can: rcar_can: do not report txerr and rxerr during bus-off
[linux-2.6-microblaze.git] / drivers / pwm / pwm-sifive.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/pwm.h>
19 #include <linux/slab.h>
20 #include <linux/bitfield.h>
21
22 /* Register offsets */
23 #define PWM_SIFIVE_PWMCFG               0x0
24 #define PWM_SIFIVE_PWMCOUNT             0x8
25 #define PWM_SIFIVE_PWMS                 0x10
26 #define PWM_SIFIVE_PWMCMP0              0x20
27
28 /* PWMCFG fields */
29 #define PWM_SIFIVE_PWMCFG_SCALE         GENMASK(3, 0)
30 #define PWM_SIFIVE_PWMCFG_STICKY        BIT(8)
31 #define PWM_SIFIVE_PWMCFG_ZERO_CMP      BIT(9)
32 #define PWM_SIFIVE_PWMCFG_DEGLITCH      BIT(10)
33 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS     BIT(12)
34 #define PWM_SIFIVE_PWMCFG_EN_ONCE       BIT(13)
35 #define PWM_SIFIVE_PWMCFG_CENTER        BIT(16)
36 #define PWM_SIFIVE_PWMCFG_GANG          BIT(24)
37 #define PWM_SIFIVE_PWMCFG_IP            BIT(28)
38
39 /* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
40 #define PWM_SIFIVE_SIZE_PWMCMP          4
41 #define PWM_SIFIVE_CMPWIDTH             16
42 #define PWM_SIFIVE_DEFAULT_PERIOD       10000000
43
44 struct pwm_sifive_ddata {
45         struct pwm_chip chip;
46         struct mutex lock; /* lock to protect user_count */
47         struct notifier_block notifier;
48         struct clk *clk;
49         void __iomem *regs;
50         unsigned int real_period;
51         unsigned int approx_period;
52         int user_count;
53 };
54
55 static inline
56 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
57 {
58         return container_of(c, struct pwm_sifive_ddata, chip);
59 }
60
61 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
62 {
63         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
64
65         mutex_lock(&ddata->lock);
66         ddata->user_count++;
67         mutex_unlock(&ddata->lock);
68
69         return 0;
70 }
71
72 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
73 {
74         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
75
76         mutex_lock(&ddata->lock);
77         ddata->user_count--;
78         mutex_unlock(&ddata->lock);
79 }
80
81 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
82                                     unsigned long rate)
83 {
84         unsigned long long num;
85         unsigned long scale_pow;
86         int scale;
87         u32 val;
88         /*
89          * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
90          * period length is using pwmscale which provides the number of bits the
91          * counter is shifted before being feed to the comparators. A period
92          * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
93          * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
94          */
95         scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
96         scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
97
98         val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
99               FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
100         writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
101
102         /* As scale <= 15 the shift operation cannot overflow. */
103         num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
104         ddata->real_period = div64_ul(num, rate);
105         dev_dbg(ddata->chip.dev,
106                 "New real_period = %u ns\n", ddata->real_period);
107 }
108
109 static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
110                                  struct pwm_state *state)
111 {
112         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
113         u32 duty, val;
114
115         duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 +
116                      pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
117
118         state->enabled = duty > 0;
119
120         val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
121         if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
122                 state->enabled = false;
123
124         state->period = ddata->real_period;
125         state->duty_cycle =
126                 (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
127         state->polarity = PWM_POLARITY_INVERSED;
128 }
129
130 static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
131 {
132         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
133         int ret;
134
135         if (enable) {
136                 ret = clk_enable(ddata->clk);
137                 if (ret) {
138                         dev_err(ddata->chip.dev, "Enable clk failed\n");
139                         return ret;
140                 }
141         } else {
142                 clk_disable(ddata->clk);
143         }
144
145         return 0;
146 }
147
148 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
149                             const struct pwm_state *state)
150 {
151         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
152         struct pwm_state cur_state;
153         unsigned int duty_cycle;
154         unsigned long long num;
155         bool enabled;
156         int ret = 0;
157         u32 frac;
158
159         if (state->polarity != PWM_POLARITY_INVERSED)
160                 return -EINVAL;
161
162         ret = clk_enable(ddata->clk);
163         if (ret) {
164                 dev_err(ddata->chip.dev, "Enable clk failed\n");
165                 return ret;
166         }
167
168         mutex_lock(&ddata->lock);
169         cur_state = pwm->state;
170         enabled = cur_state.enabled;
171
172         duty_cycle = state->duty_cycle;
173         if (!state->enabled)
174                 duty_cycle = 0;
175
176         /*
177          * The problem of output producing mixed setting as mentioned at top,
178          * occurs here. To minimize the window for this problem, we are
179          * calculating the register values first and then writing them
180          * consecutively
181          */
182         num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
183         frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
184         /* The hardware cannot generate a 100% duty cycle */
185         frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
186
187         if (state->period != ddata->approx_period) {
188                 if (ddata->user_count != 1) {
189                         ret = -EBUSY;
190                         goto exit;
191                 }
192                 ddata->approx_period = state->period;
193                 pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
194         }
195
196         writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 +
197                pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
198
199         if (state->enabled != enabled)
200                 pwm_sifive_enable(chip, state->enabled);
201
202 exit:
203         clk_disable(ddata->clk);
204         mutex_unlock(&ddata->lock);
205         return ret;
206 }
207
208 static const struct pwm_ops pwm_sifive_ops = {
209         .request = pwm_sifive_request,
210         .free = pwm_sifive_free,
211         .get_state = pwm_sifive_get_state,
212         .apply = pwm_sifive_apply,
213         .owner = THIS_MODULE,
214 };
215
216 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
217                                      unsigned long event, void *data)
218 {
219         struct clk_notifier_data *ndata = data;
220         struct pwm_sifive_ddata *ddata =
221                 container_of(nb, struct pwm_sifive_ddata, notifier);
222
223         if (event == POST_RATE_CHANGE)
224                 pwm_sifive_update_clock(ddata, ndata->new_rate);
225
226         return NOTIFY_OK;
227 }
228
229 static int pwm_sifive_probe(struct platform_device *pdev)
230 {
231         struct device *dev = &pdev->dev;
232         struct pwm_sifive_ddata *ddata;
233         struct pwm_chip *chip;
234         int ret;
235
236         ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
237         if (!ddata)
238                 return -ENOMEM;
239
240         mutex_init(&ddata->lock);
241         chip = &ddata->chip;
242         chip->dev = dev;
243         chip->ops = &pwm_sifive_ops;
244         chip->npwm = 4;
245
246         ddata->regs = devm_platform_ioremap_resource(pdev, 0);
247         if (IS_ERR(ddata->regs))
248                 return PTR_ERR(ddata->regs);
249
250         ddata->clk = devm_clk_get(dev, NULL);
251         if (IS_ERR(ddata->clk))
252                 return dev_err_probe(dev, PTR_ERR(ddata->clk),
253                                      "Unable to find controller clock\n");
254
255         ret = clk_prepare_enable(ddata->clk);
256         if (ret) {
257                 dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
258                 return ret;
259         }
260
261         /* Watch for changes to underlying clock frequency */
262         ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
263         ret = clk_notifier_register(ddata->clk, &ddata->notifier);
264         if (ret) {
265                 dev_err(dev, "failed to register clock notifier: %d\n", ret);
266                 goto disable_clk;
267         }
268
269         ret = pwmchip_add(chip);
270         if (ret < 0) {
271                 dev_err(dev, "cannot register PWM: %d\n", ret);
272                 goto unregister_clk;
273         }
274
275         platform_set_drvdata(pdev, ddata);
276         dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
277
278         return 0;
279
280 unregister_clk:
281         clk_notifier_unregister(ddata->clk, &ddata->notifier);
282 disable_clk:
283         clk_disable_unprepare(ddata->clk);
284
285         return ret;
286 }
287
288 static int pwm_sifive_remove(struct platform_device *dev)
289 {
290         struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
291         bool is_enabled = false;
292         struct pwm_device *pwm;
293         int ch;
294
295         for (ch = 0; ch < ddata->chip.npwm; ch++) {
296                 pwm = &ddata->chip.pwms[ch];
297                 if (pwm->state.enabled) {
298                         is_enabled = true;
299                         break;
300                 }
301         }
302         if (is_enabled)
303                 clk_disable(ddata->clk);
304
305         clk_disable_unprepare(ddata->clk);
306         pwmchip_remove(&ddata->chip);
307         clk_notifier_unregister(ddata->clk, &ddata->notifier);
308
309         return 0;
310 }
311
312 static const struct of_device_id pwm_sifive_of_match[] = {
313         { .compatible = "sifive,pwm0" },
314         {},
315 };
316 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
317
318 static struct platform_driver pwm_sifive_driver = {
319         .probe = pwm_sifive_probe,
320         .remove = pwm_sifive_remove,
321         .driver = {
322                 .name = "pwm-sifive",
323                 .of_match_table = pwm_sifive_of_match,
324         },
325 };
326 module_platform_driver(pwm_sifive_driver);
327
328 MODULE_DESCRIPTION("SiFive PWM driver");
329 MODULE_LICENSE("GPL v2");