Merge tag 'm68knommu-for-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113         if (rdev->constraints && rdev->constraints->name)
114                 return rdev->constraints->name;
115         else if (rdev->desc->name)
116                 return rdev->desc->name;
117         else
118                 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123         return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128         if (!rdev->constraints) {
129                 rdev_err(rdev, "no constraints\n");
130                 return false;
131         }
132
133         if (rdev->constraints->valid_ops_mask & ops)
134                 return true;
135
136         return false;
137 }
138
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:               regulator source
142  * @ww_ctx:             w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151                                         struct ww_acquire_ctx *ww_ctx)
152 {
153         bool lock = false;
154         int ret = 0;
155
156         mutex_lock(&regulator_nesting_mutex);
157
158         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159                 if (rdev->mutex_owner == current)
160                         rdev->ref_cnt++;
161                 else
162                         lock = true;
163
164                 if (lock) {
165                         mutex_unlock(&regulator_nesting_mutex);
166                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167                         mutex_lock(&regulator_nesting_mutex);
168                 }
169         } else {
170                 lock = true;
171         }
172
173         if (lock && ret != -EDEADLK) {
174                 rdev->ref_cnt++;
175                 rdev->mutex_owner = current;
176         }
177
178         mutex_unlock(&regulator_nesting_mutex);
179
180         return ret;
181 }
182
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:               regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195         regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221         struct regulator_dev *c_rdev;
222         int i;
223
224         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227                 if (rdev->supply->rdev == c_rdev)
228                         return true;
229         }
230
231         return false;
232 }
233
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235                                        unsigned int n_coupled)
236 {
237         struct regulator_dev *c_rdev, *supply_rdev;
238         int i, supply_n_coupled;
239
240         for (i = n_coupled; i > 0; i--) {
241                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243                 if (!c_rdev)
244                         continue;
245
246                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247                         supply_rdev = c_rdev->supply->rdev;
248                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250                         regulator_unlock_recursive(supply_rdev,
251                                                    supply_n_coupled);
252                 }
253
254                 regulator_unlock(c_rdev);
255         }
256 }
257
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259                                     struct regulator_dev **new_contended_rdev,
260                                     struct regulator_dev **old_contended_rdev,
261                                     struct ww_acquire_ctx *ww_ctx)
262 {
263         struct regulator_dev *c_rdev;
264         int i, err;
265
266         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269                 if (!c_rdev)
270                         continue;
271
272                 if (c_rdev != *old_contended_rdev) {
273                         err = regulator_lock_nested(c_rdev, ww_ctx);
274                         if (err) {
275                                 if (err == -EDEADLK) {
276                                         *new_contended_rdev = c_rdev;
277                                         goto err_unlock;
278                                 }
279
280                                 /* shouldn't happen */
281                                 WARN_ON_ONCE(err != -EALREADY);
282                         }
283                 } else {
284                         *old_contended_rdev = NULL;
285                 }
286
287                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288                         err = regulator_lock_recursive(c_rdev->supply->rdev,
289                                                        new_contended_rdev,
290                                                        old_contended_rdev,
291                                                        ww_ctx);
292                         if (err) {
293                                 regulator_unlock(c_rdev);
294                                 goto err_unlock;
295                         }
296                 }
297         }
298
299         return 0;
300
301 err_unlock:
302         regulator_unlock_recursive(rdev, i);
303
304         return err;
305 }
306
307 /**
308  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309  *                              regulators
310  * @rdev:                       regulator source
311  * @ww_ctx:                     w/w mutex acquire context
312  *
313  * Unlock all regulators related with rdev by coupling or supplying.
314  */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316                                        struct ww_acquire_ctx *ww_ctx)
317 {
318         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319         ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324  * @rdev:                       regulator source
325  * @ww_ctx:                     w/w mutex acquire context
326  *
327  * This function as a wrapper on regulator_lock_recursive(), which locks
328  * all regulators related with rdev by coupling or supplying.
329  */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331                                      struct ww_acquire_ctx *ww_ctx)
332 {
333         struct regulator_dev *new_contended_rdev = NULL;
334         struct regulator_dev *old_contended_rdev = NULL;
335         int err;
336
337         mutex_lock(&regulator_list_mutex);
338
339         ww_acquire_init(ww_ctx, &regulator_ww_class);
340
341         do {
342                 if (new_contended_rdev) {
343                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344                         old_contended_rdev = new_contended_rdev;
345                         old_contended_rdev->ref_cnt++;
346                 }
347
348                 err = regulator_lock_recursive(rdev,
349                                                &new_contended_rdev,
350                                                &old_contended_rdev,
351                                                ww_ctx);
352
353                 if (old_contended_rdev)
354                         regulator_unlock(old_contended_rdev);
355
356         } while (err == -EDEADLK);
357
358         ww_acquire_done(ww_ctx);
359
360         mutex_unlock(&regulator_list_mutex);
361 }
362
363 /**
364  * of_get_child_regulator - get a child regulator device node
365  * based on supply name
366  * @parent: Parent device node
367  * @prop_name: Combination regulator supply name and "-supply"
368  *
369  * Traverse all child nodes.
370  * Extract the child regulator device node corresponding to the supply name.
371  * returns the device node corresponding to the regulator if found, else
372  * returns NULL.
373  */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375                                                   const char *prop_name)
376 {
377         struct device_node *regnode = NULL;
378         struct device_node *child = NULL;
379
380         for_each_child_of_node(parent, child) {
381                 regnode = of_parse_phandle(child, prop_name, 0);
382
383                 if (!regnode) {
384                         regnode = of_get_child_regulator(child, prop_name);
385                         if (regnode)
386                                 goto err_node_put;
387                 } else {
388                         goto err_node_put;
389                 }
390         }
391         return NULL;
392
393 err_node_put:
394         of_node_put(child);
395         return regnode;
396 }
397
398 /**
399  * of_get_regulator - get a regulator device node based on supply name
400  * @dev: Device pointer for the consumer (of regulator) device
401  * @supply: regulator supply name
402  *
403  * Extract the regulator device node corresponding to the supply name.
404  * returns the device node corresponding to the regulator if found, else
405  * returns NULL.
406  */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409         struct device_node *regnode = NULL;
410         char prop_name[64]; /* 64 is max size of property name */
411
412         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414         snprintf(prop_name, 64, "%s-supply", supply);
415         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417         if (!regnode) {
418                 regnode = of_get_child_regulator(dev->of_node, prop_name);
419                 if (regnode)
420                         return regnode;
421
422                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423                                 prop_name, dev->of_node);
424                 return NULL;
425         }
426         return regnode;
427 }
428
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431                             int *min_uV, int *max_uV)
432 {
433         BUG_ON(*min_uV > *max_uV);
434
435         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436                 rdev_err(rdev, "voltage operation not allowed\n");
437                 return -EPERM;
438         }
439
440         if (*max_uV > rdev->constraints->max_uV)
441                 *max_uV = rdev->constraints->max_uV;
442         if (*min_uV < rdev->constraints->min_uV)
443                 *min_uV = rdev->constraints->min_uV;
444
445         if (*min_uV > *max_uV) {
446                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447                          *min_uV, *max_uV);
448                 return -EINVAL;
449         }
450
451         return 0;
452 }
453
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461  * regulator consumers
462  */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464                               int *min_uV, int *max_uV,
465                               suspend_state_t state)
466 {
467         struct regulator *regulator;
468         struct regulator_voltage *voltage;
469
470         list_for_each_entry(regulator, &rdev->consumer_list, list) {
471                 voltage = &regulator->voltage[state];
472                 /*
473                  * Assume consumers that didn't say anything are OK
474                  * with anything in the constraint range.
475                  */
476                 if (!voltage->min_uV && !voltage->max_uV)
477                         continue;
478
479                 if (*max_uV > voltage->max_uV)
480                         *max_uV = voltage->max_uV;
481                 if (*min_uV < voltage->min_uV)
482                         *min_uV = voltage->min_uV;
483         }
484
485         if (*min_uV > *max_uV) {
486                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487                         *min_uV, *max_uV);
488                 return -EINVAL;
489         }
490
491         return 0;
492 }
493
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496                                         int *min_uA, int *max_uA)
497 {
498         BUG_ON(*min_uA > *max_uA);
499
500         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501                 rdev_err(rdev, "current operation not allowed\n");
502                 return -EPERM;
503         }
504
505         if (*max_uA > rdev->constraints->max_uA)
506                 *max_uA = rdev->constraints->max_uA;
507         if (*min_uA < rdev->constraints->min_uA)
508                 *min_uA = rdev->constraints->min_uA;
509
510         if (*min_uA > *max_uA) {
511                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512                          *min_uA, *max_uA);
513                 return -EINVAL;
514         }
515
516         return 0;
517 }
518
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521                                     unsigned int *mode)
522 {
523         switch (*mode) {
524         case REGULATOR_MODE_FAST:
525         case REGULATOR_MODE_NORMAL:
526         case REGULATOR_MODE_IDLE:
527         case REGULATOR_MODE_STANDBY:
528                 break;
529         default:
530                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531                 return -EINVAL;
532         }
533
534         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535                 rdev_err(rdev, "mode operation not allowed\n");
536                 return -EPERM;
537         }
538
539         /* The modes are bitmasks, the most power hungry modes having
540          * the lowest values. If the requested mode isn't supported
541          * try higher modes. */
542         while (*mode) {
543                 if (rdev->constraints->valid_modes_mask & *mode)
544                         return 0;
545                 *mode /= 2;
546         }
547
548         return -EINVAL;
549 }
550
551 static inline struct regulator_state *
552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554         if (rdev->constraints == NULL)
555                 return NULL;
556
557         switch (state) {
558         case PM_SUSPEND_STANDBY:
559                 return &rdev->constraints->state_standby;
560         case PM_SUSPEND_MEM:
561                 return &rdev->constraints->state_mem;
562         case PM_SUSPEND_MAX:
563                 return &rdev->constraints->state_disk;
564         default:
565                 return NULL;
566         }
567 }
568
569 static const struct regulator_state *
570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572         const struct regulator_state *rstate;
573
574         rstate = regulator_get_suspend_state(rdev, state);
575         if (rstate == NULL)
576                 return NULL;
577
578         /* If we have no suspend mode configuration don't set anything;
579          * only warn if the driver implements set_suspend_voltage or
580          * set_suspend_mode callback.
581          */
582         if (rstate->enabled != ENABLE_IN_SUSPEND &&
583             rstate->enabled != DISABLE_IN_SUSPEND) {
584                 if (rdev->desc->ops->set_suspend_voltage ||
585                     rdev->desc->ops->set_suspend_mode)
586                         rdev_warn(rdev, "No configuration\n");
587                 return NULL;
588         }
589
590         return rstate;
591 }
592
593 static ssize_t regulator_uV_show(struct device *dev,
594                                 struct device_attribute *attr, char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597         int uV;
598
599         regulator_lock(rdev);
600         uV = regulator_get_voltage_rdev(rdev);
601         regulator_unlock(rdev);
602
603         if (uV < 0)
604                 return uV;
605         return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608
609 static ssize_t regulator_uA_show(struct device *dev,
610                                 struct device_attribute *attr, char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617
618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619                          char *buf)
620 {
621         struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623         return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626
627 static const char *regulator_opmode_to_str(int mode)
628 {
629         switch (mode) {
630         case REGULATOR_MODE_FAST:
631                 return "fast";
632         case REGULATOR_MODE_NORMAL:
633                 return "normal";
634         case REGULATOR_MODE_IDLE:
635                 return "idle";
636         case REGULATOR_MODE_STANDBY:
637                 return "standby";
638         }
639         return "unknown";
640 }
641
642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646
647 static ssize_t regulator_opmode_show(struct device *dev,
648                                     struct device_attribute *attr, char *buf)
649 {
650         struct regulator_dev *rdev = dev_get_drvdata(dev);
651
652         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655
656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658         if (state > 0)
659                 return sprintf(buf, "enabled\n");
660         else if (state == 0)
661                 return sprintf(buf, "disabled\n");
662         else
663                 return sprintf(buf, "unknown\n");
664 }
665
666 static ssize_t regulator_state_show(struct device *dev,
667                                    struct device_attribute *attr, char *buf)
668 {
669         struct regulator_dev *rdev = dev_get_drvdata(dev);
670         ssize_t ret;
671
672         regulator_lock(rdev);
673         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674         regulator_unlock(rdev);
675
676         return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679
680 static ssize_t regulator_status_show(struct device *dev,
681                                    struct device_attribute *attr, char *buf)
682 {
683         struct regulator_dev *rdev = dev_get_drvdata(dev);
684         int status;
685         char *label;
686
687         status = rdev->desc->ops->get_status(rdev);
688         if (status < 0)
689                 return status;
690
691         switch (status) {
692         case REGULATOR_STATUS_OFF:
693                 label = "off";
694                 break;
695         case REGULATOR_STATUS_ON:
696                 label = "on";
697                 break;
698         case REGULATOR_STATUS_ERROR:
699                 label = "error";
700                 break;
701         case REGULATOR_STATUS_FAST:
702                 label = "fast";
703                 break;
704         case REGULATOR_STATUS_NORMAL:
705                 label = "normal";
706                 break;
707         case REGULATOR_STATUS_IDLE:
708                 label = "idle";
709                 break;
710         case REGULATOR_STATUS_STANDBY:
711                 label = "standby";
712                 break;
713         case REGULATOR_STATUS_BYPASS:
714                 label = "bypass";
715                 break;
716         case REGULATOR_STATUS_UNDEFINED:
717                 label = "undefined";
718                 break;
719         default:
720                 return -ERANGE;
721         }
722
723         return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726
727 static ssize_t regulator_min_uA_show(struct device *dev,
728                                     struct device_attribute *attr, char *buf)
729 {
730         struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732         if (!rdev->constraints)
733                 return sprintf(buf, "constraint not defined\n");
734
735         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738
739 static ssize_t regulator_max_uA_show(struct device *dev,
740                                     struct device_attribute *attr, char *buf)
741 {
742         struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744         if (!rdev->constraints)
745                 return sprintf(buf, "constraint not defined\n");
746
747         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750
751 static ssize_t regulator_min_uV_show(struct device *dev,
752                                     struct device_attribute *attr, char *buf)
753 {
754         struct regulator_dev *rdev = dev_get_drvdata(dev);
755
756         if (!rdev->constraints)
757                 return sprintf(buf, "constraint not defined\n");
758
759         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762
763 static ssize_t regulator_max_uV_show(struct device *dev,
764                                     struct device_attribute *attr, char *buf)
765 {
766         struct regulator_dev *rdev = dev_get_drvdata(dev);
767
768         if (!rdev->constraints)
769                 return sprintf(buf, "constraint not defined\n");
770
771         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774
775 static ssize_t regulator_total_uA_show(struct device *dev,
776                                       struct device_attribute *attr, char *buf)
777 {
778         struct regulator_dev *rdev = dev_get_drvdata(dev);
779         struct regulator *regulator;
780         int uA = 0;
781
782         regulator_lock(rdev);
783         list_for_each_entry(regulator, &rdev->consumer_list, list) {
784                 if (regulator->enable_count)
785                         uA += regulator->uA_load;
786         }
787         regulator_unlock(rdev);
788         return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791
792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793                               char *buf)
794 {
795         struct regulator_dev *rdev = dev_get_drvdata(dev);
796         return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799
800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801                          char *buf)
802 {
803         struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805         switch (rdev->desc->type) {
806         case REGULATOR_VOLTAGE:
807                 return sprintf(buf, "voltage\n");
808         case REGULATOR_CURRENT:
809                 return sprintf(buf, "current\n");
810         }
811         return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814
815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816                                 struct device_attribute *attr, char *buf)
817 {
818         struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823                 regulator_suspend_mem_uV_show, NULL);
824
825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826                                 struct device_attribute *attr, char *buf)
827 {
828         struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833                 regulator_suspend_disk_uV_show, NULL);
834
835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836                                 struct device_attribute *attr, char *buf)
837 {
838         struct regulator_dev *rdev = dev_get_drvdata(dev);
839
840         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843                 regulator_suspend_standby_uV_show, NULL);
844
845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846                                 struct device_attribute *attr, char *buf)
847 {
848         struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850         return regulator_print_opmode(buf,
851                 rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854                 regulator_suspend_mem_mode_show, NULL);
855
856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857                                 struct device_attribute *attr, char *buf)
858 {
859         struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861         return regulator_print_opmode(buf,
862                 rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865                 regulator_suspend_disk_mode_show, NULL);
866
867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868                                 struct device_attribute *attr, char *buf)
869 {
870         struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872         return regulator_print_opmode(buf,
873                 rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876                 regulator_suspend_standby_mode_show, NULL);
877
878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879                                    struct device_attribute *attr, char *buf)
880 {
881         struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883         return regulator_print_state(buf,
884                         rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887                 regulator_suspend_mem_state_show, NULL);
888
889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890                                    struct device_attribute *attr, char *buf)
891 {
892         struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894         return regulator_print_state(buf,
895                         rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898                 regulator_suspend_disk_state_show, NULL);
899
900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901                                    struct device_attribute *attr, char *buf)
902 {
903         struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905         return regulator_print_state(buf,
906                         rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909                 regulator_suspend_standby_state_show, NULL);
910
911 static ssize_t regulator_bypass_show(struct device *dev,
912                                      struct device_attribute *attr, char *buf)
913 {
914         struct regulator_dev *rdev = dev_get_drvdata(dev);
915         const char *report;
916         bool bypass;
917         int ret;
918
919         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920
921         if (ret != 0)
922                 report = "unknown";
923         else if (bypass)
924                 report = "enabled";
925         else
926                 report = "disabled";
927
928         return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931                    regulator_bypass_show, NULL);
932
933 /* Calculate the new optimum regulator operating mode based on the new total
934  * consumer load. All locks held by caller */
935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937         struct regulator *sibling;
938         int current_uA = 0, output_uV, input_uV, err;
939         unsigned int mode;
940
941         /*
942          * first check to see if we can set modes at all, otherwise just
943          * tell the consumer everything is OK.
944          */
945         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946                 rdev_dbg(rdev, "DRMS operation not allowed\n");
947                 return 0;
948         }
949
950         if (!rdev->desc->ops->get_optimum_mode &&
951             !rdev->desc->ops->set_load)
952                 return 0;
953
954         if (!rdev->desc->ops->set_mode &&
955             !rdev->desc->ops->set_load)
956                 return -EINVAL;
957
958         /* calc total requested load */
959         list_for_each_entry(sibling, &rdev->consumer_list, list) {
960                 if (sibling->enable_count)
961                         current_uA += sibling->uA_load;
962         }
963
964         current_uA += rdev->constraints->system_load;
965
966         if (rdev->desc->ops->set_load) {
967                 /* set the optimum mode for our new total regulator load */
968                 err = rdev->desc->ops->set_load(rdev, current_uA);
969                 if (err < 0)
970                         rdev_err(rdev, "failed to set load %d: %pe\n",
971                                  current_uA, ERR_PTR(err));
972         } else {
973                 /* get output voltage */
974                 output_uV = regulator_get_voltage_rdev(rdev);
975                 if (output_uV <= 0) {
976                         rdev_err(rdev, "invalid output voltage found\n");
977                         return -EINVAL;
978                 }
979
980                 /* get input voltage */
981                 input_uV = 0;
982                 if (rdev->supply)
983                         input_uV = regulator_get_voltage(rdev->supply);
984                 if (input_uV <= 0)
985                         input_uV = rdev->constraints->input_uV;
986                 if (input_uV <= 0) {
987                         rdev_err(rdev, "invalid input voltage found\n");
988                         return -EINVAL;
989                 }
990
991                 /* now get the optimum mode for our new total regulator load */
992                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993                                                          output_uV, current_uA);
994
995                 /* check the new mode is allowed */
996                 err = regulator_mode_constrain(rdev, &mode);
997                 if (err < 0) {
998                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1000                         return err;
1001                 }
1002
1003                 err = rdev->desc->ops->set_mode(rdev, mode);
1004                 if (err < 0)
1005                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006                                  mode, ERR_PTR(err));
1007         }
1008
1009         return err;
1010 }
1011
1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013                                const struct regulator_state *rstate)
1014 {
1015         int ret = 0;
1016
1017         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018                 rdev->desc->ops->set_suspend_enable)
1019                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1020         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021                 rdev->desc->ops->set_suspend_disable)
1022                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1023         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024                 ret = 0;
1025
1026         if (ret < 0) {
1027                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028                 return ret;
1029         }
1030
1031         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033                 if (ret < 0) {
1034                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035                         return ret;
1036                 }
1037         }
1038
1039         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041                 if (ret < 0) {
1042                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043                         return ret;
1044                 }
1045         }
1046
1047         return ret;
1048 }
1049
1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052         const struct regulator_state *rstate;
1053
1054         rstate = regulator_get_suspend_state_check(rdev,
1055                         rdev->constraints->initial_state);
1056         if (!rstate)
1057                 return 0;
1058
1059         return __suspend_set_state(rdev, rstate);
1060 }
1061
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065         struct regulation_constraints *constraints = rdev->constraints;
1066         char buf[160] = "";
1067         size_t len = sizeof(buf) - 1;
1068         int count = 0;
1069         int ret;
1070
1071         if (constraints->min_uV && constraints->max_uV) {
1072                 if (constraints->min_uV == constraints->max_uV)
1073                         count += scnprintf(buf + count, len - count, "%d mV ",
1074                                            constraints->min_uV / 1000);
1075                 else
1076                         count += scnprintf(buf + count, len - count,
1077                                            "%d <--> %d mV ",
1078                                            constraints->min_uV / 1000,
1079                                            constraints->max_uV / 1000);
1080         }
1081
1082         if (!constraints->min_uV ||
1083             constraints->min_uV != constraints->max_uV) {
1084                 ret = regulator_get_voltage_rdev(rdev);
1085                 if (ret > 0)
1086                         count += scnprintf(buf + count, len - count,
1087                                            "at %d mV ", ret / 1000);
1088         }
1089
1090         if (constraints->uV_offset)
1091                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1092                                    constraints->uV_offset / 1000);
1093
1094         if (constraints->min_uA && constraints->max_uA) {
1095                 if (constraints->min_uA == constraints->max_uA)
1096                         count += scnprintf(buf + count, len - count, "%d mA ",
1097                                            constraints->min_uA / 1000);
1098                 else
1099                         count += scnprintf(buf + count, len - count,
1100                                            "%d <--> %d mA ",
1101                                            constraints->min_uA / 1000,
1102                                            constraints->max_uA / 1000);
1103         }
1104
1105         if (!constraints->min_uA ||
1106             constraints->min_uA != constraints->max_uA) {
1107                 ret = _regulator_get_current_limit(rdev);
1108                 if (ret > 0)
1109                         count += scnprintf(buf + count, len - count,
1110                                            "at %d mA ", ret / 1000);
1111         }
1112
1113         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114                 count += scnprintf(buf + count, len - count, "fast ");
1115         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116                 count += scnprintf(buf + count, len - count, "normal ");
1117         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118                 count += scnprintf(buf + count, len - count, "idle ");
1119         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120                 count += scnprintf(buf + count, len - count, "standby ");
1121
1122         if (!count)
1123                 count = scnprintf(buf, len, "no parameters");
1124         else
1125                 --count;
1126
1127         count += scnprintf(buf + count, len - count, ", %s",
1128                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129
1130         rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135
1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138         struct regulation_constraints *constraints = rdev->constraints;
1139
1140         print_constraints_debug(rdev);
1141
1142         if ((constraints->min_uV != constraints->max_uV) &&
1143             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144                 rdev_warn(rdev,
1145                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147
1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149         struct regulation_constraints *constraints)
1150 {
1151         const struct regulator_ops *ops = rdev->desc->ops;
1152         int ret;
1153
1154         /* do we need to apply the constraint voltage */
1155         if (rdev->constraints->apply_uV &&
1156             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157                 int target_min, target_max;
1158                 int current_uV = regulator_get_voltage_rdev(rdev);
1159
1160                 if (current_uV == -ENOTRECOVERABLE) {
1161                         /* This regulator can't be read and must be initialized */
1162                         rdev_info(rdev, "Setting %d-%duV\n",
1163                                   rdev->constraints->min_uV,
1164                                   rdev->constraints->max_uV);
1165                         _regulator_do_set_voltage(rdev,
1166                                                   rdev->constraints->min_uV,
1167                                                   rdev->constraints->max_uV);
1168                         current_uV = regulator_get_voltage_rdev(rdev);
1169                 }
1170
1171                 if (current_uV < 0) {
1172                         rdev_err(rdev,
1173                                  "failed to get the current voltage: %pe\n",
1174                                  ERR_PTR(current_uV));
1175                         return current_uV;
1176                 }
1177
1178                 /*
1179                  * If we're below the minimum voltage move up to the
1180                  * minimum voltage, if we're above the maximum voltage
1181                  * then move down to the maximum.
1182                  */
1183                 target_min = current_uV;
1184                 target_max = current_uV;
1185
1186                 if (current_uV < rdev->constraints->min_uV) {
1187                         target_min = rdev->constraints->min_uV;
1188                         target_max = rdev->constraints->min_uV;
1189                 }
1190
1191                 if (current_uV > rdev->constraints->max_uV) {
1192                         target_min = rdev->constraints->max_uV;
1193                         target_max = rdev->constraints->max_uV;
1194                 }
1195
1196                 if (target_min != current_uV || target_max != current_uV) {
1197                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198                                   current_uV, target_min, target_max);
1199                         ret = _regulator_do_set_voltage(
1200                                 rdev, target_min, target_max);
1201                         if (ret < 0) {
1202                                 rdev_err(rdev,
1203                                         "failed to apply %d-%duV constraint: %pe\n",
1204                                         target_min, target_max, ERR_PTR(ret));
1205                                 return ret;
1206                         }
1207                 }
1208         }
1209
1210         /* constrain machine-level voltage specs to fit
1211          * the actual range supported by this regulator.
1212          */
1213         if (ops->list_voltage && rdev->desc->n_voltages) {
1214                 int     count = rdev->desc->n_voltages;
1215                 int     i;
1216                 int     min_uV = INT_MAX;
1217                 int     max_uV = INT_MIN;
1218                 int     cmin = constraints->min_uV;
1219                 int     cmax = constraints->max_uV;
1220
1221                 /* it's safe to autoconfigure fixed-voltage supplies
1222                    and the constraints are used by list_voltage. */
1223                 if (count == 1 && !cmin) {
1224                         cmin = 1;
1225                         cmax = INT_MAX;
1226                         constraints->min_uV = cmin;
1227                         constraints->max_uV = cmax;
1228                 }
1229
1230                 /* voltage constraints are optional */
1231                 if ((cmin == 0) && (cmax == 0))
1232                         return 0;
1233
1234                 /* else require explicit machine-level constraints */
1235                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236                         rdev_err(rdev, "invalid voltage constraints\n");
1237                         return -EINVAL;
1238                 }
1239
1240                 /* no need to loop voltages if range is continuous */
1241                 if (rdev->desc->continuous_voltage_range)
1242                         return 0;
1243
1244                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245                 for (i = 0; i < count; i++) {
1246                         int     value;
1247
1248                         value = ops->list_voltage(rdev, i);
1249                         if (value <= 0)
1250                                 continue;
1251
1252                         /* maybe adjust [min_uV..max_uV] */
1253                         if (value >= cmin && value < min_uV)
1254                                 min_uV = value;
1255                         if (value <= cmax && value > max_uV)
1256                                 max_uV = value;
1257                 }
1258
1259                 /* final: [min_uV..max_uV] valid iff constraints valid */
1260                 if (max_uV < min_uV) {
1261                         rdev_err(rdev,
1262                                  "unsupportable voltage constraints %u-%uuV\n",
1263                                  min_uV, max_uV);
1264                         return -EINVAL;
1265                 }
1266
1267                 /* use regulator's subset of machine constraints */
1268                 if (constraints->min_uV < min_uV) {
1269                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270                                  constraints->min_uV, min_uV);
1271                         constraints->min_uV = min_uV;
1272                 }
1273                 if (constraints->max_uV > max_uV) {
1274                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275                                  constraints->max_uV, max_uV);
1276                         constraints->max_uV = max_uV;
1277                 }
1278         }
1279
1280         return 0;
1281 }
1282
1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284         struct regulation_constraints *constraints)
1285 {
1286         const struct regulator_ops *ops = rdev->desc->ops;
1287         int ret;
1288
1289         if (!constraints->min_uA && !constraints->max_uA)
1290                 return 0;
1291
1292         if (constraints->min_uA > constraints->max_uA) {
1293                 rdev_err(rdev, "Invalid current constraints\n");
1294                 return -EINVAL;
1295         }
1296
1297         if (!ops->set_current_limit || !ops->get_current_limit) {
1298                 rdev_warn(rdev, "Operation of current configuration missing\n");
1299                 return 0;
1300         }
1301
1302         /* Set regulator current in constraints range */
1303         ret = ops->set_current_limit(rdev, constraints->min_uA,
1304                         constraints->max_uA);
1305         if (ret < 0) {
1306                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307                 return ret;
1308         }
1309
1310         return 0;
1311 }
1312
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314
1315 /**
1316  * set_machine_constraints - sets regulator constraints
1317  * @rdev: regulator source
1318  *
1319  * Allows platform initialisation code to define and constrain
1320  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1321  * Constraints *must* be set by platform code in order for some
1322  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1323  * set_mode.
1324  */
1325 static int set_machine_constraints(struct regulator_dev *rdev)
1326 {
1327         int ret = 0;
1328         const struct regulator_ops *ops = rdev->desc->ops;
1329
1330         ret = machine_constraints_voltage(rdev, rdev->constraints);
1331         if (ret != 0)
1332                 return ret;
1333
1334         ret = machine_constraints_current(rdev, rdev->constraints);
1335         if (ret != 0)
1336                 return ret;
1337
1338         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339                 ret = ops->set_input_current_limit(rdev,
1340                                                    rdev->constraints->ilim_uA);
1341                 if (ret < 0) {
1342                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343                         return ret;
1344                 }
1345         }
1346
1347         /* do we need to setup our suspend state */
1348         if (rdev->constraints->initial_state) {
1349                 ret = suspend_set_initial_state(rdev);
1350                 if (ret < 0) {
1351                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352                         return ret;
1353                 }
1354         }
1355
1356         if (rdev->constraints->initial_mode) {
1357                 if (!ops->set_mode) {
1358                         rdev_err(rdev, "no set_mode operation\n");
1359                         return -EINVAL;
1360                 }
1361
1362                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363                 if (ret < 0) {
1364                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365                         return ret;
1366                 }
1367         } else if (rdev->constraints->system_load) {
1368                 /*
1369                  * We'll only apply the initial system load if an
1370                  * initial mode wasn't specified.
1371                  */
1372                 drms_uA_update(rdev);
1373         }
1374
1375         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376                 && ops->set_ramp_delay) {
1377                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1378                 if (ret < 0) {
1379                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380                         return ret;
1381                 }
1382         }
1383
1384         if (rdev->constraints->pull_down && ops->set_pull_down) {
1385                 ret = ops->set_pull_down(rdev);
1386                 if (ret < 0) {
1387                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388                         return ret;
1389                 }
1390         }
1391
1392         if (rdev->constraints->soft_start && ops->set_soft_start) {
1393                 ret = ops->set_soft_start(rdev);
1394                 if (ret < 0) {
1395                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396                         return ret;
1397                 }
1398         }
1399
1400         if (rdev->constraints->over_current_protection
1401                 && ops->set_over_current_protection) {
1402                 ret = ops->set_over_current_protection(rdev);
1403                 if (ret < 0) {
1404                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1405                                  ERR_PTR(ret));
1406                         return ret;
1407                 }
1408         }
1409
1410         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411                 bool ad_state = (rdev->constraints->active_discharge ==
1412                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1413
1414                 ret = ops->set_active_discharge(rdev, ad_state);
1415                 if (ret < 0) {
1416                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417                         return ret;
1418                 }
1419         }
1420
1421         /* If the constraints say the regulator should be on at this point
1422          * and we have control then make sure it is enabled.
1423          */
1424         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425                 if (rdev->supply) {
1426                         ret = regulator_enable(rdev->supply);
1427                         if (ret < 0) {
1428                                 _regulator_put(rdev->supply);
1429                                 rdev->supply = NULL;
1430                                 return ret;
1431                         }
1432                 }
1433
1434                 ret = _regulator_do_enable(rdev);
1435                 if (ret < 0 && ret != -EINVAL) {
1436                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1437                         return ret;
1438                 }
1439
1440                 if (rdev->constraints->always_on)
1441                         rdev->use_count++;
1442         }
1443
1444         print_constraints(rdev);
1445         return 0;
1446 }
1447
1448 /**
1449  * set_supply - set regulator supply regulator
1450  * @rdev: regulator name
1451  * @supply_rdev: supply regulator name
1452  *
1453  * Called by platform initialisation code to set the supply regulator for this
1454  * regulator. This ensures that a regulators supply will also be enabled by the
1455  * core if it's child is enabled.
1456  */
1457 static int set_supply(struct regulator_dev *rdev,
1458                       struct regulator_dev *supply_rdev)
1459 {
1460         int err;
1461
1462         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1463
1464         if (!try_module_get(supply_rdev->owner))
1465                 return -ENODEV;
1466
1467         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468         if (rdev->supply == NULL) {
1469                 err = -ENOMEM;
1470                 return err;
1471         }
1472         supply_rdev->open_count++;
1473
1474         return 0;
1475 }
1476
1477 /**
1478  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479  * @rdev:         regulator source
1480  * @consumer_dev_name: dev_name() string for device supply applies to
1481  * @supply:       symbolic name for supply
1482  *
1483  * Allows platform initialisation code to map physical regulator
1484  * sources to symbolic names for supplies for use by devices.  Devices
1485  * should use these symbolic names to request regulators, avoiding the
1486  * need to provide board-specific regulator names as platform data.
1487  */
1488 static int set_consumer_device_supply(struct regulator_dev *rdev,
1489                                       const char *consumer_dev_name,
1490                                       const char *supply)
1491 {
1492         struct regulator_map *node, *new_node;
1493         int has_dev;
1494
1495         if (supply == NULL)
1496                 return -EINVAL;
1497
1498         if (consumer_dev_name != NULL)
1499                 has_dev = 1;
1500         else
1501                 has_dev = 0;
1502
1503         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1504         if (new_node == NULL)
1505                 return -ENOMEM;
1506
1507         new_node->regulator = rdev;
1508         new_node->supply = supply;
1509
1510         if (has_dev) {
1511                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1512                 if (new_node->dev_name == NULL) {
1513                         kfree(new_node);
1514                         return -ENOMEM;
1515                 }
1516         }
1517
1518         mutex_lock(&regulator_list_mutex);
1519         list_for_each_entry(node, &regulator_map_list, list) {
1520                 if (node->dev_name && consumer_dev_name) {
1521                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1522                                 continue;
1523                 } else if (node->dev_name || consumer_dev_name) {
1524                         continue;
1525                 }
1526
1527                 if (strcmp(node->supply, supply) != 0)
1528                         continue;
1529
1530                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1531                          consumer_dev_name,
1532                          dev_name(&node->regulator->dev),
1533                          node->regulator->desc->name,
1534                          supply,
1535                          dev_name(&rdev->dev), rdev_get_name(rdev));
1536                 goto fail;
1537         }
1538
1539         list_add(&new_node->list, &regulator_map_list);
1540         mutex_unlock(&regulator_list_mutex);
1541
1542         return 0;
1543
1544 fail:
1545         mutex_unlock(&regulator_list_mutex);
1546         kfree(new_node->dev_name);
1547         kfree(new_node);
1548         return -EBUSY;
1549 }
1550
1551 static void unset_regulator_supplies(struct regulator_dev *rdev)
1552 {
1553         struct regulator_map *node, *n;
1554
1555         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1556                 if (rdev == node->regulator) {
1557                         list_del(&node->list);
1558                         kfree(node->dev_name);
1559                         kfree(node);
1560                 }
1561         }
1562 }
1563
1564 #ifdef CONFIG_DEBUG_FS
1565 static ssize_t constraint_flags_read_file(struct file *file,
1566                                           char __user *user_buf,
1567                                           size_t count, loff_t *ppos)
1568 {
1569         const struct regulator *regulator = file->private_data;
1570         const struct regulation_constraints *c = regulator->rdev->constraints;
1571         char *buf;
1572         ssize_t ret;
1573
1574         if (!c)
1575                 return 0;
1576
1577         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1578         if (!buf)
1579                 return -ENOMEM;
1580
1581         ret = snprintf(buf, PAGE_SIZE,
1582                         "always_on: %u\n"
1583                         "boot_on: %u\n"
1584                         "apply_uV: %u\n"
1585                         "ramp_disable: %u\n"
1586                         "soft_start: %u\n"
1587                         "pull_down: %u\n"
1588                         "over_current_protection: %u\n",
1589                         c->always_on,
1590                         c->boot_on,
1591                         c->apply_uV,
1592                         c->ramp_disable,
1593                         c->soft_start,
1594                         c->pull_down,
1595                         c->over_current_protection);
1596
1597         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1598         kfree(buf);
1599
1600         return ret;
1601 }
1602
1603 #endif
1604
1605 static const struct file_operations constraint_flags_fops = {
1606 #ifdef CONFIG_DEBUG_FS
1607         .open = simple_open,
1608         .read = constraint_flags_read_file,
1609         .llseek = default_llseek,
1610 #endif
1611 };
1612
1613 #define REG_STR_SIZE    64
1614
1615 static struct regulator *create_regulator(struct regulator_dev *rdev,
1616                                           struct device *dev,
1617                                           const char *supply_name)
1618 {
1619         struct regulator *regulator;
1620         int err = 0;
1621
1622         if (dev) {
1623                 char buf[REG_STR_SIZE];
1624                 int size;
1625
1626                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1627                                 dev->kobj.name, supply_name);
1628                 if (size >= REG_STR_SIZE)
1629                         return NULL;
1630
1631                 supply_name = kstrdup(buf, GFP_KERNEL);
1632                 if (supply_name == NULL)
1633                         return NULL;
1634         } else {
1635                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1636                 if (supply_name == NULL)
1637                         return NULL;
1638         }
1639
1640         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641         if (regulator == NULL) {
1642                 kfree(supply_name);
1643                 return NULL;
1644         }
1645
1646         regulator->rdev = rdev;
1647         regulator->supply_name = supply_name;
1648
1649         regulator_lock(rdev);
1650         list_add(&regulator->list, &rdev->consumer_list);
1651         regulator_unlock(rdev);
1652
1653         if (dev) {
1654                 regulator->dev = dev;
1655
1656                 /* Add a link to the device sysfs entry */
1657                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1658                                                supply_name);
1659                 if (err) {
1660                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1661                                   dev->kobj.name, ERR_PTR(err));
1662                         /* non-fatal */
1663                 }
1664         }
1665
1666         if (err != -EEXIST)
1667                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1668         if (!regulator->debugfs) {
1669                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1670         } else {
1671                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1672                                    &regulator->uA_load);
1673                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1675                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1677                 debugfs_create_file("constraint_flags", 0444,
1678                                     regulator->debugfs, regulator,
1679                                     &constraint_flags_fops);
1680         }
1681
1682         /*
1683          * Check now if the regulator is an always on regulator - if
1684          * it is then we don't need to do nearly so much work for
1685          * enable/disable calls.
1686          */
1687         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688             _regulator_is_enabled(rdev))
1689                 regulator->always_on = true;
1690
1691         return regulator;
1692 }
1693
1694 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1695 {
1696         if (rdev->constraints && rdev->constraints->enable_time)
1697                 return rdev->constraints->enable_time;
1698         if (rdev->desc->ops->enable_time)
1699                 return rdev->desc->ops->enable_time(rdev);
1700         return rdev->desc->enable_time;
1701 }
1702
1703 static struct regulator_supply_alias *regulator_find_supply_alias(
1704                 struct device *dev, const char *supply)
1705 {
1706         struct regulator_supply_alias *map;
1707
1708         list_for_each_entry(map, &regulator_supply_alias_list, list)
1709                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1710                         return map;
1711
1712         return NULL;
1713 }
1714
1715 static void regulator_supply_alias(struct device **dev, const char **supply)
1716 {
1717         struct regulator_supply_alias *map;
1718
1719         map = regulator_find_supply_alias(*dev, *supply);
1720         if (map) {
1721                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1722                                 *supply, map->alias_supply,
1723                                 dev_name(map->alias_dev));
1724                 *dev = map->alias_dev;
1725                 *supply = map->alias_supply;
1726         }
1727 }
1728
1729 static int regulator_match(struct device *dev, const void *data)
1730 {
1731         struct regulator_dev *r = dev_to_rdev(dev);
1732
1733         return strcmp(rdev_get_name(r), data) == 0;
1734 }
1735
1736 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1737 {
1738         struct device *dev;
1739
1740         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1741
1742         return dev ? dev_to_rdev(dev) : NULL;
1743 }
1744
1745 /**
1746  * regulator_dev_lookup - lookup a regulator device.
1747  * @dev: device for regulator "consumer".
1748  * @supply: Supply name or regulator ID.
1749  *
1750  * If successful, returns a struct regulator_dev that corresponds to the name
1751  * @supply and with the embedded struct device refcount incremented by one.
1752  * The refcount must be dropped by calling put_device().
1753  * On failure one of the following ERR-PTR-encoded values is returned:
1754  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1755  * in the future.
1756  */
1757 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1758                                                   const char *supply)
1759 {
1760         struct regulator_dev *r = NULL;
1761         struct device_node *node;
1762         struct regulator_map *map;
1763         const char *devname = NULL;
1764
1765         regulator_supply_alias(&dev, &supply);
1766
1767         /* first do a dt based lookup */
1768         if (dev && dev->of_node) {
1769                 node = of_get_regulator(dev, supply);
1770                 if (node) {
1771                         r = of_find_regulator_by_node(node);
1772                         if (r)
1773                                 return r;
1774
1775                         /*
1776                          * We have a node, but there is no device.
1777                          * assume it has not registered yet.
1778                          */
1779                         return ERR_PTR(-EPROBE_DEFER);
1780                 }
1781         }
1782
1783         /* if not found, try doing it non-dt way */
1784         if (dev)
1785                 devname = dev_name(dev);
1786
1787         mutex_lock(&regulator_list_mutex);
1788         list_for_each_entry(map, &regulator_map_list, list) {
1789                 /* If the mapping has a device set up it must match */
1790                 if (map->dev_name &&
1791                     (!devname || strcmp(map->dev_name, devname)))
1792                         continue;
1793
1794                 if (strcmp(map->supply, supply) == 0 &&
1795                     get_device(&map->regulator->dev)) {
1796                         r = map->regulator;
1797                         break;
1798                 }
1799         }
1800         mutex_unlock(&regulator_list_mutex);
1801
1802         if (r)
1803                 return r;
1804
1805         r = regulator_lookup_by_name(supply);
1806         if (r)
1807                 return r;
1808
1809         return ERR_PTR(-ENODEV);
1810 }
1811
1812 static int regulator_resolve_supply(struct regulator_dev *rdev)
1813 {
1814         struct regulator_dev *r;
1815         struct device *dev = rdev->dev.parent;
1816         int ret = 0;
1817
1818         /* No supply to resolve? */
1819         if (!rdev->supply_name)
1820                 return 0;
1821
1822         /* Supply already resolved? (fast-path without locking contention) */
1823         if (rdev->supply)
1824                 return 0;
1825
1826         r = regulator_dev_lookup(dev, rdev->supply_name);
1827         if (IS_ERR(r)) {
1828                 ret = PTR_ERR(r);
1829
1830                 /* Did the lookup explicitly defer for us? */
1831                 if (ret == -EPROBE_DEFER)
1832                         goto out;
1833
1834                 if (have_full_constraints()) {
1835                         r = dummy_regulator_rdev;
1836                         get_device(&r->dev);
1837                 } else {
1838                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1839                                 rdev->supply_name, rdev->desc->name);
1840                         ret = -EPROBE_DEFER;
1841                         goto out;
1842                 }
1843         }
1844
1845         if (r == rdev) {
1846                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1847                         rdev->desc->name, rdev->supply_name);
1848                 if (!have_full_constraints()) {
1849                         ret = -EINVAL;
1850                         goto out;
1851                 }
1852                 r = dummy_regulator_rdev;
1853                 get_device(&r->dev);
1854         }
1855
1856         /*
1857          * If the supply's parent device is not the same as the
1858          * regulator's parent device, then ensure the parent device
1859          * is bound before we resolve the supply, in case the parent
1860          * device get probe deferred and unregisters the supply.
1861          */
1862         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1863                 if (!device_is_bound(r->dev.parent)) {
1864                         put_device(&r->dev);
1865                         ret = -EPROBE_DEFER;
1866                         goto out;
1867                 }
1868         }
1869
1870         /* Recursively resolve the supply of the supply */
1871         ret = regulator_resolve_supply(r);
1872         if (ret < 0) {
1873                 put_device(&r->dev);
1874                 goto out;
1875         }
1876
1877         /*
1878          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1879          * between rdev->supply null check and setting rdev->supply in
1880          * set_supply() from concurrent tasks.
1881          */
1882         regulator_lock(rdev);
1883
1884         /* Supply just resolved by a concurrent task? */
1885         if (rdev->supply) {
1886                 regulator_unlock(rdev);
1887                 put_device(&r->dev);
1888                 goto out;
1889         }
1890
1891         ret = set_supply(rdev, r);
1892         if (ret < 0) {
1893                 regulator_unlock(rdev);
1894                 put_device(&r->dev);
1895                 goto out;
1896         }
1897
1898         regulator_unlock(rdev);
1899
1900         /*
1901          * In set_machine_constraints() we may have turned this regulator on
1902          * but we couldn't propagate to the supply if it hadn't been resolved
1903          * yet.  Do it now.
1904          */
1905         if (rdev->use_count) {
1906                 ret = regulator_enable(rdev->supply);
1907                 if (ret < 0) {
1908                         _regulator_put(rdev->supply);
1909                         rdev->supply = NULL;
1910                         goto out;
1911                 }
1912         }
1913
1914 out:
1915         return ret;
1916 }
1917
1918 /* Internal regulator request function */
1919 struct regulator *_regulator_get(struct device *dev, const char *id,
1920                                  enum regulator_get_type get_type)
1921 {
1922         struct regulator_dev *rdev;
1923         struct regulator *regulator;
1924         struct device_link *link;
1925         int ret;
1926
1927         if (get_type >= MAX_GET_TYPE) {
1928                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1929                 return ERR_PTR(-EINVAL);
1930         }
1931
1932         if (id == NULL) {
1933                 pr_err("get() with no identifier\n");
1934                 return ERR_PTR(-EINVAL);
1935         }
1936
1937         rdev = regulator_dev_lookup(dev, id);
1938         if (IS_ERR(rdev)) {
1939                 ret = PTR_ERR(rdev);
1940
1941                 /*
1942                  * If regulator_dev_lookup() fails with error other
1943                  * than -ENODEV our job here is done, we simply return it.
1944                  */
1945                 if (ret != -ENODEV)
1946                         return ERR_PTR(ret);
1947
1948                 if (!have_full_constraints()) {
1949                         dev_warn(dev,
1950                                  "incomplete constraints, dummy supplies not allowed\n");
1951                         return ERR_PTR(-ENODEV);
1952                 }
1953
1954                 switch (get_type) {
1955                 case NORMAL_GET:
1956                         /*
1957                          * Assume that a regulator is physically present and
1958                          * enabled, even if it isn't hooked up, and just
1959                          * provide a dummy.
1960                          */
1961                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1962                         rdev = dummy_regulator_rdev;
1963                         get_device(&rdev->dev);
1964                         break;
1965
1966                 case EXCLUSIVE_GET:
1967                         dev_warn(dev,
1968                                  "dummy supplies not allowed for exclusive requests\n");
1969                         fallthrough;
1970
1971                 default:
1972                         return ERR_PTR(-ENODEV);
1973                 }
1974         }
1975
1976         if (rdev->exclusive) {
1977                 regulator = ERR_PTR(-EPERM);
1978                 put_device(&rdev->dev);
1979                 return regulator;
1980         }
1981
1982         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1983                 regulator = ERR_PTR(-EBUSY);
1984                 put_device(&rdev->dev);
1985                 return regulator;
1986         }
1987
1988         mutex_lock(&regulator_list_mutex);
1989         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1990         mutex_unlock(&regulator_list_mutex);
1991
1992         if (ret != 0) {
1993                 regulator = ERR_PTR(-EPROBE_DEFER);
1994                 put_device(&rdev->dev);
1995                 return regulator;
1996         }
1997
1998         ret = regulator_resolve_supply(rdev);
1999         if (ret < 0) {
2000                 regulator = ERR_PTR(ret);
2001                 put_device(&rdev->dev);
2002                 return regulator;
2003         }
2004
2005         if (!try_module_get(rdev->owner)) {
2006                 regulator = ERR_PTR(-EPROBE_DEFER);
2007                 put_device(&rdev->dev);
2008                 return regulator;
2009         }
2010
2011         regulator = create_regulator(rdev, dev, id);
2012         if (regulator == NULL) {
2013                 regulator = ERR_PTR(-ENOMEM);
2014                 module_put(rdev->owner);
2015                 put_device(&rdev->dev);
2016                 return regulator;
2017         }
2018
2019         rdev->open_count++;
2020         if (get_type == EXCLUSIVE_GET) {
2021                 rdev->exclusive = 1;
2022
2023                 ret = _regulator_is_enabled(rdev);
2024                 if (ret > 0)
2025                         rdev->use_count = 1;
2026                 else
2027                         rdev->use_count = 0;
2028         }
2029
2030         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2031         if (!IS_ERR_OR_NULL(link))
2032                 regulator->device_link = true;
2033
2034         return regulator;
2035 }
2036
2037 /**
2038  * regulator_get - lookup and obtain a reference to a regulator.
2039  * @dev: device for regulator "consumer"
2040  * @id: Supply name or regulator ID.
2041  *
2042  * Returns a struct regulator corresponding to the regulator producer,
2043  * or IS_ERR() condition containing errno.
2044  *
2045  * Use of supply names configured via set_consumer_device_supply() is
2046  * strongly encouraged.  It is recommended that the supply name used
2047  * should match the name used for the supply and/or the relevant
2048  * device pins in the datasheet.
2049  */
2050 struct regulator *regulator_get(struct device *dev, const char *id)
2051 {
2052         return _regulator_get(dev, id, NORMAL_GET);
2053 }
2054 EXPORT_SYMBOL_GPL(regulator_get);
2055
2056 /**
2057  * regulator_get_exclusive - obtain exclusive access to a regulator.
2058  * @dev: device for regulator "consumer"
2059  * @id: Supply name or regulator ID.
2060  *
2061  * Returns a struct regulator corresponding to the regulator producer,
2062  * or IS_ERR() condition containing errno.  Other consumers will be
2063  * unable to obtain this regulator while this reference is held and the
2064  * use count for the regulator will be initialised to reflect the current
2065  * state of the regulator.
2066  *
2067  * This is intended for use by consumers which cannot tolerate shared
2068  * use of the regulator such as those which need to force the
2069  * regulator off for correct operation of the hardware they are
2070  * controlling.
2071  *
2072  * Use of supply names configured via set_consumer_device_supply() is
2073  * strongly encouraged.  It is recommended that the supply name used
2074  * should match the name used for the supply and/or the relevant
2075  * device pins in the datasheet.
2076  */
2077 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2078 {
2079         return _regulator_get(dev, id, EXCLUSIVE_GET);
2080 }
2081 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2082
2083 /**
2084  * regulator_get_optional - obtain optional access to a regulator.
2085  * @dev: device for regulator "consumer"
2086  * @id: Supply name or regulator ID.
2087  *
2088  * Returns a struct regulator corresponding to the regulator producer,
2089  * or IS_ERR() condition containing errno.
2090  *
2091  * This is intended for use by consumers for devices which can have
2092  * some supplies unconnected in normal use, such as some MMC devices.
2093  * It can allow the regulator core to provide stub supplies for other
2094  * supplies requested using normal regulator_get() calls without
2095  * disrupting the operation of drivers that can handle absent
2096  * supplies.
2097  *
2098  * Use of supply names configured via set_consumer_device_supply() is
2099  * strongly encouraged.  It is recommended that the supply name used
2100  * should match the name used for the supply and/or the relevant
2101  * device pins in the datasheet.
2102  */
2103 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2104 {
2105         return _regulator_get(dev, id, OPTIONAL_GET);
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_get_optional);
2108
2109 static void destroy_regulator(struct regulator *regulator)
2110 {
2111         struct regulator_dev *rdev = regulator->rdev;
2112
2113         debugfs_remove_recursive(regulator->debugfs);
2114
2115         if (regulator->dev) {
2116                 if (regulator->device_link)
2117                         device_link_remove(regulator->dev, &rdev->dev);
2118
2119                 /* remove any sysfs entries */
2120                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2121         }
2122
2123         regulator_lock(rdev);
2124         list_del(&regulator->list);
2125
2126         rdev->open_count--;
2127         rdev->exclusive = 0;
2128         regulator_unlock(rdev);
2129
2130         kfree_const(regulator->supply_name);
2131         kfree(regulator);
2132 }
2133
2134 /* regulator_list_mutex lock held by regulator_put() */
2135 static void _regulator_put(struct regulator *regulator)
2136 {
2137         struct regulator_dev *rdev;
2138
2139         if (IS_ERR_OR_NULL(regulator))
2140                 return;
2141
2142         lockdep_assert_held_once(&regulator_list_mutex);
2143
2144         /* Docs say you must disable before calling regulator_put() */
2145         WARN_ON(regulator->enable_count);
2146
2147         rdev = regulator->rdev;
2148
2149         destroy_regulator(regulator);
2150
2151         module_put(rdev->owner);
2152         put_device(&rdev->dev);
2153 }
2154
2155 /**
2156  * regulator_put - "free" the regulator source
2157  * @regulator: regulator source
2158  *
2159  * Note: drivers must ensure that all regulator_enable calls made on this
2160  * regulator source are balanced by regulator_disable calls prior to calling
2161  * this function.
2162  */
2163 void regulator_put(struct regulator *regulator)
2164 {
2165         mutex_lock(&regulator_list_mutex);
2166         _regulator_put(regulator);
2167         mutex_unlock(&regulator_list_mutex);
2168 }
2169 EXPORT_SYMBOL_GPL(regulator_put);
2170
2171 /**
2172  * regulator_register_supply_alias - Provide device alias for supply lookup
2173  *
2174  * @dev: device that will be given as the regulator "consumer"
2175  * @id: Supply name or regulator ID
2176  * @alias_dev: device that should be used to lookup the supply
2177  * @alias_id: Supply name or regulator ID that should be used to lookup the
2178  * supply
2179  *
2180  * All lookups for id on dev will instead be conducted for alias_id on
2181  * alias_dev.
2182  */
2183 int regulator_register_supply_alias(struct device *dev, const char *id,
2184                                     struct device *alias_dev,
2185                                     const char *alias_id)
2186 {
2187         struct regulator_supply_alias *map;
2188
2189         map = regulator_find_supply_alias(dev, id);
2190         if (map)
2191                 return -EEXIST;
2192
2193         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2194         if (!map)
2195                 return -ENOMEM;
2196
2197         map->src_dev = dev;
2198         map->src_supply = id;
2199         map->alias_dev = alias_dev;
2200         map->alias_supply = alias_id;
2201
2202         list_add(&map->list, &regulator_supply_alias_list);
2203
2204         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2205                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2206
2207         return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2210
2211 /**
2212  * regulator_unregister_supply_alias - Remove device alias
2213  *
2214  * @dev: device that will be given as the regulator "consumer"
2215  * @id: Supply name or regulator ID
2216  *
2217  * Remove a lookup alias if one exists for id on dev.
2218  */
2219 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2220 {
2221         struct regulator_supply_alias *map;
2222
2223         map = regulator_find_supply_alias(dev, id);
2224         if (map) {
2225                 list_del(&map->list);
2226                 kfree(map);
2227         }
2228 }
2229 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2230
2231 /**
2232  * regulator_bulk_register_supply_alias - register multiple aliases
2233  *
2234  * @dev: device that will be given as the regulator "consumer"
2235  * @id: List of supply names or regulator IDs
2236  * @alias_dev: device that should be used to lookup the supply
2237  * @alias_id: List of supply names or regulator IDs that should be used to
2238  * lookup the supply
2239  * @num_id: Number of aliases to register
2240  *
2241  * @return 0 on success, an errno on failure.
2242  *
2243  * This helper function allows drivers to register several supply
2244  * aliases in one operation.  If any of the aliases cannot be
2245  * registered any aliases that were registered will be removed
2246  * before returning to the caller.
2247  */
2248 int regulator_bulk_register_supply_alias(struct device *dev,
2249                                          const char *const *id,
2250                                          struct device *alias_dev,
2251                                          const char *const *alias_id,
2252                                          int num_id)
2253 {
2254         int i;
2255         int ret;
2256
2257         for (i = 0; i < num_id; ++i) {
2258                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2259                                                       alias_id[i]);
2260                 if (ret < 0)
2261                         goto err;
2262         }
2263
2264         return 0;
2265
2266 err:
2267         dev_err(dev,
2268                 "Failed to create supply alias %s,%s -> %s,%s\n",
2269                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2270
2271         while (--i >= 0)
2272                 regulator_unregister_supply_alias(dev, id[i]);
2273
2274         return ret;
2275 }
2276 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2277
2278 /**
2279  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2280  *
2281  * @dev: device that will be given as the regulator "consumer"
2282  * @id: List of supply names or regulator IDs
2283  * @num_id: Number of aliases to unregister
2284  *
2285  * This helper function allows drivers to unregister several supply
2286  * aliases in one operation.
2287  */
2288 void regulator_bulk_unregister_supply_alias(struct device *dev,
2289                                             const char *const *id,
2290                                             int num_id)
2291 {
2292         int i;
2293
2294         for (i = 0; i < num_id; ++i)
2295                 regulator_unregister_supply_alias(dev, id[i]);
2296 }
2297 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2298
2299
2300 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2301 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2302                                 const struct regulator_config *config)
2303 {
2304         struct regulator_enable_gpio *pin, *new_pin;
2305         struct gpio_desc *gpiod;
2306
2307         gpiod = config->ena_gpiod;
2308         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2309
2310         mutex_lock(&regulator_list_mutex);
2311
2312         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2313                 if (pin->gpiod == gpiod) {
2314                         rdev_dbg(rdev, "GPIO is already used\n");
2315                         goto update_ena_gpio_to_rdev;
2316                 }
2317         }
2318
2319         if (new_pin == NULL) {
2320                 mutex_unlock(&regulator_list_mutex);
2321                 return -ENOMEM;
2322         }
2323
2324         pin = new_pin;
2325         new_pin = NULL;
2326
2327         pin->gpiod = gpiod;
2328         list_add(&pin->list, &regulator_ena_gpio_list);
2329
2330 update_ena_gpio_to_rdev:
2331         pin->request_count++;
2332         rdev->ena_pin = pin;
2333
2334         mutex_unlock(&regulator_list_mutex);
2335         kfree(new_pin);
2336
2337         return 0;
2338 }
2339
2340 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2341 {
2342         struct regulator_enable_gpio *pin, *n;
2343
2344         if (!rdev->ena_pin)
2345                 return;
2346
2347         /* Free the GPIO only in case of no use */
2348         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2349                 if (pin != rdev->ena_pin)
2350                         continue;
2351
2352                 if (--pin->request_count)
2353                         break;
2354
2355                 gpiod_put(pin->gpiod);
2356                 list_del(&pin->list);
2357                 kfree(pin);
2358                 break;
2359         }
2360
2361         rdev->ena_pin = NULL;
2362 }
2363
2364 /**
2365  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2366  * @rdev: regulator_dev structure
2367  * @enable: enable GPIO at initial use?
2368  *
2369  * GPIO is enabled in case of initial use. (enable_count is 0)
2370  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2371  */
2372 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2373 {
2374         struct regulator_enable_gpio *pin = rdev->ena_pin;
2375
2376         if (!pin)
2377                 return -EINVAL;
2378
2379         if (enable) {
2380                 /* Enable GPIO at initial use */
2381                 if (pin->enable_count == 0)
2382                         gpiod_set_value_cansleep(pin->gpiod, 1);
2383
2384                 pin->enable_count++;
2385         } else {
2386                 if (pin->enable_count > 1) {
2387                         pin->enable_count--;
2388                         return 0;
2389                 }
2390
2391                 /* Disable GPIO if not used */
2392                 if (pin->enable_count <= 1) {
2393                         gpiod_set_value_cansleep(pin->gpiod, 0);
2394                         pin->enable_count = 0;
2395                 }
2396         }
2397
2398         return 0;
2399 }
2400
2401 /**
2402  * _regulator_enable_delay - a delay helper function
2403  * @delay: time to delay in microseconds
2404  *
2405  * Delay for the requested amount of time as per the guidelines in:
2406  *
2407  *     Documentation/timers/timers-howto.rst
2408  *
2409  * The assumption here is that regulators will never be enabled in
2410  * atomic context and therefore sleeping functions can be used.
2411  */
2412 static void _regulator_enable_delay(unsigned int delay)
2413 {
2414         unsigned int ms = delay / 1000;
2415         unsigned int us = delay % 1000;
2416
2417         if (ms > 0) {
2418                 /*
2419                  * For small enough values, handle super-millisecond
2420                  * delays in the usleep_range() call below.
2421                  */
2422                 if (ms < 20)
2423                         us += ms * 1000;
2424                 else
2425                         msleep(ms);
2426         }
2427
2428         /*
2429          * Give the scheduler some room to coalesce with any other
2430          * wakeup sources. For delays shorter than 10 us, don't even
2431          * bother setting up high-resolution timers and just busy-
2432          * loop.
2433          */
2434         if (us >= 10)
2435                 usleep_range(us, us + 100);
2436         else
2437                 udelay(us);
2438 }
2439
2440 /**
2441  * _regulator_check_status_enabled
2442  *
2443  * A helper function to check if the regulator status can be interpreted
2444  * as 'regulator is enabled'.
2445  * @rdev: the regulator device to check
2446  *
2447  * Return:
2448  * * 1                  - if status shows regulator is in enabled state
2449  * * 0                  - if not enabled state
2450  * * Error Value        - as received from ops->get_status()
2451  */
2452 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2453 {
2454         int ret = rdev->desc->ops->get_status(rdev);
2455
2456         if (ret < 0) {
2457                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2458                 return ret;
2459         }
2460
2461         switch (ret) {
2462         case REGULATOR_STATUS_OFF:
2463         case REGULATOR_STATUS_ERROR:
2464         case REGULATOR_STATUS_UNDEFINED:
2465                 return 0;
2466         default:
2467                 return 1;
2468         }
2469 }
2470
2471 static int _regulator_do_enable(struct regulator_dev *rdev)
2472 {
2473         int ret, delay;
2474
2475         /* Query before enabling in case configuration dependent.  */
2476         ret = _regulator_get_enable_time(rdev);
2477         if (ret >= 0) {
2478                 delay = ret;
2479         } else {
2480                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2481                 delay = 0;
2482         }
2483
2484         trace_regulator_enable(rdev_get_name(rdev));
2485
2486         if (rdev->desc->off_on_delay) {
2487                 /* if needed, keep a distance of off_on_delay from last time
2488                  * this regulator was disabled.
2489                  */
2490                 unsigned long start_jiffy = jiffies;
2491                 unsigned long intended, max_delay, remaining;
2492
2493                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2494                 intended = rdev->last_off_jiffy + max_delay;
2495
2496                 if (time_before(start_jiffy, intended)) {
2497                         /* calc remaining jiffies to deal with one-time
2498                          * timer wrapping.
2499                          * in case of multiple timer wrapping, either it can be
2500                          * detected by out-of-range remaining, or it cannot be
2501                          * detected and we get a penalty of
2502                          * _regulator_enable_delay().
2503                          */
2504                         remaining = intended - start_jiffy;
2505                         if (remaining <= max_delay)
2506                                 _regulator_enable_delay(
2507                                                 jiffies_to_usecs(remaining));
2508                 }
2509         }
2510
2511         if (rdev->ena_pin) {
2512                 if (!rdev->ena_gpio_state) {
2513                         ret = regulator_ena_gpio_ctrl(rdev, true);
2514                         if (ret < 0)
2515                                 return ret;
2516                         rdev->ena_gpio_state = 1;
2517                 }
2518         } else if (rdev->desc->ops->enable) {
2519                 ret = rdev->desc->ops->enable(rdev);
2520                 if (ret < 0)
2521                         return ret;
2522         } else {
2523                 return -EINVAL;
2524         }
2525
2526         /* Allow the regulator to ramp; it would be useful to extend
2527          * this for bulk operations so that the regulators can ramp
2528          * together.  */
2529         trace_regulator_enable_delay(rdev_get_name(rdev));
2530
2531         /* If poll_enabled_time is set, poll upto the delay calculated
2532          * above, delaying poll_enabled_time uS to check if the regulator
2533          * actually got enabled.
2534          * If the regulator isn't enabled after enable_delay has
2535          * expired, return -ETIMEDOUT.
2536          */
2537         if (rdev->desc->poll_enabled_time) {
2538                 unsigned int time_remaining = delay;
2539
2540                 while (time_remaining > 0) {
2541                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2542
2543                         if (rdev->desc->ops->get_status) {
2544                                 ret = _regulator_check_status_enabled(rdev);
2545                                 if (ret < 0)
2546                                         return ret;
2547                                 else if (ret)
2548                                         break;
2549                         } else if (rdev->desc->ops->is_enabled(rdev))
2550                                 break;
2551
2552                         time_remaining -= rdev->desc->poll_enabled_time;
2553                 }
2554
2555                 if (time_remaining <= 0) {
2556                         rdev_err(rdev, "Enabled check timed out\n");
2557                         return -ETIMEDOUT;
2558                 }
2559         } else {
2560                 _regulator_enable_delay(delay);
2561         }
2562
2563         trace_regulator_enable_complete(rdev_get_name(rdev));
2564
2565         return 0;
2566 }
2567
2568 /**
2569  * _regulator_handle_consumer_enable - handle that a consumer enabled
2570  * @regulator: regulator source
2571  *
2572  * Some things on a regulator consumer (like the contribution towards total
2573  * load on the regulator) only have an effect when the consumer wants the
2574  * regulator enabled.  Explained in example with two consumers of the same
2575  * regulator:
2576  *   consumer A: set_load(100);       => total load = 0
2577  *   consumer A: regulator_enable();  => total load = 100
2578  *   consumer B: set_load(1000);      => total load = 100
2579  *   consumer B: regulator_enable();  => total load = 1100
2580  *   consumer A: regulator_disable(); => total_load = 1000
2581  *
2582  * This function (together with _regulator_handle_consumer_disable) is
2583  * responsible for keeping track of the refcount for a given regulator consumer
2584  * and applying / unapplying these things.
2585  *
2586  * Returns 0 upon no error; -error upon error.
2587  */
2588 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2589 {
2590         struct regulator_dev *rdev = regulator->rdev;
2591
2592         lockdep_assert_held_once(&rdev->mutex.base);
2593
2594         regulator->enable_count++;
2595         if (regulator->uA_load && regulator->enable_count == 1)
2596                 return drms_uA_update(rdev);
2597
2598         return 0;
2599 }
2600
2601 /**
2602  * _regulator_handle_consumer_disable - handle that a consumer disabled
2603  * @regulator: regulator source
2604  *
2605  * The opposite of _regulator_handle_consumer_enable().
2606  *
2607  * Returns 0 upon no error; -error upon error.
2608  */
2609 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2610 {
2611         struct regulator_dev *rdev = regulator->rdev;
2612
2613         lockdep_assert_held_once(&rdev->mutex.base);
2614
2615         if (!regulator->enable_count) {
2616                 rdev_err(rdev, "Underflow of regulator enable count\n");
2617                 return -EINVAL;
2618         }
2619
2620         regulator->enable_count--;
2621         if (regulator->uA_load && regulator->enable_count == 0)
2622                 return drms_uA_update(rdev);
2623
2624         return 0;
2625 }
2626
2627 /* locks held by regulator_enable() */
2628 static int _regulator_enable(struct regulator *regulator)
2629 {
2630         struct regulator_dev *rdev = regulator->rdev;
2631         int ret;
2632
2633         lockdep_assert_held_once(&rdev->mutex.base);
2634
2635         if (rdev->use_count == 0 && rdev->supply) {
2636                 ret = _regulator_enable(rdev->supply);
2637                 if (ret < 0)
2638                         return ret;
2639         }
2640
2641         /* balance only if there are regulators coupled */
2642         if (rdev->coupling_desc.n_coupled > 1) {
2643                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2644                 if (ret < 0)
2645                         goto err_disable_supply;
2646         }
2647
2648         ret = _regulator_handle_consumer_enable(regulator);
2649         if (ret < 0)
2650                 goto err_disable_supply;
2651
2652         if (rdev->use_count == 0) {
2653                 /* The regulator may on if it's not switchable or left on */
2654                 ret = _regulator_is_enabled(rdev);
2655                 if (ret == -EINVAL || ret == 0) {
2656                         if (!regulator_ops_is_valid(rdev,
2657                                         REGULATOR_CHANGE_STATUS)) {
2658                                 ret = -EPERM;
2659                                 goto err_consumer_disable;
2660                         }
2661
2662                         ret = _regulator_do_enable(rdev);
2663                         if (ret < 0)
2664                                 goto err_consumer_disable;
2665
2666                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2667                                              NULL);
2668                 } else if (ret < 0) {
2669                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2670                         goto err_consumer_disable;
2671                 }
2672                 /* Fallthrough on positive return values - already enabled */
2673         }
2674
2675         rdev->use_count++;
2676
2677         return 0;
2678
2679 err_consumer_disable:
2680         _regulator_handle_consumer_disable(regulator);
2681
2682 err_disable_supply:
2683         if (rdev->use_count == 0 && rdev->supply)
2684                 _regulator_disable(rdev->supply);
2685
2686         return ret;
2687 }
2688
2689 /**
2690  * regulator_enable - enable regulator output
2691  * @regulator: regulator source
2692  *
2693  * Request that the regulator be enabled with the regulator output at
2694  * the predefined voltage or current value.  Calls to regulator_enable()
2695  * must be balanced with calls to regulator_disable().
2696  *
2697  * NOTE: the output value can be set by other drivers, boot loader or may be
2698  * hardwired in the regulator.
2699  */
2700 int regulator_enable(struct regulator *regulator)
2701 {
2702         struct regulator_dev *rdev = regulator->rdev;
2703         struct ww_acquire_ctx ww_ctx;
2704         int ret;
2705
2706         regulator_lock_dependent(rdev, &ww_ctx);
2707         ret = _regulator_enable(regulator);
2708         regulator_unlock_dependent(rdev, &ww_ctx);
2709
2710         return ret;
2711 }
2712 EXPORT_SYMBOL_GPL(regulator_enable);
2713
2714 static int _regulator_do_disable(struct regulator_dev *rdev)
2715 {
2716         int ret;
2717
2718         trace_regulator_disable(rdev_get_name(rdev));
2719
2720         if (rdev->ena_pin) {
2721                 if (rdev->ena_gpio_state) {
2722                         ret = regulator_ena_gpio_ctrl(rdev, false);
2723                         if (ret < 0)
2724                                 return ret;
2725                         rdev->ena_gpio_state = 0;
2726                 }
2727
2728         } else if (rdev->desc->ops->disable) {
2729                 ret = rdev->desc->ops->disable(rdev);
2730                 if (ret != 0)
2731                         return ret;
2732         }
2733
2734         /* cares about last_off_jiffy only if off_on_delay is required by
2735          * device.
2736          */
2737         if (rdev->desc->off_on_delay)
2738                 rdev->last_off_jiffy = jiffies;
2739
2740         trace_regulator_disable_complete(rdev_get_name(rdev));
2741
2742         return 0;
2743 }
2744
2745 /* locks held by regulator_disable() */
2746 static int _regulator_disable(struct regulator *regulator)
2747 {
2748         struct regulator_dev *rdev = regulator->rdev;
2749         int ret = 0;
2750
2751         lockdep_assert_held_once(&rdev->mutex.base);
2752
2753         if (WARN(rdev->use_count <= 0,
2754                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2755                 return -EIO;
2756
2757         /* are we the last user and permitted to disable ? */
2758         if (rdev->use_count == 1 &&
2759             (rdev->constraints && !rdev->constraints->always_on)) {
2760
2761                 /* we are last user */
2762                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2763                         ret = _notifier_call_chain(rdev,
2764                                                    REGULATOR_EVENT_PRE_DISABLE,
2765                                                    NULL);
2766                         if (ret & NOTIFY_STOP_MASK)
2767                                 return -EINVAL;
2768
2769                         ret = _regulator_do_disable(rdev);
2770                         if (ret < 0) {
2771                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2772                                 _notifier_call_chain(rdev,
2773                                                 REGULATOR_EVENT_ABORT_DISABLE,
2774                                                 NULL);
2775                                 return ret;
2776                         }
2777                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2778                                         NULL);
2779                 }
2780
2781                 rdev->use_count = 0;
2782         } else if (rdev->use_count > 1) {
2783                 rdev->use_count--;
2784         }
2785
2786         if (ret == 0)
2787                 ret = _regulator_handle_consumer_disable(regulator);
2788
2789         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2790                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2791
2792         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2793                 ret = _regulator_disable(rdev->supply);
2794
2795         return ret;
2796 }
2797
2798 /**
2799  * regulator_disable - disable regulator output
2800  * @regulator: regulator source
2801  *
2802  * Disable the regulator output voltage or current.  Calls to
2803  * regulator_enable() must be balanced with calls to
2804  * regulator_disable().
2805  *
2806  * NOTE: this will only disable the regulator output if no other consumer
2807  * devices have it enabled, the regulator device supports disabling and
2808  * machine constraints permit this operation.
2809  */
2810 int regulator_disable(struct regulator *regulator)
2811 {
2812         struct regulator_dev *rdev = regulator->rdev;
2813         struct ww_acquire_ctx ww_ctx;
2814         int ret;
2815
2816         regulator_lock_dependent(rdev, &ww_ctx);
2817         ret = _regulator_disable(regulator);
2818         regulator_unlock_dependent(rdev, &ww_ctx);
2819
2820         return ret;
2821 }
2822 EXPORT_SYMBOL_GPL(regulator_disable);
2823
2824 /* locks held by regulator_force_disable() */
2825 static int _regulator_force_disable(struct regulator_dev *rdev)
2826 {
2827         int ret = 0;
2828
2829         lockdep_assert_held_once(&rdev->mutex.base);
2830
2831         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2832                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2833         if (ret & NOTIFY_STOP_MASK)
2834                 return -EINVAL;
2835
2836         ret = _regulator_do_disable(rdev);
2837         if (ret < 0) {
2838                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2839                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2840                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2841                 return ret;
2842         }
2843
2844         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2845                         REGULATOR_EVENT_DISABLE, NULL);
2846
2847         return 0;
2848 }
2849
2850 /**
2851  * regulator_force_disable - force disable regulator output
2852  * @regulator: regulator source
2853  *
2854  * Forcibly disable the regulator output voltage or current.
2855  * NOTE: this *will* disable the regulator output even if other consumer
2856  * devices have it enabled. This should be used for situations when device
2857  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2858  */
2859 int regulator_force_disable(struct regulator *regulator)
2860 {
2861         struct regulator_dev *rdev = regulator->rdev;
2862         struct ww_acquire_ctx ww_ctx;
2863         int ret;
2864
2865         regulator_lock_dependent(rdev, &ww_ctx);
2866
2867         ret = _regulator_force_disable(regulator->rdev);
2868
2869         if (rdev->coupling_desc.n_coupled > 1)
2870                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2871
2872         if (regulator->uA_load) {
2873                 regulator->uA_load = 0;
2874                 ret = drms_uA_update(rdev);
2875         }
2876
2877         if (rdev->use_count != 0 && rdev->supply)
2878                 _regulator_disable(rdev->supply);
2879
2880         regulator_unlock_dependent(rdev, &ww_ctx);
2881
2882         return ret;
2883 }
2884 EXPORT_SYMBOL_GPL(regulator_force_disable);
2885
2886 static void regulator_disable_work(struct work_struct *work)
2887 {
2888         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2889                                                   disable_work.work);
2890         struct ww_acquire_ctx ww_ctx;
2891         int count, i, ret;
2892         struct regulator *regulator;
2893         int total_count = 0;
2894
2895         regulator_lock_dependent(rdev, &ww_ctx);
2896
2897         /*
2898          * Workqueue functions queue the new work instance while the previous
2899          * work instance is being processed. Cancel the queued work instance
2900          * as the work instance under processing does the job of the queued
2901          * work instance.
2902          */
2903         cancel_delayed_work(&rdev->disable_work);
2904
2905         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2906                 count = regulator->deferred_disables;
2907
2908                 if (!count)
2909                         continue;
2910
2911                 total_count += count;
2912                 regulator->deferred_disables = 0;
2913
2914                 for (i = 0; i < count; i++) {
2915                         ret = _regulator_disable(regulator);
2916                         if (ret != 0)
2917                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
2918                                          ERR_PTR(ret));
2919                 }
2920         }
2921         WARN_ON(!total_count);
2922
2923         if (rdev->coupling_desc.n_coupled > 1)
2924                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2925
2926         regulator_unlock_dependent(rdev, &ww_ctx);
2927 }
2928
2929 /**
2930  * regulator_disable_deferred - disable regulator output with delay
2931  * @regulator: regulator source
2932  * @ms: milliseconds until the regulator is disabled
2933  *
2934  * Execute regulator_disable() on the regulator after a delay.  This
2935  * is intended for use with devices that require some time to quiesce.
2936  *
2937  * NOTE: this will only disable the regulator output if no other consumer
2938  * devices have it enabled, the regulator device supports disabling and
2939  * machine constraints permit this operation.
2940  */
2941 int regulator_disable_deferred(struct regulator *regulator, int ms)
2942 {
2943         struct regulator_dev *rdev = regulator->rdev;
2944
2945         if (!ms)
2946                 return regulator_disable(regulator);
2947
2948         regulator_lock(rdev);
2949         regulator->deferred_disables++;
2950         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2951                          msecs_to_jiffies(ms));
2952         regulator_unlock(rdev);
2953
2954         return 0;
2955 }
2956 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2957
2958 static int _regulator_is_enabled(struct regulator_dev *rdev)
2959 {
2960         /* A GPIO control always takes precedence */
2961         if (rdev->ena_pin)
2962                 return rdev->ena_gpio_state;
2963
2964         /* If we don't know then assume that the regulator is always on */
2965         if (!rdev->desc->ops->is_enabled)
2966                 return 1;
2967
2968         return rdev->desc->ops->is_enabled(rdev);
2969 }
2970
2971 static int _regulator_list_voltage(struct regulator_dev *rdev,
2972                                    unsigned selector, int lock)
2973 {
2974         const struct regulator_ops *ops = rdev->desc->ops;
2975         int ret;
2976
2977         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2978                 return rdev->desc->fixed_uV;
2979
2980         if (ops->list_voltage) {
2981                 if (selector >= rdev->desc->n_voltages)
2982                         return -EINVAL;
2983                 if (selector < rdev->desc->linear_min_sel)
2984                         return 0;
2985                 if (lock)
2986                         regulator_lock(rdev);
2987                 ret = ops->list_voltage(rdev, selector);
2988                 if (lock)
2989                         regulator_unlock(rdev);
2990         } else if (rdev->is_switch && rdev->supply) {
2991                 ret = _regulator_list_voltage(rdev->supply->rdev,
2992                                               selector, lock);
2993         } else {
2994                 return -EINVAL;
2995         }
2996
2997         if (ret > 0) {
2998                 if (ret < rdev->constraints->min_uV)
2999                         ret = 0;
3000                 else if (ret > rdev->constraints->max_uV)
3001                         ret = 0;
3002         }
3003
3004         return ret;
3005 }
3006
3007 /**
3008  * regulator_is_enabled - is the regulator output enabled
3009  * @regulator: regulator source
3010  *
3011  * Returns positive if the regulator driver backing the source/client
3012  * has requested that the device be enabled, zero if it hasn't, else a
3013  * negative errno code.
3014  *
3015  * Note that the device backing this regulator handle can have multiple
3016  * users, so it might be enabled even if regulator_enable() was never
3017  * called for this particular source.
3018  */
3019 int regulator_is_enabled(struct regulator *regulator)
3020 {
3021         int ret;
3022
3023         if (regulator->always_on)
3024                 return 1;
3025
3026         regulator_lock(regulator->rdev);
3027         ret = _regulator_is_enabled(regulator->rdev);
3028         regulator_unlock(regulator->rdev);
3029
3030         return ret;
3031 }
3032 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3033
3034 /**
3035  * regulator_count_voltages - count regulator_list_voltage() selectors
3036  * @regulator: regulator source
3037  *
3038  * Returns number of selectors, or negative errno.  Selectors are
3039  * numbered starting at zero, and typically correspond to bitfields
3040  * in hardware registers.
3041  */
3042 int regulator_count_voltages(struct regulator *regulator)
3043 {
3044         struct regulator_dev    *rdev = regulator->rdev;
3045
3046         if (rdev->desc->n_voltages)
3047                 return rdev->desc->n_voltages;
3048
3049         if (!rdev->is_switch || !rdev->supply)
3050                 return -EINVAL;
3051
3052         return regulator_count_voltages(rdev->supply);
3053 }
3054 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3055
3056 /**
3057  * regulator_list_voltage - enumerate supported voltages
3058  * @regulator: regulator source
3059  * @selector: identify voltage to list
3060  * Context: can sleep
3061  *
3062  * Returns a voltage that can be passed to @regulator_set_voltage(),
3063  * zero if this selector code can't be used on this system, or a
3064  * negative errno.
3065  */
3066 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3067 {
3068         return _regulator_list_voltage(regulator->rdev, selector, 1);
3069 }
3070 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3071
3072 /**
3073  * regulator_get_regmap - get the regulator's register map
3074  * @regulator: regulator source
3075  *
3076  * Returns the register map for the given regulator, or an ERR_PTR value
3077  * if the regulator doesn't use regmap.
3078  */
3079 struct regmap *regulator_get_regmap(struct regulator *regulator)
3080 {
3081         struct regmap *map = regulator->rdev->regmap;
3082
3083         return map ? map : ERR_PTR(-EOPNOTSUPP);
3084 }
3085
3086 /**
3087  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3088  * @regulator: regulator source
3089  * @vsel_reg: voltage selector register, output parameter
3090  * @vsel_mask: mask for voltage selector bitfield, output parameter
3091  *
3092  * Returns the hardware register offset and bitmask used for setting the
3093  * regulator voltage. This might be useful when configuring voltage-scaling
3094  * hardware or firmware that can make I2C requests behind the kernel's back,
3095  * for example.
3096  *
3097  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3098  * and 0 is returned, otherwise a negative errno is returned.
3099  */
3100 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3101                                          unsigned *vsel_reg,
3102                                          unsigned *vsel_mask)
3103 {
3104         struct regulator_dev *rdev = regulator->rdev;
3105         const struct regulator_ops *ops = rdev->desc->ops;
3106
3107         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3108                 return -EOPNOTSUPP;
3109
3110         *vsel_reg = rdev->desc->vsel_reg;
3111         *vsel_mask = rdev->desc->vsel_mask;
3112
3113         return 0;
3114 }
3115 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3116
3117 /**
3118  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3119  * @regulator: regulator source
3120  * @selector: identify voltage to list
3121  *
3122  * Converts the selector to a hardware-specific voltage selector that can be
3123  * directly written to the regulator registers. The address of the voltage
3124  * register can be determined by calling @regulator_get_hardware_vsel_register.
3125  *
3126  * On error a negative errno is returned.
3127  */
3128 int regulator_list_hardware_vsel(struct regulator *regulator,
3129                                  unsigned selector)
3130 {
3131         struct regulator_dev *rdev = regulator->rdev;
3132         const struct regulator_ops *ops = rdev->desc->ops;
3133
3134         if (selector >= rdev->desc->n_voltages)
3135                 return -EINVAL;
3136         if (selector < rdev->desc->linear_min_sel)
3137                 return 0;
3138         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3139                 return -EOPNOTSUPP;
3140
3141         return selector;
3142 }
3143 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3144
3145 /**
3146  * regulator_get_linear_step - return the voltage step size between VSEL values
3147  * @regulator: regulator source
3148  *
3149  * Returns the voltage step size between VSEL values for linear
3150  * regulators, or return 0 if the regulator isn't a linear regulator.
3151  */
3152 unsigned int regulator_get_linear_step(struct regulator *regulator)
3153 {
3154         struct regulator_dev *rdev = regulator->rdev;
3155
3156         return rdev->desc->uV_step;
3157 }
3158 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3159
3160 /**
3161  * regulator_is_supported_voltage - check if a voltage range can be supported
3162  *
3163  * @regulator: Regulator to check.
3164  * @min_uV: Minimum required voltage in uV.
3165  * @max_uV: Maximum required voltage in uV.
3166  *
3167  * Returns a boolean.
3168  */
3169 int regulator_is_supported_voltage(struct regulator *regulator,
3170                                    int min_uV, int max_uV)
3171 {
3172         struct regulator_dev *rdev = regulator->rdev;
3173         int i, voltages, ret;
3174
3175         /* If we can't change voltage check the current voltage */
3176         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3177                 ret = regulator_get_voltage(regulator);
3178                 if (ret >= 0)
3179                         return min_uV <= ret && ret <= max_uV;
3180                 else
3181                         return ret;
3182         }
3183
3184         /* Any voltage within constrains range is fine? */
3185         if (rdev->desc->continuous_voltage_range)
3186                 return min_uV >= rdev->constraints->min_uV &&
3187                                 max_uV <= rdev->constraints->max_uV;
3188
3189         ret = regulator_count_voltages(regulator);
3190         if (ret < 0)
3191                 return 0;
3192         voltages = ret;
3193
3194         for (i = 0; i < voltages; i++) {
3195                 ret = regulator_list_voltage(regulator, i);
3196
3197                 if (ret >= min_uV && ret <= max_uV)
3198                         return 1;
3199         }
3200
3201         return 0;
3202 }
3203 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3204
3205 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3206                                  int max_uV)
3207 {
3208         const struct regulator_desc *desc = rdev->desc;
3209
3210         if (desc->ops->map_voltage)
3211                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3212
3213         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3214                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3215
3216         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3217                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3218
3219         if (desc->ops->list_voltage ==
3220                 regulator_list_voltage_pickable_linear_range)
3221                 return regulator_map_voltage_pickable_linear_range(rdev,
3222                                                         min_uV, max_uV);
3223
3224         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3225 }
3226
3227 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3228                                        int min_uV, int max_uV,
3229                                        unsigned *selector)
3230 {
3231         struct pre_voltage_change_data data;
3232         int ret;
3233
3234         data.old_uV = regulator_get_voltage_rdev(rdev);
3235         data.min_uV = min_uV;
3236         data.max_uV = max_uV;
3237         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3238                                    &data);
3239         if (ret & NOTIFY_STOP_MASK)
3240                 return -EINVAL;
3241
3242         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3243         if (ret >= 0)
3244                 return ret;
3245
3246         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3247                              (void *)data.old_uV);
3248
3249         return ret;
3250 }
3251
3252 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3253                                            int uV, unsigned selector)
3254 {
3255         struct pre_voltage_change_data data;
3256         int ret;
3257
3258         data.old_uV = regulator_get_voltage_rdev(rdev);
3259         data.min_uV = uV;
3260         data.max_uV = uV;
3261         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3262                                    &data);
3263         if (ret & NOTIFY_STOP_MASK)
3264                 return -EINVAL;
3265
3266         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3267         if (ret >= 0)
3268                 return ret;
3269
3270         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3271                              (void *)data.old_uV);
3272
3273         return ret;
3274 }
3275
3276 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3277                                            int uV, int new_selector)
3278 {
3279         const struct regulator_ops *ops = rdev->desc->ops;
3280         int diff, old_sel, curr_sel, ret;
3281
3282         /* Stepping is only needed if the regulator is enabled. */
3283         if (!_regulator_is_enabled(rdev))
3284                 goto final_set;
3285
3286         if (!ops->get_voltage_sel)
3287                 return -EINVAL;
3288
3289         old_sel = ops->get_voltage_sel(rdev);
3290         if (old_sel < 0)
3291                 return old_sel;
3292
3293         diff = new_selector - old_sel;
3294         if (diff == 0)
3295                 return 0; /* No change needed. */
3296
3297         if (diff > 0) {
3298                 /* Stepping up. */
3299                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3300                      curr_sel < new_selector;
3301                      curr_sel += rdev->desc->vsel_step) {
3302                         /*
3303                          * Call the callback directly instead of using
3304                          * _regulator_call_set_voltage_sel() as we don't
3305                          * want to notify anyone yet. Same in the branch
3306                          * below.
3307                          */
3308                         ret = ops->set_voltage_sel(rdev, curr_sel);
3309                         if (ret)
3310                                 goto try_revert;
3311                 }
3312         } else {
3313                 /* Stepping down. */
3314                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3315                      curr_sel > new_selector;
3316                      curr_sel -= rdev->desc->vsel_step) {
3317                         ret = ops->set_voltage_sel(rdev, curr_sel);
3318                         if (ret)
3319                                 goto try_revert;
3320                 }
3321         }
3322
3323 final_set:
3324         /* The final selector will trigger the notifiers. */
3325         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3326
3327 try_revert:
3328         /*
3329          * At least try to return to the previous voltage if setting a new
3330          * one failed.
3331          */
3332         (void)ops->set_voltage_sel(rdev, old_sel);
3333         return ret;
3334 }
3335
3336 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3337                                        int old_uV, int new_uV)
3338 {
3339         unsigned int ramp_delay = 0;
3340
3341         if (rdev->constraints->ramp_delay)
3342                 ramp_delay = rdev->constraints->ramp_delay;
3343         else if (rdev->desc->ramp_delay)
3344                 ramp_delay = rdev->desc->ramp_delay;
3345         else if (rdev->constraints->settling_time)
3346                 return rdev->constraints->settling_time;
3347         else if (rdev->constraints->settling_time_up &&
3348                  (new_uV > old_uV))
3349                 return rdev->constraints->settling_time_up;
3350         else if (rdev->constraints->settling_time_down &&
3351                  (new_uV < old_uV))
3352                 return rdev->constraints->settling_time_down;
3353
3354         if (ramp_delay == 0) {
3355                 rdev_dbg(rdev, "ramp_delay not set\n");
3356                 return 0;
3357         }
3358
3359         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3360 }
3361
3362 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3363                                      int min_uV, int max_uV)
3364 {
3365         int ret;
3366         int delay = 0;
3367         int best_val = 0;
3368         unsigned int selector;
3369         int old_selector = -1;
3370         const struct regulator_ops *ops = rdev->desc->ops;
3371         int old_uV = regulator_get_voltage_rdev(rdev);
3372
3373         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3374
3375         min_uV += rdev->constraints->uV_offset;
3376         max_uV += rdev->constraints->uV_offset;
3377
3378         /*
3379          * If we can't obtain the old selector there is not enough
3380          * info to call set_voltage_time_sel().
3381          */
3382         if (_regulator_is_enabled(rdev) &&
3383             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3384                 old_selector = ops->get_voltage_sel(rdev);
3385                 if (old_selector < 0)
3386                         return old_selector;
3387         }
3388
3389         if (ops->set_voltage) {
3390                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3391                                                   &selector);
3392
3393                 if (ret >= 0) {
3394                         if (ops->list_voltage)
3395                                 best_val = ops->list_voltage(rdev,
3396                                                              selector);
3397                         else
3398                                 best_val = regulator_get_voltage_rdev(rdev);
3399                 }
3400
3401         } else if (ops->set_voltage_sel) {
3402                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3403                 if (ret >= 0) {
3404                         best_val = ops->list_voltage(rdev, ret);
3405                         if (min_uV <= best_val && max_uV >= best_val) {
3406                                 selector = ret;
3407                                 if (old_selector == selector)
3408                                         ret = 0;
3409                                 else if (rdev->desc->vsel_step)
3410                                         ret = _regulator_set_voltage_sel_step(
3411                                                 rdev, best_val, selector);
3412                                 else
3413                                         ret = _regulator_call_set_voltage_sel(
3414                                                 rdev, best_val, selector);
3415                         } else {
3416                                 ret = -EINVAL;
3417                         }
3418                 }
3419         } else {
3420                 ret = -EINVAL;
3421         }
3422
3423         if (ret)
3424                 goto out;
3425
3426         if (ops->set_voltage_time_sel) {
3427                 /*
3428                  * Call set_voltage_time_sel if successfully obtained
3429                  * old_selector
3430                  */
3431                 if (old_selector >= 0 && old_selector != selector)
3432                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3433                                                           selector);
3434         } else {
3435                 if (old_uV != best_val) {
3436                         if (ops->set_voltage_time)
3437                                 delay = ops->set_voltage_time(rdev, old_uV,
3438                                                               best_val);
3439                         else
3440                                 delay = _regulator_set_voltage_time(rdev,
3441                                                                     old_uV,
3442                                                                     best_val);
3443                 }
3444         }
3445
3446         if (delay < 0) {
3447                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3448                 delay = 0;
3449         }
3450
3451         /* Insert any necessary delays */
3452         if (delay >= 1000) {
3453                 mdelay(delay / 1000);
3454                 udelay(delay % 1000);
3455         } else if (delay) {
3456                 udelay(delay);
3457         }
3458
3459         if (best_val >= 0) {
3460                 unsigned long data = best_val;
3461
3462                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3463                                      (void *)data);
3464         }
3465
3466 out:
3467         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3468
3469         return ret;
3470 }
3471
3472 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3473                                   int min_uV, int max_uV, suspend_state_t state)
3474 {
3475         struct regulator_state *rstate;
3476         int uV, sel;
3477
3478         rstate = regulator_get_suspend_state(rdev, state);
3479         if (rstate == NULL)
3480                 return -EINVAL;
3481
3482         if (min_uV < rstate->min_uV)
3483                 min_uV = rstate->min_uV;
3484         if (max_uV > rstate->max_uV)
3485                 max_uV = rstate->max_uV;
3486
3487         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3488         if (sel < 0)
3489                 return sel;
3490
3491         uV = rdev->desc->ops->list_voltage(rdev, sel);
3492         if (uV >= min_uV && uV <= max_uV)
3493                 rstate->uV = uV;
3494
3495         return 0;
3496 }
3497
3498 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3499                                           int min_uV, int max_uV,
3500                                           suspend_state_t state)
3501 {
3502         struct regulator_dev *rdev = regulator->rdev;
3503         struct regulator_voltage *voltage = &regulator->voltage[state];
3504         int ret = 0;
3505         int old_min_uV, old_max_uV;
3506         int current_uV;
3507
3508         /* If we're setting the same range as last time the change
3509          * should be a noop (some cpufreq implementations use the same
3510          * voltage for multiple frequencies, for example).
3511          */
3512         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3513                 goto out;
3514
3515         /* If we're trying to set a range that overlaps the current voltage,
3516          * return successfully even though the regulator does not support
3517          * changing the voltage.
3518          */
3519         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3520                 current_uV = regulator_get_voltage_rdev(rdev);
3521                 if (min_uV <= current_uV && current_uV <= max_uV) {
3522                         voltage->min_uV = min_uV;
3523                         voltage->max_uV = max_uV;
3524                         goto out;
3525                 }
3526         }
3527
3528         /* sanity check */
3529         if (!rdev->desc->ops->set_voltage &&
3530             !rdev->desc->ops->set_voltage_sel) {
3531                 ret = -EINVAL;
3532                 goto out;
3533         }
3534
3535         /* constraints check */
3536         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3537         if (ret < 0)
3538                 goto out;
3539
3540         /* restore original values in case of error */
3541         old_min_uV = voltage->min_uV;
3542         old_max_uV = voltage->max_uV;
3543         voltage->min_uV = min_uV;
3544         voltage->max_uV = max_uV;
3545
3546         /* for not coupled regulators this will just set the voltage */
3547         ret = regulator_balance_voltage(rdev, state);
3548         if (ret < 0) {
3549                 voltage->min_uV = old_min_uV;
3550                 voltage->max_uV = old_max_uV;
3551         }
3552
3553 out:
3554         return ret;
3555 }
3556
3557 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3558                                int max_uV, suspend_state_t state)
3559 {
3560         int best_supply_uV = 0;
3561         int supply_change_uV = 0;
3562         int ret;
3563
3564         if (rdev->supply &&
3565             regulator_ops_is_valid(rdev->supply->rdev,
3566                                    REGULATOR_CHANGE_VOLTAGE) &&
3567             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3568                                            rdev->desc->ops->get_voltage_sel))) {
3569                 int current_supply_uV;
3570                 int selector;
3571
3572                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3573                 if (selector < 0) {
3574                         ret = selector;
3575                         goto out;
3576                 }
3577
3578                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3579                 if (best_supply_uV < 0) {
3580                         ret = best_supply_uV;
3581                         goto out;
3582                 }
3583
3584                 best_supply_uV += rdev->desc->min_dropout_uV;
3585
3586                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3587                 if (current_supply_uV < 0) {
3588                         ret = current_supply_uV;
3589                         goto out;
3590                 }
3591
3592                 supply_change_uV = best_supply_uV - current_supply_uV;
3593         }
3594
3595         if (supply_change_uV > 0) {
3596                 ret = regulator_set_voltage_unlocked(rdev->supply,
3597                                 best_supply_uV, INT_MAX, state);
3598                 if (ret) {
3599                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3600                                 ERR_PTR(ret));
3601                         goto out;
3602                 }
3603         }
3604
3605         if (state == PM_SUSPEND_ON)
3606                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3607         else
3608                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3609                                                         max_uV, state);
3610         if (ret < 0)
3611                 goto out;
3612
3613         if (supply_change_uV < 0) {
3614                 ret = regulator_set_voltage_unlocked(rdev->supply,
3615                                 best_supply_uV, INT_MAX, state);
3616                 if (ret)
3617                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3618                                  ERR_PTR(ret));
3619                 /* No need to fail here */
3620                 ret = 0;
3621         }
3622
3623 out:
3624         return ret;
3625 }
3626 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3627
3628 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3629                                         int *current_uV, int *min_uV)
3630 {
3631         struct regulation_constraints *constraints = rdev->constraints;
3632
3633         /* Limit voltage change only if necessary */
3634         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3635                 return 1;
3636
3637         if (*current_uV < 0) {
3638                 *current_uV = regulator_get_voltage_rdev(rdev);
3639
3640                 if (*current_uV < 0)
3641                         return *current_uV;
3642         }
3643
3644         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3645                 return 1;
3646
3647         /* Clamp target voltage within the given step */
3648         if (*current_uV < *min_uV)
3649                 *min_uV = min(*current_uV + constraints->max_uV_step,
3650                               *min_uV);
3651         else
3652                 *min_uV = max(*current_uV - constraints->max_uV_step,
3653                               *min_uV);
3654
3655         return 0;
3656 }
3657
3658 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3659                                          int *current_uV,
3660                                          int *min_uV, int *max_uV,
3661                                          suspend_state_t state,
3662                                          int n_coupled)
3663 {
3664         struct coupling_desc *c_desc = &rdev->coupling_desc;
3665         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3666         struct regulation_constraints *constraints = rdev->constraints;
3667         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3668         int max_current_uV = 0, min_current_uV = INT_MAX;
3669         int highest_min_uV = 0, target_uV, possible_uV;
3670         int i, ret, max_spread;
3671         bool done;
3672
3673         *current_uV = -1;
3674
3675         /*
3676          * If there are no coupled regulators, simply set the voltage
3677          * demanded by consumers.
3678          */
3679         if (n_coupled == 1) {
3680                 /*
3681                  * If consumers don't provide any demands, set voltage
3682                  * to min_uV
3683                  */
3684                 desired_min_uV = constraints->min_uV;
3685                 desired_max_uV = constraints->max_uV;
3686
3687                 ret = regulator_check_consumers(rdev,
3688                                                 &desired_min_uV,
3689                                                 &desired_max_uV, state);
3690                 if (ret < 0)
3691                         return ret;
3692
3693                 possible_uV = desired_min_uV;
3694                 done = true;
3695
3696                 goto finish;
3697         }
3698
3699         /* Find highest min desired voltage */
3700         for (i = 0; i < n_coupled; i++) {
3701                 int tmp_min = 0;
3702                 int tmp_max = INT_MAX;
3703
3704                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3705
3706                 ret = regulator_check_consumers(c_rdevs[i],
3707                                                 &tmp_min,
3708                                                 &tmp_max, state);
3709                 if (ret < 0)
3710                         return ret;
3711
3712                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3713                 if (ret < 0)
3714                         return ret;
3715
3716                 highest_min_uV = max(highest_min_uV, tmp_min);
3717
3718                 if (i == 0) {
3719                         desired_min_uV = tmp_min;
3720                         desired_max_uV = tmp_max;
3721                 }
3722         }
3723
3724         max_spread = constraints->max_spread[0];
3725
3726         /*
3727          * Let target_uV be equal to the desired one if possible.
3728          * If not, set it to minimum voltage, allowed by other coupled
3729          * regulators.
3730          */
3731         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3732
3733         /*
3734          * Find min and max voltages, which currently aren't violating
3735          * max_spread.
3736          */
3737         for (i = 1; i < n_coupled; i++) {
3738                 int tmp_act;
3739
3740                 if (!_regulator_is_enabled(c_rdevs[i]))
3741                         continue;
3742
3743                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3744                 if (tmp_act < 0)
3745                         return tmp_act;
3746
3747                 min_current_uV = min(tmp_act, min_current_uV);
3748                 max_current_uV = max(tmp_act, max_current_uV);
3749         }
3750
3751         /* There aren't any other regulators enabled */
3752         if (max_current_uV == 0) {
3753                 possible_uV = target_uV;
3754         } else {
3755                 /*
3756                  * Correct target voltage, so as it currently isn't
3757                  * violating max_spread
3758                  */
3759                 possible_uV = max(target_uV, max_current_uV - max_spread);
3760                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3761         }
3762
3763         if (possible_uV > desired_max_uV)
3764                 return -EINVAL;
3765
3766         done = (possible_uV == target_uV);
3767         desired_min_uV = possible_uV;
3768
3769 finish:
3770         /* Apply max_uV_step constraint if necessary */
3771         if (state == PM_SUSPEND_ON) {
3772                 ret = regulator_limit_voltage_step(rdev, current_uV,
3773                                                    &desired_min_uV);
3774                 if (ret < 0)
3775                         return ret;
3776
3777                 if (ret == 0)
3778                         done = false;
3779         }
3780
3781         /* Set current_uV if wasn't done earlier in the code and if necessary */
3782         if (n_coupled > 1 && *current_uV == -1) {
3783
3784                 if (_regulator_is_enabled(rdev)) {
3785                         ret = regulator_get_voltage_rdev(rdev);
3786                         if (ret < 0)
3787                                 return ret;
3788
3789                         *current_uV = ret;
3790                 } else {
3791                         *current_uV = desired_min_uV;
3792                 }
3793         }
3794
3795         *min_uV = desired_min_uV;
3796         *max_uV = desired_max_uV;
3797
3798         return done;
3799 }
3800
3801 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3802                                  suspend_state_t state, bool skip_coupled)
3803 {
3804         struct regulator_dev **c_rdevs;
3805         struct regulator_dev *best_rdev;
3806         struct coupling_desc *c_desc = &rdev->coupling_desc;
3807         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3808         unsigned int delta, best_delta;
3809         unsigned long c_rdev_done = 0;
3810         bool best_c_rdev_done;
3811
3812         c_rdevs = c_desc->coupled_rdevs;
3813         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3814
3815         /*
3816          * Find the best possible voltage change on each loop. Leave the loop
3817          * if there isn't any possible change.
3818          */
3819         do {
3820                 best_c_rdev_done = false;
3821                 best_delta = 0;
3822                 best_min_uV = 0;
3823                 best_max_uV = 0;
3824                 best_c_rdev = 0;
3825                 best_rdev = NULL;
3826
3827                 /*
3828                  * Find highest difference between optimal voltage
3829                  * and current voltage.
3830                  */
3831                 for (i = 0; i < n_coupled; i++) {
3832                         /*
3833                          * optimal_uV is the best voltage that can be set for
3834                          * i-th regulator at the moment without violating
3835                          * max_spread constraint in order to balance
3836                          * the coupled voltages.
3837                          */
3838                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3839
3840                         if (test_bit(i, &c_rdev_done))
3841                                 continue;
3842
3843                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3844                                                             &current_uV,
3845                                                             &optimal_uV,
3846                                                             &optimal_max_uV,
3847                                                             state, n_coupled);
3848                         if (ret < 0)
3849                                 goto out;
3850
3851                         delta = abs(optimal_uV - current_uV);
3852
3853                         if (delta && best_delta <= delta) {
3854                                 best_c_rdev_done = ret;
3855                                 best_delta = delta;
3856                                 best_rdev = c_rdevs[i];
3857                                 best_min_uV = optimal_uV;
3858                                 best_max_uV = optimal_max_uV;
3859                                 best_c_rdev = i;
3860                         }
3861                 }
3862
3863                 /* Nothing to change, return successfully */
3864                 if (!best_rdev) {
3865                         ret = 0;
3866                         goto out;
3867                 }
3868
3869                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3870                                                  best_max_uV, state);
3871
3872                 if (ret < 0)
3873                         goto out;
3874
3875                 if (best_c_rdev_done)
3876                         set_bit(best_c_rdev, &c_rdev_done);
3877
3878         } while (n_coupled > 1);
3879
3880 out:
3881         return ret;
3882 }
3883
3884 static int regulator_balance_voltage(struct regulator_dev *rdev,
3885                                      suspend_state_t state)
3886 {
3887         struct coupling_desc *c_desc = &rdev->coupling_desc;
3888         struct regulator_coupler *coupler = c_desc->coupler;
3889         bool skip_coupled = false;
3890
3891         /*
3892          * If system is in a state other than PM_SUSPEND_ON, don't check
3893          * other coupled regulators.
3894          */
3895         if (state != PM_SUSPEND_ON)
3896                 skip_coupled = true;
3897
3898         if (c_desc->n_resolved < c_desc->n_coupled) {
3899                 rdev_err(rdev, "Not all coupled regulators registered\n");
3900                 return -EPERM;
3901         }
3902
3903         /* Invoke custom balancer for customized couplers */
3904         if (coupler && coupler->balance_voltage)
3905                 return coupler->balance_voltage(coupler, rdev, state);
3906
3907         return regulator_do_balance_voltage(rdev, state, skip_coupled);
3908 }
3909
3910 /**
3911  * regulator_set_voltage - set regulator output voltage
3912  * @regulator: regulator source
3913  * @min_uV: Minimum required voltage in uV
3914  * @max_uV: Maximum acceptable voltage in uV
3915  *
3916  * Sets a voltage regulator to the desired output voltage. This can be set
3917  * during any regulator state. IOW, regulator can be disabled or enabled.
3918  *
3919  * If the regulator is enabled then the voltage will change to the new value
3920  * immediately otherwise if the regulator is disabled the regulator will
3921  * output at the new voltage when enabled.
3922  *
3923  * NOTE: If the regulator is shared between several devices then the lowest
3924  * request voltage that meets the system constraints will be used.
3925  * Regulator system constraints must be set for this regulator before
3926  * calling this function otherwise this call will fail.
3927  */
3928 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3929 {
3930         struct ww_acquire_ctx ww_ctx;
3931         int ret;
3932
3933         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3934
3935         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3936                                              PM_SUSPEND_ON);
3937
3938         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3939
3940         return ret;
3941 }
3942 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3943
3944 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3945                                            suspend_state_t state, bool en)
3946 {
3947         struct regulator_state *rstate;
3948
3949         rstate = regulator_get_suspend_state(rdev, state);
3950         if (rstate == NULL)
3951                 return -EINVAL;
3952
3953         if (!rstate->changeable)
3954                 return -EPERM;
3955
3956         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3957
3958         return 0;
3959 }
3960
3961 int regulator_suspend_enable(struct regulator_dev *rdev,
3962                                     suspend_state_t state)
3963 {
3964         return regulator_suspend_toggle(rdev, state, true);
3965 }
3966 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3967
3968 int regulator_suspend_disable(struct regulator_dev *rdev,
3969                                      suspend_state_t state)
3970 {
3971         struct regulator *regulator;
3972         struct regulator_voltage *voltage;
3973
3974         /*
3975          * if any consumer wants this regulator device keeping on in
3976          * suspend states, don't set it as disabled.
3977          */
3978         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3979                 voltage = &regulator->voltage[state];
3980                 if (voltage->min_uV || voltage->max_uV)
3981                         return 0;
3982         }
3983
3984         return regulator_suspend_toggle(rdev, state, false);
3985 }
3986 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3987
3988 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3989                                           int min_uV, int max_uV,
3990                                           suspend_state_t state)
3991 {
3992         struct regulator_dev *rdev = regulator->rdev;
3993         struct regulator_state *rstate;
3994
3995         rstate = regulator_get_suspend_state(rdev, state);
3996         if (rstate == NULL)
3997                 return -EINVAL;
3998
3999         if (rstate->min_uV == rstate->max_uV) {
4000                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4001                 return -EPERM;
4002         }
4003
4004         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4005 }
4006
4007 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4008                                   int max_uV, suspend_state_t state)
4009 {
4010         struct ww_acquire_ctx ww_ctx;
4011         int ret;
4012
4013         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4014         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4015                 return -EINVAL;
4016
4017         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4018
4019         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4020                                              max_uV, state);
4021
4022         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4023
4024         return ret;
4025 }
4026 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4027
4028 /**
4029  * regulator_set_voltage_time - get raise/fall time
4030  * @regulator: regulator source
4031  * @old_uV: starting voltage in microvolts
4032  * @new_uV: target voltage in microvolts
4033  *
4034  * Provided with the starting and ending voltage, this function attempts to
4035  * calculate the time in microseconds required to rise or fall to this new
4036  * voltage.
4037  */
4038 int regulator_set_voltage_time(struct regulator *regulator,
4039                                int old_uV, int new_uV)
4040 {
4041         struct regulator_dev *rdev = regulator->rdev;
4042         const struct regulator_ops *ops = rdev->desc->ops;
4043         int old_sel = -1;
4044         int new_sel = -1;
4045         int voltage;
4046         int i;
4047
4048         if (ops->set_voltage_time)
4049                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4050         else if (!ops->set_voltage_time_sel)
4051                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4052
4053         /* Currently requires operations to do this */
4054         if (!ops->list_voltage || !rdev->desc->n_voltages)
4055                 return -EINVAL;
4056
4057         for (i = 0; i < rdev->desc->n_voltages; i++) {
4058                 /* We only look for exact voltage matches here */
4059                 if (i < rdev->desc->linear_min_sel)
4060                         continue;
4061
4062                 if (old_sel >= 0 && new_sel >= 0)
4063                         break;
4064
4065                 voltage = regulator_list_voltage(regulator, i);
4066                 if (voltage < 0)
4067                         return -EINVAL;
4068                 if (voltage == 0)
4069                         continue;
4070                 if (voltage == old_uV)
4071                         old_sel = i;
4072                 if (voltage == new_uV)
4073                         new_sel = i;
4074         }
4075
4076         if (old_sel < 0 || new_sel < 0)
4077                 return -EINVAL;
4078
4079         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4080 }
4081 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4082
4083 /**
4084  * regulator_set_voltage_time_sel - get raise/fall time
4085  * @rdev: regulator source device
4086  * @old_selector: selector for starting voltage
4087  * @new_selector: selector for target voltage
4088  *
4089  * Provided with the starting and target voltage selectors, this function
4090  * returns time in microseconds required to rise or fall to this new voltage
4091  *
4092  * Drivers providing ramp_delay in regulation_constraints can use this as their
4093  * set_voltage_time_sel() operation.
4094  */
4095 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4096                                    unsigned int old_selector,
4097                                    unsigned int new_selector)
4098 {
4099         int old_volt, new_volt;
4100
4101         /* sanity check */
4102         if (!rdev->desc->ops->list_voltage)
4103                 return -EINVAL;
4104
4105         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4106         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4107
4108         if (rdev->desc->ops->set_voltage_time)
4109                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4110                                                          new_volt);
4111         else
4112                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4113 }
4114 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4115
4116 /**
4117  * regulator_sync_voltage - re-apply last regulator output voltage
4118  * @regulator: regulator source
4119  *
4120  * Re-apply the last configured voltage.  This is intended to be used
4121  * where some external control source the consumer is cooperating with
4122  * has caused the configured voltage to change.
4123  */
4124 int regulator_sync_voltage(struct regulator *regulator)
4125 {
4126         struct regulator_dev *rdev = regulator->rdev;
4127         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4128         int ret, min_uV, max_uV;
4129
4130         regulator_lock(rdev);
4131
4132         if (!rdev->desc->ops->set_voltage &&
4133             !rdev->desc->ops->set_voltage_sel) {
4134                 ret = -EINVAL;
4135                 goto out;
4136         }
4137
4138         /* This is only going to work if we've had a voltage configured. */
4139         if (!voltage->min_uV && !voltage->max_uV) {
4140                 ret = -EINVAL;
4141                 goto out;
4142         }
4143
4144         min_uV = voltage->min_uV;
4145         max_uV = voltage->max_uV;
4146
4147         /* This should be a paranoia check... */
4148         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4149         if (ret < 0)
4150                 goto out;
4151
4152         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4153         if (ret < 0)
4154                 goto out;
4155
4156         /* balance only, if regulator is coupled */
4157         if (rdev->coupling_desc.n_coupled > 1)
4158                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4159         else
4160                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4161
4162 out:
4163         regulator_unlock(rdev);
4164         return ret;
4165 }
4166 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4167
4168 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4169 {
4170         int sel, ret;
4171         bool bypassed;
4172
4173         if (rdev->desc->ops->get_bypass) {
4174                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4175                 if (ret < 0)
4176                         return ret;
4177                 if (bypassed) {
4178                         /* if bypassed the regulator must have a supply */
4179                         if (!rdev->supply) {
4180                                 rdev_err(rdev,
4181                                          "bypassed regulator has no supply!\n");
4182                                 return -EPROBE_DEFER;
4183                         }
4184
4185                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4186                 }
4187         }
4188
4189         if (rdev->desc->ops->get_voltage_sel) {
4190                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4191                 if (sel < 0)
4192                         return sel;
4193                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4194         } else if (rdev->desc->ops->get_voltage) {
4195                 ret = rdev->desc->ops->get_voltage(rdev);
4196         } else if (rdev->desc->ops->list_voltage) {
4197                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4198         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4199                 ret = rdev->desc->fixed_uV;
4200         } else if (rdev->supply) {
4201                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4202         } else if (rdev->supply_name) {
4203                 return -EPROBE_DEFER;
4204         } else {
4205                 return -EINVAL;
4206         }
4207
4208         if (ret < 0)
4209                 return ret;
4210         return ret - rdev->constraints->uV_offset;
4211 }
4212 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4213
4214 /**
4215  * regulator_get_voltage - get regulator output voltage
4216  * @regulator: regulator source
4217  *
4218  * This returns the current regulator voltage in uV.
4219  *
4220  * NOTE: If the regulator is disabled it will return the voltage value. This
4221  * function should not be used to determine regulator state.
4222  */
4223 int regulator_get_voltage(struct regulator *regulator)
4224 {
4225         struct ww_acquire_ctx ww_ctx;
4226         int ret;
4227
4228         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4229         ret = regulator_get_voltage_rdev(regulator->rdev);
4230         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4231
4232         return ret;
4233 }
4234 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4235
4236 /**
4237  * regulator_set_current_limit - set regulator output current limit
4238  * @regulator: regulator source
4239  * @min_uA: Minimum supported current in uA
4240  * @max_uA: Maximum supported current in uA
4241  *
4242  * Sets current sink to the desired output current. This can be set during
4243  * any regulator state. IOW, regulator can be disabled or enabled.
4244  *
4245  * If the regulator is enabled then the current will change to the new value
4246  * immediately otherwise if the regulator is disabled the regulator will
4247  * output at the new current when enabled.
4248  *
4249  * NOTE: Regulator system constraints must be set for this regulator before
4250  * calling this function otherwise this call will fail.
4251  */
4252 int regulator_set_current_limit(struct regulator *regulator,
4253                                int min_uA, int max_uA)
4254 {
4255         struct regulator_dev *rdev = regulator->rdev;
4256         int ret;
4257
4258         regulator_lock(rdev);
4259
4260         /* sanity check */
4261         if (!rdev->desc->ops->set_current_limit) {
4262                 ret = -EINVAL;
4263                 goto out;
4264         }
4265
4266         /* constraints check */
4267         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4268         if (ret < 0)
4269                 goto out;
4270
4271         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4272 out:
4273         regulator_unlock(rdev);
4274         return ret;
4275 }
4276 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4277
4278 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4279 {
4280         /* sanity check */
4281         if (!rdev->desc->ops->get_current_limit)
4282                 return -EINVAL;
4283
4284         return rdev->desc->ops->get_current_limit(rdev);
4285 }
4286
4287 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4288 {
4289         int ret;
4290
4291         regulator_lock(rdev);
4292         ret = _regulator_get_current_limit_unlocked(rdev);
4293         regulator_unlock(rdev);
4294
4295         return ret;
4296 }
4297
4298 /**
4299  * regulator_get_current_limit - get regulator output current
4300  * @regulator: regulator source
4301  *
4302  * This returns the current supplied by the specified current sink in uA.
4303  *
4304  * NOTE: If the regulator is disabled it will return the current value. This
4305  * function should not be used to determine regulator state.
4306  */
4307 int regulator_get_current_limit(struct regulator *regulator)
4308 {
4309         return _regulator_get_current_limit(regulator->rdev);
4310 }
4311 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4312
4313 /**
4314  * regulator_set_mode - set regulator operating mode
4315  * @regulator: regulator source
4316  * @mode: operating mode - one of the REGULATOR_MODE constants
4317  *
4318  * Set regulator operating mode to increase regulator efficiency or improve
4319  * regulation performance.
4320  *
4321  * NOTE: Regulator system constraints must be set for this regulator before
4322  * calling this function otherwise this call will fail.
4323  */
4324 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4325 {
4326         struct regulator_dev *rdev = regulator->rdev;
4327         int ret;
4328         int regulator_curr_mode;
4329
4330         regulator_lock(rdev);
4331
4332         /* sanity check */
4333         if (!rdev->desc->ops->set_mode) {
4334                 ret = -EINVAL;
4335                 goto out;
4336         }
4337
4338         /* return if the same mode is requested */
4339         if (rdev->desc->ops->get_mode) {
4340                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4341                 if (regulator_curr_mode == mode) {
4342                         ret = 0;
4343                         goto out;
4344                 }
4345         }
4346
4347         /* constraints check */
4348         ret = regulator_mode_constrain(rdev, &mode);
4349         if (ret < 0)
4350                 goto out;
4351
4352         ret = rdev->desc->ops->set_mode(rdev, mode);
4353 out:
4354         regulator_unlock(rdev);
4355         return ret;
4356 }
4357 EXPORT_SYMBOL_GPL(regulator_set_mode);
4358
4359 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4360 {
4361         /* sanity check */
4362         if (!rdev->desc->ops->get_mode)
4363                 return -EINVAL;
4364
4365         return rdev->desc->ops->get_mode(rdev);
4366 }
4367
4368 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4369 {
4370         int ret;
4371
4372         regulator_lock(rdev);
4373         ret = _regulator_get_mode_unlocked(rdev);
4374         regulator_unlock(rdev);
4375
4376         return ret;
4377 }
4378
4379 /**
4380  * regulator_get_mode - get regulator operating mode
4381  * @regulator: regulator source
4382  *
4383  * Get the current regulator operating mode.
4384  */
4385 unsigned int regulator_get_mode(struct regulator *regulator)
4386 {
4387         return _regulator_get_mode(regulator->rdev);
4388 }
4389 EXPORT_SYMBOL_GPL(regulator_get_mode);
4390
4391 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4392                                         unsigned int *flags)
4393 {
4394         int ret;
4395
4396         regulator_lock(rdev);
4397
4398         /* sanity check */
4399         if (!rdev->desc->ops->get_error_flags) {
4400                 ret = -EINVAL;
4401                 goto out;
4402         }
4403
4404         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4405 out:
4406         regulator_unlock(rdev);
4407         return ret;
4408 }
4409
4410 /**
4411  * regulator_get_error_flags - get regulator error information
4412  * @regulator: regulator source
4413  * @flags: pointer to store error flags
4414  *
4415  * Get the current regulator error information.
4416  */
4417 int regulator_get_error_flags(struct regulator *regulator,
4418                                 unsigned int *flags)
4419 {
4420         return _regulator_get_error_flags(regulator->rdev, flags);
4421 }
4422 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4423
4424 /**
4425  * regulator_set_load - set regulator load
4426  * @regulator: regulator source
4427  * @uA_load: load current
4428  *
4429  * Notifies the regulator core of a new device load. This is then used by
4430  * DRMS (if enabled by constraints) to set the most efficient regulator
4431  * operating mode for the new regulator loading.
4432  *
4433  * Consumer devices notify their supply regulator of the maximum power
4434  * they will require (can be taken from device datasheet in the power
4435  * consumption tables) when they change operational status and hence power
4436  * state. Examples of operational state changes that can affect power
4437  * consumption are :-
4438  *
4439  *    o Device is opened / closed.
4440  *    o Device I/O is about to begin or has just finished.
4441  *    o Device is idling in between work.
4442  *
4443  * This information is also exported via sysfs to userspace.
4444  *
4445  * DRMS will sum the total requested load on the regulator and change
4446  * to the most efficient operating mode if platform constraints allow.
4447  *
4448  * NOTE: when a regulator consumer requests to have a regulator
4449  * disabled then any load that consumer requested no longer counts
4450  * toward the total requested load.  If the regulator is re-enabled
4451  * then the previously requested load will start counting again.
4452  *
4453  * If a regulator is an always-on regulator then an individual consumer's
4454  * load will still be removed if that consumer is fully disabled.
4455  *
4456  * On error a negative errno is returned.
4457  */
4458 int regulator_set_load(struct regulator *regulator, int uA_load)
4459 {
4460         struct regulator_dev *rdev = regulator->rdev;
4461         int old_uA_load;
4462         int ret = 0;
4463
4464         regulator_lock(rdev);
4465         old_uA_load = regulator->uA_load;
4466         regulator->uA_load = uA_load;
4467         if (regulator->enable_count && old_uA_load != uA_load) {
4468                 ret = drms_uA_update(rdev);
4469                 if (ret < 0)
4470                         regulator->uA_load = old_uA_load;
4471         }
4472         regulator_unlock(rdev);
4473
4474         return ret;
4475 }
4476 EXPORT_SYMBOL_GPL(regulator_set_load);
4477
4478 /**
4479  * regulator_allow_bypass - allow the regulator to go into bypass mode
4480  *
4481  * @regulator: Regulator to configure
4482  * @enable: enable or disable bypass mode
4483  *
4484  * Allow the regulator to go into bypass mode if all other consumers
4485  * for the regulator also enable bypass mode and the machine
4486  * constraints allow this.  Bypass mode means that the regulator is
4487  * simply passing the input directly to the output with no regulation.
4488  */
4489 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4490 {
4491         struct regulator_dev *rdev = regulator->rdev;
4492         const char *name = rdev_get_name(rdev);
4493         int ret = 0;
4494
4495         if (!rdev->desc->ops->set_bypass)
4496                 return 0;
4497
4498         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4499                 return 0;
4500
4501         regulator_lock(rdev);
4502
4503         if (enable && !regulator->bypass) {
4504                 rdev->bypass_count++;
4505
4506                 if (rdev->bypass_count == rdev->open_count) {
4507                         trace_regulator_bypass_enable(name);
4508
4509                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4510                         if (ret != 0)
4511                                 rdev->bypass_count--;
4512                         else
4513                                 trace_regulator_bypass_enable_complete(name);
4514                 }
4515
4516         } else if (!enable && regulator->bypass) {
4517                 rdev->bypass_count--;
4518
4519                 if (rdev->bypass_count != rdev->open_count) {
4520                         trace_regulator_bypass_disable(name);
4521
4522                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4523                         if (ret != 0)
4524                                 rdev->bypass_count++;
4525                         else
4526                                 trace_regulator_bypass_disable_complete(name);
4527                 }
4528         }
4529
4530         if (ret == 0)
4531                 regulator->bypass = enable;
4532
4533         regulator_unlock(rdev);
4534
4535         return ret;
4536 }
4537 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4538
4539 /**
4540  * regulator_register_notifier - register regulator event notifier
4541  * @regulator: regulator source
4542  * @nb: notifier block
4543  *
4544  * Register notifier block to receive regulator events.
4545  */
4546 int regulator_register_notifier(struct regulator *regulator,
4547                               struct notifier_block *nb)
4548 {
4549         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4550                                                 nb);
4551 }
4552 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4553
4554 /**
4555  * regulator_unregister_notifier - unregister regulator event notifier
4556  * @regulator: regulator source
4557  * @nb: notifier block
4558  *
4559  * Unregister regulator event notifier block.
4560  */
4561 int regulator_unregister_notifier(struct regulator *regulator,
4562                                 struct notifier_block *nb)
4563 {
4564         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4565                                                   nb);
4566 }
4567 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4568
4569 /* notify regulator consumers and downstream regulator consumers.
4570  * Note mutex must be held by caller.
4571  */
4572 static int _notifier_call_chain(struct regulator_dev *rdev,
4573                                   unsigned long event, void *data)
4574 {
4575         /* call rdev chain first */
4576         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4577 }
4578
4579 /**
4580  * regulator_bulk_get - get multiple regulator consumers
4581  *
4582  * @dev:           Device to supply
4583  * @num_consumers: Number of consumers to register
4584  * @consumers:     Configuration of consumers; clients are stored here.
4585  *
4586  * @return 0 on success, an errno on failure.
4587  *
4588  * This helper function allows drivers to get several regulator
4589  * consumers in one operation.  If any of the regulators cannot be
4590  * acquired then any regulators that were allocated will be freed
4591  * before returning to the caller.
4592  */
4593 int regulator_bulk_get(struct device *dev, int num_consumers,
4594                        struct regulator_bulk_data *consumers)
4595 {
4596         int i;
4597         int ret;
4598
4599         for (i = 0; i < num_consumers; i++)
4600                 consumers[i].consumer = NULL;
4601
4602         for (i = 0; i < num_consumers; i++) {
4603                 consumers[i].consumer = regulator_get(dev,
4604                                                       consumers[i].supply);
4605                 if (IS_ERR(consumers[i].consumer)) {
4606                         ret = PTR_ERR(consumers[i].consumer);
4607                         consumers[i].consumer = NULL;
4608                         goto err;
4609                 }
4610         }
4611
4612         return 0;
4613
4614 err:
4615         if (ret != -EPROBE_DEFER)
4616                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4617                         consumers[i].supply, ERR_PTR(ret));
4618         else
4619                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4620                         consumers[i].supply);
4621
4622         while (--i >= 0)
4623                 regulator_put(consumers[i].consumer);
4624
4625         return ret;
4626 }
4627 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4628
4629 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4630 {
4631         struct regulator_bulk_data *bulk = data;
4632
4633         bulk->ret = regulator_enable(bulk->consumer);
4634 }
4635
4636 /**
4637  * regulator_bulk_enable - enable multiple regulator consumers
4638  *
4639  * @num_consumers: Number of consumers
4640  * @consumers:     Consumer data; clients are stored here.
4641  * @return         0 on success, an errno on failure
4642  *
4643  * This convenience API allows consumers to enable multiple regulator
4644  * clients in a single API call.  If any consumers cannot be enabled
4645  * then any others that were enabled will be disabled again prior to
4646  * return.
4647  */
4648 int regulator_bulk_enable(int num_consumers,
4649                           struct regulator_bulk_data *consumers)
4650 {
4651         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4652         int i;
4653         int ret = 0;
4654
4655         for (i = 0; i < num_consumers; i++) {
4656                 async_schedule_domain(regulator_bulk_enable_async,
4657                                       &consumers[i], &async_domain);
4658         }
4659
4660         async_synchronize_full_domain(&async_domain);
4661
4662         /* If any consumer failed we need to unwind any that succeeded */
4663         for (i = 0; i < num_consumers; i++) {
4664                 if (consumers[i].ret != 0) {
4665                         ret = consumers[i].ret;
4666                         goto err;
4667                 }
4668         }
4669
4670         return 0;
4671
4672 err:
4673         for (i = 0; i < num_consumers; i++) {
4674                 if (consumers[i].ret < 0)
4675                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4676                                ERR_PTR(consumers[i].ret));
4677                 else
4678                         regulator_disable(consumers[i].consumer);
4679         }
4680
4681         return ret;
4682 }
4683 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4684
4685 /**
4686  * regulator_bulk_disable - disable multiple regulator consumers
4687  *
4688  * @num_consumers: Number of consumers
4689  * @consumers:     Consumer data; clients are stored here.
4690  * @return         0 on success, an errno on failure
4691  *
4692  * This convenience API allows consumers to disable multiple regulator
4693  * clients in a single API call.  If any consumers cannot be disabled
4694  * then any others that were disabled will be enabled again prior to
4695  * return.
4696  */
4697 int regulator_bulk_disable(int num_consumers,
4698                            struct regulator_bulk_data *consumers)
4699 {
4700         int i;
4701         int ret, r;
4702
4703         for (i = num_consumers - 1; i >= 0; --i) {
4704                 ret = regulator_disable(consumers[i].consumer);
4705                 if (ret != 0)
4706                         goto err;
4707         }
4708
4709         return 0;
4710
4711 err:
4712         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4713         for (++i; i < num_consumers; ++i) {
4714                 r = regulator_enable(consumers[i].consumer);
4715                 if (r != 0)
4716                         pr_err("Failed to re-enable %s: %pe\n",
4717                                consumers[i].supply, ERR_PTR(r));
4718         }
4719
4720         return ret;
4721 }
4722 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4723
4724 /**
4725  * regulator_bulk_force_disable - force disable multiple regulator consumers
4726  *
4727  * @num_consumers: Number of consumers
4728  * @consumers:     Consumer data; clients are stored here.
4729  * @return         0 on success, an errno on failure
4730  *
4731  * This convenience API allows consumers to forcibly disable multiple regulator
4732  * clients in a single API call.
4733  * NOTE: This should be used for situations when device damage will
4734  * likely occur if the regulators are not disabled (e.g. over temp).
4735  * Although regulator_force_disable function call for some consumers can
4736  * return error numbers, the function is called for all consumers.
4737  */
4738 int regulator_bulk_force_disable(int num_consumers,
4739                            struct regulator_bulk_data *consumers)
4740 {
4741         int i;
4742         int ret = 0;
4743
4744         for (i = 0; i < num_consumers; i++) {
4745                 consumers[i].ret =
4746                             regulator_force_disable(consumers[i].consumer);
4747
4748                 /* Store first error for reporting */
4749                 if (consumers[i].ret && !ret)
4750                         ret = consumers[i].ret;
4751         }
4752
4753         return ret;
4754 }
4755 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4756
4757 /**
4758  * regulator_bulk_free - free multiple regulator consumers
4759  *
4760  * @num_consumers: Number of consumers
4761  * @consumers:     Consumer data; clients are stored here.
4762  *
4763  * This convenience API allows consumers to free multiple regulator
4764  * clients in a single API call.
4765  */
4766 void regulator_bulk_free(int num_consumers,
4767                          struct regulator_bulk_data *consumers)
4768 {
4769         int i;
4770
4771         for (i = 0; i < num_consumers; i++) {
4772                 regulator_put(consumers[i].consumer);
4773                 consumers[i].consumer = NULL;
4774         }
4775 }
4776 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4777
4778 /**
4779  * regulator_notifier_call_chain - call regulator event notifier
4780  * @rdev: regulator source
4781  * @event: notifier block
4782  * @data: callback-specific data.
4783  *
4784  * Called by regulator drivers to notify clients a regulator event has
4785  * occurred.
4786  */
4787 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4788                                   unsigned long event, void *data)
4789 {
4790         _notifier_call_chain(rdev, event, data);
4791         return NOTIFY_DONE;
4792
4793 }
4794 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4795
4796 /**
4797  * regulator_mode_to_status - convert a regulator mode into a status
4798  *
4799  * @mode: Mode to convert
4800  *
4801  * Convert a regulator mode into a status.
4802  */
4803 int regulator_mode_to_status(unsigned int mode)
4804 {
4805         switch (mode) {
4806         case REGULATOR_MODE_FAST:
4807                 return REGULATOR_STATUS_FAST;
4808         case REGULATOR_MODE_NORMAL:
4809                 return REGULATOR_STATUS_NORMAL;
4810         case REGULATOR_MODE_IDLE:
4811                 return REGULATOR_STATUS_IDLE;
4812         case REGULATOR_MODE_STANDBY:
4813                 return REGULATOR_STATUS_STANDBY;
4814         default:
4815                 return REGULATOR_STATUS_UNDEFINED;
4816         }
4817 }
4818 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4819
4820 static struct attribute *regulator_dev_attrs[] = {
4821         &dev_attr_name.attr,
4822         &dev_attr_num_users.attr,
4823         &dev_attr_type.attr,
4824         &dev_attr_microvolts.attr,
4825         &dev_attr_microamps.attr,
4826         &dev_attr_opmode.attr,
4827         &dev_attr_state.attr,
4828         &dev_attr_status.attr,
4829         &dev_attr_bypass.attr,
4830         &dev_attr_requested_microamps.attr,
4831         &dev_attr_min_microvolts.attr,
4832         &dev_attr_max_microvolts.attr,
4833         &dev_attr_min_microamps.attr,
4834         &dev_attr_max_microamps.attr,
4835         &dev_attr_suspend_standby_state.attr,
4836         &dev_attr_suspend_mem_state.attr,
4837         &dev_attr_suspend_disk_state.attr,
4838         &dev_attr_suspend_standby_microvolts.attr,
4839         &dev_attr_suspend_mem_microvolts.attr,
4840         &dev_attr_suspend_disk_microvolts.attr,
4841         &dev_attr_suspend_standby_mode.attr,
4842         &dev_attr_suspend_mem_mode.attr,
4843         &dev_attr_suspend_disk_mode.attr,
4844         NULL
4845 };
4846
4847 /*
4848  * To avoid cluttering sysfs (and memory) with useless state, only
4849  * create attributes that can be meaningfully displayed.
4850  */
4851 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4852                                          struct attribute *attr, int idx)
4853 {
4854         struct device *dev = kobj_to_dev(kobj);
4855         struct regulator_dev *rdev = dev_to_rdev(dev);
4856         const struct regulator_ops *ops = rdev->desc->ops;
4857         umode_t mode = attr->mode;
4858
4859         /* these three are always present */
4860         if (attr == &dev_attr_name.attr ||
4861             attr == &dev_attr_num_users.attr ||
4862             attr == &dev_attr_type.attr)
4863                 return mode;
4864
4865         /* some attributes need specific methods to be displayed */
4866         if (attr == &dev_attr_microvolts.attr) {
4867                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4868                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4869                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4870                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4871                         return mode;
4872                 return 0;
4873         }
4874
4875         if (attr == &dev_attr_microamps.attr)
4876                 return ops->get_current_limit ? mode : 0;
4877
4878         if (attr == &dev_attr_opmode.attr)
4879                 return ops->get_mode ? mode : 0;
4880
4881         if (attr == &dev_attr_state.attr)
4882                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4883
4884         if (attr == &dev_attr_status.attr)
4885                 return ops->get_status ? mode : 0;
4886
4887         if (attr == &dev_attr_bypass.attr)
4888                 return ops->get_bypass ? mode : 0;
4889
4890         /* constraints need specific supporting methods */
4891         if (attr == &dev_attr_min_microvolts.attr ||
4892             attr == &dev_attr_max_microvolts.attr)
4893                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4894
4895         if (attr == &dev_attr_min_microamps.attr ||
4896             attr == &dev_attr_max_microamps.attr)
4897                 return ops->set_current_limit ? mode : 0;
4898
4899         if (attr == &dev_attr_suspend_standby_state.attr ||
4900             attr == &dev_attr_suspend_mem_state.attr ||
4901             attr == &dev_attr_suspend_disk_state.attr)
4902                 return mode;
4903
4904         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4905             attr == &dev_attr_suspend_mem_microvolts.attr ||
4906             attr == &dev_attr_suspend_disk_microvolts.attr)
4907                 return ops->set_suspend_voltage ? mode : 0;
4908
4909         if (attr == &dev_attr_suspend_standby_mode.attr ||
4910             attr == &dev_attr_suspend_mem_mode.attr ||
4911             attr == &dev_attr_suspend_disk_mode.attr)
4912                 return ops->set_suspend_mode ? mode : 0;
4913
4914         return mode;
4915 }
4916
4917 static const struct attribute_group regulator_dev_group = {
4918         .attrs = regulator_dev_attrs,
4919         .is_visible = regulator_attr_is_visible,
4920 };
4921
4922 static const struct attribute_group *regulator_dev_groups[] = {
4923         &regulator_dev_group,
4924         NULL
4925 };
4926
4927 static void regulator_dev_release(struct device *dev)
4928 {
4929         struct regulator_dev *rdev = dev_get_drvdata(dev);
4930
4931         kfree(rdev->constraints);
4932         of_node_put(rdev->dev.of_node);
4933         kfree(rdev);
4934 }
4935
4936 static void rdev_init_debugfs(struct regulator_dev *rdev)
4937 {
4938         struct device *parent = rdev->dev.parent;
4939         const char *rname = rdev_get_name(rdev);
4940         char name[NAME_MAX];
4941
4942         /* Avoid duplicate debugfs directory names */
4943         if (parent && rname == rdev->desc->name) {
4944                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4945                          rname);
4946                 rname = name;
4947         }
4948
4949         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4950         if (!rdev->debugfs) {
4951                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4952                 return;
4953         }
4954
4955         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4956                            &rdev->use_count);
4957         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4958                            &rdev->open_count);
4959         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4960                            &rdev->bypass_count);
4961 }
4962
4963 static int regulator_register_resolve_supply(struct device *dev, void *data)
4964 {
4965         struct regulator_dev *rdev = dev_to_rdev(dev);
4966
4967         if (regulator_resolve_supply(rdev))
4968                 rdev_dbg(rdev, "unable to resolve supply\n");
4969
4970         return 0;
4971 }
4972
4973 int regulator_coupler_register(struct regulator_coupler *coupler)
4974 {
4975         mutex_lock(&regulator_list_mutex);
4976         list_add_tail(&coupler->list, &regulator_coupler_list);
4977         mutex_unlock(&regulator_list_mutex);
4978
4979         return 0;
4980 }
4981
4982 static struct regulator_coupler *
4983 regulator_find_coupler(struct regulator_dev *rdev)
4984 {
4985         struct regulator_coupler *coupler;
4986         int err;
4987
4988         /*
4989          * Note that regulators are appended to the list and the generic
4990          * coupler is registered first, hence it will be attached at last
4991          * if nobody cared.
4992          */
4993         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4994                 err = coupler->attach_regulator(coupler, rdev);
4995                 if (!err) {
4996                         if (!coupler->balance_voltage &&
4997                             rdev->coupling_desc.n_coupled > 2)
4998                                 goto err_unsupported;
4999
5000                         return coupler;
5001                 }
5002
5003                 if (err < 0)
5004                         return ERR_PTR(err);
5005
5006                 if (err == 1)
5007                         continue;
5008
5009                 break;
5010         }
5011
5012         return ERR_PTR(-EINVAL);
5013
5014 err_unsupported:
5015         if (coupler->detach_regulator)
5016                 coupler->detach_regulator(coupler, rdev);
5017
5018         rdev_err(rdev,
5019                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5020
5021         return ERR_PTR(-EPERM);
5022 }
5023
5024 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5025 {
5026         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5027         struct coupling_desc *c_desc = &rdev->coupling_desc;
5028         int n_coupled = c_desc->n_coupled;
5029         struct regulator_dev *c_rdev;
5030         int i;
5031
5032         for (i = 1; i < n_coupled; i++) {
5033                 /* already resolved */
5034                 if (c_desc->coupled_rdevs[i])
5035                         continue;
5036
5037                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5038
5039                 if (!c_rdev)
5040                         continue;
5041
5042                 if (c_rdev->coupling_desc.coupler != coupler) {
5043                         rdev_err(rdev, "coupler mismatch with %s\n",
5044                                  rdev_get_name(c_rdev));
5045                         return;
5046                 }
5047
5048                 c_desc->coupled_rdevs[i] = c_rdev;
5049                 c_desc->n_resolved++;
5050
5051                 regulator_resolve_coupling(c_rdev);
5052         }
5053 }
5054
5055 static void regulator_remove_coupling(struct regulator_dev *rdev)
5056 {
5057         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5058         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5059         struct regulator_dev *__c_rdev, *c_rdev;
5060         unsigned int __n_coupled, n_coupled;
5061         int i, k;
5062         int err;
5063
5064         n_coupled = c_desc->n_coupled;
5065
5066         for (i = 1; i < n_coupled; i++) {
5067                 c_rdev = c_desc->coupled_rdevs[i];
5068
5069                 if (!c_rdev)
5070                         continue;
5071
5072                 regulator_lock(c_rdev);
5073
5074                 __c_desc = &c_rdev->coupling_desc;
5075                 __n_coupled = __c_desc->n_coupled;
5076
5077                 for (k = 1; k < __n_coupled; k++) {
5078                         __c_rdev = __c_desc->coupled_rdevs[k];
5079
5080                         if (__c_rdev == rdev) {
5081                                 __c_desc->coupled_rdevs[k] = NULL;
5082                                 __c_desc->n_resolved--;
5083                                 break;
5084                         }
5085                 }
5086
5087                 regulator_unlock(c_rdev);
5088
5089                 c_desc->coupled_rdevs[i] = NULL;
5090                 c_desc->n_resolved--;
5091         }
5092
5093         if (coupler && coupler->detach_regulator) {
5094                 err = coupler->detach_regulator(coupler, rdev);
5095                 if (err)
5096                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5097                                  ERR_PTR(err));
5098         }
5099
5100         kfree(rdev->coupling_desc.coupled_rdevs);
5101         rdev->coupling_desc.coupled_rdevs = NULL;
5102 }
5103
5104 static int regulator_init_coupling(struct regulator_dev *rdev)
5105 {
5106         struct regulator_dev **coupled;
5107         int err, n_phandles;
5108
5109         if (!IS_ENABLED(CONFIG_OF))
5110                 n_phandles = 0;
5111         else
5112                 n_phandles = of_get_n_coupled(rdev);
5113
5114         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5115         if (!coupled)
5116                 return -ENOMEM;
5117
5118         rdev->coupling_desc.coupled_rdevs = coupled;
5119
5120         /*
5121          * Every regulator should always have coupling descriptor filled with
5122          * at least pointer to itself.
5123          */
5124         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5125         rdev->coupling_desc.n_coupled = n_phandles + 1;
5126         rdev->coupling_desc.n_resolved++;
5127
5128         /* regulator isn't coupled */
5129         if (n_phandles == 0)
5130                 return 0;
5131
5132         if (!of_check_coupling_data(rdev))
5133                 return -EPERM;
5134
5135         mutex_lock(&regulator_list_mutex);
5136         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5137         mutex_unlock(&regulator_list_mutex);
5138
5139         if (IS_ERR(rdev->coupling_desc.coupler)) {
5140                 err = PTR_ERR(rdev->coupling_desc.coupler);
5141                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5142                 return err;
5143         }
5144
5145         return 0;
5146 }
5147
5148 static int generic_coupler_attach(struct regulator_coupler *coupler,
5149                                   struct regulator_dev *rdev)
5150 {
5151         if (rdev->coupling_desc.n_coupled > 2) {
5152                 rdev_err(rdev,
5153                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5154                 return -EPERM;
5155         }
5156
5157         if (!rdev->constraints->always_on) {
5158                 rdev_err(rdev,
5159                          "Coupling of a non always-on regulator is unimplemented\n");
5160                 return -ENOTSUPP;
5161         }
5162
5163         return 0;
5164 }
5165
5166 static struct regulator_coupler generic_regulator_coupler = {
5167         .attach_regulator = generic_coupler_attach,
5168 };
5169
5170 /**
5171  * regulator_register - register regulator
5172  * @regulator_desc: regulator to register
5173  * @cfg: runtime configuration for regulator
5174  *
5175  * Called by regulator drivers to register a regulator.
5176  * Returns a valid pointer to struct regulator_dev on success
5177  * or an ERR_PTR() on error.
5178  */
5179 struct regulator_dev *
5180 regulator_register(const struct regulator_desc *regulator_desc,
5181                    const struct regulator_config *cfg)
5182 {
5183         const struct regulator_init_data *init_data;
5184         struct regulator_config *config = NULL;
5185         static atomic_t regulator_no = ATOMIC_INIT(-1);
5186         struct regulator_dev *rdev;
5187         bool dangling_cfg_gpiod = false;
5188         bool dangling_of_gpiod = false;
5189         struct device *dev;
5190         int ret, i;
5191
5192         if (cfg == NULL)
5193                 return ERR_PTR(-EINVAL);
5194         if (cfg->ena_gpiod)
5195                 dangling_cfg_gpiod = true;
5196         if (regulator_desc == NULL) {
5197                 ret = -EINVAL;
5198                 goto rinse;
5199         }
5200
5201         dev = cfg->dev;
5202         WARN_ON(!dev);
5203
5204         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5205                 ret = -EINVAL;
5206                 goto rinse;
5207         }
5208
5209         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5210             regulator_desc->type != REGULATOR_CURRENT) {
5211                 ret = -EINVAL;
5212                 goto rinse;
5213         }
5214
5215         /* Only one of each should be implemented */
5216         WARN_ON(regulator_desc->ops->get_voltage &&
5217                 regulator_desc->ops->get_voltage_sel);
5218         WARN_ON(regulator_desc->ops->set_voltage &&
5219                 regulator_desc->ops->set_voltage_sel);
5220
5221         /* If we're using selectors we must implement list_voltage. */
5222         if (regulator_desc->ops->get_voltage_sel &&
5223             !regulator_desc->ops->list_voltage) {
5224                 ret = -EINVAL;
5225                 goto rinse;
5226         }
5227         if (regulator_desc->ops->set_voltage_sel &&
5228             !regulator_desc->ops->list_voltage) {
5229                 ret = -EINVAL;
5230                 goto rinse;
5231         }
5232
5233         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5234         if (rdev == NULL) {
5235                 ret = -ENOMEM;
5236                 goto rinse;
5237         }
5238         device_initialize(&rdev->dev);
5239
5240         /*
5241          * Duplicate the config so the driver could override it after
5242          * parsing init data.
5243          */
5244         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5245         if (config == NULL) {
5246                 ret = -ENOMEM;
5247                 goto clean;
5248         }
5249
5250         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5251                                                &rdev->dev.of_node);
5252
5253         /*
5254          * Sometimes not all resources are probed already so we need to take
5255          * that into account. This happens most the time if the ena_gpiod comes
5256          * from a gpio extender or something else.
5257          */
5258         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5259                 ret = -EPROBE_DEFER;
5260                 goto clean;
5261         }
5262
5263         /*
5264          * We need to keep track of any GPIO descriptor coming from the
5265          * device tree until we have handled it over to the core. If the
5266          * config that was passed in to this function DOES NOT contain
5267          * a descriptor, and the config after this call DOES contain
5268          * a descriptor, we definitely got one from parsing the device
5269          * tree.
5270          */
5271         if (!cfg->ena_gpiod && config->ena_gpiod)
5272                 dangling_of_gpiod = true;
5273         if (!init_data) {
5274                 init_data = config->init_data;
5275                 rdev->dev.of_node = of_node_get(config->of_node);
5276         }
5277
5278         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5279         rdev->reg_data = config->driver_data;
5280         rdev->owner = regulator_desc->owner;
5281         rdev->desc = regulator_desc;
5282         if (config->regmap)
5283                 rdev->regmap = config->regmap;
5284         else if (dev_get_regmap(dev, NULL))
5285                 rdev->regmap = dev_get_regmap(dev, NULL);
5286         else if (dev->parent)
5287                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5288         INIT_LIST_HEAD(&rdev->consumer_list);
5289         INIT_LIST_HEAD(&rdev->list);
5290         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5291         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5292
5293         /* preform any regulator specific init */
5294         if (init_data && init_data->regulator_init) {
5295                 ret = init_data->regulator_init(rdev->reg_data);
5296                 if (ret < 0)
5297                         goto clean;
5298         }
5299
5300         if (config->ena_gpiod) {
5301                 ret = regulator_ena_gpio_request(rdev, config);
5302                 if (ret != 0) {
5303                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5304                                  ERR_PTR(ret));
5305                         goto clean;
5306                 }
5307                 /* The regulator core took over the GPIO descriptor */
5308                 dangling_cfg_gpiod = false;
5309                 dangling_of_gpiod = false;
5310         }
5311
5312         /* register with sysfs */
5313         rdev->dev.class = &regulator_class;
5314         rdev->dev.parent = dev;
5315         dev_set_name(&rdev->dev, "regulator.%lu",
5316                     (unsigned long) atomic_inc_return(&regulator_no));
5317         dev_set_drvdata(&rdev->dev, rdev);
5318
5319         /* set regulator constraints */
5320         if (init_data)
5321                 rdev->constraints = kmemdup(&init_data->constraints,
5322                                             sizeof(*rdev->constraints),
5323                                             GFP_KERNEL);
5324         else
5325                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5326                                             GFP_KERNEL);
5327         if (!rdev->constraints) {
5328                 ret = -ENOMEM;
5329                 goto wash;
5330         }
5331
5332         if (init_data && init_data->supply_regulator)
5333                 rdev->supply_name = init_data->supply_regulator;
5334         else if (regulator_desc->supply_name)
5335                 rdev->supply_name = regulator_desc->supply_name;
5336
5337         ret = set_machine_constraints(rdev);
5338         if (ret == -EPROBE_DEFER) {
5339                 /* Regulator might be in bypass mode and so needs its supply
5340                  * to set the constraints */
5341                 /* FIXME: this currently triggers a chicken-and-egg problem
5342                  * when creating -SUPPLY symlink in sysfs to a regulator
5343                  * that is just being created */
5344                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5345                          rdev->supply_name);
5346                 ret = regulator_resolve_supply(rdev);
5347                 if (!ret)
5348                         ret = set_machine_constraints(rdev);
5349                 else
5350                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5351                                  ERR_PTR(ret));
5352         }
5353         if (ret < 0)
5354                 goto wash;
5355
5356         ret = regulator_init_coupling(rdev);
5357         if (ret < 0)
5358                 goto wash;
5359
5360         /* add consumers devices */
5361         if (init_data) {
5362                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5363                         ret = set_consumer_device_supply(rdev,
5364                                 init_data->consumer_supplies[i].dev_name,
5365                                 init_data->consumer_supplies[i].supply);
5366                         if (ret < 0) {
5367                                 dev_err(dev, "Failed to set supply %s\n",
5368                                         init_data->consumer_supplies[i].supply);
5369                                 goto unset_supplies;
5370                         }
5371                 }
5372         }
5373
5374         if (!rdev->desc->ops->get_voltage &&
5375             !rdev->desc->ops->list_voltage &&
5376             !rdev->desc->fixed_uV)
5377                 rdev->is_switch = true;
5378
5379         ret = device_add(&rdev->dev);
5380         if (ret != 0)
5381                 goto unset_supplies;
5382
5383         rdev_init_debugfs(rdev);
5384
5385         /* try to resolve regulators coupling since a new one was registered */
5386         mutex_lock(&regulator_list_mutex);
5387         regulator_resolve_coupling(rdev);
5388         mutex_unlock(&regulator_list_mutex);
5389
5390         /* try to resolve regulators supply since a new one was registered */
5391         class_for_each_device(&regulator_class, NULL, NULL,
5392                               regulator_register_resolve_supply);
5393         kfree(config);
5394         return rdev;
5395
5396 unset_supplies:
5397         mutex_lock(&regulator_list_mutex);
5398         unset_regulator_supplies(rdev);
5399         regulator_remove_coupling(rdev);
5400         mutex_unlock(&regulator_list_mutex);
5401 wash:
5402         kfree(rdev->coupling_desc.coupled_rdevs);
5403         mutex_lock(&regulator_list_mutex);
5404         regulator_ena_gpio_free(rdev);
5405         mutex_unlock(&regulator_list_mutex);
5406 clean:
5407         if (dangling_of_gpiod)
5408                 gpiod_put(config->ena_gpiod);
5409         kfree(config);
5410         put_device(&rdev->dev);
5411 rinse:
5412         if (dangling_cfg_gpiod)
5413                 gpiod_put(cfg->ena_gpiod);
5414         return ERR_PTR(ret);
5415 }
5416 EXPORT_SYMBOL_GPL(regulator_register);
5417
5418 /**
5419  * regulator_unregister - unregister regulator
5420  * @rdev: regulator to unregister
5421  *
5422  * Called by regulator drivers to unregister a regulator.
5423  */
5424 void regulator_unregister(struct regulator_dev *rdev)
5425 {
5426         if (rdev == NULL)
5427                 return;
5428
5429         if (rdev->supply) {
5430                 while (rdev->use_count--)
5431                         regulator_disable(rdev->supply);
5432                 regulator_put(rdev->supply);
5433         }
5434
5435         flush_work(&rdev->disable_work.work);
5436
5437         mutex_lock(&regulator_list_mutex);
5438
5439         debugfs_remove_recursive(rdev->debugfs);
5440         WARN_ON(rdev->open_count);
5441         regulator_remove_coupling(rdev);
5442         unset_regulator_supplies(rdev);
5443         list_del(&rdev->list);
5444         regulator_ena_gpio_free(rdev);
5445         device_unregister(&rdev->dev);
5446
5447         mutex_unlock(&regulator_list_mutex);
5448 }
5449 EXPORT_SYMBOL_GPL(regulator_unregister);
5450
5451 #ifdef CONFIG_SUSPEND
5452 /**
5453  * regulator_suspend - prepare regulators for system wide suspend
5454  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5455  *
5456  * Configure each regulator with it's suspend operating parameters for state.
5457  */
5458 static int regulator_suspend(struct device *dev)
5459 {
5460         struct regulator_dev *rdev = dev_to_rdev(dev);
5461         suspend_state_t state = pm_suspend_target_state;
5462         int ret;
5463         const struct regulator_state *rstate;
5464
5465         rstate = regulator_get_suspend_state_check(rdev, state);
5466         if (!rstate)
5467                 return 0;
5468
5469         regulator_lock(rdev);
5470         ret = __suspend_set_state(rdev, rstate);
5471         regulator_unlock(rdev);
5472
5473         return ret;
5474 }
5475
5476 static int regulator_resume(struct device *dev)
5477 {
5478         suspend_state_t state = pm_suspend_target_state;
5479         struct regulator_dev *rdev = dev_to_rdev(dev);
5480         struct regulator_state *rstate;
5481         int ret = 0;
5482
5483         rstate = regulator_get_suspend_state(rdev, state);
5484         if (rstate == NULL)
5485                 return 0;
5486
5487         /* Avoid grabbing the lock if we don't need to */
5488         if (!rdev->desc->ops->resume)
5489                 return 0;
5490
5491         regulator_lock(rdev);
5492
5493         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5494             rstate->enabled == DISABLE_IN_SUSPEND)
5495                 ret = rdev->desc->ops->resume(rdev);
5496
5497         regulator_unlock(rdev);
5498
5499         return ret;
5500 }
5501 #else /* !CONFIG_SUSPEND */
5502
5503 #define regulator_suspend       NULL
5504 #define regulator_resume        NULL
5505
5506 #endif /* !CONFIG_SUSPEND */
5507
5508 #ifdef CONFIG_PM
5509 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5510         .suspend        = regulator_suspend,
5511         .resume         = regulator_resume,
5512 };
5513 #endif
5514
5515 struct class regulator_class = {
5516         .name = "regulator",
5517         .dev_release = regulator_dev_release,
5518         .dev_groups = regulator_dev_groups,
5519 #ifdef CONFIG_PM
5520         .pm = &regulator_pm_ops,
5521 #endif
5522 };
5523 /**
5524  * regulator_has_full_constraints - the system has fully specified constraints
5525  *
5526  * Calling this function will cause the regulator API to disable all
5527  * regulators which have a zero use count and don't have an always_on
5528  * constraint in a late_initcall.
5529  *
5530  * The intention is that this will become the default behaviour in a
5531  * future kernel release so users are encouraged to use this facility
5532  * now.
5533  */
5534 void regulator_has_full_constraints(void)
5535 {
5536         has_full_constraints = 1;
5537 }
5538 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5539
5540 /**
5541  * rdev_get_drvdata - get rdev regulator driver data
5542  * @rdev: regulator
5543  *
5544  * Get rdev regulator driver private data. This call can be used in the
5545  * regulator driver context.
5546  */
5547 void *rdev_get_drvdata(struct regulator_dev *rdev)
5548 {
5549         return rdev->reg_data;
5550 }
5551 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5552
5553 /**
5554  * regulator_get_drvdata - get regulator driver data
5555  * @regulator: regulator
5556  *
5557  * Get regulator driver private data. This call can be used in the consumer
5558  * driver context when non API regulator specific functions need to be called.
5559  */
5560 void *regulator_get_drvdata(struct regulator *regulator)
5561 {
5562         return regulator->rdev->reg_data;
5563 }
5564 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5565
5566 /**
5567  * regulator_set_drvdata - set regulator driver data
5568  * @regulator: regulator
5569  * @data: data
5570  */
5571 void regulator_set_drvdata(struct regulator *regulator, void *data)
5572 {
5573         regulator->rdev->reg_data = data;
5574 }
5575 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5576
5577 /**
5578  * rdev_get_id - get regulator ID
5579  * @rdev: regulator
5580  */
5581 int rdev_get_id(struct regulator_dev *rdev)
5582 {
5583         return rdev->desc->id;
5584 }
5585 EXPORT_SYMBOL_GPL(rdev_get_id);
5586
5587 struct device *rdev_get_dev(struct regulator_dev *rdev)
5588 {
5589         return &rdev->dev;
5590 }
5591 EXPORT_SYMBOL_GPL(rdev_get_dev);
5592
5593 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5594 {
5595         return rdev->regmap;
5596 }
5597 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5598
5599 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5600 {
5601         return reg_init_data->driver_data;
5602 }
5603 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5604
5605 #ifdef CONFIG_DEBUG_FS
5606 static int supply_map_show(struct seq_file *sf, void *data)
5607 {
5608         struct regulator_map *map;
5609
5610         list_for_each_entry(map, &regulator_map_list, list) {
5611                 seq_printf(sf, "%s -> %s.%s\n",
5612                                 rdev_get_name(map->regulator), map->dev_name,
5613                                 map->supply);
5614         }
5615
5616         return 0;
5617 }
5618 DEFINE_SHOW_ATTRIBUTE(supply_map);
5619
5620 struct summary_data {
5621         struct seq_file *s;
5622         struct regulator_dev *parent;
5623         int level;
5624 };
5625
5626 static void regulator_summary_show_subtree(struct seq_file *s,
5627                                            struct regulator_dev *rdev,
5628                                            int level);
5629
5630 static int regulator_summary_show_children(struct device *dev, void *data)
5631 {
5632         struct regulator_dev *rdev = dev_to_rdev(dev);
5633         struct summary_data *summary_data = data;
5634
5635         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5636                 regulator_summary_show_subtree(summary_data->s, rdev,
5637                                                summary_data->level + 1);
5638
5639         return 0;
5640 }
5641
5642 static void regulator_summary_show_subtree(struct seq_file *s,
5643                                            struct regulator_dev *rdev,
5644                                            int level)
5645 {
5646         struct regulation_constraints *c;
5647         struct regulator *consumer;
5648         struct summary_data summary_data;
5649         unsigned int opmode;
5650
5651         if (!rdev)
5652                 return;
5653
5654         opmode = _regulator_get_mode_unlocked(rdev);
5655         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5656                    level * 3 + 1, "",
5657                    30 - level * 3, rdev_get_name(rdev),
5658                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5659                    regulator_opmode_to_str(opmode));
5660
5661         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5662         seq_printf(s, "%5dmA ",
5663                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5664
5665         c = rdev->constraints;
5666         if (c) {
5667                 switch (rdev->desc->type) {
5668                 case REGULATOR_VOLTAGE:
5669                         seq_printf(s, "%5dmV %5dmV ",
5670                                    c->min_uV / 1000, c->max_uV / 1000);
5671                         break;
5672                 case REGULATOR_CURRENT:
5673                         seq_printf(s, "%5dmA %5dmA ",
5674                                    c->min_uA / 1000, c->max_uA / 1000);
5675                         break;
5676                 }
5677         }
5678
5679         seq_puts(s, "\n");
5680
5681         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5682                 if (consumer->dev && consumer->dev->class == &regulator_class)
5683                         continue;
5684
5685                 seq_printf(s, "%*s%-*s ",
5686                            (level + 1) * 3 + 1, "",
5687                            30 - (level + 1) * 3,
5688                            consumer->supply_name ? consumer->supply_name :
5689                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5690
5691                 switch (rdev->desc->type) {
5692                 case REGULATOR_VOLTAGE:
5693                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5694                                    consumer->enable_count,
5695                                    consumer->uA_load / 1000,
5696                                    consumer->uA_load && !consumer->enable_count ?
5697                                    '*' : ' ',
5698                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5699                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5700                         break;
5701                 case REGULATOR_CURRENT:
5702                         break;
5703                 }
5704
5705                 seq_puts(s, "\n");
5706         }
5707
5708         summary_data.s = s;
5709         summary_data.level = level;
5710         summary_data.parent = rdev;
5711
5712         class_for_each_device(&regulator_class, NULL, &summary_data,
5713                               regulator_summary_show_children);
5714 }
5715
5716 struct summary_lock_data {
5717         struct ww_acquire_ctx *ww_ctx;
5718         struct regulator_dev **new_contended_rdev;
5719         struct regulator_dev **old_contended_rdev;
5720 };
5721
5722 static int regulator_summary_lock_one(struct device *dev, void *data)
5723 {
5724         struct regulator_dev *rdev = dev_to_rdev(dev);
5725         struct summary_lock_data *lock_data = data;
5726         int ret = 0;
5727
5728         if (rdev != *lock_data->old_contended_rdev) {
5729                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5730
5731                 if (ret == -EDEADLK)
5732                         *lock_data->new_contended_rdev = rdev;
5733                 else
5734                         WARN_ON_ONCE(ret);
5735         } else {
5736                 *lock_data->old_contended_rdev = NULL;
5737         }
5738
5739         return ret;
5740 }
5741
5742 static int regulator_summary_unlock_one(struct device *dev, void *data)
5743 {
5744         struct regulator_dev *rdev = dev_to_rdev(dev);
5745         struct summary_lock_data *lock_data = data;
5746
5747         if (lock_data) {
5748                 if (rdev == *lock_data->new_contended_rdev)
5749                         return -EDEADLK;
5750         }
5751
5752         regulator_unlock(rdev);
5753
5754         return 0;
5755 }
5756
5757 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5758                                       struct regulator_dev **new_contended_rdev,
5759                                       struct regulator_dev **old_contended_rdev)
5760 {
5761         struct summary_lock_data lock_data;
5762         int ret;
5763
5764         lock_data.ww_ctx = ww_ctx;
5765         lock_data.new_contended_rdev = new_contended_rdev;
5766         lock_data.old_contended_rdev = old_contended_rdev;
5767
5768         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5769                                     regulator_summary_lock_one);
5770         if (ret)
5771                 class_for_each_device(&regulator_class, NULL, &lock_data,
5772                                       regulator_summary_unlock_one);
5773
5774         return ret;
5775 }
5776
5777 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5778 {
5779         struct regulator_dev *new_contended_rdev = NULL;
5780         struct regulator_dev *old_contended_rdev = NULL;
5781         int err;
5782
5783         mutex_lock(&regulator_list_mutex);
5784
5785         ww_acquire_init(ww_ctx, &regulator_ww_class);
5786
5787         do {
5788                 if (new_contended_rdev) {
5789                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5790                         old_contended_rdev = new_contended_rdev;
5791                         old_contended_rdev->ref_cnt++;
5792                 }
5793
5794                 err = regulator_summary_lock_all(ww_ctx,
5795                                                  &new_contended_rdev,
5796                                                  &old_contended_rdev);
5797
5798                 if (old_contended_rdev)
5799                         regulator_unlock(old_contended_rdev);
5800
5801         } while (err == -EDEADLK);
5802
5803         ww_acquire_done(ww_ctx);
5804 }
5805
5806 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5807 {
5808         class_for_each_device(&regulator_class, NULL, NULL,
5809                               regulator_summary_unlock_one);
5810         ww_acquire_fini(ww_ctx);
5811
5812         mutex_unlock(&regulator_list_mutex);
5813 }
5814
5815 static int regulator_summary_show_roots(struct device *dev, void *data)
5816 {
5817         struct regulator_dev *rdev = dev_to_rdev(dev);
5818         struct seq_file *s = data;
5819
5820         if (!rdev->supply)
5821                 regulator_summary_show_subtree(s, rdev, 0);
5822
5823         return 0;
5824 }
5825
5826 static int regulator_summary_show(struct seq_file *s, void *data)
5827 {
5828         struct ww_acquire_ctx ww_ctx;
5829
5830         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5831         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5832
5833         regulator_summary_lock(&ww_ctx);
5834
5835         class_for_each_device(&regulator_class, NULL, s,
5836                               regulator_summary_show_roots);
5837
5838         regulator_summary_unlock(&ww_ctx);
5839
5840         return 0;
5841 }
5842 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5843 #endif /* CONFIG_DEBUG_FS */
5844
5845 static int __init regulator_init(void)
5846 {
5847         int ret;
5848
5849         ret = class_register(&regulator_class);
5850
5851         debugfs_root = debugfs_create_dir("regulator", NULL);
5852         if (!debugfs_root)
5853                 pr_warn("regulator: Failed to create debugfs directory\n");
5854
5855 #ifdef CONFIG_DEBUG_FS
5856         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5857                             &supply_map_fops);
5858
5859         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5860                             NULL, &regulator_summary_fops);
5861 #endif
5862         regulator_dummy_init();
5863
5864         regulator_coupler_register(&generic_regulator_coupler);
5865
5866         return ret;
5867 }
5868
5869 /* init early to allow our consumers to complete system booting */
5870 core_initcall(regulator_init);
5871
5872 static int regulator_late_cleanup(struct device *dev, void *data)
5873 {
5874         struct regulator_dev *rdev = dev_to_rdev(dev);
5875         const struct regulator_ops *ops = rdev->desc->ops;
5876         struct regulation_constraints *c = rdev->constraints;
5877         int enabled, ret;
5878
5879         if (c && c->always_on)
5880                 return 0;
5881
5882         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5883                 return 0;
5884
5885         regulator_lock(rdev);
5886
5887         if (rdev->use_count)
5888                 goto unlock;
5889
5890         /* If we can't read the status assume it's always on. */
5891         if (ops->is_enabled)
5892                 enabled = ops->is_enabled(rdev);
5893         else
5894                 enabled = 1;
5895
5896         /* But if reading the status failed, assume that it's off. */
5897         if (enabled <= 0)
5898                 goto unlock;
5899
5900         if (have_full_constraints()) {
5901                 /* We log since this may kill the system if it goes
5902                  * wrong. */
5903                 rdev_info(rdev, "disabling\n");
5904                 ret = _regulator_do_disable(rdev);
5905                 if (ret != 0)
5906                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5907         } else {
5908                 /* The intention is that in future we will
5909                  * assume that full constraints are provided
5910                  * so warn even if we aren't going to do
5911                  * anything here.
5912                  */
5913                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5914         }
5915
5916 unlock:
5917         regulator_unlock(rdev);
5918
5919         return 0;
5920 }
5921
5922 static void regulator_init_complete_work_function(struct work_struct *work)
5923 {
5924         /*
5925          * Regulators may had failed to resolve their input supplies
5926          * when were registered, either because the input supply was
5927          * not registered yet or because its parent device was not
5928          * bound yet. So attempt to resolve the input supplies for
5929          * pending regulators before trying to disable unused ones.
5930          */
5931         class_for_each_device(&regulator_class, NULL, NULL,
5932                               regulator_register_resolve_supply);
5933
5934         /* If we have a full configuration then disable any regulators
5935          * we have permission to change the status for and which are
5936          * not in use or always_on.  This is effectively the default
5937          * for DT and ACPI as they have full constraints.
5938          */
5939         class_for_each_device(&regulator_class, NULL, NULL,
5940                               regulator_late_cleanup);
5941 }
5942
5943 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5944                             regulator_init_complete_work_function);
5945
5946 static int __init regulator_init_complete(void)
5947 {
5948         /*
5949          * Since DT doesn't provide an idiomatic mechanism for
5950          * enabling full constraints and since it's much more natural
5951          * with DT to provide them just assume that a DT enabled
5952          * system has full constraints.
5953          */
5954         if (of_have_populated_dt())
5955                 has_full_constraints = true;
5956
5957         /*
5958          * We punt completion for an arbitrary amount of time since
5959          * systems like distros will load many drivers from userspace
5960          * so consumers might not always be ready yet, this is
5961          * particularly an issue with laptops where this might bounce
5962          * the display off then on.  Ideally we'd get a notification
5963          * from userspace when this happens but we don't so just wait
5964          * a bit and hope we waited long enough.  It'd be better if
5965          * we'd only do this on systems that need it, and a kernel
5966          * command line option might be useful.
5967          */
5968         schedule_delayed_work(&regulator_init_complete_work,
5969                               msecs_to_jiffies(30000));
5970
5971         return 0;
5972 }
5973 late_initcall_sync(regulator_init_complete);