Merge tag 'timers-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / powercap / dtpm_cpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2020 Linaro Limited
4  *
5  * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6  *
7  * The DTPM CPU is based on the energy model. It hooks the CPU in the
8  * DTPM tree which in turns update the power number by propagating the
9  * power number from the CPU energy model information to the parents.
10  *
11  * The association between the power and the performance state, allows
12  * to set the power of the CPU at the OPP granularity.
13  *
14  * The CPU hotplug is supported and the power numbers will be updated
15  * if a CPU is hot plugged / unplugged.
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/cpumask.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/dtpm.h>
23 #include <linux/energy_model.h>
24 #include <linux/of.h>
25 #include <linux/pm_qos.h>
26 #include <linux/slab.h>
27 #include <linux/units.h>
28
29 struct dtpm_cpu {
30         struct dtpm dtpm;
31         struct freq_qos_request qos_req;
32         int cpu;
33 };
34
35 static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu);
36
37 static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm)
38 {
39         return container_of(dtpm, struct dtpm_cpu, dtpm);
40 }
41
42 static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
43 {
44         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
45         struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
46         struct cpumask cpus;
47         unsigned long freq;
48         u64 power;
49         int i, nr_cpus;
50
51         cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
52         nr_cpus = cpumask_weight(&cpus);
53
54         for (i = 0; i < pd->nr_perf_states; i++) {
55
56                 power = pd->table[i].power * MICROWATT_PER_MILLIWATT * nr_cpus;
57
58                 if (power > power_limit)
59                         break;
60         }
61
62         freq = pd->table[i - 1].frequency;
63
64         freq_qos_update_request(&dtpm_cpu->qos_req, freq);
65
66         power_limit = pd->table[i - 1].power *
67                 MICROWATT_PER_MILLIWATT * nr_cpus;
68
69         return power_limit;
70 }
71
72 static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
73 {
74         unsigned long max, sum_util = 0;
75         int cpu;
76
77         /*
78          * The capacity is the same for all CPUs belonging to
79          * the same perf domain.
80          */
81         max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
82
83         for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
84                 sum_util += sched_cpu_util(cpu);
85
86         return (power * ((sum_util << 10) / max)) >> 10;
87 }
88
89 static u64 get_pd_power_uw(struct dtpm *dtpm)
90 {
91         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
92         struct em_perf_domain *pd;
93         struct cpumask *pd_mask;
94         unsigned long freq;
95         int i;
96
97         pd = em_cpu_get(dtpm_cpu->cpu);
98
99         pd_mask = em_span_cpus(pd);
100
101         freq = cpufreq_quick_get(dtpm_cpu->cpu);
102
103         for (i = 0; i < pd->nr_perf_states; i++) {
104
105                 if (pd->table[i].frequency < freq)
106                         continue;
107
108                 return scale_pd_power_uw(pd_mask, pd->table[i].power *
109                                          MICROWATT_PER_MILLIWATT);
110         }
111
112         return 0;
113 }
114
115 static int update_pd_power_uw(struct dtpm *dtpm)
116 {
117         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
118         struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
119         struct cpumask cpus;
120         int nr_cpus;
121
122         cpumask_and(&cpus, cpu_online_mask, to_cpumask(em->cpus));
123         nr_cpus = cpumask_weight(&cpus);
124
125         dtpm->power_min = em->table[0].power;
126         dtpm->power_min *= MICROWATT_PER_MILLIWATT;
127         dtpm->power_min *= nr_cpus;
128
129         dtpm->power_max = em->table[em->nr_perf_states - 1].power;
130         dtpm->power_max *= MICROWATT_PER_MILLIWATT;
131         dtpm->power_max *= nr_cpus;
132
133         return 0;
134 }
135
136 static void pd_release(struct dtpm *dtpm)
137 {
138         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
139         struct cpufreq_policy *policy;
140
141         if (freq_qos_request_active(&dtpm_cpu->qos_req))
142                 freq_qos_remove_request(&dtpm_cpu->qos_req);
143
144         policy = cpufreq_cpu_get(dtpm_cpu->cpu);
145         if (policy) {
146                 for_each_cpu(dtpm_cpu->cpu, policy->related_cpus)
147                         per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL;
148         }
149         
150         kfree(dtpm_cpu);
151 }
152
153 static struct dtpm_ops dtpm_ops = {
154         .set_power_uw    = set_pd_power_limit,
155         .get_power_uw    = get_pd_power_uw,
156         .update_power_uw = update_pd_power_uw,
157         .release         = pd_release,
158 };
159
160 static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
161 {
162         struct dtpm_cpu *dtpm_cpu;
163
164         dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
165         if (dtpm_cpu)
166                 dtpm_update_power(&dtpm_cpu->dtpm);
167
168         return 0;
169 }
170
171 static int cpuhp_dtpm_cpu_online(unsigned int cpu)
172 {
173         struct dtpm_cpu *dtpm_cpu;
174
175         dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
176         if (dtpm_cpu)
177                 return dtpm_update_power(&dtpm_cpu->dtpm);
178
179         return 0;
180 }
181
182 static int __dtpm_cpu_setup(int cpu, struct dtpm *parent)
183 {
184         struct dtpm_cpu *dtpm_cpu;
185         struct cpufreq_policy *policy;
186         struct em_perf_domain *pd;
187         char name[CPUFREQ_NAME_LEN];
188         int ret = -ENOMEM;
189
190         dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
191         if (dtpm_cpu)
192                 return 0;
193
194         policy = cpufreq_cpu_get(cpu);
195         if (!policy)
196                 return 0;
197
198         pd = em_cpu_get(cpu);
199         if (!pd || em_is_artificial(pd))
200                 return -EINVAL;
201
202         dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
203         if (!dtpm_cpu)
204                 return -ENOMEM;
205
206         dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops);
207         dtpm_cpu->cpu = cpu;
208
209         for_each_cpu(cpu, policy->related_cpus)
210                 per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu;
211
212         snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
213
214         ret = dtpm_register(name, &dtpm_cpu->dtpm, parent);
215         if (ret)
216                 goto out_kfree_dtpm_cpu;
217
218         ret = freq_qos_add_request(&policy->constraints,
219                                    &dtpm_cpu->qos_req, FREQ_QOS_MAX,
220                                    pd->table[pd->nr_perf_states - 1].frequency);
221         if (ret)
222                 goto out_dtpm_unregister;
223
224         return 0;
225
226 out_dtpm_unregister:
227         dtpm_unregister(&dtpm_cpu->dtpm);
228         dtpm_cpu = NULL;
229
230 out_kfree_dtpm_cpu:
231         for_each_cpu(cpu, policy->related_cpus)
232                 per_cpu(dtpm_per_cpu, cpu) = NULL;
233         kfree(dtpm_cpu);
234
235         return ret;
236 }
237
238 static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np)
239 {
240         int cpu;
241
242         cpu = of_cpu_node_to_id(np);
243         if (cpu < 0)
244                 return 0;
245
246         return __dtpm_cpu_setup(cpu, dtpm);
247 }
248
249 static int dtpm_cpu_init(void)
250 {
251         int ret;
252
253         /*
254          * The callbacks at CPU hotplug time are calling
255          * dtpm_update_power() which in turns calls update_pd_power().
256          *
257          * The function update_pd_power() uses the online mask to
258          * figure out the power consumption limits.
259          *
260          * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
261          * online mask when the cpuhp_dtpm_cpu_online function is
262          * called, but the CPU is still in the online mask for the
263          * tear down callback. So the power can not be updated when
264          * the CPU is unplugged.
265          *
266          * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
267          * above. The CPU online mask is not up to date when the CPU
268          * is plugged in.
269          *
270          * For this reason, we need to call the online and offline
271          * callbacks at different moments when the CPU online mask is
272          * consistent with the power numbers we want to update.
273          */
274         ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
275                                 NULL, cpuhp_dtpm_cpu_offline);
276         if (ret < 0)
277                 return ret;
278
279         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
280                                 cpuhp_dtpm_cpu_online, NULL);
281         if (ret < 0)
282                 return ret;
283
284         return 0;
285 }
286
287 static void dtpm_cpu_exit(void)
288 {
289         cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
290         cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD);
291 }
292
293 struct dtpm_subsys_ops dtpm_cpu_ops = {
294         .name = KBUILD_MODNAME,
295         .init = dtpm_cpu_init,
296         .exit = dtpm_cpu_exit,
297         .setup = dtpm_cpu_setup,
298 };