Revert "Revert "driver core: Set fw_devlink to "permissive" behavior by default""
[linux-2.6-microblaze.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19
20 #include "ptp_private.h"
21
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27 /* private globals */
28
29 static dev_t ptp_devt;
30 static struct class *ptp_class;
31
32 static DEFINE_IDA(ptp_clocks_map);
33
34 /* time stamp event queue operations */
35
36 static inline int queue_free(struct timestamp_event_queue *q)
37 {
38         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
39 }
40
41 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42                                        struct ptp_clock_event *src)
43 {
44         struct ptp_extts_event *dst;
45         unsigned long flags;
46         s64 seconds;
47         u32 remainder;
48
49         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
50
51         spin_lock_irqsave(&queue->lock, flags);
52
53         dst = &queue->buf[queue->tail];
54         dst->index = src->index;
55         dst->t.sec = seconds;
56         dst->t.nsec = remainder;
57
58         if (!queue_free(queue))
59                 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
60
61         queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
62
63         spin_unlock_irqrestore(&queue->lock, flags);
64 }
65
66 s32 scaled_ppm_to_ppb(long ppm)
67 {
68         /*
69          * The 'freq' field in the 'struct timex' is in parts per
70          * million, but with a 16 bit binary fractional field.
71          *
72          * We want to calculate
73          *
74          *    ppb = scaled_ppm * 1000 / 2^16
75          *
76          * which simplifies to
77          *
78          *    ppb = scaled_ppm * 125 / 2^13
79          */
80         s64 ppb = 1 + ppm;
81         ppb *= 125;
82         ppb >>= 13;
83         return (s32) ppb;
84 }
85 EXPORT_SYMBOL(scaled_ppm_to_ppb);
86
87 /* posix clock implementation */
88
89 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
90 {
91         tp->tv_sec = 0;
92         tp->tv_nsec = 1;
93         return 0;
94 }
95
96 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
97 {
98         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
99
100         return  ptp->info->settime64(ptp->info, tp);
101 }
102
103 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
104 {
105         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
106         int err;
107
108         if (ptp->info->gettimex64)
109                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
110         else
111                 err = ptp->info->gettime64(ptp->info, tp);
112         return err;
113 }
114
115 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
116 {
117         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118         struct ptp_clock_info *ops;
119         int err = -EOPNOTSUPP;
120
121         ops = ptp->info;
122
123         if (tx->modes & ADJ_SETOFFSET) {
124                 struct timespec64 ts;
125                 ktime_t kt;
126                 s64 delta;
127
128                 ts.tv_sec  = tx->time.tv_sec;
129                 ts.tv_nsec = tx->time.tv_usec;
130
131                 if (!(tx->modes & ADJ_NANO))
132                         ts.tv_nsec *= 1000;
133
134                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
135                         return -EINVAL;
136
137                 kt = timespec64_to_ktime(ts);
138                 delta = ktime_to_ns(kt);
139                 err = ops->adjtime(ops, delta);
140         } else if (tx->modes & ADJ_FREQUENCY) {
141                 s32 ppb = scaled_ppm_to_ppb(tx->freq);
142                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
143                         return -ERANGE;
144                 if (ops->adjfine)
145                         err = ops->adjfine(ops, tx->freq);
146                 else
147                         err = ops->adjfreq(ops, ppb);
148                 ptp->dialed_frequency = tx->freq;
149         } else if (tx->modes == 0) {
150                 tx->freq = ptp->dialed_frequency;
151                 err = 0;
152         }
153
154         return err;
155 }
156
157 static struct posix_clock_operations ptp_clock_ops = {
158         .owner          = THIS_MODULE,
159         .clock_adjtime  = ptp_clock_adjtime,
160         .clock_gettime  = ptp_clock_gettime,
161         .clock_getres   = ptp_clock_getres,
162         .clock_settime  = ptp_clock_settime,
163         .ioctl          = ptp_ioctl,
164         .open           = ptp_open,
165         .poll           = ptp_poll,
166         .read           = ptp_read,
167 };
168
169 static void ptp_clock_release(struct device *dev)
170 {
171         struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
172
173         ptp_cleanup_pin_groups(ptp);
174         mutex_destroy(&ptp->tsevq_mux);
175         mutex_destroy(&ptp->pincfg_mux);
176         ida_simple_remove(&ptp_clocks_map, ptp->index);
177         kfree(ptp);
178 }
179
180 static void ptp_aux_kworker(struct kthread_work *work)
181 {
182         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
183                                              aux_work.work);
184         struct ptp_clock_info *info = ptp->info;
185         long delay;
186
187         delay = info->do_aux_work(info);
188
189         if (delay >= 0)
190                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
191 }
192
193 /* public interface */
194
195 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
196                                      struct device *parent)
197 {
198         struct ptp_clock *ptp;
199         int err = 0, index, major = MAJOR(ptp_devt);
200
201         if (info->n_alarm > PTP_MAX_ALARMS)
202                 return ERR_PTR(-EINVAL);
203
204         /* Initialize a clock structure. */
205         err = -ENOMEM;
206         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
207         if (ptp == NULL)
208                 goto no_memory;
209
210         index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
211         if (index < 0) {
212                 err = index;
213                 goto no_slot;
214         }
215
216         ptp->clock.ops = ptp_clock_ops;
217         ptp->info = info;
218         ptp->devid = MKDEV(major, index);
219         ptp->index = index;
220         spin_lock_init(&ptp->tsevq.lock);
221         mutex_init(&ptp->tsevq_mux);
222         mutex_init(&ptp->pincfg_mux);
223         init_waitqueue_head(&ptp->tsev_wq);
224
225         if (ptp->info->do_aux_work) {
226                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
227                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
228                 if (IS_ERR(ptp->kworker)) {
229                         err = PTR_ERR(ptp->kworker);
230                         pr_err("failed to create ptp aux_worker %d\n", err);
231                         goto kworker_err;
232                 }
233         }
234
235         err = ptp_populate_pin_groups(ptp);
236         if (err)
237                 goto no_pin_groups;
238
239         /* Register a new PPS source. */
240         if (info->pps) {
241                 struct pps_source_info pps;
242                 memset(&pps, 0, sizeof(pps));
243                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
244                 pps.mode = PTP_PPS_MODE;
245                 pps.owner = info->owner;
246                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
247                 if (IS_ERR(ptp->pps_source)) {
248                         err = PTR_ERR(ptp->pps_source);
249                         pr_err("failed to register pps source\n");
250                         goto no_pps;
251                 }
252         }
253
254         /* Initialize a new device of our class in our clock structure. */
255         device_initialize(&ptp->dev);
256         ptp->dev.devt = ptp->devid;
257         ptp->dev.class = ptp_class;
258         ptp->dev.parent = parent;
259         ptp->dev.groups = ptp->pin_attr_groups;
260         ptp->dev.release = ptp_clock_release;
261         dev_set_drvdata(&ptp->dev, ptp);
262         dev_set_name(&ptp->dev, "ptp%d", ptp->index);
263
264         /* Create a posix clock and link it to the device. */
265         err = posix_clock_register(&ptp->clock, &ptp->dev);
266         if (err) {
267                 pr_err("failed to create posix clock\n");
268                 goto no_clock;
269         }
270
271         return ptp;
272
273 no_clock:
274         if (ptp->pps_source)
275                 pps_unregister_source(ptp->pps_source);
276 no_pps:
277         ptp_cleanup_pin_groups(ptp);
278 no_pin_groups:
279         if (ptp->kworker)
280                 kthread_destroy_worker(ptp->kworker);
281 kworker_err:
282         mutex_destroy(&ptp->tsevq_mux);
283         mutex_destroy(&ptp->pincfg_mux);
284         ida_simple_remove(&ptp_clocks_map, index);
285 no_slot:
286         kfree(ptp);
287 no_memory:
288         return ERR_PTR(err);
289 }
290 EXPORT_SYMBOL(ptp_clock_register);
291
292 int ptp_clock_unregister(struct ptp_clock *ptp)
293 {
294         ptp->defunct = 1;
295         wake_up_interruptible(&ptp->tsev_wq);
296
297         if (ptp->kworker) {
298                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
299                 kthread_destroy_worker(ptp->kworker);
300         }
301
302         /* Release the clock's resources. */
303         if (ptp->pps_source)
304                 pps_unregister_source(ptp->pps_source);
305
306         posix_clock_unregister(&ptp->clock);
307
308         return 0;
309 }
310 EXPORT_SYMBOL(ptp_clock_unregister);
311
312 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
313 {
314         struct pps_event_time evt;
315
316         switch (event->type) {
317
318         case PTP_CLOCK_ALARM:
319                 break;
320
321         case PTP_CLOCK_EXTTS:
322                 enqueue_external_timestamp(&ptp->tsevq, event);
323                 wake_up_interruptible(&ptp->tsev_wq);
324                 break;
325
326         case PTP_CLOCK_PPS:
327                 pps_get_ts(&evt);
328                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
329                 break;
330
331         case PTP_CLOCK_PPSUSR:
332                 pps_event(ptp->pps_source, &event->pps_times,
333                           PTP_PPS_EVENT, NULL);
334                 break;
335         }
336 }
337 EXPORT_SYMBOL(ptp_clock_event);
338
339 int ptp_clock_index(struct ptp_clock *ptp)
340 {
341         return ptp->index;
342 }
343 EXPORT_SYMBOL(ptp_clock_index);
344
345 int ptp_find_pin(struct ptp_clock *ptp,
346                  enum ptp_pin_function func, unsigned int chan)
347 {
348         struct ptp_pin_desc *pin = NULL;
349         int i;
350
351         for (i = 0; i < ptp->info->n_pins; i++) {
352                 if (ptp->info->pin_config[i].func == func &&
353                     ptp->info->pin_config[i].chan == chan) {
354                         pin = &ptp->info->pin_config[i];
355                         break;
356                 }
357         }
358
359         return pin ? i : -1;
360 }
361 EXPORT_SYMBOL(ptp_find_pin);
362
363 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
364                           enum ptp_pin_function func, unsigned int chan)
365 {
366         int result;
367
368         mutex_lock(&ptp->pincfg_mux);
369
370         result = ptp_find_pin(ptp, func, chan);
371
372         mutex_unlock(&ptp->pincfg_mux);
373
374         return result;
375 }
376 EXPORT_SYMBOL(ptp_find_pin_unlocked);
377
378 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
379 {
380         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
381 }
382 EXPORT_SYMBOL(ptp_schedule_worker);
383
384 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
385 {
386         kthread_cancel_delayed_work_sync(&ptp->aux_work);
387 }
388 EXPORT_SYMBOL(ptp_cancel_worker_sync);
389
390 /* module operations */
391
392 static void __exit ptp_exit(void)
393 {
394         class_destroy(ptp_class);
395         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
396         ida_destroy(&ptp_clocks_map);
397 }
398
399 static int __init ptp_init(void)
400 {
401         int err;
402
403         ptp_class = class_create(THIS_MODULE, "ptp");
404         if (IS_ERR(ptp_class)) {
405                 pr_err("ptp: failed to allocate class\n");
406                 return PTR_ERR(ptp_class);
407         }
408
409         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
410         if (err < 0) {
411                 pr_err("ptp: failed to allocate device region\n");
412                 goto no_region;
413         }
414
415         ptp_class->dev_groups = ptp_groups;
416         pr_info("PTP clock support registered\n");
417         return 0;
418
419 no_region:
420         class_destroy(ptp_class);
421         return err;
422 }
423
424 subsys_initcall(ptp_init);
425 module_exit(ptp_exit);
426
427 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
428 MODULE_DESCRIPTION("PTP clocks support");
429 MODULE_LICENSE("GPL");