Merge remote-tracking branch 'asoc/topic/meson' into asoc-next
[linux-2.6-microblaze.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19
20 #include "ptp_private.h"
21
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27 /* private globals */
28
29 static dev_t ptp_devt;
30 static struct class *ptp_class;
31
32 static DEFINE_IDA(ptp_clocks_map);
33
34 /* time stamp event queue operations */
35
36 static inline int queue_free(struct timestamp_event_queue *q)
37 {
38         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
39 }
40
41 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42                                        struct ptp_clock_event *src)
43 {
44         struct ptp_extts_event *dst;
45         unsigned long flags;
46         s64 seconds;
47         u32 remainder;
48
49         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
50
51         spin_lock_irqsave(&queue->lock, flags);
52
53         dst = &queue->buf[queue->tail];
54         dst->index = src->index;
55         dst->t.sec = seconds;
56         dst->t.nsec = remainder;
57
58         if (!queue_free(queue))
59                 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
60
61         queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
62
63         spin_unlock_irqrestore(&queue->lock, flags);
64 }
65
66 static s32 scaled_ppm_to_ppb(long ppm)
67 {
68         /*
69          * The 'freq' field in the 'struct timex' is in parts per
70          * million, but with a 16 bit binary fractional field.
71          *
72          * We want to calculate
73          *
74          *    ppb = scaled_ppm * 1000 / 2^16
75          *
76          * which simplifies to
77          *
78          *    ppb = scaled_ppm * 125 / 2^13
79          */
80         s64 ppb = 1 + ppm;
81         ppb *= 125;
82         ppb >>= 13;
83         return (s32) ppb;
84 }
85
86 /* posix clock implementation */
87
88 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
89 {
90         tp->tv_sec = 0;
91         tp->tv_nsec = 1;
92         return 0;
93 }
94
95 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
96 {
97         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
98
99         return  ptp->info->settime64(ptp->info, tp);
100 }
101
102 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
103 {
104         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
105         int err;
106
107         if (ptp->info->gettimex64)
108                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
109         else
110                 err = ptp->info->gettime64(ptp->info, tp);
111         return err;
112 }
113
114 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
115 {
116         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
117         struct ptp_clock_info *ops;
118         int err = -EOPNOTSUPP;
119
120         ops = ptp->info;
121
122         if (tx->modes & ADJ_SETOFFSET) {
123                 struct timespec64 ts;
124                 ktime_t kt;
125                 s64 delta;
126
127                 ts.tv_sec  = tx->time.tv_sec;
128                 ts.tv_nsec = tx->time.tv_usec;
129
130                 if (!(tx->modes & ADJ_NANO))
131                         ts.tv_nsec *= 1000;
132
133                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
134                         return -EINVAL;
135
136                 kt = timespec64_to_ktime(ts);
137                 delta = ktime_to_ns(kt);
138                 err = ops->adjtime(ops, delta);
139         } else if (tx->modes & ADJ_FREQUENCY) {
140                 s32 ppb = scaled_ppm_to_ppb(tx->freq);
141                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
142                         return -ERANGE;
143                 if (ops->adjfine)
144                         err = ops->adjfine(ops, tx->freq);
145                 else
146                         err = ops->adjfreq(ops, ppb);
147                 ptp->dialed_frequency = tx->freq;
148         } else if (tx->modes == 0) {
149                 tx->freq = ptp->dialed_frequency;
150                 err = 0;
151         }
152
153         return err;
154 }
155
156 static struct posix_clock_operations ptp_clock_ops = {
157         .owner          = THIS_MODULE,
158         .clock_adjtime  = ptp_clock_adjtime,
159         .clock_gettime  = ptp_clock_gettime,
160         .clock_getres   = ptp_clock_getres,
161         .clock_settime  = ptp_clock_settime,
162         .ioctl          = ptp_ioctl,
163         .open           = ptp_open,
164         .poll           = ptp_poll,
165         .read           = ptp_read,
166 };
167
168 static void delete_ptp_clock(struct posix_clock *pc)
169 {
170         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
171
172         mutex_destroy(&ptp->tsevq_mux);
173         mutex_destroy(&ptp->pincfg_mux);
174         ida_simple_remove(&ptp_clocks_map, ptp->index);
175         kfree(ptp);
176 }
177
178 static void ptp_aux_kworker(struct kthread_work *work)
179 {
180         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
181                                              aux_work.work);
182         struct ptp_clock_info *info = ptp->info;
183         long delay;
184
185         delay = info->do_aux_work(info);
186
187         if (delay >= 0)
188                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
189 }
190
191 /* public interface */
192
193 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
194                                      struct device *parent)
195 {
196         struct ptp_clock *ptp;
197         int err = 0, index, major = MAJOR(ptp_devt);
198
199         if (info->n_alarm > PTP_MAX_ALARMS)
200                 return ERR_PTR(-EINVAL);
201
202         /* Initialize a clock structure. */
203         err = -ENOMEM;
204         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
205         if (ptp == NULL)
206                 goto no_memory;
207
208         index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
209         if (index < 0) {
210                 err = index;
211                 goto no_slot;
212         }
213
214         ptp->clock.ops = ptp_clock_ops;
215         ptp->clock.release = delete_ptp_clock;
216         ptp->info = info;
217         ptp->devid = MKDEV(major, index);
218         ptp->index = index;
219         spin_lock_init(&ptp->tsevq.lock);
220         mutex_init(&ptp->tsevq_mux);
221         mutex_init(&ptp->pincfg_mux);
222         init_waitqueue_head(&ptp->tsev_wq);
223
224         if (ptp->info->do_aux_work) {
225                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
226                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
227                 if (IS_ERR(ptp->kworker)) {
228                         err = PTR_ERR(ptp->kworker);
229                         pr_err("failed to create ptp aux_worker %d\n", err);
230                         goto kworker_err;
231                 }
232         }
233
234         err = ptp_populate_pin_groups(ptp);
235         if (err)
236                 goto no_pin_groups;
237
238         /* Create a new device in our class. */
239         ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid,
240                                              ptp, ptp->pin_attr_groups,
241                                              "ptp%d", ptp->index);
242         if (IS_ERR(ptp->dev)) {
243                 err = PTR_ERR(ptp->dev);
244                 goto no_device;
245         }
246
247         /* Register a new PPS source. */
248         if (info->pps) {
249                 struct pps_source_info pps;
250                 memset(&pps, 0, sizeof(pps));
251                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
252                 pps.mode = PTP_PPS_MODE;
253                 pps.owner = info->owner;
254                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
255                 if (IS_ERR(ptp->pps_source)) {
256                         err = PTR_ERR(ptp->pps_source);
257                         pr_err("failed to register pps source\n");
258                         goto no_pps;
259                 }
260         }
261
262         /* Create a posix clock. */
263         err = posix_clock_register(&ptp->clock, ptp->devid);
264         if (err) {
265                 pr_err("failed to create posix clock\n");
266                 goto no_clock;
267         }
268
269         return ptp;
270
271 no_clock:
272         if (ptp->pps_source)
273                 pps_unregister_source(ptp->pps_source);
274 no_pps:
275         device_destroy(ptp_class, ptp->devid);
276 no_device:
277         ptp_cleanup_pin_groups(ptp);
278 no_pin_groups:
279         if (ptp->kworker)
280                 kthread_destroy_worker(ptp->kworker);
281 kworker_err:
282         mutex_destroy(&ptp->tsevq_mux);
283         mutex_destroy(&ptp->pincfg_mux);
284         ida_simple_remove(&ptp_clocks_map, index);
285 no_slot:
286         kfree(ptp);
287 no_memory:
288         return ERR_PTR(err);
289 }
290 EXPORT_SYMBOL(ptp_clock_register);
291
292 int ptp_clock_unregister(struct ptp_clock *ptp)
293 {
294         ptp->defunct = 1;
295         wake_up_interruptible(&ptp->tsev_wq);
296
297         if (ptp->kworker) {
298                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
299                 kthread_destroy_worker(ptp->kworker);
300         }
301
302         /* Release the clock's resources. */
303         if (ptp->pps_source)
304                 pps_unregister_source(ptp->pps_source);
305
306         device_destroy(ptp_class, ptp->devid);
307         ptp_cleanup_pin_groups(ptp);
308
309         posix_clock_unregister(&ptp->clock);
310         return 0;
311 }
312 EXPORT_SYMBOL(ptp_clock_unregister);
313
314 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
315 {
316         struct pps_event_time evt;
317
318         switch (event->type) {
319
320         case PTP_CLOCK_ALARM:
321                 break;
322
323         case PTP_CLOCK_EXTTS:
324                 enqueue_external_timestamp(&ptp->tsevq, event);
325                 wake_up_interruptible(&ptp->tsev_wq);
326                 break;
327
328         case PTP_CLOCK_PPS:
329                 pps_get_ts(&evt);
330                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
331                 break;
332
333         case PTP_CLOCK_PPSUSR:
334                 pps_event(ptp->pps_source, &event->pps_times,
335                           PTP_PPS_EVENT, NULL);
336                 break;
337         }
338 }
339 EXPORT_SYMBOL(ptp_clock_event);
340
341 int ptp_clock_index(struct ptp_clock *ptp)
342 {
343         return ptp->index;
344 }
345 EXPORT_SYMBOL(ptp_clock_index);
346
347 int ptp_find_pin(struct ptp_clock *ptp,
348                  enum ptp_pin_function func, unsigned int chan)
349 {
350         struct ptp_pin_desc *pin = NULL;
351         int i;
352
353         mutex_lock(&ptp->pincfg_mux);
354         for (i = 0; i < ptp->info->n_pins; i++) {
355                 if (ptp->info->pin_config[i].func == func &&
356                     ptp->info->pin_config[i].chan == chan) {
357                         pin = &ptp->info->pin_config[i];
358                         break;
359                 }
360         }
361         mutex_unlock(&ptp->pincfg_mux);
362
363         return pin ? i : -1;
364 }
365 EXPORT_SYMBOL(ptp_find_pin);
366
367 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
368 {
369         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
370 }
371 EXPORT_SYMBOL(ptp_schedule_worker);
372
373 /* module operations */
374
375 static void __exit ptp_exit(void)
376 {
377         class_destroy(ptp_class);
378         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
379         ida_destroy(&ptp_clocks_map);
380 }
381
382 static int __init ptp_init(void)
383 {
384         int err;
385
386         ptp_class = class_create(THIS_MODULE, "ptp");
387         if (IS_ERR(ptp_class)) {
388                 pr_err("ptp: failed to allocate class\n");
389                 return PTR_ERR(ptp_class);
390         }
391
392         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
393         if (err < 0) {
394                 pr_err("ptp: failed to allocate device region\n");
395                 goto no_region;
396         }
397
398         ptp_class->dev_groups = ptp_groups;
399         pr_info("PTP clock support registered\n");
400         return 0;
401
402 no_region:
403         class_destroy(ptp_class);
404         return err;
405 }
406
407 subsys_initcall(ptp_init);
408 module_exit(ptp_exit);
409
410 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
411 MODULE_DESCRIPTION("PTP clocks support");
412 MODULE_LICENSE("GPL");