x86/sev-es: Handle DR7 read/write events
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113         if (rdev->constraints && rdev->constraints->name)
114                 return rdev->constraints->name;
115         else if (rdev->desc->name)
116                 return rdev->desc->name;
117         else
118                 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123         return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128         if (!rdev->constraints) {
129                 rdev_err(rdev, "no constraints\n");
130                 return false;
131         }
132
133         if (rdev->constraints->valid_ops_mask & ops)
134                 return true;
135
136         return false;
137 }
138
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:               regulator source
142  * @ww_ctx:             w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151                                         struct ww_acquire_ctx *ww_ctx)
152 {
153         bool lock = false;
154         int ret = 0;
155
156         mutex_lock(&regulator_nesting_mutex);
157
158         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159                 if (rdev->mutex_owner == current)
160                         rdev->ref_cnt++;
161                 else
162                         lock = true;
163
164                 if (lock) {
165                         mutex_unlock(&regulator_nesting_mutex);
166                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167                         mutex_lock(&regulator_nesting_mutex);
168                 }
169         } else {
170                 lock = true;
171         }
172
173         if (lock && ret != -EDEADLK) {
174                 rdev->ref_cnt++;
175                 rdev->mutex_owner = current;
176         }
177
178         mutex_unlock(&regulator_nesting_mutex);
179
180         return ret;
181 }
182
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:               regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 void regulator_lock(struct regulator_dev *rdev)
194 {
195         regulator_lock_nested(rdev, NULL);
196 }
197 EXPORT_SYMBOL_GPL(regulator_lock);
198
199 /**
200  * regulator_unlock - unlock a single regulator
201  * @rdev:               regulator_source
202  *
203  * This function unlocks the mutex when the
204  * reference counter reaches 0.
205  */
206 void regulator_unlock(struct regulator_dev *rdev)
207 {
208         mutex_lock(&regulator_nesting_mutex);
209
210         if (--rdev->ref_cnt == 0) {
211                 rdev->mutex_owner = NULL;
212                 ww_mutex_unlock(&rdev->mutex);
213         }
214
215         WARN_ON_ONCE(rdev->ref_cnt < 0);
216
217         mutex_unlock(&regulator_nesting_mutex);
218 }
219 EXPORT_SYMBOL_GPL(regulator_unlock);
220
221 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222 {
223         struct regulator_dev *c_rdev;
224         int i;
225
226         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
227                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228
229                 if (rdev->supply->rdev == c_rdev)
230                         return true;
231         }
232
233         return false;
234 }
235
236 static void regulator_unlock_recursive(struct regulator_dev *rdev,
237                                        unsigned int n_coupled)
238 {
239         struct regulator_dev *c_rdev;
240         int i;
241
242         for (i = n_coupled; i > 0; i--) {
243                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244
245                 if (!c_rdev)
246                         continue;
247
248                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
249                         regulator_unlock_recursive(
250                                         c_rdev->supply->rdev,
251                                         c_rdev->coupling_desc.n_coupled);
252
253                 regulator_unlock(c_rdev);
254         }
255 }
256
257 static int regulator_lock_recursive(struct regulator_dev *rdev,
258                                     struct regulator_dev **new_contended_rdev,
259                                     struct regulator_dev **old_contended_rdev,
260                                     struct ww_acquire_ctx *ww_ctx)
261 {
262         struct regulator_dev *c_rdev;
263         int i, err;
264
265         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
266                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
267
268                 if (!c_rdev)
269                         continue;
270
271                 if (c_rdev != *old_contended_rdev) {
272                         err = regulator_lock_nested(c_rdev, ww_ctx);
273                         if (err) {
274                                 if (err == -EDEADLK) {
275                                         *new_contended_rdev = c_rdev;
276                                         goto err_unlock;
277                                 }
278
279                                 /* shouldn't happen */
280                                 WARN_ON_ONCE(err != -EALREADY);
281                         }
282                 } else {
283                         *old_contended_rdev = NULL;
284                 }
285
286                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
287                         err = regulator_lock_recursive(c_rdev->supply->rdev,
288                                                        new_contended_rdev,
289                                                        old_contended_rdev,
290                                                        ww_ctx);
291                         if (err) {
292                                 regulator_unlock(c_rdev);
293                                 goto err_unlock;
294                         }
295                 }
296         }
297
298         return 0;
299
300 err_unlock:
301         regulator_unlock_recursive(rdev, i);
302
303         return err;
304 }
305
306 /**
307  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
308  *                              regulators
309  * @rdev:                       regulator source
310  * @ww_ctx:                     w/w mutex acquire context
311  *
312  * Unlock all regulators related with rdev by coupling or supplying.
313  */
314 static void regulator_unlock_dependent(struct regulator_dev *rdev,
315                                        struct ww_acquire_ctx *ww_ctx)
316 {
317         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
318         ww_acquire_fini(ww_ctx);
319 }
320
321 /**
322  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
323  * @rdev:                       regulator source
324  * @ww_ctx:                     w/w mutex acquire context
325  *
326  * This function as a wrapper on regulator_lock_recursive(), which locks
327  * all regulators related with rdev by coupling or supplying.
328  */
329 static void regulator_lock_dependent(struct regulator_dev *rdev,
330                                      struct ww_acquire_ctx *ww_ctx)
331 {
332         struct regulator_dev *new_contended_rdev = NULL;
333         struct regulator_dev *old_contended_rdev = NULL;
334         int err;
335
336         mutex_lock(&regulator_list_mutex);
337
338         ww_acquire_init(ww_ctx, &regulator_ww_class);
339
340         do {
341                 if (new_contended_rdev) {
342                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
343                         old_contended_rdev = new_contended_rdev;
344                         old_contended_rdev->ref_cnt++;
345                 }
346
347                 err = regulator_lock_recursive(rdev,
348                                                &new_contended_rdev,
349                                                &old_contended_rdev,
350                                                ww_ctx);
351
352                 if (old_contended_rdev)
353                         regulator_unlock(old_contended_rdev);
354
355         } while (err == -EDEADLK);
356
357         ww_acquire_done(ww_ctx);
358
359         mutex_unlock(&regulator_list_mutex);
360 }
361
362 /**
363  * of_get_child_regulator - get a child regulator device node
364  * based on supply name
365  * @parent: Parent device node
366  * @prop_name: Combination regulator supply name and "-supply"
367  *
368  * Traverse all child nodes.
369  * Extract the child regulator device node corresponding to the supply name.
370  * returns the device node corresponding to the regulator if found, else
371  * returns NULL.
372  */
373 static struct device_node *of_get_child_regulator(struct device_node *parent,
374                                                   const char *prop_name)
375 {
376         struct device_node *regnode = NULL;
377         struct device_node *child = NULL;
378
379         for_each_child_of_node(parent, child) {
380                 regnode = of_parse_phandle(child, prop_name, 0);
381
382                 if (!regnode) {
383                         regnode = of_get_child_regulator(child, prop_name);
384                         if (regnode)
385                                 goto err_node_put;
386                 } else {
387                         goto err_node_put;
388                 }
389         }
390         return NULL;
391
392 err_node_put:
393         of_node_put(child);
394         return regnode;
395 }
396
397 /**
398  * of_get_regulator - get a regulator device node based on supply name
399  * @dev: Device pointer for the consumer (of regulator) device
400  * @supply: regulator supply name
401  *
402  * Extract the regulator device node corresponding to the supply name.
403  * returns the device node corresponding to the regulator if found, else
404  * returns NULL.
405  */
406 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
407 {
408         struct device_node *regnode = NULL;
409         char prop_name[32]; /* 32 is max size of property name */
410
411         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
412
413         snprintf(prop_name, 32, "%s-supply", supply);
414         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
415
416         if (!regnode) {
417                 regnode = of_get_child_regulator(dev->of_node, prop_name);
418                 if (regnode)
419                         return regnode;
420
421                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
422                                 prop_name, dev->of_node);
423                 return NULL;
424         }
425         return regnode;
426 }
427
428 /* Platform voltage constraint check */
429 int regulator_check_voltage(struct regulator_dev *rdev,
430                             int *min_uV, int *max_uV)
431 {
432         BUG_ON(*min_uV > *max_uV);
433
434         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
435                 rdev_err(rdev, "voltage operation not allowed\n");
436                 return -EPERM;
437         }
438
439         if (*max_uV > rdev->constraints->max_uV)
440                 *max_uV = rdev->constraints->max_uV;
441         if (*min_uV < rdev->constraints->min_uV)
442                 *min_uV = rdev->constraints->min_uV;
443
444         if (*min_uV > *max_uV) {
445                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
446                          *min_uV, *max_uV);
447                 return -EINVAL;
448         }
449
450         return 0;
451 }
452
453 /* return 0 if the state is valid */
454 static int regulator_check_states(suspend_state_t state)
455 {
456         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
457 }
458
459 /* Make sure we select a voltage that suits the needs of all
460  * regulator consumers
461  */
462 int regulator_check_consumers(struct regulator_dev *rdev,
463                               int *min_uV, int *max_uV,
464                               suspend_state_t state)
465 {
466         struct regulator *regulator;
467         struct regulator_voltage *voltage;
468
469         list_for_each_entry(regulator, &rdev->consumer_list, list) {
470                 voltage = &regulator->voltage[state];
471                 /*
472                  * Assume consumers that didn't say anything are OK
473                  * with anything in the constraint range.
474                  */
475                 if (!voltage->min_uV && !voltage->max_uV)
476                         continue;
477
478                 if (*max_uV > voltage->max_uV)
479                         *max_uV = voltage->max_uV;
480                 if (*min_uV < voltage->min_uV)
481                         *min_uV = voltage->min_uV;
482         }
483
484         if (*min_uV > *max_uV) {
485                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
486                         *min_uV, *max_uV);
487                 return -EINVAL;
488         }
489
490         return 0;
491 }
492
493 /* current constraint check */
494 static int regulator_check_current_limit(struct regulator_dev *rdev,
495                                         int *min_uA, int *max_uA)
496 {
497         BUG_ON(*min_uA > *max_uA);
498
499         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
500                 rdev_err(rdev, "current operation not allowed\n");
501                 return -EPERM;
502         }
503
504         if (*max_uA > rdev->constraints->max_uA)
505                 *max_uA = rdev->constraints->max_uA;
506         if (*min_uA < rdev->constraints->min_uA)
507                 *min_uA = rdev->constraints->min_uA;
508
509         if (*min_uA > *max_uA) {
510                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
511                          *min_uA, *max_uA);
512                 return -EINVAL;
513         }
514
515         return 0;
516 }
517
518 /* operating mode constraint check */
519 static int regulator_mode_constrain(struct regulator_dev *rdev,
520                                     unsigned int *mode)
521 {
522         switch (*mode) {
523         case REGULATOR_MODE_FAST:
524         case REGULATOR_MODE_NORMAL:
525         case REGULATOR_MODE_IDLE:
526         case REGULATOR_MODE_STANDBY:
527                 break;
528         default:
529                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
530                 return -EINVAL;
531         }
532
533         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
534                 rdev_err(rdev, "mode operation not allowed\n");
535                 return -EPERM;
536         }
537
538         /* The modes are bitmasks, the most power hungry modes having
539          * the lowest values. If the requested mode isn't supported
540          * try higher modes. */
541         while (*mode) {
542                 if (rdev->constraints->valid_modes_mask & *mode)
543                         return 0;
544                 *mode /= 2;
545         }
546
547         return -EINVAL;
548 }
549
550 static inline struct regulator_state *
551 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
552 {
553         if (rdev->constraints == NULL)
554                 return NULL;
555
556         switch (state) {
557         case PM_SUSPEND_STANDBY:
558                 return &rdev->constraints->state_standby;
559         case PM_SUSPEND_MEM:
560                 return &rdev->constraints->state_mem;
561         case PM_SUSPEND_MAX:
562                 return &rdev->constraints->state_disk;
563         default:
564                 return NULL;
565         }
566 }
567
568 static ssize_t regulator_uV_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572         int uV;
573
574         regulator_lock(rdev);
575         uV = regulator_get_voltage_rdev(rdev);
576         regulator_unlock(rdev);
577
578         if (uV < 0)
579                 return uV;
580         return sprintf(buf, "%d\n", uV);
581 }
582 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
583
584 static ssize_t regulator_uA_show(struct device *dev,
585                                 struct device_attribute *attr, char *buf)
586 {
587         struct regulator_dev *rdev = dev_get_drvdata(dev);
588
589         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
590 }
591 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
592
593 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
594                          char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598         return sprintf(buf, "%s\n", rdev_get_name(rdev));
599 }
600 static DEVICE_ATTR_RO(name);
601
602 static const char *regulator_opmode_to_str(int mode)
603 {
604         switch (mode) {
605         case REGULATOR_MODE_FAST:
606                 return "fast";
607         case REGULATOR_MODE_NORMAL:
608                 return "normal";
609         case REGULATOR_MODE_IDLE:
610                 return "idle";
611         case REGULATOR_MODE_STANDBY:
612                 return "standby";
613         }
614         return "unknown";
615 }
616
617 static ssize_t regulator_print_opmode(char *buf, int mode)
618 {
619         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
620 }
621
622 static ssize_t regulator_opmode_show(struct device *dev,
623                                     struct device_attribute *attr, char *buf)
624 {
625         struct regulator_dev *rdev = dev_get_drvdata(dev);
626
627         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
628 }
629 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
630
631 static ssize_t regulator_print_state(char *buf, int state)
632 {
633         if (state > 0)
634                 return sprintf(buf, "enabled\n");
635         else if (state == 0)
636                 return sprintf(buf, "disabled\n");
637         else
638                 return sprintf(buf, "unknown\n");
639 }
640
641 static ssize_t regulator_state_show(struct device *dev,
642                                    struct device_attribute *attr, char *buf)
643 {
644         struct regulator_dev *rdev = dev_get_drvdata(dev);
645         ssize_t ret;
646
647         regulator_lock(rdev);
648         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
649         regulator_unlock(rdev);
650
651         return ret;
652 }
653 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
654
655 static ssize_t regulator_status_show(struct device *dev,
656                                    struct device_attribute *attr, char *buf)
657 {
658         struct regulator_dev *rdev = dev_get_drvdata(dev);
659         int status;
660         char *label;
661
662         status = rdev->desc->ops->get_status(rdev);
663         if (status < 0)
664                 return status;
665
666         switch (status) {
667         case REGULATOR_STATUS_OFF:
668                 label = "off";
669                 break;
670         case REGULATOR_STATUS_ON:
671                 label = "on";
672                 break;
673         case REGULATOR_STATUS_ERROR:
674                 label = "error";
675                 break;
676         case REGULATOR_STATUS_FAST:
677                 label = "fast";
678                 break;
679         case REGULATOR_STATUS_NORMAL:
680                 label = "normal";
681                 break;
682         case REGULATOR_STATUS_IDLE:
683                 label = "idle";
684                 break;
685         case REGULATOR_STATUS_STANDBY:
686                 label = "standby";
687                 break;
688         case REGULATOR_STATUS_BYPASS:
689                 label = "bypass";
690                 break;
691         case REGULATOR_STATUS_UNDEFINED:
692                 label = "undefined";
693                 break;
694         default:
695                 return -ERANGE;
696         }
697
698         return sprintf(buf, "%s\n", label);
699 }
700 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
701
702 static ssize_t regulator_min_uA_show(struct device *dev,
703                                     struct device_attribute *attr, char *buf)
704 {
705         struct regulator_dev *rdev = dev_get_drvdata(dev);
706
707         if (!rdev->constraints)
708                 return sprintf(buf, "constraint not defined\n");
709
710         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
711 }
712 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
713
714 static ssize_t regulator_max_uA_show(struct device *dev,
715                                     struct device_attribute *attr, char *buf)
716 {
717         struct regulator_dev *rdev = dev_get_drvdata(dev);
718
719         if (!rdev->constraints)
720                 return sprintf(buf, "constraint not defined\n");
721
722         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
723 }
724 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
725
726 static ssize_t regulator_min_uV_show(struct device *dev,
727                                     struct device_attribute *attr, char *buf)
728 {
729         struct regulator_dev *rdev = dev_get_drvdata(dev);
730
731         if (!rdev->constraints)
732                 return sprintf(buf, "constraint not defined\n");
733
734         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
735 }
736 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
737
738 static ssize_t regulator_max_uV_show(struct device *dev,
739                                     struct device_attribute *attr, char *buf)
740 {
741         struct regulator_dev *rdev = dev_get_drvdata(dev);
742
743         if (!rdev->constraints)
744                 return sprintf(buf, "constraint not defined\n");
745
746         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
747 }
748 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
749
750 static ssize_t regulator_total_uA_show(struct device *dev,
751                                       struct device_attribute *attr, char *buf)
752 {
753         struct regulator_dev *rdev = dev_get_drvdata(dev);
754         struct regulator *regulator;
755         int uA = 0;
756
757         regulator_lock(rdev);
758         list_for_each_entry(regulator, &rdev->consumer_list, list) {
759                 if (regulator->enable_count)
760                         uA += regulator->uA_load;
761         }
762         regulator_unlock(rdev);
763         return sprintf(buf, "%d\n", uA);
764 }
765 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
766
767 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
768                               char *buf)
769 {
770         struct regulator_dev *rdev = dev_get_drvdata(dev);
771         return sprintf(buf, "%d\n", rdev->use_count);
772 }
773 static DEVICE_ATTR_RO(num_users);
774
775 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
776                          char *buf)
777 {
778         struct regulator_dev *rdev = dev_get_drvdata(dev);
779
780         switch (rdev->desc->type) {
781         case REGULATOR_VOLTAGE:
782                 return sprintf(buf, "voltage\n");
783         case REGULATOR_CURRENT:
784                 return sprintf(buf, "current\n");
785         }
786         return sprintf(buf, "unknown\n");
787 }
788 static DEVICE_ATTR_RO(type);
789
790 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
791                                 struct device_attribute *attr, char *buf)
792 {
793         struct regulator_dev *rdev = dev_get_drvdata(dev);
794
795         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
796 }
797 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
798                 regulator_suspend_mem_uV_show, NULL);
799
800 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
801                                 struct device_attribute *attr, char *buf)
802 {
803         struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
806 }
807 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
808                 regulator_suspend_disk_uV_show, NULL);
809
810 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
811                                 struct device_attribute *attr, char *buf)
812 {
813         struct regulator_dev *rdev = dev_get_drvdata(dev);
814
815         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
816 }
817 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
818                 regulator_suspend_standby_uV_show, NULL);
819
820 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
821                                 struct device_attribute *attr, char *buf)
822 {
823         struct regulator_dev *rdev = dev_get_drvdata(dev);
824
825         return regulator_print_opmode(buf,
826                 rdev->constraints->state_mem.mode);
827 }
828 static DEVICE_ATTR(suspend_mem_mode, 0444,
829                 regulator_suspend_mem_mode_show, NULL);
830
831 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
832                                 struct device_attribute *attr, char *buf)
833 {
834         struct regulator_dev *rdev = dev_get_drvdata(dev);
835
836         return regulator_print_opmode(buf,
837                 rdev->constraints->state_disk.mode);
838 }
839 static DEVICE_ATTR(suspend_disk_mode, 0444,
840                 regulator_suspend_disk_mode_show, NULL);
841
842 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
843                                 struct device_attribute *attr, char *buf)
844 {
845         struct regulator_dev *rdev = dev_get_drvdata(dev);
846
847         return regulator_print_opmode(buf,
848                 rdev->constraints->state_standby.mode);
849 }
850 static DEVICE_ATTR(suspend_standby_mode, 0444,
851                 regulator_suspend_standby_mode_show, NULL);
852
853 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
854                                    struct device_attribute *attr, char *buf)
855 {
856         struct regulator_dev *rdev = dev_get_drvdata(dev);
857
858         return regulator_print_state(buf,
859                         rdev->constraints->state_mem.enabled);
860 }
861 static DEVICE_ATTR(suspend_mem_state, 0444,
862                 regulator_suspend_mem_state_show, NULL);
863
864 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
865                                    struct device_attribute *attr, char *buf)
866 {
867         struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869         return regulator_print_state(buf,
870                         rdev->constraints->state_disk.enabled);
871 }
872 static DEVICE_ATTR(suspend_disk_state, 0444,
873                 regulator_suspend_disk_state_show, NULL);
874
875 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
876                                    struct device_attribute *attr, char *buf)
877 {
878         struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880         return regulator_print_state(buf,
881                         rdev->constraints->state_standby.enabled);
882 }
883 static DEVICE_ATTR(suspend_standby_state, 0444,
884                 regulator_suspend_standby_state_show, NULL);
885
886 static ssize_t regulator_bypass_show(struct device *dev,
887                                      struct device_attribute *attr, char *buf)
888 {
889         struct regulator_dev *rdev = dev_get_drvdata(dev);
890         const char *report;
891         bool bypass;
892         int ret;
893
894         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
895
896         if (ret != 0)
897                 report = "unknown";
898         else if (bypass)
899                 report = "enabled";
900         else
901                 report = "disabled";
902
903         return sprintf(buf, "%s\n", report);
904 }
905 static DEVICE_ATTR(bypass, 0444,
906                    regulator_bypass_show, NULL);
907
908 /* Calculate the new optimum regulator operating mode based on the new total
909  * consumer load. All locks held by caller */
910 static int drms_uA_update(struct regulator_dev *rdev)
911 {
912         struct regulator *sibling;
913         int current_uA = 0, output_uV, input_uV, err;
914         unsigned int mode;
915
916         /*
917          * first check to see if we can set modes at all, otherwise just
918          * tell the consumer everything is OK.
919          */
920         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
921                 rdev_dbg(rdev, "DRMS operation not allowed\n");
922                 return 0;
923         }
924
925         if (!rdev->desc->ops->get_optimum_mode &&
926             !rdev->desc->ops->set_load)
927                 return 0;
928
929         if (!rdev->desc->ops->set_mode &&
930             !rdev->desc->ops->set_load)
931                 return -EINVAL;
932
933         /* calc total requested load */
934         list_for_each_entry(sibling, &rdev->consumer_list, list) {
935                 if (sibling->enable_count)
936                         current_uA += sibling->uA_load;
937         }
938
939         current_uA += rdev->constraints->system_load;
940
941         if (rdev->desc->ops->set_load) {
942                 /* set the optimum mode for our new total regulator load */
943                 err = rdev->desc->ops->set_load(rdev, current_uA);
944                 if (err < 0)
945                         rdev_err(rdev, "failed to set load %d\n", current_uA);
946         } else {
947                 /* get output voltage */
948                 output_uV = regulator_get_voltage_rdev(rdev);
949                 if (output_uV <= 0) {
950                         rdev_err(rdev, "invalid output voltage found\n");
951                         return -EINVAL;
952                 }
953
954                 /* get input voltage */
955                 input_uV = 0;
956                 if (rdev->supply)
957                         input_uV = regulator_get_voltage(rdev->supply);
958                 if (input_uV <= 0)
959                         input_uV = rdev->constraints->input_uV;
960                 if (input_uV <= 0) {
961                         rdev_err(rdev, "invalid input voltage found\n");
962                         return -EINVAL;
963                 }
964
965                 /* now get the optimum mode for our new total regulator load */
966                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
967                                                          output_uV, current_uA);
968
969                 /* check the new mode is allowed */
970                 err = regulator_mode_constrain(rdev, &mode);
971                 if (err < 0) {
972                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
973                                  current_uA, input_uV, output_uV);
974                         return err;
975                 }
976
977                 err = rdev->desc->ops->set_mode(rdev, mode);
978                 if (err < 0)
979                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
980         }
981
982         return err;
983 }
984
985 static int suspend_set_state(struct regulator_dev *rdev,
986                                     suspend_state_t state)
987 {
988         int ret = 0;
989         struct regulator_state *rstate;
990
991         rstate = regulator_get_suspend_state(rdev, state);
992         if (rstate == NULL)
993                 return 0;
994
995         /* If we have no suspend mode configuration don't set anything;
996          * only warn if the driver implements set_suspend_voltage or
997          * set_suspend_mode callback.
998          */
999         if (rstate->enabled != ENABLE_IN_SUSPEND &&
1000             rstate->enabled != DISABLE_IN_SUSPEND) {
1001                 if (rdev->desc->ops->set_suspend_voltage ||
1002                     rdev->desc->ops->set_suspend_mode)
1003                         rdev_warn(rdev, "No configuration\n");
1004                 return 0;
1005         }
1006
1007         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1008                 rdev->desc->ops->set_suspend_enable)
1009                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1010         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1011                 rdev->desc->ops->set_suspend_disable)
1012                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1013         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1014                 ret = 0;
1015
1016         if (ret < 0) {
1017                 rdev_err(rdev, "failed to enabled/disable\n");
1018                 return ret;
1019         }
1020
1021         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1022                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1023                 if (ret < 0) {
1024                         rdev_err(rdev, "failed to set voltage\n");
1025                         return ret;
1026                 }
1027         }
1028
1029         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1030                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1031                 if (ret < 0) {
1032                         rdev_err(rdev, "failed to set mode\n");
1033                         return ret;
1034                 }
1035         }
1036
1037         return ret;
1038 }
1039
1040 static void print_constraints(struct regulator_dev *rdev)
1041 {
1042         struct regulation_constraints *constraints = rdev->constraints;
1043         char buf[160] = "";
1044         size_t len = sizeof(buf) - 1;
1045         int count = 0;
1046         int ret;
1047
1048         if (constraints->min_uV && constraints->max_uV) {
1049                 if (constraints->min_uV == constraints->max_uV)
1050                         count += scnprintf(buf + count, len - count, "%d mV ",
1051                                            constraints->min_uV / 1000);
1052                 else
1053                         count += scnprintf(buf + count, len - count,
1054                                            "%d <--> %d mV ",
1055                                            constraints->min_uV / 1000,
1056                                            constraints->max_uV / 1000);
1057         }
1058
1059         if (!constraints->min_uV ||
1060             constraints->min_uV != constraints->max_uV) {
1061                 ret = regulator_get_voltage_rdev(rdev);
1062                 if (ret > 0)
1063                         count += scnprintf(buf + count, len - count,
1064                                            "at %d mV ", ret / 1000);
1065         }
1066
1067         if (constraints->uV_offset)
1068                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1069                                    constraints->uV_offset / 1000);
1070
1071         if (constraints->min_uA && constraints->max_uA) {
1072                 if (constraints->min_uA == constraints->max_uA)
1073                         count += scnprintf(buf + count, len - count, "%d mA ",
1074                                            constraints->min_uA / 1000);
1075                 else
1076                         count += scnprintf(buf + count, len - count,
1077                                            "%d <--> %d mA ",
1078                                            constraints->min_uA / 1000,
1079                                            constraints->max_uA / 1000);
1080         }
1081
1082         if (!constraints->min_uA ||
1083             constraints->min_uA != constraints->max_uA) {
1084                 ret = _regulator_get_current_limit(rdev);
1085                 if (ret > 0)
1086                         count += scnprintf(buf + count, len - count,
1087                                            "at %d mA ", ret / 1000);
1088         }
1089
1090         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1091                 count += scnprintf(buf + count, len - count, "fast ");
1092         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1093                 count += scnprintf(buf + count, len - count, "normal ");
1094         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1095                 count += scnprintf(buf + count, len - count, "idle ");
1096         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1097                 count += scnprintf(buf + count, len - count, "standby");
1098
1099         if (!count)
1100                 scnprintf(buf, len, "no parameters");
1101
1102         rdev_dbg(rdev, "%s\n", buf);
1103
1104         if ((constraints->min_uV != constraints->max_uV) &&
1105             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1106                 rdev_warn(rdev,
1107                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1108 }
1109
1110 static int machine_constraints_voltage(struct regulator_dev *rdev,
1111         struct regulation_constraints *constraints)
1112 {
1113         const struct regulator_ops *ops = rdev->desc->ops;
1114         int ret;
1115
1116         /* do we need to apply the constraint voltage */
1117         if (rdev->constraints->apply_uV &&
1118             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1119                 int target_min, target_max;
1120                 int current_uV = regulator_get_voltage_rdev(rdev);
1121
1122                 if (current_uV == -ENOTRECOVERABLE) {
1123                         /* This regulator can't be read and must be initialized */
1124                         rdev_info(rdev, "Setting %d-%duV\n",
1125                                   rdev->constraints->min_uV,
1126                                   rdev->constraints->max_uV);
1127                         _regulator_do_set_voltage(rdev,
1128                                                   rdev->constraints->min_uV,
1129                                                   rdev->constraints->max_uV);
1130                         current_uV = regulator_get_voltage_rdev(rdev);
1131                 }
1132
1133                 if (current_uV < 0) {
1134                         rdev_err(rdev,
1135                                  "failed to get the current voltage(%d)\n",
1136                                  current_uV);
1137                         return current_uV;
1138                 }
1139
1140                 /*
1141                  * If we're below the minimum voltage move up to the
1142                  * minimum voltage, if we're above the maximum voltage
1143                  * then move down to the maximum.
1144                  */
1145                 target_min = current_uV;
1146                 target_max = current_uV;
1147
1148                 if (current_uV < rdev->constraints->min_uV) {
1149                         target_min = rdev->constraints->min_uV;
1150                         target_max = rdev->constraints->min_uV;
1151                 }
1152
1153                 if (current_uV > rdev->constraints->max_uV) {
1154                         target_min = rdev->constraints->max_uV;
1155                         target_max = rdev->constraints->max_uV;
1156                 }
1157
1158                 if (target_min != current_uV || target_max != current_uV) {
1159                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1160                                   current_uV, target_min, target_max);
1161                         ret = _regulator_do_set_voltage(
1162                                 rdev, target_min, target_max);
1163                         if (ret < 0) {
1164                                 rdev_err(rdev,
1165                                         "failed to apply %d-%duV constraint(%d)\n",
1166                                         target_min, target_max, ret);
1167                                 return ret;
1168                         }
1169                 }
1170         }
1171
1172         /* constrain machine-level voltage specs to fit
1173          * the actual range supported by this regulator.
1174          */
1175         if (ops->list_voltage && rdev->desc->n_voltages) {
1176                 int     count = rdev->desc->n_voltages;
1177                 int     i;
1178                 int     min_uV = INT_MAX;
1179                 int     max_uV = INT_MIN;
1180                 int     cmin = constraints->min_uV;
1181                 int     cmax = constraints->max_uV;
1182
1183                 /* it's safe to autoconfigure fixed-voltage supplies
1184                    and the constraints are used by list_voltage. */
1185                 if (count == 1 && !cmin) {
1186                         cmin = 1;
1187                         cmax = INT_MAX;
1188                         constraints->min_uV = cmin;
1189                         constraints->max_uV = cmax;
1190                 }
1191
1192                 /* voltage constraints are optional */
1193                 if ((cmin == 0) && (cmax == 0))
1194                         return 0;
1195
1196                 /* else require explicit machine-level constraints */
1197                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1198                         rdev_err(rdev, "invalid voltage constraints\n");
1199                         return -EINVAL;
1200                 }
1201
1202                 /* no need to loop voltages if range is continuous */
1203                 if (rdev->desc->continuous_voltage_range)
1204                         return 0;
1205
1206                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1207                 for (i = 0; i < count; i++) {
1208                         int     value;
1209
1210                         value = ops->list_voltage(rdev, i);
1211                         if (value <= 0)
1212                                 continue;
1213
1214                         /* maybe adjust [min_uV..max_uV] */
1215                         if (value >= cmin && value < min_uV)
1216                                 min_uV = value;
1217                         if (value <= cmax && value > max_uV)
1218                                 max_uV = value;
1219                 }
1220
1221                 /* final: [min_uV..max_uV] valid iff constraints valid */
1222                 if (max_uV < min_uV) {
1223                         rdev_err(rdev,
1224                                  "unsupportable voltage constraints %u-%uuV\n",
1225                                  min_uV, max_uV);
1226                         return -EINVAL;
1227                 }
1228
1229                 /* use regulator's subset of machine constraints */
1230                 if (constraints->min_uV < min_uV) {
1231                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1232                                  constraints->min_uV, min_uV);
1233                         constraints->min_uV = min_uV;
1234                 }
1235                 if (constraints->max_uV > max_uV) {
1236                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1237                                  constraints->max_uV, max_uV);
1238                         constraints->max_uV = max_uV;
1239                 }
1240         }
1241
1242         return 0;
1243 }
1244
1245 static int machine_constraints_current(struct regulator_dev *rdev,
1246         struct regulation_constraints *constraints)
1247 {
1248         const struct regulator_ops *ops = rdev->desc->ops;
1249         int ret;
1250
1251         if (!constraints->min_uA && !constraints->max_uA)
1252                 return 0;
1253
1254         if (constraints->min_uA > constraints->max_uA) {
1255                 rdev_err(rdev, "Invalid current constraints\n");
1256                 return -EINVAL;
1257         }
1258
1259         if (!ops->set_current_limit || !ops->get_current_limit) {
1260                 rdev_warn(rdev, "Operation of current configuration missing\n");
1261                 return 0;
1262         }
1263
1264         /* Set regulator current in constraints range */
1265         ret = ops->set_current_limit(rdev, constraints->min_uA,
1266                         constraints->max_uA);
1267         if (ret < 0) {
1268                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1269                 return ret;
1270         }
1271
1272         return 0;
1273 }
1274
1275 static int _regulator_do_enable(struct regulator_dev *rdev);
1276
1277 /**
1278  * set_machine_constraints - sets regulator constraints
1279  * @rdev: regulator source
1280  * @constraints: constraints to apply
1281  *
1282  * Allows platform initialisation code to define and constrain
1283  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1284  * Constraints *must* be set by platform code in order for some
1285  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1286  * set_mode.
1287  */
1288 static int set_machine_constraints(struct regulator_dev *rdev,
1289         const struct regulation_constraints *constraints)
1290 {
1291         int ret = 0;
1292         const struct regulator_ops *ops = rdev->desc->ops;
1293
1294         if (constraints)
1295                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1296                                             GFP_KERNEL);
1297         else
1298                 rdev->constraints = kzalloc(sizeof(*constraints),
1299                                             GFP_KERNEL);
1300         if (!rdev->constraints)
1301                 return -ENOMEM;
1302
1303         ret = machine_constraints_voltage(rdev, rdev->constraints);
1304         if (ret != 0)
1305                 return ret;
1306
1307         ret = machine_constraints_current(rdev, rdev->constraints);
1308         if (ret != 0)
1309                 return ret;
1310
1311         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1312                 ret = ops->set_input_current_limit(rdev,
1313                                                    rdev->constraints->ilim_uA);
1314                 if (ret < 0) {
1315                         rdev_err(rdev, "failed to set input limit\n");
1316                         return ret;
1317                 }
1318         }
1319
1320         /* do we need to setup our suspend state */
1321         if (rdev->constraints->initial_state) {
1322                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1323                 if (ret < 0) {
1324                         rdev_err(rdev, "failed to set suspend state\n");
1325                         return ret;
1326                 }
1327         }
1328
1329         if (rdev->constraints->initial_mode) {
1330                 if (!ops->set_mode) {
1331                         rdev_err(rdev, "no set_mode operation\n");
1332                         return -EINVAL;
1333                 }
1334
1335                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1336                 if (ret < 0) {
1337                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1338                         return ret;
1339                 }
1340         } else if (rdev->constraints->system_load) {
1341                 /*
1342                  * We'll only apply the initial system load if an
1343                  * initial mode wasn't specified.
1344                  */
1345                 drms_uA_update(rdev);
1346         }
1347
1348         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1349                 && ops->set_ramp_delay) {
1350                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1351                 if (ret < 0) {
1352                         rdev_err(rdev, "failed to set ramp_delay\n");
1353                         return ret;
1354                 }
1355         }
1356
1357         if (rdev->constraints->pull_down && ops->set_pull_down) {
1358                 ret = ops->set_pull_down(rdev);
1359                 if (ret < 0) {
1360                         rdev_err(rdev, "failed to set pull down\n");
1361                         return ret;
1362                 }
1363         }
1364
1365         if (rdev->constraints->soft_start && ops->set_soft_start) {
1366                 ret = ops->set_soft_start(rdev);
1367                 if (ret < 0) {
1368                         rdev_err(rdev, "failed to set soft start\n");
1369                         return ret;
1370                 }
1371         }
1372
1373         if (rdev->constraints->over_current_protection
1374                 && ops->set_over_current_protection) {
1375                 ret = ops->set_over_current_protection(rdev);
1376                 if (ret < 0) {
1377                         rdev_err(rdev, "failed to set over current protection\n");
1378                         return ret;
1379                 }
1380         }
1381
1382         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1383                 bool ad_state = (rdev->constraints->active_discharge ==
1384                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1385
1386                 ret = ops->set_active_discharge(rdev, ad_state);
1387                 if (ret < 0) {
1388                         rdev_err(rdev, "failed to set active discharge\n");
1389                         return ret;
1390                 }
1391         }
1392
1393         /* If the constraints say the regulator should be on at this point
1394          * and we have control then make sure it is enabled.
1395          */
1396         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1397                 if (rdev->supply) {
1398                         ret = regulator_enable(rdev->supply);
1399                         if (ret < 0) {
1400                                 _regulator_put(rdev->supply);
1401                                 rdev->supply = NULL;
1402                                 return ret;
1403                         }
1404                 }
1405
1406                 ret = _regulator_do_enable(rdev);
1407                 if (ret < 0 && ret != -EINVAL) {
1408                         rdev_err(rdev, "failed to enable\n");
1409                         return ret;
1410                 }
1411
1412                 if (rdev->constraints->always_on)
1413                         rdev->use_count++;
1414         }
1415
1416         print_constraints(rdev);
1417         return 0;
1418 }
1419
1420 /**
1421  * set_supply - set regulator supply regulator
1422  * @rdev: regulator name
1423  * @supply_rdev: supply regulator name
1424  *
1425  * Called by platform initialisation code to set the supply regulator for this
1426  * regulator. This ensures that a regulators supply will also be enabled by the
1427  * core if it's child is enabled.
1428  */
1429 static int set_supply(struct regulator_dev *rdev,
1430                       struct regulator_dev *supply_rdev)
1431 {
1432         int err;
1433
1434         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1435
1436         if (!try_module_get(supply_rdev->owner))
1437                 return -ENODEV;
1438
1439         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1440         if (rdev->supply == NULL) {
1441                 err = -ENOMEM;
1442                 return err;
1443         }
1444         supply_rdev->open_count++;
1445
1446         return 0;
1447 }
1448
1449 /**
1450  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1451  * @rdev:         regulator source
1452  * @consumer_dev_name: dev_name() string for device supply applies to
1453  * @supply:       symbolic name for supply
1454  *
1455  * Allows platform initialisation code to map physical regulator
1456  * sources to symbolic names for supplies for use by devices.  Devices
1457  * should use these symbolic names to request regulators, avoiding the
1458  * need to provide board-specific regulator names as platform data.
1459  */
1460 static int set_consumer_device_supply(struct regulator_dev *rdev,
1461                                       const char *consumer_dev_name,
1462                                       const char *supply)
1463 {
1464         struct regulator_map *node;
1465         int has_dev;
1466
1467         if (supply == NULL)
1468                 return -EINVAL;
1469
1470         if (consumer_dev_name != NULL)
1471                 has_dev = 1;
1472         else
1473                 has_dev = 0;
1474
1475         list_for_each_entry(node, &regulator_map_list, list) {
1476                 if (node->dev_name && consumer_dev_name) {
1477                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1478                                 continue;
1479                 } else if (node->dev_name || consumer_dev_name) {
1480                         continue;
1481                 }
1482
1483                 if (strcmp(node->supply, supply) != 0)
1484                         continue;
1485
1486                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1487                          consumer_dev_name,
1488                          dev_name(&node->regulator->dev),
1489                          node->regulator->desc->name,
1490                          supply,
1491                          dev_name(&rdev->dev), rdev_get_name(rdev));
1492                 return -EBUSY;
1493         }
1494
1495         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1496         if (node == NULL)
1497                 return -ENOMEM;
1498
1499         node->regulator = rdev;
1500         node->supply = supply;
1501
1502         if (has_dev) {
1503                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1504                 if (node->dev_name == NULL) {
1505                         kfree(node);
1506                         return -ENOMEM;
1507                 }
1508         }
1509
1510         list_add(&node->list, &regulator_map_list);
1511         return 0;
1512 }
1513
1514 static void unset_regulator_supplies(struct regulator_dev *rdev)
1515 {
1516         struct regulator_map *node, *n;
1517
1518         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1519                 if (rdev == node->regulator) {
1520                         list_del(&node->list);
1521                         kfree(node->dev_name);
1522                         kfree(node);
1523                 }
1524         }
1525 }
1526
1527 #ifdef CONFIG_DEBUG_FS
1528 static ssize_t constraint_flags_read_file(struct file *file,
1529                                           char __user *user_buf,
1530                                           size_t count, loff_t *ppos)
1531 {
1532         const struct regulator *regulator = file->private_data;
1533         const struct regulation_constraints *c = regulator->rdev->constraints;
1534         char *buf;
1535         ssize_t ret;
1536
1537         if (!c)
1538                 return 0;
1539
1540         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1541         if (!buf)
1542                 return -ENOMEM;
1543
1544         ret = snprintf(buf, PAGE_SIZE,
1545                         "always_on: %u\n"
1546                         "boot_on: %u\n"
1547                         "apply_uV: %u\n"
1548                         "ramp_disable: %u\n"
1549                         "soft_start: %u\n"
1550                         "pull_down: %u\n"
1551                         "over_current_protection: %u\n",
1552                         c->always_on,
1553                         c->boot_on,
1554                         c->apply_uV,
1555                         c->ramp_disable,
1556                         c->soft_start,
1557                         c->pull_down,
1558                         c->over_current_protection);
1559
1560         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1561         kfree(buf);
1562
1563         return ret;
1564 }
1565
1566 #endif
1567
1568 static const struct file_operations constraint_flags_fops = {
1569 #ifdef CONFIG_DEBUG_FS
1570         .open = simple_open,
1571         .read = constraint_flags_read_file,
1572         .llseek = default_llseek,
1573 #endif
1574 };
1575
1576 #define REG_STR_SIZE    64
1577
1578 static struct regulator *create_regulator(struct regulator_dev *rdev,
1579                                           struct device *dev,
1580                                           const char *supply_name)
1581 {
1582         struct regulator *regulator;
1583         char buf[REG_STR_SIZE];
1584         int err, size;
1585
1586         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1587         if (regulator == NULL)
1588                 return NULL;
1589
1590         regulator_lock(rdev);
1591         regulator->rdev = rdev;
1592         list_add(&regulator->list, &rdev->consumer_list);
1593
1594         if (dev) {
1595                 regulator->dev = dev;
1596
1597                 /* Add a link to the device sysfs entry */
1598                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1599                                 dev->kobj.name, supply_name);
1600                 if (size >= REG_STR_SIZE)
1601                         goto overflow_err;
1602
1603                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1604                 if (regulator->supply_name == NULL)
1605                         goto overflow_err;
1606
1607                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1608                                         buf);
1609                 if (err) {
1610                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1611                                   dev->kobj.name, err);
1612                         /* non-fatal */
1613                 }
1614         } else {
1615                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1616                 if (regulator->supply_name == NULL)
1617                         goto overflow_err;
1618         }
1619
1620         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1621                                                 rdev->debugfs);
1622         if (!regulator->debugfs) {
1623                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1624         } else {
1625                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1626                                    &regulator->uA_load);
1627                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1628                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1629                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1630                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1631                 debugfs_create_file("constraint_flags", 0444,
1632                                     regulator->debugfs, regulator,
1633                                     &constraint_flags_fops);
1634         }
1635
1636         /*
1637          * Check now if the regulator is an always on regulator - if
1638          * it is then we don't need to do nearly so much work for
1639          * enable/disable calls.
1640          */
1641         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1642             _regulator_is_enabled(rdev))
1643                 regulator->always_on = true;
1644
1645         regulator_unlock(rdev);
1646         return regulator;
1647 overflow_err:
1648         list_del(&regulator->list);
1649         kfree(regulator);
1650         regulator_unlock(rdev);
1651         return NULL;
1652 }
1653
1654 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1655 {
1656         if (rdev->constraints && rdev->constraints->enable_time)
1657                 return rdev->constraints->enable_time;
1658         if (rdev->desc->ops->enable_time)
1659                 return rdev->desc->ops->enable_time(rdev);
1660         return rdev->desc->enable_time;
1661 }
1662
1663 static struct regulator_supply_alias *regulator_find_supply_alias(
1664                 struct device *dev, const char *supply)
1665 {
1666         struct regulator_supply_alias *map;
1667
1668         list_for_each_entry(map, &regulator_supply_alias_list, list)
1669                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1670                         return map;
1671
1672         return NULL;
1673 }
1674
1675 static void regulator_supply_alias(struct device **dev, const char **supply)
1676 {
1677         struct regulator_supply_alias *map;
1678
1679         map = regulator_find_supply_alias(*dev, *supply);
1680         if (map) {
1681                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1682                                 *supply, map->alias_supply,
1683                                 dev_name(map->alias_dev));
1684                 *dev = map->alias_dev;
1685                 *supply = map->alias_supply;
1686         }
1687 }
1688
1689 static int regulator_match(struct device *dev, const void *data)
1690 {
1691         struct regulator_dev *r = dev_to_rdev(dev);
1692
1693         return strcmp(rdev_get_name(r), data) == 0;
1694 }
1695
1696 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1697 {
1698         struct device *dev;
1699
1700         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1701
1702         return dev ? dev_to_rdev(dev) : NULL;
1703 }
1704
1705 /**
1706  * regulator_dev_lookup - lookup a regulator device.
1707  * @dev: device for regulator "consumer".
1708  * @supply: Supply name or regulator ID.
1709  *
1710  * If successful, returns a struct regulator_dev that corresponds to the name
1711  * @supply and with the embedded struct device refcount incremented by one.
1712  * The refcount must be dropped by calling put_device().
1713  * On failure one of the following ERR-PTR-encoded values is returned:
1714  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1715  * in the future.
1716  */
1717 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1718                                                   const char *supply)
1719 {
1720         struct regulator_dev *r = NULL;
1721         struct device_node *node;
1722         struct regulator_map *map;
1723         const char *devname = NULL;
1724
1725         regulator_supply_alias(&dev, &supply);
1726
1727         /* first do a dt based lookup */
1728         if (dev && dev->of_node) {
1729                 node = of_get_regulator(dev, supply);
1730                 if (node) {
1731                         r = of_find_regulator_by_node(node);
1732                         if (r)
1733                                 return r;
1734
1735                         /*
1736                          * We have a node, but there is no device.
1737                          * assume it has not registered yet.
1738                          */
1739                         return ERR_PTR(-EPROBE_DEFER);
1740                 }
1741         }
1742
1743         /* if not found, try doing it non-dt way */
1744         if (dev)
1745                 devname = dev_name(dev);
1746
1747         mutex_lock(&regulator_list_mutex);
1748         list_for_each_entry(map, &regulator_map_list, list) {
1749                 /* If the mapping has a device set up it must match */
1750                 if (map->dev_name &&
1751                     (!devname || strcmp(map->dev_name, devname)))
1752                         continue;
1753
1754                 if (strcmp(map->supply, supply) == 0 &&
1755                     get_device(&map->regulator->dev)) {
1756                         r = map->regulator;
1757                         break;
1758                 }
1759         }
1760         mutex_unlock(&regulator_list_mutex);
1761
1762         if (r)
1763                 return r;
1764
1765         r = regulator_lookup_by_name(supply);
1766         if (r)
1767                 return r;
1768
1769         return ERR_PTR(-ENODEV);
1770 }
1771
1772 static int regulator_resolve_supply(struct regulator_dev *rdev)
1773 {
1774         struct regulator_dev *r;
1775         struct device *dev = rdev->dev.parent;
1776         int ret;
1777
1778         /* No supply to resolve? */
1779         if (!rdev->supply_name)
1780                 return 0;
1781
1782         /* Supply already resolved? */
1783         if (rdev->supply)
1784                 return 0;
1785
1786         r = regulator_dev_lookup(dev, rdev->supply_name);
1787         if (IS_ERR(r)) {
1788                 ret = PTR_ERR(r);
1789
1790                 /* Did the lookup explicitly defer for us? */
1791                 if (ret == -EPROBE_DEFER)
1792                         return ret;
1793
1794                 if (have_full_constraints()) {
1795                         r = dummy_regulator_rdev;
1796                         get_device(&r->dev);
1797                 } else {
1798                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1799                                 rdev->supply_name, rdev->desc->name);
1800                         return -EPROBE_DEFER;
1801                 }
1802         }
1803
1804         /*
1805          * If the supply's parent device is not the same as the
1806          * regulator's parent device, then ensure the parent device
1807          * is bound before we resolve the supply, in case the parent
1808          * device get probe deferred and unregisters the supply.
1809          */
1810         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1811                 if (!device_is_bound(r->dev.parent)) {
1812                         put_device(&r->dev);
1813                         return -EPROBE_DEFER;
1814                 }
1815         }
1816
1817         /* Recursively resolve the supply of the supply */
1818         ret = regulator_resolve_supply(r);
1819         if (ret < 0) {
1820                 put_device(&r->dev);
1821                 return ret;
1822         }
1823
1824         ret = set_supply(rdev, r);
1825         if (ret < 0) {
1826                 put_device(&r->dev);
1827                 return ret;
1828         }
1829
1830         /*
1831          * In set_machine_constraints() we may have turned this regulator on
1832          * but we couldn't propagate to the supply if it hadn't been resolved
1833          * yet.  Do it now.
1834          */
1835         if (rdev->use_count) {
1836                 ret = regulator_enable(rdev->supply);
1837                 if (ret < 0) {
1838                         _regulator_put(rdev->supply);
1839                         rdev->supply = NULL;
1840                         return ret;
1841                 }
1842         }
1843
1844         return 0;
1845 }
1846
1847 /* Internal regulator request function */
1848 struct regulator *_regulator_get(struct device *dev, const char *id,
1849                                  enum regulator_get_type get_type)
1850 {
1851         struct regulator_dev *rdev;
1852         struct regulator *regulator;
1853         struct device_link *link;
1854         int ret;
1855
1856         if (get_type >= MAX_GET_TYPE) {
1857                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1858                 return ERR_PTR(-EINVAL);
1859         }
1860
1861         if (id == NULL) {
1862                 pr_err("get() with no identifier\n");
1863                 return ERR_PTR(-EINVAL);
1864         }
1865
1866         rdev = regulator_dev_lookup(dev, id);
1867         if (IS_ERR(rdev)) {
1868                 ret = PTR_ERR(rdev);
1869
1870                 /*
1871                  * If regulator_dev_lookup() fails with error other
1872                  * than -ENODEV our job here is done, we simply return it.
1873                  */
1874                 if (ret != -ENODEV)
1875                         return ERR_PTR(ret);
1876
1877                 if (!have_full_constraints()) {
1878                         dev_warn(dev,
1879                                  "incomplete constraints, dummy supplies not allowed\n");
1880                         return ERR_PTR(-ENODEV);
1881                 }
1882
1883                 switch (get_type) {
1884                 case NORMAL_GET:
1885                         /*
1886                          * Assume that a regulator is physically present and
1887                          * enabled, even if it isn't hooked up, and just
1888                          * provide a dummy.
1889                          */
1890                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1891                         rdev = dummy_regulator_rdev;
1892                         get_device(&rdev->dev);
1893                         break;
1894
1895                 case EXCLUSIVE_GET:
1896                         dev_warn(dev,
1897                                  "dummy supplies not allowed for exclusive requests\n");
1898                         fallthrough;
1899
1900                 default:
1901                         return ERR_PTR(-ENODEV);
1902                 }
1903         }
1904
1905         if (rdev->exclusive) {
1906                 regulator = ERR_PTR(-EPERM);
1907                 put_device(&rdev->dev);
1908                 return regulator;
1909         }
1910
1911         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1912                 regulator = ERR_PTR(-EBUSY);
1913                 put_device(&rdev->dev);
1914                 return regulator;
1915         }
1916
1917         mutex_lock(&regulator_list_mutex);
1918         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1919         mutex_unlock(&regulator_list_mutex);
1920
1921         if (ret != 0) {
1922                 regulator = ERR_PTR(-EPROBE_DEFER);
1923                 put_device(&rdev->dev);
1924                 return regulator;
1925         }
1926
1927         ret = regulator_resolve_supply(rdev);
1928         if (ret < 0) {
1929                 regulator = ERR_PTR(ret);
1930                 put_device(&rdev->dev);
1931                 return regulator;
1932         }
1933
1934         if (!try_module_get(rdev->owner)) {
1935                 regulator = ERR_PTR(-EPROBE_DEFER);
1936                 put_device(&rdev->dev);
1937                 return regulator;
1938         }
1939
1940         regulator = create_regulator(rdev, dev, id);
1941         if (regulator == NULL) {
1942                 regulator = ERR_PTR(-ENOMEM);
1943                 module_put(rdev->owner);
1944                 put_device(&rdev->dev);
1945                 return regulator;
1946         }
1947
1948         rdev->open_count++;
1949         if (get_type == EXCLUSIVE_GET) {
1950                 rdev->exclusive = 1;
1951
1952                 ret = _regulator_is_enabled(rdev);
1953                 if (ret > 0)
1954                         rdev->use_count = 1;
1955                 else
1956                         rdev->use_count = 0;
1957         }
1958
1959         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1960         if (!IS_ERR_OR_NULL(link))
1961                 regulator->device_link = true;
1962
1963         return regulator;
1964 }
1965
1966 /**
1967  * regulator_get - lookup and obtain a reference to a regulator.
1968  * @dev: device for regulator "consumer"
1969  * @id: Supply name or regulator ID.
1970  *
1971  * Returns a struct regulator corresponding to the regulator producer,
1972  * or IS_ERR() condition containing errno.
1973  *
1974  * Use of supply names configured via regulator_set_device_supply() is
1975  * strongly encouraged.  It is recommended that the supply name used
1976  * should match the name used for the supply and/or the relevant
1977  * device pins in the datasheet.
1978  */
1979 struct regulator *regulator_get(struct device *dev, const char *id)
1980 {
1981         return _regulator_get(dev, id, NORMAL_GET);
1982 }
1983 EXPORT_SYMBOL_GPL(regulator_get);
1984
1985 /**
1986  * regulator_get_exclusive - obtain exclusive access to a regulator.
1987  * @dev: device for regulator "consumer"
1988  * @id: Supply name or regulator ID.
1989  *
1990  * Returns a struct regulator corresponding to the regulator producer,
1991  * or IS_ERR() condition containing errno.  Other consumers will be
1992  * unable to obtain this regulator while this reference is held and the
1993  * use count for the regulator will be initialised to reflect the current
1994  * state of the regulator.
1995  *
1996  * This is intended for use by consumers which cannot tolerate shared
1997  * use of the regulator such as those which need to force the
1998  * regulator off for correct operation of the hardware they are
1999  * controlling.
2000  *
2001  * Use of supply names configured via regulator_set_device_supply() is
2002  * strongly encouraged.  It is recommended that the supply name used
2003  * should match the name used for the supply and/or the relevant
2004  * device pins in the datasheet.
2005  */
2006 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2007 {
2008         return _regulator_get(dev, id, EXCLUSIVE_GET);
2009 }
2010 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2011
2012 /**
2013  * regulator_get_optional - obtain optional access to a regulator.
2014  * @dev: device for regulator "consumer"
2015  * @id: Supply name or regulator ID.
2016  *
2017  * Returns a struct regulator corresponding to the regulator producer,
2018  * or IS_ERR() condition containing errno.
2019  *
2020  * This is intended for use by consumers for devices which can have
2021  * some supplies unconnected in normal use, such as some MMC devices.
2022  * It can allow the regulator core to provide stub supplies for other
2023  * supplies requested using normal regulator_get() calls without
2024  * disrupting the operation of drivers that can handle absent
2025  * supplies.
2026  *
2027  * Use of supply names configured via regulator_set_device_supply() is
2028  * strongly encouraged.  It is recommended that the supply name used
2029  * should match the name used for the supply and/or the relevant
2030  * device pins in the datasheet.
2031  */
2032 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2033 {
2034         return _regulator_get(dev, id, OPTIONAL_GET);
2035 }
2036 EXPORT_SYMBOL_GPL(regulator_get_optional);
2037
2038 static void destroy_regulator(struct regulator *regulator)
2039 {
2040         struct regulator_dev *rdev = regulator->rdev;
2041
2042         debugfs_remove_recursive(regulator->debugfs);
2043
2044         if (regulator->dev) {
2045                 if (regulator->device_link)
2046                         device_link_remove(regulator->dev, &rdev->dev);
2047
2048                 /* remove any sysfs entries */
2049                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2050         }
2051
2052         regulator_lock(rdev);
2053         list_del(&regulator->list);
2054
2055         rdev->open_count--;
2056         rdev->exclusive = 0;
2057         regulator_unlock(rdev);
2058
2059         kfree_const(regulator->supply_name);
2060         kfree(regulator);
2061 }
2062
2063 /* regulator_list_mutex lock held by regulator_put() */
2064 static void _regulator_put(struct regulator *regulator)
2065 {
2066         struct regulator_dev *rdev;
2067
2068         if (IS_ERR_OR_NULL(regulator))
2069                 return;
2070
2071         lockdep_assert_held_once(&regulator_list_mutex);
2072
2073         /* Docs say you must disable before calling regulator_put() */
2074         WARN_ON(regulator->enable_count);
2075
2076         rdev = regulator->rdev;
2077
2078         destroy_regulator(regulator);
2079
2080         module_put(rdev->owner);
2081         put_device(&rdev->dev);
2082 }
2083
2084 /**
2085  * regulator_put - "free" the regulator source
2086  * @regulator: regulator source
2087  *
2088  * Note: drivers must ensure that all regulator_enable calls made on this
2089  * regulator source are balanced by regulator_disable calls prior to calling
2090  * this function.
2091  */
2092 void regulator_put(struct regulator *regulator)
2093 {
2094         mutex_lock(&regulator_list_mutex);
2095         _regulator_put(regulator);
2096         mutex_unlock(&regulator_list_mutex);
2097 }
2098 EXPORT_SYMBOL_GPL(regulator_put);
2099
2100 /**
2101  * regulator_register_supply_alias - Provide device alias for supply lookup
2102  *
2103  * @dev: device that will be given as the regulator "consumer"
2104  * @id: Supply name or regulator ID
2105  * @alias_dev: device that should be used to lookup the supply
2106  * @alias_id: Supply name or regulator ID that should be used to lookup the
2107  * supply
2108  *
2109  * All lookups for id on dev will instead be conducted for alias_id on
2110  * alias_dev.
2111  */
2112 int regulator_register_supply_alias(struct device *dev, const char *id,
2113                                     struct device *alias_dev,
2114                                     const char *alias_id)
2115 {
2116         struct regulator_supply_alias *map;
2117
2118         map = regulator_find_supply_alias(dev, id);
2119         if (map)
2120                 return -EEXIST;
2121
2122         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2123         if (!map)
2124                 return -ENOMEM;
2125
2126         map->src_dev = dev;
2127         map->src_supply = id;
2128         map->alias_dev = alias_dev;
2129         map->alias_supply = alias_id;
2130
2131         list_add(&map->list, &regulator_supply_alias_list);
2132
2133         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2134                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2135
2136         return 0;
2137 }
2138 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2139
2140 /**
2141  * regulator_unregister_supply_alias - Remove device alias
2142  *
2143  * @dev: device that will be given as the regulator "consumer"
2144  * @id: Supply name or regulator ID
2145  *
2146  * Remove a lookup alias if one exists for id on dev.
2147  */
2148 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2149 {
2150         struct regulator_supply_alias *map;
2151
2152         map = regulator_find_supply_alias(dev, id);
2153         if (map) {
2154                 list_del(&map->list);
2155                 kfree(map);
2156         }
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2159
2160 /**
2161  * regulator_bulk_register_supply_alias - register multiple aliases
2162  *
2163  * @dev: device that will be given as the regulator "consumer"
2164  * @id: List of supply names or regulator IDs
2165  * @alias_dev: device that should be used to lookup the supply
2166  * @alias_id: List of supply names or regulator IDs that should be used to
2167  * lookup the supply
2168  * @num_id: Number of aliases to register
2169  *
2170  * @return 0 on success, an errno on failure.
2171  *
2172  * This helper function allows drivers to register several supply
2173  * aliases in one operation.  If any of the aliases cannot be
2174  * registered any aliases that were registered will be removed
2175  * before returning to the caller.
2176  */
2177 int regulator_bulk_register_supply_alias(struct device *dev,
2178                                          const char *const *id,
2179                                          struct device *alias_dev,
2180                                          const char *const *alias_id,
2181                                          int num_id)
2182 {
2183         int i;
2184         int ret;
2185
2186         for (i = 0; i < num_id; ++i) {
2187                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2188                                                       alias_id[i]);
2189                 if (ret < 0)
2190                         goto err;
2191         }
2192
2193         return 0;
2194
2195 err:
2196         dev_err(dev,
2197                 "Failed to create supply alias %s,%s -> %s,%s\n",
2198                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2199
2200         while (--i >= 0)
2201                 regulator_unregister_supply_alias(dev, id[i]);
2202
2203         return ret;
2204 }
2205 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2206
2207 /**
2208  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2209  *
2210  * @dev: device that will be given as the regulator "consumer"
2211  * @id: List of supply names or regulator IDs
2212  * @num_id: Number of aliases to unregister
2213  *
2214  * This helper function allows drivers to unregister several supply
2215  * aliases in one operation.
2216  */
2217 void regulator_bulk_unregister_supply_alias(struct device *dev,
2218                                             const char *const *id,
2219                                             int num_id)
2220 {
2221         int i;
2222
2223         for (i = 0; i < num_id; ++i)
2224                 regulator_unregister_supply_alias(dev, id[i]);
2225 }
2226 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2227
2228
2229 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2230 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2231                                 const struct regulator_config *config)
2232 {
2233         struct regulator_enable_gpio *pin;
2234         struct gpio_desc *gpiod;
2235
2236         gpiod = config->ena_gpiod;
2237
2238         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2239                 if (pin->gpiod == gpiod) {
2240                         rdev_dbg(rdev, "GPIO is already used\n");
2241                         goto update_ena_gpio_to_rdev;
2242                 }
2243         }
2244
2245         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2246         if (pin == NULL)
2247                 return -ENOMEM;
2248
2249         pin->gpiod = gpiod;
2250         list_add(&pin->list, &regulator_ena_gpio_list);
2251
2252 update_ena_gpio_to_rdev:
2253         pin->request_count++;
2254         rdev->ena_pin = pin;
2255         return 0;
2256 }
2257
2258 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2259 {
2260         struct regulator_enable_gpio *pin, *n;
2261
2262         if (!rdev->ena_pin)
2263                 return;
2264
2265         /* Free the GPIO only in case of no use */
2266         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2267                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2268                         if (pin->request_count <= 1) {
2269                                 pin->request_count = 0;
2270                                 gpiod_put(pin->gpiod);
2271                                 list_del(&pin->list);
2272                                 kfree(pin);
2273                                 rdev->ena_pin = NULL;
2274                                 return;
2275                         } else {
2276                                 pin->request_count--;
2277                         }
2278                 }
2279         }
2280 }
2281
2282 /**
2283  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2284  * @rdev: regulator_dev structure
2285  * @enable: enable GPIO at initial use?
2286  *
2287  * GPIO is enabled in case of initial use. (enable_count is 0)
2288  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2289  */
2290 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2291 {
2292         struct regulator_enable_gpio *pin = rdev->ena_pin;
2293
2294         if (!pin)
2295                 return -EINVAL;
2296
2297         if (enable) {
2298                 /* Enable GPIO at initial use */
2299                 if (pin->enable_count == 0)
2300                         gpiod_set_value_cansleep(pin->gpiod, 1);
2301
2302                 pin->enable_count++;
2303         } else {
2304                 if (pin->enable_count > 1) {
2305                         pin->enable_count--;
2306                         return 0;
2307                 }
2308
2309                 /* Disable GPIO if not used */
2310                 if (pin->enable_count <= 1) {
2311                         gpiod_set_value_cansleep(pin->gpiod, 0);
2312                         pin->enable_count = 0;
2313                 }
2314         }
2315
2316         return 0;
2317 }
2318
2319 /**
2320  * _regulator_enable_delay - a delay helper function
2321  * @delay: time to delay in microseconds
2322  *
2323  * Delay for the requested amount of time as per the guidelines in:
2324  *
2325  *     Documentation/timers/timers-howto.rst
2326  *
2327  * The assumption here is that regulators will never be enabled in
2328  * atomic context and therefore sleeping functions can be used.
2329  */
2330 static void _regulator_enable_delay(unsigned int delay)
2331 {
2332         unsigned int ms = delay / 1000;
2333         unsigned int us = delay % 1000;
2334
2335         if (ms > 0) {
2336                 /*
2337                  * For small enough values, handle super-millisecond
2338                  * delays in the usleep_range() call below.
2339                  */
2340                 if (ms < 20)
2341                         us += ms * 1000;
2342                 else
2343                         msleep(ms);
2344         }
2345
2346         /*
2347          * Give the scheduler some room to coalesce with any other
2348          * wakeup sources. For delays shorter than 10 us, don't even
2349          * bother setting up high-resolution timers and just busy-
2350          * loop.
2351          */
2352         if (us >= 10)
2353                 usleep_range(us, us + 100);
2354         else
2355                 udelay(us);
2356 }
2357
2358 /**
2359  * _regulator_check_status_enabled
2360  *
2361  * A helper function to check if the regulator status can be interpreted
2362  * as 'regulator is enabled'.
2363  * @rdev: the regulator device to check
2364  *
2365  * Return:
2366  * * 1                  - if status shows regulator is in enabled state
2367  * * 0                  - if not enabled state
2368  * * Error Value        - as received from ops->get_status()
2369  */
2370 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2371 {
2372         int ret = rdev->desc->ops->get_status(rdev);
2373
2374         if (ret < 0) {
2375                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2376                 return ret;
2377         }
2378
2379         switch (ret) {
2380         case REGULATOR_STATUS_OFF:
2381         case REGULATOR_STATUS_ERROR:
2382         case REGULATOR_STATUS_UNDEFINED:
2383                 return 0;
2384         default:
2385                 return 1;
2386         }
2387 }
2388
2389 static int _regulator_do_enable(struct regulator_dev *rdev)
2390 {
2391         int ret, delay;
2392
2393         /* Query before enabling in case configuration dependent.  */
2394         ret = _regulator_get_enable_time(rdev);
2395         if (ret >= 0) {
2396                 delay = ret;
2397         } else {
2398                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2399                 delay = 0;
2400         }
2401
2402         trace_regulator_enable(rdev_get_name(rdev));
2403
2404         if (rdev->desc->off_on_delay) {
2405                 /* if needed, keep a distance of off_on_delay from last time
2406                  * this regulator was disabled.
2407                  */
2408                 unsigned long start_jiffy = jiffies;
2409                 unsigned long intended, max_delay, remaining;
2410
2411                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2412                 intended = rdev->last_off_jiffy + max_delay;
2413
2414                 if (time_before(start_jiffy, intended)) {
2415                         /* calc remaining jiffies to deal with one-time
2416                          * timer wrapping.
2417                          * in case of multiple timer wrapping, either it can be
2418                          * detected by out-of-range remaining, or it cannot be
2419                          * detected and we get a penalty of
2420                          * _regulator_enable_delay().
2421                          */
2422                         remaining = intended - start_jiffy;
2423                         if (remaining <= max_delay)
2424                                 _regulator_enable_delay(
2425                                                 jiffies_to_usecs(remaining));
2426                 }
2427         }
2428
2429         if (rdev->ena_pin) {
2430                 if (!rdev->ena_gpio_state) {
2431                         ret = regulator_ena_gpio_ctrl(rdev, true);
2432                         if (ret < 0)
2433                                 return ret;
2434                         rdev->ena_gpio_state = 1;
2435                 }
2436         } else if (rdev->desc->ops->enable) {
2437                 ret = rdev->desc->ops->enable(rdev);
2438                 if (ret < 0)
2439                         return ret;
2440         } else {
2441                 return -EINVAL;
2442         }
2443
2444         /* Allow the regulator to ramp; it would be useful to extend
2445          * this for bulk operations so that the regulators can ramp
2446          * together.  */
2447         trace_regulator_enable_delay(rdev_get_name(rdev));
2448
2449         /* If poll_enabled_time is set, poll upto the delay calculated
2450          * above, delaying poll_enabled_time uS to check if the regulator
2451          * actually got enabled.
2452          * If the regulator isn't enabled after enable_delay has
2453          * expired, return -ETIMEDOUT.
2454          */
2455         if (rdev->desc->poll_enabled_time) {
2456                 unsigned int time_remaining = delay;
2457
2458                 while (time_remaining > 0) {
2459                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2460
2461                         if (rdev->desc->ops->get_status) {
2462                                 ret = _regulator_check_status_enabled(rdev);
2463                                 if (ret < 0)
2464                                         return ret;
2465                                 else if (ret)
2466                                         break;
2467                         } else if (rdev->desc->ops->is_enabled(rdev))
2468                                 break;
2469
2470                         time_remaining -= rdev->desc->poll_enabled_time;
2471                 }
2472
2473                 if (time_remaining <= 0) {
2474                         rdev_err(rdev, "Enabled check timed out\n");
2475                         return -ETIMEDOUT;
2476                 }
2477         } else {
2478                 _regulator_enable_delay(delay);
2479         }
2480
2481         trace_regulator_enable_complete(rdev_get_name(rdev));
2482
2483         return 0;
2484 }
2485
2486 /**
2487  * _regulator_handle_consumer_enable - handle that a consumer enabled
2488  * @regulator: regulator source
2489  *
2490  * Some things on a regulator consumer (like the contribution towards total
2491  * load on the regulator) only have an effect when the consumer wants the
2492  * regulator enabled.  Explained in example with two consumers of the same
2493  * regulator:
2494  *   consumer A: set_load(100);       => total load = 0
2495  *   consumer A: regulator_enable();  => total load = 100
2496  *   consumer B: set_load(1000);      => total load = 100
2497  *   consumer B: regulator_enable();  => total load = 1100
2498  *   consumer A: regulator_disable(); => total_load = 1000
2499  *
2500  * This function (together with _regulator_handle_consumer_disable) is
2501  * responsible for keeping track of the refcount for a given regulator consumer
2502  * and applying / unapplying these things.
2503  *
2504  * Returns 0 upon no error; -error upon error.
2505  */
2506 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2507 {
2508         struct regulator_dev *rdev = regulator->rdev;
2509
2510         lockdep_assert_held_once(&rdev->mutex.base);
2511
2512         regulator->enable_count++;
2513         if (regulator->uA_load && regulator->enable_count == 1)
2514                 return drms_uA_update(rdev);
2515
2516         return 0;
2517 }
2518
2519 /**
2520  * _regulator_handle_consumer_disable - handle that a consumer disabled
2521  * @regulator: regulator source
2522  *
2523  * The opposite of _regulator_handle_consumer_enable().
2524  *
2525  * Returns 0 upon no error; -error upon error.
2526  */
2527 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2528 {
2529         struct regulator_dev *rdev = regulator->rdev;
2530
2531         lockdep_assert_held_once(&rdev->mutex.base);
2532
2533         if (!regulator->enable_count) {
2534                 rdev_err(rdev, "Underflow of regulator enable count\n");
2535                 return -EINVAL;
2536         }
2537
2538         regulator->enable_count--;
2539         if (regulator->uA_load && regulator->enable_count == 0)
2540                 return drms_uA_update(rdev);
2541
2542         return 0;
2543 }
2544
2545 /* locks held by regulator_enable() */
2546 static int _regulator_enable(struct regulator *regulator)
2547 {
2548         struct regulator_dev *rdev = regulator->rdev;
2549         int ret;
2550
2551         lockdep_assert_held_once(&rdev->mutex.base);
2552
2553         if (rdev->use_count == 0 && rdev->supply) {
2554                 ret = _regulator_enable(rdev->supply);
2555                 if (ret < 0)
2556                         return ret;
2557         }
2558
2559         /* balance only if there are regulators coupled */
2560         if (rdev->coupling_desc.n_coupled > 1) {
2561                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2562                 if (ret < 0)
2563                         goto err_disable_supply;
2564         }
2565
2566         ret = _regulator_handle_consumer_enable(regulator);
2567         if (ret < 0)
2568                 goto err_disable_supply;
2569
2570         if (rdev->use_count == 0) {
2571                 /* The regulator may on if it's not switchable or left on */
2572                 ret = _regulator_is_enabled(rdev);
2573                 if (ret == -EINVAL || ret == 0) {
2574                         if (!regulator_ops_is_valid(rdev,
2575                                         REGULATOR_CHANGE_STATUS)) {
2576                                 ret = -EPERM;
2577                                 goto err_consumer_disable;
2578                         }
2579
2580                         ret = _regulator_do_enable(rdev);
2581                         if (ret < 0)
2582                                 goto err_consumer_disable;
2583
2584                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2585                                              NULL);
2586                 } else if (ret < 0) {
2587                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2588                         goto err_consumer_disable;
2589                 }
2590                 /* Fallthrough on positive return values - already enabled */
2591         }
2592
2593         rdev->use_count++;
2594
2595         return 0;
2596
2597 err_consumer_disable:
2598         _regulator_handle_consumer_disable(regulator);
2599
2600 err_disable_supply:
2601         if (rdev->use_count == 0 && rdev->supply)
2602                 _regulator_disable(rdev->supply);
2603
2604         return ret;
2605 }
2606
2607 /**
2608  * regulator_enable - enable regulator output
2609  * @regulator: regulator source
2610  *
2611  * Request that the regulator be enabled with the regulator output at
2612  * the predefined voltage or current value.  Calls to regulator_enable()
2613  * must be balanced with calls to regulator_disable().
2614  *
2615  * NOTE: the output value can be set by other drivers, boot loader or may be
2616  * hardwired in the regulator.
2617  */
2618 int regulator_enable(struct regulator *regulator)
2619 {
2620         struct regulator_dev *rdev = regulator->rdev;
2621         struct ww_acquire_ctx ww_ctx;
2622         int ret;
2623
2624         regulator_lock_dependent(rdev, &ww_ctx);
2625         ret = _regulator_enable(regulator);
2626         regulator_unlock_dependent(rdev, &ww_ctx);
2627
2628         return ret;
2629 }
2630 EXPORT_SYMBOL_GPL(regulator_enable);
2631
2632 static int _regulator_do_disable(struct regulator_dev *rdev)
2633 {
2634         int ret;
2635
2636         trace_regulator_disable(rdev_get_name(rdev));
2637
2638         if (rdev->ena_pin) {
2639                 if (rdev->ena_gpio_state) {
2640                         ret = regulator_ena_gpio_ctrl(rdev, false);
2641                         if (ret < 0)
2642                                 return ret;
2643                         rdev->ena_gpio_state = 0;
2644                 }
2645
2646         } else if (rdev->desc->ops->disable) {
2647                 ret = rdev->desc->ops->disable(rdev);
2648                 if (ret != 0)
2649                         return ret;
2650         }
2651
2652         /* cares about last_off_jiffy only if off_on_delay is required by
2653          * device.
2654          */
2655         if (rdev->desc->off_on_delay)
2656                 rdev->last_off_jiffy = jiffies;
2657
2658         trace_regulator_disable_complete(rdev_get_name(rdev));
2659
2660         return 0;
2661 }
2662
2663 /* locks held by regulator_disable() */
2664 static int _regulator_disable(struct regulator *regulator)
2665 {
2666         struct regulator_dev *rdev = regulator->rdev;
2667         int ret = 0;
2668
2669         lockdep_assert_held_once(&rdev->mutex.base);
2670
2671         if (WARN(rdev->use_count <= 0,
2672                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2673                 return -EIO;
2674
2675         /* are we the last user and permitted to disable ? */
2676         if (rdev->use_count == 1 &&
2677             (rdev->constraints && !rdev->constraints->always_on)) {
2678
2679                 /* we are last user */
2680                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2681                         ret = _notifier_call_chain(rdev,
2682                                                    REGULATOR_EVENT_PRE_DISABLE,
2683                                                    NULL);
2684                         if (ret & NOTIFY_STOP_MASK)
2685                                 return -EINVAL;
2686
2687                         ret = _regulator_do_disable(rdev);
2688                         if (ret < 0) {
2689                                 rdev_err(rdev, "failed to disable\n");
2690                                 _notifier_call_chain(rdev,
2691                                                 REGULATOR_EVENT_ABORT_DISABLE,
2692                                                 NULL);
2693                                 return ret;
2694                         }
2695                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2696                                         NULL);
2697                 }
2698
2699                 rdev->use_count = 0;
2700         } else if (rdev->use_count > 1) {
2701                 rdev->use_count--;
2702         }
2703
2704         if (ret == 0)
2705                 ret = _regulator_handle_consumer_disable(regulator);
2706
2707         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2708                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2709
2710         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2711                 ret = _regulator_disable(rdev->supply);
2712
2713         return ret;
2714 }
2715
2716 /**
2717  * regulator_disable - disable regulator output
2718  * @regulator: regulator source
2719  *
2720  * Disable the regulator output voltage or current.  Calls to
2721  * regulator_enable() must be balanced with calls to
2722  * regulator_disable().
2723  *
2724  * NOTE: this will only disable the regulator output if no other consumer
2725  * devices have it enabled, the regulator device supports disabling and
2726  * machine constraints permit this operation.
2727  */
2728 int regulator_disable(struct regulator *regulator)
2729 {
2730         struct regulator_dev *rdev = regulator->rdev;
2731         struct ww_acquire_ctx ww_ctx;
2732         int ret;
2733
2734         regulator_lock_dependent(rdev, &ww_ctx);
2735         ret = _regulator_disable(regulator);
2736         regulator_unlock_dependent(rdev, &ww_ctx);
2737
2738         return ret;
2739 }
2740 EXPORT_SYMBOL_GPL(regulator_disable);
2741
2742 /* locks held by regulator_force_disable() */
2743 static int _regulator_force_disable(struct regulator_dev *rdev)
2744 {
2745         int ret = 0;
2746
2747         lockdep_assert_held_once(&rdev->mutex.base);
2748
2749         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2750                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2751         if (ret & NOTIFY_STOP_MASK)
2752                 return -EINVAL;
2753
2754         ret = _regulator_do_disable(rdev);
2755         if (ret < 0) {
2756                 rdev_err(rdev, "failed to force disable\n");
2757                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2758                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2759                 return ret;
2760         }
2761
2762         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2763                         REGULATOR_EVENT_DISABLE, NULL);
2764
2765         return 0;
2766 }
2767
2768 /**
2769  * regulator_force_disable - force disable regulator output
2770  * @regulator: regulator source
2771  *
2772  * Forcibly disable the regulator output voltage or current.
2773  * NOTE: this *will* disable the regulator output even if other consumer
2774  * devices have it enabled. This should be used for situations when device
2775  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2776  */
2777 int regulator_force_disable(struct regulator *regulator)
2778 {
2779         struct regulator_dev *rdev = regulator->rdev;
2780         struct ww_acquire_ctx ww_ctx;
2781         int ret;
2782
2783         regulator_lock_dependent(rdev, &ww_ctx);
2784
2785         ret = _regulator_force_disable(regulator->rdev);
2786
2787         if (rdev->coupling_desc.n_coupled > 1)
2788                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2789
2790         if (regulator->uA_load) {
2791                 regulator->uA_load = 0;
2792                 ret = drms_uA_update(rdev);
2793         }
2794
2795         if (rdev->use_count != 0 && rdev->supply)
2796                 _regulator_disable(rdev->supply);
2797
2798         regulator_unlock_dependent(rdev, &ww_ctx);
2799
2800         return ret;
2801 }
2802 EXPORT_SYMBOL_GPL(regulator_force_disable);
2803
2804 static void regulator_disable_work(struct work_struct *work)
2805 {
2806         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2807                                                   disable_work.work);
2808         struct ww_acquire_ctx ww_ctx;
2809         int count, i, ret;
2810         struct regulator *regulator;
2811         int total_count = 0;
2812
2813         regulator_lock_dependent(rdev, &ww_ctx);
2814
2815         /*
2816          * Workqueue functions queue the new work instance while the previous
2817          * work instance is being processed. Cancel the queued work instance
2818          * as the work instance under processing does the job of the queued
2819          * work instance.
2820          */
2821         cancel_delayed_work(&rdev->disable_work);
2822
2823         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2824                 count = regulator->deferred_disables;
2825
2826                 if (!count)
2827                         continue;
2828
2829                 total_count += count;
2830                 regulator->deferred_disables = 0;
2831
2832                 for (i = 0; i < count; i++) {
2833                         ret = _regulator_disable(regulator);
2834                         if (ret != 0)
2835                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2836                 }
2837         }
2838         WARN_ON(!total_count);
2839
2840         if (rdev->coupling_desc.n_coupled > 1)
2841                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2842
2843         regulator_unlock_dependent(rdev, &ww_ctx);
2844 }
2845
2846 /**
2847  * regulator_disable_deferred - disable regulator output with delay
2848  * @regulator: regulator source
2849  * @ms: milliseconds until the regulator is disabled
2850  *
2851  * Execute regulator_disable() on the regulator after a delay.  This
2852  * is intended for use with devices that require some time to quiesce.
2853  *
2854  * NOTE: this will only disable the regulator output if no other consumer
2855  * devices have it enabled, the regulator device supports disabling and
2856  * machine constraints permit this operation.
2857  */
2858 int regulator_disable_deferred(struct regulator *regulator, int ms)
2859 {
2860         struct regulator_dev *rdev = regulator->rdev;
2861
2862         if (!ms)
2863                 return regulator_disable(regulator);
2864
2865         regulator_lock(rdev);
2866         regulator->deferred_disables++;
2867         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2868                          msecs_to_jiffies(ms));
2869         regulator_unlock(rdev);
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2874
2875 static int _regulator_is_enabled(struct regulator_dev *rdev)
2876 {
2877         /* A GPIO control always takes precedence */
2878         if (rdev->ena_pin)
2879                 return rdev->ena_gpio_state;
2880
2881         /* If we don't know then assume that the regulator is always on */
2882         if (!rdev->desc->ops->is_enabled)
2883                 return 1;
2884
2885         return rdev->desc->ops->is_enabled(rdev);
2886 }
2887
2888 static int _regulator_list_voltage(struct regulator_dev *rdev,
2889                                    unsigned selector, int lock)
2890 {
2891         const struct regulator_ops *ops = rdev->desc->ops;
2892         int ret;
2893
2894         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2895                 return rdev->desc->fixed_uV;
2896
2897         if (ops->list_voltage) {
2898                 if (selector >= rdev->desc->n_voltages)
2899                         return -EINVAL;
2900                 if (lock)
2901                         regulator_lock(rdev);
2902                 ret = ops->list_voltage(rdev, selector);
2903                 if (lock)
2904                         regulator_unlock(rdev);
2905         } else if (rdev->is_switch && rdev->supply) {
2906                 ret = _regulator_list_voltage(rdev->supply->rdev,
2907                                               selector, lock);
2908         } else {
2909                 return -EINVAL;
2910         }
2911
2912         if (ret > 0) {
2913                 if (ret < rdev->constraints->min_uV)
2914                         ret = 0;
2915                 else if (ret > rdev->constraints->max_uV)
2916                         ret = 0;
2917         }
2918
2919         return ret;
2920 }
2921
2922 /**
2923  * regulator_is_enabled - is the regulator output enabled
2924  * @regulator: regulator source
2925  *
2926  * Returns positive if the regulator driver backing the source/client
2927  * has requested that the device be enabled, zero if it hasn't, else a
2928  * negative errno code.
2929  *
2930  * Note that the device backing this regulator handle can have multiple
2931  * users, so it might be enabled even if regulator_enable() was never
2932  * called for this particular source.
2933  */
2934 int regulator_is_enabled(struct regulator *regulator)
2935 {
2936         int ret;
2937
2938         if (regulator->always_on)
2939                 return 1;
2940
2941         regulator_lock(regulator->rdev);
2942         ret = _regulator_is_enabled(regulator->rdev);
2943         regulator_unlock(regulator->rdev);
2944
2945         return ret;
2946 }
2947 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2948
2949 /**
2950  * regulator_count_voltages - count regulator_list_voltage() selectors
2951  * @regulator: regulator source
2952  *
2953  * Returns number of selectors, or negative errno.  Selectors are
2954  * numbered starting at zero, and typically correspond to bitfields
2955  * in hardware registers.
2956  */
2957 int regulator_count_voltages(struct regulator *regulator)
2958 {
2959         struct regulator_dev    *rdev = regulator->rdev;
2960
2961         if (rdev->desc->n_voltages)
2962                 return rdev->desc->n_voltages;
2963
2964         if (!rdev->is_switch || !rdev->supply)
2965                 return -EINVAL;
2966
2967         return regulator_count_voltages(rdev->supply);
2968 }
2969 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2970
2971 /**
2972  * regulator_list_voltage - enumerate supported voltages
2973  * @regulator: regulator source
2974  * @selector: identify voltage to list
2975  * Context: can sleep
2976  *
2977  * Returns a voltage that can be passed to @regulator_set_voltage(),
2978  * zero if this selector code can't be used on this system, or a
2979  * negative errno.
2980  */
2981 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2982 {
2983         return _regulator_list_voltage(regulator->rdev, selector, 1);
2984 }
2985 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2986
2987 /**
2988  * regulator_get_regmap - get the regulator's register map
2989  * @regulator: regulator source
2990  *
2991  * Returns the register map for the given regulator, or an ERR_PTR value
2992  * if the regulator doesn't use regmap.
2993  */
2994 struct regmap *regulator_get_regmap(struct regulator *regulator)
2995 {
2996         struct regmap *map = regulator->rdev->regmap;
2997
2998         return map ? map : ERR_PTR(-EOPNOTSUPP);
2999 }
3000
3001 /**
3002  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3003  * @regulator: regulator source
3004  * @vsel_reg: voltage selector register, output parameter
3005  * @vsel_mask: mask for voltage selector bitfield, output parameter
3006  *
3007  * Returns the hardware register offset and bitmask used for setting the
3008  * regulator voltage. This might be useful when configuring voltage-scaling
3009  * hardware or firmware that can make I2C requests behind the kernel's back,
3010  * for example.
3011  *
3012  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3013  * and 0 is returned, otherwise a negative errno is returned.
3014  */
3015 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3016                                          unsigned *vsel_reg,
3017                                          unsigned *vsel_mask)
3018 {
3019         struct regulator_dev *rdev = regulator->rdev;
3020         const struct regulator_ops *ops = rdev->desc->ops;
3021
3022         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3023                 return -EOPNOTSUPP;
3024
3025         *vsel_reg = rdev->desc->vsel_reg;
3026         *vsel_mask = rdev->desc->vsel_mask;
3027
3028          return 0;
3029 }
3030 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3031
3032 /**
3033  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3034  * @regulator: regulator source
3035  * @selector: identify voltage to list
3036  *
3037  * Converts the selector to a hardware-specific voltage selector that can be
3038  * directly written to the regulator registers. The address of the voltage
3039  * register can be determined by calling @regulator_get_hardware_vsel_register.
3040  *
3041  * On error a negative errno is returned.
3042  */
3043 int regulator_list_hardware_vsel(struct regulator *regulator,
3044                                  unsigned selector)
3045 {
3046         struct regulator_dev *rdev = regulator->rdev;
3047         const struct regulator_ops *ops = rdev->desc->ops;
3048
3049         if (selector >= rdev->desc->n_voltages)
3050                 return -EINVAL;
3051         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3052                 return -EOPNOTSUPP;
3053
3054         return selector;
3055 }
3056 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3057
3058 /**
3059  * regulator_get_linear_step - return the voltage step size between VSEL values
3060  * @regulator: regulator source
3061  *
3062  * Returns the voltage step size between VSEL values for linear
3063  * regulators, or return 0 if the regulator isn't a linear regulator.
3064  */
3065 unsigned int regulator_get_linear_step(struct regulator *regulator)
3066 {
3067         struct regulator_dev *rdev = regulator->rdev;
3068
3069         return rdev->desc->uV_step;
3070 }
3071 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3072
3073 /**
3074  * regulator_is_supported_voltage - check if a voltage range can be supported
3075  *
3076  * @regulator: Regulator to check.
3077  * @min_uV: Minimum required voltage in uV.
3078  * @max_uV: Maximum required voltage in uV.
3079  *
3080  * Returns a boolean.
3081  */
3082 int regulator_is_supported_voltage(struct regulator *regulator,
3083                                    int min_uV, int max_uV)
3084 {
3085         struct regulator_dev *rdev = regulator->rdev;
3086         int i, voltages, ret;
3087
3088         /* If we can't change voltage check the current voltage */
3089         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3090                 ret = regulator_get_voltage(regulator);
3091                 if (ret >= 0)
3092                         return min_uV <= ret && ret <= max_uV;
3093                 else
3094                         return ret;
3095         }
3096
3097         /* Any voltage within constrains range is fine? */
3098         if (rdev->desc->continuous_voltage_range)
3099                 return min_uV >= rdev->constraints->min_uV &&
3100                                 max_uV <= rdev->constraints->max_uV;
3101
3102         ret = regulator_count_voltages(regulator);
3103         if (ret < 0)
3104                 return 0;
3105         voltages = ret;
3106
3107         for (i = 0; i < voltages; i++) {
3108                 ret = regulator_list_voltage(regulator, i);
3109
3110                 if (ret >= min_uV && ret <= max_uV)
3111                         return 1;
3112         }
3113
3114         return 0;
3115 }
3116 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3117
3118 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3119                                  int max_uV)
3120 {
3121         const struct regulator_desc *desc = rdev->desc;
3122
3123         if (desc->ops->map_voltage)
3124                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3125
3126         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3127                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3128
3129         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3130                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3131
3132         if (desc->ops->list_voltage ==
3133                 regulator_list_voltage_pickable_linear_range)
3134                 return regulator_map_voltage_pickable_linear_range(rdev,
3135                                                         min_uV, max_uV);
3136
3137         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3138 }
3139
3140 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3141                                        int min_uV, int max_uV,
3142                                        unsigned *selector)
3143 {
3144         struct pre_voltage_change_data data;
3145         int ret;
3146
3147         data.old_uV = regulator_get_voltage_rdev(rdev);
3148         data.min_uV = min_uV;
3149         data.max_uV = max_uV;
3150         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3151                                    &data);
3152         if (ret & NOTIFY_STOP_MASK)
3153                 return -EINVAL;
3154
3155         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3156         if (ret >= 0)
3157                 return ret;
3158
3159         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3160                              (void *)data.old_uV);
3161
3162         return ret;
3163 }
3164
3165 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3166                                            int uV, unsigned selector)
3167 {
3168         struct pre_voltage_change_data data;
3169         int ret;
3170
3171         data.old_uV = regulator_get_voltage_rdev(rdev);
3172         data.min_uV = uV;
3173         data.max_uV = uV;
3174         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3175                                    &data);
3176         if (ret & NOTIFY_STOP_MASK)
3177                 return -EINVAL;
3178
3179         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3180         if (ret >= 0)
3181                 return ret;
3182
3183         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3184                              (void *)data.old_uV);
3185
3186         return ret;
3187 }
3188
3189 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3190                                            int uV, int new_selector)
3191 {
3192         const struct regulator_ops *ops = rdev->desc->ops;
3193         int diff, old_sel, curr_sel, ret;
3194
3195         /* Stepping is only needed if the regulator is enabled. */
3196         if (!_regulator_is_enabled(rdev))
3197                 goto final_set;
3198
3199         if (!ops->get_voltage_sel)
3200                 return -EINVAL;
3201
3202         old_sel = ops->get_voltage_sel(rdev);
3203         if (old_sel < 0)
3204                 return old_sel;
3205
3206         diff = new_selector - old_sel;
3207         if (diff == 0)
3208                 return 0; /* No change needed. */
3209
3210         if (diff > 0) {
3211                 /* Stepping up. */
3212                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3213                      curr_sel < new_selector;
3214                      curr_sel += rdev->desc->vsel_step) {
3215                         /*
3216                          * Call the callback directly instead of using
3217                          * _regulator_call_set_voltage_sel() as we don't
3218                          * want to notify anyone yet. Same in the branch
3219                          * below.
3220                          */
3221                         ret = ops->set_voltage_sel(rdev, curr_sel);
3222                         if (ret)
3223                                 goto try_revert;
3224                 }
3225         } else {
3226                 /* Stepping down. */
3227                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3228                      curr_sel > new_selector;
3229                      curr_sel -= rdev->desc->vsel_step) {
3230                         ret = ops->set_voltage_sel(rdev, curr_sel);
3231                         if (ret)
3232                                 goto try_revert;
3233                 }
3234         }
3235
3236 final_set:
3237         /* The final selector will trigger the notifiers. */
3238         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3239
3240 try_revert:
3241         /*
3242          * At least try to return to the previous voltage if setting a new
3243          * one failed.
3244          */
3245         (void)ops->set_voltage_sel(rdev, old_sel);
3246         return ret;
3247 }
3248
3249 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3250                                        int old_uV, int new_uV)
3251 {
3252         unsigned int ramp_delay = 0;
3253
3254         if (rdev->constraints->ramp_delay)
3255                 ramp_delay = rdev->constraints->ramp_delay;
3256         else if (rdev->desc->ramp_delay)
3257                 ramp_delay = rdev->desc->ramp_delay;
3258         else if (rdev->constraints->settling_time)
3259                 return rdev->constraints->settling_time;
3260         else if (rdev->constraints->settling_time_up &&
3261                  (new_uV > old_uV))
3262                 return rdev->constraints->settling_time_up;
3263         else if (rdev->constraints->settling_time_down &&
3264                  (new_uV < old_uV))
3265                 return rdev->constraints->settling_time_down;
3266
3267         if (ramp_delay == 0) {
3268                 rdev_dbg(rdev, "ramp_delay not set\n");
3269                 return 0;
3270         }
3271
3272         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3273 }
3274
3275 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3276                                      int min_uV, int max_uV)
3277 {
3278         int ret;
3279         int delay = 0;
3280         int best_val = 0;
3281         unsigned int selector;
3282         int old_selector = -1;
3283         const struct regulator_ops *ops = rdev->desc->ops;
3284         int old_uV = regulator_get_voltage_rdev(rdev);
3285
3286         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3287
3288         min_uV += rdev->constraints->uV_offset;
3289         max_uV += rdev->constraints->uV_offset;
3290
3291         /*
3292          * If we can't obtain the old selector there is not enough
3293          * info to call set_voltage_time_sel().
3294          */
3295         if (_regulator_is_enabled(rdev) &&
3296             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3297                 old_selector = ops->get_voltage_sel(rdev);
3298                 if (old_selector < 0)
3299                         return old_selector;
3300         }
3301
3302         if (ops->set_voltage) {
3303                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3304                                                   &selector);
3305
3306                 if (ret >= 0) {
3307                         if (ops->list_voltage)
3308                                 best_val = ops->list_voltage(rdev,
3309                                                              selector);
3310                         else
3311                                 best_val = regulator_get_voltage_rdev(rdev);
3312                 }
3313
3314         } else if (ops->set_voltage_sel) {
3315                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3316                 if (ret >= 0) {
3317                         best_val = ops->list_voltage(rdev, ret);
3318                         if (min_uV <= best_val && max_uV >= best_val) {
3319                                 selector = ret;
3320                                 if (old_selector == selector)
3321                                         ret = 0;
3322                                 else if (rdev->desc->vsel_step)
3323                                         ret = _regulator_set_voltage_sel_step(
3324                                                 rdev, best_val, selector);
3325                                 else
3326                                         ret = _regulator_call_set_voltage_sel(
3327                                                 rdev, best_val, selector);
3328                         } else {
3329                                 ret = -EINVAL;
3330                         }
3331                 }
3332         } else {
3333                 ret = -EINVAL;
3334         }
3335
3336         if (ret)
3337                 goto out;
3338
3339         if (ops->set_voltage_time_sel) {
3340                 /*
3341                  * Call set_voltage_time_sel if successfully obtained
3342                  * old_selector
3343                  */
3344                 if (old_selector >= 0 && old_selector != selector)
3345                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3346                                                           selector);
3347         } else {
3348                 if (old_uV != best_val) {
3349                         if (ops->set_voltage_time)
3350                                 delay = ops->set_voltage_time(rdev, old_uV,
3351                                                               best_val);
3352                         else
3353                                 delay = _regulator_set_voltage_time(rdev,
3354                                                                     old_uV,
3355                                                                     best_val);
3356                 }
3357         }
3358
3359         if (delay < 0) {
3360                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3361                 delay = 0;
3362         }
3363
3364         /* Insert any necessary delays */
3365         if (delay >= 1000) {
3366                 mdelay(delay / 1000);
3367                 udelay(delay % 1000);
3368         } else if (delay) {
3369                 udelay(delay);
3370         }
3371
3372         if (best_val >= 0) {
3373                 unsigned long data = best_val;
3374
3375                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3376                                      (void *)data);
3377         }
3378
3379 out:
3380         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3381
3382         return ret;
3383 }
3384
3385 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3386                                   int min_uV, int max_uV, suspend_state_t state)
3387 {
3388         struct regulator_state *rstate;
3389         int uV, sel;
3390
3391         rstate = regulator_get_suspend_state(rdev, state);
3392         if (rstate == NULL)
3393                 return -EINVAL;
3394
3395         if (min_uV < rstate->min_uV)
3396                 min_uV = rstate->min_uV;
3397         if (max_uV > rstate->max_uV)
3398                 max_uV = rstate->max_uV;
3399
3400         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3401         if (sel < 0)
3402                 return sel;
3403
3404         uV = rdev->desc->ops->list_voltage(rdev, sel);
3405         if (uV >= min_uV && uV <= max_uV)
3406                 rstate->uV = uV;
3407
3408         return 0;
3409 }
3410
3411 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3412                                           int min_uV, int max_uV,
3413                                           suspend_state_t state)
3414 {
3415         struct regulator_dev *rdev = regulator->rdev;
3416         struct regulator_voltage *voltage = &regulator->voltage[state];
3417         int ret = 0;
3418         int old_min_uV, old_max_uV;
3419         int current_uV;
3420
3421         /* If we're setting the same range as last time the change
3422          * should be a noop (some cpufreq implementations use the same
3423          * voltage for multiple frequencies, for example).
3424          */
3425         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3426                 goto out;
3427
3428         /* If we're trying to set a range that overlaps the current voltage,
3429          * return successfully even though the regulator does not support
3430          * changing the voltage.
3431          */
3432         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3433                 current_uV = regulator_get_voltage_rdev(rdev);
3434                 if (min_uV <= current_uV && current_uV <= max_uV) {
3435                         voltage->min_uV = min_uV;
3436                         voltage->max_uV = max_uV;
3437                         goto out;
3438                 }
3439         }
3440
3441         /* sanity check */
3442         if (!rdev->desc->ops->set_voltage &&
3443             !rdev->desc->ops->set_voltage_sel) {
3444                 ret = -EINVAL;
3445                 goto out;
3446         }
3447
3448         /* constraints check */
3449         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3450         if (ret < 0)
3451                 goto out;
3452
3453         /* restore original values in case of error */
3454         old_min_uV = voltage->min_uV;
3455         old_max_uV = voltage->max_uV;
3456         voltage->min_uV = min_uV;
3457         voltage->max_uV = max_uV;
3458
3459         /* for not coupled regulators this will just set the voltage */
3460         ret = regulator_balance_voltage(rdev, state);
3461         if (ret < 0) {
3462                 voltage->min_uV = old_min_uV;
3463                 voltage->max_uV = old_max_uV;
3464         }
3465
3466 out:
3467         return ret;
3468 }
3469
3470 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3471                                int max_uV, suspend_state_t state)
3472 {
3473         int best_supply_uV = 0;
3474         int supply_change_uV = 0;
3475         int ret;
3476
3477         if (rdev->supply &&
3478             regulator_ops_is_valid(rdev->supply->rdev,
3479                                    REGULATOR_CHANGE_VOLTAGE) &&
3480             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3481                                            rdev->desc->ops->get_voltage_sel))) {
3482                 int current_supply_uV;
3483                 int selector;
3484
3485                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3486                 if (selector < 0) {
3487                         ret = selector;
3488                         goto out;
3489                 }
3490
3491                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3492                 if (best_supply_uV < 0) {
3493                         ret = best_supply_uV;
3494                         goto out;
3495                 }
3496
3497                 best_supply_uV += rdev->desc->min_dropout_uV;
3498
3499                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3500                 if (current_supply_uV < 0) {
3501                         ret = current_supply_uV;
3502                         goto out;
3503                 }
3504
3505                 supply_change_uV = best_supply_uV - current_supply_uV;
3506         }
3507
3508         if (supply_change_uV > 0) {
3509                 ret = regulator_set_voltage_unlocked(rdev->supply,
3510                                 best_supply_uV, INT_MAX, state);
3511                 if (ret) {
3512                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3513                                         ret);
3514                         goto out;
3515                 }
3516         }
3517
3518         if (state == PM_SUSPEND_ON)
3519                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3520         else
3521                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3522                                                         max_uV, state);
3523         if (ret < 0)
3524                 goto out;
3525
3526         if (supply_change_uV < 0) {
3527                 ret = regulator_set_voltage_unlocked(rdev->supply,
3528                                 best_supply_uV, INT_MAX, state);
3529                 if (ret)
3530                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3531                                         ret);
3532                 /* No need to fail here */
3533                 ret = 0;
3534         }
3535
3536 out:
3537         return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3540
3541 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3542                                         int *current_uV, int *min_uV)
3543 {
3544         struct regulation_constraints *constraints = rdev->constraints;
3545
3546         /* Limit voltage change only if necessary */
3547         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3548                 return 1;
3549
3550         if (*current_uV < 0) {
3551                 *current_uV = regulator_get_voltage_rdev(rdev);
3552
3553                 if (*current_uV < 0)
3554                         return *current_uV;
3555         }
3556
3557         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3558                 return 1;
3559
3560         /* Clamp target voltage within the given step */
3561         if (*current_uV < *min_uV)
3562                 *min_uV = min(*current_uV + constraints->max_uV_step,
3563                               *min_uV);
3564         else
3565                 *min_uV = max(*current_uV - constraints->max_uV_step,
3566                               *min_uV);
3567
3568         return 0;
3569 }
3570
3571 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3572                                          int *current_uV,
3573                                          int *min_uV, int *max_uV,
3574                                          suspend_state_t state,
3575                                          int n_coupled)
3576 {
3577         struct coupling_desc *c_desc = &rdev->coupling_desc;
3578         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3579         struct regulation_constraints *constraints = rdev->constraints;
3580         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3581         int max_current_uV = 0, min_current_uV = INT_MAX;
3582         int highest_min_uV = 0, target_uV, possible_uV;
3583         int i, ret, max_spread;
3584         bool done;
3585
3586         *current_uV = -1;
3587
3588         /*
3589          * If there are no coupled regulators, simply set the voltage
3590          * demanded by consumers.
3591          */
3592         if (n_coupled == 1) {
3593                 /*
3594                  * If consumers don't provide any demands, set voltage
3595                  * to min_uV
3596                  */
3597                 desired_min_uV = constraints->min_uV;
3598                 desired_max_uV = constraints->max_uV;
3599
3600                 ret = regulator_check_consumers(rdev,
3601                                                 &desired_min_uV,
3602                                                 &desired_max_uV, state);
3603                 if (ret < 0)
3604                         return ret;
3605
3606                 possible_uV = desired_min_uV;
3607                 done = true;
3608
3609                 goto finish;
3610         }
3611
3612         /* Find highest min desired voltage */
3613         for (i = 0; i < n_coupled; i++) {
3614                 int tmp_min = 0;
3615                 int tmp_max = INT_MAX;
3616
3617                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3618
3619                 ret = regulator_check_consumers(c_rdevs[i],
3620                                                 &tmp_min,
3621                                                 &tmp_max, state);
3622                 if (ret < 0)
3623                         return ret;
3624
3625                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3626                 if (ret < 0)
3627                         return ret;
3628
3629                 highest_min_uV = max(highest_min_uV, tmp_min);
3630
3631                 if (i == 0) {
3632                         desired_min_uV = tmp_min;
3633                         desired_max_uV = tmp_max;
3634                 }
3635         }
3636
3637         max_spread = constraints->max_spread[0];
3638
3639         /*
3640          * Let target_uV be equal to the desired one if possible.
3641          * If not, set it to minimum voltage, allowed by other coupled
3642          * regulators.
3643          */
3644         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3645
3646         /*
3647          * Find min and max voltages, which currently aren't violating
3648          * max_spread.
3649          */
3650         for (i = 1; i < n_coupled; i++) {
3651                 int tmp_act;
3652
3653                 if (!_regulator_is_enabled(c_rdevs[i]))
3654                         continue;
3655
3656                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3657                 if (tmp_act < 0)
3658                         return tmp_act;
3659
3660                 min_current_uV = min(tmp_act, min_current_uV);
3661                 max_current_uV = max(tmp_act, max_current_uV);
3662         }
3663
3664         /* There aren't any other regulators enabled */
3665         if (max_current_uV == 0) {
3666                 possible_uV = target_uV;
3667         } else {
3668                 /*
3669                  * Correct target voltage, so as it currently isn't
3670                  * violating max_spread
3671                  */
3672                 possible_uV = max(target_uV, max_current_uV - max_spread);
3673                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3674         }
3675
3676         if (possible_uV > desired_max_uV)
3677                 return -EINVAL;
3678
3679         done = (possible_uV == target_uV);
3680         desired_min_uV = possible_uV;
3681
3682 finish:
3683         /* Apply max_uV_step constraint if necessary */
3684         if (state == PM_SUSPEND_ON) {
3685                 ret = regulator_limit_voltage_step(rdev, current_uV,
3686                                                    &desired_min_uV);
3687                 if (ret < 0)
3688                         return ret;
3689
3690                 if (ret == 0)
3691                         done = false;
3692         }
3693
3694         /* Set current_uV if wasn't done earlier in the code and if necessary */
3695         if (n_coupled > 1 && *current_uV == -1) {
3696
3697                 if (_regulator_is_enabled(rdev)) {
3698                         ret = regulator_get_voltage_rdev(rdev);
3699                         if (ret < 0)
3700                                 return ret;
3701
3702                         *current_uV = ret;
3703                 } else {
3704                         *current_uV = desired_min_uV;
3705                 }
3706         }
3707
3708         *min_uV = desired_min_uV;
3709         *max_uV = desired_max_uV;
3710
3711         return done;
3712 }
3713
3714 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3715                                  suspend_state_t state, bool skip_coupled)
3716 {
3717         struct regulator_dev **c_rdevs;
3718         struct regulator_dev *best_rdev;
3719         struct coupling_desc *c_desc = &rdev->coupling_desc;
3720         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3721         unsigned int delta, best_delta;
3722         unsigned long c_rdev_done = 0;
3723         bool best_c_rdev_done;
3724
3725         c_rdevs = c_desc->coupled_rdevs;
3726         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3727
3728         /*
3729          * Find the best possible voltage change on each loop. Leave the loop
3730          * if there isn't any possible change.
3731          */
3732         do {
3733                 best_c_rdev_done = false;
3734                 best_delta = 0;
3735                 best_min_uV = 0;
3736                 best_max_uV = 0;
3737                 best_c_rdev = 0;
3738                 best_rdev = NULL;
3739
3740                 /*
3741                  * Find highest difference between optimal voltage
3742                  * and current voltage.
3743                  */
3744                 for (i = 0; i < n_coupled; i++) {
3745                         /*
3746                          * optimal_uV is the best voltage that can be set for
3747                          * i-th regulator at the moment without violating
3748                          * max_spread constraint in order to balance
3749                          * the coupled voltages.
3750                          */
3751                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3752
3753                         if (test_bit(i, &c_rdev_done))
3754                                 continue;
3755
3756                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3757                                                             &current_uV,
3758                                                             &optimal_uV,
3759                                                             &optimal_max_uV,
3760                                                             state, n_coupled);
3761                         if (ret < 0)
3762                                 goto out;
3763
3764                         delta = abs(optimal_uV - current_uV);
3765
3766                         if (delta && best_delta <= delta) {
3767                                 best_c_rdev_done = ret;
3768                                 best_delta = delta;
3769                                 best_rdev = c_rdevs[i];
3770                                 best_min_uV = optimal_uV;
3771                                 best_max_uV = optimal_max_uV;
3772                                 best_c_rdev = i;
3773                         }
3774                 }
3775
3776                 /* Nothing to change, return successfully */
3777                 if (!best_rdev) {
3778                         ret = 0;
3779                         goto out;
3780                 }
3781
3782                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3783                                                  best_max_uV, state);
3784
3785                 if (ret < 0)
3786                         goto out;
3787
3788                 if (best_c_rdev_done)
3789                         set_bit(best_c_rdev, &c_rdev_done);
3790
3791         } while (n_coupled > 1);
3792
3793 out:
3794         return ret;
3795 }
3796
3797 static int regulator_balance_voltage(struct regulator_dev *rdev,
3798                                      suspend_state_t state)
3799 {
3800         struct coupling_desc *c_desc = &rdev->coupling_desc;
3801         struct regulator_coupler *coupler = c_desc->coupler;
3802         bool skip_coupled = false;
3803
3804         /*
3805          * If system is in a state other than PM_SUSPEND_ON, don't check
3806          * other coupled regulators.
3807          */
3808         if (state != PM_SUSPEND_ON)
3809                 skip_coupled = true;
3810
3811         if (c_desc->n_resolved < c_desc->n_coupled) {
3812                 rdev_err(rdev, "Not all coupled regulators registered\n");
3813                 return -EPERM;
3814         }
3815
3816         /* Invoke custom balancer for customized couplers */
3817         if (coupler && coupler->balance_voltage)
3818                 return coupler->balance_voltage(coupler, rdev, state);
3819
3820         return regulator_do_balance_voltage(rdev, state, skip_coupled);
3821 }
3822
3823 /**
3824  * regulator_set_voltage - set regulator output voltage
3825  * @regulator: regulator source
3826  * @min_uV: Minimum required voltage in uV
3827  * @max_uV: Maximum acceptable voltage in uV
3828  *
3829  * Sets a voltage regulator to the desired output voltage. This can be set
3830  * during any regulator state. IOW, regulator can be disabled or enabled.
3831  *
3832  * If the regulator is enabled then the voltage will change to the new value
3833  * immediately otherwise if the regulator is disabled the regulator will
3834  * output at the new voltage when enabled.
3835  *
3836  * NOTE: If the regulator is shared between several devices then the lowest
3837  * request voltage that meets the system constraints will be used.
3838  * Regulator system constraints must be set for this regulator before
3839  * calling this function otherwise this call will fail.
3840  */
3841 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3842 {
3843         struct ww_acquire_ctx ww_ctx;
3844         int ret;
3845
3846         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3847
3848         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3849                                              PM_SUSPEND_ON);
3850
3851         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3852
3853         return ret;
3854 }
3855 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3856
3857 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3858                                            suspend_state_t state, bool en)
3859 {
3860         struct regulator_state *rstate;
3861
3862         rstate = regulator_get_suspend_state(rdev, state);
3863         if (rstate == NULL)
3864                 return -EINVAL;
3865
3866         if (!rstate->changeable)
3867                 return -EPERM;
3868
3869         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3870
3871         return 0;
3872 }
3873
3874 int regulator_suspend_enable(struct regulator_dev *rdev,
3875                                     suspend_state_t state)
3876 {
3877         return regulator_suspend_toggle(rdev, state, true);
3878 }
3879 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3880
3881 int regulator_suspend_disable(struct regulator_dev *rdev,
3882                                      suspend_state_t state)
3883 {
3884         struct regulator *regulator;
3885         struct regulator_voltage *voltage;
3886
3887         /*
3888          * if any consumer wants this regulator device keeping on in
3889          * suspend states, don't set it as disabled.
3890          */
3891         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3892                 voltage = &regulator->voltage[state];
3893                 if (voltage->min_uV || voltage->max_uV)
3894                         return 0;
3895         }
3896
3897         return regulator_suspend_toggle(rdev, state, false);
3898 }
3899 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3900
3901 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3902                                           int min_uV, int max_uV,
3903                                           suspend_state_t state)
3904 {
3905         struct regulator_dev *rdev = regulator->rdev;
3906         struct regulator_state *rstate;
3907
3908         rstate = regulator_get_suspend_state(rdev, state);
3909         if (rstate == NULL)
3910                 return -EINVAL;
3911
3912         if (rstate->min_uV == rstate->max_uV) {
3913                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3914                 return -EPERM;
3915         }
3916
3917         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3918 }
3919
3920 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3921                                   int max_uV, suspend_state_t state)
3922 {
3923         struct ww_acquire_ctx ww_ctx;
3924         int ret;
3925
3926         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3927         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3928                 return -EINVAL;
3929
3930         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3931
3932         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3933                                              max_uV, state);
3934
3935         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3936
3937         return ret;
3938 }
3939 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3940
3941 /**
3942  * regulator_set_voltage_time - get raise/fall time
3943  * @regulator: regulator source
3944  * @old_uV: starting voltage in microvolts
3945  * @new_uV: target voltage in microvolts
3946  *
3947  * Provided with the starting and ending voltage, this function attempts to
3948  * calculate the time in microseconds required to rise or fall to this new
3949  * voltage.
3950  */
3951 int regulator_set_voltage_time(struct regulator *regulator,
3952                                int old_uV, int new_uV)
3953 {
3954         struct regulator_dev *rdev = regulator->rdev;
3955         const struct regulator_ops *ops = rdev->desc->ops;
3956         int old_sel = -1;
3957         int new_sel = -1;
3958         int voltage;
3959         int i;
3960
3961         if (ops->set_voltage_time)
3962                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3963         else if (!ops->set_voltage_time_sel)
3964                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3965
3966         /* Currently requires operations to do this */
3967         if (!ops->list_voltage || !rdev->desc->n_voltages)
3968                 return -EINVAL;
3969
3970         for (i = 0; i < rdev->desc->n_voltages; i++) {
3971                 /* We only look for exact voltage matches here */
3972                 voltage = regulator_list_voltage(regulator, i);
3973                 if (voltage < 0)
3974                         return -EINVAL;
3975                 if (voltage == 0)
3976                         continue;
3977                 if (voltage == old_uV)
3978                         old_sel = i;
3979                 if (voltage == new_uV)
3980                         new_sel = i;
3981         }
3982
3983         if (old_sel < 0 || new_sel < 0)
3984                 return -EINVAL;
3985
3986         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3987 }
3988 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3989
3990 /**
3991  * regulator_set_voltage_time_sel - get raise/fall time
3992  * @rdev: regulator source device
3993  * @old_selector: selector for starting voltage
3994  * @new_selector: selector for target voltage
3995  *
3996  * Provided with the starting and target voltage selectors, this function
3997  * returns time in microseconds required to rise or fall to this new voltage
3998  *
3999  * Drivers providing ramp_delay in regulation_constraints can use this as their
4000  * set_voltage_time_sel() operation.
4001  */
4002 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4003                                    unsigned int old_selector,
4004                                    unsigned int new_selector)
4005 {
4006         int old_volt, new_volt;
4007
4008         /* sanity check */
4009         if (!rdev->desc->ops->list_voltage)
4010                 return -EINVAL;
4011
4012         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4013         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4014
4015         if (rdev->desc->ops->set_voltage_time)
4016                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4017                                                          new_volt);
4018         else
4019                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4020 }
4021 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4022
4023 /**
4024  * regulator_sync_voltage - re-apply last regulator output voltage
4025  * @regulator: regulator source
4026  *
4027  * Re-apply the last configured voltage.  This is intended to be used
4028  * where some external control source the consumer is cooperating with
4029  * has caused the configured voltage to change.
4030  */
4031 int regulator_sync_voltage(struct regulator *regulator)
4032 {
4033         struct regulator_dev *rdev = regulator->rdev;
4034         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4035         int ret, min_uV, max_uV;
4036
4037         regulator_lock(rdev);
4038
4039         if (!rdev->desc->ops->set_voltage &&
4040             !rdev->desc->ops->set_voltage_sel) {
4041                 ret = -EINVAL;
4042                 goto out;
4043         }
4044
4045         /* This is only going to work if we've had a voltage configured. */
4046         if (!voltage->min_uV && !voltage->max_uV) {
4047                 ret = -EINVAL;
4048                 goto out;
4049         }
4050
4051         min_uV = voltage->min_uV;
4052         max_uV = voltage->max_uV;
4053
4054         /* This should be a paranoia check... */
4055         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4056         if (ret < 0)
4057                 goto out;
4058
4059         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4060         if (ret < 0)
4061                 goto out;
4062
4063         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4064
4065 out:
4066         regulator_unlock(rdev);
4067         return ret;
4068 }
4069 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4070
4071 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4072 {
4073         int sel, ret;
4074         bool bypassed;
4075
4076         if (rdev->desc->ops->get_bypass) {
4077                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4078                 if (ret < 0)
4079                         return ret;
4080                 if (bypassed) {
4081                         /* if bypassed the regulator must have a supply */
4082                         if (!rdev->supply) {
4083                                 rdev_err(rdev,
4084                                          "bypassed regulator has no supply!\n");
4085                                 return -EPROBE_DEFER;
4086                         }
4087
4088                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4089                 }
4090         }
4091
4092         if (rdev->desc->ops->get_voltage_sel) {
4093                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4094                 if (sel < 0)
4095                         return sel;
4096                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4097         } else if (rdev->desc->ops->get_voltage) {
4098                 ret = rdev->desc->ops->get_voltage(rdev);
4099         } else if (rdev->desc->ops->list_voltage) {
4100                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4101         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4102                 ret = rdev->desc->fixed_uV;
4103         } else if (rdev->supply) {
4104                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4105         } else {
4106                 return -EINVAL;
4107         }
4108
4109         if (ret < 0)
4110                 return ret;
4111         return ret - rdev->constraints->uV_offset;
4112 }
4113 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4114
4115 /**
4116  * regulator_get_voltage - get regulator output voltage
4117  * @regulator: regulator source
4118  *
4119  * This returns the current regulator voltage in uV.
4120  *
4121  * NOTE: If the regulator is disabled it will return the voltage value. This
4122  * function should not be used to determine regulator state.
4123  */
4124 int regulator_get_voltage(struct regulator *regulator)
4125 {
4126         struct ww_acquire_ctx ww_ctx;
4127         int ret;
4128
4129         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4130         ret = regulator_get_voltage_rdev(regulator->rdev);
4131         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4132
4133         return ret;
4134 }
4135 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4136
4137 /**
4138  * regulator_set_current_limit - set regulator output current limit
4139  * @regulator: regulator source
4140  * @min_uA: Minimum supported current in uA
4141  * @max_uA: Maximum supported current in uA
4142  *
4143  * Sets current sink to the desired output current. This can be set during
4144  * any regulator state. IOW, regulator can be disabled or enabled.
4145  *
4146  * If the regulator is enabled then the current will change to the new value
4147  * immediately otherwise if the regulator is disabled the regulator will
4148  * output at the new current when enabled.
4149  *
4150  * NOTE: Regulator system constraints must be set for this regulator before
4151  * calling this function otherwise this call will fail.
4152  */
4153 int regulator_set_current_limit(struct regulator *regulator,
4154                                int min_uA, int max_uA)
4155 {
4156         struct regulator_dev *rdev = regulator->rdev;
4157         int ret;
4158
4159         regulator_lock(rdev);
4160
4161         /* sanity check */
4162         if (!rdev->desc->ops->set_current_limit) {
4163                 ret = -EINVAL;
4164                 goto out;
4165         }
4166
4167         /* constraints check */
4168         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4169         if (ret < 0)
4170                 goto out;
4171
4172         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4173 out:
4174         regulator_unlock(rdev);
4175         return ret;
4176 }
4177 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4178
4179 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4180 {
4181         /* sanity check */
4182         if (!rdev->desc->ops->get_current_limit)
4183                 return -EINVAL;
4184
4185         return rdev->desc->ops->get_current_limit(rdev);
4186 }
4187
4188 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4189 {
4190         int ret;
4191
4192         regulator_lock(rdev);
4193         ret = _regulator_get_current_limit_unlocked(rdev);
4194         regulator_unlock(rdev);
4195
4196         return ret;
4197 }
4198
4199 /**
4200  * regulator_get_current_limit - get regulator output current
4201  * @regulator: regulator source
4202  *
4203  * This returns the current supplied by the specified current sink in uA.
4204  *
4205  * NOTE: If the regulator is disabled it will return the current value. This
4206  * function should not be used to determine regulator state.
4207  */
4208 int regulator_get_current_limit(struct regulator *regulator)
4209 {
4210         return _regulator_get_current_limit(regulator->rdev);
4211 }
4212 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4213
4214 /**
4215  * regulator_set_mode - set regulator operating mode
4216  * @regulator: regulator source
4217  * @mode: operating mode - one of the REGULATOR_MODE constants
4218  *
4219  * Set regulator operating mode to increase regulator efficiency or improve
4220  * regulation performance.
4221  *
4222  * NOTE: Regulator system constraints must be set for this regulator before
4223  * calling this function otherwise this call will fail.
4224  */
4225 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4226 {
4227         struct regulator_dev *rdev = regulator->rdev;
4228         int ret;
4229         int regulator_curr_mode;
4230
4231         regulator_lock(rdev);
4232
4233         /* sanity check */
4234         if (!rdev->desc->ops->set_mode) {
4235                 ret = -EINVAL;
4236                 goto out;
4237         }
4238
4239         /* return if the same mode is requested */
4240         if (rdev->desc->ops->get_mode) {
4241                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4242                 if (regulator_curr_mode == mode) {
4243                         ret = 0;
4244                         goto out;
4245                 }
4246         }
4247
4248         /* constraints check */
4249         ret = regulator_mode_constrain(rdev, &mode);
4250         if (ret < 0)
4251                 goto out;
4252
4253         ret = rdev->desc->ops->set_mode(rdev, mode);
4254 out:
4255         regulator_unlock(rdev);
4256         return ret;
4257 }
4258 EXPORT_SYMBOL_GPL(regulator_set_mode);
4259
4260 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4261 {
4262         /* sanity check */
4263         if (!rdev->desc->ops->get_mode)
4264                 return -EINVAL;
4265
4266         return rdev->desc->ops->get_mode(rdev);
4267 }
4268
4269 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4270 {
4271         int ret;
4272
4273         regulator_lock(rdev);
4274         ret = _regulator_get_mode_unlocked(rdev);
4275         regulator_unlock(rdev);
4276
4277         return ret;
4278 }
4279
4280 /**
4281  * regulator_get_mode - get regulator operating mode
4282  * @regulator: regulator source
4283  *
4284  * Get the current regulator operating mode.
4285  */
4286 unsigned int regulator_get_mode(struct regulator *regulator)
4287 {
4288         return _regulator_get_mode(regulator->rdev);
4289 }
4290 EXPORT_SYMBOL_GPL(regulator_get_mode);
4291
4292 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4293                                         unsigned int *flags)
4294 {
4295         int ret;
4296
4297         regulator_lock(rdev);
4298
4299         /* sanity check */
4300         if (!rdev->desc->ops->get_error_flags) {
4301                 ret = -EINVAL;
4302                 goto out;
4303         }
4304
4305         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4306 out:
4307         regulator_unlock(rdev);
4308         return ret;
4309 }
4310
4311 /**
4312  * regulator_get_error_flags - get regulator error information
4313  * @regulator: regulator source
4314  * @flags: pointer to store error flags
4315  *
4316  * Get the current regulator error information.
4317  */
4318 int regulator_get_error_flags(struct regulator *regulator,
4319                                 unsigned int *flags)
4320 {
4321         return _regulator_get_error_flags(regulator->rdev, flags);
4322 }
4323 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4324
4325 /**
4326  * regulator_set_load - set regulator load
4327  * @regulator: regulator source
4328  * @uA_load: load current
4329  *
4330  * Notifies the regulator core of a new device load. This is then used by
4331  * DRMS (if enabled by constraints) to set the most efficient regulator
4332  * operating mode for the new regulator loading.
4333  *
4334  * Consumer devices notify their supply regulator of the maximum power
4335  * they will require (can be taken from device datasheet in the power
4336  * consumption tables) when they change operational status and hence power
4337  * state. Examples of operational state changes that can affect power
4338  * consumption are :-
4339  *
4340  *    o Device is opened / closed.
4341  *    o Device I/O is about to begin or has just finished.
4342  *    o Device is idling in between work.
4343  *
4344  * This information is also exported via sysfs to userspace.
4345  *
4346  * DRMS will sum the total requested load on the regulator and change
4347  * to the most efficient operating mode if platform constraints allow.
4348  *
4349  * NOTE: when a regulator consumer requests to have a regulator
4350  * disabled then any load that consumer requested no longer counts
4351  * toward the total requested load.  If the regulator is re-enabled
4352  * then the previously requested load will start counting again.
4353  *
4354  * If a regulator is an always-on regulator then an individual consumer's
4355  * load will still be removed if that consumer is fully disabled.
4356  *
4357  * On error a negative errno is returned.
4358  */
4359 int regulator_set_load(struct regulator *regulator, int uA_load)
4360 {
4361         struct regulator_dev *rdev = regulator->rdev;
4362         int old_uA_load;
4363         int ret = 0;
4364
4365         regulator_lock(rdev);
4366         old_uA_load = regulator->uA_load;
4367         regulator->uA_load = uA_load;
4368         if (regulator->enable_count && old_uA_load != uA_load) {
4369                 ret = drms_uA_update(rdev);
4370                 if (ret < 0)
4371                         regulator->uA_load = old_uA_load;
4372         }
4373         regulator_unlock(rdev);
4374
4375         return ret;
4376 }
4377 EXPORT_SYMBOL_GPL(regulator_set_load);
4378
4379 /**
4380  * regulator_allow_bypass - allow the regulator to go into bypass mode
4381  *
4382  * @regulator: Regulator to configure
4383  * @enable: enable or disable bypass mode
4384  *
4385  * Allow the regulator to go into bypass mode if all other consumers
4386  * for the regulator also enable bypass mode and the machine
4387  * constraints allow this.  Bypass mode means that the regulator is
4388  * simply passing the input directly to the output with no regulation.
4389  */
4390 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4391 {
4392         struct regulator_dev *rdev = regulator->rdev;
4393         const char *name = rdev_get_name(rdev);
4394         int ret = 0;
4395
4396         if (!rdev->desc->ops->set_bypass)
4397                 return 0;
4398
4399         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4400                 return 0;
4401
4402         regulator_lock(rdev);
4403
4404         if (enable && !regulator->bypass) {
4405                 rdev->bypass_count++;
4406
4407                 if (rdev->bypass_count == rdev->open_count) {
4408                         trace_regulator_bypass_enable(name);
4409
4410                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4411                         if (ret != 0)
4412                                 rdev->bypass_count--;
4413                         else
4414                                 trace_regulator_bypass_enable_complete(name);
4415                 }
4416
4417         } else if (!enable && regulator->bypass) {
4418                 rdev->bypass_count--;
4419
4420                 if (rdev->bypass_count != rdev->open_count) {
4421                         trace_regulator_bypass_disable(name);
4422
4423                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4424                         if (ret != 0)
4425                                 rdev->bypass_count++;
4426                         else
4427                                 trace_regulator_bypass_disable_complete(name);
4428                 }
4429         }
4430
4431         if (ret == 0)
4432                 regulator->bypass = enable;
4433
4434         regulator_unlock(rdev);
4435
4436         return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4439
4440 /**
4441  * regulator_register_notifier - register regulator event notifier
4442  * @regulator: regulator source
4443  * @nb: notifier block
4444  *
4445  * Register notifier block to receive regulator events.
4446  */
4447 int regulator_register_notifier(struct regulator *regulator,
4448                               struct notifier_block *nb)
4449 {
4450         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4451                                                 nb);
4452 }
4453 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4454
4455 /**
4456  * regulator_unregister_notifier - unregister regulator event notifier
4457  * @regulator: regulator source
4458  * @nb: notifier block
4459  *
4460  * Unregister regulator event notifier block.
4461  */
4462 int regulator_unregister_notifier(struct regulator *regulator,
4463                                 struct notifier_block *nb)
4464 {
4465         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4466                                                   nb);
4467 }
4468 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4469
4470 /* notify regulator consumers and downstream regulator consumers.
4471  * Note mutex must be held by caller.
4472  */
4473 static int _notifier_call_chain(struct regulator_dev *rdev,
4474                                   unsigned long event, void *data)
4475 {
4476         /* call rdev chain first */
4477         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4478 }
4479
4480 /**
4481  * regulator_bulk_get - get multiple regulator consumers
4482  *
4483  * @dev:           Device to supply
4484  * @num_consumers: Number of consumers to register
4485  * @consumers:     Configuration of consumers; clients are stored here.
4486  *
4487  * @return 0 on success, an errno on failure.
4488  *
4489  * This helper function allows drivers to get several regulator
4490  * consumers in one operation.  If any of the regulators cannot be
4491  * acquired then any regulators that were allocated will be freed
4492  * before returning to the caller.
4493  */
4494 int regulator_bulk_get(struct device *dev, int num_consumers,
4495                        struct regulator_bulk_data *consumers)
4496 {
4497         int i;
4498         int ret;
4499
4500         for (i = 0; i < num_consumers; i++)
4501                 consumers[i].consumer = NULL;
4502
4503         for (i = 0; i < num_consumers; i++) {
4504                 consumers[i].consumer = regulator_get(dev,
4505                                                       consumers[i].supply);
4506                 if (IS_ERR(consumers[i].consumer)) {
4507                         ret = PTR_ERR(consumers[i].consumer);
4508                         consumers[i].consumer = NULL;
4509                         goto err;
4510                 }
4511         }
4512
4513         return 0;
4514
4515 err:
4516         if (ret != -EPROBE_DEFER)
4517                 dev_err(dev, "Failed to get supply '%s': %d\n",
4518                         consumers[i].supply, ret);
4519         else
4520                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4521                         consumers[i].supply);
4522
4523         while (--i >= 0)
4524                 regulator_put(consumers[i].consumer);
4525
4526         return ret;
4527 }
4528 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4529
4530 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4531 {
4532         struct regulator_bulk_data *bulk = data;
4533
4534         bulk->ret = regulator_enable(bulk->consumer);
4535 }
4536
4537 /**
4538  * regulator_bulk_enable - enable multiple regulator consumers
4539  *
4540  * @num_consumers: Number of consumers
4541  * @consumers:     Consumer data; clients are stored here.
4542  * @return         0 on success, an errno on failure
4543  *
4544  * This convenience API allows consumers to enable multiple regulator
4545  * clients in a single API call.  If any consumers cannot be enabled
4546  * then any others that were enabled will be disabled again prior to
4547  * return.
4548  */
4549 int regulator_bulk_enable(int num_consumers,
4550                           struct regulator_bulk_data *consumers)
4551 {
4552         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4553         int i;
4554         int ret = 0;
4555
4556         for (i = 0; i < num_consumers; i++) {
4557                 async_schedule_domain(regulator_bulk_enable_async,
4558                                       &consumers[i], &async_domain);
4559         }
4560
4561         async_synchronize_full_domain(&async_domain);
4562
4563         /* If any consumer failed we need to unwind any that succeeded */
4564         for (i = 0; i < num_consumers; i++) {
4565                 if (consumers[i].ret != 0) {
4566                         ret = consumers[i].ret;
4567                         goto err;
4568                 }
4569         }
4570
4571         return 0;
4572
4573 err:
4574         for (i = 0; i < num_consumers; i++) {
4575                 if (consumers[i].ret < 0)
4576                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4577                                consumers[i].ret);
4578                 else
4579                         regulator_disable(consumers[i].consumer);
4580         }
4581
4582         return ret;
4583 }
4584 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4585
4586 /**
4587  * regulator_bulk_disable - disable multiple regulator consumers
4588  *
4589  * @num_consumers: Number of consumers
4590  * @consumers:     Consumer data; clients are stored here.
4591  * @return         0 on success, an errno on failure
4592  *
4593  * This convenience API allows consumers to disable multiple regulator
4594  * clients in a single API call.  If any consumers cannot be disabled
4595  * then any others that were disabled will be enabled again prior to
4596  * return.
4597  */
4598 int regulator_bulk_disable(int num_consumers,
4599                            struct regulator_bulk_data *consumers)
4600 {
4601         int i;
4602         int ret, r;
4603
4604         for (i = num_consumers - 1; i >= 0; --i) {
4605                 ret = regulator_disable(consumers[i].consumer);
4606                 if (ret != 0)
4607                         goto err;
4608         }
4609
4610         return 0;
4611
4612 err:
4613         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4614         for (++i; i < num_consumers; ++i) {
4615                 r = regulator_enable(consumers[i].consumer);
4616                 if (r != 0)
4617                         pr_err("Failed to re-enable %s: %d\n",
4618                                consumers[i].supply, r);
4619         }
4620
4621         return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4624
4625 /**
4626  * regulator_bulk_force_disable - force disable multiple regulator consumers
4627  *
4628  * @num_consumers: Number of consumers
4629  * @consumers:     Consumer data; clients are stored here.
4630  * @return         0 on success, an errno on failure
4631  *
4632  * This convenience API allows consumers to forcibly disable multiple regulator
4633  * clients in a single API call.
4634  * NOTE: This should be used for situations when device damage will
4635  * likely occur if the regulators are not disabled (e.g. over temp).
4636  * Although regulator_force_disable function call for some consumers can
4637  * return error numbers, the function is called for all consumers.
4638  */
4639 int regulator_bulk_force_disable(int num_consumers,
4640                            struct regulator_bulk_data *consumers)
4641 {
4642         int i;
4643         int ret = 0;
4644
4645         for (i = 0; i < num_consumers; i++) {
4646                 consumers[i].ret =
4647                             regulator_force_disable(consumers[i].consumer);
4648
4649                 /* Store first error for reporting */
4650                 if (consumers[i].ret && !ret)
4651                         ret = consumers[i].ret;
4652         }
4653
4654         return ret;
4655 }
4656 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4657
4658 /**
4659  * regulator_bulk_free - free multiple regulator consumers
4660  *
4661  * @num_consumers: Number of consumers
4662  * @consumers:     Consumer data; clients are stored here.
4663  *
4664  * This convenience API allows consumers to free multiple regulator
4665  * clients in a single API call.
4666  */
4667 void regulator_bulk_free(int num_consumers,
4668                          struct regulator_bulk_data *consumers)
4669 {
4670         int i;
4671
4672         for (i = 0; i < num_consumers; i++) {
4673                 regulator_put(consumers[i].consumer);
4674                 consumers[i].consumer = NULL;
4675         }
4676 }
4677 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4678
4679 /**
4680  * regulator_notifier_call_chain - call regulator event notifier
4681  * @rdev: regulator source
4682  * @event: notifier block
4683  * @data: callback-specific data.
4684  *
4685  * Called by regulator drivers to notify clients a regulator event has
4686  * occurred. We also notify regulator clients downstream.
4687  * Note lock must be held by caller.
4688  */
4689 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4690                                   unsigned long event, void *data)
4691 {
4692         lockdep_assert_held_once(&rdev->mutex.base);
4693
4694         _notifier_call_chain(rdev, event, data);
4695         return NOTIFY_DONE;
4696
4697 }
4698 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4699
4700 /**
4701  * regulator_mode_to_status - convert a regulator mode into a status
4702  *
4703  * @mode: Mode to convert
4704  *
4705  * Convert a regulator mode into a status.
4706  */
4707 int regulator_mode_to_status(unsigned int mode)
4708 {
4709         switch (mode) {
4710         case REGULATOR_MODE_FAST:
4711                 return REGULATOR_STATUS_FAST;
4712         case REGULATOR_MODE_NORMAL:
4713                 return REGULATOR_STATUS_NORMAL;
4714         case REGULATOR_MODE_IDLE:
4715                 return REGULATOR_STATUS_IDLE;
4716         case REGULATOR_MODE_STANDBY:
4717                 return REGULATOR_STATUS_STANDBY;
4718         default:
4719                 return REGULATOR_STATUS_UNDEFINED;
4720         }
4721 }
4722 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4723
4724 static struct attribute *regulator_dev_attrs[] = {
4725         &dev_attr_name.attr,
4726         &dev_attr_num_users.attr,
4727         &dev_attr_type.attr,
4728         &dev_attr_microvolts.attr,
4729         &dev_attr_microamps.attr,
4730         &dev_attr_opmode.attr,
4731         &dev_attr_state.attr,
4732         &dev_attr_status.attr,
4733         &dev_attr_bypass.attr,
4734         &dev_attr_requested_microamps.attr,
4735         &dev_attr_min_microvolts.attr,
4736         &dev_attr_max_microvolts.attr,
4737         &dev_attr_min_microamps.attr,
4738         &dev_attr_max_microamps.attr,
4739         &dev_attr_suspend_standby_state.attr,
4740         &dev_attr_suspend_mem_state.attr,
4741         &dev_attr_suspend_disk_state.attr,
4742         &dev_attr_suspend_standby_microvolts.attr,
4743         &dev_attr_suspend_mem_microvolts.attr,
4744         &dev_attr_suspend_disk_microvolts.attr,
4745         &dev_attr_suspend_standby_mode.attr,
4746         &dev_attr_suspend_mem_mode.attr,
4747         &dev_attr_suspend_disk_mode.attr,
4748         NULL
4749 };
4750
4751 /*
4752  * To avoid cluttering sysfs (and memory) with useless state, only
4753  * create attributes that can be meaningfully displayed.
4754  */
4755 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4756                                          struct attribute *attr, int idx)
4757 {
4758         struct device *dev = kobj_to_dev(kobj);
4759         struct regulator_dev *rdev = dev_to_rdev(dev);
4760         const struct regulator_ops *ops = rdev->desc->ops;
4761         umode_t mode = attr->mode;
4762
4763         /* these three are always present */
4764         if (attr == &dev_attr_name.attr ||
4765             attr == &dev_attr_num_users.attr ||
4766             attr == &dev_attr_type.attr)
4767                 return mode;
4768
4769         /* some attributes need specific methods to be displayed */
4770         if (attr == &dev_attr_microvolts.attr) {
4771                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4772                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4773                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4774                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4775                         return mode;
4776                 return 0;
4777         }
4778
4779         if (attr == &dev_attr_microamps.attr)
4780                 return ops->get_current_limit ? mode : 0;
4781
4782         if (attr == &dev_attr_opmode.attr)
4783                 return ops->get_mode ? mode : 0;
4784
4785         if (attr == &dev_attr_state.attr)
4786                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4787
4788         if (attr == &dev_attr_status.attr)
4789                 return ops->get_status ? mode : 0;
4790
4791         if (attr == &dev_attr_bypass.attr)
4792                 return ops->get_bypass ? mode : 0;
4793
4794         /* constraints need specific supporting methods */
4795         if (attr == &dev_attr_min_microvolts.attr ||
4796             attr == &dev_attr_max_microvolts.attr)
4797                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4798
4799         if (attr == &dev_attr_min_microamps.attr ||
4800             attr == &dev_attr_max_microamps.attr)
4801                 return ops->set_current_limit ? mode : 0;
4802
4803         if (attr == &dev_attr_suspend_standby_state.attr ||
4804             attr == &dev_attr_suspend_mem_state.attr ||
4805             attr == &dev_attr_suspend_disk_state.attr)
4806                 return mode;
4807
4808         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4809             attr == &dev_attr_suspend_mem_microvolts.attr ||
4810             attr == &dev_attr_suspend_disk_microvolts.attr)
4811                 return ops->set_suspend_voltage ? mode : 0;
4812
4813         if (attr == &dev_attr_suspend_standby_mode.attr ||
4814             attr == &dev_attr_suspend_mem_mode.attr ||
4815             attr == &dev_attr_suspend_disk_mode.attr)
4816                 return ops->set_suspend_mode ? mode : 0;
4817
4818         return mode;
4819 }
4820
4821 static const struct attribute_group regulator_dev_group = {
4822         .attrs = regulator_dev_attrs,
4823         .is_visible = regulator_attr_is_visible,
4824 };
4825
4826 static const struct attribute_group *regulator_dev_groups[] = {
4827         &regulator_dev_group,
4828         NULL
4829 };
4830
4831 static void regulator_dev_release(struct device *dev)
4832 {
4833         struct regulator_dev *rdev = dev_get_drvdata(dev);
4834
4835         kfree(rdev->constraints);
4836         of_node_put(rdev->dev.of_node);
4837         kfree(rdev);
4838 }
4839
4840 static void rdev_init_debugfs(struct regulator_dev *rdev)
4841 {
4842         struct device *parent = rdev->dev.parent;
4843         const char *rname = rdev_get_name(rdev);
4844         char name[NAME_MAX];
4845
4846         /* Avoid duplicate debugfs directory names */
4847         if (parent && rname == rdev->desc->name) {
4848                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4849                          rname);
4850                 rname = name;
4851         }
4852
4853         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4854         if (!rdev->debugfs) {
4855                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4856                 return;
4857         }
4858
4859         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4860                            &rdev->use_count);
4861         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4862                            &rdev->open_count);
4863         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4864                            &rdev->bypass_count);
4865 }
4866
4867 static int regulator_register_resolve_supply(struct device *dev, void *data)
4868 {
4869         struct regulator_dev *rdev = dev_to_rdev(dev);
4870
4871         if (regulator_resolve_supply(rdev))
4872                 rdev_dbg(rdev, "unable to resolve supply\n");
4873
4874         return 0;
4875 }
4876
4877 int regulator_coupler_register(struct regulator_coupler *coupler)
4878 {
4879         mutex_lock(&regulator_list_mutex);
4880         list_add_tail(&coupler->list, &regulator_coupler_list);
4881         mutex_unlock(&regulator_list_mutex);
4882
4883         return 0;
4884 }
4885
4886 static struct regulator_coupler *
4887 regulator_find_coupler(struct regulator_dev *rdev)
4888 {
4889         struct regulator_coupler *coupler;
4890         int err;
4891
4892         /*
4893          * Note that regulators are appended to the list and the generic
4894          * coupler is registered first, hence it will be attached at last
4895          * if nobody cared.
4896          */
4897         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4898                 err = coupler->attach_regulator(coupler, rdev);
4899                 if (!err) {
4900                         if (!coupler->balance_voltage &&
4901                             rdev->coupling_desc.n_coupled > 2)
4902                                 goto err_unsupported;
4903
4904                         return coupler;
4905                 }
4906
4907                 if (err < 0)
4908                         return ERR_PTR(err);
4909
4910                 if (err == 1)
4911                         continue;
4912
4913                 break;
4914         }
4915
4916         return ERR_PTR(-EINVAL);
4917
4918 err_unsupported:
4919         if (coupler->detach_regulator)
4920                 coupler->detach_regulator(coupler, rdev);
4921
4922         rdev_err(rdev,
4923                 "Voltage balancing for multiple regulator couples is unimplemented\n");
4924
4925         return ERR_PTR(-EPERM);
4926 }
4927
4928 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4929 {
4930         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4931         struct coupling_desc *c_desc = &rdev->coupling_desc;
4932         int n_coupled = c_desc->n_coupled;
4933         struct regulator_dev *c_rdev;
4934         int i;
4935
4936         for (i = 1; i < n_coupled; i++) {
4937                 /* already resolved */
4938                 if (c_desc->coupled_rdevs[i])
4939                         continue;
4940
4941                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4942
4943                 if (!c_rdev)
4944                         continue;
4945
4946                 if (c_rdev->coupling_desc.coupler != coupler) {
4947                         rdev_err(rdev, "coupler mismatch with %s\n",
4948                                  rdev_get_name(c_rdev));
4949                         return;
4950                 }
4951
4952                 regulator_lock(c_rdev);
4953
4954                 c_desc->coupled_rdevs[i] = c_rdev;
4955                 c_desc->n_resolved++;
4956
4957                 regulator_unlock(c_rdev);
4958
4959                 regulator_resolve_coupling(c_rdev);
4960         }
4961 }
4962
4963 static void regulator_remove_coupling(struct regulator_dev *rdev)
4964 {
4965         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4966         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4967         struct regulator_dev *__c_rdev, *c_rdev;
4968         unsigned int __n_coupled, n_coupled;
4969         int i, k;
4970         int err;
4971
4972         n_coupled = c_desc->n_coupled;
4973
4974         for (i = 1; i < n_coupled; i++) {
4975                 c_rdev = c_desc->coupled_rdevs[i];
4976
4977                 if (!c_rdev)
4978                         continue;
4979
4980                 regulator_lock(c_rdev);
4981
4982                 __c_desc = &c_rdev->coupling_desc;
4983                 __n_coupled = __c_desc->n_coupled;
4984
4985                 for (k = 1; k < __n_coupled; k++) {
4986                         __c_rdev = __c_desc->coupled_rdevs[k];
4987
4988                         if (__c_rdev == rdev) {
4989                                 __c_desc->coupled_rdevs[k] = NULL;
4990                                 __c_desc->n_resolved--;
4991                                 break;
4992                         }
4993                 }
4994
4995                 regulator_unlock(c_rdev);
4996
4997                 c_desc->coupled_rdevs[i] = NULL;
4998                 c_desc->n_resolved--;
4999         }
5000
5001         if (coupler && coupler->detach_regulator) {
5002                 err = coupler->detach_regulator(coupler, rdev);
5003                 if (err)
5004                         rdev_err(rdev, "failed to detach from coupler: %d\n",
5005                                  err);
5006         }
5007
5008         kfree(rdev->coupling_desc.coupled_rdevs);
5009         rdev->coupling_desc.coupled_rdevs = NULL;
5010 }
5011
5012 static int regulator_init_coupling(struct regulator_dev *rdev)
5013 {
5014         int err, n_phandles;
5015         size_t alloc_size;
5016
5017         if (!IS_ENABLED(CONFIG_OF))
5018                 n_phandles = 0;
5019         else
5020                 n_phandles = of_get_n_coupled(rdev);
5021
5022         alloc_size = sizeof(*rdev) * (n_phandles + 1);
5023
5024         rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5025         if (!rdev->coupling_desc.coupled_rdevs)
5026                 return -ENOMEM;
5027
5028         /*
5029          * Every regulator should always have coupling descriptor filled with
5030          * at least pointer to itself.
5031          */
5032         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5033         rdev->coupling_desc.n_coupled = n_phandles + 1;
5034         rdev->coupling_desc.n_resolved++;
5035
5036         /* regulator isn't coupled */
5037         if (n_phandles == 0)
5038                 return 0;
5039
5040         if (!of_check_coupling_data(rdev))
5041                 return -EPERM;
5042
5043         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5044         if (IS_ERR(rdev->coupling_desc.coupler)) {
5045                 err = PTR_ERR(rdev->coupling_desc.coupler);
5046                 rdev_err(rdev, "failed to get coupler: %d\n", err);
5047                 return err;
5048         }
5049
5050         return 0;
5051 }
5052
5053 static int generic_coupler_attach(struct regulator_coupler *coupler,
5054                                   struct regulator_dev *rdev)
5055 {
5056         if (rdev->coupling_desc.n_coupled > 2) {
5057                 rdev_err(rdev,
5058                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5059                 return -EPERM;
5060         }
5061
5062         if (!rdev->constraints->always_on) {
5063                 rdev_err(rdev,
5064                          "Coupling of a non always-on regulator is unimplemented\n");
5065                 return -ENOTSUPP;
5066         }
5067
5068         return 0;
5069 }
5070
5071 static struct regulator_coupler generic_regulator_coupler = {
5072         .attach_regulator = generic_coupler_attach,
5073 };
5074
5075 /**
5076  * regulator_register - register regulator
5077  * @regulator_desc: regulator to register
5078  * @cfg: runtime configuration for regulator
5079  *
5080  * Called by regulator drivers to register a regulator.
5081  * Returns a valid pointer to struct regulator_dev on success
5082  * or an ERR_PTR() on error.
5083  */
5084 struct regulator_dev *
5085 regulator_register(const struct regulator_desc *regulator_desc,
5086                    const struct regulator_config *cfg)
5087 {
5088         const struct regulation_constraints *constraints = NULL;
5089         const struct regulator_init_data *init_data;
5090         struct regulator_config *config = NULL;
5091         static atomic_t regulator_no = ATOMIC_INIT(-1);
5092         struct regulator_dev *rdev;
5093         bool dangling_cfg_gpiod = false;
5094         bool dangling_of_gpiod = false;
5095         struct device *dev;
5096         int ret, i;
5097
5098         if (cfg == NULL)
5099                 return ERR_PTR(-EINVAL);
5100         if (cfg->ena_gpiod)
5101                 dangling_cfg_gpiod = true;
5102         if (regulator_desc == NULL) {
5103                 ret = -EINVAL;
5104                 goto rinse;
5105         }
5106
5107         dev = cfg->dev;
5108         WARN_ON(!dev);
5109
5110         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5111                 ret = -EINVAL;
5112                 goto rinse;
5113         }
5114
5115         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5116             regulator_desc->type != REGULATOR_CURRENT) {
5117                 ret = -EINVAL;
5118                 goto rinse;
5119         }
5120
5121         /* Only one of each should be implemented */
5122         WARN_ON(regulator_desc->ops->get_voltage &&
5123                 regulator_desc->ops->get_voltage_sel);
5124         WARN_ON(regulator_desc->ops->set_voltage &&
5125                 regulator_desc->ops->set_voltage_sel);
5126
5127         /* If we're using selectors we must implement list_voltage. */
5128         if (regulator_desc->ops->get_voltage_sel &&
5129             !regulator_desc->ops->list_voltage) {
5130                 ret = -EINVAL;
5131                 goto rinse;
5132         }
5133         if (regulator_desc->ops->set_voltage_sel &&
5134             !regulator_desc->ops->list_voltage) {
5135                 ret = -EINVAL;
5136                 goto rinse;
5137         }
5138
5139         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5140         if (rdev == NULL) {
5141                 ret = -ENOMEM;
5142                 goto rinse;
5143         }
5144
5145         /*
5146          * Duplicate the config so the driver could override it after
5147          * parsing init data.
5148          */
5149         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5150         if (config == NULL) {
5151                 kfree(rdev);
5152                 ret = -ENOMEM;
5153                 goto rinse;
5154         }
5155
5156         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5157                                                &rdev->dev.of_node);
5158
5159         /*
5160          * Sometimes not all resources are probed already so we need to take
5161          * that into account. This happens most the time if the ena_gpiod comes
5162          * from a gpio extender or something else.
5163          */
5164         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5165                 kfree(config);
5166                 kfree(rdev);
5167                 ret = -EPROBE_DEFER;
5168                 goto rinse;
5169         }
5170
5171         /*
5172          * We need to keep track of any GPIO descriptor coming from the
5173          * device tree until we have handled it over to the core. If the
5174          * config that was passed in to this function DOES NOT contain
5175          * a descriptor, and the config after this call DOES contain
5176          * a descriptor, we definitely got one from parsing the device
5177          * tree.
5178          */
5179         if (!cfg->ena_gpiod && config->ena_gpiod)
5180                 dangling_of_gpiod = true;
5181         if (!init_data) {
5182                 init_data = config->init_data;
5183                 rdev->dev.of_node = of_node_get(config->of_node);
5184         }
5185
5186         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5187         rdev->reg_data = config->driver_data;
5188         rdev->owner = regulator_desc->owner;
5189         rdev->desc = regulator_desc;
5190         if (config->regmap)
5191                 rdev->regmap = config->regmap;
5192         else if (dev_get_regmap(dev, NULL))
5193                 rdev->regmap = dev_get_regmap(dev, NULL);
5194         else if (dev->parent)
5195                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5196         INIT_LIST_HEAD(&rdev->consumer_list);
5197         INIT_LIST_HEAD(&rdev->list);
5198         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5199         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5200
5201         /* preform any regulator specific init */
5202         if (init_data && init_data->regulator_init) {
5203                 ret = init_data->regulator_init(rdev->reg_data);
5204                 if (ret < 0)
5205                         goto clean;
5206         }
5207
5208         if (config->ena_gpiod) {
5209                 mutex_lock(&regulator_list_mutex);
5210                 ret = regulator_ena_gpio_request(rdev, config);
5211                 mutex_unlock(&regulator_list_mutex);
5212                 if (ret != 0) {
5213                         rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5214                                  ret);
5215                         goto clean;
5216                 }
5217                 /* The regulator core took over the GPIO descriptor */
5218                 dangling_cfg_gpiod = false;
5219                 dangling_of_gpiod = false;
5220         }
5221
5222         /* register with sysfs */
5223         device_initialize(&rdev->dev);
5224         rdev->dev.class = &regulator_class;
5225         rdev->dev.parent = dev;
5226         dev_set_name(&rdev->dev, "regulator.%lu",
5227                     (unsigned long) atomic_inc_return(&regulator_no));
5228         dev_set_drvdata(&rdev->dev, rdev);
5229
5230         /* set regulator constraints */
5231         if (init_data)
5232                 constraints = &init_data->constraints;
5233
5234         if (init_data && init_data->supply_regulator)
5235                 rdev->supply_name = init_data->supply_regulator;
5236         else if (regulator_desc->supply_name)
5237                 rdev->supply_name = regulator_desc->supply_name;
5238
5239         /*
5240          * Attempt to resolve the regulator supply, if specified,
5241          * but don't return an error if we fail because we will try
5242          * to resolve it again later as more regulators are added.
5243          */
5244         if (regulator_resolve_supply(rdev))
5245                 rdev_dbg(rdev, "unable to resolve supply\n");
5246
5247         ret = set_machine_constraints(rdev, constraints);
5248         if (ret < 0)
5249                 goto wash;
5250
5251         mutex_lock(&regulator_list_mutex);
5252         ret = regulator_init_coupling(rdev);
5253         mutex_unlock(&regulator_list_mutex);
5254         if (ret < 0)
5255                 goto wash;
5256
5257         /* add consumers devices */
5258         if (init_data) {
5259                 mutex_lock(&regulator_list_mutex);
5260                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5261                         ret = set_consumer_device_supply(rdev,
5262                                 init_data->consumer_supplies[i].dev_name,
5263                                 init_data->consumer_supplies[i].supply);
5264                         if (ret < 0) {
5265                                 mutex_unlock(&regulator_list_mutex);
5266                                 dev_err(dev, "Failed to set supply %s\n",
5267                                         init_data->consumer_supplies[i].supply);
5268                                 goto unset_supplies;
5269                         }
5270                 }
5271                 mutex_unlock(&regulator_list_mutex);
5272         }
5273
5274         if (!rdev->desc->ops->get_voltage &&
5275             !rdev->desc->ops->list_voltage &&
5276             !rdev->desc->fixed_uV)
5277                 rdev->is_switch = true;
5278
5279         ret = device_add(&rdev->dev);
5280         if (ret != 0)
5281                 goto unset_supplies;
5282
5283         rdev_init_debugfs(rdev);
5284
5285         /* try to resolve regulators coupling since a new one was registered */
5286         mutex_lock(&regulator_list_mutex);
5287         regulator_resolve_coupling(rdev);
5288         mutex_unlock(&regulator_list_mutex);
5289
5290         /* try to resolve regulators supply since a new one was registered */
5291         class_for_each_device(&regulator_class, NULL, NULL,
5292                               regulator_register_resolve_supply);
5293         kfree(config);
5294         return rdev;
5295
5296 unset_supplies:
5297         mutex_lock(&regulator_list_mutex);
5298         unset_regulator_supplies(rdev);
5299         regulator_remove_coupling(rdev);
5300         mutex_unlock(&regulator_list_mutex);
5301 wash:
5302         kfree(rdev->coupling_desc.coupled_rdevs);
5303         mutex_lock(&regulator_list_mutex);
5304         regulator_ena_gpio_free(rdev);
5305         mutex_unlock(&regulator_list_mutex);
5306         put_device(&rdev->dev);
5307         rdev = NULL;
5308 clean:
5309         if (dangling_of_gpiod)
5310                 gpiod_put(config->ena_gpiod);
5311         kfree(rdev);
5312         kfree(config);
5313 rinse:
5314         if (dangling_cfg_gpiod)
5315                 gpiod_put(cfg->ena_gpiod);
5316         return ERR_PTR(ret);
5317 }
5318 EXPORT_SYMBOL_GPL(regulator_register);
5319
5320 /**
5321  * regulator_unregister - unregister regulator
5322  * @rdev: regulator to unregister
5323  *
5324  * Called by regulator drivers to unregister a regulator.
5325  */
5326 void regulator_unregister(struct regulator_dev *rdev)
5327 {
5328         if (rdev == NULL)
5329                 return;
5330
5331         if (rdev->supply) {
5332                 while (rdev->use_count--)
5333                         regulator_disable(rdev->supply);
5334                 regulator_put(rdev->supply);
5335         }
5336
5337         flush_work(&rdev->disable_work.work);
5338
5339         mutex_lock(&regulator_list_mutex);
5340
5341         debugfs_remove_recursive(rdev->debugfs);
5342         WARN_ON(rdev->open_count);
5343         regulator_remove_coupling(rdev);
5344         unset_regulator_supplies(rdev);
5345         list_del(&rdev->list);
5346         regulator_ena_gpio_free(rdev);
5347         device_unregister(&rdev->dev);
5348
5349         mutex_unlock(&regulator_list_mutex);
5350 }
5351 EXPORT_SYMBOL_GPL(regulator_unregister);
5352
5353 #ifdef CONFIG_SUSPEND
5354 /**
5355  * regulator_suspend - prepare regulators for system wide suspend
5356  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5357  *
5358  * Configure each regulator with it's suspend operating parameters for state.
5359  */
5360 static int regulator_suspend(struct device *dev)
5361 {
5362         struct regulator_dev *rdev = dev_to_rdev(dev);
5363         suspend_state_t state = pm_suspend_target_state;
5364         int ret;
5365
5366         regulator_lock(rdev);
5367         ret = suspend_set_state(rdev, state);
5368         regulator_unlock(rdev);
5369
5370         return ret;
5371 }
5372
5373 static int regulator_resume(struct device *dev)
5374 {
5375         suspend_state_t state = pm_suspend_target_state;
5376         struct regulator_dev *rdev = dev_to_rdev(dev);
5377         struct regulator_state *rstate;
5378         int ret = 0;
5379
5380         rstate = regulator_get_suspend_state(rdev, state);
5381         if (rstate == NULL)
5382                 return 0;
5383
5384         regulator_lock(rdev);
5385
5386         if (rdev->desc->ops->resume &&
5387             (rstate->enabled == ENABLE_IN_SUSPEND ||
5388              rstate->enabled == DISABLE_IN_SUSPEND))
5389                 ret = rdev->desc->ops->resume(rdev);
5390
5391         regulator_unlock(rdev);
5392
5393         return ret;
5394 }
5395 #else /* !CONFIG_SUSPEND */
5396
5397 #define regulator_suspend       NULL
5398 #define regulator_resume        NULL
5399
5400 #endif /* !CONFIG_SUSPEND */
5401
5402 #ifdef CONFIG_PM
5403 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5404         .suspend        = regulator_suspend,
5405         .resume         = regulator_resume,
5406 };
5407 #endif
5408
5409 struct class regulator_class = {
5410         .name = "regulator",
5411         .dev_release = regulator_dev_release,
5412         .dev_groups = regulator_dev_groups,
5413 #ifdef CONFIG_PM
5414         .pm = &regulator_pm_ops,
5415 #endif
5416 };
5417 /**
5418  * regulator_has_full_constraints - the system has fully specified constraints
5419  *
5420  * Calling this function will cause the regulator API to disable all
5421  * regulators which have a zero use count and don't have an always_on
5422  * constraint in a late_initcall.
5423  *
5424  * The intention is that this will become the default behaviour in a
5425  * future kernel release so users are encouraged to use this facility
5426  * now.
5427  */
5428 void regulator_has_full_constraints(void)
5429 {
5430         has_full_constraints = 1;
5431 }
5432 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5433
5434 /**
5435  * rdev_get_drvdata - get rdev regulator driver data
5436  * @rdev: regulator
5437  *
5438  * Get rdev regulator driver private data. This call can be used in the
5439  * regulator driver context.
5440  */
5441 void *rdev_get_drvdata(struct regulator_dev *rdev)
5442 {
5443         return rdev->reg_data;
5444 }
5445 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5446
5447 /**
5448  * regulator_get_drvdata - get regulator driver data
5449  * @regulator: regulator
5450  *
5451  * Get regulator driver private data. This call can be used in the consumer
5452  * driver context when non API regulator specific functions need to be called.
5453  */
5454 void *regulator_get_drvdata(struct regulator *regulator)
5455 {
5456         return regulator->rdev->reg_data;
5457 }
5458 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5459
5460 /**
5461  * regulator_set_drvdata - set regulator driver data
5462  * @regulator: regulator
5463  * @data: data
5464  */
5465 void regulator_set_drvdata(struct regulator *regulator, void *data)
5466 {
5467         regulator->rdev->reg_data = data;
5468 }
5469 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5470
5471 /**
5472  * regulator_get_id - get regulator ID
5473  * @rdev: regulator
5474  */
5475 int rdev_get_id(struct regulator_dev *rdev)
5476 {
5477         return rdev->desc->id;
5478 }
5479 EXPORT_SYMBOL_GPL(rdev_get_id);
5480
5481 struct device *rdev_get_dev(struct regulator_dev *rdev)
5482 {
5483         return &rdev->dev;
5484 }
5485 EXPORT_SYMBOL_GPL(rdev_get_dev);
5486
5487 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5488 {
5489         return rdev->regmap;
5490 }
5491 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5492
5493 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5494 {
5495         return reg_init_data->driver_data;
5496 }
5497 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5498
5499 #ifdef CONFIG_DEBUG_FS
5500 static int supply_map_show(struct seq_file *sf, void *data)
5501 {
5502         struct regulator_map *map;
5503
5504         list_for_each_entry(map, &regulator_map_list, list) {
5505                 seq_printf(sf, "%s -> %s.%s\n",
5506                                 rdev_get_name(map->regulator), map->dev_name,
5507                                 map->supply);
5508         }
5509
5510         return 0;
5511 }
5512 DEFINE_SHOW_ATTRIBUTE(supply_map);
5513
5514 struct summary_data {
5515         struct seq_file *s;
5516         struct regulator_dev *parent;
5517         int level;
5518 };
5519
5520 static void regulator_summary_show_subtree(struct seq_file *s,
5521                                            struct regulator_dev *rdev,
5522                                            int level);
5523
5524 static int regulator_summary_show_children(struct device *dev, void *data)
5525 {
5526         struct regulator_dev *rdev = dev_to_rdev(dev);
5527         struct summary_data *summary_data = data;
5528
5529         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5530                 regulator_summary_show_subtree(summary_data->s, rdev,
5531                                                summary_data->level + 1);
5532
5533         return 0;
5534 }
5535
5536 static void regulator_summary_show_subtree(struct seq_file *s,
5537                                            struct regulator_dev *rdev,
5538                                            int level)
5539 {
5540         struct regulation_constraints *c;
5541         struct regulator *consumer;
5542         struct summary_data summary_data;
5543         unsigned int opmode;
5544
5545         if (!rdev)
5546                 return;
5547
5548         opmode = _regulator_get_mode_unlocked(rdev);
5549         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5550                    level * 3 + 1, "",
5551                    30 - level * 3, rdev_get_name(rdev),
5552                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5553                    regulator_opmode_to_str(opmode));
5554
5555         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5556         seq_printf(s, "%5dmA ",
5557                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5558
5559         c = rdev->constraints;
5560         if (c) {
5561                 switch (rdev->desc->type) {
5562                 case REGULATOR_VOLTAGE:
5563                         seq_printf(s, "%5dmV %5dmV ",
5564                                    c->min_uV / 1000, c->max_uV / 1000);
5565                         break;
5566                 case REGULATOR_CURRENT:
5567                         seq_printf(s, "%5dmA %5dmA ",
5568                                    c->min_uA / 1000, c->max_uA / 1000);
5569                         break;
5570                 }
5571         }
5572
5573         seq_puts(s, "\n");
5574
5575         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5576                 if (consumer->dev && consumer->dev->class == &regulator_class)
5577                         continue;
5578
5579                 seq_printf(s, "%*s%-*s ",
5580                            (level + 1) * 3 + 1, "",
5581                            30 - (level + 1) * 3,
5582                            consumer->supply_name ? consumer->supply_name :
5583                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5584
5585                 switch (rdev->desc->type) {
5586                 case REGULATOR_VOLTAGE:
5587                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5588                                    consumer->enable_count,
5589                                    consumer->uA_load / 1000,
5590                                    consumer->uA_load && !consumer->enable_count ?
5591                                    '*' : ' ',
5592                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5593                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5594                         break;
5595                 case REGULATOR_CURRENT:
5596                         break;
5597                 }
5598
5599                 seq_puts(s, "\n");
5600         }
5601
5602         summary_data.s = s;
5603         summary_data.level = level;
5604         summary_data.parent = rdev;
5605
5606         class_for_each_device(&regulator_class, NULL, &summary_data,
5607                               regulator_summary_show_children);
5608 }
5609
5610 struct summary_lock_data {
5611         struct ww_acquire_ctx *ww_ctx;
5612         struct regulator_dev **new_contended_rdev;
5613         struct regulator_dev **old_contended_rdev;
5614 };
5615
5616 static int regulator_summary_lock_one(struct device *dev, void *data)
5617 {
5618         struct regulator_dev *rdev = dev_to_rdev(dev);
5619         struct summary_lock_data *lock_data = data;
5620         int ret = 0;
5621
5622         if (rdev != *lock_data->old_contended_rdev) {
5623                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5624
5625                 if (ret == -EDEADLK)
5626                         *lock_data->new_contended_rdev = rdev;
5627                 else
5628                         WARN_ON_ONCE(ret);
5629         } else {
5630                 *lock_data->old_contended_rdev = NULL;
5631         }
5632
5633         return ret;
5634 }
5635
5636 static int regulator_summary_unlock_one(struct device *dev, void *data)
5637 {
5638         struct regulator_dev *rdev = dev_to_rdev(dev);
5639         struct summary_lock_data *lock_data = data;
5640
5641         if (lock_data) {
5642                 if (rdev == *lock_data->new_contended_rdev)
5643                         return -EDEADLK;
5644         }
5645
5646         regulator_unlock(rdev);
5647
5648         return 0;
5649 }
5650
5651 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5652                                       struct regulator_dev **new_contended_rdev,
5653                                       struct regulator_dev **old_contended_rdev)
5654 {
5655         struct summary_lock_data lock_data;
5656         int ret;
5657
5658         lock_data.ww_ctx = ww_ctx;
5659         lock_data.new_contended_rdev = new_contended_rdev;
5660         lock_data.old_contended_rdev = old_contended_rdev;
5661
5662         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5663                                     regulator_summary_lock_one);
5664         if (ret)
5665                 class_for_each_device(&regulator_class, NULL, &lock_data,
5666                                       regulator_summary_unlock_one);
5667
5668         return ret;
5669 }
5670
5671 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5672 {
5673         struct regulator_dev *new_contended_rdev = NULL;
5674         struct regulator_dev *old_contended_rdev = NULL;
5675         int err;
5676
5677         mutex_lock(&regulator_list_mutex);
5678
5679         ww_acquire_init(ww_ctx, &regulator_ww_class);
5680
5681         do {
5682                 if (new_contended_rdev) {
5683                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5684                         old_contended_rdev = new_contended_rdev;
5685                         old_contended_rdev->ref_cnt++;
5686                 }
5687
5688                 err = regulator_summary_lock_all(ww_ctx,
5689                                                  &new_contended_rdev,
5690                                                  &old_contended_rdev);
5691
5692                 if (old_contended_rdev)
5693                         regulator_unlock(old_contended_rdev);
5694
5695         } while (err == -EDEADLK);
5696
5697         ww_acquire_done(ww_ctx);
5698 }
5699
5700 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5701 {
5702         class_for_each_device(&regulator_class, NULL, NULL,
5703                               regulator_summary_unlock_one);
5704         ww_acquire_fini(ww_ctx);
5705
5706         mutex_unlock(&regulator_list_mutex);
5707 }
5708
5709 static int regulator_summary_show_roots(struct device *dev, void *data)
5710 {
5711         struct regulator_dev *rdev = dev_to_rdev(dev);
5712         struct seq_file *s = data;
5713
5714         if (!rdev->supply)
5715                 regulator_summary_show_subtree(s, rdev, 0);
5716
5717         return 0;
5718 }
5719
5720 static int regulator_summary_show(struct seq_file *s, void *data)
5721 {
5722         struct ww_acquire_ctx ww_ctx;
5723
5724         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5725         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5726
5727         regulator_summary_lock(&ww_ctx);
5728
5729         class_for_each_device(&regulator_class, NULL, s,
5730                               regulator_summary_show_roots);
5731
5732         regulator_summary_unlock(&ww_ctx);
5733
5734         return 0;
5735 }
5736 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5737 #endif /* CONFIG_DEBUG_FS */
5738
5739 static int __init regulator_init(void)
5740 {
5741         int ret;
5742
5743         ret = class_register(&regulator_class);
5744
5745         debugfs_root = debugfs_create_dir("regulator", NULL);
5746         if (!debugfs_root)
5747                 pr_warn("regulator: Failed to create debugfs directory\n");
5748
5749 #ifdef CONFIG_DEBUG_FS
5750         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5751                             &supply_map_fops);
5752
5753         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5754                             NULL, &regulator_summary_fops);
5755 #endif
5756         regulator_dummy_init();
5757
5758         regulator_coupler_register(&generic_regulator_coupler);
5759
5760         return ret;
5761 }
5762
5763 /* init early to allow our consumers to complete system booting */
5764 core_initcall(regulator_init);
5765
5766 static int regulator_late_cleanup(struct device *dev, void *data)
5767 {
5768         struct regulator_dev *rdev = dev_to_rdev(dev);
5769         const struct regulator_ops *ops = rdev->desc->ops;
5770         struct regulation_constraints *c = rdev->constraints;
5771         int enabled, ret;
5772
5773         if (c && c->always_on)
5774                 return 0;
5775
5776         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5777                 return 0;
5778
5779         regulator_lock(rdev);
5780
5781         if (rdev->use_count)
5782                 goto unlock;
5783
5784         /* If we can't read the status assume it's on. */
5785         if (ops->is_enabled)
5786                 enabled = ops->is_enabled(rdev);
5787         else
5788                 enabled = 1;
5789
5790         if (!enabled)
5791                 goto unlock;
5792
5793         if (have_full_constraints()) {
5794                 /* We log since this may kill the system if it goes
5795                  * wrong. */
5796                 rdev_info(rdev, "disabling\n");
5797                 ret = _regulator_do_disable(rdev);
5798                 if (ret != 0)
5799                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5800         } else {
5801                 /* The intention is that in future we will
5802                  * assume that full constraints are provided
5803                  * so warn even if we aren't going to do
5804                  * anything here.
5805                  */
5806                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5807         }
5808
5809 unlock:
5810         regulator_unlock(rdev);
5811
5812         return 0;
5813 }
5814
5815 static void regulator_init_complete_work_function(struct work_struct *work)
5816 {
5817         /*
5818          * Regulators may had failed to resolve their input supplies
5819          * when were registered, either because the input supply was
5820          * not registered yet or because its parent device was not
5821          * bound yet. So attempt to resolve the input supplies for
5822          * pending regulators before trying to disable unused ones.
5823          */
5824         class_for_each_device(&regulator_class, NULL, NULL,
5825                               regulator_register_resolve_supply);
5826
5827         /* If we have a full configuration then disable any regulators
5828          * we have permission to change the status for and which are
5829          * not in use or always_on.  This is effectively the default
5830          * for DT and ACPI as they have full constraints.
5831          */
5832         class_for_each_device(&regulator_class, NULL, NULL,
5833                               regulator_late_cleanup);
5834 }
5835
5836 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5837                             regulator_init_complete_work_function);
5838
5839 static int __init regulator_init_complete(void)
5840 {
5841         /*
5842          * Since DT doesn't provide an idiomatic mechanism for
5843          * enabling full constraints and since it's much more natural
5844          * with DT to provide them just assume that a DT enabled
5845          * system has full constraints.
5846          */
5847         if (of_have_populated_dt())
5848                 has_full_constraints = true;
5849
5850         /*
5851          * We punt completion for an arbitrary amount of time since
5852          * systems like distros will load many drivers from userspace
5853          * so consumers might not always be ready yet, this is
5854          * particularly an issue with laptops where this might bounce
5855          * the display off then on.  Ideally we'd get a notification
5856          * from userspace when this happens but we don't so just wait
5857          * a bit and hope we waited long enough.  It'd be better if
5858          * we'd only do this on systems that need it, and a kernel
5859          * command line option might be useful.
5860          */
5861         schedule_delayed_work(&regulator_init_complete_work,
5862                               msecs_to_jiffies(30000));
5863
5864         return 0;
5865 }
5866 late_initcall_sync(regulator_init_complete);