6b230029dc4977f84950a64f7480e6b5afa8be1e
[linux-2.6-microblaze.git] / drivers / pwm / pwm-sun4i.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Allwinner sun4i Pulse Width Modulation Controller
4  *
5  * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
6  *
7  * Limitations:
8  * - When outputing the source clock directly, the PWM logic will be bypassed
9  *   and the currently running period is not guaranteed to be completed
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/jiffies.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pwm.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/time.h>
27
28 #define PWM_CTRL_REG            0x0
29
30 #define PWM_CH_PRD_BASE         0x4
31 #define PWM_CH_PRD_OFFSET       0x4
32 #define PWM_CH_PRD(ch)          (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
33
34 #define PWMCH_OFFSET            15
35 #define PWM_PRESCAL_MASK        GENMASK(3, 0)
36 #define PWM_PRESCAL_OFF         0
37 #define PWM_EN                  BIT(4)
38 #define PWM_ACT_STATE           BIT(5)
39 #define PWM_CLK_GATING          BIT(6)
40 #define PWM_MODE                BIT(7)
41 #define PWM_PULSE               BIT(8)
42 #define PWM_BYPASS              BIT(9)
43
44 #define PWM_RDY_BASE            28
45 #define PWM_RDY_OFFSET          1
46 #define PWM_RDY(ch)             BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
47
48 #define PWM_PRD(prd)            (((prd) - 1) << 16)
49 #define PWM_PRD_MASK            GENMASK(15, 0)
50
51 #define PWM_DTY_MASK            GENMASK(15, 0)
52
53 #define PWM_REG_PRD(reg)        ((((reg) >> 16) & PWM_PRD_MASK) + 1)
54 #define PWM_REG_DTY(reg)        ((reg) & PWM_DTY_MASK)
55 #define PWM_REG_PRESCAL(reg, chan)      (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
56
57 #define BIT_CH(bit, chan)       ((bit) << ((chan) * PWMCH_OFFSET))
58
59 static const u32 prescaler_table[] = {
60         120,
61         180,
62         240,
63         360,
64         480,
65         0,
66         0,
67         0,
68         12000,
69         24000,
70         36000,
71         48000,
72         72000,
73         0,
74         0,
75         0, /* Actually 1 but tested separately */
76 };
77
78 struct sun4i_pwm_data {
79         bool has_prescaler_bypass;
80         bool has_direct_mod_clk_output;
81         unsigned int npwm;
82 };
83
84 struct sun4i_pwm_chip {
85         struct pwm_chip chip;
86         struct clk *bus_clk;
87         struct clk *clk;
88         struct reset_control *rst;
89         void __iomem *base;
90         spinlock_t ctrl_lock;
91         const struct sun4i_pwm_data *data;
92         unsigned long next_period[2];
93         bool needs_delay[2];
94 };
95
96 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
97 {
98         return container_of(chip, struct sun4i_pwm_chip, chip);
99 }
100
101 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
102                                   unsigned long offset)
103 {
104         return readl(chip->base + offset);
105 }
106
107 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
108                                     u32 val, unsigned long offset)
109 {
110         writel(val, chip->base + offset);
111 }
112
113 static void sun4i_pwm_get_state(struct pwm_chip *chip,
114                                 struct pwm_device *pwm,
115                                 struct pwm_state *state)
116 {
117         struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
118         u64 clk_rate, tmp;
119         u32 val;
120         unsigned int prescaler;
121
122         clk_rate = clk_get_rate(sun4i_pwm->clk);
123
124         val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
125
126         /*
127          * PWM chapter in H6 manual has a diagram which explains that if bypass
128          * bit is set, no other setting has any meaning. Even more, experiment
129          * proved that also enable bit is ignored in this case.
130          */
131         if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
132             sun4i_pwm->data->has_direct_mod_clk_output) {
133                 state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
134                 state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
135                 state->polarity = PWM_POLARITY_NORMAL;
136                 state->enabled = true;
137                 return;
138         }
139
140         if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
141             sun4i_pwm->data->has_prescaler_bypass)
142                 prescaler = 1;
143         else
144                 prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
145
146         if (prescaler == 0)
147                 return;
148
149         if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
150                 state->polarity = PWM_POLARITY_NORMAL;
151         else
152                 state->polarity = PWM_POLARITY_INVERSED;
153
154         if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
155             BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
156                 state->enabled = true;
157         else
158                 state->enabled = false;
159
160         val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
161
162         tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
163         state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
164
165         tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
166         state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
167 }
168
169 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
170                                const struct pwm_state *state,
171                                u32 *dty, u32 *prd, unsigned int *prsclr,
172                                bool *bypass)
173 {
174         u64 clk_rate, div = 0;
175         unsigned int pval, prescaler = 0;
176
177         clk_rate = clk_get_rate(sun4i_pwm->clk);
178
179         *bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
180                   state->enabled &&
181                   (state->period * clk_rate >= NSEC_PER_SEC) &&
182                   (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
183                   (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
184
185         /* Skip calculation of other parameters if we bypass them */
186         if (*bypass)
187                 return 0;
188
189         if (sun4i_pwm->data->has_prescaler_bypass) {
190                 /* First, test without any prescaler when available */
191                 prescaler = PWM_PRESCAL_MASK;
192                 /*
193                  * When not using any prescaler, the clock period in nanoseconds
194                  * is not an integer so round it half up instead of
195                  * truncating to get less surprising values.
196                  */
197                 div = clk_rate * state->period + NSEC_PER_SEC / 2;
198                 do_div(div, NSEC_PER_SEC);
199                 if (div - 1 > PWM_PRD_MASK)
200                         prescaler = 0;
201         }
202
203         if (prescaler == 0) {
204                 /* Go up from the first divider */
205                 for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
206                         if (!prescaler_table[prescaler])
207                                 continue;
208                         pval = prescaler_table[prescaler];
209                         div = clk_rate;
210                         do_div(div, pval);
211                         div = div * state->period;
212                         do_div(div, NSEC_PER_SEC);
213                         if (div - 1 <= PWM_PRD_MASK)
214                                 break;
215                 }
216
217                 if (div - 1 > PWM_PRD_MASK)
218                         return -EINVAL;
219         }
220
221         *prd = div;
222         div *= state->duty_cycle;
223         do_div(div, state->period);
224         *dty = div;
225         *prsclr = prescaler;
226
227         return 0;
228 }
229
230 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
231                            const struct pwm_state *state)
232 {
233         struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
234         struct pwm_state cstate;
235         u32 ctrl, duty, period, val;
236         int ret;
237         unsigned int delay_us, prescaler;
238         unsigned long now;
239         bool bypass;
240
241         pwm_get_state(pwm, &cstate);
242
243         if (!cstate.enabled) {
244                 ret = clk_prepare_enable(sun4i_pwm->clk);
245                 if (ret) {
246                         dev_err(chip->dev, "failed to enable PWM clock\n");
247                         return ret;
248                 }
249         }
250
251         ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
252                                   &bypass);
253         if (ret) {
254                 dev_err(chip->dev, "period exceeds the maximum value\n");
255                 if (!cstate.enabled)
256                         clk_disable_unprepare(sun4i_pwm->clk);
257                 return ret;
258         }
259
260         spin_lock(&sun4i_pwm->ctrl_lock);
261         ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
262
263         if (sun4i_pwm->data->has_direct_mod_clk_output) {
264                 if (bypass) {
265                         ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
266                         /* We can skip other parameter */
267                         sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
268                         spin_unlock(&sun4i_pwm->ctrl_lock);
269                         return 0;
270                 }
271
272                 ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
273         }
274
275         if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
276                 /* Prescaler changed, the clock has to be gated */
277                 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
278                 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
279
280                 ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
281                 ctrl |= BIT_CH(prescaler, pwm->hwpwm);
282         }
283
284         val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
285         sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
286         sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
287                 usecs_to_jiffies(cstate.period / 1000 + 1);
288         sun4i_pwm->needs_delay[pwm->hwpwm] = true;
289
290         if (state->polarity != PWM_POLARITY_NORMAL)
291                 ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292         else
293                 ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
294
295         ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
296
297         if (state->enabled) {
298                 ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
299         } else if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
300                 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
301                 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
302         }
303
304         sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
305
306         spin_unlock(&sun4i_pwm->ctrl_lock);
307
308         if (state->enabled)
309                 return 0;
310
311         if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
312                 clk_disable_unprepare(sun4i_pwm->clk);
313                 return 0;
314         }
315
316         /* We need a full period to elapse before disabling the channel. */
317         now = jiffies;
318         if (sun4i_pwm->needs_delay[pwm->hwpwm] &&
319             time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
320                 delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
321                                            now);
322                 if ((delay_us / 500) > MAX_UDELAY_MS)
323                         msleep(delay_us / 1000 + 1);
324                 else
325                         usleep_range(delay_us, delay_us * 2);
326         }
327         sun4i_pwm->needs_delay[pwm->hwpwm] = false;
328
329         spin_lock(&sun4i_pwm->ctrl_lock);
330         ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
331         ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
332         ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
333         sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
334         spin_unlock(&sun4i_pwm->ctrl_lock);
335
336         clk_disable_unprepare(sun4i_pwm->clk);
337
338         return 0;
339 }
340
341 static const struct pwm_ops sun4i_pwm_ops = {
342         .apply = sun4i_pwm_apply,
343         .get_state = sun4i_pwm_get_state,
344         .owner = THIS_MODULE,
345 };
346
347 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
348         .has_prescaler_bypass = false,
349         .npwm = 2,
350 };
351
352 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
353         .has_prescaler_bypass = true,
354         .npwm = 2,
355 };
356
357 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
358         .has_prescaler_bypass = true,
359         .npwm = 1,
360 };
361
362 static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
363         .has_prescaler_bypass = true,
364         .has_direct_mod_clk_output = true,
365         .npwm = 2,
366 };
367
368 static const struct of_device_id sun4i_pwm_dt_ids[] = {
369         {
370                 .compatible = "allwinner,sun4i-a10-pwm",
371                 .data = &sun4i_pwm_dual_nobypass,
372         }, {
373                 .compatible = "allwinner,sun5i-a10s-pwm",
374                 .data = &sun4i_pwm_dual_bypass,
375         }, {
376                 .compatible = "allwinner,sun5i-a13-pwm",
377                 .data = &sun4i_pwm_single_bypass,
378         }, {
379                 .compatible = "allwinner,sun7i-a20-pwm",
380                 .data = &sun4i_pwm_dual_bypass,
381         }, {
382                 .compatible = "allwinner,sun8i-h3-pwm",
383                 .data = &sun4i_pwm_single_bypass,
384         }, {
385                 .compatible = "allwinner,sun50i-h6-pwm",
386                 .data = &sun50i_h6_pwm_data,
387         }, {
388                 /* sentinel */
389         },
390 };
391 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
392
393 static int sun4i_pwm_probe(struct platform_device *pdev)
394 {
395         struct sun4i_pwm_chip *pwm;
396         struct resource *res;
397         int ret;
398
399         pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
400         if (!pwm)
401                 return -ENOMEM;
402
403         pwm->data = of_device_get_match_data(&pdev->dev);
404         if (!pwm->data)
405                 return -ENODEV;
406
407         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
408         pwm->base = devm_ioremap_resource(&pdev->dev, res);
409         if (IS_ERR(pwm->base))
410                 return PTR_ERR(pwm->base);
411
412         /*
413          * All hardware variants need a source clock that is divided and
414          * then feeds the counter that defines the output wave form. In the
415          * device tree this clock is either unnamed or called "mod".
416          * Some variants (e.g. H6) need another clock to access the
417          * hardware registers; this is called "bus".
418          * So we request "mod" first (and ignore the corner case that a
419          * parent provides a "mod" clock while the right one would be the
420          * unnamed one of the PWM device) and if this is not found we fall
421          * back to the first clock of the PWM.
422          */
423         pwm->clk = devm_clk_get_optional(&pdev->dev, "mod");
424         if (IS_ERR(pwm->clk)) {
425                 if (PTR_ERR(pwm->rst) != -EPROBE_DEFER)
426                         dev_err(&pdev->dev, "get mod clock failed %pe\n",
427                                 pwm->clk);
428                 return PTR_ERR(pwm->clk);
429         }
430
431         if (!pwm->clk) {
432                 pwm->clk = devm_clk_get(&pdev->dev, NULL);
433                 if (IS_ERR(pwm->clk)) {
434                         if (PTR_ERR(pwm->rst) != -EPROBE_DEFER)
435                                 dev_err(&pdev->dev, "get unnamed clock failed %pe\n",
436                                         pwm->clk);
437                         return PTR_ERR(pwm->clk);
438                 }
439         }
440
441         pwm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
442         if (IS_ERR(pwm->bus_clk)) {
443                 if (PTR_ERR(pwm->rst) != -EPROBE_DEFER)
444                         dev_err(&pdev->dev, "get bus clock failed %pe\n",
445                                 pwm->bus_clk);
446                 return PTR_ERR(pwm->bus_clk);
447         }
448
449         pwm->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
450         if (IS_ERR(pwm->rst)) {
451                 if (PTR_ERR(pwm->rst) != -EPROBE_DEFER)
452                         dev_err(&pdev->dev, "get reset failed %pe\n",
453                                 pwm->rst);
454                 return PTR_ERR(pwm->rst);
455         }
456
457         /* Deassert reset */
458         ret = reset_control_deassert(pwm->rst);
459         if (ret) {
460                 dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
461                         ERR_PTR(ret));
462                 return ret;
463         }
464
465         /*
466          * We're keeping the bus clock on for the sake of simplicity.
467          * Actually it only needs to be on for hardware register accesses.
468          */
469         ret = clk_prepare_enable(pwm->bus_clk);
470         if (ret) {
471                 dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
472                         ERR_PTR(ret));
473                 goto err_bus;
474         }
475
476         pwm->chip.dev = &pdev->dev;
477         pwm->chip.ops = &sun4i_pwm_ops;
478         pwm->chip.base = -1;
479         pwm->chip.npwm = pwm->data->npwm;
480         pwm->chip.of_xlate = of_pwm_xlate_with_flags;
481         pwm->chip.of_pwm_n_cells = 3;
482
483         spin_lock_init(&pwm->ctrl_lock);
484
485         ret = pwmchip_add(&pwm->chip);
486         if (ret < 0) {
487                 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
488                 goto err_pwm_add;
489         }
490
491         platform_set_drvdata(pdev, pwm);
492
493         return 0;
494
495 err_pwm_add:
496         clk_disable_unprepare(pwm->bus_clk);
497 err_bus:
498         reset_control_assert(pwm->rst);
499
500         return ret;
501 }
502
503 static int sun4i_pwm_remove(struct platform_device *pdev)
504 {
505         struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
506         int ret;
507
508         ret = pwmchip_remove(&pwm->chip);
509         if (ret)
510                 return ret;
511
512         clk_disable_unprepare(pwm->bus_clk);
513         reset_control_assert(pwm->rst);
514
515         return 0;
516 }
517
518 static struct platform_driver sun4i_pwm_driver = {
519         .driver = {
520                 .name = "sun4i-pwm",
521                 .of_match_table = sun4i_pwm_dt_ids,
522         },
523         .probe = sun4i_pwm_probe,
524         .remove = sun4i_pwm_remove,
525 };
526 module_platform_driver(sun4i_pwm_driver);
527
528 MODULE_ALIAS("platform:sun4i-pwm");
529 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
530 MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
531 MODULE_LICENSE("GPL v2");