR_PTR(-ENOMEM);
1958                 module_put(rdev->owner);
1959                 put_device(&rdev->dev);
1960                 return regulator;
1961         }
1962
1963         rdev->open_count++;
1964         if (get_type == EXCLUSIVE_GET) {
1965                 rdev->exclusive = 1;
1966
1967                 ret = _regulator_is_enabled(rdev);
1968                 if (ret > 0)
1969                         rdev->use_count = 1;
1970                 else
1971                         rdev->use_count = 0;
1972         }
1973
1974         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1975         if (!IS_ERR_OR_NULL(link))
1976                 regulator->device_link = true;
1977
1978         return regulator;
1979 }
1980
1981 /**
1982  * regulator_get - lookup and obtain a reference to a regulator.
1983  * @dev: device for regulator "consumer"
1984  * @id: Supply name or regulator ID.
1985  *
1986  * Returns a struct regulator corresponding to the regulator producer,
1987  * or IS_ERR() condition containing errno.
1988  *
1989  * Use of supply names configured via regulator_set_device_supply() is
1990  * strongly encouraged.  It is recommended that the supply name used
1991  * should match the name used for the supply and/or the relevant
1992  * device pins in the datasheet.
1993  */
1994 struct regulator *regulator_get(struct device *dev, const char *id)
1995 {
1996         return _regulator_get(dev, id, NORMAL_GET);
1997 }
1998 EXPORT_SYMBOL_GPL(regulator_get);
1999
2000 /**
2001  * regulator_get_exclusive - obtain exclusive access to a regulator.
2002  * @dev: device for regulator "consumer"
2003  * @id: Supply name or regulator ID.
2004  *
2005  * Returns a struct regulator corresponding to the regulator producer,
2006  * or IS_ERR() condition containing errno.  Other consumers will be
2007  * unable to obtain this regulator while this reference is held and the
2008  * use count for the regulator will be initialised to reflect the current
2009  * state of the regulator.
2010  *
2011  * This is intended for use by consumers which cannot tolerate shared
2012  * use of the regulator such as those which need to force the
2013  * regulator off for correct operation of the hardware they are
2014  * controlling.
2015  *
2016  * Use of supply names configured via regulator_set_device_supply() is
2017  * strongly encouraged.  It is recommended that the supply name used
2018  * should match the name used for the supply and/or the relevant
2019  * device pins in the datasheet.
2020  */
2021 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2022 {
2023         return _regulator_get(dev, id, EXCLUSIVE_GET);
2024 }
2025 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2026
2027 /**
2028  * regulator_get_optional - obtain optional access to a regulator.
2029  * @dev: device for regulator "consumer"
2030  * @id: Supply name or regulator ID.
2031  *
2032  * Returns a struct regulator corresponding to the regulator producer,
2033  * or IS_ERR() condition containing errno.
2034  *
2035  * This is intended for use by consumers for devices which can have
2036  * some supplies unconnected in normal use, such as some MMC devices.
2037  * It can allow the regulator core to provide stub supplies for other
2038  * supplies requested using normal regulator_get() calls without
2039  * disrupting the operation of drivers that can handle absent
2040  * supplies.
2041  *
2042  * Use of supply names configured via regulator_set_device_supply() is
2043  * strongly encouraged.  It is recommended that the supply name used
2044  * should match the name used for the supply and/or the relevant
2045  * device pins in the datasheet.
2046  */
2047 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2048 {
2049         return _regulator_get(dev, id, OPTIONAL_GET);
2050 }
2051 EXPORT_SYMBOL_GPL(regulator_get_optional);
2052
2053 static void destroy_regulator(struct regulator *regulator)
2054 {
2055         struct regulator_dev *rdev = regulator->rdev;
2056
2057         debugfs_remove_recursive(regulator->debugfs);
2058
2059         if (regulator->dev) {
2060                 if (regulator->device_link)
2061                         device_link_remove(regulator->dev, &rdev->dev);
2062
2063                 /* remove any sysfs entries */
2064                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065         }
2066
2067         regulator_lock(rdev);
2068         list_del(&regulator->list);
2069
2070         rdev->open_count--;
2071         rdev->exclusive = 0;
2072         regulator_unlock(rdev);
2073
2074         kfree_const(regulator->supply_name);
2075         kfree(regulator);
2076 }
2077
2078 /* regulator_list_mutex lock held by regulator_put() */
2079 static void _regulator_put(struct regulator *regulator)
2080 {
2081         struct regulator_dev *rdev;
2082
2083         if (IS_ERR_OR_NULL(regulator))
2084                 return;
2085
2086         lockdep_assert_held_once(&regulator_list_mutex);
2087
2088         /* Docs say you must disable before calling regulator_put() */
2089         WARN_ON(regulator->enable_count);
2090
2091         rdev = regulator->rdev;
2092
2093         destroy_regulator(regulator);
2094
2095         module_put(rdev->owner);
2096         put_device(&rdev->dev);
2097 }
2098
2099 /**
2100  * regulator_put - "free" the regulator source
2101  * @regulator: regulator source
2102  *
2103  * Note: drivers must ensure that all regulator_enable calls made on this
2104  * regulator source are balanced by regulator_disable calls prior to calling
2105  * this function.
2106  */
2107 void regulator_put(struct regulator *regulator)
2108 {
2109         mutex_lock(&regulator_list_mutex);
2110         _regulator_put(regulator);
2111         mutex_unlock(&regulator_list_mutex);
2112 }
2113 EXPORT_SYMBOL_GPL(regulator_put);
2114
2115 /**
2116  * regulator_register_supply_alias - Provide device alias for supply lookup
2117  *
2118  * @dev: device that will be given as the regulator "consumer"
2119  * @id: Supply name or regulator ID
2120  * @alias_dev: device that should be used to lookup the supply
2121  * @alias_id: Supply name or regulator ID that should be used to lookup the
2122  * supply
2123  *
2124  * All lookups for id on dev will instead be conducted for alias_id on
2125  * alias_dev.
2126  */
2127 int regulator_register_supply_alias(struct device *dev, const char *id,
2128                                     struct device *alias_dev,
2129                                     const char *alias_id)
2130 {
2131         struct regulator_supply_alias *map;
2132
2133         map = regulator_find_supply_alias(dev, id);
2134         if (map)
2135                 return -EEXIST;
2136
2137         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2138         if (!map)
2139                 return -ENOMEM;
2140
2141         map->src_dev = dev;
2142         map->src_supply = id;
2143         map->alias_dev = alias_dev;
2144         map->alias_supply = alias_id;
2145
2146         list_add(&map->list, &regulator_supply_alias_list);
2147
2148         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2150
2151         return 0;
2152 }
2153 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2154
2155 /**
2156  * regulator_unregister_supply_alias - Remove device alias
2157  *
2158  * @dev: device that will be given as the regulator "consumer"
2159  * @id: Supply name or regulator ID
2160  *
2161  * Remove a lookup alias if one exists for id on dev.
2162  */
2163 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2164 {
2165         struct regulator_supply_alias *map;
2166
2167         map = regulator_find_supply_alias(dev, id);
2168         if (map) {
2169                 list_del(&map->list);
2170                 kfree(map);
2171         }
2172 }
2173 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2174
2175 /**
2176  * regulator_bulk_register_supply_alias - register multiple aliases
2177  *
2178  * @dev: device that will be given as the regulator "consumer"
2179  * @id: List of supply names or regulator IDs
2180  * @alias_dev: device that should be used to lookup the supply
2181  * @alias_id: List of supply names or regulator IDs that should be used to
2182  * lookup the supply
2183  * @num_id: Number of aliases to register
2184  *
2185  * @return 0 on success, an errno on failure.
2186  *
2187  * This helper function allows drivers to register several supply
2188  * aliases in one operation.  If any of the aliases cannot be
2189  * registered any aliases that were registered will be removed
2190  * before returning to the caller.
2191  */
2192 int regulator_bulk_register_supply_alias(struct device *dev,
2193                                          const char *const *id,
2194                                          struct device *alias_dev,
2195                                          const char *const *alias_id,
2196                                          int num_id)
2197 {
2198         int i;
2199         int ret;
2200
2201         for (i = 0; i < num_id; ++i) {
2202                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2203                                                       alias_id[i]);
2204                 if (ret < 0)
2205                         goto err;
2206         }
2207
2208         return 0;
2209
2210 err:
2211         dev_err(dev,
2212                 "Failed to create supply alias %s,%s -> %s,%s\n",
2213                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2214
2215         while (--i >= 0)
2216                 regulator_unregister_supply_alias(dev, id[i]);
2217
2218         return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2221
2222 /**
2223  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2224  *
2225  * @dev: device that will be given as the regulator "consumer"
2226  * @id: List of supply names or regulator IDs
2227  * @num_id: Number of aliases to unregister
2228  *
2229  * This helper function allows drivers to unregister several supply
2230  * aliases in one operation.
2231  */
2232 void regulator_bulk_unregister_supply_alias(struct device *dev,
2233                                             const char *const *id,
2234                                             int num_id)
2235 {
2236         int i;
2237
2238         for (i = 0; i < num_id; ++i)
2239                 regulator_unregister_supply_alias(dev, id[i]);
2240 }
2241 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2242
2243
2244 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2246                                 const struct regulator_config *config)
2247 {
2248         struct regulator_enable_gpio *pin, *new_pin;
2249         struct gpio_desc *gpiod;
2250
2251         gpiod = config->ena_gpiod;
2252         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2253
2254         mutex_lock(&regulator_list_mutex);
2255
2256         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2257                 if (pin->gpiod == gpiod) {
2258                         rdev_dbg(rdev, "GPIO is already used\n");
2259                         goto update_ena_gpio_to_rdev;
2260                 }
2261         }
2262
2263         if (new_pin == NULL) {
2264                 mutex_unlock(&regulator_list_mutex);
2265                 return -ENOMEM;
2266         }
2267
2268         pin = new_pin;
2269         new_pin = NULL;
2270
2271         pin->gpiod = gpiod;
2272         list_add(&pin->list, &regulator_ena_gpio_list);
2273
2274 update_ena_gpio_to_rdev:
2275         pin->request_count++;
2276         rdev->ena_pin = pin;
2277
2278         mutex_unlock(&regulator_list_mutex);
2279         kfree(new_pin);
2280
2281         return 0;
2282 }
2283
2284 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2285 {
2286         struct regulator_enable_gpio *pin, *n;
2287
2288         if (!rdev->ena_pin)
2289                 return;
2290
2291         /* Free the GPIO only in case of no use */
2292         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2293                 if (pin != rdev->ena_pin)
2294                         continue;
2295
2296                 if (--pin->request_count)
2297                         break;
2298
2299                 gpiod_put(pin->gpiod);
2300                 list_del(&pin->list);
2301                 kfree(pin);
2302                 break;
2303         }
2304
2305         rdev->ena_pin = NULL;
2306 }
2307
2308 /**
2309  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310  * @rdev: regulator_dev structure
2311  * @enable: enable GPIO at initial use?
2312  *
2313  * GPIO is enabled in case of initial use. (enable_count is 0)
2314  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2315  */
2316 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2317 {
2318         struct regulator_enable_gpio *pin = rdev->ena_pin;
2319
2320         if (!pin)
2321                 return -EINVAL;
2322
2323         if (enable) {
2324                 /* Enable GPIO at initial use */
2325                 if (pin->enable_count == 0)
2326                         gpiod_set_value_cansleep(pin->gpiod, 1);
2327
2328                 pin->enable_count++;
2329         } else {
2330                 if (pin->enable_count > 1) {
2331                         pin->enable_count--;
2332                         return 0;
2333                 }
2334
2335                 /* Disable GPIO if not used */
2336                 if (pin->enable_count <= 1) {
2337                         gpiod_set_value_cansleep(pin->gpiod, 0);
2338                         pin->enable_count = 0;
2339                 }
2340         }
2341
2342         return 0;
2343 }
2344
2345 /**
2346  * _regulator_enable_delay - a delay helper function
2347  * @delay: time to delay in microseconds
2348  *
2349  * Delay for the requested amount of time as per the guidelines in:
2350  *
2351  *     Documentation/timers/timers-howto.rst
2352  *
2353  * The assumption here is that regulators will never be enabled in
2354  * atomic context and therefore sleeping functions can be used.
2355  */
2356 static void _regulator_enable_delay(unsigned int delay)
2357 {
2358         unsigned int ms = delay / 1000;
2359         unsigned int us = delay % 1000;
2360
2361         if (ms > 0) {
2362                 /*
2363                  * For small enough values, handle super-millisecond
2364                  * delays in the usleep_range() call below.
2365                  */
2366                 if (ms < 20)
2367                         us += ms * 1000;
2368                 else
2369                         msleep(ms);
2370         }
2371
2372         /*
2373          * Give the scheduler some room to coalesce with any other
2374          * wakeup sources. For delays shorter than 10 us, don't even
2375          * bother setting up high-resolution timers and just busy-
2376          * loop.
2377          */
2378         if (us >= 10)
2379                 usleep_range(us, us + 100);
2380         else
2381                 udelay(us);
2382 }
2383
2384 /**
2385  * _regulator_check_status_enabled
2386  *
2387  * A helper function to check if the regulator status can be interpreted
2388  * as 'regulator is enabled'.
2389  * @rdev: the regulator device to check
2390  *
2391  * Return:
2392  * * 1                  - if status shows regulator is in enabled state
2393  * * 0                  - if not enabled state
2394  * * Error Value        - as received from ops->get_status()
2395  */
2396 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2397 {
2398         int ret = rdev->desc->ops->get_status(rdev);
2399
2400         if (ret < 0) {
2401                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2402                 return ret;
2403         }
2404
2405         switch (ret) {
2406         case REGULATOR_STATUS_OFF:
2407         case REGULATOR_STATUS_ERROR:
2408         case REGULATOR_STATUS_UNDEFINED:
2409                 return 0;
2410         default:
2411                 return 1;
2412         }
2413 }
2414
2415 static int _regulator_do_enable(struct regulator_dev *rdev)
2416 {
2417         int ret, delay;
2418
2419         /* Query before enabling in case configuration dependent.  */
2420         ret = _regulator_get_enable_time(rdev);
2421         if (ret >= 0) {
2422                 delay = ret;
2423         } else {
2424                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2425                 delay = 0;
2426         }
2427
2428         trace_regulator_enable(rdev_get_name(rdev));
2429
2430         if (rdev->desc->off_on_delay) {
2431                 /* if needed, keep a distance of off_on_delay from last time
2432                  * this regulator was disabled.
2433                  */
2434                 unsigned long start_jiffy = jiffies;
2435                 unsigned long intended, max_delay, remaining;
2436
2437                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2438                 intended = rdev->last_off_jiffy + max_delay;
2439
2440                 if (time_before(start_jiffy, intended)) {
2441                         /* calc remaining jiffies to deal with one-time
2442                          * timer wrapping.
2443                          * in case of multiple timer wrapping, either it can be
2444                          * detected by out-of-range remaining, or it cannot be
2445                          * detected and we get a penalty of
2446                          * _regulator_enable_delay().
2447                          */
2448                         remaining = intended - start_jiffy;
2449                         if (remaining <= max_delay)
2450                                 _regulator_enable_delay(
2451                                                 jiffies_to_usecs(remaining));
2452                 }
2453         }
2454
2455         if (rdev->ena_pin) {
2456                 if (!rdev->ena_gpio_state) {
2457                         ret = regulator_ena_gpio_ctrl(rdev, true);
2458                         if (ret < 0)
2459                                 return ret;
2460                         rdev->ena_gpio_state = 1;
2461                 }
2462         } else if (rdev->desc->ops->enable) {
2463                 ret = rdev->desc->ops->enable(rdev);
2464                 if (ret < 0)
2465                         return ret;
2466         } else {
2467                 return -EINVAL;
2468         }
2469
2470         /* Allow the regulator to ramp; it would be useful to extend
2471          * this for bulk operations so that the regulators can ramp
2472          * together.  */
2473         trace_regulator_enable_delay(rdev_get_name(rdev));
2474
2475         /* If poll_enabled_time is set, poll upto the delay calculated
2476          * above, delaying poll_enabled_time uS to check if the regulator
2477          * actually got enabled.
2478          * If the regulator isn't enabled after enable_delay has
2479          * expired, return -ETIMEDOUT.
2480          */
2481         if (rdev->desc->poll_enabled_time) {
2482                 unsigned int time_remaining = delay;
2483
2484                 while (time_remaining > 0) {
2485                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2486
2487                         if (rdev->desc->ops->get_status) {
2488                                 ret = _regulator_check_status_enabled(rdev);
2489                                 if (ret < 0)
2490                                         return ret;
2491                                 else if (ret)
2492                                         break;
2493                         } else if (rdev->desc->ops->is_enabled(rdev))
2494                                 break;
2495
2496                         time_remaining -= rdev->desc->poll_enabled_time;
2497                 }
2498
2499                 if (time_remaining <= 0) {
2500                         rdev_err(rdev, "Enabled check timed out\n");
2501                         return -ETIMEDOUT;
2502                 }
2503         } else {
2504                 _regulator_enable_delay(delay);
2505         }
2506
2507         trace_regulator_enable_complete(rdev_get_name(rdev));
2508
2509         return 0;
2510 }
2511
2512 /**
2513  * _regulator_handle_consumer_enable - handle that a consumer enabled
2514  * @regulator: regulator source
2515  *
2516  * Some things on a regulator consumer (like the contribution towards total
2517  * load on the regulator) only have an effect when the consumer wants the
2518  * regulator enabled.  Explained in example with two consumers of the same
2519  * regulator:
2520  *   consumer A: set_load(100);       => total load = 0
2521  *   consumer A: regulator_enable();  => total load = 100
2522  *   consumer B: set_load(1000);      => total load = 100
2523  *   consumer B: regulator_enable();  => total load = 1100
2524  *   consumer A: regulator_disable(); => total_load = 1000
2525  *
2526  * This function (together with _regulator_handle_consumer_disable) is
2527  * responsible for keeping track of the refcount for a given regulator consumer
2528  * and applying / unapplying these things.
2529  *
2530  * Returns 0 upon no error; -error upon error.
2531  */
2532 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2533 {
2534         struct regulator_dev *rdev = regulator->rdev;
2535
2536         lockdep_assert_held_once(&rdev->mutex.base);
2537
2538         regulator->enable_count++;
2539         if (regulator->uA_load && regulator->enable_count == 1)
2540                 return drms_uA_update(rdev);
2541
2542         return 0;
2543 }
2544
2545 /**
2546  * _regulator_handle_consumer_disable - handle that a consumer disabled
2547  * @regulator: regulator source
2548  *
2549  * The opposite of _regulator_handle_consumer_enable().
2550  *
2551  * Returns 0 upon no error; -error upon error.
2552  */
2553 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2554 {
2555         struct regulator_dev *rdev = regulator->rdev;
2556
2557         lockdep_assert_held_once(&rdev->mutex.base);
2558
2559         if (!regulator->enable_count) {
2560                 rdev_err(rdev, "Underflow of regulator enable count\n");
2561                 return -EINVAL;
2562         }
2563
2564         regulator->enable_count--;
2565         if (regulator->uA_load && regulator->enable_count == 0)
2566                 return drms_uA_update(rdev);
2567
2568         return 0;
2569 }
2570
2571 /* locks held by regulator_enable() */
2572 static int _regulator_enable(struct regulator *regulator)
2573 {
2574         struct regulator_dev *rdev = regulator->rdev;
2575         int ret;
2576
2577         lockdep_assert_held_once(&rdev->mutex.base);
2578
2579         if (rdev->use_count == 0 && rdev->supply) {
2580                 ret = _regulator_enable(rdev->supply);
2581                 if (ret < 0)
2582                         return ret;
2583         }
2584
2585         /* balance only if there are regulators coupled */
2586         if (rdev->coupling_desc.n_coupled > 1) {
2587                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2588                 if (ret < 0)
2589                         goto err_disable_supply;
2590         }
2591
2592         ret = _regulator_handle_consumer_enable(regulator);
2593         if (ret < 0)
2594                 goto err_disable_supply;
2595
2596         if (rdev->use_count == 0) {
2597                 /* The regulator may on if it's not switchable or left on */
2598                 ret = _regulator_is_enabled(rdev);
2599                 if (ret == -EINVAL || ret == 0) {
2600                         if (!regulator_ops_is_valid(rdev,
2601                                         REGULATOR_CHANGE_STATUS)) {
2602                                 ret = -EPERM;
2603                                 goto err_consumer_disable;
2604                         }
2605
2606                         ret = _regulator_do_enable(rdev);
2607                         if (ret < 0)
2608                                 goto err_consumer_disable;
2609
2610                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2611                                              NULL);
2612                 } else if (ret < 0) {
2613                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2614                         goto err_consumer_disable;
2615                 }
2616                 /* Fallthrough on positive return values - already enabled */
2617         }
2618
2619         rdev->use_count++;
2620
2621         return 0;
2622
2623 err_consumer_disable:
2624         _regulator_handle_consumer_disable(regulator);
2625
2626 err_disable_supply:
2627         if (rdev->use_count == 0 && rdev->supply)
2628                 _regulator_disable(rdev->supply);
2629
2630         return ret;
2631 }
2632
2633 /**
2634  * regulator_enable - enable regulator output
2635  * @regulator: regulator source
2636  *
2637  * Request that the regulator be enabled with the regulator output at
2638  * the predefined voltage or current value.  Calls to regulator_enable()
2639  * must be balanced with calls to regulator_disable().
2640  *
2641  * NOTE: the output value can be set by other drivers, boot loader or may be
2642  * hardwired in the regulator.
2643  */
2644 int regulator_enable(struct regulator *regulator)
2645 {
2646         struct regulator_dev *rdev = regulator->rdev;
2647         struct ww_acquire_ctx ww_ctx;
2648         int ret;
2649
2650         regulator_lock_dependent(rdev, &ww_ctx);
2651         ret = _regulator_enable(regulator);
2652         regulator_unlock_dependent(rdev, &ww_ctx);
2653
2654         return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(regulator_enable);
2657
2658 static int _regulator_do_disable(struct regulator_dev *rdev)
2659 {
2660         int ret;
2661
2662         trace_regulator_disable(rdev_get_name(rdev));
2663
2664         if (rdev->ena_pin) {
2665                 if (rdev->ena_gpio_state) {
2666                         ret = regulator_ena_gpio_ctrl(rdev, false);
2667                         if (ret < 0)
2668                                 return ret;
2669                         rdev->ena_gpio_state = 0;
2670                 }
2671
2672         } else if (rdev->desc->ops->disable) {
2673                 ret = rdev->desc->ops->disable(rdev);
2674                 if (ret != 0)
2675                         return ret;
2676         }
2677
2678         /* cares about last_off_jiffy only if off_on_delay is required by
2679          * device.
2680          */
2681         if (rdev->desc->off_on_delay)
2682                 rdev->last_off_jiffy = jiffies;
2683
2684         trace_regulator_disable_complete(rdev_get_name(rdev));
2685
2686         return 0;
2687 }
2688
2689 /* locks held by regulator_disable() */
2690 static int _regulator_disable(struct regulator *regulator)
2691 {
2692         struct regulator_dev *rdev = regulator->rdev;
2693         int ret = 0;
2694
2695         lockdep_assert_held_once(&rdev->mutex.base);
2696
2697         if (WARN(rdev->use_count <= 0,
2698                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2699                 return -EIO;
2700
2701         /* are we the last user and permitted to disable ? */
2702         if (rdev->use_count == 1 &&
2703             (rdev->constraints && !rdev->constraints->always_on)) {
2704
2705                 /* we are last user */
2706                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2707                         ret = _notifier_call_chain(rdev,
2708                                                    REGULATOR_EVENT_PRE_DISABLE,
2709                                                    NULL);
2710                         if (ret & NOTIFY_STOP_MASK)
2711                                 return -EINVAL;
2712
2713                         ret = _regulator_do_disable(rdev);
2714                         if (ret < 0) {
2715                                 rdev_err(rdev, "failed to disable\n");
2716                                 _notifier_call_chain(rdev,
2717                                                 REGULATOR_EVENT_ABORT_DISABLE,
2718                                                 NULL);
2719                                 return ret;
2720                         }
2721                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2722                                         NULL);
2723                 }
2724
2725                 rdev->use_count = 0;
2726         } else if (rdev->use_count > 1) {
2727                 rdev->use_count--;
2728         }
2729
2730         if (ret == 0)
2731                 ret = _regulator_handle_consumer_disable(regulator);
2732
2733         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2734                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2735
2736         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2737                 ret = _regulator_disable(rdev->supply);
2738
2739         return ret;
2740 }
2741
2742 /**
2743  * regulator_disable - disable regulator output
2744  * @regulator: regulator source
2745  *
2746  * Disable the regulator output voltage or current.  Calls to
2747  * regulator_enable() must be balanced with calls to
2748  * regulator_disable().
2749  *
2750  * NOTE: this will only disable the regulator output if no other consumer
2751  * devices have it enabled, the regulator device supports disabling and
2752  * machine constraints permit this operation.
2753  */
2754 int regulator_disable(struct regulator *regulator)
2755 {
2756         struct regulator_dev *rdev = regulator->rdev;
2757         struct ww_acquire_ctx ww_ctx;
2758         int ret;
2759
2760         regulator_lock_dependent(rdev, &ww_ctx);
2761         ret = _regulator_disable(regulator);
2762         regulator_unlock_dependent(rdev, &ww_ctx);
2763
2764         return ret;
2765 }
2766 EXPORT_SYMBOL_GPL(regulator_disable);
2767
2768 /* locks held by regulator_force_disable() */
2769 static int _regulator_force_disable(struct regulator_dev *rdev)
2770 {
2771         int ret = 0;
2772
2773         lockdep_assert_held_once(&rdev->mutex.base);
2774
2775         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2776                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2777         if (ret & NOTIFY_STOP_MASK)
2778                 return -EINVAL;
2779
2780         ret = _regulator_do_disable(rdev);
2781         if (ret < 0) {
2782                 rdev_err(rdev, "failed to force disable\n");
2783                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2784                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2785                 return ret;
2786         }
2787
2788         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2789                         REGULATOR_EVENT_DISABLE, NULL);
2790
2791         return 0;
2792 }
2793
2794 /**
2795  * regulator_force_disable - force disable regulator output
2796  * @regulator: regulator source
2797  *
2798  * Forcibly disable the regulator output voltage or current.
2799  * NOTE: this *will* disable the regulator output even if other consumer
2800  * devices have it enabled. This should be used for situations when device
2801  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2802  */
2803 int regulator_force_disable(struct regulator *regulator)
2804 {
2805         struct regulator_dev *rdev = regulator->rdev;
2806         struct ww_acquire_ctx ww_ctx;
2807         int ret;
2808
2809         regulator_lock_dependent(rdev, &ww_ctx);
2810
2811         ret = _regulator_force_disable(regulator->rdev);
2812
2813         if (rdev->coupling_desc.n_coupled > 1)
2814                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2815
2816         if (regulator->uA_load) {
2817                 regulator->uA_load = 0;
2818                 ret = drms_uA_update(rdev);
2819         }
2820
2821         if (rdev->use_count != 0 && rdev->supply)
2822                 _regulator_disable(rdev->supply);
2823
2824         regulator_unlock_dependent(rdev, &ww_ctx);
2825
2826         return ret;
2827 }
2828 EXPORT_SYMBOL_GPL(regulator_force_disable);
2829
2830 static void regulator_disable_work(struct work_struct *work)
2831 {
2832         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2833                                                   disable_work.work);
2834         struct ww_acquire_ctx ww_ctx;
2835         int count, i, ret;
2836         struct regulator *regulator;
2837         int total_count = 0;
2838
2839         regulator_lock_dependent(rdev, &ww_ctx);
2840
2841         /*
2842          * Workqueue functions queue the new work instance while the previous
2843          * work instance is being processed. Cancel the queued work instance
2844          * as the work instance under processing does the job of the queued
2845          * work instance.
2846          */
2847         cancel_delayed_work(&rdev->disable_work);
2848
2849         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2850                 count = regulator->deferred_disables;
2851
2852                 if (!count)
2853                         continue;
2854
2855                 total_count += count;
2856                 regulator->deferred_disables = 0;
2857
2858                 for (i = 0; i < count; i++) {
2859                         ret = _regulator_disable(regulator);
2860                         if (ret != 0)
2861                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2862                 }
2863         }
2864         WARN_ON(!total_count);
2865
2866         if (rdev->coupling_desc.n_coupled > 1)
2867                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2868
2869         regulator_unlock_dependent(rdev, &ww_ctx);
2870 }
2871
2872 /**
2873  * regulator_disable_deferred - disable regulator output with delay
2874  * @regulator: regulator source
2875  * @ms: milliseconds until the regulator is disabled
2876  *
2877  * Execute regulator_disable() on the regulator after a delay.  This
2878  * is intended for use with devices that require some time to quiesce.
2879  *
2880  * NOTE: this will only disable the regulator output if no other consumer
2881  * devices have it enabled, the regulator device supports disabling and
2882  * machine constraints permit this operation.
2883  */
2884 int regulator_disable_deferred(struct regulator *regulator, int ms)
2885 {
2886         struct regulator_dev *rdev = regulator->rdev;
2887
2888         if (!ms)
2889                 return regulator_disable(regulator);
2890
2891         regulator_lock(rdev);
2892         regulator->deferred_disables++;
2893         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2894                          msecs_to_jiffies(ms));
2895         regulator_unlock(rdev);
2896
2897         return 0;
2898 }
2899 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2900
2901 static int _regulator_is_enabled(struct regulator_dev *rdev)
2902 {
2903         /* A GPIO control always takes precedence */
2904         if (rdev->ena_pin)
2905                 return rdev->ena_gpio_state;
2906
2907         /* If we don't know then assume that the regulator is always on */
2908         if (!rdev->desc->ops->is_enabled)
2909                 return 1;
2910
2911         return rdev->desc->ops->is_enabled(rdev);
2912 }
2913
2914 static int _regulator_list_voltage(struct regulator_dev *rdev,
2915                                    unsigned selector, int lock)
2916 {
2917         const struct regulator_ops *ops = rdev->desc->ops;
2918         int ret;
2919
2920         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2921                 return rdev->desc->fixed_uV;
2922
2923         if (ops->list_voltage) {
2924                 if (selector >= rdev->desc->n_voltages)
2925                         return -EINVAL;
2926                 if (lock)
2927                         regulator_lock(rdev);
2928                 ret = ops->list_voltage(rdev, selector);
2929                 if (lock)
2930                         regulator_unlock(rdev);
2931         } else if (rdev->is_switch && rdev->supply) {
2932                 ret = _regulator_list_voltage(rdev->supply->rdev,
2933                                               selector, lock);
2934         } else {
2935                 return -EINVAL;
2936         }
2937
2938         if (ret > 0) {
2939                 if (ret < rdev->constraints->min_uV)
2940                         ret = 0;
2941                 else if (ret > rdev->constraints->max_uV)
2942                         ret = 0;
2943         }
2944
2945         return ret;
2946 }
2947
2948 /**
2949  * regulator_is_enabled - is the regulator output enabled
2950  * @regulator: regulator source
2951  *
2952  * Returns positive if the regulator driver backing the source/client
2953  * has requested that the device be enabled, zero if it hasn't, else a
2954  * negative errno code.
2955  *
2956  * Note that the device backing this regulator handle can have multiple
2957  * users, so it might be enabled even if regulator_enable() was never
2958  * called for this particular source.
2959  */
2960 int regulator_is_enabled(struct regulator *regulator)
2961 {
2962         int ret;
2963
2964         if (regulator->always_on)
2965                 return 1;
2966
2967         regulator_lock(regulator->rdev);
2968         ret = _regulator_is_enabled(regulator->rdev);
2969         regulator_unlock(regulator->rdev);
2970
2971         return ret;
2972 }
2973 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2974
2975 /**
2976  * regulator_count_voltages - count regulator_list_voltage() selectors
2977  * @regulator: regulator source
2978  *
2979  * Returns number of selectors, or negative errno.  Selectors are
2980  * numbered starting at zero, and typically correspond to bitfields
2981  * in hardware registers.
2982  */
2983 int regulator_count_voltages(struct regulator *regulator)
2984 {
2985         struct regulator_dev    *rdev = regulator->rdev;
2986
2987         if (rdev->desc->n_voltages)
2988                 return rdev->desc->n_voltages;
2989
2990         if (!rdev->is_switch || !rdev->supply)
2991                 return -EINVAL;
2992
2993         return regulator_count_voltages(rdev->supply);
2994 }
2995 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2996
2997 /**
2998  * regulator_list_voltage - enumerate supported voltages
2999  * @regulator: regulator source
3000  * @selector: identify voltage to list
3001  * Context: can sleep
3002  *
3003  * Returns a voltage that can be passed to @regulator_set_voltage(),
3004  * zero if this selector code can't be used on this system, or a
3005  * negative errno.
3006  */
3007 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3008 {
3009         return _regulator_list_voltage(regulator->rdev, selector, 1);
3010 }
3011 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3012
3013 /**
3014  * regulator_get_regmap - get the regulator's register map
3015  * @regulator: regulator source
3016  *
3017  * Returns the register map for the given regulator, or an ERR_PTR value
3018  * if the regulator doesn't use regmap.
3019  */
3020 struct regmap *regulator_get_regmap(struct regulator *regulator)
3021 {
3022         struct regmap *map = regulator->rdev->regmap;
3023
3024         return map ? map : ERR_PTR(-EOPNOTSUPP);
3025 }
3026
3027 /**
3028  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029  * @regulator: regulator source
3030  * @vsel_reg: voltage selector register, output parameter
3031  * @vsel_mask: mask for voltage selector bitfield, output parameter
3032  *
3033  * Returns the hardware register offset and bitmask used for setting the
3034  * regulator voltage. This might be useful when configuring voltage-scaling
3035  * hardware or firmware that can make I2C requests behind the kernel's back,
3036  * for example.
3037  *
3038  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039  * and 0 is returned, otherwise a negative errno is returned.
3040  */
3041 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3042                                          unsigned *vsel_reg,
3043                                          unsigned *vsel_mask)
3044 {
3045         struct regulator_dev *rdev = regulator->rdev;
3046         const struct regulator_ops *ops = rdev->desc->ops;
3047
3048         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3049                 return -EOPNOTSUPP;
3050
3051         *vsel_reg = rdev->desc->vsel_reg;
3052         *vsel_mask = rdev->desc->vsel_mask;
3053
3054          return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3057
3058 /**
3059  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060  * @regulator: regulator source
3061  * @selector: identify voltage to list
3062  *
3063  * Converts the selector to a hardware-specific voltage selector that can be
3064  * directly written to the regulator registers. The address of the voltage
3065  * register can be determined by calling @regulator_get_hardware_vsel_register.
3066  *
3067  * On error a negative errno is returned.
3068  */
3069 int regulator_list_hardware_vsel(struct regulator *regulator,
3070                                  unsigned selector)
3071 {
3072         struct regulator_dev *rdev = regulator->rdev;
3073         const struct regulator_ops *ops = rdev->desc->ops;
3074
3075         if (selector >= rdev->desc->n_voltages)
3076                 return -EINVAL;
3077         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3078                 return -EOPNOTSUPP;
3079
3080         return selector;
3081 }
3082 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3083
3084 /**
3085  * regulator_get_linear_step - return the voltage step size between VSEL values
3086  * @regulator: regulator source
3087  *
3088  * Returns the voltage step size between VSEL values for linear
3089  * regulators, or return 0 if the regulator isn't a linear regulator.
3090  */
3091 unsigned int regulator_get_linear_step(struct regulator *regulator)
3092 {
3093         struct regulator_dev *rdev = regulator->rdev;
3094
3095         return rdev->desc->uV_step;
3096 }
3097 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3098
3099 /**
3100  * regulator_is_supported_voltage - check if a voltage range can be supported
3101  *
3102  * @regulator: Regulator to check.
3103  * @min_uV: Minimum required voltage in uV.
3104  * @max_uV: Maximum required voltage in uV.
3105  *
3106  * Returns a boolean.
3107  */
3108 int regulator_is_supported_voltage(struct regulator *regulator,
3109                                    int min_uV, int max_uV)
3110 {
3111         struct regulator_dev *rdev = regulator->rdev;
3112         int i, voltages, ret;
3113
3114         /* If we can't change voltage check the current voltage */
3115         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3116                 ret = regulator_get_voltage(regulator);
3117                 if (ret >= 0)
3118                         return min_uV <= ret && ret <= max_uV;
3119                 else
3120                         return ret;
3121         }
3122
3123         /* Any voltage within constrains range is fine? */
3124         if (rdev->desc->continuous_voltage_range)
3125                 return min_uV >= rdev->constraints->min_uV &&
3126                                 max_uV <= rdev->constraints->max_uV;
3127
3128         ret = regulator_count_voltages(regulator);
3129         if (ret < 0)
3130                 return 0;
3131         voltages = ret;
3132
3133         for (i = 0; i < voltages; i++) {
3134                 ret = regulator_list_voltage(regulator, i);
3135
3136                 if (ret >= min_uV && ret <= max_uV)
3137                         return 1;
3138         }
3139
3140         return 0;
3141 }
3142 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3143
3144 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3145                                  int max_uV)
3146 {
3147         const struct regulator_desc *desc = rdev->desc;
3148
3149         if (desc->ops->map_voltage)
3150                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3151
3152         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3153                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3154
3155         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3156                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3157
3158         if (desc->ops->list_voltage ==
3159                 regulator_list_voltage_pickable_linear_range)
3160                 return regulator_map_voltage_pickable_linear_range(rdev,
3161                                                         min_uV, max_uV);
3162
3163         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3164 }
3165
3166 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3167                                        int min_uV, int max_uV,
3168                                        unsigned *selector)
3169 {
3170         struct pre_voltage_change_data data;
3171         int ret;
3172
3173         data.old_uV = regulator_get_voltage_rdev(rdev);
3174         data.min_uV = min_uV;
3175         data.max_uV = max_uV;
3176         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3177                                    &data);
3178         if (ret & NOTIFY_STOP_MASK)
3179                 return -EINVAL;
3180
3181         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3182         if (ret >= 0)
3183                 return ret;
3184
3185         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3186                              (void *)data.old_uV);
3187
3188         return ret;
3189 }
3190
3191 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3192                                            int uV, unsigned selector)
3193 {
3194         struct pre_voltage_change_data data;
3195         int ret;
3196
3197         data.old_uV = regulator_get_voltage_rdev(rdev);
3198         data.min_uV = uV;
3199         data.max_uV = uV;
3200         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3201                                    &data);
3202         if (ret & NOTIFY_STOP_MASK)
3203                 return -EINVAL;
3204
3205         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3206         if (ret >= 0)
3207                 return ret;
3208
3209         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3210                              (void *)data.old_uV);
3211
3212         return ret;
3213 }
3214
3215 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3216                                            int uV, int new_selector)
3217 {
3218         const struct regulator_ops *ops = rdev->desc->ops;
3219         int diff, old_sel, curr_sel, ret;
3220
3221         /* Stepping is only needed if the regulator is enabled. */
3222         if (!_regulator_is_enabled(rdev))
3223                 goto final_set;
3224
3225         if (!ops->get_voltage_sel)
3226                 return -EINVAL;
3227
3228         old_sel = ops->get_voltage_sel(rdev);
3229         if (old_sel < 0)
3230                 return old_sel;
3231
3232         diff = new_selector - old_sel;
3233         if (diff == 0)
3234                 return 0; /* No change needed. */
3235
3236         if (diff > 0) {
3237                 /* Stepping up. */
3238                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3239                      curr_sel < new_selector;
3240                      curr_sel += rdev->desc->vsel_step) {
3241                         /*
3242                          * Call the callback directly instead of using
3243                          * _regulator_call_set_voltage_sel() as we don't
3244                          * want to notify anyone yet. Same in the branch
3245                          * below.
3246                          */
3247                         ret = ops->set_voltage_sel(rdev, curr_sel);
3248                         if (ret)
3249                                 goto try_revert;
3250                 }
3251         } else {
3252                 /* Stepping down. */
3253                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3254                      curr_sel > new_selector;
3255                      curr_sel -= rdev->desc->vsel_step) {
3256                         ret = ops->set_voltage_sel(rdev, curr_sel);
3257                         if (ret)
3258                                 goto try_revert;
3259                 }
3260         }
3261
3262 final_set:
3263         /* The final selector will trigger the notifiers. */
3264         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3265
3266 try_revert:
3267         /*
3268          * At least try to return to the previous voltage if setting a new
3269          * one failed.
3270          */
3271         (void)ops->set_voltage_sel(rdev, old_sel);
3272         return ret;
3273 }
3274
3275 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3276                                        int old_uV, int new_uV)
3277 {
3278         unsigned int ramp_delay = 0;
3279
3280         if (rdev->constraints->ramp_delay)
3281                 ramp_delay = rdev->constraints->ramp_delay;
3282         else if (rdev->desc->ramp_delay)
3283                 ramp_delay = rdev->desc->ramp_delay;
3284         else if (rdev->constraints->settling_time)
3285                 return rdev->constraints->settling_time;
3286         else if (rdev->constraints->settling_time_up &&
3287                  (new_uV > old_uV))
3288                 return rdev->constraints->settling_time_up;
3289         else if (rdev->constraints->settling_time_down &&
3290                  (new_uV < old_uV))
3291                 return rdev->constraints->settling_time_down;
3292
3293         if (ramp_delay == 0) {
3294                 rdev_dbg(rdev, "ramp_delay not set\n");
3295                 return 0;
3296         }
3297
3298         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3299 }
3300
3301 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3302                                      int min_uV, int max_uV)
3303 {
3304         int ret;
3305         int delay = 0;
3306         int best_val = 0;
3307         unsigned int selector;
3308         int old_selector = -1;
3309         const struct regulator_ops *ops = rdev->desc->ops;
3310         int old_uV = regulator_get_voltage_rdev(rdev);
3311
3312         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3313
3314         min_uV += rdev->constraints->uV_offset;
3315         max_uV += rdev->constraints->uV_offset;
3316
3317         /*
3318          * If we can't obtain the old selector there is not enough
3319          * info to call set_voltage_time_sel().
3320          */
3321         if (_regulator_is_enabled(rdev) &&
3322             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3323                 old_selector = ops->get_voltage_sel(rdev);
3324                 if (old_selector < 0)
3325                         return old_selector;
3326         }
3327
3328         if (ops->set_voltage) {
3329                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3330                                                   &selector);
3331
3332                 if (ret >= 0) {
3333                         if (ops->list_voltage)
3334                                 best_val = ops->list_voltage(rdev,
3335                                                              selector);
3336                         else
3337                                 best_val = regulator_get_voltage_rdev(rdev);
3338                 }
3339
3340         } else if (ops->set_voltage_sel) {
3341                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3342                 if (ret >= 0) {
3343                         best_val = ops->list_voltage(rdev, ret);
3344                         if (min_uV <= best_val && max_uV >= best_val) {
3345                                 selector = ret;
3346                                 if (old_selector == selector)
3347                                         ret = 0;
3348                                 else if (rdev->desc->vsel_step)
3349                                         ret = _regulator_set_voltage_sel_step(
3350                                                 rdev, best_val, selector);
3351                                 else
3352                                         ret = _regulator_call_set_voltage_sel(
3353                                                 rdev, best_val, selector);
3354                         } else {
3355                                 ret = -EINVAL;
3356                         }
3357                 }
3358         } else {
3359                 ret = -EINVAL;
3360         }
3361
3362         if (ret)
3363                 goto out;
3364
3365         if (ops->set_voltage_time_sel) {
3366                 /*
3367                  * Call set_voltage_time_sel if successfully obtained
3368                  * old_selector
3369                  */
3370                 if (old_selector >= 0 && old_selector != selector)
3371                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3372                                                           selector);
3373         } else {
3374                 if (old_uV != best_val) {
3375                         if (ops->set_voltage_time)
3376                                 delay = ops->set_voltage_time(rdev, old_uV,
3377                                                               best_val);
3378                         else
3379                                 delay = _regulator_set_voltage_time(rdev,
3380                                                                     old_uV,
3381                                                                     best_val);
3382                 }
3383         }
3384
3385         if (delay < 0) {
3386                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3387                 delay = 0;
3388         }
3389
3390         /* Insert any necessary delays */
3391         if (delay >= 1000) {
3392                 mdelay(delay / 1000);
3393                 udelay(delay % 1000);
3394         } else if (delay) {
3395                 udelay(delay);
3396         }
3397
3398         if (best_val >= 0) {
3399                 unsigned long data = best_val;
3400
3401                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3402                                      (void *)data);
3403         }
3404
3405 out:
3406         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3407
3408         return ret;
3409 }
3410
3411 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3412                                   int min_uV, int max_uV, suspend_state_t state)
3413 {
3414         struct regulator_state *rstate;
3415         int uV, sel;
3416
3417         rstate = regulator_get_suspend_state(rdev, state);
3418         if (rstate == NULL)
3419                 return -EINVAL;
3420
3421         if (min_uV < rstate->min_uV)
3422                 min_uV = rstate->min_uV;
3423         if (max_uV > rstate->max_uV)
3424                 max_uV = rstate->max_uV;
3425
3426         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3427         if (sel < 0)
3428                 return sel;
3429
3430         uV = rdev->desc->ops->list_voltage(rdev, sel);
3431         if (uV >= min_uV && uV <= max_uV)
3432                 rstate->uV = uV;
3433
3434         return 0;
3435 }
3436
3437 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3438                                           int min_uV, int max_uV,
3439                                           suspend_state_t state)
3440 {
3441         struct regulator_dev *rdev = regulator->rdev;
3442         struct regulator_voltage *voltage = &regulator->voltage[state];
3443         int ret = 0;
3444         int old_min_uV, old_max_uV;
3445         int current_uV;
3446
3447         /* If we're setting the same range as last time the change
3448          * should be a noop (some cpufreq implementations use the same
3449          * voltage for multiple frequencies, for example).
3450          */
3451         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3452                 goto out;
3453
3454         /* If we're trying to set a range that overlaps the current voltage,
3455          * return successfully even though the regulator does not support
3456          * changing the voltage.
3457          */
3458         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3459                 current_uV = regulator_get_voltage_rdev(rdev);
3460                 if (min_uV <= current_uV && current_uV <= max_uV) {
3461                         voltage->min_uV = min_uV;
3462                         voltage->max_uV = max_uV;
3463                         goto out;
3464                 }
3465         }
3466
3467         /* sanity check */
3468         if (!rdev->desc->ops->set_voltage &&
3469             !rdev->desc->ops->set_voltage_sel) {
3470                 ret = -EINVAL;
3471                 goto out;
3472         }
3473
3474         /* constraints check */
3475         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3476         if (ret < 0)
3477                 goto out;
3478
3479         /* restore original values in case of error */
3480         old_min_uV = voltage->min_uV;
3481         old_max_uV = voltage->max_uV;
3482         voltage->min_uV = min_uV;
3483         voltage->max_uV = max_uV;
3484
3485         /* for not coupled regulators this will just set the voltage */
3486         ret = regulator_balance_voltage(rdev, state);
3487         if (ret < 0) {
3488                 voltage->min_uV = old_min_uV;
3489                 voltage->max_uV = old_max_uV;
3490         }
3491
3492 out:
3493         return ret;
3494 }
3495
3496 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3497                                int max_uV, suspend_state_t state)
3498 {
3499         int best_supply_uV = 0;
3500         int supply_change_uV = 0;
3501         int ret;
3502
3503         if (rdev->supply &&
3504             regulator_ops_is_valid(rdev->supply->rdev,
3505                                    REGULATOR_CHANGE_VOLTAGE) &&
3506             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3507                                            rdev->desc->ops->get_voltage_sel))) {
3508                 int current_supply_uV;
3509                 int selector;
3510
3511                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3512                 if (selector < 0) {
3513                         ret = selector;
3514                         goto out;
3515                 }
3516
3517                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3518                 if (best_supply_uV < 0) {
3519                         ret = best_supply_uV;
3520                         goto out;
3521                 }
3522
3523                 best_supply_uV += rdev->desc->min_dropout_uV;
3524
3525                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3526                 if (current_supply_uV < 0) {
3527                         ret = current_supply_uV;
3528                         goto out;
3529                 }
3530
3531                 supply_change_uV = best_supply_uV - current_supply_uV;
3532         }
3533
3534         if (supply_change_uV > 0) {
3535                 ret = regulator_set_voltage_unlocked(rdev->supply,
3536                                 best_supply_uV, INT_MAX, state);
3537                 if (ret) {
3538                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3539                                         ret);
3540                         goto out;
3541                 }
3542         }
3543
3544         if (state == PM_SUSPEND_ON)
3545                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3546         else
3547                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3548                                                         max_uV, state);
3549         if (ret < 0)
3550                 goto out;
3551
3552         if (supply_change_uV < 0) {
3553                 ret = regulator_set_voltage_unlocked(rdev->supply,
3554                                 best_supply_uV, INT_MAX, state);
3555                 if (ret)
3556                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3557                                         ret);
3558                 /* No need to fail here */
3559                 ret = 0;
3560         }
3561
3562 out:
3563         return ret;
3564 }
3565 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3566
3567 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3568                                         int *current_uV, int *min_uV)
3569 {
3570         struct regulation_constraints *constraints = rdev->constraints;
3571
3572         /* Limit voltage change only if necessary */
3573         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3574                 return 1;
3575
3576         if (*current_uV < 0) {
3577                 *current_uV = regulator_get_voltage_rdev(rdev);
3578
3579                 if (*current_uV < 0)
3580                         return *current_uV;
3581         }
3582
3583         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3584                 return 1;
3585
3586         /* Clamp target voltage within the given step */
3587         if (*current_uV < *min_uV)
3588                 *min_uV = min(*current_uV + constraints->max_uV_step,
3589                               *min_uV);
3590         else
3591                 *min_uV = max(*current_uV - constraints->max_uV_step,
3592                               *min_uV);
3593
3594         return 0;
3595 }
3596
3597 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3598                                          int *current_uV,
3599                                          int *min_uV, int *max_uV,
3600                                          suspend_state_t state,
3601                                          int n_coupled)
3602 {
3603         struct coupling_desc *c_desc = &rdev->coupling_desc;
3604         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3605         struct regulation_constraints *constraints = rdev->constraints;
3606         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3607         int max_current_uV = 0, min_current_uV = INT_MAX;
3608         int highest_min_uV = 0, target_uV, possible_uV;
3609         int i, ret, max_spread;
3610         bool done;
3611
3612         *current_uV = -1;
3613
3614         /*
3615          * If there are no coupled regulators, simply set the voltage
3616          * demanded by consumers.
3617          */
3618         if (n_coupled == 1) {
3619                 /*
3620                  * If consumers don't provide any demands, set voltage
3621                  * to min_uV
3622                  */
3623                 desired_min_uV = constraints->min_uV;
3624                 desired_max_uV = constraints->max_uV;
3625
3626                 ret = regulator_check_consumers(rdev,
3627                                                 &desired_min_uV,
3628                                                 &desired_max_uV, state);
3629                 if (ret < 0)
3630                         return ret;
3631
3632                 possible_uV = desired_min_uV;
3633                 done = true;
3634
3635                 goto finish;
3636         }
3637
3638         /* Find highest min desired voltage */
3639         for (i = 0; i < n_coupled; i++) {
3640                 int tmp_min = 0;
3641                 int tmp_max = INT_MAX;
3642
3643                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3644
3645                 ret = regulator_check_consumers(c_rdevs[i],
3646                                                 &tmp_min,
3647                                                 &tmp_max, state);
3648                 if (ret < 0)
3649                         return ret;
3650
3651                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3652                 if (ret < 0)
3653                         return ret;
3654
3655                 highest_min_uV = max(highest_min_uV, tmp_min);
3656
3657                 if (i == 0) {
3658                         desired_min_uV = tmp_min;
3659                         desired_max_uV = tmp_max;
3660                 }
3661         }
3662
3663         max_spread = constraints->max_spread[0];
3664
3665         /*
3666          * Let target_uV be equal to the desired one if possible.
3667          * If not, set it to minimum voltage, allowed by other coupled
3668          * regulators.
3669          */
3670         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3671
3672         /*
3673          * Find min and max voltages, which currently aren't violating
3674          * max_spread.
3675          */
3676         for (i = 1; i < n_coupled; i++) {
3677                 int tmp_act;
3678
3679                 if (!_regulator_is_enabled(c_rdevs[i]))
3680                         continue;
3681
3682                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3683                 if (tmp_act < 0)
3684                         return tmp_act;
3685
3686                 min_current_uV = min(tmp_act, min_current_uV);
3687                 max_current_uV = max(tmp_act, max_current_uV);
3688         }
3689
3690         /* There aren't any other regulators enabled */
3691         if (max_current_uV == 0) {
3692                 possible_uV = target_uV;
3693         } else {
3694                 /*
3695                  * Correct target voltage, so as it currently isn't
3696                  * violating max_spread
3697                  */
3698                 possible_uV = max(target_uV, max_current_uV - max_spread);
3699                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3700         }
3701
3702         if (possible_uV > desired_max_uV)
3703                 return -EINVAL;
3704
3705         done = (possible_uV == target_uV);
3706         desired_min_uV = possible_uV;
3707
3708 finish:
3709         /* Apply max_uV_step constraint if necessary */
3710         if (state == PM_SUSPEND_ON) {
3711                 ret = regulator_limit_voltage_step(rdev, current_uV,
3712                                                    &desired_min_uV);
3713                 if (ret < 0)
3714                         return ret;
3715
3716                 if (ret == 0)
3717                         done = false;
3718         }
3719
3720         /* Set current_uV if wasn't done earlier in the code and if necessary */
3721         if (n_coupled > 1 && *current_uV == -1) {
3722
3723                 if (_regulator_is_enabled(rdev)) {
3724                         ret = regulator_get_voltage_rdev(rdev);
3725                         if (ret < 0)
3726                                 return ret;
3727
3728                         *current_uV = ret;
3729                 } else {
3730                         *current_uV = desired_min_uV;
3731                 }
3732         }
3733
3734         *min_uV = desired_min_uV;
3735         *max_uV = desired_max_uV;
3736
3737         return done;
3738 }
3739
3740 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3741                                  suspend_state_t state, bool skip_coupled)
3742 {
3743         struct regulator_dev **c_rdevs;
3744         struct regulator_dev *best_rdev;
3745         struct coupling_desc *c_desc = &rdev->coupling_desc;
3746         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3747         unsigned int delta, best_delta;
3748         unsigned long c_rdev_done = 0;
3749         bool best_c_rdev_done;
3750
3751         c_rdevs = c_desc->coupled_rdevs;
3752         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3753
3754         /*
3755          * Find the best possible voltage change on each loop. Leave the loop
3756          * if there isn't any possible change.
3757          */
3758         do {
3759                 best_c_rdev_done = false;
3760                 best_delta = 0;
3761                 best_min_uV = 0;
3762                 best_max_uV = 0;
3763                 best_c_rdev = 0;
3764                 best_rdev = NULL;
3765
3766                 /*
3767                  * Find highest difference between optimal voltage
3768                  * and current voltage.
3769                  */
3770                 for (i = 0; i < n_coupled; i++) {
3771                         /*
3772                          * optimal_uV is the best voltage that can be set for
3773                          * i-th regulator at the moment without violating
3774                          * max_spread constraint in order to balance
3775                          * the coupled voltages.
3776                          */
3777                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3778
3779                         if (test_bit(i, &c_rdev_done))
3780                                 continue;
3781
3782                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3783                                                             &current_uV,
3784                                                             &optimal_uV,
3785                                                             &optimal_max_uV,
3786                                                             state, n_coupled);
3787                         if (ret < 0)
3788                                 goto out;
3789
3790                         delta = abs(optimal_uV - current_uV);
3791
3792                         if (delta && best_delta <= delta) {
3793                                 best_c_rdev_done = ret;
3794                                 best_delta = delta;
3795                                 best_rdev = c_rdevs[i];
3796                                 best_min_uV = optimal_uV;
3797                                 best_max_uV = optimal_max_uV;
3798                                 best_c_rdev = i;
3799                         }
3800                 }
3801
3802                 /* Nothing to change, return successfully */
3803                 if (!best_rdev) {
3804                         ret = 0;
3805                         goto out;
3806                 }
3807
3808                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3809                                                  best_max_uV, state);
3810
3811                 if (ret < 0)
3812                         goto out;
3813
3814                 if (best_c_rdev_done)
3815                         set_bit(best_c_rdev, &c_rdev_done);
3816
3817         } while (n_coupled > 1);
3818
3819 out:
3820         return ret;
3821 }
3822
3823 static int regulator_balance_voltage(struct regulator_dev *rdev,
3824                                      suspend_state_t state)
3825 {
3826         struct coupling_desc *c_desc = &rdev->coupling_desc;
3827         struct regulator_coupler *coupler = c_desc->coupler;
3828         bool skip_coupled = false;
3829
3830         /*
3831          * If system is in a state other than PM_SUSPEND_ON, don't check
3832          * other coupled regulators.
3833          */
3834         if (state != PM_SUSPEND_ON)
3835                 skip_coupled = true;
3836
3837         if (c_desc->n_resolved < c_desc->n_coupled) {
3838                 rdev_err(rdev, "Not all coupled regulators registered\n");
3839                 return -EPERM;
3840         }
3841
3842         /* Invoke custom balancer for customized couplers */
3843         if (coupler && coupler->balance_voltage)
3844                 return coupler->balance_voltage(coupler, rdev, state);
3845
3846         return regulator_do_balance_voltage(rdev, state, skip_coupled);
3847 }
3848
3849 /**
3850  * regulator_set_voltage - set regulator output voltage
3851  * @regulator: regulator source
3852  * @min_uV: Minimum required voltage in uV
3853  * @max_uV: Maximum acceptable voltage in uV
3854  *
3855  * Sets a voltage regulator to the desired output voltage. This can be set
3856  * during any regulator state. IOW, regulator can be disabled or enabled.
3857  *
3858  * If the regulator is enabled then the voltage will change to the new value
3859  * immediately otherwise if the regulator is disabled the regulator will
3860  * output at the new voltage when enabled.
3861  *
3862  * NOTE: If the regulator is shared between several devices then the lowest
3863  * request voltage that meets the system constraints will be used.
3864  * Regulator system constraints must be set for this regulator before
3865  * calling this function otherwise this call will fail.
3866  */
3867 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3868 {
3869         struct ww_acquire_ctx ww_ctx;
3870         int ret;
3871
3872         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3873
3874         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3875                                              PM_SUSPEND_ON);
3876
3877         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3878
3879         return ret;
3880 }
3881 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3882
3883 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3884                                            suspend_state_t state, bool en)
3885 {
3886         struct regulator_state *rstate;
3887
3888         rstate = regulator_get_suspend_state(rdev, state);
3889         if (rstate == NULL)
3890                 return -EINVAL;
3891
3892         if (!rstate->changeable)
3893                 return -EPERM;
3894
3895         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3896
3897         return 0;
3898 }
3899
3900 int regulator_suspend_enable(struct regulator_dev *rdev,
3901                                     suspend_state_t state)
3902 {
3903         return regulator_suspend_toggle(rdev, state, true);
3904 }
3905 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3906
3907 int regulator_suspend_disable(struct regulator_dev *rdev,
3908                                      suspend_state_t state)
3909 {
3910         struct regulator *regulator;
3911         struct regulator_voltage *voltage;
3912
3913         /*
3914          * if any consumer wants this regulator device keeping on in
3915          * suspend states, don't set it as disabled.
3916          */
3917         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3918                 voltage = &regulator->voltage[state];
3919                 if (voltage->min_uV || voltage->max_uV)
3920                         return 0;
3921         }
3922
3923         return regulator_suspend_toggle(rdev, state, false);
3924 }
3925 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3926
3927 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3928                                           int min_uV, int max_uV,
3929                                           suspend_state_t state)
3930 {
3931         struct regulator_dev *rdev = regulator->rdev;
3932         struct regulator_state *rstate;
3933
3934         rstate = regulator_get_suspend_state(rdev, state);
3935         if (rstate == NULL)
3936                 return -EINVAL;
3937
3938         if (rstate->min_uV == rstate->max_uV) {
3939                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3940                 return -EPERM;
3941         }
3942
3943         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3944 }
3945
3946 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3947                                   int max_uV, suspend_state_t state)
3948 {
3949         struct ww_acquire_ctx ww_ctx;
3950         int ret;
3951
3952         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3954                 return -EINVAL;
3955
3956         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3957
3958         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3959                                              max_uV, state);
3960
3961         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3962
3963         return ret;
3964 }
3965 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3966
3967 /**
3968  * regulator_set_voltage_time - get raise/fall time
3969  * @regulator: regulator source
3970  * @old_uV: starting voltage in microvolts
3971  * @new_uV: target voltage in microvolts
3972  *
3973  * Provided with the starting and ending voltage, this function attempts to
3974  * calculate the time in microseconds required to rise or fall to this new
3975  * voltage.
3976  */
3977 int regulator_set_voltage_time(struct regulator *regulator,
3978                                int old_uV, int new_uV)
3979 {
3980         struct regulator_dev *rdev = regulator->rdev;
3981         const struct regulator_ops *ops = rdev->desc->ops;
3982         int old_sel = -1;
3983         int new_sel = -1;
3984         int voltage;
3985         int i;
3986
3987         if (ops->set_voltage_time)
3988                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3989         else if (!ops->set_voltage_time_sel)
3990                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3991
3992         /* Currently requires operations to do this */
3993         if (!ops->list_voltage || !rdev->desc->n_voltages)
3994                 return -EINVAL;
3995
3996         for (i = 0; i < rdev->desc->n_voltages; i++) {
3997                 /* We only look for exact voltage matches here */
3998                 voltage = regulator_list_voltage(regulator, i);
3999                 if (voltage < 0)
4000                         return -EINVAL;
4001                 if (voltage == 0)
4002                         continue;
4003                 if (voltage == old_uV)
4004                         old_sel = i;
4005                 if (voltage == new_uV)
4006                         new_sel = i;
4007         }
4008
4009         if (old_sel < 0 || new_sel < 0)
4010                 return -EINVAL;
4011
4012         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4013 }
4014 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4015
4016 /**
4017  * regulator_set_voltage_time_sel - get raise/fall time
4018  * @rdev: regulator source device
4019  * @old_selector: selector for starting voltage
4020  * @new_selector: selector for target voltage
4021  *
4022  * Provided with the starting and target voltage selectors, this function
4023  * returns time in microseconds required to rise or fall to this new voltage
4024  *
4025  * Drivers providing ramp_delay in regulation_constraints can use this as their
4026  * set_voltage_time_sel() operation.
4027  */
4028 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4029                                    unsigned int old_selector,
4030                                    unsigned int new_selector)
4031 {
4032         int old_volt, new_volt;
4033
4034         /* sanity check */
4035         if (!rdev->desc->ops->list_voltage)
4036                 return -EINVAL;
4037
4038         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4039         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4040
4041         if (rdev->desc->ops->set_voltage_time)
4042                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4043                                                          new_volt);
4044         else
4045                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4046 }
4047 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4048
4049 /**
4050  * regulator_sync_voltage - re-apply last regulator output voltage
4051  * @regulator: regulator source
4052  *
4053  * Re-apply the last configured voltage.  This is intended to be used
4054  * where some external control source the consumer is cooperating with
4055  * has caused the configured voltage to change.
4056  */
4057 int regulator_sync_voltage(struct regulator *regulator)
4058 {
4059         struct regulator_dev *rdev = regulator->rdev;
4060         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4061         int ret, min_uV, max_uV;
4062
4063         regulator_lock(rdev);
4064
4065         if (!rdev->desc->ops->set_voltage &&
4066             !rdev->desc->ops->set_voltage_sel) {
4067                 ret = -EINVAL;
4068                 goto out;
4069         }
4070
4071         /* This is only going to work if we've had a voltage configured. */
4072         if (!voltage->min_uV && !voltage->max_uV) {
4073                 ret = -EINVAL;
4074                 goto out;
4075         }
4076
4077         min_uV = voltage->min_uV;
4078         max_uV = voltage->max_uV;
4079
4080         /* This should be a paranoia check... */
4081         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4082         if (ret < 0)
4083                 goto out;
4084
4085         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4086         if (ret < 0)
4087                 goto out;
4088
4089         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4090
4091 out:
4092         regulator_unlock(rdev);
4093         return ret;
4094 }
4095 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4096
4097 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4098 {
4099         int sel, ret;
4100         bool bypassed;
4101
4102         if (rdev->desc->ops->get_bypass) {
4103                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4104                 if (ret < 0)
4105                         return ret;
4106                 if (bypassed) {
4107                         /* if bypassed the regulator must have a supply */
4108                         if (!rdev->supply) {
4109                                 rdev_err(rdev,
4110                                          "bypassed regulator has no supply!\n");
4111                                 return -EPROBE_DEFER;
4112                         }
4113
4114                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4115                 }
4116         }
4117
4118         if (rdev->desc->ops->get_voltage_sel) {
4119                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4120                 if (sel < 0)
4121                         return sel;
4122                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4123         } else if (rdev->desc->ops->get_voltage) {
4124                 ret = rdev->desc->ops->get_voltage(rdev);
4125         } else if (rdev->desc->ops->list_voltage) {
4126                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4127         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4128                 ret = rdev->desc->fixed_uV;
4129         } else if (rdev->supply) {
4130                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4131         } else {
4132                 return -EINVAL;
4133         }
4134
4135         if (ret < 0)
4136                 return ret;
4137         return ret - rdev->constraints->uV_offset;
4138 }
4139 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4140
4141 /**
4142  * regulator_get_voltage - get regulator output voltage
4143  * @regulator: regulator source
4144  *
4145  * This returns the current regulator voltage in uV.
4146  *
4147  * NOTE: If the regulator is disabled it will return the voltage value. This
4148  * function should not be used to determine regulator state.
4149  */
4150 int regulator_get_voltage(struct regulator *regulator)
4151 {
4152         struct ww_acquire_ctx ww_ctx;
4153         int ret;
4154
4155         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4156         ret = regulator_get_voltage_rdev(regulator->rdev);
4157         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4158
4159         return ret;
4160 }
4161 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4162
4163 /**
4164  * regulator_set_current_limit - set regulator output current limit
4165  * @regulator: regulator source
4166  * @min_uA: Minimum supported current in uA
4167  * @max_uA: Maximum supported current in uA
4168  *
4169  * Sets current sink to the desired output current. This can be set during
4170  * any regulator state. IOW, regulator can be disabled or enabled.
4171  *
4172  * If the regulator is enabled then the current will change to the new value
4173  * immediately otherwise if the regulator is disabled the regulator will
4174  * output at the new current when enabled.
4175  *
4176  * NOTE: Regulator system constraints must be set for this regulator before
4177  * calling this function otherwise this call will fail.
4178  */
4179 int regulator_set_current_limit(struct regulator *regulator,
4180                                int min_uA, int max_uA)
4181 {
4182         struct regulator_dev *rdev = regulator->rdev;
4183         int ret;
4184
4185         regulator_lock(rdev);
4186
4187         /* sanity check */
4188         if (!rdev->desc->ops->set_current_limit) {
4189                 ret = -EINVAL;
4190                 goto out;
4191         }
4192
4193         /* constraints check */
4194         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4195         if (ret < 0)
4196                 goto out;
4197
4198         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4199 out:
4200         regulator_unlock(rdev);
4201         return ret;
4202 }
4203 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4204
4205 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4206 {
4207         /* sanity check */
4208         if (!rdev->desc->ops->get_current_limit)
4209                 return -EINVAL;
4210
4211         return rdev->desc->ops->get_current_limit(rdev);
4212 }
4213
4214 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4215 {
4216         int ret;
4217
4218         regulator_lock(rdev);
4219         ret = _regulator_get_current_limit_unlocked(rdev);
4220         regulator_unlock(rdev);
4221
4222         return ret;
4223 }
4224
4225 /**
4226  * regulator_get_current_limit - get regulator output current
4227  * @regulator: regulator source
4228  *
4229  * This returns the current supplied by the specified current sink in uA.
4230  *
4231  * NOTE: If the regulator is disabled it will return the current value. This
4232  * function should not be used to determine regulator state.
4233  */
4234 int regulator_get_current_limit(struct regulator *regulator)
4235 {
4236         return _regulator_get_current_limit(regulator->rdev);
4237 }
4238 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4239
4240 /**
4241  * regulator_set_mode - set regulator operating mode
4242  * @regulator: regulator source
4243  * @mode: operating mode - one of the REGULATOR_MODE constants
4244  *
4245  * Set regulator operating mode to increase regulator efficiency or improve
4246  * regulation performance.
4247  *
4248  * NOTE: Regulator system constraints must be set for this regulator before
4249  * calling this function otherwise this call will fail.
4250  */
4251 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4252 {
4253         struct regulator_dev *rdev = regulator->rdev;
4254         int ret;
4255         int regulator_curr_mode;
4256
4257         regulator_lock(rdev);
4258
4259         /* sanity check */
4260         if (!rdev->desc->ops->set_mode) {
4261                 ret = -EINVAL;
4262                 goto out;
4263         }
4264
4265         /* return if the same mode is requested */
4266         if (rdev->desc->ops->get_mode) {
4267                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4268                 if (regulator_curr_mode == mode) {
4269                         ret = 0;
4270                         goto out;
4271                 }
4272         }
4273
4274         /* constraints check */
4275         ret = regulator_mode_constrain(rdev, &mode);
4276         if (ret < 0)
4277                 goto out;
4278
4279         ret = rdev->desc->ops->set_mode(rdev, mode);
4280 out:
4281         regulator_unlock(rdev);
4282         return ret;
4283 }
4284 EXPORT_SYMBOL_GPL(regulator_set_mode);
4285
4286 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4287 {
4288         /* sanity check */
4289         if (!rdev->desc->ops->get_mode)
4290                 return -EINVAL;
4291
4292         return rdev->desc->ops->get_mode(rdev);
4293 }
4294
4295 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4296 {
4297         int ret;
4298
4299         regulator_lock(rdev);
4300         ret = _regulator_get_mode_unlocked(rdev);
4301         regulator_unlock(rdev);
4302
4303         return ret;
4304 }
4305
4306 /**
4307  * regulator_get_mode - get regulator operating mode
4308  * @regulator: regulator source
4309  *
4310  * Get the current regulator operating mode.
4311  */
4312 unsigned int regulator_get_mode(struct regulator *regulator)
4313 {
4314         return _regulator_get_mode(regulator->rdev);
4315 }
4316 EXPORT_SYMBOL_GPL(regulator_get_mode);
4317
4318 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4319                                         unsigned int *flags)
4320 {
4321         int ret;
4322
4323         regulator_lock(rdev);
4324
4325         /* sanity check */
4326         if (!rdev->desc->ops->get_error_flags) {
4327                 ret = -EINVAL;
4328                 goto out;
4329         }
4330
4331         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4332 out:
4333         regulator_unlock(rdev);
4334         return ret;
4335 }
4336
4337 /**
4338  * regulator_get_error_flags - get regulator error information
4339  * @regulator: regulator source
4340  * @flags: pointer to store error flags
4341  *
4342  * Get the current regulator error information.
4343  */
4344 int regulator_get_error_flags(struct regulator *regulator,
4345                                 unsigned int *flags)
4346 {
4347         return _regulator_get_error_flags(regulator->rdev, flags);
4348 }
4349 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4350
4351 /**
4352  * regulator_set_load - set regulator load
4353  * @regulator: regulator source
4354  * @uA_load: load current
4355  *
4356  * Notifies the regulator core of a new device load. This is then used by
4357  * DRMS (if enabled by constraints) to set the most efficient regulator
4358  * operating mode for the new regulator loading.
4359  *
4360  * Consumer devices notify their supply regulator of the maximum power
4361  * they will require (can be taken from device datasheet in the power
4362  * consumption tables) when they change operational status and hence power
4363  * state. Examples of operational state changes that can affect power
4364  * consumption are :-
4365  *
4366  *    o Device is opened / closed.
4367  *    o Device I/O is about to begin or has just finished.
4368  *    o Device is idling in between work.
4369  *
4370  * This information is also exported via sysfs to userspace.
4371  *
4372  * DRMS will sum the total requested load on the regulator and change
4373  * to the most efficient operating mode if platform constraints allow.
4374  *
4375  * NOTE: when a regulator consumer requests to have a regulator
4376  * disabled then any load that consumer requested no longer counts
4377  * toward the total requested load.  If the regulator is re-enabled
4378  * then the previously requested load will start counting again.
4379  *
4380  * If a regulator is an always-on regulator then an individual consumer's
4381  * load will still be removed if that consumer is fully disabled.
4382  *
4383  * On error a negative errno is returned.
4384  */
4385 int regulator_set_load(struct regulator *regulator, int uA_load)
4386 {
4387         struct regulator_dev *rdev = regulator->rdev;
4388         int old_uA_load;
4389         int ret = 0;
4390
4391         regulator_lock(rdev);
4392         old_uA_load = regulator->uA_load;
4393         regulator->uA_load = uA_load;
4394         if (regulator->enable_count && old_uA_load != uA_load) {
4395                 ret = drms_uA_update(rdev);
4396                 if (ret < 0)
4397                         regulator->uA_load = old_uA_load;
4398         }
4399         regulator_unlock(rdev);
4400
4401         return ret;
4402 }
4403 EXPORT_SYMBOL_GPL(regulator_set_load);
4404
4405 /**
4406  * regulator_allow_bypass - allow the regulator to go into bypass mode
4407  *
4408  * @regulator: Regulator to configure
4409  * @enable: enable or disable bypass mode
4410  *
4411  * Allow the regulator to go into bypass mode if all other consumers
4412  * for the regulator also enable bypass mode and the machine
4413  * constraints allow this.  Bypass mode means that the regulator is
4414  * simply passing the input directly to the output with no regulation.
4415  */
4416 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4417 {
4418         struct regulator_dev *rdev = regulator->rdev;
4419         const char *name = rdev_get_name(rdev);
4420         int ret = 0;
4421
4422         if (!rdev->desc->ops->set_bypass)
4423                 return 0;
4424
4425         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4426                 return 0;
4427
4428         regulator_lock(rdev);
4429
4430         if (enable && !regulator->bypass) {
4431                 rdev->bypass_count++;
4432
4433                 if (rdev->bypass_count == rdev->open_count) {
4434                         trace_regulator_bypass_enable(name);
4435
4436                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4437                         if (ret != 0)
4438                                 rdev->bypass_count--;
4439                         else
4440                                 trace_regulator_bypass_enable_complete(name);
4441                 }
4442
4443         } else if (!enable && regulator->bypass) {
4444                 rdev->bypass_count--;
4445
4446                 if (rdev->bypass_count != rdev->open_count) {
4447                         trace_regulator_bypass_disable(name);
4448
4449                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4450                         if (ret != 0)
4451                                 rdev->bypass_count++;
4452                         else
4453                                 trace_regulator_bypass_disable_complete(name);
4454                 }
4455         }
4456
4457         if (ret == 0)
4458                 regulator->bypass = enable;
4459
4460         regulator_unlock(rdev);
4461
4462         return ret;
4463 }
4464 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4465
4466 /**
4467  * regulator_register_notifier - register regulator event notifier
4468  * @regulator: regulator source
4469  * @nb: notifier block
4470  *
4471  * Register notifier block to receive regulator events.
4472  */
4473 int regulator_register_notifier(struct regulator *regulator,
4474                               struct notifier_block *nb)
4475 {
4476         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4477                                                 nb);
4478 }
4479 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4480
4481 /**
4482  * regulator_unregister_notifier - unregister regulator event notifier
4483  * @regulator: regulator source
4484  * @nb: notifier block
4485  *
4486  * Unregister regulator event notifier block.
4487  */
4488 int regulator_unregister_notifier(struct regulator *regulator,
4489                                 struct notifier_block *nb)
4490 {
4491         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4492                                                   nb);
4493 }
4494 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4495
4496 /* notify regulator consumers and downstream regulator consumers.
4497  * Note mutex must be held by caller.
4498  */
4499 static int _notifier_call_chain(struct regulator_dev *rdev,
4500                                   unsigned long event, void *data)
4501 {
4502         /* call rdev chain first */
4503         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4504 }
4505
4506 /**
4507  * regulator_bulk_get - get multiple regulator consumers
4508  *
4509  * @dev:           Device to supply
4510  * @num_consumers: Number of consumers to register
4511  * @consumers:     Configuration of consumers; clients are stored here.
4512  *
4513  * @return 0 on success, an errno on failure.
4514  *
4515  * This helper function allows drivers to get several regulator
4516  * consumers in one operation.  If any of the regulators cannot be
4517  * acquired then any regulators that were allocated will be freed
4518  * before returning to the caller.
4519  */
4520 int regulator_bulk_get(struct device *dev, int num_consumers,
4521                        struct regulator_bulk_data *consumers)
4522 {
4523         int i;
4524         int ret;
4525
4526         for (i = 0; i < num_consumers; i++)
4527                 consumers[i].consumer = NULL;
4528
4529         for (i = 0; i < num_consumers; i++) {
4530                 consumers[i].consumer = regulator_get(dev,
4531                                                       consumers[i].supply);
4532                 if (IS_ERR(consumers[i].consumer)) {
4533                         ret = PTR_ERR(consumers[i].consumer);
4534                         consumers[i].consumer = NULL;
4535                         goto err;
4536                 }
4537         }
4538
4539         return 0;
4540
4541 err:
4542         if (ret != -EPROBE_DEFER)
4543                 dev_err(dev, "Failed to get supply '%s': %d\n",
4544                         consumers[i].supply, ret);
4545         else
4546                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4547                         consumers[i].supply);
4548
4549         while (--i >= 0)
4550                 regulator_put(consumers[i].consumer);
4551
4552         return ret;
4553 }
4554 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4555
4556 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4557 {
4558         struct regulator_bulk_data *bulk = data;
4559
4560         bulk->ret = regulator_enable(bulk->consumer);
4561 }
4562
4563 /**
4564  * regulator_bulk_enable - enable multiple regulator consumers
4565  *
4566  * @num_consumers: Number of consumers
4567  * @consumers:     Consumer data; clients are stored here.
4568  * @return         0 on success, an errno on failure
4569  *
4570  * This convenience API allows consumers to enable multiple regulator
4571  * clients in a single API call.  If any consumers cannot be enabled
4572  * then any others that were enabled will be disabled again prior to
4573  * return.
4574  */
4575 int regulator_bulk_enable(int num_consumers,
4576                           struct regulator_bulk_data *consumers)
4577 {
4578         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4579         int i;
4580         int ret = 0;
4581
4582         for (i = 0; i < num_consumers; i++) {
4583                 async_schedule_domain(regulator_bulk_enable_async,
4584                                       &consumers[i], &async_domain);
4585         }
4586
4587         async_synchronize_full_domain(&async_domain);
4588
4589         /* If any consumer failed we need to unwind any that succeeded */
4590         for (i = 0; i < num_consumers; i++) {
4591                 if (consumers[i].ret != 0) {
4592                         ret = consumers[i].ret;
4593                         goto err;
4594                 }
4595         }
4596
4597         return 0;
4598
4599 err:
4600         for (i = 0; i < num_consumers; i++) {
4601                 if (consumers[i].ret < 0)
4602                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4603                                consumers[i].ret);
4604                 else
4605                         regulator_disable(consumers[i].consumer);
4606         }
4607
4608         return ret;
4609 }
4610 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4611
4612 /**
4613  * regulator_bulk_disable - disable multiple regulator consumers
4614  *
4615  * @num_consumers: Number of consumers
4616  * @consumers:     Consumer data; clients are stored here.
4617  * @return         0 on success, an errno on failure
4618  *
4619  * This convenience API allows consumers to disable multiple regulator
4620  * clients in a single API call.  If any consumers cannot be disabled
4621  * then any others that were disabled will be enabled again prior to
4622  * return.
4623  */
4624 int regulator_bulk_disable(int num_consumers,
4625                            struct regulator_bulk_data *consumers)
4626 {
4627         int i;
4628         int ret, r;
4629
4630         for (i = num_consumers - 1; i >= 0; --i) {
4631                 ret = regulator_disable(consumers[i].consumer);
4632                 if (ret != 0)
4633                         goto err;
4634         }
4635
4636         return 0;
4637
4638 err:
4639         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4640         for (++i; i < num_consumers; ++i) {
4641                 r = regulator_enable(consumers[i].consumer);
4642                 if (r != 0)
4643                         pr_err("Failed to re-enable %s: %d\n",
4644                                consumers[i].supply, r);
4645         }
4646
4647         return ret;
4648 }
4649 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4650
4651 /**
4652  * regulator_bulk_force_disable - force disable multiple regulator consumers
4653  *
4654  * @num_consumers: Number of consumers
4655  * @consumers:     Consumer data; clients are stored here.
4656  * @return         0 on success, an errno on failure
4657  *
4658  * This convenience API allows consumers to forcibly disable multiple regulator
4659  * clients in a single API call.
4660  * NOTE: This should be used for situations when device damage will
4661  * likely occur if the regulators are not disabled (e.g. over temp).
4662  * Although regulator_force_disable function call for some consumers can
4663  * return error numbers, the function is called for all consumers.
4664  */
4665 int regulator_bulk_force_disable(int num_consumers,
4666                            struct regulator_bulk_data *consumers)
4667 {
4668         int i;
4669         int ret = 0;
4670
4671         for (i = 0; i < num_consumers; i++) {
4672                 consumers[i].ret =
4673                             regulator_force_disable(consumers[i].consumer);
4674
4675                 /* Store first error for reporting */
4676                 if (consumers[i].ret && !ret)
4677                         ret = consumers[i].ret;
4678         }
4679
4680         return ret;
4681 }
4682 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4683
4684 /**
4685  * regulator_bulk_free - free multiple regulator consumers
4686  *
4687  * @num_consumers: Number of consumers
4688  * @consumers:     Consumer data; clients are stored here.
4689  *
4690  * This convenience API allows consumers to free multiple regulator
4691  * clients in a single API call.
4692  */
4693 void regulator_bulk_free(int num_consumers,
4694                          struct regulator_bulk_data *consumers)
4695 {
4696         int i;
4697
4698         for (i = 0; i < num_consumers; i++) {
4699                 regulator_put(consumers[i].consumer);
4700                 consumers[i].consumer = NULL;
4701         }
4702 }
4703 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4704
4705 /**
4706  * regulator_notifier_call_chain - call regulator event notifier
4707  * @rdev: regulator source
4708  * @event: notifier block
4709  * @data: callback-specific data.
4710  *
4711  * Called by regulator drivers to notify clients a regulator event has
4712  * occurred. We also notify regulator clients downstream.
4713  * Note lock must be held by caller.
4714  */
4715 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4716                                   unsigned long event, void *data)
4717 {
4718         lockdep_assert_held_once(&rdev->mutex.base);
4719
4720         _notifier_call_chain(rdev, event, data);
4721         return NOTIFY_DONE;
4722
4723 }
4724 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4725
4726 /**
4727  * regulator_mode_to_status - convert a regulator mode into a status
4728  *
4729  * @mode: Mode to convert
4730  *
4731  * Convert a regulator mode into a status.
4732  */
4733 int regulator_mode_to_status(unsigned int mode)
4734 {
4735         switch (mode) {
4736         case REGULATOR_MODE_FAST:
4737                 return REGULATOR_STATUS_FAST;
4738         case REGULATOR_MODE_NORMAL:
4739                 return REGULATOR_STATUS_NORMAL;
4740         case REGULATOR_MODE_IDLE:
4741                 return REGULATOR_STATUS_IDLE;
4742         case REGULATOR_MODE_STANDBY:
4743                 return REGULATOR_STATUS_STANDBY;
4744         default:
4745                 return REGULATOR_STATUS_UNDEFINED;
4746         }
4747 }
4748 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4749
4750 static struct attribute *regulator_dev_attrs[] = {
4751         &dev_attr_name.attr,
4752         &dev_attr_num_users.attr,
4753         &dev_attr_type.attr,
4754         &dev_attr_microvolts.attr,
4755         &dev_attr_microamps.attr,
4756         &dev_attr_opmode.attr,
4757         &dev_attr_state.attr,
4758         &dev_attr_status.attr,
4759         &dev_attr_bypass.attr,
4760         &dev_attr_requested_microamps.attr,
4761         &dev_attr_min_microvolts.attr,
4762         &dev_attr_max_microvolts.attr,
4763         &dev_attr_min_microamps.attr,
4764         &dev_attr_max_microamps.attr,
4765         &dev_attr_suspend_standby_state.attr,
4766         &dev_attr_suspend_mem_state.attr,
4767         &dev_attr_suspend_disk_state.attr,
4768         &dev_attr_suspend_standby_microvolts.attr,
4769         &dev_attr_suspend_mem_microvolts.attr,
4770         &dev_attr_suspend_disk_microvolts.attr,
4771         &dev_attr_suspend_standby_mode.attr,
4772         &dev_attr_suspend_mem_mode.attr,
4773         &dev_attr_suspend_disk_mode.attr,
4774         NULL
4775 };
4776
4777 /*
4778  * To avoid cluttering sysfs (and memory) with useless state, only
4779  * create attributes that can be meaningfully displayed.
4780  */
4781 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4782                                          struct attribute *attr, int idx)
4783 {
4784         struct device *dev = kobj_to_dev(kobj);
4785         struct regulator_dev *rdev = dev_to_rdev(dev);
4786         const struct regulator_ops *ops = rdev->desc->ops;
4787         umode_t mode = attr->mode;
4788
4789         /* these three are always present */
4790         if (attr == &dev_attr_name.attr ||
4791             attr == &dev_attr_num_users.attr ||
4792             attr == &dev_attr_type.attr)
4793                 return mode;
4794
4795         /* some attributes need specific methods to be displayed */
4796         if (attr == &dev_attr_microvolts.attr) {
4797                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4798                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4799                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4800                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4801                         return mode;
4802                 return 0;
4803         }
4804
4805         if (attr == &dev_attr_microamps.attr)
4806                 return ops->get_current_limit ? mode : 0;
4807
4808         if (attr == &dev_attr_opmode.attr)
4809                 return ops->get_mode ? mode : 0;
4810
4811         if (attr == &dev_attr_state.attr)
4812                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4813
4814         if (attr == &dev_attr_status.attr)
4815                 return ops->get_status ? mode : 0;
4816
4817         if (attr == &dev_attr_bypass.attr)
4818                 return ops->get_bypass ? mode : 0;
4819
4820         /* constraints need specific supporting methods */
4821         if (attr == &dev_attr_min_microvolts.attr ||
4822             attr == &dev_attr_max_microvolts.attr)
4823                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4824
4825         if (attr == &dev_attr_min_microamps.attr ||
4826             attr == &dev_attr_max_microamps.attr)
4827                 return ops->set_current_limit ? mode : 0;
4828
4829         if (attr == &dev_attr_suspend_standby_state.attr ||
4830             attr == &dev_attr_suspend_mem_state.attr ||
4831             attr == &dev_attr_suspend_disk_state.attr)
4832                 return mode;
4833
4834         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4835             attr == &dev_attr_suspend_mem_microvolts.attr ||
4836             attr == &dev_attr_suspend_disk_microvolts.attr)
4837                 return ops->set_suspend_voltage ? mode : 0;
4838
4839         if (attr == &dev_attr_suspend_standby_mode.attr ||
4840             attr == &dev_attr_suspend_mem_mode.attr ||
4841             attr == &dev_attr_suspend_disk_mode.attr)
4842                 return ops->set_suspend_mode ? mode : 0;
4843
4844         return mode;
4845 }
4846
4847 static const struct attribute_group regulator_dev_group = {
4848         .attrs = regulator_dev_attrs,
4849         .is_visible = regulator_attr_is_visible,
4850 };
4851
4852 static const struct attribute_group *regulator_dev_groups[] = {
4853         &regulator_dev_group,
4854         NULL
4855 };
4856
4857 static void regulator_dev_release(struct device *dev)
4858 {
4859         struct regulator_dev *rdev = dev_get_drvdata(dev);
4860
4861         kfree(rdev->constraints);
4862         of_node_put(rdev->dev.of_node);
4863         kfree(rdev);
4864 }
4865
4866 static void rdev_init_debugfs(struct regulator_dev *rdev)
4867 {
4868         struct device *parent = rdev->dev.parent;
4869         const char *rname = rdev_get_name(rdev);
4870         char name[NAME_MAX];
4871
4872         /* Avoid duplicate debugfs directory names */
4873         if (parent && rname == rdev->desc->name) {
4874                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4875                          rname);
4876                 rname = name;
4877         }
4878
4879         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4880         if (!rdev->debugfs) {
4881                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4882                 return;
4883         }
4884
4885         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4886                            &rdev->use_count);
4887         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4888                            &rdev->open_count);
4889         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4890                            &rdev->bypass_count);
4891 }
4892
4893 static int regulator_register_resolve_supply(struct device *dev, void *data)
4894 {
4895         struct regulator_dev *rdev = dev_to_rdev(dev);
4896
4897         if (regulator_resolve_supply(rdev))
4898                 rdev_dbg(rdev, "unable to resolve supply\n");
4899
4900         return 0;
4901 }
4902
4903 int regulator_coupler_register(struct regulator_coupler *coupler)
4904 {
4905         mutex_lock(&regulator_list_mutex);
4906         list_add_tail(&coupler->list, &regulator_coupler_list);
4907         mutex_unlock(&regulator_list_mutex);
4908
4909         return 0;
4910 }
4911
4912 static struct regulator_coupler *
4913 regulator_find_coupler(struct regulator_dev *rdev)
4914 {
4915         struct regulator_coupler *coupler;
4916         int err;
4917
4918         /*
4919          * Note that regulators are appended to the list and the generic
4920          * coupler is registered first, hence it will be attached at last
4921          * if nobody cared.
4922          */
4923         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4924                 err = coupler->attach_regulator(coupler, rdev);
4925                 if (!err) {
4926                         if (!coupler->balance_voltage &&
4927                             rdev->coupling_desc.n_coupled > 2)
4928                                 goto err_unsupported;
4929
4930                         return coupler;
4931                 }
4932
4933                 if (err < 0)
4934                         return ERR_PTR(err);
4935
4936                 if (err == 1)
4937                         continue;
4938
4939                 break;
4940         }
4941
4942         return ERR_PTR(-EINVAL);
4943
4944 err_unsupported:
4945         if (coupler->detach_regulator)
4946                 coupler->detach_regulator(coupler, rdev);
4947
4948         rdev_err(rdev,
4949                 "Voltage balancing for multiple regulator couples is unimplemented\n");
4950
4951         return ERR_PTR(-EPERM);
4952 }
4953
4954 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4955 {
4956         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4957         struct coupling_desc *c_desc = &rdev->coupling_desc;
4958         int n_coupled = c_desc->n_coupled;
4959         struct regulator_dev *c_rdev;
4960         int i;
4961
4962         for (i = 1; i < n_coupled; i++) {
4963                 /* already resolved */
4964                 if (c_desc->coupled_rdevs[i])
4965                         continue;
4966
4967                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4968
4969                 if (!c_rdev)
4970                         continue;
4971
4972                 if (c_rdev->coupling_desc.coupler != coupler) {
4973                         rdev_err(rdev, "coupler mismatch with %s\n",
4974                                  rdev_get_name(c_rdev));
4975                         return;
4976                 }
4977
4978                 c_desc->coupled_rdevs[i] = c_rdev;
4979                 c_desc->n_resolved++;
4980
4981                 regulator_resolve_coupling(c_rdev);
4982         }
4983 }
4984
4985 static void regulator_remove_coupling(struct regulator_dev *rdev)
4986 {
4987         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4988         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4989         struct regulator_dev *__c_rdev, *c_rdev;
4990         unsigned int __n_coupled, n_coupled;
4991         int i, k;
4992         int err;
4993
4994         n_coupled = c_desc->n_coupled;
4995
4996         for (i = 1; i < n_coupled; i++) {
4997                 c_rdev = c_desc->coupled_rdevs[i];
4998
4999                 if (!c_rdev)
5000                         continue;
5001
5002                 regulator_lock(c_rdev);
5003
5004                 __c_desc = &c_rdev->coupling_desc;
5005                 __n_coupled = __c_desc->n_coupled;
5006
5007                 for (k = 1; k < __n_coupled; k++) {
5008                         __c_rdev = __c_desc->coupled_rdevs[k];
5009
5010                         if (__c_rdev == rdev) {
5011                                 __c_desc->coupled_rdevs[k] = NULL;
5012                                 __c_desc->n_resolved--;
5013                                 break;
5014                         }
5015                 }
5016
5017                 regulator_unlock(c_rdev);
5018
5019                 c_desc->coupled_rdevs[i] = NULL;
5020                 c_desc->n_resolved--;
5021         }
5022
5023         if (coupler && coupler->detach_regulator) {
5024                 err = coupler->detach_regulator(coupler, rdev);
5025                 if (err)
5026                         rdev_err(rdev, "failed to detach from coupler: %d\n",
5027                                  err);
5028         }
5029
5030         kfree(rdev->coupling_desc.coupled_rdevs);
5031         rdev->coupling_desc.coupled_rdevs = NULL;
5032 }
5033
5034 static int regulator_init_coupling(struct regulator_dev *rdev)
5035 {
5036         int err, n_phandles;
5037         size_t alloc_size;
5038
5039         if (!IS_ENABLED(CONFIG_OF))
5040                 n_phandles = 0;
5041         else
5042                 n_phandles = of_get_n_coupled(rdev);
5043
5044         alloc_size = sizeof(*rdev) * (n_phandles + 1);
5045
5046         rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5047         if (!rdev->coupling_desc.coupled_rdevs)
5048                 return -ENOMEM;
5049
5050         /*
5051          * Every regulator should always have coupling descriptor filled with
5052          * at least pointer to itself.
5053          */
5054         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5055         rdev->coupling_desc.n_coupled = n_phandles + 1;
5056         rdev->coupling_desc.n_resolved++;
5057
5058         /* regulator isn't coupled */
5059         if (n_phandles == 0)
5060                 return 0;
5061
5062         if (!of_check_coupling_data(rdev))
5063                 return -EPERM;
5064
5065         mutex_lock(&regulator_list_mutex);
5066         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5067         mutex_unlock(&regulator_list_mutex);
5068
5069         if (IS_ERR(rdev->coupling_desc.coupler)) {
5070                 err = PTR_ERR(rdev->coupling_desc.coupler);
5071                 rdev_err(rdev, "failed to get coupler: %d\n", err);
5072                 return err;
5073         }
5074
5075         return 0;
5076 }
5077
5078 static int generic_coupler_attach(struct regulator_coupler *coupler,
5079                                   struct regulator_dev *rdev)
5080 {
5081         if (rdev->coupling_desc.n_coupled > 2) {
5082                 rdev_err(rdev,
5083                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5084                 return -EPERM;
5085         }
5086
5087         if (!rdev->constraints->always_on) {
5088                 rdev_err(rdev,
5089                          "Coupling of a non always-on regulator is unimplemented\n");
5090                 return -ENOTSUPP;
5091         }
5092
5093         return 0;
5094 }
5095
5096 static struct regulator_coupler generic_regulator_coupler = {
5097         .attach_regulator = generic_coupler_attach,
5098 };
5099
5100 /**
5101  * regulator_register - register regulator
5102  * @regulator_desc: regulator to register
5103  * @cfg: runtime configuration for regulator
5104  *
5105  * Called by regulator drivers to register a regulator.
5106  * Returns a valid pointer to struct regulator_dev on success
5107  * or an ERR_PTR() on error.
5108  */
5109 struct regulator_dev *
5110 regulator_register(const struct regulator_desc *regulator_desc,
5111                    const struct regulator_config *cfg)
5112 {
5113         const struct regulation_constraints *constraints = NULL;
5114         const struct regulator_init_data *init_data;
5115         struct regulator_config *config = NULL;
5116         static atomic_t regulator_no = ATOMIC_INIT(-1);
5117         struct regulator_dev *rdev;
5118         bool dangling_cfg_gpiod = false;
5119         bool dangling_of_gpiod = false;
5120         struct device *dev;
5121         int ret, i;
5122
5123         if (cfg == NULL)
5124                 return ERR_PTR(-EINVAL);
5125         if (cfg->ena_gpiod)
5126                 dangling_cfg_gpiod = true;
5127         if (regulator_desc == NULL) {
5128                 ret = -EINVAL;
5129                 goto rinse;
5130         }
5131
5132         dev = cfg->dev;
5133         WARN_ON(!dev);
5134
5135         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5136                 ret = -EINVAL;
5137                 goto rinse;
5138         }
5139
5140         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5141             regulator_desc->type != REGULATOR_CURRENT) {
5142                 ret = -EINVAL;
5143                 goto rinse;
5144         }
5145
5146         /* Only one of each should be implemented */
5147         WARN_ON(regulator_desc->ops->get_voltage &&
5148                 regulator_desc->ops->get_voltage_sel);
5149         WARN_ON(regulator_desc->ops->set_voltage &&
5150                 regulator_desc->ops->set_voltage_sel);
5151
5152         /* If we're using selectors we must implement list_voltage. */
5153         if (regulator_desc->ops->get_voltage_sel &&
5154             !regulator_desc->ops->list_voltage) {
5155                 ret = -EINVAL;
5156                 goto rinse;
5157         }
5158         if (regulator_desc->ops->set_voltage_sel &&
5159             !regulator_desc->ops->list_voltage) {
5160                 ret = -EINVAL;
5161                 goto rinse;
5162         }
5163
5164         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5165         if (rdev == NULL) {
5166                 ret = -ENOMEM;
5167                 goto rinse;
5168         }
5169         device_initialize(&rdev->dev);
5170
5171         /*
5172          * Duplicate the config so the driver could override it after
5173          * parsing init data.
5174          */
5175         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5176         if (config == NULL) {
5177                 ret = -ENOMEM;
5178                 goto clean;
5179         }
5180
5181         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5182                                                &rdev->dev.of_node);
5183
5184         /*
5185          * Sometimes not all resources are probed already so we need to take
5186          * that into account. This happens most the time if the ena_gpiod comes
5187          * from a gpio extender or something else.
5188          */
5189         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5190                 ret = -EPROBE_DEFER;
5191                 goto clean;
5192         }
5193
5194         /*
5195          * We need to keep track of any GPIO descriptor coming from the
5196          * device tree until we have handled it over to the core. If the
5197          * config that was passed in to this function DOES NOT contain
5198          * a descriptor, and the config after this call DOES contain
5199          * a descriptor, we definitely got one from parsing the device
5200          * tree.
5201          */
5202         if (!cfg->ena_gpiod && config->ena_gpiod)
5203                 dangling_of_gpiod = true;
5204         if (!init_data) {
5205                 init_data = config->init_data;
5206                 rdev->dev.of_node = of_node_get(config->of_node);
5207         }
5208
5209         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5210         rdev->reg_data = config->driver_data;
5211         rdev->owner = regulator_desc->owner;
5212         rdev->desc = regulator_desc;
5213         if (config->regmap)
5214                 rdev->regmap = config->regmap;
5215         else if (dev_get_regmap(dev, NULL))
5216                 rdev->regmap = dev_get_regmap(dev, NULL);
5217         else if (dev->parent)
5218                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5219         INIT_LIST_HEAD(&rdev->consumer_list);
5220         INIT_LIST_HEAD(&rdev->list);
5221         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5222         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5223
5224         /* preform any regulator specific init */
5225         if (init_data && init_data->regulator_init) {
5226                 ret = init_data->regulator_init(rdev->reg_data);
5227                 if (ret < 0)
5228                         goto clean;
5229         }
5230
5231         if (config->ena_gpiod) {
5232                 ret = regulator_ena_gpio_request(rdev, config);
5233                 if (ret != 0) {
5234                         rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5235                                  ret);
5236                         goto clean;
5237                 }
5238                 /* The regulator core took over the GPIO descriptor */
5239                 dangling_cfg_gpiod = false;
5240                 dangling_of_gpiod = false;
5241         }
5242
5243         /* register with sysfs */
5244         rdev->dev.class = &regulator_class;
5245         rdev->dev.parent = dev;
5246         dev_set_name(&rdev->dev, "regulator.%lu",
5247                     (unsigned long) atomic_inc_return(&regulator_no));
5248         dev_set_drvdata(&rdev->dev, rdev);
5249
5250         /* set regulator constraints */
5251         if (init_data)
5252                 constraints = &init_data->constraints;
5253
5254         if (init_data && init_data->supply_regulator)
5255                 rdev->supply_name = init_data->supply_regulator;
5256         else if (regulator_desc->supply_name)
5257                 rdev->supply_name = regulator_desc->supply_name;
5258
5259         /*
5260          * Attempt to resolve the regulator supply, if specified,
5261          * but don't return an error if we fail because we will try
5262          * to resolve it again later as more regulators are added.
5263          */
5264         if (regulator_resolve_supply(rdev))
5265                 rdev_dbg(rdev, "unable to resolve supply\n");
5266
5267         ret = set_machine_constraints(rdev, constraints);
5268         if (ret < 0)
5269                 goto wash;
5270
5271         ret = regulator_init_coupling(rdev);
5272         if (ret < 0)
5273                 goto wash;
5274
5275         /* add consumers devices */
5276         if (init_data) {
5277                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5278                         ret = set_consumer_device_supply(rdev,
5279                                 init_data->consumer_supplies[i].dev_name,
5280                                 init_data->consumer_supplies[i].supply);
5281                         if (ret < 0) {
5282                                 dev_err(dev, "Failed to set supply %s\n",
5283                                         init_data->consumer_supplies[i].supply);
5284                                 goto unset_supplies;
5285                         }
5286                 }
5287         }
5288
5289         if (!rdev->desc->ops->get_voltage &&
5290             !rdev->desc->ops->list_voltage &&
5291             !rdev->desc->fixed_uV)
5292                 rdev->is_switch = true;
5293
5294         ret = device_add(&rdev->dev);
5295         if (ret != 0)
5296                 goto unset_supplies;
5297
5298         rdev_init_debugfs(rdev);
5299
5300         /* try to resolve regulators coupling since a new one was registered */
5301         mutex_lock(&regulator_list_mutex);
5302         regulator_resolve_coupling(rdev);
5303         mutex_unlock(&regulator_list_mutex);
5304
5305         /* try to resolve regulators supply since a new one was registered */
5306         class_for_each_device(&regulator_class, NULL, NULL,
5307                               regulator_register_resolve_supply);
5308         kfree(config);
5309         return rdev;
5310
5311 unset_supplies:
5312         mutex_lock(&regulator_list_mutex);
5313         unset_regulator_supplies(rdev);
5314         regulator_remove_coupling(rdev);
5315         mutex_unlock(&regulator_list_mutex);
5316 wash:
5317         kfree(rdev->coupling_desc.coupled_rdevs);
5318         mutex_lock(&regulator_list_mutex);
5319         regulator_ena_gpio_free(rdev);
5320         mutex_unlock(&regulator_list_mutex);
5321 clean:
5322         if (dangling_of_gpiod)
5323                 gpiod_put(config->ena_gpiod);
5324         kfree(config);
5325         put_device(&rdev->dev);
5326 rinse:
5327         if (dangling_cfg_gpiod)
5328                 gpiod_put(cfg->ena_gpiod);
5329         return ERR_PTR(ret);
5330 }
5331 EXPORT_SYMBOL_GPL(regulator_register);
5332
5333 /**
5334  * regulator_unregister - unregister regulator
5335  * @rdev: regulator to unregister
5336  *
5337  * Called by regulator drivers to unregister a regulator.
5338  */
5339 void regulator_unregister(struct regulator_dev *rdev)
5340 {
5341         if (rdev == NULL)
5342                 return;
5343
5344         if (rdev->supply) {
5345                 while (rdev->use_count--)
5346                         regulator_disable(rdev->supply);
5347                 regulator_put(rdev->supply);
5348         }
5349
5350         flush_work(&rdev->disable_work.work);
5351
5352         mutex_lock(&regulator_list_mutex);
5353
5354         debugfs_remove_recursive(rdev->debugfs);
5355         WARN_ON(rdev->open_count);
5356         regulator_remove_coupling(rdev);
5357         unset_regulator_supplies(rdev);
5358         list_del(&rdev->list);
5359         regulator_ena_gpio_free(rdev);
5360         device_unregister(&rdev->dev);
5361
5362         mutex_unlock(&regulator_list_mutex);
5363 }
5364 EXPORT_SYMBOL_GPL(regulator_unregister);
5365
5366 #ifdef CONFIG_SUSPEND
5367 /**
5368  * regulator_suspend - prepare regulators for system wide suspend
5369  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5370  *
5371  * Configure each regulator with it's suspend operating parameters for state.
5372  */
5373 static int regulator_suspend(struct device *dev)
5374 {
5375         struct regulator_dev *rdev = dev_to_rdev(dev);
5376         suspend_state_t state = pm_suspend_target_state;
5377         int ret;
5378
5379         regulator_lock(rdev);
5380         ret = suspend_set_state(rdev, state);
5381         regulator_unlock(rdev);
5382
5383         return ret;
5384 }
5385
5386 static int regulator_resume(struct device *dev)
5387 {
5388         suspend_state_t state = pm_suspend_target_state;
5389         struct regulator_dev *rdev = dev_to_rdev(dev);
5390         struct regulator_state *rstate;
5391         int ret = 0;
5392
5393         rstate = regulator_get_suspend_state(rdev, state);
5394         if (rstate == NULL)
5395                 return 0;
5396
5397         regulator_lock(rdev);
5398
5399         if (rdev->desc->ops->resume &&
5400             (rstate->enabled == ENABLE_IN_SUSPEND ||
5401              rstate->enabled == DISABLE_IN_SUSPEND))
5402                 ret = rdev->desc->ops->resume(rdev);
5403
5404         regulator_unlock(rdev);
5405
5406         return ret;
5407 }
5408 #else /* !CONFIG_SUSPEND */
5409
5410 #define regulator_suspend       NULL
5411 #define regulator_resume        NULL
5412
5413 #endif /* !CONFIG_SUSPEND */
5414
5415 #ifdef CONFIG_PM
5416 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5417         .suspend        = regulator_suspend,
5418         .resume         = regulator_resume,
5419 };
5420 #endif
5421
5422 struct class regulator_class = {
5423         .name = "regulator",
5424         .dev_release = regulator_dev_release,
5425         .dev_groups = regulator_dev_groups,
5426 #ifdef CONFIG_PM
5427         .pm = &regulator_pm_ops,
5428 #endif
5429 };
5430 /**
5431  * regulator_has_full_constraints - the system has fully specified constraints
5432  *
5433  * Calling this function will cause the regulator API to disable all
5434  * regulators which have a zero use count and don't have an always_on
5435  * constraint in a late_initcall.
5436  *
5437  * The intention is that this will become the default behaviour in a
5438  * future kernel release so users are encouraged to use this facility
5439  * now.
5440  */
5441 void regulator_has_full_constraints(void)
5442 {
5443         has_full_constraints = 1;
5444 }
5445 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5446
5447 /**
5448  * rdev_get_drvdata - get rdev regulator driver data
5449  * @rdev: regulator
5450  *
5451  * Get rdev regulator driver private data. This call can be used in the
5452  * regulator driver context.
5453  */
5454 void *rdev_get_drvdata(struct regulator_dev *rdev)
5455 {
5456         return rdev->reg_data;
5457 }
5458 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5459
5460 /**
5461  * regulator_get_drvdata - get regulator driver data
5462  * @regulator: regulator
5463  *
5464  * Get regulator driver private data. This call can be used in the consumer
5465  * driver context when non API regulator specific functions need to be called.
5466  */
5467 void *regulator_get_drvdata(struct regulator *regulator)
5468 {
5469         return regulator->rdev->reg_data;
5470 }
5471 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5472
5473 /**
5474  * regulator_set_drvdata - set regulator driver data
5475  * @regulator: regulator
5476  * @data: data
5477  */
5478 void regulator_set_drvdata(struct regulator *regulator, void *data)
5479 {
5480         regulator->rdev->reg_data = data;
5481 }
5482 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5483
5484 /**
5485  * regulator_get_id - get regulator ID
5486  * @rdev: regulator
5487  */
5488 int rdev_get_id(struct regulator_dev *rdev)
5489 {
5490         return rdev->desc->id;
5491 }
5492 EXPORT_SYMBOL_GPL(rdev_get_id);
5493
5494 struct device *rdev_get_dev(struct regulator_dev *rdev)
5495 {
5496         return &rdev->dev;
5497 }
5498 EXPORT_SYMBOL_GPL(rdev_get_dev);
5499
5500 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5501 {
5502         return rdev->regmap;
5503 }
5504 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5505
5506 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5507 {
5508         return reg_init_data->driver_data;
5509 }
5510 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5511
5512 #ifdef CONFIG_DEBUG_FS
5513 static int supply_map_show(struct seq_file *sf, void *data)
5514 {
5515         struct regulator_map *map;
5516
5517         list_for_each_entry(map, &regulator_map_list, list) {
5518                 seq_printf(sf, "%s -> %s.%s\n",
5519                                 rdev_get_name(map->regulator), map->dev_name,
5520                                 map->supply);
5521         }
5522
5523         return 0;
5524 }
5525 DEFINE_SHOW_ATTRIBUTE(supply_map);
5526
5527 struct summary_data {
5528         struct seq_file *s;
5529         struct regulator_dev *parent;
5530         int level;
5531 };
5532
5533 static void regulator_summary_show_subtree(struct seq_file *s,
5534                                            struct regulator_dev *rdev,
5535                                            int level);
5536
5537 static int regulator_summary_show_children(struct device *dev, void *data)
5538 {
5539         struct regulator_dev *rdev = dev_to_rdev(dev);
5540         struct summary_data *summary_data = data;
5541
5542         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5543                 regulator_summary_show_subtree(summary_data->s, rdev,
5544                                                summary_data->level + 1);
5545
5546         return 0;
5547 }
5548
5549 static void regulator_summary_show_subtree(struct seq_file *s,
5550                                            struct regulator_dev *rdev,
5551                                            int level)
5552 {
5553         struct regulation_constraints *c;
5554         struct regulator *consumer;
5555         struct summary_data summary_data;
5556         unsigned int opmode;
5557
5558         if (!rdev)
5559                 return;
5560
5561         opmode = _regulator_get_mode_unlocked(rdev);
5562         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5563                    level * 3 + 1, "",
5564                    30 - level * 3, rdev_get_name(rdev),
5565                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5566                    regulator_opmode_to_str(opmode));
5567
5568         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5569         seq_printf(s, "%5dmA ",
5570                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5571
5572         c = rdev->constraints;
5573         if (c) {
5574                 switch (rdev->desc->type) {
5575                 case REGULATOR_VOLTAGE:
5576                         seq_printf(s, "%5dmV %5dmV ",
5577                                    c->min_uV / 1000, c->max_uV / 1000);
5578                         break;
5579                 case REGULATOR_CURRENT:
5580                         seq_printf(s, "%5dmA %5dmA ",
5581                                    c->min_uA / 1000, c->max_uA / 1000);
5582                         break;
5583                 }
5584         }
5585
5586         seq_puts(s, "\n");
5587
5588         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5589                 if (consumer->dev && consumer->dev->class == &regulator_class)
5590                         continue;
5591
5592                 seq_printf(s, "%*s%-*s ",
5593                            (level + 1) * 3 + 1, "",
5594                            30 - (level + 1) * 3,
5595                            consumer->supply_name ? consumer->supply_name :
5596                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5597
5598                 switch (rdev->desc->type) {
5599                 case REGULATOR_VOLTAGE:
5600                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5601                                    consumer->enable_count,
5602                                    consumer->uA_load / 1000,
5603                                    consumer->uA_load && !consumer->enable_count ?
5604                                    '*' : ' ',
5605                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5606                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5607                         break;
5608                 case REGULATOR_CURRENT:
5609                         break;
5610                 }
5611
5612                 seq_puts(s, "\n");
5613         }
5614
5615         summary_data.s = s;
5616         summary_data.level = level;
5617         summary_data.parent = rdev;
5618
5619         class_for_each_device(&regulator_class, NULL, &summary_data,
5620                               regulator_summary_show_children);
5621 }
5622
5623 struct summary_lock_data {
5624         struct ww_acquire_ctx *ww_ctx;
5625         struct regulator_dev **new_contended_rdev;
5626         struct regulator_dev **old_contended_rdev;
5627 };
5628
5629 static int regulator_summary_lock_one(struct device *dev, void *data)
5630 {
5631         struct regulator_dev *rdev = dev_to_rdev(dev);
5632         struct summary_lock_data *lock_data = data;
5633         int ret = 0;
5634
5635         if (rdev != *lock_data->old_contended_rdev) {
5636                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5637
5638                 if (ret == -EDEADLK)
5639                         *lock_data->new_contended_rdev = rdev;
5640                 else
5641                         WARN_ON_ONCE(ret);
5642         } else {
5643                 *lock_data->old_contended_rdev = NULL;
5644         }
5645
5646         return ret;
5647 }
5648
5649 static int regulator_summary_unlock_one(struct device *dev, void *data)
5650 {
5651         struct regulator_dev *rdev = dev_to_rdev(dev);
5652         struct summary_lock_data *lock_data = data;
5653
5654         if (lock_data) {
5655                 if (rdev == *lock_data->new_contended_rdev)
5656                         return -EDEADLK;
5657         }
5658
5659         regulator_unlock(rdev);
5660
5661         return 0;
5662 }
5663
5664 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5665                                       struct regulator_dev **new_contended_rdev,
5666                                       struct regulator_dev **old_contended_rdev)
5667 {
5668         struct summary_lock_data lock_data;
5669         int ret;
5670
5671         lock_data.ww_ctx = ww_ctx;
5672         lock_data.new_contended_rdev = new_contended_rdev;
5673         lock_data.old_contended_rdev = old_contended_rdev;
5674
5675         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5676                                     regulator_summary_lock_one);
5677         if (ret)
5678                 class_for_each_device(&regulator_class, NULL, &lock_data,
5679                                       regulator_summary_unlock_one);
5680
5681         return ret;
5682 }
5683
5684 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5685 {
5686         struct regulator_dev *new_contended_rdev = NULL;
5687         struct regulator_dev *old_contended_rdev = NULL;
5688         int err;
5689
5690         mutex_lock(&regulator_list_mutex);
5691
5692         ww_acquire_init(ww_ctx, &regulator_ww_class);
5693
5694         do {
5695                 if (new_contended_rdev) {
5696                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5697                         old_contended_rdev = new_contended_rdev;
5698                         old_contended_rdev->ref_cnt++;
5699                 }
5700
5701                 err = regulator_summary_lock_all(ww_ctx,
5702                                                  &new_contended_rdev,
5703                                                  &old_contended_rdev);
5704
5705                 if (old_contended_rdev)
5706                         regulator_unlock(old_contended_rdev);
5707
5708         } while (err == -EDEADLK);
5709
5710         ww_acquire_done(ww_ctx);
5711 }
5712
5713 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5714 {
5715         class_for_each_device(&regulator_class, NULL, NULL,
5716                               regulator_summary_unlock_one);
5717         ww_acquire_fini(ww_ctx);
5718
5719         mutex_unlock(&regulator_list_mutex);
5720 }
5721
5722 static int regulator_summary_show_roots(struct device *dev, void *data)
5723 {
5724         struct regulator_dev *rdev = dev_to_rdev(dev);
5725         struct seq_file *s = data;
5726
5727         if (!rdev->supply)
5728                 regulator_summary_show_subtree(s, rdev, 0);
5729
5730         return 0;
5731 }
5732
5733 static int regulator_summary_show(struct seq_file *s, void *data)
5734 {
5735         struct ww_acquire_ctx ww_ctx;
5736
5737         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5738         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5739
5740         regulator_summary_lock(&ww_ctx);
5741
5742         class_for_each_device(&regulator_class, NULL, s,
5743                               regulator_summary_show_roots);
5744
5745         regulator_summary_unlock(&ww_ctx);
5746
5747         return 0;
5748 }
5749 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5750 #endif /* CONFIG_DEBUG_FS */
5751
5752 static int __init regulator_init(void)
5753 {
5754         int ret;
5755
5756         ret = class_register(&regulator_class);
5757
5758         debugfs_root = debugfs_create_dir("regulator", NULL);
5759         if (!debugfs_root)
5760                 pr_warn("regulator: Failed to create debugfs directory\n");
5761
5762 #ifdef CONFIG_DEBUG_FS
5763         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5764                             &supply_map_fops);
5765
5766         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5767                             NULL, &regulator_summary_fops);
5768 #endif
5769         regulator_dummy_init();
5770
5771         regulator_coupler_register(&generic_regulator_coupler);
5772
5773         return ret;
5774 }
5775
5776 /* init early to allow our consumers to complete system booting */
5777 core_initcall(regulator_init);
5778
5779 static int regulator_late_cleanup(struct device *dev, void *data)
5780 {
5781         struct regulator_dev *rdev = dev_to_rdev(dev);
5782         const struct regulator_ops *ops = rdev->desc->ops;
5783         struct regulation_constraints *c = rdev->constraints;
5784         int enabled, ret;
5785
5786         if (c && c->always_on)
5787                 return 0;
5788
5789         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5790                 return 0;
5791
5792         regulator_lock(rdev);
5793
5794         if (rdev->use_count)
5795                 goto unlock;
5796
5797         /* If we can't read the status assume it's on. */
5798         if (ops->is_enabled)
5799                 enabled = ops->is_enabled(rdev);
5800         else
5801                 enabled = 1;
5802
5803         if (!enabled)
5804                 goto unlock;
5805
5806         if (have_full_constraints()) {
5807                 /* We log since this may kill the system if it goes
5808                  * wrong. */
5809                 rdev_info(rdev, "disabling\n");
5810                 ret = _regulator_do_disable(rdev);
5811                 if (ret != 0)
5812                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5813         } else {
5814                 /* The intention is that in future we will
5815                  * assume that full constraints are provided
5816                  * so warn even if we aren't going to do
5817                  * anything here.
5818                  */
5819                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5820         }
5821
5822 unlock:
5823         regulator_unlock(rdev);
5824
5825         return 0;
5826 }
5827
5828 static void regulator_init_complete_work_function(struct work_struct *work)
5829 {
5830         /*
5831          * Regulators may had failed to resolve their input supplies
5832          * when were registered, either because the input supply was
5833          * not registered yet or because its parent device was not
5834          * bound yet. So attempt to resolve the input supplies for
5835          * pending regulators before trying to disable unused ones.
5836          */
5837         class_for_each_device(&regulator_class, NULL, NULL,
5838                               regulator_register_resolve_supply);
5839
5840         /* If we have a full configuration then disable any regulators
5841          * we have permission to change the status for and which are
5842          * not in use or always_on.  This is effectively the default
5843          * for DT and ACPI as they have full constraints.
5844          */
5845         class_for_each_device(&regulator_class, NULL, NULL,
5846                               regulator_late_cleanup);
5847 }
5848
5849 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5850                             regulator_init_complete_work_function);
5851
5852 static int __init regulator_init_complete(void)
5853 {
5854         /*
5855          * Since DT doesn't provide an idiomatic mechanism for
5856          * enabling full constraints and since it's much more natural
5857          * with DT to provide them just assume that a DT enabled
5858          * system has full constraints.
5859          */
5860         if (of_have_populated_dt())
5861                 has_full_constraints = true;
5862
5863         /*
5864          * We punt completion for an arbitrary amount of time since
5865          * systems like distros will load many drivers from userspace
5866          * so consumers might not always be ready yet, this is
5867          * particularly an issue with laptops where this might bounce
5868          * the display off then on.  Ideally we'd get a notification
5869          * from userspace when this happens but we don't so just wait
5870          * a bit and hope we waited long enough.  It'd be better if
5871          * we'd only do this on systems that need it, and a kernel
5872          * command line option might be useful.
5873          */
5874         schedule_delayed_work(&regulator_init_complete_work,
5875                               msecs_to_jiffies(30000));
5876
5877         return 0;
5878 }
5879 late_initcall_sync(regulator_init_complete);