io_uring: initialize 'timeout' properly in io_sq_thread()
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113         if (rdev->constraints && rdev->constraints->name)
114                 return rdev->constraints->name;
115         else if (rdev->desc->name)
116                 return rdev->desc->name;
117         else
118                 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123         return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128         if (!rdev->constraints) {
129                 rdev_err(rdev, "no constraints\n");
130                 return false;
131         }
132
133         if (rdev->constraints->valid_ops_mask & ops)
134                 return true;
135
136         return false;
137 }
138
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:               regulator source
142  * @ww_ctx:             w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151                                         struct ww_acquire_ctx *ww_ctx)
152 {
153         bool lock = false;
154         int ret = 0;
155
156         mutex_lock(&regulator_nesting_mutex);
157
158         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159                 if (rdev->mutex_owner == current)
160                         rdev->ref_cnt++;
161                 else
162                         lock = true;
163
164                 if (lock) {
165                         mutex_unlock(&regulator_nesting_mutex);
166                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167                         mutex_lock(&regulator_nesting_mutex);
168                 }
169         } else {
170                 lock = true;
171         }
172
173         if (lock && ret != -EDEADLK) {
174                 rdev->ref_cnt++;
175                 rdev->mutex_owner = current;
176         }
177
178         mutex_unlock(&regulator_nesting_mutex);
179
180         return ret;
181 }
182
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:               regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195         regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221         struct regulator_dev *c_rdev;
222         int i;
223
224         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227                 if (rdev->supply->rdev == c_rdev)
228                         return true;
229         }
230
231         return false;
232 }
233
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235                                        unsigned int n_coupled)
236 {
237         struct regulator_dev *c_rdev, *supply_rdev;
238         int i, supply_n_coupled;
239
240         for (i = n_coupled; i > 0; i--) {
241                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243                 if (!c_rdev)
244                         continue;
245
246                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247                         supply_rdev = c_rdev->supply->rdev;
248                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250                         regulator_unlock_recursive(supply_rdev,
251                                                    supply_n_coupled);
252                 }
253
254                 regulator_unlock(c_rdev);
255         }
256 }
257
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259                                     struct regulator_dev **new_contended_rdev,
260                                     struct regulator_dev **old_contended_rdev,
261                                     struct ww_acquire_ctx *ww_ctx)
262 {
263         struct regulator_dev *c_rdev;
264         int i, err;
265
266         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269                 if (!c_rdev)
270                         continue;
271
272                 if (c_rdev != *old_contended_rdev) {
273                         err = regulator_lock_nested(c_rdev, ww_ctx);
274                         if (err) {
275                                 if (err == -EDEADLK) {
276                                         *new_contended_rdev = c_rdev;
277                                         goto err_unlock;
278                                 }
279
280                                 /* shouldn't happen */
281                                 WARN_ON_ONCE(err != -EALREADY);
282                         }
283                 } else {
284                         *old_contended_rdev = NULL;
285                 }
286
287                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288                         err = regulator_lock_recursive(c_rdev->supply->rdev,
289                                                        new_contended_rdev,
290                                                        old_contended_rdev,
291                                                        ww_ctx);
292                         if (err) {
293                                 regulator_unlock(c_rdev);
294                                 goto err_unlock;
295                         }
296                 }
297         }
298
299         return 0;
300
301 err_unlock:
302         regulator_unlock_recursive(rdev, i);
303
304         return err;
305 }
306
307 /**
308  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309  *                              regulators
310  * @rdev:                       regulator source
311  * @ww_ctx:                     w/w mutex acquire context
312  *
313  * Unlock all regulators related with rdev by coupling or supplying.
314  */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316                                        struct ww_acquire_ctx *ww_ctx)
317 {
318         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319         ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324  * @rdev:                       regulator source
325  * @ww_ctx:                     w/w mutex acquire context
326  *
327  * This function as a wrapper on regulator_lock_recursive(), which locks
328  * all regulators related with rdev by coupling or supplying.
329  */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331                                      struct ww_acquire_ctx *ww_ctx)
332 {
333         struct regulator_dev *new_contended_rdev = NULL;
334         struct regulator_dev *old_contended_rdev = NULL;
335         int err;
336
337         mutex_lock(&regulator_list_mutex);
338
339         ww_acquire_init(ww_ctx, &regulator_ww_class);
340
341         do {
342                 if (new_contended_rdev) {
343                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344                         old_contended_rdev = new_contended_rdev;
345                         old_contended_rdev->ref_cnt++;
346                 }
347
348                 err = regulator_lock_recursive(rdev,
349                                                &new_contended_rdev,
350                                                &old_contended_rdev,
351                                                ww_ctx);
352
353                 if (old_contended_rdev)
354                         regulator_unlock(old_contended_rdev);
355
356         } while (err == -EDEADLK);
357
358         ww_acquire_done(ww_ctx);
359
360         mutex_unlock(&regulator_list_mutex);
361 }
362
363 /**
364  * of_get_child_regulator - get a child regulator device node
365  * based on supply name
366  * @parent: Parent device node
367  * @prop_name: Combination regulator supply name and "-supply"
368  *
369  * Traverse all child nodes.
370  * Extract the child regulator device node corresponding to the supply name.
371  * returns the device node corresponding to the regulator if found, else
372  * returns NULL.
373  */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375                                                   const char *prop_name)
376 {
377         struct device_node *regnode = NULL;
378         struct device_node *child = NULL;
379
380         for_each_child_of_node(parent, child) {
381                 regnode = of_parse_phandle(child, prop_name, 0);
382
383                 if (!regnode) {
384                         regnode = of_get_child_regulator(child, prop_name);
385                         if (regnode)
386                                 goto err_node_put;
387                 } else {
388                         goto err_node_put;
389                 }
390         }
391         return NULL;
392
393 err_node_put:
394         of_node_put(child);
395         return regnode;
396 }
397
398 /**
399  * of_get_regulator - get a regulator device node based on supply name
400  * @dev: Device pointer for the consumer (of regulator) device
401  * @supply: regulator supply name
402  *
403  * Extract the regulator device node corresponding to the supply name.
404  * returns the device node corresponding to the regulator if found, else
405  * returns NULL.
406  */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409         struct device_node *regnode = NULL;
410         char prop_name[64]; /* 64 is max size of property name */
411
412         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414         snprintf(prop_name, 64, "%s-supply", supply);
415         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417         if (!regnode) {
418                 regnode = of_get_child_regulator(dev->of_node, prop_name);
419                 if (regnode)
420                         return regnode;
421
422                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423                                 prop_name, dev->of_node);
424                 return NULL;
425         }
426         return regnode;
427 }
428
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431                             int *min_uV, int *max_uV)
432 {
433         BUG_ON(*min_uV > *max_uV);
434
435         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436                 rdev_err(rdev, "voltage operation not allowed\n");
437                 return -EPERM;
438         }
439
440         if (*max_uV > rdev->constraints->max_uV)
441                 *max_uV = rdev->constraints->max_uV;
442         if (*min_uV < rdev->constraints->min_uV)
443                 *min_uV = rdev->constraints->min_uV;
444
445         if (*min_uV > *max_uV) {
446                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447                          *min_uV, *max_uV);
448                 return -EINVAL;
449         }
450
451         return 0;
452 }
453
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461  * regulator consumers
462  */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464                               int *min_uV, int *max_uV,
465                               suspend_state_t state)
466 {
467         struct regulator *regulator;
468         struct regulator_voltage *voltage;
469
470         list_for_each_entry(regulator, &rdev->consumer_list, list) {
471                 voltage = &regulator->voltage[state];
472                 /*
473                  * Assume consumers that didn't say anything are OK
474                  * with anything in the constraint range.
475                  */
476                 if (!voltage->min_uV && !voltage->max_uV)
477                         continue;
478
479                 if (*max_uV > voltage->max_uV)
480                         *max_uV = voltage->max_uV;
481                 if (*min_uV < voltage->min_uV)
482                         *min_uV = voltage->min_uV;
483         }
484
485         if (*min_uV > *max_uV) {
486                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487                         *min_uV, *max_uV);
488                 return -EINVAL;
489         }
490
491         return 0;
492 }
493
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496                                         int *min_uA, int *max_uA)
497 {
498         BUG_ON(*min_uA > *max_uA);
499
500         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501                 rdev_err(rdev, "current operation not allowed\n");
502                 return -EPERM;
503         }
504
505         if (*max_uA > rdev->constraints->max_uA)
506                 *max_uA = rdev->constraints->max_uA;
507         if (*min_uA < rdev->constraints->min_uA)
508                 *min_uA = rdev->constraints->min_uA;
509
510         if (*min_uA > *max_uA) {
511                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512                          *min_uA, *max_uA);
513                 return -EINVAL;
514         }
515
516         return 0;
517 }
518
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521                                     unsigned int *mode)
522 {
523         switch (*mode) {
524         case REGULATOR_MODE_FAST:
525         case REGULATOR_MODE_NORMAL:
526         case REGULATOR_MODE_IDLE:
527         case REGULATOR_MODE_STANDBY:
528                 break;
529         default:
530                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531                 return -EINVAL;
532         }
533
534         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535                 rdev_err(rdev, "mode operation not allowed\n");
536                 return -EPERM;
537         }
538
539         /* The modes are bitmasks, the most power hungry modes having
540          * the lowest values. If the requested mode isn't supported
541          * try higher modes. */
542         while (*mode) {
543                 if (rdev->constraints->valid_modes_mask & *mode)
544                         return 0;
545                 *mode /= 2;
546         }
547
548         return -EINVAL;
549 }
550
551 static inline struct regulator_state *
552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554         if (rdev->constraints == NULL)
555                 return NULL;
556
557         switch (state) {
558         case PM_SUSPEND_STANDBY:
559                 return &rdev->constraints->state_standby;
560         case PM_SUSPEND_MEM:
561                 return &rdev->constraints->state_mem;
562         case PM_SUSPEND_MAX:
563                 return &rdev->constraints->state_disk;
564         default:
565                 return NULL;
566         }
567 }
568
569 static const struct regulator_state *
570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572         const struct regulator_state *rstate;
573
574         rstate = regulator_get_suspend_state(rdev, state);
575         if (rstate == NULL)
576                 return NULL;
577
578         /* If we have no suspend mode configuration don't set anything;
579          * only warn if the driver implements set_suspend_voltage or
580          * set_suspend_mode callback.
581          */
582         if (rstate->enabled != ENABLE_IN_SUSPEND &&
583             rstate->enabled != DISABLE_IN_SUSPEND) {
584                 if (rdev->desc->ops->set_suspend_voltage ||
585                     rdev->desc->ops->set_suspend_mode)
586                         rdev_warn(rdev, "No configuration\n");
587                 return NULL;
588         }
589
590         return rstate;
591 }
592
593 static ssize_t regulator_uV_show(struct device *dev,
594                                 struct device_attribute *attr, char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597         int uV;
598
599         regulator_lock(rdev);
600         uV = regulator_get_voltage_rdev(rdev);
601         regulator_unlock(rdev);
602
603         if (uV < 0)
604                 return uV;
605         return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608
609 static ssize_t regulator_uA_show(struct device *dev,
610                                 struct device_attribute *attr, char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617
618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619                          char *buf)
620 {
621         struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623         return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626
627 static const char *regulator_opmode_to_str(int mode)
628 {
629         switch (mode) {
630         case REGULATOR_MODE_FAST:
631                 return "fast";
632         case REGULATOR_MODE_NORMAL:
633                 return "normal";
634         case REGULATOR_MODE_IDLE:
635                 return "idle";
636         case REGULATOR_MODE_STANDBY:
637                 return "standby";
638         }
639         return "unknown";
640 }
641
642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646
647 static ssize_t regulator_opmode_show(struct device *dev,
648                                     struct device_attribute *attr, char *buf)
649 {
650         struct regulator_dev *rdev = dev_get_drvdata(dev);
651
652         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655
656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658         if (state > 0)
659                 return sprintf(buf, "enabled\n");
660         else if (state == 0)
661                 return sprintf(buf, "disabled\n");
662         else
663                 return sprintf(buf, "unknown\n");
664 }
665
666 static ssize_t regulator_state_show(struct device *dev,
667                                    struct device_attribute *attr, char *buf)
668 {
669         struct regulator_dev *rdev = dev_get_drvdata(dev);
670         ssize_t ret;
671
672         regulator_lock(rdev);
673         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674         regulator_unlock(rdev);
675
676         return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679
680 static ssize_t regulator_status_show(struct device *dev,
681                                    struct device_attribute *attr, char *buf)
682 {
683         struct regulator_dev *rdev = dev_get_drvdata(dev);
684         int status;
685         char *label;
686
687         status = rdev->desc->ops->get_status(rdev);
688         if (status < 0)
689                 return status;
690
691         switch (status) {
692         case REGULATOR_STATUS_OFF:
693                 label = "off";
694                 break;
695         case REGULATOR_STATUS_ON:
696                 label = "on";
697                 break;
698         case REGULATOR_STATUS_ERROR:
699                 label = "error";
700                 break;
701         case REGULATOR_STATUS_FAST:
702                 label = "fast";
703                 break;
704         case REGULATOR_STATUS_NORMAL:
705                 label = "normal";
706                 break;
707         case REGULATOR_STATUS_IDLE:
708                 label = "idle";
709                 break;
710         case REGULATOR_STATUS_STANDBY:
711                 label = "standby";
712                 break;
713         case REGULATOR_STATUS_BYPASS:
714                 label = "bypass";
715                 break;
716         case REGULATOR_STATUS_UNDEFINED:
717                 label = "undefined";
718                 break;
719         default:
720                 return -ERANGE;
721         }
722
723         return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726
727 static ssize_t regulator_min_uA_show(struct device *dev,
728                                     struct device_attribute *attr, char *buf)
729 {
730         struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732         if (!rdev->constraints)
733                 return sprintf(buf, "constraint not defined\n");
734
735         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738
739 static ssize_t regulator_max_uA_show(struct device *dev,
740                                     struct device_attribute *attr, char *buf)
741 {
742         struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744         if (!rdev->constraints)
745                 return sprintf(buf, "constraint not defined\n");
746
747         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750
751 static ssize_t regulator_min_uV_show(struct device *dev,
752                                     struct device_attribute *attr, char *buf)
753 {
754         struct regulator_dev *rdev = dev_get_drvdata(dev);
755
756         if (!rdev->constraints)
757                 return sprintf(buf, "constraint not defined\n");
758
759         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762
763 static ssize_t regulator_max_uV_show(struct device *dev,
764                                     struct device_attribute *attr, char *buf)
765 {
766         struct regulator_dev *rdev = dev_get_drvdata(dev);
767
768         if (!rdev->constraints)
769                 return sprintf(buf, "constraint not defined\n");
770
771         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774
775 static ssize_t regulator_total_uA_show(struct device *dev,
776                                       struct device_attribute *attr, char *buf)
777 {
778         struct regulator_dev *rdev = dev_get_drvdata(dev);
779         struct regulator *regulator;
780         int uA = 0;
781
782         regulator_lock(rdev);
783         list_for_each_entry(regulator, &rdev->consumer_list, list) {
784                 if (regulator->enable_count)
785                         uA += regulator->uA_load;
786         }
787         regulator_unlock(rdev);
788         return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791
792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793                               char *buf)
794 {
795         struct regulator_dev *rdev = dev_get_drvdata(dev);
796         return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799
800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801                          char *buf)
802 {
803         struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805         switch (rdev->desc->type) {
806         case REGULATOR_VOLTAGE:
807                 return sprintf(buf, "voltage\n");
808         case REGULATOR_CURRENT:
809                 return sprintf(buf, "current\n");
810         }
811         return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814
815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816                                 struct device_attribute *attr, char *buf)
817 {
818         struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823                 regulator_suspend_mem_uV_show, NULL);
824
825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826                                 struct device_attribute *attr, char *buf)
827 {
828         struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833                 regulator_suspend_disk_uV_show, NULL);
834
835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836                                 struct device_attribute *attr, char *buf)
837 {
838         struct regulator_dev *rdev = dev_get_drvdata(dev);
839
840         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843                 regulator_suspend_standby_uV_show, NULL);
844
845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846                                 struct device_attribute *attr, char *buf)
847 {
848         struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850         return regulator_print_opmode(buf,
851                 rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854                 regulator_suspend_mem_mode_show, NULL);
855
856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857                                 struct device_attribute *attr, char *buf)
858 {
859         struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861         return regulator_print_opmode(buf,
862                 rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865                 regulator_suspend_disk_mode_show, NULL);
866
867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868                                 struct device_attribute *attr, char *buf)
869 {
870         struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872         return regulator_print_opmode(buf,
873                 rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876                 regulator_suspend_standby_mode_show, NULL);
877
878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879                                    struct device_attribute *attr, char *buf)
880 {
881         struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883         return regulator_print_state(buf,
884                         rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887                 regulator_suspend_mem_state_show, NULL);
888
889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890                                    struct device_attribute *attr, char *buf)
891 {
892         struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894         return regulator_print_state(buf,
895                         rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898                 regulator_suspend_disk_state_show, NULL);
899
900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901                                    struct device_attribute *attr, char *buf)
902 {
903         struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905         return regulator_print_state(buf,
906                         rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909                 regulator_suspend_standby_state_show, NULL);
910
911 static ssize_t regulator_bypass_show(struct device *dev,
912                                      struct device_attribute *attr, char *buf)
913 {
914         struct regulator_dev *rdev = dev_get_drvdata(dev);
915         const char *report;
916         bool bypass;
917         int ret;
918
919         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920
921         if (ret != 0)
922                 report = "unknown";
923         else if (bypass)
924                 report = "enabled";
925         else
926                 report = "disabled";
927
928         return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931                    regulator_bypass_show, NULL);
932
933 /* Calculate the new optimum regulator operating mode based on the new total
934  * consumer load. All locks held by caller */
935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937         struct regulator *sibling;
938         int current_uA = 0, output_uV, input_uV, err;
939         unsigned int mode;
940
941         /*
942          * first check to see if we can set modes at all, otherwise just
943          * tell the consumer everything is OK.
944          */
945         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946                 rdev_dbg(rdev, "DRMS operation not allowed\n");
947                 return 0;
948         }
949
950         if (!rdev->desc->ops->get_optimum_mode &&
951             !rdev->desc->ops->set_load)
952                 return 0;
953
954         if (!rdev->desc->ops->set_mode &&
955             !rdev->desc->ops->set_load)
956                 return -EINVAL;
957
958         /* calc total requested load */
959         list_for_each_entry(sibling, &rdev->consumer_list, list) {
960                 if (sibling->enable_count)
961                         current_uA += sibling->uA_load;
962         }
963
964         current_uA += rdev->constraints->system_load;
965
966         if (rdev->desc->ops->set_load) {
967                 /* set the optimum mode for our new total regulator load */
968                 err = rdev->desc->ops->set_load(rdev, current_uA);
969                 if (err < 0)
970                         rdev_err(rdev, "failed to set load %d: %pe\n",
971                                  current_uA, ERR_PTR(err));
972         } else {
973                 /* get output voltage */
974                 output_uV = regulator_get_voltage_rdev(rdev);
975                 if (output_uV <= 0) {
976                         rdev_err(rdev, "invalid output voltage found\n");
977                         return -EINVAL;
978                 }
979
980                 /* get input voltage */
981                 input_uV = 0;
982                 if (rdev->supply)
983                         input_uV = regulator_get_voltage(rdev->supply);
984                 if (input_uV <= 0)
985                         input_uV = rdev->constraints->input_uV;
986                 if (input_uV <= 0) {
987                         rdev_err(rdev, "invalid input voltage found\n");
988                         return -EINVAL;
989                 }
990
991                 /* now get the optimum mode for our new total regulator load */
992                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993                                                          output_uV, current_uA);
994
995                 /* check the new mode is allowed */
996                 err = regulator_mode_constrain(rdev, &mode);
997                 if (err < 0) {
998                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1000                         return err;
1001                 }
1002
1003                 err = rdev->desc->ops->set_mode(rdev, mode);
1004                 if (err < 0)
1005                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006                                  mode, ERR_PTR(err));
1007         }
1008
1009         return err;
1010 }
1011
1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013                                const struct regulator_state *rstate)
1014 {
1015         int ret = 0;
1016
1017         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018                 rdev->desc->ops->set_suspend_enable)
1019                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1020         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021                 rdev->desc->ops->set_suspend_disable)
1022                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1023         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024                 ret = 0;
1025
1026         if (ret < 0) {
1027                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028                 return ret;
1029         }
1030
1031         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033                 if (ret < 0) {
1034                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035                         return ret;
1036                 }
1037         }
1038
1039         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041                 if (ret < 0) {
1042                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043                         return ret;
1044                 }
1045         }
1046
1047         return ret;
1048 }
1049
1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052         const struct regulator_state *rstate;
1053
1054         rstate = regulator_get_suspend_state_check(rdev,
1055                         rdev->constraints->initial_state);
1056         if (!rstate)
1057                 return 0;
1058
1059         return __suspend_set_state(rdev, rstate);
1060 }
1061
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065         struct regulation_constraints *constraints = rdev->constraints;
1066         char buf[160] = "";
1067         size_t len = sizeof(buf) - 1;
1068         int count = 0;
1069         int ret;
1070
1071         if (constraints->min_uV && constraints->max_uV) {
1072                 if (constraints->min_uV == constraints->max_uV)
1073                         count += scnprintf(buf + count, len - count, "%d mV ",
1074                                            constraints->min_uV / 1000);
1075                 else
1076                         count += scnprintf(buf + count, len - count,
1077                                            "%d <--> %d mV ",
1078                                            constraints->min_uV / 1000,
1079                                            constraints->max_uV / 1000);
1080         }
1081
1082         if (!constraints->min_uV ||
1083             constraints->min_uV != constraints->max_uV) {
1084                 ret = regulator_get_voltage_rdev(rdev);
1085                 if (ret > 0)
1086                         count += scnprintf(buf + count, len - count,
1087                                            "at %d mV ", ret / 1000);
1088         }
1089
1090         if (constraints->uV_offset)
1091                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1092                                    constraints->uV_offset / 1000);
1093
1094         if (constraints->min_uA && constraints->max_uA) {
1095                 if (constraints->min_uA == constraints->max_uA)
1096                         count += scnprintf(buf + count, len - count, "%d mA ",
1097                                            constraints->min_uA / 1000);
1098                 else
1099                         count += scnprintf(buf + count, len - count,
1100                                            "%d <--> %d mA ",
1101                                            constraints->min_uA / 1000,
1102                                            constraints->max_uA / 1000);
1103         }
1104
1105         if (!constraints->min_uA ||
1106             constraints->min_uA != constraints->max_uA) {
1107                 ret = _regulator_get_current_limit(rdev);
1108                 if (ret > 0)
1109                         count += scnprintf(buf + count, len - count,
1110                                            "at %d mA ", ret / 1000);
1111         }
1112
1113         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114                 count += scnprintf(buf + count, len - count, "fast ");
1115         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116                 count += scnprintf(buf + count, len - count, "normal ");
1117         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118                 count += scnprintf(buf + count, len - count, "idle ");
1119         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120                 count += scnprintf(buf + count, len - count, "standby ");
1121
1122         if (!count)
1123                 count = scnprintf(buf, len, "no parameters");
1124         else
1125                 --count;
1126
1127         count += scnprintf(buf + count, len - count, ", %s",
1128                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129
1130         rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135
1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138         struct regulation_constraints *constraints = rdev->constraints;
1139
1140         print_constraints_debug(rdev);
1141
1142         if ((constraints->min_uV != constraints->max_uV) &&
1143             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144                 rdev_warn(rdev,
1145                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147
1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149         struct regulation_constraints *constraints)
1150 {
1151         const struct regulator_ops *ops = rdev->desc->ops;
1152         int ret;
1153
1154         /* do we need to apply the constraint voltage */
1155         if (rdev->constraints->apply_uV &&
1156             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157                 int target_min, target_max;
1158                 int current_uV = regulator_get_voltage_rdev(rdev);
1159
1160                 if (current_uV == -ENOTRECOVERABLE) {
1161                         /* This regulator can't be read and must be initialized */
1162                         rdev_info(rdev, "Setting %d-%duV\n",
1163                                   rdev->constraints->min_uV,
1164                                   rdev->constraints->max_uV);
1165                         _regulator_do_set_voltage(rdev,
1166                                                   rdev->constraints->min_uV,
1167                                                   rdev->constraints->max_uV);
1168                         current_uV = regulator_get_voltage_rdev(rdev);
1169                 }
1170
1171                 if (current_uV < 0) {
1172                         rdev_err(rdev,
1173                                  "failed to get the current voltage: %pe\n",
1174                                  ERR_PTR(current_uV));
1175                         return current_uV;
1176                 }
1177
1178                 /*
1179                  * If we're below the minimum voltage move up to the
1180                  * minimum voltage, if we're above the maximum voltage
1181                  * then move down to the maximum.
1182                  */
1183                 target_min = current_uV;
1184                 target_max = current_uV;
1185
1186                 if (current_uV < rdev->constraints->min_uV) {
1187                         target_min = rdev->constraints->min_uV;
1188                         target_max = rdev->constraints->min_uV;
1189                 }
1190
1191                 if (current_uV > rdev->constraints->max_uV) {
1192                         target_min = rdev->constraints->max_uV;
1193                         target_max = rdev->constraints->max_uV;
1194                 }
1195
1196                 if (target_min != current_uV || target_max != current_uV) {
1197                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198                                   current_uV, target_min, target_max);
1199                         ret = _regulator_do_set_voltage(
1200                                 rdev, target_min, target_max);
1201                         if (ret < 0) {
1202                                 rdev_err(rdev,
1203                                         "failed to apply %d-%duV constraint: %pe\n",
1204                                         target_min, target_max, ERR_PTR(ret));
1205                                 return ret;
1206                         }
1207                 }
1208         }
1209
1210         /* constrain machine-level voltage specs to fit
1211          * the actual range supported by this regulator.
1212          */
1213         if (ops->list_voltage && rdev->desc->n_voltages) {
1214                 int     count = rdev->desc->n_voltages;
1215                 int     i;
1216                 int     min_uV = INT_MAX;
1217                 int     max_uV = INT_MIN;
1218                 int     cmin = constraints->min_uV;
1219                 int     cmax = constraints->max_uV;
1220
1221                 /* it's safe to autoconfigure fixed-voltage supplies
1222                    and the constraints are used by list_voltage. */
1223                 if (count == 1 && !cmin) {
1224                         cmin = 1;
1225                         cmax = INT_MAX;
1226                         constraints->min_uV = cmin;
1227                         constraints->max_uV = cmax;
1228                 }
1229
1230                 /* voltage constraints are optional */
1231                 if ((cmin == 0) && (cmax == 0))
1232                         return 0;
1233
1234                 /* else require explicit machine-level constraints */
1235                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236                         rdev_err(rdev, "invalid voltage constraints\n");
1237                         return -EINVAL;
1238                 }
1239
1240                 /* no need to loop voltages if range is continuous */
1241                 if (rdev->desc->continuous_voltage_range)
1242                         return 0;
1243
1244                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245                 for (i = 0; i < count; i++) {
1246                         int     value;
1247
1248                         value = ops->list_voltage(rdev, i);
1249                         if (value <= 0)
1250                                 continue;
1251
1252                         /* maybe adjust [min_uV..max_uV] */
1253                         if (value >= cmin && value < min_uV)
1254                                 min_uV = value;
1255                         if (value <= cmax && value > max_uV)
1256                                 max_uV = value;
1257                 }
1258
1259                 /* final: [min_uV..max_uV] valid iff constraints valid */
1260                 if (max_uV < min_uV) {
1261                         rdev_err(rdev,
1262                                  "unsupportable voltage constraints %u-%uuV\n",
1263                                  min_uV, max_uV);
1264                         return -EINVAL;
1265                 }
1266
1267                 /* use regulator's subset of machine constraints */
1268                 if (constraints->min_uV < min_uV) {
1269                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270                                  constraints->min_uV, min_uV);
1271                         constraints->min_uV = min_uV;
1272                 }
1273                 if (constraints->max_uV > max_uV) {
1274                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275                                  constraints->max_uV, max_uV);
1276                         constraints->max_uV = max_uV;
1277                 }
1278         }
1279
1280         return 0;
1281 }
1282
1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284         struct regulation_constraints *constraints)
1285 {
1286         const struct regulator_ops *ops = rdev->desc->ops;
1287         int ret;
1288
1289         if (!constraints->min_uA && !constraints->max_uA)
1290                 return 0;
1291
1292         if (constraints->min_uA > constraints->max_uA) {
1293                 rdev_err(rdev, "Invalid current constraints\n");
1294                 return -EINVAL;
1295         }
1296
1297         if (!ops->set_current_limit || !ops->get_current_limit) {
1298                 rdev_warn(rdev, "Operation of current configuration missing\n");
1299                 return 0;
1300         }
1301
1302         /* Set regulator current in constraints range */
1303         ret = ops->set_current_limit(rdev, constraints->min_uA,
1304                         constraints->max_uA);
1305         if (ret < 0) {
1306                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307                 return ret;
1308         }
1309
1310         return 0;
1311 }
1312
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314
1315 /**
1316  * set_machine_constraints - sets regulator constraints
1317  * @rdev: regulator source
1318  *
1319  * Allows platform initialisation code to define and constrain
1320  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1321  * Constraints *must* be set by platform code in order for some
1322  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1323  * set_mode.
1324  */
1325 static int set_machine_constraints(struct regulator_dev *rdev)
1326 {
1327         int ret = 0;
1328         const struct regulator_ops *ops = rdev->desc->ops;
1329
1330         ret = machine_constraints_voltage(rdev, rdev->constraints);
1331         if (ret != 0)
1332                 return ret;
1333
1334         ret = machine_constraints_current(rdev, rdev->constraints);
1335         if (ret != 0)
1336                 return ret;
1337
1338         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339                 ret = ops->set_input_current_limit(rdev,
1340                                                    rdev->constraints->ilim_uA);
1341                 if (ret < 0) {
1342                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343                         return ret;
1344                 }
1345         }
1346
1347         /* do we need to setup our suspend state */
1348         if (rdev->constraints->initial_state) {
1349                 ret = suspend_set_initial_state(rdev);
1350                 if (ret < 0) {
1351                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352                         return ret;
1353                 }
1354         }
1355
1356         if (rdev->constraints->initial_mode) {
1357                 if (!ops->set_mode) {
1358                         rdev_err(rdev, "no set_mode operation\n");
1359                         return -EINVAL;
1360                 }
1361
1362                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363                 if (ret < 0) {
1364                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365                         return ret;
1366                 }
1367         } else if (rdev->constraints->system_load) {
1368                 /*
1369                  * We'll only apply the initial system load if an
1370                  * initial mode wasn't specified.
1371                  */
1372                 drms_uA_update(rdev);
1373         }
1374
1375         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376                 && ops->set_ramp_delay) {
1377                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1378                 if (ret < 0) {
1379                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380                         return ret;
1381                 }
1382         }
1383
1384         if (rdev->constraints->pull_down && ops->set_pull_down) {
1385                 ret = ops->set_pull_down(rdev);
1386                 if (ret < 0) {
1387                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388                         return ret;
1389                 }
1390         }
1391
1392         if (rdev->constraints->soft_start && ops->set_soft_start) {
1393                 ret = ops->set_soft_start(rdev);
1394                 if (ret < 0) {
1395                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396                         return ret;
1397                 }
1398         }
1399
1400         if (rdev->constraints->over_current_protection
1401                 && ops->set_over_current_protection) {
1402                 ret = ops->set_over_current_protection(rdev);
1403                 if (ret < 0) {
1404                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1405                                  ERR_PTR(ret));
1406                         return ret;
1407                 }
1408         }
1409
1410         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411                 bool ad_state = (rdev->constraints->active_discharge ==
1412                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1413
1414                 ret = ops->set_active_discharge(rdev, ad_state);
1415                 if (ret < 0) {
1416                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417                         return ret;
1418                 }
1419         }
1420
1421         /* If the constraints say the regulator should be on at this point
1422          * and we have control then make sure it is enabled.
1423          */
1424         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425                 if (rdev->supply) {
1426                         ret = regulator_enable(rdev->supply);
1427                         if (ret < 0) {
1428                                 _regulator_put(rdev->supply);
1429                                 rdev->supply = NULL;
1430                                 return ret;
1431                         }
1432                 }
1433
1434                 ret = _regulator_do_enable(rdev);
1435                 if (ret < 0 && ret != -EINVAL) {
1436                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1437                         return ret;
1438                 }
1439
1440                 if (rdev->constraints->always_on)
1441                         rdev->use_count++;
1442         }
1443
1444         print_constraints(rdev);
1445         return 0;
1446 }
1447
1448 /**
1449  * set_supply - set regulator supply regulator
1450  * @rdev: regulator name
1451  * @supply_rdev: supply regulator name
1452  *
1453  * Called by platform initialisation code to set the supply regulator for this
1454  * regulator. This ensures that a regulators supply will also be enabled by the
1455  * core if it's child is enabled.
1456  */
1457 static int set_supply(struct regulator_dev *rdev,
1458                       struct regulator_dev *supply_rdev)
1459 {
1460         int err;
1461
1462         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1463
1464         if (!try_module_get(supply_rdev->owner))
1465                 return -ENODEV;
1466
1467         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468         if (rdev->supply == NULL) {
1469                 err = -ENOMEM;
1470                 return err;
1471         }
1472         supply_rdev->open_count++;
1473
1474         return 0;
1475 }
1476
1477 /**
1478  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479  * @rdev:         regulator source
1480  * @consumer_dev_name: dev_name() string for device supply applies to
1481  * @supply:       symbolic name for supply
1482  *
1483  * Allows platform initialisation code to map physical regulator
1484  * sources to symbolic names for supplies for use by devices.  Devices
1485  * should use these symbolic names to request regulators, avoiding the
1486  * need to provide board-specific regulator names as platform data.
1487  */
1488 static int set_consumer_device_supply(struct regulator_dev *rdev,
1489                                       const char *consumer_dev_name,
1490                                       const char *supply)
1491 {
1492         struct regulator_map *node, *new_node;
1493         int has_dev;
1494
1495         if (supply == NULL)
1496                 return -EINVAL;
1497
1498         if (consumer_dev_name != NULL)
1499                 has_dev = 1;
1500         else
1501                 has_dev = 0;
1502
1503         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1504         if (new_node == NULL)
1505                 return -ENOMEM;
1506
1507         new_node->regulator = rdev;
1508         new_node->supply = supply;
1509
1510         if (has_dev) {
1511                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1512                 if (new_node->dev_name == NULL) {
1513                         kfree(new_node);
1514                         return -ENOMEM;
1515                 }
1516         }
1517
1518         mutex_lock(&regulator_list_mutex);
1519         list_for_each_entry(node, &regulator_map_list, list) {
1520                 if (node->dev_name && consumer_dev_name) {
1521                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1522                                 continue;
1523                 } else if (node->dev_name || consumer_dev_name) {
1524                         continue;
1525                 }
1526
1527                 if (strcmp(node->supply, supply) != 0)
1528                         continue;
1529
1530                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1531                          consumer_dev_name,
1532                          dev_name(&node->regulator->dev),
1533                          node->regulator->desc->name,
1534                          supply,
1535                          dev_name(&rdev->dev), rdev_get_name(rdev));
1536                 goto fail;
1537         }
1538
1539         list_add(&new_node->list, &regulator_map_list);
1540         mutex_unlock(&regulator_list_mutex);
1541
1542         return 0;
1543
1544 fail:
1545         mutex_unlock(&regulator_list_mutex);
1546         kfree(new_node->dev_name);
1547         kfree(new_node);
1548         return -EBUSY;
1549 }
1550
1551 static void unset_regulator_supplies(struct regulator_dev *rdev)
1552 {
1553         struct regulator_map *node, *n;
1554
1555         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1556                 if (rdev == node->regulator) {
1557                         list_del(&node->list);
1558                         kfree(node->dev_name);
1559                         kfree(node);
1560                 }
1561         }
1562 }
1563
1564 #ifdef CONFIG_DEBUG_FS
1565 static ssize_t constraint_flags_read_file(struct file *file,
1566                                           char __user *user_buf,
1567                                           size_t count, loff_t *ppos)
1568 {
1569         const struct regulator *regulator = file->private_data;
1570         const struct regulation_constraints *c = regulator->rdev->constraints;
1571         char *buf;
1572         ssize_t ret;
1573
1574         if (!c)
1575                 return 0;
1576
1577         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1578         if (!buf)
1579                 return -ENOMEM;
1580
1581         ret = snprintf(buf, PAGE_SIZE,
1582                         "always_on: %u\n"
1583                         "boot_on: %u\n"
1584                         "apply_uV: %u\n"
1585                         "ramp_disable: %u\n"
1586                         "soft_start: %u\n"
1587                         "pull_down: %u\n"
1588                         "over_current_protection: %u\n",
1589                         c->always_on,
1590                         c->boot_on,
1591                         c->apply_uV,
1592                         c->ramp_disable,
1593                         c->soft_start,
1594                         c->pull_down,
1595                         c->over_current_protection);
1596
1597         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1598         kfree(buf);
1599
1600         return ret;
1601 }
1602
1603 #endif
1604
1605 static const struct file_operations constraint_flags_fops = {
1606 #ifdef CONFIG_DEBUG_FS
1607         .open = simple_open,
1608         .read = constraint_flags_read_file,
1609         .llseek = default_llseek,
1610 #endif
1611 };
1612
1613 #define REG_STR_SIZE    64
1614
1615 static struct regulator *create_regulator(struct regulator_dev *rdev,
1616                                           struct device *dev,
1617                                           const char *supply_name)
1618 {
1619         struct regulator *regulator;
1620         int err;
1621
1622         if (dev) {
1623                 char buf[REG_STR_SIZE];
1624                 int size;
1625
1626                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1627                                 dev->kobj.name, supply_name);
1628                 if (size >= REG_STR_SIZE)
1629                         return NULL;
1630
1631                 supply_name = kstrdup(buf, GFP_KERNEL);
1632                 if (supply_name == NULL)
1633                         return NULL;
1634         } else {
1635                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1636                 if (supply_name == NULL)
1637                         return NULL;
1638         }
1639
1640         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641         if (regulator == NULL) {
1642                 kfree(supply_name);
1643                 return NULL;
1644         }
1645
1646         regulator->rdev = rdev;
1647         regulator->supply_name = supply_name;
1648
1649         regulator_lock(rdev);
1650         list_add(&regulator->list, &rdev->consumer_list);
1651         regulator_unlock(rdev);
1652
1653         if (dev) {
1654                 regulator->dev = dev;
1655
1656                 /* Add a link to the device sysfs entry */
1657                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1658                                                supply_name);
1659                 if (err) {
1660                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1661                                   dev->kobj.name, ERR_PTR(err));
1662                         /* non-fatal */
1663                 }
1664         }
1665
1666         regulator->debugfs = debugfs_create_dir(supply_name,
1667                                                 rdev->debugfs);
1668         if (!regulator->debugfs) {
1669                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1670         } else {
1671                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1672                                    &regulator->uA_load);
1673                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1675                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1677                 debugfs_create_file("constraint_flags", 0444,
1678                                     regulator->debugfs, regulator,
1679                                     &constraint_flags_fops);
1680         }
1681
1682         /*
1683          * Check now if the regulator is an always on regulator - if
1684          * it is then we don't need to do nearly so much work for
1685          * enable/disable calls.
1686          */
1687         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688             _regulator_is_enabled(rdev))
1689                 regulator->always_on = true;
1690
1691         return regulator;
1692 }
1693
1694 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1695 {
1696         if (rdev->constraints && rdev->constraints->enable_time)
1697                 return rdev->constraints->enable_time;
1698         if (rdev->desc->ops->enable_time)
1699                 return rdev->desc->ops->enable_time(rdev);
1700         return rdev->desc->enable_time;
1701 }
1702
1703 static struct regulator_supply_alias *regulator_find_supply_alias(
1704                 struct device *dev, const char *supply)
1705 {
1706         struct regulator_supply_alias *map;
1707
1708         list_for_each_entry(map, &regulator_supply_alias_list, list)
1709                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1710                         return map;
1711
1712         return NULL;
1713 }
1714
1715 static void regulator_supply_alias(struct device **dev, const char **supply)
1716 {
1717         struct regulator_supply_alias *map;
1718
1719         map = regulator_find_supply_alias(*dev, *supply);
1720         if (map) {
1721                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1722                                 *supply, map->alias_supply,
1723                                 dev_name(map->alias_dev));
1724                 *dev = map->alias_dev;
1725                 *supply = map->alias_supply;
1726         }
1727 }
1728
1729 static int regulator_match(struct device *dev, const void *data)
1730 {
1731         struct regulator_dev *r = dev_to_rdev(dev);
1732
1733         return strcmp(rdev_get_name(r), data) == 0;
1734 }
1735
1736 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1737 {
1738         struct device *dev;
1739
1740         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1741
1742         return dev ? dev_to_rdev(dev) : NULL;
1743 }
1744
1745 /**
1746  * regulator_dev_lookup - lookup a regulator device.
1747  * @dev: device for regulator "consumer".
1748  * @supply: Supply name or regulator ID.
1749  *
1750  * If successful, returns a struct regulator_dev that corresponds to the name
1751  * @supply and with the embedded struct device refcount incremented by one.
1752  * The refcount must be dropped by calling put_device().
1753  * On failure one of the following ERR-PTR-encoded values is returned:
1754  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1755  * in the future.
1756  */
1757 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1758                                                   const char *supply)
1759 {
1760         struct regulator_dev *r = NULL;
1761         struct device_node *node;
1762         struct regulator_map *map;
1763         const char *devname = NULL;
1764
1765         regulator_supply_alias(&dev, &supply);
1766
1767         /* first do a dt based lookup */
1768         if (dev && dev->of_node) {
1769                 node = of_get_regulator(dev, supply);
1770                 if (node) {
1771                         r = of_find_regulator_by_node(node);
1772                         if (r)
1773                                 return r;
1774
1775                         /*
1776                          * We have a node, but there is no device.
1777                          * assume it has not registered yet.
1778                          */
1779                         return ERR_PTR(-EPROBE_DEFER);
1780                 }
1781         }
1782
1783         /* if not found, try doing it non-dt way */
1784         if (dev)
1785                 devname = dev_name(dev);
1786
1787         mutex_lock(&regulator_list_mutex);
1788         list_for_each_entry(map, &regulator_map_list, list) {
1789                 /* If the mapping has a device set up it must match */
1790                 if (map->dev_name &&
1791                     (!devname || strcmp(map->dev_name, devname)))
1792                         continue;
1793
1794                 if (strcmp(map->supply, supply) == 0 &&
1795                     get_device(&map->regulator->dev)) {
1796                         r = map->regulator;
1797                         break;
1798                 }
1799         }
1800         mutex_unlock(&regulator_list_mutex);
1801
1802         if (r)
1803                 return r;
1804
1805         r = regulator_lookup_by_name(supply);
1806         if (r)
1807                 return r;
1808
1809         return ERR_PTR(-ENODEV);
1810 }
1811
1812 static int regulator_resolve_supply(struct regulator_dev *rdev)
1813 {
1814         struct regulator_dev *r;
1815         struct device *dev = rdev->dev.parent;
1816         int ret;
1817
1818         /* No supply to resolve? */
1819         if (!rdev->supply_name)
1820                 return 0;
1821
1822         /* Supply already resolved? */
1823         if (rdev->supply)
1824                 return 0;
1825
1826         r = regulator_dev_lookup(dev, rdev->supply_name);
1827         if (IS_ERR(r)) {
1828                 ret = PTR_ERR(r);
1829
1830                 /* Did the lookup explicitly defer for us? */
1831                 if (ret == -EPROBE_DEFER)
1832                         return ret;
1833
1834                 if (have_full_constraints()) {
1835                         r = dummy_regulator_rdev;
1836                         get_device(&r->dev);
1837                 } else {
1838                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1839                                 rdev->supply_name, rdev->desc->name);
1840                         return -EPROBE_DEFER;
1841                 }
1842         }
1843
1844         if (r == rdev) {
1845                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1846                         rdev->desc->name, rdev->supply_name);
1847                 if (!have_full_constraints())
1848                         return -EINVAL;
1849                 r = dummy_regulator_rdev;
1850                 get_device(&r->dev);
1851         }
1852
1853         /*
1854          * If the supply's parent device is not the same as the
1855          * regulator's parent device, then ensure the parent device
1856          * is bound before we resolve the supply, in case the parent
1857          * device get probe deferred and unregisters the supply.
1858          */
1859         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1860                 if (!device_is_bound(r->dev.parent)) {
1861                         put_device(&r->dev);
1862                         return -EPROBE_DEFER;
1863                 }
1864         }
1865
1866         /* Recursively resolve the supply of the supply */
1867         ret = regulator_resolve_supply(r);
1868         if (ret < 0) {
1869                 put_device(&r->dev);
1870                 return ret;
1871         }
1872
1873         ret = set_supply(rdev, r);
1874         if (ret < 0) {
1875                 put_device(&r->dev);
1876                 return ret;
1877         }
1878
1879         /*
1880          * In set_machine_constraints() we may have turned this regulator on
1881          * but we couldn't propagate to the supply if it hadn't been resolved
1882          * yet.  Do it now.
1883          */
1884         if (rdev->use_count) {
1885                 ret = regulator_enable(rdev->supply);
1886                 if (ret < 0) {
1887                         _regulator_put(rdev->supply);
1888                         rdev->supply = NULL;
1889                         return ret;
1890                 }
1891         }
1892
1893         return 0;
1894 }
1895
1896 /* Internal regulator request function */
1897 struct regulator *_regulator_get(struct device *dev, const char *id,
1898                                  enum regulator_get_type get_type)
1899 {
1900         struct regulator_dev *rdev;
1901         struct regulator *regulator;
1902         struct device_link *link;
1903         int ret;
1904
1905         if (get_type >= MAX_GET_TYPE) {
1906                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1907                 return ERR_PTR(-EINVAL);
1908         }
1909
1910         if (id == NULL) {
1911                 pr_err("get() with no identifier\n");
1912                 return ERR_PTR(-EINVAL);
1913         }
1914
1915         rdev = regulator_dev_lookup(dev, id);
1916         if (IS_ERR(rdev)) {
1917                 ret = PTR_ERR(rdev);
1918
1919                 /*
1920                  * If regulator_dev_lookup() fails with error other
1921                  * than -ENODEV our job here is done, we simply return it.
1922                  */
1923                 if (ret != -ENODEV)
1924                         return ERR_PTR(ret);
1925
1926                 if (!have_full_constraints()) {
1927                         dev_warn(dev,
1928                                  "incomplete constraints, dummy supplies not allowed\n");
1929                         return ERR_PTR(-ENODEV);
1930                 }
1931
1932                 switch (get_type) {
1933                 case NORMAL_GET:
1934                         /*
1935                          * Assume that a regulator is physically present and
1936                          * enabled, even if it isn't hooked up, and just
1937                          * provide a dummy.
1938                          */
1939                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1940                         rdev = dummy_regulator_rdev;
1941                         get_device(&rdev->dev);
1942                         break;
1943
1944                 case EXCLUSIVE_GET:
1945                         dev_warn(dev,
1946                                  "dummy supplies not allowed for exclusive requests\n");
1947                         fallthrough;
1948
1949                 default:
1950                         return ERR_PTR(-ENODEV);
1951                 }
1952         }
1953
1954         if (rdev->exclusive) {
1955                 regulator = ERR_PTR(-EPERM);
1956                 put_device(&rdev->dev);
1957                 return regulator;
1958         }
1959
1960         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1961                 regulator = ERR_PTR(-EBUSY);
1962                 put_device(&rdev->dev);
1963                 return regulator;
1964         }
1965
1966         mutex_lock(&regulator_list_mutex);
1967         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1968         mutex_unlock(&regulator_list_mutex);
1969
1970         if (ret != 0) {
1971                 regulator = ERR_PTR(-EPROBE_DEFER);
1972                 put_device(&rdev->dev);
1973                 return regulator;
1974         }
1975
1976         ret = regulator_resolve_supply(rdev);
1977         if (ret < 0) {
1978                 regulator = ERR_PTR(ret);
1979                 put_device(&rdev->dev);
1980                 return regulator;
1981         }
1982
1983         if (!try_module_get(rdev->owner)) {
1984                 regulator = ERR_PTR(-EPROBE_DEFER);
1985                 put_device(&rdev->dev);
1986                 return regulator;
1987         }
1988
1989         regulator = create_regulator(rdev, dev, id);
1990         if (regulator == NULL) {
1991                 regulator = ERR_PTR(-ENOMEM);
1992                 module_put(rdev->owner);
1993                 put_device(&rdev->dev);
1994                 return regulator;
1995         }
1996
1997         rdev->open_count++;
1998         if (get_type == EXCLUSIVE_GET) {
1999                 rdev->exclusive = 1;
2000
2001                 ret = _regulator_is_enabled(rdev);
2002                 if (ret > 0)
2003                         rdev->use_count = 1;
2004                 else
2005                         rdev->use_count = 0;
2006         }
2007
2008         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2009         if (!IS_ERR_OR_NULL(link))
2010                 regulator->device_link = true;
2011
2012         return regulator;
2013 }
2014
2015 /**
2016  * regulator_get - lookup and obtain a reference to a regulator.
2017  * @dev: device for regulator "consumer"
2018  * @id: Supply name or regulator ID.
2019  *
2020  * Returns a struct regulator corresponding to the regulator producer,
2021  * or IS_ERR() condition containing errno.
2022  *
2023  * Use of supply names configured via regulator_set_device_supply() is
2024  * strongly encouraged.  It is recommended that the supply name used
2025  * should match the name used for the supply and/or the relevant
2026  * device pins in the datasheet.
2027  */
2028 struct regulator *regulator_get(struct device *dev, const char *id)
2029 {
2030         return _regulator_get(dev, id, NORMAL_GET);
2031 }
2032 EXPORT_SYMBOL_GPL(regulator_get);
2033
2034 /**
2035  * regulator_get_exclusive - obtain exclusive access to a regulator.
2036  * @dev: device for regulator "consumer"
2037  * @id: Supply name or regulator ID.
2038  *
2039  * Returns a struct regulator corresponding to the regulator producer,
2040  * or IS_ERR() condition containing errno.  Other consumers will be
2041  * unable to obtain this regulator while this reference is held and the
2042  * use count for the regulator will be initialised to reflect the current
2043  * state of the regulator.
2044  *
2045  * This is intended for use by consumers which cannot tolerate shared
2046  * use of the regulator such as those which need to force the
2047  * regulator off for correct operation of the hardware they are
2048  * controlling.
2049  *
2050  * Use of supply names configured via regulator_set_device_supply() is
2051  * strongly encouraged.  It is recommended that the supply name used
2052  * should match the name used for the supply and/or the relevant
2053  * device pins in the datasheet.
2054  */
2055 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2056 {
2057         return _regulator_get(dev, id, EXCLUSIVE_GET);
2058 }
2059 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2060
2061 /**
2062  * regulator_get_optional - obtain optional access to a regulator.
2063  * @dev: device for regulator "consumer"
2064  * @id: Supply name or regulator ID.
2065  *
2066  * Returns a struct regulator corresponding to the regulator producer,
2067  * or IS_ERR() condition containing errno.
2068  *
2069  * This is intended for use by consumers for devices which can have
2070  * some supplies unconnected in normal use, such as some MMC devices.
2071  * It can allow the regulator core to provide stub supplies for other
2072  * supplies requested using normal regulator_get() calls without
2073  * disrupting the operation of drivers that can handle absent
2074  * supplies.
2075  *
2076  * Use of supply names configured via regulator_set_device_supply() is
2077  * strongly encouraged.  It is recommended that the supply name used
2078  * should match the name used for the supply and/or the relevant
2079  * device pins in the datasheet.
2080  */
2081 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2082 {
2083         return _regulator_get(dev, id, OPTIONAL_GET);
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_get_optional);
2086
2087 static void destroy_regulator(struct regulator *regulator)
2088 {
2089         struct regulator_dev *rdev = regulator->rdev;
2090
2091         debugfs_remove_recursive(regulator->debugfs);
2092
2093         if (regulator->dev) {
2094                 if (regulator->device_link)
2095                         device_link_remove(regulator->dev, &rdev->dev);
2096
2097                 /* remove any sysfs entries */
2098                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2099         }
2100
2101         regulator_lock(rdev);
2102         list_del(&regulator->list);
2103
2104         rdev->open_count--;
2105         rdev->exclusive = 0;
2106         regulator_unlock(rdev);
2107
2108         kfree_const(regulator->supply_name);
2109         kfree(regulator);
2110 }
2111
2112 /* regulator_list_mutex lock held by regulator_put() */
2113 static void _regulator_put(struct regulator *regulator)
2114 {
2115         struct regulator_dev *rdev;
2116
2117         if (IS_ERR_OR_NULL(regulator))
2118                 return;
2119
2120         lockdep_assert_held_once(&regulator_list_mutex);
2121
2122         /* Docs say you must disable before calling regulator_put() */
2123         WARN_ON(regulator->enable_count);
2124
2125         rdev = regulator->rdev;
2126
2127         destroy_regulator(regulator);
2128
2129         module_put(rdev->owner);
2130         put_device(&rdev->dev);
2131 }
2132
2133 /**
2134  * regulator_put - "free" the regulator source
2135  * @regulator: regulator source
2136  *
2137  * Note: drivers must ensure that all regulator_enable calls made on this
2138  * regulator source are balanced by regulator_disable calls prior to calling
2139  * this function.
2140  */
2141 void regulator_put(struct regulator *regulator)
2142 {
2143         mutex_lock(&regulator_list_mutex);
2144         _regulator_put(regulator);
2145         mutex_unlock(&regulator_list_mutex);
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_put);
2148
2149 /**
2150  * regulator_register_supply_alias - Provide device alias for supply lookup
2151  *
2152  * @dev: device that will be given as the regulator "consumer"
2153  * @id: Supply name or regulator ID
2154  * @alias_dev: device that should be used to lookup the supply
2155  * @alias_id: Supply name or regulator ID that should be used to lookup the
2156  * supply
2157  *
2158  * All lookups for id on dev will instead be conducted for alias_id on
2159  * alias_dev.
2160  */
2161 int regulator_register_supply_alias(struct device *dev, const char *id,
2162                                     struct device *alias_dev,
2163                                     const char *alias_id)
2164 {
2165         struct regulator_supply_alias *map;
2166
2167         map = regulator_find_supply_alias(dev, id);
2168         if (map)
2169                 return -EEXIST;
2170
2171         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2172         if (!map)
2173                 return -ENOMEM;
2174
2175         map->src_dev = dev;
2176         map->src_supply = id;
2177         map->alias_dev = alias_dev;
2178         map->alias_supply = alias_id;
2179
2180         list_add(&map->list, &regulator_supply_alias_list);
2181
2182         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2183                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2184
2185         return 0;
2186 }
2187 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2188
2189 /**
2190  * regulator_unregister_supply_alias - Remove device alias
2191  *
2192  * @dev: device that will be given as the regulator "consumer"
2193  * @id: Supply name or regulator ID
2194  *
2195  * Remove a lookup alias if one exists for id on dev.
2196  */
2197 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2198 {
2199         struct regulator_supply_alias *map;
2200
2201         map = regulator_find_supply_alias(dev, id);
2202         if (map) {
2203                 list_del(&map->list);
2204                 kfree(map);
2205         }
2206 }
2207 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2208
2209 /**
2210  * regulator_bulk_register_supply_alias - register multiple aliases
2211  *
2212  * @dev: device that will be given as the regulator "consumer"
2213  * @id: List of supply names or regulator IDs
2214  * @alias_dev: device that should be used to lookup the supply
2215  * @alias_id: List of supply names or regulator IDs that should be used to
2216  * lookup the supply
2217  * @num_id: Number of aliases to register
2218  *
2219  * @return 0 on success, an errno on failure.
2220  *
2221  * This helper function allows drivers to register several supply
2222  * aliases in one operation.  If any of the aliases cannot be
2223  * registered any aliases that were registered will be removed
2224  * before returning to the caller.
2225  */
2226 int regulator_bulk_register_supply_alias(struct device *dev,
2227                                          const char *const *id,
2228                                          struct device *alias_dev,
2229                                          const char *const *alias_id,
2230                                          int num_id)
2231 {
2232         int i;
2233         int ret;
2234
2235         for (i = 0; i < num_id; ++i) {
2236                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2237                                                       alias_id[i]);
2238                 if (ret < 0)
2239                         goto err;
2240         }
2241
2242         return 0;
2243
2244 err:
2245         dev_err(dev,
2246                 "Failed to create supply alias %s,%s -> %s,%s\n",
2247                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2248
2249         while (--i >= 0)
2250                 regulator_unregister_supply_alias(dev, id[i]);
2251
2252         return ret;
2253 }
2254 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2255
2256 /**
2257  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2258  *
2259  * @dev: device that will be given as the regulator "consumer"
2260  * @id: List of supply names or regulator IDs
2261  * @num_id: Number of aliases to unregister
2262  *
2263  * This helper function allows drivers to unregister several supply
2264  * aliases in one operation.
2265  */
2266 void regulator_bulk_unregister_supply_alias(struct device *dev,
2267                                             const char *const *id,
2268                                             int num_id)
2269 {
2270         int i;
2271
2272         for (i = 0; i < num_id; ++i)
2273                 regulator_unregister_supply_alias(dev, id[i]);
2274 }
2275 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2276
2277
2278 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2279 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2280                                 const struct regulator_config *config)
2281 {
2282         struct regulator_enable_gpio *pin, *new_pin;
2283         struct gpio_desc *gpiod;
2284
2285         gpiod = config->ena_gpiod;
2286         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2287
2288         mutex_lock(&regulator_list_mutex);
2289
2290         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2291                 if (pin->gpiod == gpiod) {
2292                         rdev_dbg(rdev, "GPIO is already used\n");
2293                         goto update_ena_gpio_to_rdev;
2294                 }
2295         }
2296
2297         if (new_pin == NULL) {
2298                 mutex_unlock(&regulator_list_mutex);
2299                 return -ENOMEM;
2300         }
2301
2302         pin = new_pin;
2303         new_pin = NULL;
2304
2305         pin->gpiod = gpiod;
2306         list_add(&pin->list, &regulator_ena_gpio_list);
2307
2308 update_ena_gpio_to_rdev:
2309         pin->request_count++;
2310         rdev->ena_pin = pin;
2311
2312         mutex_unlock(&regulator_list_mutex);
2313         kfree(new_pin);
2314
2315         return 0;
2316 }
2317
2318 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2319 {
2320         struct regulator_enable_gpio *pin, *n;
2321
2322         if (!rdev->ena_pin)
2323                 return;
2324
2325         /* Free the GPIO only in case of no use */
2326         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2327                 if (pin != rdev->ena_pin)
2328                         continue;
2329
2330                 if (--pin->request_count)
2331                         break;
2332
2333                 gpiod_put(pin->gpiod);
2334                 list_del(&pin->list);
2335                 kfree(pin);
2336                 break;
2337         }
2338
2339         rdev->ena_pin = NULL;
2340 }
2341
2342 /**
2343  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2344  * @rdev: regulator_dev structure
2345  * @enable: enable GPIO at initial use?
2346  *
2347  * GPIO is enabled in case of initial use. (enable_count is 0)
2348  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2349  */
2350 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2351 {
2352         struct regulator_enable_gpio *pin = rdev->ena_pin;
2353
2354         if (!pin)
2355                 return -EINVAL;
2356
2357         if (enable) {
2358                 /* Enable GPIO at initial use */
2359                 if (pin->enable_count == 0)
2360                         gpiod_set_value_cansleep(pin->gpiod, 1);
2361
2362                 pin->enable_count++;
2363         } else {
2364                 if (pin->enable_count > 1) {
2365                         pin->enable_count--;
2366                         return 0;
2367                 }
2368
2369                 /* Disable GPIO if not used */
2370                 if (pin->enable_count <= 1) {
2371                         gpiod_set_value_cansleep(pin->gpiod, 0);
2372                         pin->enable_count = 0;
2373                 }
2374         }
2375
2376         return 0;
2377 }
2378
2379 /**
2380  * _regulator_enable_delay - a delay helper function
2381  * @delay: time to delay in microseconds
2382  *
2383  * Delay for the requested amount of time as per the guidelines in:
2384  *
2385  *     Documentation/timers/timers-howto.rst
2386  *
2387  * The assumption here is that regulators will never be enabled in
2388  * atomic context and therefore sleeping functions can be used.
2389  */
2390 static void _regulator_enable_delay(unsigned int delay)
2391 {
2392         unsigned int ms = delay / 1000;
2393         unsigned int us = delay % 1000;
2394
2395         if (ms > 0) {
2396                 /*
2397                  * For small enough values, handle super-millisecond
2398                  * delays in the usleep_range() call below.
2399                  */
2400                 if (ms < 20)
2401                         us += ms * 1000;
2402                 else
2403                         msleep(ms);
2404         }
2405
2406         /*
2407          * Give the scheduler some room to coalesce with any other
2408          * wakeup sources. For delays shorter than 10 us, don't even
2409          * bother setting up high-resolution timers and just busy-
2410          * loop.
2411          */
2412         if (us >= 10)
2413                 usleep_range(us, us + 100);
2414         else
2415                 udelay(us);
2416 }
2417
2418 /**
2419  * _regulator_check_status_enabled
2420  *
2421  * A helper function to check if the regulator status can be interpreted
2422  * as 'regulator is enabled'.
2423  * @rdev: the regulator device to check
2424  *
2425  * Return:
2426  * * 1                  - if status shows regulator is in enabled state
2427  * * 0                  - if not enabled state
2428  * * Error Value        - as received from ops->get_status()
2429  */
2430 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2431 {
2432         int ret = rdev->desc->ops->get_status(rdev);
2433
2434         if (ret < 0) {
2435                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2436                 return ret;
2437         }
2438
2439         switch (ret) {
2440         case REGULATOR_STATUS_OFF:
2441         case REGULATOR_STATUS_ERROR:
2442         case REGULATOR_STATUS_UNDEFINED:
2443                 return 0;
2444         default:
2445                 return 1;
2446         }
2447 }
2448
2449 static int _regulator_do_enable(struct regulator_dev *rdev)
2450 {
2451         int ret, delay;
2452
2453         /* Query before enabling in case configuration dependent.  */
2454         ret = _regulator_get_enable_time(rdev);
2455         if (ret >= 0) {
2456                 delay = ret;
2457         } else {
2458                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2459                 delay = 0;
2460         }
2461
2462         trace_regulator_enable(rdev_get_name(rdev));
2463
2464         if (rdev->desc->off_on_delay) {
2465                 /* if needed, keep a distance of off_on_delay from last time
2466                  * this regulator was disabled.
2467                  */
2468                 unsigned long start_jiffy = jiffies;
2469                 unsigned long intended, max_delay, remaining;
2470
2471                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2472                 intended = rdev->last_off_jiffy + max_delay;
2473
2474                 if (time_before(start_jiffy, intended)) {
2475                         /* calc remaining jiffies to deal with one-time
2476                          * timer wrapping.
2477                          * in case of multiple timer wrapping, either it can be
2478                          * detected by out-of-range remaining, or it cannot be
2479                          * detected and we get a penalty of
2480                          * _regulator_enable_delay().
2481                          */
2482                         remaining = intended - start_jiffy;
2483                         if (remaining <= max_delay)
2484                                 _regulator_enable_delay(
2485                                                 jiffies_to_usecs(remaining));
2486                 }
2487         }
2488
2489         if (rdev->ena_pin) {
2490                 if (!rdev->ena_gpio_state) {
2491                         ret = regulator_ena_gpio_ctrl(rdev, true);
2492                         if (ret < 0)
2493                                 return ret;
2494                         rdev->ena_gpio_state = 1;
2495                 }
2496         } else if (rdev->desc->ops->enable) {
2497                 ret = rdev->desc->ops->enable(rdev);
2498                 if (ret < 0)
2499                         return ret;
2500         } else {
2501                 return -EINVAL;
2502         }
2503
2504         /* Allow the regulator to ramp; it would be useful to extend
2505          * this for bulk operations so that the regulators can ramp
2506          * together.  */
2507         trace_regulator_enable_delay(rdev_get_name(rdev));
2508
2509         /* If poll_enabled_time is set, poll upto the delay calculated
2510          * above, delaying poll_enabled_time uS to check if the regulator
2511          * actually got enabled.
2512          * If the regulator isn't enabled after enable_delay has
2513          * expired, return -ETIMEDOUT.
2514          */
2515         if (rdev->desc->poll_enabled_time) {
2516                 unsigned int time_remaining = delay;
2517
2518                 while (time_remaining > 0) {
2519                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2520
2521                         if (rdev->desc->ops->get_status) {
2522                                 ret = _regulator_check_status_enabled(rdev);
2523                                 if (ret < 0)
2524                                         return ret;
2525                                 else if (ret)
2526                                         break;
2527                         } else if (rdev->desc->ops->is_enabled(rdev))
2528                                 break;
2529
2530                         time_remaining -= rdev->desc->poll_enabled_time;
2531                 }
2532
2533                 if (time_remaining <= 0) {
2534                         rdev_err(rdev, "Enabled check timed out\n");
2535                         return -ETIMEDOUT;
2536                 }
2537         } else {
2538                 _regulator_enable_delay(delay);
2539         }
2540
2541         trace_regulator_enable_complete(rdev_get_name(rdev));
2542
2543         return 0;
2544 }
2545
2546 /**
2547  * _regulator_handle_consumer_enable - handle that a consumer enabled
2548  * @regulator: regulator source
2549  *
2550  * Some things on a regulator consumer (like the contribution towards total
2551  * load on the regulator) only have an effect when the consumer wants the
2552  * regulator enabled.  Explained in example with two consumers of the same
2553  * regulator:
2554  *   consumer A: set_load(100);       => total load = 0
2555  *   consumer A: regulator_enable();  => total load = 100
2556  *   consumer B: set_load(1000);      => total load = 100
2557  *   consumer B: regulator_enable();  => total load = 1100
2558  *   consumer A: regulator_disable(); => total_load = 1000
2559  *
2560  * This function (together with _regulator_handle_consumer_disable) is
2561  * responsible for keeping track of the refcount for a given regulator consumer
2562  * and applying / unapplying these things.
2563  *
2564  * Returns 0 upon no error; -error upon error.
2565  */
2566 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2567 {
2568         struct regulator_dev *rdev = regulator->rdev;
2569
2570         lockdep_assert_held_once(&rdev->mutex.base);
2571
2572         regulator->enable_count++;
2573         if (regulator->uA_load && regulator->enable_count == 1)
2574                 return drms_uA_update(rdev);
2575
2576         return 0;
2577 }
2578
2579 /**
2580  * _regulator_handle_consumer_disable - handle that a consumer disabled
2581  * @regulator: regulator source
2582  *
2583  * The opposite of _regulator_handle_consumer_enable().
2584  *
2585  * Returns 0 upon no error; -error upon error.
2586  */
2587 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2588 {
2589         struct regulator_dev *rdev = regulator->rdev;
2590
2591         lockdep_assert_held_once(&rdev->mutex.base);
2592
2593         if (!regulator->enable_count) {
2594                 rdev_err(rdev, "Underflow of regulator enable count\n");
2595                 return -EINVAL;
2596         }
2597
2598         regulator->enable_count--;
2599         if (regulator->uA_load && regulator->enable_count == 0)
2600                 return drms_uA_update(rdev);
2601
2602         return 0;
2603 }
2604
2605 /* locks held by regulator_enable() */
2606 static int _regulator_enable(struct regulator *regulator)
2607 {
2608         struct regulator_dev *rdev = regulator->rdev;
2609         int ret;
2610
2611         lockdep_assert_held_once(&rdev->mutex.base);
2612
2613         if (rdev->use_count == 0 && rdev->supply) {
2614                 ret = _regulator_enable(rdev->supply);
2615                 if (ret < 0)
2616                         return ret;
2617         }
2618
2619         /* balance only if there are regulators coupled */
2620         if (rdev->coupling_desc.n_coupled > 1) {
2621                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2622                 if (ret < 0)
2623                         goto err_disable_supply;
2624         }
2625
2626         ret = _regulator_handle_consumer_enable(regulator);
2627         if (ret < 0)
2628                 goto err_disable_supply;
2629
2630         if (rdev->use_count == 0) {
2631                 /* The regulator may on if it's not switchable or left on */
2632                 ret = _regulator_is_enabled(rdev);
2633                 if (ret == -EINVAL || ret == 0) {
2634                         if (!regulator_ops_is_valid(rdev,
2635                                         REGULATOR_CHANGE_STATUS)) {
2636                                 ret = -EPERM;
2637                                 goto err_consumer_disable;
2638                         }
2639
2640                         ret = _regulator_do_enable(rdev);
2641                         if (ret < 0)
2642                                 goto err_consumer_disable;
2643
2644                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2645                                              NULL);
2646                 } else if (ret < 0) {
2647                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2648                         goto err_consumer_disable;
2649                 }
2650                 /* Fallthrough on positive return values - already enabled */
2651         }
2652
2653         rdev->use_count++;
2654
2655         return 0;
2656
2657 err_consumer_disable:
2658         _regulator_handle_consumer_disable(regulator);
2659
2660 err_disable_supply:
2661         if (rdev->use_count == 0 && rdev->supply)
2662                 _regulator_disable(rdev->supply);
2663
2664         return ret;
2665 }
2666
2667 /**
2668  * regulator_enable - enable regulator output
2669  * @regulator: regulator source
2670  *
2671  * Request that the regulator be enabled with the regulator output at
2672  * the predefined voltage or current value.  Calls to regulator_enable()
2673  * must be balanced with calls to regulator_disable().
2674  *
2675  * NOTE: the output value can be set by other drivers, boot loader or may be
2676  * hardwired in the regulator.
2677  */
2678 int regulator_enable(struct regulator *regulator)
2679 {
2680         struct regulator_dev *rdev = regulator->rdev;
2681         struct ww_acquire_ctx ww_ctx;
2682         int ret;
2683
2684         regulator_lock_dependent(rdev, &ww_ctx);
2685         ret = _regulator_enable(regulator);
2686         regulator_unlock_dependent(rdev, &ww_ctx);
2687
2688         return ret;
2689 }
2690 EXPORT_SYMBOL_GPL(regulator_enable);
2691
2692 static int _regulator_do_disable(struct regulator_dev *rdev)
2693 {
2694         int ret;
2695
2696         trace_regulator_disable(rdev_get_name(rdev));
2697
2698         if (rdev->ena_pin) {
2699                 if (rdev->ena_gpio_state) {
2700                         ret = regulator_ena_gpio_ctrl(rdev, false);
2701                         if (ret < 0)
2702                                 return ret;
2703                         rdev->ena_gpio_state = 0;
2704                 }
2705
2706         } else if (rdev->desc->ops->disable) {
2707                 ret = rdev->desc->ops->disable(rdev);
2708                 if (ret != 0)
2709                         return ret;
2710         }
2711
2712         /* cares about last_off_jiffy only if off_on_delay is required by
2713          * device.
2714          */
2715         if (rdev->desc->off_on_delay)
2716                 rdev->last_off_jiffy = jiffies;
2717
2718         trace_regulator_disable_complete(rdev_get_name(rdev));
2719
2720         return 0;
2721 }
2722
2723 /* locks held by regulator_disable() */
2724 static int _regulator_disable(struct regulator *regulator)
2725 {
2726         struct regulator_dev *rdev = regulator->rdev;
2727         int ret = 0;
2728
2729         lockdep_assert_held_once(&rdev->mutex.base);
2730
2731         if (WARN(rdev->use_count <= 0,
2732                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2733                 return -EIO;
2734
2735         /* are we the last user and permitted to disable ? */
2736         if (rdev->use_count == 1 &&
2737             (rdev->constraints && !rdev->constraints->always_on)) {
2738
2739                 /* we are last user */
2740                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2741                         ret = _notifier_call_chain(rdev,
2742                                                    REGULATOR_EVENT_PRE_DISABLE,
2743                                                    NULL);
2744                         if (ret & NOTIFY_STOP_MASK)
2745                                 return -EINVAL;
2746
2747                         ret = _regulator_do_disable(rdev);
2748                         if (ret < 0) {
2749                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2750                                 _notifier_call_chain(rdev,
2751                                                 REGULATOR_EVENT_ABORT_DISABLE,
2752                                                 NULL);
2753                                 return ret;
2754                         }
2755                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2756                                         NULL);
2757                 }
2758
2759                 rdev->use_count = 0;
2760         } else if (rdev->use_count > 1) {
2761                 rdev->use_count--;
2762         }
2763
2764         if (ret == 0)
2765                 ret = _regulator_handle_consumer_disable(regulator);
2766
2767         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2768                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2769
2770         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2771                 ret = _regulator_disable(rdev->supply);
2772
2773         return ret;
2774 }
2775
2776 /**
2777  * regulator_disable - disable regulator output
2778  * @regulator: regulator source
2779  *
2780  * Disable the regulator output voltage or current.  Calls to
2781  * regulator_enable() must be balanced with calls to
2782  * regulator_disable().
2783  *
2784  * NOTE: this will only disable the regulator output if no other consumer
2785  * devices have it enabled, the regulator device supports disabling and
2786  * machine constraints permit this operation.
2787  */
2788 int regulator_disable(struct regulator *regulator)
2789 {
2790         struct regulator_dev *rdev = regulator->rdev;
2791         struct ww_acquire_ctx ww_ctx;
2792         int ret;
2793
2794         regulator_lock_dependent(rdev, &ww_ctx);
2795         ret = _regulator_disable(regulator);
2796         regulator_unlock_dependent(rdev, &ww_ctx);
2797
2798         return ret;
2799 }
2800 EXPORT_SYMBOL_GPL(regulator_disable);
2801
2802 /* locks held by regulator_force_disable() */
2803 static int _regulator_force_disable(struct regulator_dev *rdev)
2804 {
2805         int ret = 0;
2806
2807         lockdep_assert_held_once(&rdev->mutex.base);
2808
2809         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2810                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2811         if (ret & NOTIFY_STOP_MASK)
2812                 return -EINVAL;
2813
2814         ret = _regulator_do_disable(rdev);
2815         if (ret < 0) {
2816                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2817                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2818                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2819                 return ret;
2820         }
2821
2822         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2823                         REGULATOR_EVENT_DISABLE, NULL);
2824
2825         return 0;
2826 }
2827
2828 /**
2829  * regulator_force_disable - force disable regulator output
2830  * @regulator: regulator source
2831  *
2832  * Forcibly disable the regulator output voltage or current.
2833  * NOTE: this *will* disable the regulator output even if other consumer
2834  * devices have it enabled. This should be used for situations when device
2835  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2836  */
2837 int regulator_force_disable(struct regulator *regulator)
2838 {
2839         struct regulator_dev *rdev = regulator->rdev;
2840         struct ww_acquire_ctx ww_ctx;
2841         int ret;
2842
2843         regulator_lock_dependent(rdev, &ww_ctx);
2844
2845         ret = _regulator_force_disable(regulator->rdev);
2846
2847         if (rdev->coupling_desc.n_coupled > 1)
2848                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2849
2850         if (regulator->uA_load) {
2851                 regulator->uA_load = 0;
2852                 ret = drms_uA_update(rdev);
2853         }
2854
2855         if (rdev->use_count != 0 && rdev->supply)
2856                 _regulator_disable(rdev->supply);
2857
2858         regulator_unlock_dependent(rdev, &ww_ctx);
2859
2860         return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(regulator_force_disable);
2863
2864 static void regulator_disable_work(struct work_struct *work)
2865 {
2866         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2867                                                   disable_work.work);
2868         struct ww_acquire_ctx ww_ctx;
2869         int count, i, ret;
2870         struct regulator *regulator;
2871         int total_count = 0;
2872
2873         regulator_lock_dependent(rdev, &ww_ctx);
2874
2875         /*
2876          * Workqueue functions queue the new work instance while the previous
2877          * work instance is being processed. Cancel the queued work instance
2878          * as the work instance under processing does the job of the queued
2879          * work instance.
2880          */
2881         cancel_delayed_work(&rdev->disable_work);
2882
2883         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2884                 count = regulator->deferred_disables;
2885
2886                 if (!count)
2887                         continue;
2888
2889                 total_count += count;
2890                 regulator->deferred_disables = 0;
2891
2892                 for (i = 0; i < count; i++) {
2893                         ret = _regulator_disable(regulator);
2894                         if (ret != 0)
2895                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
2896                                          ERR_PTR(ret));
2897                 }
2898         }
2899         WARN_ON(!total_count);
2900
2901         if (rdev->coupling_desc.n_coupled > 1)
2902                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2903
2904         regulator_unlock_dependent(rdev, &ww_ctx);
2905 }
2906
2907 /**
2908  * regulator_disable_deferred - disable regulator output with delay
2909  * @regulator: regulator source
2910  * @ms: milliseconds until the regulator is disabled
2911  *
2912  * Execute regulator_disable() on the regulator after a delay.  This
2913  * is intended for use with devices that require some time to quiesce.
2914  *
2915  * NOTE: this will only disable the regulator output if no other consumer
2916  * devices have it enabled, the regulator device supports disabling and
2917  * machine constraints permit this operation.
2918  */
2919 int regulator_disable_deferred(struct regulator *regulator, int ms)
2920 {
2921         struct regulator_dev *rdev = regulator->rdev;
2922
2923         if (!ms)
2924                 return regulator_disable(regulator);
2925
2926         regulator_lock(rdev);
2927         regulator->deferred_disables++;
2928         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2929                          msecs_to_jiffies(ms));
2930         regulator_unlock(rdev);
2931
2932         return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2935
2936 static int _regulator_is_enabled(struct regulator_dev *rdev)
2937 {
2938         /* A GPIO control always takes precedence */
2939         if (rdev->ena_pin)
2940                 return rdev->ena_gpio_state;
2941
2942         /* If we don't know then assume that the regulator is always on */
2943         if (!rdev->desc->ops->is_enabled)
2944                 return 1;
2945
2946         return rdev->desc->ops->is_enabled(rdev);
2947 }
2948
2949 static int _regulator_list_voltage(struct regulator_dev *rdev,
2950                                    unsigned selector, int lock)
2951 {
2952         const struct regulator_ops *ops = rdev->desc->ops;
2953         int ret;
2954
2955         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2956                 return rdev->desc->fixed_uV;
2957
2958         if (ops->list_voltage) {
2959                 if (selector >= rdev->desc->n_voltages)
2960                         return -EINVAL;
2961                 if (lock)
2962                         regulator_lock(rdev);
2963                 ret = ops->list_voltage(rdev, selector);
2964                 if (lock)
2965                         regulator_unlock(rdev);
2966         } else if (rdev->is_switch && rdev->supply) {
2967                 ret = _regulator_list_voltage(rdev->supply->rdev,
2968                                               selector, lock);
2969         } else {
2970                 return -EINVAL;
2971         }
2972
2973         if (ret > 0) {
2974                 if (ret < rdev->constraints->min_uV)
2975                         ret = 0;
2976                 else if (ret > rdev->constraints->max_uV)
2977                         ret = 0;
2978         }
2979
2980         return ret;
2981 }
2982
2983 /**
2984  * regulator_is_enabled - is the regulator output enabled
2985  * @regulator: regulator source
2986  *
2987  * Returns positive if the regulator driver backing the source/client
2988  * has requested that the device be enabled, zero if it hasn't, else a
2989  * negative errno code.
2990  *
2991  * Note that the device backing this regulator handle can have multiple
2992  * users, so it might be enabled even if regulator_enable() was never
2993  * called for this particular source.
2994  */
2995 int regulator_is_enabled(struct regulator *regulator)
2996 {
2997         int ret;
2998
2999         if (regulator->always_on)
3000                 return 1;
3001
3002         regulator_lock(regulator->rdev);
3003         ret = _regulator_is_enabled(regulator->rdev);
3004         regulator_unlock(regulator->rdev);
3005
3006         return ret;
3007 }
3008 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3009
3010 /**
3011  * regulator_count_voltages - count regulator_list_voltage() selectors
3012  * @regulator: regulator source
3013  *
3014  * Returns number of selectors, or negative errno.  Selectors are
3015  * numbered starting at zero, and typically correspond to bitfields
3016  * in hardware registers.
3017  */
3018 int regulator_count_voltages(struct regulator *regulator)
3019 {
3020         struct regulator_dev    *rdev = regulator->rdev;
3021
3022         if (rdev->desc->n_voltages)
3023                 return rdev->desc->n_voltages;
3024
3025         if (!rdev->is_switch || !rdev->supply)
3026                 return -EINVAL;
3027
3028         return regulator_count_voltages(rdev->supply);
3029 }
3030 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3031
3032 /**
3033  * regulator_list_voltage - enumerate supported voltages
3034  * @regulator: regulator source
3035  * @selector: identify voltage to list
3036  * Context: can sleep
3037  *
3038  * Returns a voltage that can be passed to @regulator_set_voltage(),
3039  * zero if this selector code can't be used on this system, or a
3040  * negative errno.
3041  */
3042 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3043 {
3044         return _regulator_list_voltage(regulator->rdev, selector, 1);
3045 }
3046 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3047
3048 /**
3049  * regulator_get_regmap - get the regulator's register map
3050  * @regulator: regulator source
3051  *
3052  * Returns the register map for the given regulator, or an ERR_PTR value
3053  * if the regulator doesn't use regmap.
3054  */
3055 struct regmap *regulator_get_regmap(struct regulator *regulator)
3056 {
3057         struct regmap *map = regulator->rdev->regmap;
3058
3059         return map ? map : ERR_PTR(-EOPNOTSUPP);
3060 }
3061
3062 /**
3063  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3064  * @regulator: regulator source
3065  * @vsel_reg: voltage selector register, output parameter
3066  * @vsel_mask: mask for voltage selector bitfield, output parameter
3067  *
3068  * Returns the hardware register offset and bitmask used for setting the
3069  * regulator voltage. This might be useful when configuring voltage-scaling
3070  * hardware or firmware that can make I2C requests behind the kernel's back,
3071  * for example.
3072  *
3073  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3074  * and 0 is returned, otherwise a negative errno is returned.
3075  */
3076 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3077                                          unsigned *vsel_reg,
3078                                          unsigned *vsel_mask)
3079 {
3080         struct regulator_dev *rdev = regulator->rdev;
3081         const struct regulator_ops *ops = rdev->desc->ops;
3082
3083         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3084                 return -EOPNOTSUPP;
3085
3086         *vsel_reg = rdev->desc->vsel_reg;
3087         *vsel_mask = rdev->desc->vsel_mask;
3088
3089         return 0;
3090 }
3091 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3092
3093 /**
3094  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3095  * @regulator: regulator source
3096  * @selector: identify voltage to list
3097  *
3098  * Converts the selector to a hardware-specific voltage selector that can be
3099  * directly written to the regulator registers. The address of the voltage
3100  * register can be determined by calling @regulator_get_hardware_vsel_register.
3101  *
3102  * On error a negative errno is returned.
3103  */
3104 int regulator_list_hardware_vsel(struct regulator *regulator,
3105                                  unsigned selector)
3106 {
3107         struct regulator_dev *rdev = regulator->rdev;
3108         const struct regulator_ops *ops = rdev->desc->ops;
3109
3110         if (selector >= rdev->desc->n_voltages)
3111                 return -EINVAL;
3112         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3113                 return -EOPNOTSUPP;
3114
3115         return selector;
3116 }
3117 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3118
3119 /**
3120  * regulator_get_linear_step - return the voltage step size between VSEL values
3121  * @regulator: regulator source
3122  *
3123  * Returns the voltage step size between VSEL values for linear
3124  * regulators, or return 0 if the regulator isn't a linear regulator.
3125  */
3126 unsigned int regulator_get_linear_step(struct regulator *regulator)
3127 {
3128         struct regulator_dev *rdev = regulator->rdev;
3129
3130         return rdev->desc->uV_step;
3131 }
3132 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3133
3134 /**
3135  * regulator_is_supported_voltage - check if a voltage range can be supported
3136  *
3137  * @regulator: Regulator to check.
3138  * @min_uV: Minimum required voltage in uV.
3139  * @max_uV: Maximum required voltage in uV.
3140  *
3141  * Returns a boolean.
3142  */
3143 int regulator_is_supported_voltage(struct regulator *regulator,
3144                                    int min_uV, int max_uV)
3145 {
3146         struct regulator_dev *rdev = regulator->rdev;
3147         int i, voltages, ret;
3148
3149         /* If we can't change voltage check the current voltage */
3150         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3151                 ret = regulator_get_voltage(regulator);
3152                 if (ret >= 0)
3153                         return min_uV <= ret && ret <= max_uV;
3154                 else
3155                         return ret;
3156         }
3157
3158         /* Any voltage within constrains range is fine? */
3159         if (rdev->desc->continuous_voltage_range)
3160                 return min_uV >= rdev->constraints->min_uV &&
3161                                 max_uV <= rdev->constraints->max_uV;
3162
3163         ret = regulator_count_voltages(regulator);
3164         if (ret < 0)
3165                 return 0;
3166         voltages = ret;
3167
3168         for (i = 0; i < voltages; i++) {
3169                 ret = regulator_list_voltage(regulator, i);
3170
3171                 if (ret >= min_uV && ret <= max_uV)
3172                         return 1;
3173         }
3174
3175         return 0;
3176 }
3177 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3178
3179 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3180                                  int max_uV)
3181 {
3182         const struct regulator_desc *desc = rdev->desc;
3183
3184         if (desc->ops->map_voltage)
3185                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3186
3187         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3188                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3189
3190         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3191                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3192
3193         if (desc->ops->list_voltage ==
3194                 regulator_list_voltage_pickable_linear_range)
3195                 return regulator_map_voltage_pickable_linear_range(rdev,
3196                                                         min_uV, max_uV);
3197
3198         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3199 }
3200
3201 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3202                                        int min_uV, int max_uV,
3203                                        unsigned *selector)
3204 {
3205         struct pre_voltage_change_data data;
3206         int ret;
3207
3208         data.old_uV = regulator_get_voltage_rdev(rdev);
3209         data.min_uV = min_uV;
3210         data.max_uV = max_uV;
3211         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3212                                    &data);
3213         if (ret & NOTIFY_STOP_MASK)
3214                 return -EINVAL;
3215
3216         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3217         if (ret >= 0)
3218                 return ret;
3219
3220         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3221                              (void *)data.old_uV);
3222
3223         return ret;
3224 }
3225
3226 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3227                                            int uV, unsigned selector)
3228 {
3229         struct pre_voltage_change_data data;
3230         int ret;
3231
3232         data.old_uV = regulator_get_voltage_rdev(rdev);
3233         data.min_uV = uV;
3234         data.max_uV = uV;
3235         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3236                                    &data);
3237         if (ret & NOTIFY_STOP_MASK)
3238                 return -EINVAL;
3239
3240         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3241         if (ret >= 0)
3242                 return ret;
3243
3244         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3245                              (void *)data.old_uV);
3246
3247         return ret;
3248 }
3249
3250 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3251                                            int uV, int new_selector)
3252 {
3253         const struct regulator_ops *ops = rdev->desc->ops;
3254         int diff, old_sel, curr_sel, ret;
3255
3256         /* Stepping is only needed if the regulator is enabled. */
3257         if (!_regulator_is_enabled(rdev))
3258                 goto final_set;
3259
3260         if (!ops->get_voltage_sel)
3261                 return -EINVAL;
3262
3263         old_sel = ops->get_voltage_sel(rdev);
3264         if (old_sel < 0)
3265                 return old_sel;
3266
3267         diff = new_selector - old_sel;
3268         if (diff == 0)
3269                 return 0; /* No change needed. */
3270
3271         if (diff > 0) {
3272                 /* Stepping up. */
3273                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3274                      curr_sel < new_selector;
3275                      curr_sel += rdev->desc->vsel_step) {
3276                         /*
3277                          * Call the callback directly instead of using
3278                          * _regulator_call_set_voltage_sel() as we don't
3279                          * want to notify anyone yet. Same in the branch
3280                          * below.
3281                          */
3282                         ret = ops->set_voltage_sel(rdev, curr_sel);
3283                         if (ret)
3284                                 goto try_revert;
3285                 }
3286         } else {
3287                 /* Stepping down. */
3288                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3289                      curr_sel > new_selector;
3290                      curr_sel -= rdev->desc->vsel_step) {
3291                         ret = ops->set_voltage_sel(rdev, curr_sel);
3292                         if (ret)
3293                                 goto try_revert;
3294                 }
3295         }
3296
3297 final_set:
3298         /* The final selector will trigger the notifiers. */
3299         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3300
3301 try_revert:
3302         /*
3303          * At least try to return to the previous voltage if setting a new
3304          * one failed.
3305          */
3306         (void)ops->set_voltage_sel(rdev, old_sel);
3307         return ret;
3308 }
3309
3310 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3311                                        int old_uV, int new_uV)
3312 {
3313         unsigned int ramp_delay = 0;
3314
3315         if (rdev->constraints->ramp_delay)
3316                 ramp_delay = rdev->constraints->ramp_delay;
3317         else if (rdev->desc->ramp_delay)
3318                 ramp_delay = rdev->desc->ramp_delay;
3319         else if (rdev->constraints->settling_time)
3320                 return rdev->constraints->settling_time;
3321         else if (rdev->constraints->settling_time_up &&
3322                  (new_uV > old_uV))
3323                 return rdev->constraints->settling_time_up;
3324         else if (rdev->constraints->settling_time_down &&
3325                  (new_uV < old_uV))
3326                 return rdev->constraints->settling_time_down;
3327
3328         if (ramp_delay == 0) {
3329                 rdev_dbg(rdev, "ramp_delay not set\n");
3330                 return 0;
3331         }
3332
3333         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3334 }
3335
3336 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3337                                      int min_uV, int max_uV)
3338 {
3339         int ret;
3340         int delay = 0;
3341         int best_val = 0;
3342         unsigned int selector;
3343         int old_selector = -1;
3344         const struct regulator_ops *ops = rdev->desc->ops;
3345         int old_uV = regulator_get_voltage_rdev(rdev);
3346
3347         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3348
3349         min_uV += rdev->constraints->uV_offset;
3350         max_uV += rdev->constraints->uV_offset;
3351
3352         /*
3353          * If we can't obtain the old selector there is not enough
3354          * info to call set_voltage_time_sel().
3355          */
3356         if (_regulator_is_enabled(rdev) &&
3357             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3358                 old_selector = ops->get_voltage_sel(rdev);
3359                 if (old_selector < 0)
3360                         return old_selector;
3361         }
3362
3363         if (ops->set_voltage) {
3364                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3365                                                   &selector);
3366
3367                 if (ret >= 0) {
3368                         if (ops->list_voltage)
3369                                 best_val = ops->list_voltage(rdev,
3370                                                              selector);
3371                         else
3372                                 best_val = regulator_get_voltage_rdev(rdev);
3373                 }
3374
3375         } else if (ops->set_voltage_sel) {
3376                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3377                 if (ret >= 0) {
3378                         best_val = ops->list_voltage(rdev, ret);
3379                         if (min_uV <= best_val && max_uV >= best_val) {
3380                                 selector = ret;
3381                                 if (old_selector == selector)
3382                                         ret = 0;
3383                                 else if (rdev->desc->vsel_step)
3384                                         ret = _regulator_set_voltage_sel_step(
3385                                                 rdev, best_val, selector);
3386                                 else
3387                                         ret = _regulator_call_set_voltage_sel(
3388                                                 rdev, best_val, selector);
3389                         } else {
3390                                 ret = -EINVAL;
3391                         }
3392                 }
3393         } else {
3394                 ret = -EINVAL;
3395         }
3396
3397         if (ret)
3398                 goto out;
3399
3400         if (ops->set_voltage_time_sel) {
3401                 /*
3402                  * Call set_voltage_time_sel if successfully obtained
3403                  * old_selector
3404                  */
3405                 if (old_selector >= 0 && old_selector != selector)
3406                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3407                                                           selector);
3408         } else {
3409                 if (old_uV != best_val) {
3410                         if (ops->set_voltage_time)
3411                                 delay = ops->set_voltage_time(rdev, old_uV,
3412                                                               best_val);
3413                         else
3414                                 delay = _regulator_set_voltage_time(rdev,
3415                                                                     old_uV,
3416                                                                     best_val);
3417                 }
3418         }
3419
3420         if (delay < 0) {
3421                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3422                 delay = 0;
3423         }
3424
3425         /* Insert any necessary delays */
3426         if (delay >= 1000) {
3427                 mdelay(delay / 1000);
3428                 udelay(delay % 1000);
3429         } else if (delay) {
3430                 udelay(delay);
3431         }
3432
3433         if (best_val >= 0) {
3434                 unsigned long data = best_val;
3435
3436                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3437                                      (void *)data);
3438         }
3439
3440 out:
3441         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3442
3443         return ret;
3444 }
3445
3446 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3447                                   int min_uV, int max_uV, suspend_state_t state)
3448 {
3449         struct regulator_state *rstate;
3450         int uV, sel;
3451
3452         rstate = regulator_get_suspend_state(rdev, state);
3453         if (rstate == NULL)
3454                 return -EINVAL;
3455
3456         if (min_uV < rstate->min_uV)
3457                 min_uV = rstate->min_uV;
3458         if (max_uV > rstate->max_uV)
3459                 max_uV = rstate->max_uV;
3460
3461         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3462         if (sel < 0)
3463                 return sel;
3464
3465         uV = rdev->desc->ops->list_voltage(rdev, sel);
3466         if (uV >= min_uV && uV <= max_uV)
3467                 rstate->uV = uV;
3468
3469         return 0;
3470 }
3471
3472 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3473                                           int min_uV, int max_uV,
3474                                           suspend_state_t state)
3475 {
3476         struct regulator_dev *rdev = regulator->rdev;
3477         struct regulator_voltage *voltage = &regulator->voltage[state];
3478         int ret = 0;
3479         int old_min_uV, old_max_uV;
3480         int current_uV;
3481
3482         /* If we're setting the same range as last time the change
3483          * should be a noop (some cpufreq implementations use the same
3484          * voltage for multiple frequencies, for example).
3485          */
3486         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3487                 goto out;
3488
3489         /* If we're trying to set a range that overlaps the current voltage,
3490          * return successfully even though the regulator does not support
3491          * changing the voltage.
3492          */
3493         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3494                 current_uV = regulator_get_voltage_rdev(rdev);
3495                 if (min_uV <= current_uV && current_uV <= max_uV) {
3496                         voltage->min_uV = min_uV;
3497                         voltage->max_uV = max_uV;
3498                         goto out;
3499                 }
3500         }
3501
3502         /* sanity check */
3503         if (!rdev->desc->ops->set_voltage &&
3504             !rdev->desc->ops->set_voltage_sel) {
3505                 ret = -EINVAL;
3506                 goto out;
3507         }
3508
3509         /* constraints check */
3510         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3511         if (ret < 0)
3512                 goto out;
3513
3514         /* restore original values in case of error */
3515         old_min_uV = voltage->min_uV;
3516         old_max_uV = voltage->max_uV;
3517         voltage->min_uV = min_uV;
3518         voltage->max_uV = max_uV;
3519
3520         /* for not coupled regulators this will just set the voltage */
3521         ret = regulator_balance_voltage(rdev, state);
3522         if (ret < 0) {
3523                 voltage->min_uV = old_min_uV;
3524                 voltage->max_uV = old_max_uV;
3525         }
3526
3527 out:
3528         return ret;
3529 }
3530
3531 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3532                                int max_uV, suspend_state_t state)
3533 {
3534         int best_supply_uV = 0;
3535         int supply_change_uV = 0;
3536         int ret;
3537
3538         if (rdev->supply &&
3539             regulator_ops_is_valid(rdev->supply->rdev,
3540                                    REGULATOR_CHANGE_VOLTAGE) &&
3541             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3542                                            rdev->desc->ops->get_voltage_sel))) {
3543                 int current_supply_uV;
3544                 int selector;
3545
3546                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3547                 if (selector < 0) {
3548                         ret = selector;
3549                         goto out;
3550                 }
3551
3552                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3553                 if (best_supply_uV < 0) {
3554                         ret = best_supply_uV;
3555                         goto out;
3556                 }
3557
3558                 best_supply_uV += rdev->desc->min_dropout_uV;
3559
3560                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3561                 if (current_supply_uV < 0) {
3562                         ret = current_supply_uV;
3563                         goto out;
3564                 }
3565
3566                 supply_change_uV = best_supply_uV - current_supply_uV;
3567         }
3568
3569         if (supply_change_uV > 0) {
3570                 ret = regulator_set_voltage_unlocked(rdev->supply,
3571                                 best_supply_uV, INT_MAX, state);
3572                 if (ret) {
3573                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3574                                 ERR_PTR(ret));
3575                         goto out;
3576                 }
3577         }
3578
3579         if (state == PM_SUSPEND_ON)
3580                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3581         else
3582                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3583                                                         max_uV, state);
3584         if (ret < 0)
3585                 goto out;
3586
3587         if (supply_change_uV < 0) {
3588                 ret = regulator_set_voltage_unlocked(rdev->supply,
3589                                 best_supply_uV, INT_MAX, state);
3590                 if (ret)
3591                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3592                                  ERR_PTR(ret));
3593                 /* No need to fail here */
3594                 ret = 0;
3595         }
3596
3597 out:
3598         return ret;
3599 }
3600 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3601
3602 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3603                                         int *current_uV, int *min_uV)
3604 {
3605         struct regulation_constraints *constraints = rdev->constraints;
3606
3607         /* Limit voltage change only if necessary */
3608         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3609                 return 1;
3610
3611         if (*current_uV < 0) {
3612                 *current_uV = regulator_get_voltage_rdev(rdev);
3613
3614                 if (*current_uV < 0)
3615                         return *current_uV;
3616         }
3617
3618         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3619                 return 1;
3620
3621         /* Clamp target voltage within the given step */
3622         if (*current_uV < *min_uV)
3623                 *min_uV = min(*current_uV + constraints->max_uV_step,
3624                               *min_uV);
3625         else
3626                 *min_uV = max(*current_uV - constraints->max_uV_step,
3627                               *min_uV);
3628
3629         return 0;
3630 }
3631
3632 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3633                                          int *current_uV,
3634                                          int *min_uV, int *max_uV,
3635                                          suspend_state_t state,
3636                                          int n_coupled)
3637 {
3638         struct coupling_desc *c_desc = &rdev->coupling_desc;
3639         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3640         struct regulation_constraints *constraints = rdev->constraints;
3641         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3642         int max_current_uV = 0, min_current_uV = INT_MAX;
3643         int highest_min_uV = 0, target_uV, possible_uV;
3644         int i, ret, max_spread;
3645         bool done;
3646
3647         *current_uV = -1;
3648
3649         /*
3650          * If there are no coupled regulators, simply set the voltage
3651          * demanded by consumers.
3652          */
3653         if (n_coupled == 1) {
3654                 /*
3655                  * If consumers don't provide any demands, set voltage
3656                  * to min_uV
3657                  */
3658                 desired_min_uV = constraints->min_uV;
3659                 desired_max_uV = constraints->max_uV;
3660
3661                 ret = regulator_check_consumers(rdev,
3662                                                 &desired_min_uV,
3663                                                 &desired_max_uV, state);
3664                 if (ret < 0)
3665                         return ret;
3666
3667                 possible_uV = desired_min_uV;
3668                 done = true;
3669
3670                 goto finish;
3671         }
3672
3673         /* Find highest min desired voltage */
3674         for (i = 0; i < n_coupled; i++) {
3675                 int tmp_min = 0;
3676                 int tmp_max = INT_MAX;
3677
3678                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3679
3680                 ret = regulator_check_consumers(c_rdevs[i],
3681                                                 &tmp_min,
3682                                                 &tmp_max, state);
3683                 if (ret < 0)
3684                         return ret;
3685
3686                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3687                 if (ret < 0)
3688                         return ret;
3689
3690                 highest_min_uV = max(highest_min_uV, tmp_min);
3691
3692                 if (i == 0) {
3693                         desired_min_uV = tmp_min;
3694                         desired_max_uV = tmp_max;
3695                 }
3696         }
3697
3698         max_spread = constraints->max_spread[0];
3699
3700         /*
3701          * Let target_uV be equal to the desired one if possible.
3702          * If not, set it to minimum voltage, allowed by other coupled
3703          * regulators.
3704          */
3705         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3706
3707         /*
3708          * Find min and max voltages, which currently aren't violating
3709          * max_spread.
3710          */
3711         for (i = 1; i < n_coupled; i++) {
3712                 int tmp_act;
3713
3714                 if (!_regulator_is_enabled(c_rdevs[i]))
3715                         continue;
3716
3717                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3718                 if (tmp_act < 0)
3719                         return tmp_act;
3720
3721                 min_current_uV = min(tmp_act, min_current_uV);
3722                 max_current_uV = max(tmp_act, max_current_uV);
3723         }
3724
3725         /* There aren't any other regulators enabled */
3726         if (max_current_uV == 0) {
3727                 possible_uV = target_uV;
3728         } else {
3729                 /*
3730                  * Correct target voltage, so as it currently isn't
3731                  * violating max_spread
3732                  */
3733                 possible_uV = max(target_uV, max_current_uV - max_spread);
3734                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3735         }
3736
3737         if (possible_uV > desired_max_uV)
3738                 return -EINVAL;
3739
3740         done = (possible_uV == target_uV);
3741         desired_min_uV = possible_uV;
3742
3743 finish:
3744         /* Apply max_uV_step constraint if necessary */
3745         if (state == PM_SUSPEND_ON) {
3746                 ret = regulator_limit_voltage_step(rdev, current_uV,
3747                                                    &desired_min_uV);
3748                 if (ret < 0)
3749                         return ret;
3750
3751                 if (ret == 0)
3752                         done = false;
3753         }
3754
3755         /* Set current_uV if wasn't done earlier in the code and if necessary */
3756         if (n_coupled > 1 && *current_uV == -1) {
3757
3758                 if (_regulator_is_enabled(rdev)) {
3759                         ret = regulator_get_voltage_rdev(rdev);
3760                         if (ret < 0)
3761                                 return ret;
3762
3763                         *current_uV = ret;
3764                 } else {
3765                         *current_uV = desired_min_uV;
3766                 }
3767         }
3768
3769         *min_uV = desired_min_uV;
3770         *max_uV = desired_max_uV;
3771
3772         return done;
3773 }
3774
3775 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3776                                  suspend_state_t state, bool skip_coupled)
3777 {
3778         struct regulator_dev **c_rdevs;
3779         struct regulator_dev *best_rdev;
3780         struct coupling_desc *c_desc = &rdev->coupling_desc;
3781         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3782         unsigned int delta, best_delta;
3783         unsigned long c_rdev_done = 0;
3784         bool best_c_rdev_done;
3785
3786         c_rdevs = c_desc->coupled_rdevs;
3787         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3788
3789         /*
3790          * Find the best possible voltage change on each loop. Leave the loop
3791          * if there isn't any possible change.
3792          */
3793         do {
3794                 best_c_rdev_done = false;
3795                 best_delta = 0;
3796                 best_min_uV = 0;
3797                 best_max_uV = 0;
3798                 best_c_rdev = 0;
3799                 best_rdev = NULL;
3800
3801                 /*
3802                  * Find highest difference between optimal voltage
3803                  * and current voltage.
3804                  */
3805                 for (i = 0; i < n_coupled; i++) {
3806                         /*
3807                          * optimal_uV is the best voltage that can be set for
3808                          * i-th regulator at the moment without violating
3809                          * max_spread constraint in order to balance
3810                          * the coupled voltages.
3811                          */
3812                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3813
3814                         if (test_bit(i, &c_rdev_done))
3815                                 continue;
3816
3817                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3818                                                             &current_uV,
3819                                                             &optimal_uV,
3820                                                             &optimal_max_uV,
3821                                                             state, n_coupled);
3822                         if (ret < 0)
3823                                 goto out;
3824
3825                         delta = abs(optimal_uV - current_uV);
3826
3827                         if (delta && best_delta <= delta) {
3828                                 best_c_rdev_done = ret;
3829                                 best_delta = delta;
3830                                 best_rdev = c_rdevs[i];
3831                                 best_min_uV = optimal_uV;
3832                                 best_max_uV = optimal_max_uV;
3833                                 best_c_rdev = i;
3834                         }
3835                 }
3836
3837                 /* Nothing to change, return successfully */
3838                 if (!best_rdev) {
3839                         ret = 0;
3840                         goto out;
3841                 }
3842
3843                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3844                                                  best_max_uV, state);
3845
3846                 if (ret < 0)
3847                         goto out;
3848
3849                 if (best_c_rdev_done)
3850                         set_bit(best_c_rdev, &c_rdev_done);
3851
3852         } while (n_coupled > 1);
3853
3854 out:
3855         return ret;
3856 }
3857
3858 static int regulator_balance_voltage(struct regulator_dev *rdev,
3859                                      suspend_state_t state)
3860 {
3861         struct coupling_desc *c_desc = &rdev->coupling_desc;
3862         struct regulator_coupler *coupler = c_desc->coupler;
3863         bool skip_coupled = false;
3864
3865         /*
3866          * If system is in a state other than PM_SUSPEND_ON, don't check
3867          * other coupled regulators.
3868          */
3869         if (state != PM_SUSPEND_ON)
3870                 skip_coupled = true;
3871
3872         if (c_desc->n_resolved < c_desc->n_coupled) {
3873                 rdev_err(rdev, "Not all coupled regulators registered\n");
3874                 return -EPERM;
3875         }
3876
3877         /* Invoke custom balancer for customized couplers */
3878         if (coupler && coupler->balance_voltage)
3879                 return coupler->balance_voltage(coupler, rdev, state);
3880
3881         return regulator_do_balance_voltage(rdev, state, skip_coupled);
3882 }
3883
3884 /**
3885  * regulator_set_voltage - set regulator output voltage
3886  * @regulator: regulator source
3887  * @min_uV: Minimum required voltage in uV
3888  * @max_uV: Maximum acceptable voltage in uV
3889  *
3890  * Sets a voltage regulator to the desired output voltage. This can be set
3891  * during any regulator state. IOW, regulator can be disabled or enabled.
3892  *
3893  * If the regulator is enabled then the voltage will change to the new value
3894  * immediately otherwise if the regulator is disabled the regulator will
3895  * output at the new voltage when enabled.
3896  *
3897  * NOTE: If the regulator is shared between several devices then the lowest
3898  * request voltage that meets the system constraints will be used.
3899  * Regulator system constraints must be set for this regulator before
3900  * calling this function otherwise this call will fail.
3901  */
3902 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3903 {
3904         struct ww_acquire_ctx ww_ctx;
3905         int ret;
3906
3907         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3908
3909         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3910                                              PM_SUSPEND_ON);
3911
3912         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3913
3914         return ret;
3915 }
3916 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3917
3918 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3919                                            suspend_state_t state, bool en)
3920 {
3921         struct regulator_state *rstate;
3922
3923         rstate = regulator_get_suspend_state(rdev, state);
3924         if (rstate == NULL)
3925                 return -EINVAL;
3926
3927         if (!rstate->changeable)
3928                 return -EPERM;
3929
3930         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3931
3932         return 0;
3933 }
3934
3935 int regulator_suspend_enable(struct regulator_dev *rdev,
3936                                     suspend_state_t state)
3937 {
3938         return regulator_suspend_toggle(rdev, state, true);
3939 }
3940 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3941
3942 int regulator_suspend_disable(struct regulator_dev *rdev,
3943                                      suspend_state_t state)
3944 {
3945         struct regulator *regulator;
3946         struct regulator_voltage *voltage;
3947
3948         /*
3949          * if any consumer wants this regulator device keeping on in
3950          * suspend states, don't set it as disabled.
3951          */
3952         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3953                 voltage = &regulator->voltage[state];
3954                 if (voltage->min_uV || voltage->max_uV)
3955                         return 0;
3956         }
3957
3958         return regulator_suspend_toggle(rdev, state, false);
3959 }
3960 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3961
3962 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3963                                           int min_uV, int max_uV,
3964                                           suspend_state_t state)
3965 {
3966         struct regulator_dev *rdev = regulator->rdev;
3967         struct regulator_state *rstate;
3968
3969         rstate = regulator_get_suspend_state(rdev, state);
3970         if (rstate == NULL)
3971                 return -EINVAL;
3972
3973         if (rstate->min_uV == rstate->max_uV) {
3974                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3975                 return -EPERM;
3976         }
3977
3978         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3979 }
3980
3981 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3982                                   int max_uV, suspend_state_t state)
3983 {
3984         struct ww_acquire_ctx ww_ctx;
3985         int ret;
3986
3987         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3988         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3989                 return -EINVAL;
3990
3991         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3992
3993         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3994                                              max_uV, state);
3995
3996         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3997
3998         return ret;
3999 }
4000 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4001
4002 /**
4003  * regulator_set_voltage_time - get raise/fall time
4004  * @regulator: regulator source
4005  * @old_uV: starting voltage in microvolts
4006  * @new_uV: target voltage in microvolts
4007  *
4008  * Provided with the starting and ending voltage, this function attempts to
4009  * calculate the time in microseconds required to rise or fall to this new
4010  * voltage.
4011  */
4012 int regulator_set_voltage_time(struct regulator *regulator,
4013                                int old_uV, int new_uV)
4014 {
4015         struct regulator_dev *rdev = regulator->rdev;
4016         const struct regulator_ops *ops = rdev->desc->ops;
4017         int old_sel = -1;
4018         int new_sel = -1;
4019         int voltage;
4020         int i;
4021
4022         if (ops->set_voltage_time)
4023                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4024         else if (!ops->set_voltage_time_sel)
4025                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4026
4027         /* Currently requires operations to do this */
4028         if (!ops->list_voltage || !rdev->desc->n_voltages)
4029                 return -EINVAL;
4030
4031         for (i = 0; i < rdev->desc->n_voltages; i++) {
4032                 /* We only look for exact voltage matches here */
4033                 voltage = regulator_list_voltage(regulator, i);
4034                 if (voltage < 0)
4035                         return -EINVAL;
4036                 if (voltage == 0)
4037                         continue;
4038                 if (voltage == old_uV)
4039                         old_sel = i;
4040                 if (voltage == new_uV)
4041                         new_sel = i;
4042         }
4043
4044         if (old_sel < 0 || new_sel < 0)
4045                 return -EINVAL;
4046
4047         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4048 }
4049 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4050
4051 /**
4052  * regulator_set_voltage_time_sel - get raise/fall time
4053  * @rdev: regulator source device
4054  * @old_selector: selector for starting voltage
4055  * @new_selector: selector for target voltage
4056  *
4057  * Provided with the starting and target voltage selectors, this function
4058  * returns time in microseconds required to rise or fall to this new voltage
4059  *
4060  * Drivers providing ramp_delay in regulation_constraints can use this as their
4061  * set_voltage_time_sel() operation.
4062  */
4063 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4064                                    unsigned int old_selector,
4065                                    unsigned int new_selector)
4066 {
4067         int old_volt, new_volt;
4068
4069         /* sanity check */
4070         if (!rdev->desc->ops->list_voltage)
4071                 return -EINVAL;
4072
4073         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4074         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4075
4076         if (rdev->desc->ops->set_voltage_time)
4077                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4078                                                          new_volt);
4079         else
4080                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4081 }
4082 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4083
4084 /**
4085  * regulator_sync_voltage - re-apply last regulator output voltage
4086  * @regulator: regulator source
4087  *
4088  * Re-apply the last configured voltage.  This is intended to be used
4089  * where some external control source the consumer is cooperating with
4090  * has caused the configured voltage to change.
4091  */
4092 int regulator_sync_voltage(struct regulator *regulator)
4093 {
4094         struct regulator_dev *rdev = regulator->rdev;
4095         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4096         int ret, min_uV, max_uV;
4097
4098         regulator_lock(rdev);
4099
4100         if (!rdev->desc->ops->set_voltage &&
4101             !rdev->desc->ops->set_voltage_sel) {
4102                 ret = -EINVAL;
4103                 goto out;
4104         }
4105
4106         /* This is only going to work if we've had a voltage configured. */
4107         if (!voltage->min_uV && !voltage->max_uV) {
4108                 ret = -EINVAL;
4109                 goto out;
4110         }
4111
4112         min_uV = voltage->min_uV;
4113         max_uV = voltage->max_uV;
4114
4115         /* This should be a paranoia check... */
4116         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4117         if (ret < 0)
4118                 goto out;
4119
4120         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4121         if (ret < 0)
4122                 goto out;
4123
4124         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4125
4126 out:
4127         regulator_unlock(rdev);
4128         return ret;
4129 }
4130 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4131
4132 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4133 {
4134         int sel, ret;
4135         bool bypassed;
4136
4137         if (rdev->desc->ops->get_bypass) {
4138                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4139                 if (ret < 0)
4140                         return ret;
4141                 if (bypassed) {
4142                         /* if bypassed the regulator must have a supply */
4143                         if (!rdev->supply) {
4144                                 rdev_err(rdev,
4145                                          "bypassed regulator has no supply!\n");
4146                                 return -EPROBE_DEFER;
4147                         }
4148
4149                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4150                 }
4151         }
4152
4153         if (rdev->desc->ops->get_voltage_sel) {
4154                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4155                 if (sel < 0)
4156                         return sel;
4157                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4158         } else if (rdev->desc->ops->get_voltage) {
4159                 ret = rdev->desc->ops->get_voltage(rdev);
4160         } else if (rdev->desc->ops->list_voltage) {
4161                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4162         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4163                 ret = rdev->desc->fixed_uV;
4164         } else if (rdev->supply) {
4165                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4166         } else if (rdev->supply_name) {
4167                 return -EPROBE_DEFER;
4168         } else {
4169                 return -EINVAL;
4170         }
4171
4172         if (ret < 0)
4173                 return ret;
4174         return ret - rdev->constraints->uV_offset;
4175 }
4176 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4177
4178 /**
4179  * regulator_get_voltage - get regulator output voltage
4180  * @regulator: regulator source
4181  *
4182  * This returns the current regulator voltage in uV.
4183  *
4184  * NOTE: If the regulator is disabled it will return the voltage value. This
4185  * function should not be used to determine regulator state.
4186  */
4187 int regulator_get_voltage(struct regulator *regulator)
4188 {
4189         struct ww_acquire_ctx ww_ctx;
4190         int ret;
4191
4192         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4193         ret = regulator_get_voltage_rdev(regulator->rdev);
4194         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4195
4196         return ret;
4197 }
4198 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4199
4200 /**
4201  * regulator_set_current_limit - set regulator output current limit
4202  * @regulator: regulator source
4203  * @min_uA: Minimum supported current in uA
4204  * @max_uA: Maximum supported current in uA
4205  *
4206  * Sets current sink to the desired output current. This can be set during
4207  * any regulator state. IOW, regulator can be disabled or enabled.
4208  *
4209  * If the regulator is enabled then the current will change to the new value
4210  * immediately otherwise if the regulator is disabled the regulator will
4211  * output at the new current when enabled.
4212  *
4213  * NOTE: Regulator system constraints must be set for this regulator before
4214  * calling this function otherwise this call will fail.
4215  */
4216 int regulator_set_current_limit(struct regulator *regulator,
4217                                int min_uA, int max_uA)
4218 {
4219         struct regulator_dev *rdev = regulator->rdev;
4220         int ret;
4221
4222         regulator_lock(rdev);
4223
4224         /* sanity check */
4225         if (!rdev->desc->ops->set_current_limit) {
4226                 ret = -EINVAL;
4227                 goto out;
4228         }
4229
4230         /* constraints check */
4231         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4232         if (ret < 0)
4233                 goto out;
4234
4235         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4236 out:
4237         regulator_unlock(rdev);
4238         return ret;
4239 }
4240 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4241
4242 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4243 {
4244         /* sanity check */
4245         if (!rdev->desc->ops->get_current_limit)
4246                 return -EINVAL;
4247
4248         return rdev->desc->ops->get_current_limit(rdev);
4249 }
4250
4251 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4252 {
4253         int ret;
4254
4255         regulator_lock(rdev);
4256         ret = _regulator_get_current_limit_unlocked(rdev);
4257         regulator_unlock(rdev);
4258
4259         return ret;
4260 }
4261
4262 /**
4263  * regulator_get_current_limit - get regulator output current
4264  * @regulator: regulator source
4265  *
4266  * This returns the current supplied by the specified current sink in uA.
4267  *
4268  * NOTE: If the regulator is disabled it will return the current value. This
4269  * function should not be used to determine regulator state.
4270  */
4271 int regulator_get_current_limit(struct regulator *regulator)
4272 {
4273         return _regulator_get_current_limit(regulator->rdev);
4274 }
4275 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4276
4277 /**
4278  * regulator_set_mode - set regulator operating mode
4279  * @regulator: regulator source
4280  * @mode: operating mode - one of the REGULATOR_MODE constants
4281  *
4282  * Set regulator operating mode to increase regulator efficiency or improve
4283  * regulation performance.
4284  *
4285  * NOTE: Regulator system constraints must be set for this regulator before
4286  * calling this function otherwise this call will fail.
4287  */
4288 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4289 {
4290         struct regulator_dev *rdev = regulator->rdev;
4291         int ret;
4292         int regulator_curr_mode;
4293
4294         regulator_lock(rdev);
4295
4296         /* sanity check */
4297         if (!rdev->desc->ops->set_mode) {
4298                 ret = -EINVAL;
4299                 goto out;
4300         }
4301
4302         /* return if the same mode is requested */
4303         if (rdev->desc->ops->get_mode) {
4304                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4305                 if (regulator_curr_mode == mode) {
4306                         ret = 0;
4307                         goto out;
4308                 }
4309         }
4310
4311         /* constraints check */
4312         ret = regulator_mode_constrain(rdev, &mode);
4313         if (ret < 0)
4314                 goto out;
4315
4316         ret = rdev->desc->ops->set_mode(rdev, mode);
4317 out:
4318         regulator_unlock(rdev);
4319         return ret;
4320 }
4321 EXPORT_SYMBOL_GPL(regulator_set_mode);
4322
4323 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4324 {
4325         /* sanity check */
4326         if (!rdev->desc->ops->get_mode)
4327                 return -EINVAL;
4328
4329         return rdev->desc->ops->get_mode(rdev);
4330 }
4331
4332 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4333 {
4334         int ret;
4335
4336         regulator_lock(rdev);
4337         ret = _regulator_get_mode_unlocked(rdev);
4338         regulator_unlock(rdev);
4339
4340         return ret;
4341 }
4342
4343 /**
4344  * regulator_get_mode - get regulator operating mode
4345  * @regulator: regulator source
4346  *
4347  * Get the current regulator operating mode.
4348  */
4349 unsigned int regulator_get_mode(struct regulator *regulator)
4350 {
4351         return _regulator_get_mode(regulator->rdev);
4352 }
4353 EXPORT_SYMBOL_GPL(regulator_get_mode);
4354
4355 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4356                                         unsigned int *flags)
4357 {
4358         int ret;
4359
4360         regulator_lock(rdev);
4361
4362         /* sanity check */
4363         if (!rdev->desc->ops->get_error_flags) {
4364                 ret = -EINVAL;
4365                 goto out;
4366         }
4367
4368         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4369 out:
4370         regulator_unlock(rdev);
4371         return ret;
4372 }
4373
4374 /**
4375  * regulator_get_error_flags - get regulator error information
4376  * @regulator: regulator source
4377  * @flags: pointer to store error flags
4378  *
4379  * Get the current regulator error information.
4380  */
4381 int regulator_get_error_flags(struct regulator *regulator,
4382                                 unsigned int *flags)
4383 {
4384         return _regulator_get_error_flags(regulator->rdev, flags);
4385 }
4386 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4387
4388 /**
4389  * regulator_set_load - set regulator load
4390  * @regulator: regulator source
4391  * @uA_load: load current
4392  *
4393  * Notifies the regulator core of a new device load. This is then used by
4394  * DRMS (if enabled by constraints) to set the most efficient regulator
4395  * operating mode for the new regulator loading.
4396  *
4397  * Consumer devices notify their supply regulator of the maximum power
4398  * they will require (can be taken from device datasheet in the power
4399  * consumption tables) when they change operational status and hence power
4400  * state. Examples of operational state changes that can affect power
4401  * consumption are :-
4402  *
4403  *    o Device is opened / closed.
4404  *    o Device I/O is about to begin or has just finished.
4405  *    o Device is idling in between work.
4406  *
4407  * This information is also exported via sysfs to userspace.
4408  *
4409  * DRMS will sum the total requested load on the regulator and change
4410  * to the most efficient operating mode if platform constraints allow.
4411  *
4412  * NOTE: when a regulator consumer requests to have a regulator
4413  * disabled then any load that consumer requested no longer counts
4414  * toward the total requested load.  If the regulator is re-enabled
4415  * then the previously requested load will start counting again.
4416  *
4417  * If a regulator is an always-on regulator then an individual consumer's
4418  * load will still be removed if that consumer is fully disabled.
4419  *
4420  * On error a negative errno is returned.
4421  */
4422 int regulator_set_load(struct regulator *regulator, int uA_load)
4423 {
4424         struct regulator_dev *rdev = regulator->rdev;
4425         int old_uA_load;
4426         int ret = 0;
4427
4428         regulator_lock(rdev);
4429         old_uA_load = regulator->uA_load;
4430         regulator->uA_load = uA_load;
4431         if (regulator->enable_count && old_uA_load != uA_load) {
4432                 ret = drms_uA_update(rdev);
4433                 if (ret < 0)
4434                         regulator->uA_load = old_uA_load;
4435         }
4436         regulator_unlock(rdev);
4437
4438         return ret;
4439 }
4440 EXPORT_SYMBOL_GPL(regulator_set_load);
4441
4442 /**
4443  * regulator_allow_bypass - allow the regulator to go into bypass mode
4444  *
4445  * @regulator: Regulator to configure
4446  * @enable: enable or disable bypass mode
4447  *
4448  * Allow the regulator to go into bypass mode if all other consumers
4449  * for the regulator also enable bypass mode and the machine
4450  * constraints allow this.  Bypass mode means that the regulator is
4451  * simply passing the input directly to the output with no regulation.
4452  */
4453 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4454 {
4455         struct regulator_dev *rdev = regulator->rdev;
4456         const char *name = rdev_get_name(rdev);
4457         int ret = 0;
4458
4459         if (!rdev->desc->ops->set_bypass)
4460                 return 0;
4461
4462         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4463                 return 0;
4464
4465         regulator_lock(rdev);
4466
4467         if (enable && !regulator->bypass) {
4468                 rdev->bypass_count++;
4469
4470                 if (rdev->bypass_count == rdev->open_count) {
4471                         trace_regulator_bypass_enable(name);
4472
4473                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4474                         if (ret != 0)
4475                                 rdev->bypass_count--;
4476                         else
4477                                 trace_regulator_bypass_enable_complete(name);
4478                 }
4479
4480         } else if (!enable && regulator->bypass) {
4481                 rdev->bypass_count--;
4482
4483                 if (rdev->bypass_count != rdev->open_count) {
4484                         trace_regulator_bypass_disable(name);
4485
4486                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4487                         if (ret != 0)
4488                                 rdev->bypass_count++;
4489                         else
4490                                 trace_regulator_bypass_disable_complete(name);
4491                 }
4492         }
4493
4494         if (ret == 0)
4495                 regulator->bypass = enable;
4496
4497         regulator_unlock(rdev);
4498
4499         return ret;
4500 }
4501 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4502
4503 /**
4504  * regulator_register_notifier - register regulator event notifier
4505  * @regulator: regulator source
4506  * @nb: notifier block
4507  *
4508  * Register notifier block to receive regulator events.
4509  */
4510 int regulator_register_notifier(struct regulator *regulator,
4511                               struct notifier_block *nb)
4512 {
4513         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4514                                                 nb);
4515 }
4516 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4517
4518 /**
4519  * regulator_unregister_notifier - unregister regulator event notifier
4520  * @regulator: regulator source
4521  * @nb: notifier block
4522  *
4523  * Unregister regulator event notifier block.
4524  */
4525 int regulator_unregister_notifier(struct regulator *regulator,
4526                                 struct notifier_block *nb)
4527 {
4528         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4529                                                   nb);
4530 }
4531 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4532
4533 /* notify regulator consumers and downstream regulator consumers.
4534  * Note mutex must be held by caller.
4535  */
4536 static int _notifier_call_chain(struct regulator_dev *rdev,
4537                                   unsigned long event, void *data)
4538 {
4539         /* call rdev chain first */
4540         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4541 }
4542
4543 /**
4544  * regulator_bulk_get - get multiple regulator consumers
4545  *
4546  * @dev:           Device to supply
4547  * @num_consumers: Number of consumers to register
4548  * @consumers:     Configuration of consumers; clients are stored here.
4549  *
4550  * @return 0 on success, an errno on failure.
4551  *
4552  * This helper function allows drivers to get several regulator
4553  * consumers in one operation.  If any of the regulators cannot be
4554  * acquired then any regulators that were allocated will be freed
4555  * before returning to the caller.
4556  */
4557 int regulator_bulk_get(struct device *dev, int num_consumers,
4558                        struct regulator_bulk_data *consumers)
4559 {
4560         int i;
4561         int ret;
4562
4563         for (i = 0; i < num_consumers; i++)
4564                 consumers[i].consumer = NULL;
4565
4566         for (i = 0; i < num_consumers; i++) {
4567                 consumers[i].consumer = regulator_get(dev,
4568                                                       consumers[i].supply);
4569                 if (IS_ERR(consumers[i].consumer)) {
4570                         ret = PTR_ERR(consumers[i].consumer);
4571                         consumers[i].consumer = NULL;
4572                         goto err;
4573                 }
4574         }
4575
4576         return 0;
4577
4578 err:
4579         if (ret != -EPROBE_DEFER)
4580                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4581                         consumers[i].supply, ERR_PTR(ret));
4582         else
4583                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4584                         consumers[i].supply);
4585
4586         while (--i >= 0)
4587                 regulator_put(consumers[i].consumer);
4588
4589         return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4592
4593 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4594 {
4595         struct regulator_bulk_data *bulk = data;
4596
4597         bulk->ret = regulator_enable(bulk->consumer);
4598 }
4599
4600 /**
4601  * regulator_bulk_enable - enable multiple regulator consumers
4602  *
4603  * @num_consumers: Number of consumers
4604  * @consumers:     Consumer data; clients are stored here.
4605  * @return         0 on success, an errno on failure
4606  *
4607  * This convenience API allows consumers to enable multiple regulator
4608  * clients in a single API call.  If any consumers cannot be enabled
4609  * then any others that were enabled will be disabled again prior to
4610  * return.
4611  */
4612 int regulator_bulk_enable(int num_consumers,
4613                           struct regulator_bulk_data *consumers)
4614 {
4615         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4616         int i;
4617         int ret = 0;
4618
4619         for (i = 0; i < num_consumers; i++) {
4620                 async_schedule_domain(regulator_bulk_enable_async,
4621                                       &consumers[i], &async_domain);
4622         }
4623
4624         async_synchronize_full_domain(&async_domain);
4625
4626         /* If any consumer failed we need to unwind any that succeeded */
4627         for (i = 0; i < num_consumers; i++) {
4628                 if (consumers[i].ret != 0) {
4629                         ret = consumers[i].ret;
4630                         goto err;
4631                 }
4632         }
4633
4634         return 0;
4635
4636 err:
4637         for (i = 0; i < num_consumers; i++) {
4638                 if (consumers[i].ret < 0)
4639                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4640                                ERR_PTR(consumers[i].ret));
4641                 else
4642                         regulator_disable(consumers[i].consumer);
4643         }
4644
4645         return ret;
4646 }
4647 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4648
4649 /**
4650  * regulator_bulk_disable - disable multiple regulator consumers
4651  *
4652  * @num_consumers: Number of consumers
4653  * @consumers:     Consumer data; clients are stored here.
4654  * @return         0 on success, an errno on failure
4655  *
4656  * This convenience API allows consumers to disable multiple regulator
4657  * clients in a single API call.  If any consumers cannot be disabled
4658  * then any others that were disabled will be enabled again prior to
4659  * return.
4660  */
4661 int regulator_bulk_disable(int num_consumers,
4662                            struct regulator_bulk_data *consumers)
4663 {
4664         int i;
4665         int ret, r;
4666
4667         for (i = num_consumers - 1; i >= 0; --i) {
4668                 ret = regulator_disable(consumers[i].consumer);
4669                 if (ret != 0)
4670                         goto err;
4671         }
4672
4673         return 0;
4674
4675 err:
4676         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4677         for (++i; i < num_consumers; ++i) {
4678                 r = regulator_enable(consumers[i].consumer);
4679                 if (r != 0)
4680                         pr_err("Failed to re-enable %s: %pe\n",
4681                                consumers[i].supply, ERR_PTR(r));
4682         }
4683
4684         return ret;
4685 }
4686 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4687
4688 /**
4689  * regulator_bulk_force_disable - force disable multiple regulator consumers
4690  *
4691  * @num_consumers: Number of consumers
4692  * @consumers:     Consumer data; clients are stored here.
4693  * @return         0 on success, an errno on failure
4694  *
4695  * This convenience API allows consumers to forcibly disable multiple regulator
4696  * clients in a single API call.
4697  * NOTE: This should be used for situations when device damage will
4698  * likely occur if the regulators are not disabled (e.g. over temp).
4699  * Although regulator_force_disable function call for some consumers can
4700  * return error numbers, the function is called for all consumers.
4701  */
4702 int regulator_bulk_force_disable(int num_consumers,
4703                            struct regulator_bulk_data *consumers)
4704 {
4705         int i;
4706         int ret = 0;
4707
4708         for (i = 0; i < num_consumers; i++) {
4709                 consumers[i].ret =
4710                             regulator_force_disable(consumers[i].consumer);
4711
4712                 /* Store first error for reporting */
4713                 if (consumers[i].ret && !ret)
4714                         ret = consumers[i].ret;
4715         }
4716
4717         return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4720
4721 /**
4722  * regulator_bulk_free - free multiple regulator consumers
4723  *
4724  * @num_consumers: Number of consumers
4725  * @consumers:     Consumer data; clients are stored here.
4726  *
4727  * This convenience API allows consumers to free multiple regulator
4728  * clients in a single API call.
4729  */
4730 void regulator_bulk_free(int num_consumers,
4731                          struct regulator_bulk_data *consumers)
4732 {
4733         int i;
4734
4735         for (i = 0; i < num_consumers; i++) {
4736                 regulator_put(consumers[i].consumer);
4737                 consumers[i].consumer = NULL;
4738         }
4739 }
4740 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4741
4742 /**
4743  * regulator_notifier_call_chain - call regulator event notifier
4744  * @rdev: regulator source
4745  * @event: notifier block
4746  * @data: callback-specific data.
4747  *
4748  * Called by regulator drivers to notify clients a regulator event has
4749  * occurred.
4750  */
4751 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4752                                   unsigned long event, void *data)
4753 {
4754         _notifier_call_chain(rdev, event, data);
4755         return NOTIFY_DONE;
4756
4757 }
4758 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4759
4760 /**
4761  * regulator_mode_to_status - convert a regulator mode into a status
4762  *
4763  * @mode: Mode to convert
4764  *
4765  * Convert a regulator mode into a status.
4766  */
4767 int regulator_mode_to_status(unsigned int mode)
4768 {
4769         switch (mode) {
4770         case REGULATOR_MODE_FAST:
4771                 return REGULATOR_STATUS_FAST;
4772         case REGULATOR_MODE_NORMAL:
4773                 return REGULATOR_STATUS_NORMAL;
4774         case REGULATOR_MODE_IDLE:
4775                 return REGULATOR_STATUS_IDLE;
4776         case REGULATOR_MODE_STANDBY:
4777                 return REGULATOR_STATUS_STANDBY;
4778         default:
4779                 return REGULATOR_STATUS_UNDEFINED;
4780         }
4781 }
4782 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4783
4784 static struct attribute *regulator_dev_attrs[] = {
4785         &dev_attr_name.attr,
4786         &dev_attr_num_users.attr,
4787         &dev_attr_type.attr,
4788         &dev_attr_microvolts.attr,
4789         &dev_attr_microamps.attr,
4790         &dev_attr_opmode.attr,
4791         &dev_attr_state.attr,
4792         &dev_attr_status.attr,
4793         &dev_attr_bypass.attr,
4794         &dev_attr_requested_microamps.attr,
4795         &dev_attr_min_microvolts.attr,
4796         &dev_attr_max_microvolts.attr,
4797         &dev_attr_min_microamps.attr,
4798         &dev_attr_max_microamps.attr,
4799         &dev_attr_suspend_standby_state.attr,
4800         &dev_attr_suspend_mem_state.attr,
4801         &dev_attr_suspend_disk_state.attr,
4802         &dev_attr_suspend_standby_microvolts.attr,
4803         &dev_attr_suspend_mem_microvolts.attr,
4804         &dev_attr_suspend_disk_microvolts.attr,
4805         &dev_attr_suspend_standby_mode.attr,
4806         &dev_attr_suspend_mem_mode.attr,
4807         &dev_attr_suspend_disk_mode.attr,
4808         NULL
4809 };
4810
4811 /*
4812  * To avoid cluttering sysfs (and memory) with useless state, only
4813  * create attributes that can be meaningfully displayed.
4814  */
4815 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4816                                          struct attribute *attr, int idx)
4817 {
4818         struct device *dev = kobj_to_dev(kobj);
4819         struct regulator_dev *rdev = dev_to_rdev(dev);
4820         const struct regulator_ops *ops = rdev->desc->ops;
4821         umode_t mode = attr->mode;
4822
4823         /* these three are always present */
4824         if (attr == &dev_attr_name.attr ||
4825             attr == &dev_attr_num_users.attr ||
4826             attr == &dev_attr_type.attr)
4827                 return mode;
4828
4829         /* some attributes need specific methods to be displayed */
4830         if (attr == &dev_attr_microvolts.attr) {
4831                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4832                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4833                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4834                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4835                         return mode;
4836                 return 0;
4837         }
4838
4839         if (attr == &dev_attr_microamps.attr)
4840                 return ops->get_current_limit ? mode : 0;
4841
4842         if (attr == &dev_attr_opmode.attr)
4843                 return ops->get_mode ? mode : 0;
4844
4845         if (attr == &dev_attr_state.attr)
4846                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4847
4848         if (attr == &dev_attr_status.attr)
4849                 return ops->get_status ? mode : 0;
4850
4851         if (attr == &dev_attr_bypass.attr)
4852                 return ops->get_bypass ? mode : 0;
4853
4854         /* constraints need specific supporting methods */
4855         if (attr == &dev_attr_min_microvolts.attr ||
4856             attr == &dev_attr_max_microvolts.attr)
4857                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4858
4859         if (attr == &dev_attr_min_microamps.attr ||
4860             attr == &dev_attr_max_microamps.attr)
4861                 return ops->set_current_limit ? mode : 0;
4862
4863         if (attr == &dev_attr_suspend_standby_state.attr ||
4864             attr == &dev_attr_suspend_mem_state.attr ||
4865             attr == &dev_attr_suspend_disk_state.attr)
4866                 return mode;
4867
4868         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4869             attr == &dev_attr_suspend_mem_microvolts.attr ||
4870             attr == &dev_attr_suspend_disk_microvolts.attr)
4871                 return ops->set_suspend_voltage ? mode : 0;
4872
4873         if (attr == &dev_attr_suspend_standby_mode.attr ||
4874             attr == &dev_attr_suspend_mem_mode.attr ||
4875             attr == &dev_attr_suspend_disk_mode.attr)
4876                 return ops->set_suspend_mode ? mode : 0;
4877
4878         return mode;
4879 }
4880
4881 static const struct attribute_group regulator_dev_group = {
4882         .attrs = regulator_dev_attrs,
4883         .is_visible = regulator_attr_is_visible,
4884 };
4885
4886 static const struct attribute_group *regulator_dev_groups[] = {
4887         &regulator_dev_group,
4888         NULL
4889 };
4890
4891 static void regulator_dev_release(struct device *dev)
4892 {
4893         struct regulator_dev *rdev = dev_get_drvdata(dev);
4894
4895         kfree(rdev->constraints);
4896         of_node_put(rdev->dev.of_node);
4897         kfree(rdev);
4898 }
4899
4900 static void rdev_init_debugfs(struct regulator_dev *rdev)
4901 {
4902         struct device *parent = rdev->dev.parent;
4903         const char *rname = rdev_get_name(rdev);
4904         char name[NAME_MAX];
4905
4906         /* Avoid duplicate debugfs directory names */
4907         if (parent && rname == rdev->desc->name) {
4908                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4909                          rname);
4910                 rname = name;
4911         }
4912
4913         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4914         if (!rdev->debugfs) {
4915                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4916                 return;
4917         }
4918
4919         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4920                            &rdev->use_count);
4921         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4922                            &rdev->open_count);
4923         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4924                            &rdev->bypass_count);
4925 }
4926
4927 static int regulator_register_resolve_supply(struct device *dev, void *data)
4928 {
4929         struct regulator_dev *rdev = dev_to_rdev(dev);
4930
4931         if (regulator_resolve_supply(rdev))
4932                 rdev_dbg(rdev, "unable to resolve supply\n");
4933
4934         return 0;
4935 }
4936
4937 int regulator_coupler_register(struct regulator_coupler *coupler)
4938 {
4939         mutex_lock(&regulator_list_mutex);
4940         list_add_tail(&coupler->list, &regulator_coupler_list);
4941         mutex_unlock(&regulator_list_mutex);
4942
4943         return 0;
4944 }
4945
4946 static struct regulator_coupler *
4947 regulator_find_coupler(struct regulator_dev *rdev)
4948 {
4949         struct regulator_coupler *coupler;
4950         int err;
4951
4952         /*
4953          * Note that regulators are appended to the list and the generic
4954          * coupler is registered first, hence it will be attached at last
4955          * if nobody cared.
4956          */
4957         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4958                 err = coupler->attach_regulator(coupler, rdev);
4959                 if (!err) {
4960                         if (!coupler->balance_voltage &&
4961                             rdev->coupling_desc.n_coupled > 2)
4962                                 goto err_unsupported;
4963
4964                         return coupler;
4965                 }
4966
4967                 if (err < 0)
4968                         return ERR_PTR(err);
4969
4970                 if (err == 1)
4971                         continue;
4972
4973                 break;
4974         }
4975
4976         return ERR_PTR(-EINVAL);
4977
4978 err_unsupported:
4979         if (coupler->detach_regulator)
4980                 coupler->detach_regulator(coupler, rdev);
4981
4982         rdev_err(rdev,
4983                 "Voltage balancing for multiple regulator couples is unimplemented\n");
4984
4985         return ERR_PTR(-EPERM);
4986 }
4987
4988 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4989 {
4990         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4991         struct coupling_desc *c_desc = &rdev->coupling_desc;
4992         int n_coupled = c_desc->n_coupled;
4993         struct regulator_dev *c_rdev;
4994         int i;
4995
4996         for (i = 1; i < n_coupled; i++) {
4997                 /* already resolved */
4998                 if (c_desc->coupled_rdevs[i])
4999                         continue;
5000
5001                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5002
5003                 if (!c_rdev)
5004                         continue;
5005
5006                 if (c_rdev->coupling_desc.coupler != coupler) {
5007                         rdev_err(rdev, "coupler mismatch with %s\n",
5008                                  rdev_get_name(c_rdev));
5009                         return;
5010                 }
5011
5012                 c_desc->coupled_rdevs[i] = c_rdev;
5013                 c_desc->n_resolved++;
5014
5015                 regulator_resolve_coupling(c_rdev);
5016         }
5017 }
5018
5019 static void regulator_remove_coupling(struct regulator_dev *rdev)
5020 {
5021         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5022         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5023         struct regulator_dev *__c_rdev, *c_rdev;
5024         unsigned int __n_coupled, n_coupled;
5025         int i, k;
5026         int err;
5027
5028         n_coupled = c_desc->n_coupled;
5029
5030         for (i = 1; i < n_coupled; i++) {
5031                 c_rdev = c_desc->coupled_rdevs[i];
5032
5033                 if (!c_rdev)
5034                         continue;
5035
5036                 regulator_lock(c_rdev);
5037
5038                 __c_desc = &c_rdev->coupling_desc;
5039                 __n_coupled = __c_desc->n_coupled;
5040
5041                 for (k = 1; k < __n_coupled; k++) {
5042                         __c_rdev = __c_desc->coupled_rdevs[k];
5043
5044                         if (__c_rdev == rdev) {
5045                                 __c_desc->coupled_rdevs[k] = NULL;
5046                                 __c_desc->n_resolved--;
5047                                 break;
5048                         }
5049                 }
5050
5051                 regulator_unlock(c_rdev);
5052
5053                 c_desc->coupled_rdevs[i] = NULL;
5054                 c_desc->n_resolved--;
5055         }
5056
5057         if (coupler && coupler->detach_regulator) {
5058                 err = coupler->detach_regulator(coupler, rdev);
5059                 if (err)
5060                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5061                                  ERR_PTR(err));
5062         }
5063
5064         kfree(rdev->coupling_desc.coupled_rdevs);
5065         rdev->coupling_desc.coupled_rdevs = NULL;
5066 }
5067
5068 static int regulator_init_coupling(struct regulator_dev *rdev)
5069 {
5070         struct regulator_dev **coupled;
5071         int err, n_phandles;
5072
5073         if (!IS_ENABLED(CONFIG_OF))
5074                 n_phandles = 0;
5075         else
5076                 n_phandles = of_get_n_coupled(rdev);
5077
5078         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5079         if (!coupled)
5080                 return -ENOMEM;
5081
5082         rdev->coupling_desc.coupled_rdevs = coupled;
5083
5084         /*
5085          * Every regulator should always have coupling descriptor filled with
5086          * at least pointer to itself.
5087          */
5088         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5089         rdev->coupling_desc.n_coupled = n_phandles + 1;
5090         rdev->coupling_desc.n_resolved++;
5091
5092         /* regulator isn't coupled */
5093         if (n_phandles == 0)
5094                 return 0;
5095
5096         if (!of_check_coupling_data(rdev))
5097                 return -EPERM;
5098
5099         mutex_lock(&regulator_list_mutex);
5100         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5101         mutex_unlock(&regulator_list_mutex);
5102
5103         if (IS_ERR(rdev->coupling_desc.coupler)) {
5104                 err = PTR_ERR(rdev->coupling_desc.coupler);
5105                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5106                 return err;
5107         }
5108
5109         return 0;
5110 }
5111
5112 static int generic_coupler_attach(struct regulator_coupler *coupler,
5113                                   struct regulator_dev *rdev)
5114 {
5115         if (rdev->coupling_desc.n_coupled > 2) {
5116                 rdev_err(rdev,
5117                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5118                 return -EPERM;
5119         }
5120
5121         if (!rdev->constraints->always_on) {
5122                 rdev_err(rdev,
5123                          "Coupling of a non always-on regulator is unimplemented\n");
5124                 return -ENOTSUPP;
5125         }
5126
5127         return 0;
5128 }
5129
5130 static struct regulator_coupler generic_regulator_coupler = {
5131         .attach_regulator = generic_coupler_attach,
5132 };
5133
5134 /**
5135  * regulator_register - register regulator
5136  * @regulator_desc: regulator to register
5137  * @cfg: runtime configuration for regulator
5138  *
5139  * Called by regulator drivers to register a regulator.
5140  * Returns a valid pointer to struct regulator_dev on success
5141  * or an ERR_PTR() on error.
5142  */
5143 struct regulator_dev *
5144 regulator_register(const struct regulator_desc *regulator_desc,
5145                    const struct regulator_config *cfg)
5146 {
5147         const struct regulator_init_data *init_data;
5148         struct regulator_config *config = NULL;
5149         static atomic_t regulator_no = ATOMIC_INIT(-1);
5150         struct regulator_dev *rdev;
5151         bool dangling_cfg_gpiod = false;
5152         bool dangling_of_gpiod = false;
5153         struct device *dev;
5154         int ret, i;
5155
5156         if (cfg == NULL)
5157                 return ERR_PTR(-EINVAL);
5158         if (cfg->ena_gpiod)
5159                 dangling_cfg_gpiod = true;
5160         if (regulator_desc == NULL) {
5161                 ret = -EINVAL;
5162                 goto rinse;
5163         }
5164
5165         dev = cfg->dev;
5166         WARN_ON(!dev);
5167
5168         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5169                 ret = -EINVAL;
5170                 goto rinse;
5171         }
5172
5173         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5174             regulator_desc->type != REGULATOR_CURRENT) {
5175                 ret = -EINVAL;
5176                 goto rinse;
5177         }
5178
5179         /* Only one of each should be implemented */
5180         WARN_ON(regulator_desc->ops->get_voltage &&
5181                 regulator_desc->ops->get_voltage_sel);
5182         WARN_ON(regulator_desc->ops->set_voltage &&
5183                 regulator_desc->ops->set_voltage_sel);
5184
5185         /* If we're using selectors we must implement list_voltage. */
5186         if (regulator_desc->ops->get_voltage_sel &&
5187             !regulator_desc->ops->list_voltage) {
5188                 ret = -EINVAL;
5189                 goto rinse;
5190         }
5191         if (regulator_desc->ops->set_voltage_sel &&
5192             !regulator_desc->ops->list_voltage) {
5193                 ret = -EINVAL;
5194                 goto rinse;
5195         }
5196
5197         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5198         if (rdev == NULL) {
5199                 ret = -ENOMEM;
5200                 goto rinse;
5201         }
5202         device_initialize(&rdev->dev);
5203
5204         /*
5205          * Duplicate the config so the driver could override it after
5206          * parsing init data.
5207          */
5208         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5209         if (config == NULL) {
5210                 ret = -ENOMEM;
5211                 goto clean;
5212         }
5213
5214         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5215                                                &rdev->dev.of_node);
5216
5217         /*
5218          * Sometimes not all resources are probed already so we need to take
5219          * that into account. This happens most the time if the ena_gpiod comes
5220          * from a gpio extender or something else.
5221          */
5222         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5223                 ret = -EPROBE_DEFER;
5224                 goto clean;
5225         }
5226
5227         /*
5228          * We need to keep track of any GPIO descriptor coming from the
5229          * device tree until we have handled it over to the core. If the
5230          * config that was passed in to this function DOES NOT contain
5231          * a descriptor, and the config after this call DOES contain
5232          * a descriptor, we definitely got one from parsing the device
5233          * tree.
5234          */
5235         if (!cfg->ena_gpiod && config->ena_gpiod)
5236                 dangling_of_gpiod = true;
5237         if (!init_data) {
5238                 init_data = config->init_data;
5239                 rdev->dev.of_node = of_node_get(config->of_node);
5240         }
5241
5242         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5243         rdev->reg_data = config->driver_data;
5244         rdev->owner = regulator_desc->owner;
5245         rdev->desc = regulator_desc;
5246         if (config->regmap)
5247                 rdev->regmap = config->regmap;
5248         else if (dev_get_regmap(dev, NULL))
5249                 rdev->regmap = dev_get_regmap(dev, NULL);
5250         else if (dev->parent)
5251                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5252         INIT_LIST_HEAD(&rdev->consumer_list);
5253         INIT_LIST_HEAD(&rdev->list);
5254         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5255         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5256
5257         /* preform any regulator specific init */
5258         if (init_data && init_data->regulator_init) {
5259                 ret = init_data->regulator_init(rdev->reg_data);
5260                 if (ret < 0)
5261                         goto clean;
5262         }
5263
5264         if (config->ena_gpiod) {
5265                 ret = regulator_ena_gpio_request(rdev, config);
5266                 if (ret != 0) {
5267                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5268                                  ERR_PTR(ret));
5269                         goto clean;
5270                 }
5271                 /* The regulator core took over the GPIO descriptor */
5272                 dangling_cfg_gpiod = false;
5273                 dangling_of_gpiod = false;
5274         }
5275
5276         /* register with sysfs */
5277         rdev->dev.class = &regulator_class;
5278         rdev->dev.parent = dev;
5279         dev_set_name(&rdev->dev, "regulator.%lu",
5280                     (unsigned long) atomic_inc_return(&regulator_no));
5281         dev_set_drvdata(&rdev->dev, rdev);
5282
5283         /* set regulator constraints */
5284         if (init_data)
5285                 rdev->constraints = kmemdup(&init_data->constraints,
5286                                             sizeof(*rdev->constraints),
5287                                             GFP_KERNEL);
5288         else
5289                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5290                                             GFP_KERNEL);
5291         if (!rdev->constraints) {
5292                 ret = -ENOMEM;
5293                 goto wash;
5294         }
5295
5296         if (init_data && init_data->supply_regulator)
5297                 rdev->supply_name = init_data->supply_regulator;
5298         else if (regulator_desc->supply_name)
5299                 rdev->supply_name = regulator_desc->supply_name;
5300
5301         ret = set_machine_constraints(rdev);
5302         if (ret == -EPROBE_DEFER) {
5303                 /* Regulator might be in bypass mode and so needs its supply
5304                  * to set the constraints */
5305                 /* FIXME: this currently triggers a chicken-and-egg problem
5306                  * when creating -SUPPLY symlink in sysfs to a regulator
5307                  * that is just being created */
5308                 ret = regulator_resolve_supply(rdev);
5309                 if (!ret)
5310                         ret = set_machine_constraints(rdev);
5311                 else
5312                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5313                                  ERR_PTR(ret));
5314         }
5315         if (ret < 0)
5316                 goto wash;
5317
5318         ret = regulator_init_coupling(rdev);
5319         if (ret < 0)
5320                 goto wash;
5321
5322         /* add consumers devices */
5323         if (init_data) {
5324                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5325                         ret = set_consumer_device_supply(rdev,
5326                                 init_data->consumer_supplies[i].dev_name,
5327                                 init_data->consumer_supplies[i].supply);
5328                         if (ret < 0) {
5329                                 dev_err(dev, "Failed to set supply %s\n",
5330                                         init_data->consumer_supplies[i].supply);
5331                                 goto unset_supplies;
5332                         }
5333                 }
5334         }
5335
5336         if (!rdev->desc->ops->get_voltage &&
5337             !rdev->desc->ops->list_voltage &&
5338             !rdev->desc->fixed_uV)
5339                 rdev->is_switch = true;
5340
5341         ret = device_add(&rdev->dev);
5342         if (ret != 0)
5343                 goto unset_supplies;
5344
5345         rdev_init_debugfs(rdev);
5346
5347         /* try to resolve regulators coupling since a new one was registered */
5348         mutex_lock(&regulator_list_mutex);
5349         regulator_resolve_coupling(rdev);
5350         mutex_unlock(&regulator_list_mutex);
5351
5352         /* try to resolve regulators supply since a new one was registered */
5353         class_for_each_device(&regulator_class, NULL, NULL,
5354                               regulator_register_resolve_supply);
5355         kfree(config);
5356         return rdev;
5357
5358 unset_supplies:
5359         mutex_lock(&regulator_list_mutex);
5360         unset_regulator_supplies(rdev);
5361         regulator_remove_coupling(rdev);
5362         mutex_unlock(&regulator_list_mutex);
5363 wash:
5364         kfree(rdev->coupling_desc.coupled_rdevs);
5365         mutex_lock(&regulator_list_mutex);
5366         regulator_ena_gpio_free(rdev);
5367         mutex_unlock(&regulator_list_mutex);
5368 clean:
5369         if (dangling_of_gpiod)
5370                 gpiod_put(config->ena_gpiod);
5371         kfree(config);
5372         put_device(&rdev->dev);
5373 rinse:
5374         if (dangling_cfg_gpiod)
5375                 gpiod_put(cfg->ena_gpiod);
5376         return ERR_PTR(ret);
5377 }
5378 EXPORT_SYMBOL_GPL(regulator_register);
5379
5380 /**
5381  * regulator_unregister - unregister regulator
5382  * @rdev: regulator to unregister
5383  *
5384  * Called by regulator drivers to unregister a regulator.
5385  */
5386 void regulator_unregister(struct regulator_dev *rdev)
5387 {
5388         if (rdev == NULL)
5389                 return;
5390
5391         if (rdev->supply) {
5392                 while (rdev->use_count--)
5393                         regulator_disable(rdev->supply);
5394                 regulator_put(rdev->supply);
5395         }
5396
5397         flush_work(&rdev->disable_work.work);
5398
5399         mutex_lock(&regulator_list_mutex);
5400
5401         debugfs_remove_recursive(rdev->debugfs);
5402         WARN_ON(rdev->open_count);
5403         regulator_remove_coupling(rdev);
5404         unset_regulator_supplies(rdev);
5405         list_del(&rdev->list);
5406         regulator_ena_gpio_free(rdev);
5407         device_unregister(&rdev->dev);
5408
5409         mutex_unlock(&regulator_list_mutex);
5410 }
5411 EXPORT_SYMBOL_GPL(regulator_unregister);
5412
5413 #ifdef CONFIG_SUSPEND
5414 /**
5415  * regulator_suspend - prepare regulators for system wide suspend
5416  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5417  *
5418  * Configure each regulator with it's suspend operating parameters for state.
5419  */
5420 static int regulator_suspend(struct device *dev)
5421 {
5422         struct regulator_dev *rdev = dev_to_rdev(dev);
5423         suspend_state_t state = pm_suspend_target_state;
5424         int ret;
5425         const struct regulator_state *rstate;
5426
5427         rstate = regulator_get_suspend_state_check(rdev, state);
5428         if (!rstate)
5429                 return 0;
5430
5431         regulator_lock(rdev);
5432         ret = __suspend_set_state(rdev, rstate);
5433         regulator_unlock(rdev);
5434
5435         return ret;
5436 }
5437
5438 static int regulator_resume(struct device *dev)
5439 {
5440         suspend_state_t state = pm_suspend_target_state;
5441         struct regulator_dev *rdev = dev_to_rdev(dev);
5442         struct regulator_state *rstate;
5443         int ret = 0;
5444
5445         rstate = regulator_get_suspend_state(rdev, state);
5446         if (rstate == NULL)
5447                 return 0;
5448
5449         /* Avoid grabbing the lock if we don't need to */
5450         if (!rdev->desc->ops->resume)
5451                 return 0;
5452
5453         regulator_lock(rdev);
5454
5455         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5456             rstate->enabled == DISABLE_IN_SUSPEND)
5457                 ret = rdev->desc->ops->resume(rdev);
5458
5459         regulator_unlock(rdev);
5460
5461         return ret;
5462 }
5463 #else /* !CONFIG_SUSPEND */
5464
5465 #define regulator_suspend       NULL
5466 #define regulator_resume        NULL
5467
5468 #endif /* !CONFIG_SUSPEND */
5469
5470 #ifdef CONFIG_PM
5471 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5472         .suspend        = regulator_suspend,
5473         .resume         = regulator_resume,
5474 };
5475 #endif
5476
5477 struct class regulator_class = {
5478         .name = "regulator",
5479         .dev_release = regulator_dev_release,
5480         .dev_groups = regulator_dev_groups,
5481 #ifdef CONFIG_PM
5482         .pm = &regulator_pm_ops,
5483 #endif
5484 };
5485 /**
5486  * regulator_has_full_constraints - the system has fully specified constraints
5487  *
5488  * Calling this function will cause the regulator API to disable all
5489  * regulators which have a zero use count and don't have an always_on
5490  * constraint in a late_initcall.
5491  *
5492  * The intention is that this will become the default behaviour in a
5493  * future kernel release so users are encouraged to use this facility
5494  * now.
5495  */
5496 void regulator_has_full_constraints(void)
5497 {
5498         has_full_constraints = 1;
5499 }
5500 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5501
5502 /**
5503  * rdev_get_drvdata - get rdev regulator driver data
5504  * @rdev: regulator
5505  *
5506  * Get rdev regulator driver private data. This call can be used in the
5507  * regulator driver context.
5508  */
5509 void *rdev_get_drvdata(struct regulator_dev *rdev)
5510 {
5511         return rdev->reg_data;
5512 }
5513 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5514
5515 /**
5516  * regulator_get_drvdata - get regulator driver data
5517  * @regulator: regulator
5518  *
5519  * Get regulator driver private data. This call can be used in the consumer
5520  * driver context when non API regulator specific functions need to be called.
5521  */
5522 void *regulator_get_drvdata(struct regulator *regulator)
5523 {
5524         return regulator->rdev->reg_data;
5525 }
5526 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5527
5528 /**
5529  * regulator_set_drvdata - set regulator driver data
5530  * @regulator: regulator
5531  * @data: data
5532  */
5533 void regulator_set_drvdata(struct regulator *regulator, void *data)
5534 {
5535         regulator->rdev->reg_data = data;
5536 }
5537 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5538
5539 /**
5540  * regulator_get_id - get regulator ID
5541  * @rdev: regulator
5542  */
5543 int rdev_get_id(struct regulator_dev *rdev)
5544 {
5545         return rdev->desc->id;
5546 }
5547 EXPORT_SYMBOL_GPL(rdev_get_id);
5548
5549 struct device *rdev_get_dev(struct regulator_dev *rdev)
5550 {
5551         return &rdev->dev;
5552 }
5553 EXPORT_SYMBOL_GPL(rdev_get_dev);
5554
5555 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5556 {
5557         return rdev->regmap;
5558 }
5559 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5560
5561 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5562 {
5563         return reg_init_data->driver_data;
5564 }
5565 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5566
5567 #ifdef CONFIG_DEBUG_FS
5568 static int supply_map_show(struct seq_file *sf, void *data)
5569 {
5570         struct regulator_map *map;
5571
5572         list_for_each_entry(map, &regulator_map_list, list) {
5573                 seq_printf(sf, "%s -> %s.%s\n",
5574                                 rdev_get_name(map->regulator), map->dev_name,
5575                                 map->supply);
5576         }
5577
5578         return 0;
5579 }
5580 DEFINE_SHOW_ATTRIBUTE(supply_map);
5581
5582 struct summary_data {
5583         struct seq_file *s;
5584         struct regulator_dev *parent;
5585         int level;
5586 };
5587
5588 static void regulator_summary_show_subtree(struct seq_file *s,
5589                                            struct regulator_dev *rdev,
5590                                            int level);
5591
5592 static int regulator_summary_show_children(struct device *dev, void *data)
5593 {
5594         struct regulator_dev *rdev = dev_to_rdev(dev);
5595         struct summary_data *summary_data = data;
5596
5597         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5598                 regulator_summary_show_subtree(summary_data->s, rdev,
5599                                                summary_data->level + 1);
5600
5601         return 0;
5602 }
5603
5604 static void regulator_summary_show_subtree(struct seq_file *s,
5605                                            struct regulator_dev *rdev,
5606                                            int level)
5607 {
5608         struct regulation_constraints *c;
5609         struct regulator *consumer;
5610         struct summary_data summary_data;
5611         unsigned int opmode;
5612
5613         if (!rdev)
5614                 return;
5615
5616         opmode = _regulator_get_mode_unlocked(rdev);
5617         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5618                    level * 3 + 1, "",
5619                    30 - level * 3, rdev_get_name(rdev),
5620                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5621                    regulator_opmode_to_str(opmode));
5622
5623         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5624         seq_printf(s, "%5dmA ",
5625                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5626
5627         c = rdev->constraints;
5628         if (c) {
5629                 switch (rdev->desc->type) {
5630                 case REGULATOR_VOLTAGE:
5631                         seq_printf(s, "%5dmV %5dmV ",
5632                                    c->min_uV / 1000, c->max_uV / 1000);
5633                         break;
5634                 case REGULATOR_CURRENT:
5635                         seq_printf(s, "%5dmA %5dmA ",
5636                                    c->min_uA / 1000, c->max_uA / 1000);
5637                         break;
5638                 }
5639         }
5640
5641         seq_puts(s, "\n");
5642
5643         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5644                 if (consumer->dev && consumer->dev->class == &regulator_class)
5645                         continue;
5646
5647                 seq_printf(s, "%*s%-*s ",
5648                            (level + 1) * 3 + 1, "",
5649                            30 - (level + 1) * 3,
5650                            consumer->supply_name ? consumer->supply_name :
5651                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5652
5653                 switch (rdev->desc->type) {
5654                 case REGULATOR_VOLTAGE:
5655                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5656                                    consumer->enable_count,
5657                                    consumer->uA_load / 1000,
5658                                    consumer->uA_load && !consumer->enable_count ?
5659                                    '*' : ' ',
5660                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5661                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5662                         break;
5663                 case REGULATOR_CURRENT:
5664                         break;
5665                 }
5666
5667                 seq_puts(s, "\n");
5668         }
5669
5670         summary_data.s = s;
5671         summary_data.level = level;
5672         summary_data.parent = rdev;
5673
5674         class_for_each_device(&regulator_class, NULL, &summary_data,
5675                               regulator_summary_show_children);
5676 }
5677
5678 struct summary_lock_data {
5679         struct ww_acquire_ctx *ww_ctx;
5680         struct regulator_dev **new_contended_rdev;
5681         struct regulator_dev **old_contended_rdev;
5682 };
5683
5684 static int regulator_summary_lock_one(struct device *dev, void *data)
5685 {
5686         struct regulator_dev *rdev = dev_to_rdev(dev);
5687         struct summary_lock_data *lock_data = data;
5688         int ret = 0;
5689
5690         if (rdev != *lock_data->old_contended_rdev) {
5691                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5692
5693                 if (ret == -EDEADLK)
5694                         *lock_data->new_contended_rdev = rdev;
5695                 else
5696                         WARN_ON_ONCE(ret);
5697         } else {
5698                 *lock_data->old_contended_rdev = NULL;
5699         }
5700
5701         return ret;
5702 }
5703
5704 static int regulator_summary_unlock_one(struct device *dev, void *data)
5705 {
5706         struct regulator_dev *rdev = dev_to_rdev(dev);
5707         struct summary_lock_data *lock_data = data;
5708
5709         if (lock_data) {
5710                 if (rdev == *lock_data->new_contended_rdev)
5711                         return -EDEADLK;
5712         }
5713
5714         regulator_unlock(rdev);
5715
5716         return 0;
5717 }
5718
5719 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5720                                       struct regulator_dev **new_contended_rdev,
5721                                       struct regulator_dev **old_contended_rdev)
5722 {
5723         struct summary_lock_data lock_data;
5724         int ret;
5725
5726         lock_data.ww_ctx = ww_ctx;
5727         lock_data.new_contended_rdev = new_contended_rdev;
5728         lock_data.old_contended_rdev = old_contended_rdev;
5729
5730         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5731                                     regulator_summary_lock_one);
5732         if (ret)
5733                 class_for_each_device(&regulator_class, NULL, &lock_data,
5734                                       regulator_summary_unlock_one);
5735
5736         return ret;
5737 }
5738
5739 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5740 {
5741         struct regulator_dev *new_contended_rdev = NULL;
5742         struct regulator_dev *old_contended_rdev = NULL;
5743         int err;
5744
5745         mutex_lock(&regulator_list_mutex);
5746
5747         ww_acquire_init(ww_ctx, &regulator_ww_class);
5748
5749         do {
5750                 if (new_contended_rdev) {
5751                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5752                         old_contended_rdev = new_contended_rdev;
5753                         old_contended_rdev->ref_cnt++;
5754                 }
5755
5756                 err = regulator_summary_lock_all(ww_ctx,
5757                                                  &new_contended_rdev,
5758                                                  &old_contended_rdev);
5759
5760                 if (old_contended_rdev)
5761                         regulator_unlock(old_contended_rdev);
5762
5763         } while (err == -EDEADLK);
5764
5765         ww_acquire_done(ww_ctx);
5766 }
5767
5768 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5769 {
5770         class_for_each_device(&regulator_class, NULL, NULL,
5771                               regulator_summary_unlock_one);
5772         ww_acquire_fini(ww_ctx);
5773
5774         mutex_unlock(&regulator_list_mutex);
5775 }
5776
5777 static int regulator_summary_show_roots(struct device *dev, void *data)
5778 {
5779         struct regulator_dev *rdev = dev_to_rdev(dev);
5780         struct seq_file *s = data;
5781
5782         if (!rdev->supply)
5783                 regulator_summary_show_subtree(s, rdev, 0);
5784
5785         return 0;
5786 }
5787
5788 static int regulator_summary_show(struct seq_file *s, void *data)
5789 {
5790         struct ww_acquire_ctx ww_ctx;
5791
5792         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5793         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5794
5795         regulator_summary_lock(&ww_ctx);
5796
5797         class_for_each_device(&regulator_class, NULL, s,
5798                               regulator_summary_show_roots);
5799
5800         regulator_summary_unlock(&ww_ctx);
5801
5802         return 0;
5803 }
5804 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5805 #endif /* CONFIG_DEBUG_FS */
5806
5807 static int __init regulator_init(void)
5808 {
5809         int ret;
5810
5811         ret = class_register(&regulator_class);
5812
5813         debugfs_root = debugfs_create_dir("regulator", NULL);
5814         if (!debugfs_root)
5815                 pr_warn("regulator: Failed to create debugfs directory\n");
5816
5817 #ifdef CONFIG_DEBUG_FS
5818         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5819                             &supply_map_fops);
5820
5821         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5822                             NULL, &regulator_summary_fops);
5823 #endif
5824         regulator_dummy_init();
5825
5826         regulator_coupler_register(&generic_regulator_coupler);
5827
5828         return ret;
5829 }
5830
5831 /* init early to allow our consumers to complete system booting */
5832 core_initcall(regulator_init);
5833
5834 static int regulator_late_cleanup(struct device *dev, void *data)
5835 {
5836         struct regulator_dev *rdev = dev_to_rdev(dev);
5837         const struct regulator_ops *ops = rdev->desc->ops;
5838         struct regulation_constraints *c = rdev->constraints;
5839         int enabled, ret;
5840
5841         if (c && c->always_on)
5842                 return 0;
5843
5844         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5845                 return 0;
5846
5847         regulator_lock(rdev);
5848
5849         if (rdev->use_count)
5850                 goto unlock;
5851
5852         /* If we can't read the status assume it's always on. */
5853         if (ops->is_enabled)
5854                 enabled = ops->is_enabled(rdev);
5855         else
5856                 enabled = 1;
5857
5858         /* But if reading the status failed, assume that it's off. */
5859         if (enabled <= 0)
5860                 goto unlock;
5861
5862         if (have_full_constraints()) {
5863                 /* We log since this may kill the system if it goes
5864                  * wrong. */
5865                 rdev_info(rdev, "disabling\n");
5866                 ret = _regulator_do_disable(rdev);
5867                 if (ret != 0)
5868                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5869         } else {
5870                 /* The intention is that in future we will
5871                  * assume that full constraints are provided
5872                  * so warn even if we aren't going to do
5873                  * anything here.
5874                  */
5875                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5876         }
5877
5878 unlock:
5879         regulator_unlock(rdev);
5880
5881         return 0;
5882 }
5883
5884 static void regulator_init_complete_work_function(struct work_struct *work)
5885 {
5886         /*
5887          * Regulators may had failed to resolve their input supplies
5888          * when were registered, either because the input supply was
5889          * not registered yet or because its parent device was not
5890          * bound yet. So attempt to resolve the input supplies for
5891          * pending regulators before trying to disable unused ones.
5892          */
5893         class_for_each_device(&regulator_class, NULL, NULL,
5894                               regulator_register_resolve_supply);
5895
5896         /* If we have a full configuration then disable any regulators
5897          * we have permission to change the status for and which are
5898          * not in use or always_on.  This is effectively the default
5899          * for DT and ACPI as they have full constraints.
5900          */
5901         class_for_each_device(&regulator_class, NULL, NULL,
5902                               regulator_late_cleanup);
5903 }
5904
5905 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5906                             regulator_init_complete_work_function);
5907
5908 static int __init regulator_init_complete(void)
5909 {
5910         /*
5911          * Since DT doesn't provide an idiomatic mechanism for
5912          * enabling full constraints and since it's much more natural
5913          * with DT to provide them just assume that a DT enabled
5914          * system has full constraints.
5915          */
5916         if (of_have_populated_dt())
5917                 has_full_constraints = true;
5918
5919         /*
5920          * We punt completion for an arbitrary amount of time since
5921          * systems like distros will load many drivers from userspace
5922          * so consumers might not always be ready yet, this is
5923          * particularly an issue with laptops where this might bounce
5924          * the display off then on.  Ideally we'd get a notification
5925          * from userspace when this happens but we don't so just wait
5926          * a bit and hope we waited long enough.  It'd be better if
5927          * we'd only do this on systems that need it, and a kernel
5928          * command line option might be useful.
5929          */
5930         schedule_delayed_work(&regulator_init_complete_work,
5931                               msecs_to_jiffies(30000));
5932
5933         return 0;
5934 }
5935 late_initcall_sync(regulator_init_complete);