Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / pwm / pwm-sifive.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/pwm.h>
20 #include <linux/slab.h>
21 #include <linux/bitfield.h>
22
23 /* Register offsets */
24 #define PWM_SIFIVE_PWMCFG               0x0
25 #define PWM_SIFIVE_PWMCOUNT             0x8
26 #define PWM_SIFIVE_PWMS                 0x10
27 #define PWM_SIFIVE_PWMCMP(i)            (0x20 + 4 * (i))
28
29 /* PWMCFG fields */
30 #define PWM_SIFIVE_PWMCFG_SCALE         GENMASK(3, 0)
31 #define PWM_SIFIVE_PWMCFG_STICKY        BIT(8)
32 #define PWM_SIFIVE_PWMCFG_ZERO_CMP      BIT(9)
33 #define PWM_SIFIVE_PWMCFG_DEGLITCH      BIT(10)
34 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS     BIT(12)
35 #define PWM_SIFIVE_PWMCFG_EN_ONCE       BIT(13)
36 #define PWM_SIFIVE_PWMCFG_CENTER        BIT(16)
37 #define PWM_SIFIVE_PWMCFG_GANG          BIT(24)
38 #define PWM_SIFIVE_PWMCFG_IP            BIT(28)
39
40 #define PWM_SIFIVE_CMPWIDTH             16
41 #define PWM_SIFIVE_DEFAULT_PERIOD       10000000
42
43 struct pwm_sifive_ddata {
44         struct device *parent;
45         struct mutex lock; /* lock to protect user_count and approx_period */
46         struct notifier_block notifier;
47         struct clk *clk;
48         void __iomem *regs;
49         unsigned int real_period;
50         unsigned int approx_period;
51         int user_count;
52 };
53
54 static inline
55 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *chip)
56 {
57         return pwmchip_get_drvdata(chip);
58 }
59
60 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
61 {
62         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
63
64         mutex_lock(&ddata->lock);
65         ddata->user_count++;
66         mutex_unlock(&ddata->lock);
67
68         return 0;
69 }
70
71 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
72 {
73         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
74
75         mutex_lock(&ddata->lock);
76         ddata->user_count--;
77         mutex_unlock(&ddata->lock);
78 }
79
80 /* Called holding ddata->lock */
81 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
82                                     unsigned long rate)
83 {
84         unsigned long long num;
85         unsigned long scale_pow;
86         int scale;
87         u32 val;
88         /*
89          * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
90          * period length is using pwmscale which provides the number of bits the
91          * counter is shifted before being feed to the comparators. A period
92          * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
93          * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
94          */
95         scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
96         scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
97
98         val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
99               FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
100         writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
101
102         /* As scale <= 15 the shift operation cannot overflow. */
103         num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
104         ddata->real_period = div64_ul(num, rate);
105         dev_dbg(ddata->parent,
106                 "New real_period = %u ns\n", ddata->real_period);
107 }
108
109 static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
110                                 struct pwm_state *state)
111 {
112         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
113         u32 duty, val;
114
115         duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
116
117         state->enabled = duty > 0;
118
119         val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
120         if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
121                 state->enabled = false;
122
123         state->period = ddata->real_period;
124         state->duty_cycle =
125                 (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
126         state->polarity = PWM_POLARITY_INVERSED;
127
128         return 0;
129 }
130
131 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
132                             const struct pwm_state *state)
133 {
134         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
135         struct pwm_state cur_state;
136         unsigned int duty_cycle;
137         unsigned long long num;
138         bool enabled;
139         int ret = 0;
140         u32 frac;
141
142         if (state->polarity != PWM_POLARITY_INVERSED)
143                 return -EINVAL;
144
145         cur_state = pwm->state;
146         enabled = cur_state.enabled;
147
148         duty_cycle = state->duty_cycle;
149         if (!state->enabled)
150                 duty_cycle = 0;
151
152         /*
153          * The problem of output producing mixed setting as mentioned at top,
154          * occurs here. To minimize the window for this problem, we are
155          * calculating the register values first and then writing them
156          * consecutively
157          */
158         num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
159         frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
160         /* The hardware cannot generate a 100% duty cycle */
161         frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
162
163         mutex_lock(&ddata->lock);
164         if (state->period != ddata->approx_period) {
165                 /*
166                  * Don't let a 2nd user change the period underneath the 1st user.
167                  * However if ddate->approx_period == 0 this is the first time we set
168                  * any period, so let whoever gets here first set the period so other
169                  * users who agree on the period won't fail.
170                  */
171                 if (ddata->user_count != 1 && ddata->approx_period) {
172                         mutex_unlock(&ddata->lock);
173                         return -EBUSY;
174                 }
175                 ddata->approx_period = state->period;
176                 pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
177         }
178         mutex_unlock(&ddata->lock);
179
180         /*
181          * If the PWM is enabled the clk is already on. So only enable it
182          * conditionally to have it on exactly once afterwards independent of
183          * the PWM state.
184          */
185         if (!enabled) {
186                 ret = clk_enable(ddata->clk);
187                 if (ret) {
188                         dev_err(pwmchip_parent(chip), "Enable clk failed\n");
189                         return ret;
190                 }
191         }
192
193         writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
194
195         if (!state->enabled)
196                 clk_disable(ddata->clk);
197
198         return 0;
199 }
200
201 static const struct pwm_ops pwm_sifive_ops = {
202         .request = pwm_sifive_request,
203         .free = pwm_sifive_free,
204         .get_state = pwm_sifive_get_state,
205         .apply = pwm_sifive_apply,
206 };
207
208 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
209                                      unsigned long event, void *data)
210 {
211         struct clk_notifier_data *ndata = data;
212         struct pwm_sifive_ddata *ddata =
213                 container_of(nb, struct pwm_sifive_ddata, notifier);
214
215         if (event == POST_RATE_CHANGE) {
216                 mutex_lock(&ddata->lock);
217                 pwm_sifive_update_clock(ddata, ndata->new_rate);
218                 mutex_unlock(&ddata->lock);
219         }
220
221         return NOTIFY_OK;
222 }
223
224 static int pwm_sifive_probe(struct platform_device *pdev)
225 {
226         struct device *dev = &pdev->dev;
227         struct pwm_sifive_ddata *ddata;
228         struct pwm_chip *chip;
229         int ret;
230         u32 val;
231         unsigned int enabled_pwms = 0, enabled_clks = 1;
232
233         chip = devm_pwmchip_alloc(dev, 4, sizeof(*ddata));
234         if (IS_ERR(chip))
235                 return PTR_ERR(chip);
236
237         ddata = pwm_sifive_chip_to_ddata(chip);
238         ddata->parent = dev;
239         mutex_init(&ddata->lock);
240         chip->ops = &pwm_sifive_ops;
241
242         ddata->regs = devm_platform_ioremap_resource(pdev, 0);
243         if (IS_ERR(ddata->regs))
244                 return PTR_ERR(ddata->regs);
245
246         ddata->clk = devm_clk_get_prepared(dev, NULL);
247         if (IS_ERR(ddata->clk))
248                 return dev_err_probe(dev, PTR_ERR(ddata->clk),
249                                      "Unable to find controller clock\n");
250
251         ret = clk_enable(ddata->clk);
252         if (ret) {
253                 dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
254                 return ret;
255         }
256
257         val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
258         if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) {
259                 unsigned int i;
260
261                 for (i = 0; i < chip->npwm; ++i) {
262                         val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i));
263                         if (val > 0)
264                                 ++enabled_pwms;
265                 }
266         }
267
268         /* The clk should be on once for each running PWM. */
269         if (enabled_pwms) {
270                 while (enabled_clks < enabled_pwms) {
271                         /* This is not expected to fail as the clk is already on */
272                         ret = clk_enable(ddata->clk);
273                         if (unlikely(ret)) {
274                                 dev_err_probe(dev, ret, "Failed to enable clk\n");
275                                 goto disable_clk;
276                         }
277                         ++enabled_clks;
278                 }
279         } else {
280                 clk_disable(ddata->clk);
281                 enabled_clks = 0;
282         }
283
284         /* Watch for changes to underlying clock frequency */
285         ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
286         ret = clk_notifier_register(ddata->clk, &ddata->notifier);
287         if (ret) {
288                 dev_err(dev, "failed to register clock notifier: %d\n", ret);
289                 goto disable_clk;
290         }
291
292         ret = pwmchip_add(chip);
293         if (ret < 0) {
294                 dev_err(dev, "cannot register PWM: %d\n", ret);
295                 goto unregister_clk;
296         }
297
298         platform_set_drvdata(pdev, chip);
299         dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
300
301         return 0;
302
303 unregister_clk:
304         clk_notifier_unregister(ddata->clk, &ddata->notifier);
305 disable_clk:
306         while (enabled_clks) {
307                 clk_disable(ddata->clk);
308                 --enabled_clks;
309         }
310
311         return ret;
312 }
313
314 static void pwm_sifive_remove(struct platform_device *dev)
315 {
316         struct pwm_chip *chip = platform_get_drvdata(dev);
317         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
318         struct pwm_device *pwm;
319         int ch;
320
321         pwmchip_remove(chip);
322         clk_notifier_unregister(ddata->clk, &ddata->notifier);
323
324         for (ch = 0; ch < chip->npwm; ch++) {
325                 pwm = &chip->pwms[ch];
326                 if (pwm->state.enabled)
327                         clk_disable(ddata->clk);
328         }
329 }
330
331 static const struct of_device_id pwm_sifive_of_match[] = {
332         { .compatible = "sifive,pwm0" },
333         {},
334 };
335 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
336
337 static struct platform_driver pwm_sifive_driver = {
338         .probe = pwm_sifive_probe,
339         .remove_new = pwm_sifive_remove,
340         .driver = {
341                 .name = "pwm-sifive",
342                 .of_match_table = pwm_sifive_of_match,
343         },
344 };
345 module_platform_driver(pwm_sifive_driver);
346
347 MODULE_DESCRIPTION("SiFive PWM driver");
348 MODULE_LICENSE("GPL v2");