Merge tag 'hid-for-linus-2023121201' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / pwm / pwm-sprd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Spreadtrum Communications Inc.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/err.h>
8 #include <linux/io.h>
9 #include <linux/math64.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/pwm.h>
14
15 #define SPRD_PWM_PRESCALE       0x0
16 #define SPRD_PWM_MOD            0x4
17 #define SPRD_PWM_DUTY           0x8
18 #define SPRD_PWM_ENABLE         0x18
19
20 #define SPRD_PWM_MOD_MAX        GENMASK(7, 0)
21 #define SPRD_PWM_DUTY_MSK       GENMASK(15, 0)
22 #define SPRD_PWM_PRESCALE_MSK   GENMASK(7, 0)
23 #define SPRD_PWM_ENABLE_BIT     BIT(0)
24
25 #define SPRD_PWM_CHN_NUM        4
26 #define SPRD_PWM_REGS_SHIFT     5
27 #define SPRD_PWM_CHN_CLKS_NUM   2
28 #define SPRD_PWM_CHN_OUTPUT_CLK 1
29
30 struct sprd_pwm_chn {
31         struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
32         u32 clk_rate;
33 };
34
35 struct sprd_pwm_chip {
36         void __iomem *base;
37         struct device *dev;
38         struct pwm_chip chip;
39         int num_pwms;
40         struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
41 };
42
43 static inline struct sprd_pwm_chip* sprd_pwm_from_chip(struct pwm_chip *chip)
44 {
45         return container_of(chip, struct sprd_pwm_chip, chip);
46 }
47
48 /*
49  * The list of clocks required by PWM channels, and each channel has 2 clocks:
50  * enable clock and pwm clock.
51  */
52 static const char * const sprd_pwm_clks[] = {
53         "enable0", "pwm0",
54         "enable1", "pwm1",
55         "enable2", "pwm2",
56         "enable3", "pwm3",
57 };
58
59 static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
60 {
61         u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
62
63         return readl_relaxed(spc->base + offset);
64 }
65
66 static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
67                            u32 reg, u32 val)
68 {
69         u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
70
71         writel_relaxed(val, spc->base + offset);
72 }
73
74 static int sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
75                               struct pwm_state *state)
76 {
77         struct sprd_pwm_chip *spc = sprd_pwm_from_chip(chip);
78         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
79         u32 val, duty, prescale;
80         u64 tmp;
81         int ret;
82
83         /*
84          * The clocks to PWM channel has to be enabled first before
85          * reading to the registers.
86          */
87         ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
88         if (ret) {
89                 dev_err(spc->dev, "failed to enable pwm%u clocks\n",
90                         pwm->hwpwm);
91                 return ret;
92         }
93
94         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
95         if (val & SPRD_PWM_ENABLE_BIT)
96                 state->enabled = true;
97         else
98                 state->enabled = false;
99
100         /*
101          * The hardware provides a counter that is feed by the source clock.
102          * The period length is (PRESCALE + 1) * MOD counter steps.
103          * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
104          * Thus the period_ns and duty_ns calculation formula should be:
105          * period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
106          * duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
107          */
108         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
109         prescale = val & SPRD_PWM_PRESCALE_MSK;
110         tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
111         state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
112
113         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
114         duty = val & SPRD_PWM_DUTY_MSK;
115         tmp = (prescale + 1) * NSEC_PER_SEC * duty;
116         state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
117         state->polarity = PWM_POLARITY_NORMAL;
118
119         /* Disable PWM clocks if the PWM channel is not in enable state. */
120         if (!state->enabled)
121                 clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
122
123         return 0;
124 }
125
126 static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
127                            int duty_ns, int period_ns)
128 {
129         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
130         u32 prescale, duty;
131         u64 tmp;
132
133         /*
134          * The hardware provides a counter that is feed by the source clock.
135          * The period length is (PRESCALE + 1) * MOD counter steps.
136          * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
137          *
138          * To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
139          * The value for PRESCALE is selected such that the resulting period
140          * gets the maximal length not bigger than the requested one with the
141          * given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
142          */
143         duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
144
145         tmp = (u64)chn->clk_rate * period_ns;
146         do_div(tmp, NSEC_PER_SEC);
147         prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
148         if (prescale > SPRD_PWM_PRESCALE_MSK)
149                 prescale = SPRD_PWM_PRESCALE_MSK;
150
151         /*
152          * Note: Writing DUTY triggers the hardware to actually apply the
153          * values written to MOD and DUTY to the output, so must keep writing
154          * DUTY last.
155          *
156          * The hardware can ensures that current running period is completed
157          * before changing a new configuration to avoid mixed settings.
158          */
159         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
160         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
161         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
162
163         return 0;
164 }
165
166 static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
167                           const struct pwm_state *state)
168 {
169         struct sprd_pwm_chip *spc = sprd_pwm_from_chip(chip);
170         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
171         struct pwm_state *cstate = &pwm->state;
172         int ret;
173
174         if (state->polarity != PWM_POLARITY_NORMAL)
175                 return -EINVAL;
176
177         if (state->enabled) {
178                 if (!cstate->enabled) {
179                         /*
180                          * The clocks to PWM channel has to be enabled first
181                          * before writing to the registers.
182                          */
183                         ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
184                                                       chn->clks);
185                         if (ret) {
186                                 dev_err(spc->dev,
187                                         "failed to enable pwm%u clocks\n",
188                                         pwm->hwpwm);
189                                 return ret;
190                         }
191                 }
192
193                 ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
194                                       state->period);
195                 if (ret)
196                         return ret;
197
198                 sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
199         } else if (cstate->enabled) {
200                 /*
201                  * Note: After setting SPRD_PWM_ENABLE to zero, the controller
202                  * will not wait for current period to be completed, instead it
203                  * will stop the PWM channel immediately.
204                  */
205                 sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
206
207                 clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
208         }
209
210         return 0;
211 }
212
213 static const struct pwm_ops sprd_pwm_ops = {
214         .apply = sprd_pwm_apply,
215         .get_state = sprd_pwm_get_state,
216 };
217
218 static int sprd_pwm_clk_init(struct sprd_pwm_chip *spc)
219 {
220         struct clk *clk_pwm;
221         int ret, i;
222
223         for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
224                 struct sprd_pwm_chn *chn = &spc->chn[i];
225                 int j;
226
227                 for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
228                         chn->clks[j].id =
229                                 sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
230
231                 ret = devm_clk_bulk_get(spc->dev, SPRD_PWM_CHN_CLKS_NUM,
232                                         chn->clks);
233                 if (ret) {
234                         if (ret == -ENOENT)
235                                 break;
236
237                         return dev_err_probe(spc->dev, ret,
238                                              "failed to get channel clocks\n");
239                 }
240
241                 clk_pwm = chn->clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
242                 chn->clk_rate = clk_get_rate(clk_pwm);
243         }
244
245         if (!i)
246                 return dev_err_probe(spc->dev, -ENODEV, "no available PWM channels\n");
247
248         spc->num_pwms = i;
249
250         return 0;
251 }
252
253 static int sprd_pwm_probe(struct platform_device *pdev)
254 {
255         struct sprd_pwm_chip *spc;
256         int ret;
257
258         spc = devm_kzalloc(&pdev->dev, sizeof(*spc), GFP_KERNEL);
259         if (!spc)
260                 return -ENOMEM;
261
262         spc->base = devm_platform_ioremap_resource(pdev, 0);
263         if (IS_ERR(spc->base))
264                 return PTR_ERR(spc->base);
265
266         spc->dev = &pdev->dev;
267
268         ret = sprd_pwm_clk_init(spc);
269         if (ret)
270                 return ret;
271
272         spc->chip.dev = &pdev->dev;
273         spc->chip.ops = &sprd_pwm_ops;
274         spc->chip.npwm = spc->num_pwms;
275
276         ret = devm_pwmchip_add(&pdev->dev, &spc->chip);
277         if (ret)
278                 dev_err(&pdev->dev, "failed to add PWM chip\n");
279
280         return ret;
281 }
282
283 static const struct of_device_id sprd_pwm_of_match[] = {
284         { .compatible = "sprd,ums512-pwm", },
285         { },
286 };
287 MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
288
289 static struct platform_driver sprd_pwm_driver = {
290         .driver = {
291                 .name = "sprd-pwm",
292                 .of_match_table = sprd_pwm_of_match,
293         },
294         .probe = sprd_pwm_probe,
295 };
296
297 module_platform_driver(sprd_pwm_driver);
298
299 MODULE_DESCRIPTION("Spreadtrum PWM Driver");
300 MODULE_LICENSE("GPL v2");