Merge tag 'ovl-update-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
[linux-2.6-microblaze.git] / drivers / pwm / pwm-lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel Low Power Subsystem PWM controller driver
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
8  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
9  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
10  * Author: Alan Cox <alan@linux.intel.com>
11  */
12
13 #include <linux/delay.h>
14 #include <linux/io.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/time.h>
20
21 #include "pwm-lpss.h"
22
23 #define PWM                             0x00000000
24 #define PWM_ENABLE                      BIT(31)
25 #define PWM_SW_UPDATE                   BIT(30)
26 #define PWM_BASE_UNIT_SHIFT             8
27 #define PWM_ON_TIME_DIV_MASK            0x000000ff
28
29 /* Size of each PWM register space if multiple */
30 #define PWM_SIZE                        0x400
31
32 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
33 {
34         return container_of(chip, struct pwm_lpss_chip, chip);
35 }
36
37 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
38 {
39         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
40
41         return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
42 }
43
44 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
45 {
46         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
47
48         writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
49 }
50
51 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
52 {
53         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
54         const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
55         const unsigned int ms = 500 * USEC_PER_MSEC;
56         u32 val;
57         int err;
58
59         /*
60          * PWM Configuration register has SW_UPDATE bit that is set when a new
61          * configuration is written to the register. The bit is automatically
62          * cleared at the start of the next output cycle by the IP block.
63          *
64          * If one writes a new configuration to the register while it still has
65          * the bit enabled, PWM may freeze. That is, while one can still write
66          * to the register, it won't have an effect. Thus, we try to sleep long
67          * enough that the bit gets cleared and make sure the bit is not
68          * enabled while we update the configuration.
69          */
70         err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
71         if (err)
72                 dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
73
74         return err;
75 }
76
77 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
78 {
79         return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
80 }
81
82 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
83                              int duty_ns, int period_ns)
84 {
85         unsigned long long on_time_div;
86         unsigned long c = lpwm->info->clk_rate, base_unit_range;
87         unsigned long long base_unit, freq = NSEC_PER_SEC;
88         u32 ctrl;
89
90         do_div(freq, period_ns);
91
92         /*
93          * The equation is:
94          * base_unit = round(base_unit_range * freq / c)
95          */
96         base_unit_range = BIT(lpwm->info->base_unit_bits);
97         freq *= base_unit_range;
98
99         base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
100         /* base_unit must not be 0 and we also want to avoid overflowing it */
101         base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
102
103         on_time_div = 255ULL * duty_ns;
104         do_div(on_time_div, period_ns);
105         on_time_div = 255ULL - on_time_div;
106
107         ctrl = pwm_lpss_read(pwm);
108         ctrl &= ~PWM_ON_TIME_DIV_MASK;
109         ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
110         ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
111         ctrl |= on_time_div;
112
113         pwm_lpss_write(pwm, ctrl);
114         pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
115 }
116
117 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
118 {
119         if (cond)
120                 pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
121 }
122
123 static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
124                                    struct pwm_device *pwm,
125                                    const struct pwm_state *state)
126 {
127         int ret;
128
129         ret = pwm_lpss_is_updating(pwm);
130         if (ret)
131                 return ret;
132
133         pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
134         pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
135         ret = pwm_lpss_wait_for_update(pwm);
136         if (ret)
137                 return ret;
138
139         pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
140         return 0;
141 }
142
143 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
144                           const struct pwm_state *state)
145 {
146         struct pwm_lpss_chip *lpwm = to_lpwm(chip);
147         int ret = 0;
148
149         if (state->enabled) {
150                 if (!pwm_is_enabled(pwm)) {
151                         pm_runtime_get_sync(chip->dev);
152                         ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
153                         if (ret)
154                                 pm_runtime_put(chip->dev);
155                 } else {
156                         ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
157                 }
158         } else if (pwm_is_enabled(pwm)) {
159                 pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
160                 pm_runtime_put(chip->dev);
161         }
162
163         return ret;
164 }
165
166 static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
167                                struct pwm_state *state)
168 {
169         struct pwm_lpss_chip *lpwm = to_lpwm(chip);
170         unsigned long base_unit_range;
171         unsigned long long base_unit, freq, on_time_div;
172         u32 ctrl;
173
174         pm_runtime_get_sync(chip->dev);
175
176         base_unit_range = BIT(lpwm->info->base_unit_bits);
177
178         ctrl = pwm_lpss_read(pwm);
179         on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
180         base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
181
182         freq = base_unit * lpwm->info->clk_rate;
183         do_div(freq, base_unit_range);
184         if (freq == 0)
185                 state->period = NSEC_PER_SEC;
186         else
187                 state->period = NSEC_PER_SEC / (unsigned long)freq;
188
189         on_time_div *= state->period;
190         do_div(on_time_div, 255);
191         state->duty_cycle = on_time_div;
192
193         state->polarity = PWM_POLARITY_NORMAL;
194         state->enabled = !!(ctrl & PWM_ENABLE);
195
196         pm_runtime_put(chip->dev);
197 }
198
199 static const struct pwm_ops pwm_lpss_ops = {
200         .apply = pwm_lpss_apply,
201         .get_state = pwm_lpss_get_state,
202         .owner = THIS_MODULE,
203 };
204
205 struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
206                                      const struct pwm_lpss_boardinfo *info)
207 {
208         struct pwm_lpss_chip *lpwm;
209         unsigned long c;
210         int i, ret;
211         u32 ctrl;
212
213         if (WARN_ON(info->npwm > MAX_PWMS))
214                 return ERR_PTR(-ENODEV);
215
216         lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
217         if (!lpwm)
218                 return ERR_PTR(-ENOMEM);
219
220         lpwm->regs = devm_ioremap_resource(dev, r);
221         if (IS_ERR(lpwm->regs))
222                 return ERR_CAST(lpwm->regs);
223
224         lpwm->info = info;
225
226         c = lpwm->info->clk_rate;
227         if (!c)
228                 return ERR_PTR(-EINVAL);
229
230         lpwm->chip.dev = dev;
231         lpwm->chip.ops = &pwm_lpss_ops;
232         lpwm->chip.base = -1;
233         lpwm->chip.npwm = info->npwm;
234
235         ret = pwmchip_add(&lpwm->chip);
236         if (ret) {
237                 dev_err(dev, "failed to add PWM chip: %d\n", ret);
238                 return ERR_PTR(ret);
239         }
240
241         for (i = 0; i < lpwm->info->npwm; i++) {
242                 ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
243                 if (ctrl & PWM_ENABLE)
244                         pm_runtime_get(dev);
245         }
246
247         return lpwm;
248 }
249 EXPORT_SYMBOL_GPL(pwm_lpss_probe);
250
251 int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
252 {
253         int i;
254
255         for (i = 0; i < lpwm->info->npwm; i++) {
256                 if (pwm_is_enabled(&lpwm->chip.pwms[i]))
257                         pm_runtime_put(lpwm->chip.dev);
258         }
259         return pwmchip_remove(&lpwm->chip);
260 }
261 EXPORT_SYMBOL_GPL(pwm_lpss_remove);
262
263 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
264 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
265 MODULE_LICENSE("GPL v2");