Merge tag 'mips_6.5_1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux-2.6-microblaze.git] / drivers / pwm / pwm-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2016
4  *
5  * Author: Gerald Baeza <gerald.baeza@st.com>
6  *
7  * Inspired by timer-stm32.c from Maxime Coquelin
8  *             pwm-atmel.c from Bo Shen
9  */
10
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/pwm.h>
18
19 #define CCMR_CHANNEL_SHIFT 8
20 #define CCMR_CHANNEL_MASK  0xFF
21 #define MAX_BREAKINPUT 2
22
23 struct stm32_breakinput {
24         u32 index;
25         u32 level;
26         u32 filter;
27 };
28
29 struct stm32_pwm {
30         struct pwm_chip chip;
31         struct mutex lock; /* protect pwm config/enable */
32         struct clk *clk;
33         struct regmap *regmap;
34         u32 max_arr;
35         bool have_complementary_output;
36         struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
37         unsigned int num_breakinputs;
38         u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
39 };
40
41 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
42 {
43         return container_of(chip, struct stm32_pwm, chip);
44 }
45
46 static u32 active_channels(struct stm32_pwm *dev)
47 {
48         u32 ccer;
49
50         regmap_read(dev->regmap, TIM_CCER, &ccer);
51
52         return ccer & TIM_CCER_CCXE;
53 }
54
55 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
56 {
57         switch (ch) {
58         case 0:
59                 return regmap_write(dev->regmap, TIM_CCR1, value);
60         case 1:
61                 return regmap_write(dev->regmap, TIM_CCR2, value);
62         case 2:
63                 return regmap_write(dev->regmap, TIM_CCR3, value);
64         case 3:
65                 return regmap_write(dev->regmap, TIM_CCR4, value);
66         }
67         return -EINVAL;
68 }
69
70 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
71 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
72 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
73 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
74
75 /*
76  * Capture using PWM input mode:
77  *                              ___          ___
78  * TI[1, 2, 3 or 4]: ........._|   |________|
79  *                             ^0  ^1       ^2
80  *                              .   .        .
81  *                              .   .        XXXXX
82  *                              .   .   XXXXX     |
83  *                              .  XXXXX     .    |
84  *                            XXXXX .        .    |
85  * COUNTER:        ______XXXXX  .   .        .    |_XXX
86  *                 start^       .   .        .        ^stop
87  *                      .       .   .        .
88  *                      v       v   .        v
89  *                                  v
90  * CCR1/CCR3:       tx..........t0...........t2
91  * CCR2/CCR4:       tx..............t1.........
92  *
93  * DMA burst transfer:          |            |
94  *                              v            v
95  * DMA buffer:                  { t0, tx }   { t2, t1 }
96  * DMA done:                                 ^
97  *
98  * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
99  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
100  * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
101  * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
102  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
103  *
104  * DMA done, compute:
105  * - Period     = t2 - t0
106  * - Duty cycle = t1 - t0
107  */
108 static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
109                                  unsigned long tmo_ms, u32 *raw_prd,
110                                  u32 *raw_dty)
111 {
112         struct device *parent = priv->chip.dev->parent;
113         enum stm32_timers_dmas dma_id;
114         u32 ccen, ccr;
115         int ret;
116
117         /* Ensure registers have been updated, enable counter and capture */
118         regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
119         regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
120
121         /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
122         dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
123         ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
124         ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
125         regmap_set_bits(priv->regmap, TIM_CCER, ccen);
126
127         /*
128          * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
129          * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
130          * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
131          * or { CCR3, CCR4 }, { CCR3, CCR4 }
132          */
133         ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
134                                           2, tmo_ms);
135         if (ret)
136                 goto stop;
137
138         /* Period: t2 - t0 (take care of counter overflow) */
139         if (priv->capture[0] <= priv->capture[2])
140                 *raw_prd = priv->capture[2] - priv->capture[0];
141         else
142                 *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
143
144         /* Duty cycle capture requires at least two capture units */
145         if (pwm->chip->npwm < 2)
146                 *raw_dty = 0;
147         else if (priv->capture[0] <= priv->capture[3])
148                 *raw_dty = priv->capture[3] - priv->capture[0];
149         else
150                 *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
151
152         if (*raw_dty > *raw_prd) {
153                 /*
154                  * Race beetween PWM input and DMA: it may happen
155                  * falling edge triggers new capture on TI2/4 before DMA
156                  * had a chance to read CCR2/4. It means capture[1]
157                  * contains period + duty_cycle. So, subtract period.
158                  */
159                 *raw_dty -= *raw_prd;
160         }
161
162 stop:
163         regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
164         regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
165
166         return ret;
167 }
168
169 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
170                              struct pwm_capture *result, unsigned long tmo_ms)
171 {
172         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
173         unsigned long long prd, div, dty;
174         unsigned long rate;
175         unsigned int psc = 0, icpsc, scale;
176         u32 raw_prd = 0, raw_dty = 0;
177         int ret = 0;
178
179         mutex_lock(&priv->lock);
180
181         if (active_channels(priv)) {
182                 ret = -EBUSY;
183                 goto unlock;
184         }
185
186         ret = clk_enable(priv->clk);
187         if (ret) {
188                 dev_err(priv->chip.dev, "failed to enable counter clock\n");
189                 goto unlock;
190         }
191
192         rate = clk_get_rate(priv->clk);
193         if (!rate) {
194                 ret = -EINVAL;
195                 goto clk_dis;
196         }
197
198         /* prescaler: fit timeout window provided by upper layer */
199         div = (unsigned long long)rate * (unsigned long long)tmo_ms;
200         do_div(div, MSEC_PER_SEC);
201         prd = div;
202         while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
203                 psc++;
204                 div = prd;
205                 do_div(div, psc + 1);
206         }
207         regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
208         regmap_write(priv->regmap, TIM_PSC, psc);
209
210         /* Reset input selector to its default input and disable slave mode */
211         regmap_write(priv->regmap, TIM_TISEL, 0x0);
212         regmap_write(priv->regmap, TIM_SMCR, 0x0);
213
214         /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
215         regmap_update_bits(priv->regmap,
216                            pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
217                            TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
218                            TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
219                            TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
220
221         /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
222         regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
223                            TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
224                            TIM_CCER_CC2P : TIM_CCER_CC4P);
225
226         ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
227         if (ret)
228                 goto stop;
229
230         /*
231          * Got a capture. Try to improve accuracy at high rates:
232          * - decrease counter clock prescaler, scale up to max rate.
233          * - use input prescaler, capture once every /2 /4 or /8 edges.
234          */
235         if (raw_prd) {
236                 u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
237
238                 scale = max_arr / min(max_arr, raw_prd);
239         } else {
240                 scale = priv->max_arr; /* bellow resolution, use max scale */
241         }
242
243         if (psc && scale > 1) {
244                 /* 2nd measure with new scale */
245                 psc /= scale;
246                 regmap_write(priv->regmap, TIM_PSC, psc);
247                 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
248                                             &raw_dty);
249                 if (ret)
250                         goto stop;
251         }
252
253         /* Compute intermediate period not to exceed timeout at low rates */
254         prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
255         do_div(prd, rate);
256
257         for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
258                 /* input prescaler: also keep arbitrary margin */
259                 if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
260                         break;
261                 if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
262                         break;
263         }
264
265         if (!icpsc)
266                 goto done;
267
268         /* Last chance to improve period accuracy, using input prescaler */
269         regmap_update_bits(priv->regmap,
270                            pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
271                            TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
272                            FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
273                            FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
274
275         ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
276         if (ret)
277                 goto stop;
278
279         if (raw_dty >= (raw_prd >> icpsc)) {
280                 /*
281                  * We may fall here using input prescaler, when input
282                  * capture starts on high side (before falling edge).
283                  * Example with icpsc to capture on each 4 events:
284                  *
285                  *       start   1st capture                     2nd capture
286                  *         v     v                               v
287                  *         ___   _____   _____   _____   _____   ____
288                  * TI1..4     |__|    |__|    |__|    |__|    |__|
289                  *            v  v    .  .    .  .    .       v  v
290                  * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
291                  * icpsc2/4:  0       1       2       3       0
292                  *            v  v                            v  v
293                  * CCR1/3  ......t0..............................t2
294                  * CCR2/4  ..t1..............................t1'...
295                  *               .                            .  .
296                  * Capture0:     .<----------------------------->.
297                  * Capture1:     .<-------------------------->.  .
298                  *               .                            .  .
299                  * Period:       .<------>                    .  .
300                  * Low side:                                  .<>.
301                  *
302                  * Result:
303                  * - Period = Capture0 / icpsc
304                  * - Duty = Period - Low side = Period - (Capture0 - Capture1)
305                  */
306                 raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
307         }
308
309 done:
310         prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
311         result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
312         dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
313         result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
314 stop:
315         regmap_write(priv->regmap, TIM_CCER, 0);
316         regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
317         regmap_write(priv->regmap, TIM_PSC, 0);
318 clk_dis:
319         clk_disable(priv->clk);
320 unlock:
321         mutex_unlock(&priv->lock);
322
323         return ret;
324 }
325
326 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
327                             int duty_ns, int period_ns)
328 {
329         unsigned long long prd, div, dty;
330         unsigned int prescaler = 0;
331         u32 ccmr, mask, shift;
332
333         /* Period and prescaler values depends on clock rate */
334         div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
335
336         do_div(div, NSEC_PER_SEC);
337         prd = div;
338
339         while (div > priv->max_arr) {
340                 prescaler++;
341                 div = prd;
342                 do_div(div, prescaler + 1);
343         }
344
345         prd = div;
346
347         if (prescaler > MAX_TIM_PSC)
348                 return -EINVAL;
349
350         /*
351          * All channels share the same prescaler and counter so when two
352          * channels are active at the same time we can't change them
353          */
354         if (active_channels(priv) & ~(1 << ch * 4)) {
355                 u32 psc, arr;
356
357                 regmap_read(priv->regmap, TIM_PSC, &psc);
358                 regmap_read(priv->regmap, TIM_ARR, &arr);
359
360                 if ((psc != prescaler) || (arr != prd - 1))
361                         return -EBUSY;
362         }
363
364         regmap_write(priv->regmap, TIM_PSC, prescaler);
365         regmap_write(priv->regmap, TIM_ARR, prd - 1);
366         regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
367
368         /* Calculate the duty cycles */
369         dty = prd * duty_ns;
370         do_div(dty, period_ns);
371
372         write_ccrx(priv, ch, dty);
373
374         /* Configure output mode */
375         shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
376         ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
377         mask = CCMR_CHANNEL_MASK << shift;
378
379         if (ch < 2)
380                 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
381         else
382                 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
383
384         regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
385
386         return 0;
387 }
388
389 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
390                                   enum pwm_polarity polarity)
391 {
392         u32 mask;
393
394         mask = TIM_CCER_CC1P << (ch * 4);
395         if (priv->have_complementary_output)
396                 mask |= TIM_CCER_CC1NP << (ch * 4);
397
398         regmap_update_bits(priv->regmap, TIM_CCER, mask,
399                            polarity == PWM_POLARITY_NORMAL ? 0 : mask);
400
401         return 0;
402 }
403
404 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
405 {
406         u32 mask;
407         int ret;
408
409         ret = clk_enable(priv->clk);
410         if (ret)
411                 return ret;
412
413         /* Enable channel */
414         mask = TIM_CCER_CC1E << (ch * 4);
415         if (priv->have_complementary_output)
416                 mask |= TIM_CCER_CC1NE << (ch * 4);
417
418         regmap_set_bits(priv->regmap, TIM_CCER, mask);
419
420         /* Make sure that registers are updated */
421         regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
422
423         /* Enable controller */
424         regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
425
426         return 0;
427 }
428
429 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
430 {
431         u32 mask;
432
433         /* Disable channel */
434         mask = TIM_CCER_CC1E << (ch * 4);
435         if (priv->have_complementary_output)
436                 mask |= TIM_CCER_CC1NE << (ch * 4);
437
438         regmap_clear_bits(priv->regmap, TIM_CCER, mask);
439
440         /* When all channels are disabled, we can disable the controller */
441         if (!active_channels(priv))
442                 regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
443
444         clk_disable(priv->clk);
445 }
446
447 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
448                            const struct pwm_state *state)
449 {
450         bool enabled;
451         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
452         int ret;
453
454         enabled = pwm->state.enabled;
455
456         if (enabled && !state->enabled) {
457                 stm32_pwm_disable(priv, pwm->hwpwm);
458                 return 0;
459         }
460
461         if (state->polarity != pwm->state.polarity)
462                 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
463
464         ret = stm32_pwm_config(priv, pwm->hwpwm,
465                                state->duty_cycle, state->period);
466         if (ret)
467                 return ret;
468
469         if (!enabled && state->enabled)
470                 ret = stm32_pwm_enable(priv, pwm->hwpwm);
471
472         return ret;
473 }
474
475 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
476                                   const struct pwm_state *state)
477 {
478         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
479         int ret;
480
481         /* protect common prescaler for all active channels */
482         mutex_lock(&priv->lock);
483         ret = stm32_pwm_apply(chip, pwm, state);
484         mutex_unlock(&priv->lock);
485
486         return ret;
487 }
488
489 static const struct pwm_ops stm32pwm_ops = {
490         .owner = THIS_MODULE,
491         .apply = stm32_pwm_apply_locked,
492         .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
493 };
494
495 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
496                                     const struct stm32_breakinput *bi)
497 {
498         u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
499         u32 bke = TIM_BDTR_BKE(bi->index);
500         u32 bkp = TIM_BDTR_BKP(bi->index);
501         u32 bkf = TIM_BDTR_BKF(bi->index);
502         u32 mask = bkf | bkp | bke;
503         u32 bdtr;
504
505         bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
506
507         if (bi->level)
508                 bdtr |= bkp;
509
510         regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
511
512         regmap_read(priv->regmap, TIM_BDTR, &bdtr);
513
514         return (bdtr & bke) ? 0 : -EINVAL;
515 }
516
517 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
518 {
519         unsigned int i;
520         int ret;
521
522         for (i = 0; i < priv->num_breakinputs; i++) {
523                 ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
524                 if (ret < 0)
525                         return ret;
526         }
527
528         return 0;
529 }
530
531 static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
532                                        struct device_node *np)
533 {
534         int nb, ret, array_size;
535         unsigned int i;
536
537         nb = of_property_count_elems_of_size(np, "st,breakinput",
538                                              sizeof(struct stm32_breakinput));
539
540         /*
541          * Because "st,breakinput" parameter is optional do not make probe
542          * failed if it doesn't exist.
543          */
544         if (nb <= 0)
545                 return 0;
546
547         if (nb > MAX_BREAKINPUT)
548                 return -EINVAL;
549
550         priv->num_breakinputs = nb;
551         array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
552         ret = of_property_read_u32_array(np, "st,breakinput",
553                                          (u32 *)priv->breakinputs, array_size);
554         if (ret)
555                 return ret;
556
557         for (i = 0; i < priv->num_breakinputs; i++) {
558                 if (priv->breakinputs[i].index > 1 ||
559                     priv->breakinputs[i].level > 1 ||
560                     priv->breakinputs[i].filter > 15)
561                         return -EINVAL;
562         }
563
564         return stm32_pwm_apply_breakinputs(priv);
565 }
566
567 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
568 {
569         u32 ccer;
570
571         /*
572          * If complementary bit doesn't exist writing 1 will have no
573          * effect so we can detect it.
574          */
575         regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
576         regmap_read(priv->regmap, TIM_CCER, &ccer);
577         regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
578
579         priv->have_complementary_output = (ccer != 0);
580 }
581
582 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
583 {
584         u32 ccer;
585         int npwm = 0;
586
587         /*
588          * If channels enable bits don't exist writing 1 will have no
589          * effect so we can detect and count them.
590          */
591         regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
592         regmap_read(priv->regmap, TIM_CCER, &ccer);
593         regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
594
595         if (ccer & TIM_CCER_CC1E)
596                 npwm++;
597
598         if (ccer & TIM_CCER_CC2E)
599                 npwm++;
600
601         if (ccer & TIM_CCER_CC3E)
602                 npwm++;
603
604         if (ccer & TIM_CCER_CC4E)
605                 npwm++;
606
607         return npwm;
608 }
609
610 static int stm32_pwm_probe(struct platform_device *pdev)
611 {
612         struct device *dev = &pdev->dev;
613         struct device_node *np = dev->of_node;
614         struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
615         struct stm32_pwm *priv;
616         int ret;
617
618         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
619         if (!priv)
620                 return -ENOMEM;
621
622         mutex_init(&priv->lock);
623         priv->regmap = ddata->regmap;
624         priv->clk = ddata->clk;
625         priv->max_arr = ddata->max_arr;
626
627         if (!priv->regmap || !priv->clk)
628                 return -EINVAL;
629
630         ret = stm32_pwm_probe_breakinputs(priv, np);
631         if (ret)
632                 return ret;
633
634         stm32_pwm_detect_complementary(priv);
635
636         priv->chip.dev = dev;
637         priv->chip.ops = &stm32pwm_ops;
638         priv->chip.npwm = stm32_pwm_detect_channels(priv);
639
640         ret = pwmchip_add(&priv->chip);
641         if (ret < 0)
642                 return ret;
643
644         platform_set_drvdata(pdev, priv);
645
646         return 0;
647 }
648
649 static void stm32_pwm_remove(struct platform_device *pdev)
650 {
651         struct stm32_pwm *priv = platform_get_drvdata(pdev);
652         unsigned int i;
653
654         for (i = 0; i < priv->chip.npwm; i++)
655                 pwm_disable(&priv->chip.pwms[i]);
656
657         pwmchip_remove(&priv->chip);
658 }
659
660 static int __maybe_unused stm32_pwm_suspend(struct device *dev)
661 {
662         struct stm32_pwm *priv = dev_get_drvdata(dev);
663         unsigned int i;
664         u32 ccer, mask;
665
666         /* Look for active channels */
667         ccer = active_channels(priv);
668
669         for (i = 0; i < priv->chip.npwm; i++) {
670                 mask = TIM_CCER_CC1E << (i * 4);
671                 if (ccer & mask) {
672                         dev_err(dev, "PWM %u still in use by consumer %s\n",
673                                 i, priv->chip.pwms[i].label);
674                         return -EBUSY;
675                 }
676         }
677
678         return pinctrl_pm_select_sleep_state(dev);
679 }
680
681 static int __maybe_unused stm32_pwm_resume(struct device *dev)
682 {
683         struct stm32_pwm *priv = dev_get_drvdata(dev);
684         int ret;
685
686         ret = pinctrl_pm_select_default_state(dev);
687         if (ret)
688                 return ret;
689
690         /* restore breakinput registers that may have been lost in low power */
691         return stm32_pwm_apply_breakinputs(priv);
692 }
693
694 static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
695
696 static const struct of_device_id stm32_pwm_of_match[] = {
697         { .compatible = "st,stm32-pwm", },
698         { /* end node */ },
699 };
700 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
701
702 static struct platform_driver stm32_pwm_driver = {
703         .probe  = stm32_pwm_probe,
704         .remove_new = stm32_pwm_remove,
705         .driver = {
706                 .name = "stm32-pwm",
707                 .of_match_table = stm32_pwm_of_match,
708                 .pm = &stm32_pwm_pm_ops,
709         },
710 };
711 module_platform_driver(stm32_pwm_driver);
712
713 MODULE_ALIAS("platform:stm32-pwm");
714 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
715 MODULE_LICENSE("GPL v2");