Merge tag 'gfs2-for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux...
[linux-2.6-microblaze.git] / drivers / power / supply / sc27xx_fuel_gauge.c
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
3
4 #include <linux/gpio/consumer.h>
5 #include <linux/iio/consumer.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/math64.h>
9 #include <linux/module.h>
10 #include <linux/nvmem-consumer.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/power_supply.h>
14 #include <linux/regmap.h>
15 #include <linux/slab.h>
16
17 /* PMIC global control registers definition */
18 #define SC27XX_MODULE_EN0               0xc08
19 #define SC27XX_CLK_EN0                  0xc18
20 #define SC27XX_FGU_EN                   BIT(7)
21 #define SC27XX_FGU_RTC_EN               BIT(6)
22
23 /* FGU registers definition */
24 #define SC27XX_FGU_START                0x0
25 #define SC27XX_FGU_CONFIG               0x4
26 #define SC27XX_FGU_ADC_CONFIG           0x8
27 #define SC27XX_FGU_STATUS               0xc
28 #define SC27XX_FGU_INT_EN               0x10
29 #define SC27XX_FGU_INT_CLR              0x14
30 #define SC27XX_FGU_INT_STS              0x1c
31 #define SC27XX_FGU_VOLTAGE              0x20
32 #define SC27XX_FGU_OCV                  0x24
33 #define SC27XX_FGU_POCV                 0x28
34 #define SC27XX_FGU_CURRENT              0x2c
35 #define SC27XX_FGU_LOW_OVERLOAD         0x34
36 #define SC27XX_FGU_CLBCNT_SETH          0x50
37 #define SC27XX_FGU_CLBCNT_SETL          0x54
38 #define SC27XX_FGU_CLBCNT_DELTH         0x58
39 #define SC27XX_FGU_CLBCNT_DELTL         0x5c
40 #define SC27XX_FGU_CLBCNT_VALH          0x68
41 #define SC27XX_FGU_CLBCNT_VALL          0x6c
42 #define SC27XX_FGU_CLBCNT_QMAXL         0x74
43 #define SC27XX_FGU_USER_AREA_SET        0xa0
44 #define SC27XX_FGU_USER_AREA_CLEAR      0xa4
45 #define SC27XX_FGU_USER_AREA_STATUS     0xa8
46 #define SC27XX_FGU_VOLTAGE_BUF          0xd0
47 #define SC27XX_FGU_CURRENT_BUF          0xf0
48
49 #define SC27XX_WRITE_SELCLB_EN          BIT(0)
50 #define SC27XX_FGU_CLBCNT_MASK          GENMASK(15, 0)
51 #define SC27XX_FGU_CLBCNT_SHIFT         16
52 #define SC27XX_FGU_LOW_OVERLOAD_MASK    GENMASK(12, 0)
53
54 #define SC27XX_FGU_INT_MASK             GENMASK(9, 0)
55 #define SC27XX_FGU_LOW_OVERLOAD_INT     BIT(0)
56 #define SC27XX_FGU_CLBCNT_DELTA_INT     BIT(2)
57
58 #define SC27XX_FGU_MODE_AREA_MASK       GENMASK(15, 12)
59 #define SC27XX_FGU_CAP_AREA_MASK        GENMASK(11, 0)
60 #define SC27XX_FGU_MODE_AREA_SHIFT      12
61
62 #define SC27XX_FGU_FIRST_POWERTON       GENMASK(3, 0)
63 #define SC27XX_FGU_DEFAULT_CAP          GENMASK(11, 0)
64 #define SC27XX_FGU_NORMAIL_POWERTON     0x5
65
66 #define SC27XX_FGU_CUR_BASIC_ADC        8192
67 #define SC27XX_FGU_SAMPLE_HZ            2
68 /* micro Ohms */
69 #define SC27XX_FGU_IDEAL_RESISTANCE     20000
70
71 /*
72  * struct sc27xx_fgu_data: describe the FGU device
73  * @regmap: regmap for register access
74  * @dev: platform device
75  * @battery: battery power supply
76  * @base: the base offset for the controller
77  * @lock: protect the structure
78  * @gpiod: GPIO for battery detection
79  * @channel: IIO channel to get battery temperature
80  * @charge_chan: IIO channel to get charge voltage
81  * @internal_resist: the battery internal resistance in mOhm
82  * @total_cap: the total capacity of the battery in mAh
83  * @init_cap: the initial capacity of the battery in mAh
84  * @alarm_cap: the alarm capacity
85  * @init_clbcnt: the initial coulomb counter
86  * @max_volt: the maximum constant input voltage in millivolt
87  * @min_volt: the minimum drained battery voltage in microvolt
88  * @boot_volt: the voltage measured during boot in microvolt
89  * @table_len: the capacity table length
90  * @resist_table_len: the resistance table length
91  * @cur_1000ma_adc: ADC value corresponding to 1000 mA
92  * @vol_1000mv_adc: ADC value corresponding to 1000 mV
93  * @calib_resist: the real resistance of coulomb counter chip in uOhm
94  * @cap_table: capacity table with corresponding ocv
95  * @resist_table: resistance percent table with corresponding temperature
96  */
97 struct sc27xx_fgu_data {
98         struct regmap *regmap;
99         struct device *dev;
100         struct power_supply *battery;
101         u32 base;
102         struct mutex lock;
103         struct gpio_desc *gpiod;
104         struct iio_channel *channel;
105         struct iio_channel *charge_chan;
106         bool bat_present;
107         int internal_resist;
108         int total_cap;
109         int init_cap;
110         int alarm_cap;
111         int init_clbcnt;
112         int max_volt;
113         int min_volt;
114         int boot_volt;
115         int table_len;
116         int resist_table_len;
117         int cur_1000ma_adc;
118         int vol_1000mv_adc;
119         int calib_resist;
120         struct power_supply_battery_ocv_table *cap_table;
121         struct power_supply_resistance_temp_table *resist_table;
122 };
123
124 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
125 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
126                                             int cap, bool int_mode);
127 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
128 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);
129
130 static const char * const sc27xx_charger_supply_name[] = {
131         "sc2731_charger",
132         "sc2720_charger",
133         "sc2721_charger",
134         "sc2723_charger",
135 };
136
137 static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc)
138 {
139         return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
140 }
141
142 static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc)
143 {
144         return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
145 }
146
147 static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
148 {
149         return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
150 }
151
152 static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
153 {
154         int ret, status, cap, mode;
155
156         ret = regmap_read(data->regmap,
157                           data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
158         if (ret)
159                 return false;
160
161         /*
162          * We use low 4 bits to save the last battery capacity and high 12 bits
163          * to save the system boot mode.
164          */
165         mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
166         cap = status & SC27XX_FGU_CAP_AREA_MASK;
167
168         /*
169          * When FGU has been powered down, the user area registers became
170          * default value (0xffff), which can be used to valid if the system is
171          * first power on or not.
172          */
173         if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
174                 return true;
175
176         return false;
177 }
178
179 static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
180                                      int boot_mode)
181 {
182         int ret;
183
184         ret = regmap_update_bits(data->regmap,
185                                  data->base + SC27XX_FGU_USER_AREA_CLEAR,
186                                  SC27XX_FGU_MODE_AREA_MASK,
187                                  SC27XX_FGU_MODE_AREA_MASK);
188         if (ret)
189                 return ret;
190
191         /*
192          * Since the user area registers are put on power always-on region,
193          * then these registers changing time will be a little long. Thus
194          * here we should delay 200us to wait until values are updated
195          * successfully according to the datasheet.
196          */
197         udelay(200);
198
199         ret = regmap_update_bits(data->regmap,
200                                  data->base + SC27XX_FGU_USER_AREA_SET,
201                                  SC27XX_FGU_MODE_AREA_MASK,
202                                  boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
203         if (ret)
204                 return ret;
205
206         /*
207          * Since the user area registers are put on power always-on region,
208          * then these registers changing time will be a little long. Thus
209          * here we should delay 200us to wait until values are updated
210          * successfully according to the datasheet.
211          */
212         udelay(200);
213
214         /*
215          * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
216          * make the user area data available, otherwise we can not save the user
217          * area data.
218          */
219         return regmap_update_bits(data->regmap,
220                                   data->base + SC27XX_FGU_USER_AREA_CLEAR,
221                                   SC27XX_FGU_MODE_AREA_MASK, 0);
222 }
223
224 static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
225 {
226         int ret;
227
228         ret = regmap_update_bits(data->regmap,
229                                  data->base + SC27XX_FGU_USER_AREA_CLEAR,
230                                  SC27XX_FGU_CAP_AREA_MASK,
231                                  SC27XX_FGU_CAP_AREA_MASK);
232         if (ret)
233                 return ret;
234
235         /*
236          * Since the user area registers are put on power always-on region,
237          * then these registers changing time will be a little long. Thus
238          * here we should delay 200us to wait until values are updated
239          * successfully according to the datasheet.
240          */
241         udelay(200);
242
243         ret = regmap_update_bits(data->regmap,
244                                  data->base + SC27XX_FGU_USER_AREA_SET,
245                                  SC27XX_FGU_CAP_AREA_MASK, cap);
246         if (ret)
247                 return ret;
248
249         /*
250          * Since the user area registers are put on power always-on region,
251          * then these registers changing time will be a little long. Thus
252          * here we should delay 200us to wait until values are updated
253          * successfully according to the datasheet.
254          */
255         udelay(200);
256
257         /*
258          * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
259          * make the user area data available, otherwise we can not save the user
260          * area data.
261          */
262         return regmap_update_bits(data->regmap,
263                                   data->base + SC27XX_FGU_USER_AREA_CLEAR,
264                                   SC27XX_FGU_CAP_AREA_MASK, 0);
265 }
266
267 static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
268 {
269         int ret, value;
270
271         ret = regmap_read(data->regmap,
272                           data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
273         if (ret)
274                 return ret;
275
276         *cap = value & SC27XX_FGU_CAP_AREA_MASK;
277         return 0;
278 }
279
280 /*
281  * When system boots on, we can not read battery capacity from coulomb
282  * registers, since now the coulomb registers are invalid. So we should
283  * calculate the battery open circuit voltage, and get current battery
284  * capacity according to the capacity table.
285  */
286 static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
287 {
288         int volt, cur, oci, ocv, ret;
289         bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
290
291         /*
292          * If system is not the first power on, we should use the last saved
293          * battery capacity as the initial battery capacity. Otherwise we should
294          * re-calculate the initial battery capacity.
295          */
296         if (!is_first_poweron) {
297                 ret = sc27xx_fgu_read_last_cap(data, cap);
298                 if (ret)
299                         return ret;
300
301                 return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
302         }
303
304         /*
305          * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
306          * the first sampled open circuit current.
307          */
308         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
309                           &cur);
310         if (ret)
311                 return ret;
312
313         cur <<= 1;
314         oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
315
316         /*
317          * Should get the OCV from SC27XX_FGU_POCV register at the system
318          * beginning. It is ADC values reading from registers which need to
319          * convert the corresponding voltage.
320          */
321         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
322         if (ret)
323                 return ret;
324
325         volt = sc27xx_fgu_adc_to_voltage(data, volt);
326         ocv = volt * 1000 - oci * data->internal_resist;
327         data->boot_volt = ocv;
328
329         /*
330          * Parse the capacity table to look up the correct capacity percent
331          * according to current battery's corresponding OCV values.
332          */
333         *cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
334                                            ocv);
335
336         ret = sc27xx_fgu_save_last_cap(data, *cap);
337         if (ret)
338                 return ret;
339
340         return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
341 }
342
343 static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
344 {
345         int ret;
346
347         ret = regmap_update_bits(data->regmap,
348                                  data->base + SC27XX_FGU_CLBCNT_SETL,
349                                  SC27XX_FGU_CLBCNT_MASK, clbcnt);
350         if (ret)
351                 return ret;
352
353         ret = regmap_update_bits(data->regmap,
354                                  data->base + SC27XX_FGU_CLBCNT_SETH,
355                                  SC27XX_FGU_CLBCNT_MASK,
356                                  clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
357         if (ret)
358                 return ret;
359
360         return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
361                                  SC27XX_WRITE_SELCLB_EN,
362                                  SC27XX_WRITE_SELCLB_EN);
363 }
364
365 static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
366 {
367         int ccl, cch, ret;
368
369         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
370                           &ccl);
371         if (ret)
372                 return ret;
373
374         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
375                           &cch);
376         if (ret)
377                 return ret;
378
379         *clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
380         *clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
381
382         return 0;
383 }
384
385 static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val)
386 {
387         int ret;
388         u32 vol;
389
390         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF,
391                           &vol);
392         if (ret)
393                 return ret;
394
395         /*
396          * It is ADC values reading from registers which need to convert to
397          * corresponding voltage values.
398          */
399         *val = sc27xx_fgu_adc_to_voltage(data, vol);
400
401         return 0;
402 }
403
404 static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val)
405 {
406         int ret;
407         u32 cur;
408
409         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF,
410                           &cur);
411         if (ret)
412                 return ret;
413
414         /*
415          * It is ADC values reading from registers which need to convert to
416          * corresponding current values.
417          */
418         *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
419
420         return 0;
421 }
422
423 static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
424 {
425         int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
426
427         /* Get current coulomb counters firstly */
428         ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
429         if (ret)
430                 return ret;
431
432         delta_clbcnt = cur_clbcnt - data->init_clbcnt;
433
434         /*
435          * Convert coulomb counter to delta capacity (mAh), and set multiplier
436          * as 10 to improve the precision.
437          */
438         temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
439         temp = sc27xx_fgu_adc_to_current(data, temp / 1000);
440
441         /*
442          * Convert to capacity percent of the battery total capacity,
443          * and multiplier is 100 too.
444          */
445         delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
446         *cap = delta_cap + data->init_cap;
447
448         /* Calibrate the battery capacity in a normal range. */
449         sc27xx_fgu_capacity_calibration(data, *cap, false);
450
451         return 0;
452 }
453
454 static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
455 {
456         int ret, vol;
457
458         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
459         if (ret)
460                 return ret;
461
462         /*
463          * It is ADC values reading from registers which need to convert to
464          * corresponding voltage values.
465          */
466         *val = sc27xx_fgu_adc_to_voltage(data, vol);
467
468         return 0;
469 }
470
471 static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
472 {
473         int ret, cur;
474
475         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
476         if (ret)
477                 return ret;
478
479         /*
480          * It is ADC values reading from registers which need to convert to
481          * corresponding current values.
482          */
483         *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
484
485         return 0;
486 }
487
488 static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
489 {
490         int vol, cur, ret, temp, resistance;
491
492         ret = sc27xx_fgu_get_vbat_vol(data, &vol);
493         if (ret)
494                 return ret;
495
496         ret = sc27xx_fgu_get_current(data, &cur);
497         if (ret)
498                 return ret;
499
500         resistance = data->internal_resist;
501         if (data->resist_table_len > 0) {
502                 ret = sc27xx_fgu_get_temp(data, &temp);
503                 if (ret)
504                         return ret;
505
506                 resistance = power_supply_temp2resist_simple(data->resist_table,
507                                                 data->resist_table_len, temp);
508                 resistance = data->internal_resist * resistance / 100;
509         }
510
511         /* Return the battery OCV in micro volts. */
512         *val = vol * 1000 - cur * resistance;
513
514         return 0;
515 }
516
517 static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
518 {
519         int ret, vol;
520
521         ret = iio_read_channel_processed(data->charge_chan, &vol);
522         if (ret < 0)
523                 return ret;
524
525         *val = vol * 1000;
526         return 0;
527 }
528
529 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
530 {
531         return iio_read_channel_processed(data->channel, temp);
532 }
533
534 static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
535 {
536         int ret, vol;
537
538         ret = sc27xx_fgu_get_vbat_vol(data, &vol);
539         if (ret)
540                 return ret;
541
542         if (vol > data->max_volt)
543                 *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
544         else
545                 *health = POWER_SUPPLY_HEALTH_GOOD;
546
547         return 0;
548 }
549
550 static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
551 {
552         union power_supply_propval val;
553         struct power_supply *psy;
554         int i, ret = -EINVAL;
555
556         for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
557                 psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
558                 if (!psy)
559                         continue;
560
561                 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
562                                                 &val);
563                 power_supply_put(psy);
564                 if (ret)
565                         return ret;
566
567                 *status = val.intval;
568         }
569
570         return ret;
571 }
572
573 static int sc27xx_fgu_get_property(struct power_supply *psy,
574                                    enum power_supply_property psp,
575                                    union power_supply_propval *val)
576 {
577         struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
578         int ret = 0;
579         int value;
580
581         mutex_lock(&data->lock);
582
583         switch (psp) {
584         case POWER_SUPPLY_PROP_STATUS:
585                 ret = sc27xx_fgu_get_status(data, &value);
586                 if (ret)
587                         goto error;
588
589                 val->intval = value;
590                 break;
591
592         case POWER_SUPPLY_PROP_HEALTH:
593                 ret = sc27xx_fgu_get_health(data, &value);
594                 if (ret)
595                         goto error;
596
597                 val->intval = value;
598                 break;
599
600         case POWER_SUPPLY_PROP_PRESENT:
601                 val->intval = data->bat_present;
602                 break;
603
604         case POWER_SUPPLY_PROP_TEMP:
605                 ret = sc27xx_fgu_get_temp(data, &value);
606                 if (ret)
607                         goto error;
608
609                 val->intval = value;
610                 break;
611
612         case POWER_SUPPLY_PROP_TECHNOLOGY:
613                 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
614                 break;
615
616         case POWER_SUPPLY_PROP_CAPACITY:
617                 ret = sc27xx_fgu_get_capacity(data, &value);
618                 if (ret)
619                         goto error;
620
621                 val->intval = value;
622                 break;
623
624         case POWER_SUPPLY_PROP_VOLTAGE_AVG:
625                 ret = sc27xx_fgu_get_vbat_vol(data, &value);
626                 if (ret)
627                         goto error;
628
629                 val->intval = value * 1000;
630                 break;
631
632         case POWER_SUPPLY_PROP_VOLTAGE_OCV:
633                 ret = sc27xx_fgu_get_vbat_ocv(data, &value);
634                 if (ret)
635                         goto error;
636
637                 val->intval = value;
638                 break;
639
640         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
641                 ret = sc27xx_fgu_get_charge_vol(data, &value);
642                 if (ret)
643                         goto error;
644
645                 val->intval = value;
646                 break;
647
648         case POWER_SUPPLY_PROP_CURRENT_AVG:
649                 ret = sc27xx_fgu_get_current(data, &value);
650                 if (ret)
651                         goto error;
652
653                 val->intval = value * 1000;
654                 break;
655
656         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
657                 val->intval = data->total_cap * 1000;
658                 break;
659
660         case POWER_SUPPLY_PROP_CHARGE_NOW:
661                 ret = sc27xx_fgu_get_clbcnt(data, &value);
662                 if (ret)
663                         goto error;
664
665                 value = DIV_ROUND_CLOSEST(value * 10,
666                                           36 * SC27XX_FGU_SAMPLE_HZ);
667                 val->intval = sc27xx_fgu_adc_to_current(data, value);
668
669                 break;
670
671         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
672                 ret = sc27xx_fgu_get_vol_now(data, &value);
673                 if (ret)
674                         goto error;
675
676                 val->intval = value * 1000;
677                 break;
678
679         case POWER_SUPPLY_PROP_CURRENT_NOW:
680                 ret = sc27xx_fgu_get_cur_now(data, &value);
681                 if (ret)
682                         goto error;
683
684                 val->intval = value * 1000;
685                 break;
686
687         case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
688                 val->intval = data->boot_volt;
689                 break;
690
691         default:
692                 ret = -EINVAL;
693                 break;
694         }
695
696 error:
697         mutex_unlock(&data->lock);
698         return ret;
699 }
700
701 static int sc27xx_fgu_set_property(struct power_supply *psy,
702                                    enum power_supply_property psp,
703                                    const union power_supply_propval *val)
704 {
705         struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
706         int ret;
707
708         mutex_lock(&data->lock);
709
710         switch (psp) {
711         case POWER_SUPPLY_PROP_CAPACITY:
712                 ret = sc27xx_fgu_save_last_cap(data, val->intval);
713                 if (ret < 0)
714                         dev_err(data->dev, "failed to save battery capacity\n");
715                 break;
716
717         case POWER_SUPPLY_PROP_CALIBRATE:
718                 sc27xx_fgu_adjust_cap(data, val->intval);
719                 ret = 0;
720                 break;
721
722         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
723                 data->total_cap = val->intval / 1000;
724                 ret = 0;
725                 break;
726
727         default:
728                 ret = -EINVAL;
729         }
730
731         mutex_unlock(&data->lock);
732
733         return ret;
734 }
735
736 static void sc27xx_fgu_external_power_changed(struct power_supply *psy)
737 {
738         struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
739
740         power_supply_changed(data->battery);
741 }
742
743 static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
744                                             enum power_supply_property psp)
745 {
746         return psp == POWER_SUPPLY_PROP_CAPACITY ||
747                 psp == POWER_SUPPLY_PROP_CALIBRATE ||
748                 psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN;
749 }
750
751 static enum power_supply_property sc27xx_fgu_props[] = {
752         POWER_SUPPLY_PROP_STATUS,
753         POWER_SUPPLY_PROP_HEALTH,
754         POWER_SUPPLY_PROP_PRESENT,
755         POWER_SUPPLY_PROP_TEMP,
756         POWER_SUPPLY_PROP_TECHNOLOGY,
757         POWER_SUPPLY_PROP_CAPACITY,
758         POWER_SUPPLY_PROP_VOLTAGE_NOW,
759         POWER_SUPPLY_PROP_VOLTAGE_OCV,
760         POWER_SUPPLY_PROP_VOLTAGE_AVG,
761         POWER_SUPPLY_PROP_VOLTAGE_BOOT,
762         POWER_SUPPLY_PROP_CURRENT_NOW,
763         POWER_SUPPLY_PROP_CURRENT_AVG,
764         POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
765         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
766         POWER_SUPPLY_PROP_CALIBRATE,
767         POWER_SUPPLY_PROP_CHARGE_NOW
768 };
769
770 static const struct power_supply_desc sc27xx_fgu_desc = {
771         .name                   = "sc27xx-fgu",
772         .type                   = POWER_SUPPLY_TYPE_BATTERY,
773         .properties             = sc27xx_fgu_props,
774         .num_properties         = ARRAY_SIZE(sc27xx_fgu_props),
775         .get_property           = sc27xx_fgu_get_property,
776         .set_property           = sc27xx_fgu_set_property,
777         .external_power_changed = sc27xx_fgu_external_power_changed,
778         .property_is_writeable  = sc27xx_fgu_property_is_writeable,
779         .no_thermal             = true,
780 };
781
782 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
783 {
784         int ret;
785
786         data->init_cap = cap;
787         ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
788         if (ret)
789                 dev_err(data->dev, "failed to get init coulomb counter\n");
790 }
791
792 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
793                                             int cap, bool int_mode)
794 {
795         int ret, ocv, chg_sts, adc;
796
797         ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
798         if (ret) {
799                 dev_err(data->dev, "get battery ocv error.\n");
800                 return;
801         }
802
803         ret = sc27xx_fgu_get_status(data, &chg_sts);
804         if (ret) {
805                 dev_err(data->dev, "get charger status error.\n");
806                 return;
807         }
808
809         /*
810          * If we are in charging mode, then we do not need to calibrate the
811          * lower capacity.
812          */
813         if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
814                 return;
815
816         if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
817                 /*
818                  * If current OCV value is larger than the max OCV value in
819                  * OCV table, or the current capacity is larger than 100,
820                  * we should force the inititial capacity to 100.
821                  */
822                 sc27xx_fgu_adjust_cap(data, 100);
823         } else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
824                 /*
825                  * If current OCV value is leass than the minimum OCV value in
826                  * OCV table, we should force the inititial capacity to 0.
827                  */
828                 sc27xx_fgu_adjust_cap(data, 0);
829         } else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
830                    (ocv > data->min_volt && cap <= data->alarm_cap)) {
831                 /*
832                  * If current OCV value is not matchable with current capacity,
833                  * we should re-calculate current capacity by looking up the
834                  * OCV table.
835                  */
836                 int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
837                                                           data->table_len, ocv);
838
839                 sc27xx_fgu_adjust_cap(data, cur_cap);
840         } else if (ocv <= data->min_volt) {
841                 /*
842                  * If current OCV value is less than the low alarm voltage, but
843                  * current capacity is larger than the alarm capacity, we should
844                  * adjust the inititial capacity to alarm capacity.
845                  */
846                 if (cap > data->alarm_cap) {
847                         sc27xx_fgu_adjust_cap(data, data->alarm_cap);
848                 } else {
849                         int cur_cap;
850
851                         /*
852                          * If current capacity is equal with 0 or less than 0
853                          * (some error occurs), we should adjust inititial
854                          * capacity to the capacity corresponding to current OCV
855                          * value.
856                          */
857                         cur_cap = power_supply_ocv2cap_simple(data->cap_table,
858                                                               data->table_len,
859                                                               ocv);
860                         sc27xx_fgu_adjust_cap(data, cur_cap);
861                 }
862
863                 if (!int_mode)
864                         return;
865
866                 /*
867                  * After adjusting the battery capacity, we should set the
868                  * lowest alarm voltage instead.
869                  */
870                 data->min_volt = data->cap_table[data->table_len - 1].ocv;
871                 data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
872                                                               data->table_len,
873                                                               data->min_volt);
874
875                 adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
876                 regmap_update_bits(data->regmap,
877                                    data->base + SC27XX_FGU_LOW_OVERLOAD,
878                                    SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
879         }
880 }
881
882 static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
883 {
884         struct sc27xx_fgu_data *data = dev_id;
885         int ret, cap;
886         u32 status;
887
888         mutex_lock(&data->lock);
889
890         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
891                           &status);
892         if (ret)
893                 goto out;
894
895         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
896                                  status, status);
897         if (ret)
898                 goto out;
899
900         /*
901          * When low overload voltage interrupt happens, we should calibrate the
902          * battery capacity in lower voltage stage.
903          */
904         if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
905                 goto out;
906
907         ret = sc27xx_fgu_get_capacity(data, &cap);
908         if (ret)
909                 goto out;
910
911         sc27xx_fgu_capacity_calibration(data, cap, true);
912
913 out:
914         mutex_unlock(&data->lock);
915
916         power_supply_changed(data->battery);
917         return IRQ_HANDLED;
918 }
919
920 static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
921 {
922         struct sc27xx_fgu_data *data = dev_id;
923         int state;
924
925         mutex_lock(&data->lock);
926
927         state = gpiod_get_value_cansleep(data->gpiod);
928         if (state < 0) {
929                 dev_err(data->dev, "failed to get gpio state\n");
930                 mutex_unlock(&data->lock);
931                 return IRQ_RETVAL(state);
932         }
933
934         data->bat_present = !!state;
935
936         mutex_unlock(&data->lock);
937
938         power_supply_changed(data->battery);
939         return IRQ_HANDLED;
940 }
941
942 static void sc27xx_fgu_disable(void *_data)
943 {
944         struct sc27xx_fgu_data *data = _data;
945
946         regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
947         regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
948 }
949
950 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
951 {
952         /*
953          * Get current capacity (mAh) = battery total capacity (mAh) *
954          * current capacity percent (capacity / 100).
955          */
956         int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
957
958         /*
959          * Convert current capacity (mAh) to coulomb counter according to the
960          * formula: 1 mAh =3.6 coulomb.
961          */
962         return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
963 }
964
965 static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
966 {
967         struct nvmem_cell *cell;
968         int calib_data, cal_4200mv;
969         void *buf;
970         size_t len;
971
972         cell = nvmem_cell_get(data->dev, "fgu_calib");
973         if (IS_ERR(cell))
974                 return PTR_ERR(cell);
975
976         buf = nvmem_cell_read(cell, &len);
977         nvmem_cell_put(cell);
978
979         if (IS_ERR(buf))
980                 return PTR_ERR(buf);
981
982         memcpy(&calib_data, buf, min(len, sizeof(u32)));
983
984         /*
985          * Get the ADC value corresponding to 4200 mV from eFuse controller
986          * according to below formula. Then convert to ADC values corresponding
987          * to 1000 mV and 1000 mA.
988          */
989         cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
990         data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
991         data->cur_1000ma_adc =
992                 DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
993                                   SC27XX_FGU_IDEAL_RESISTANCE);
994
995         kfree(buf);
996         return 0;
997 }
998
999 static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
1000 {
1001         struct power_supply_battery_info info = { };
1002         struct power_supply_battery_ocv_table *table;
1003         int ret, delta_clbcnt, alarm_adc;
1004
1005         ret = power_supply_get_battery_info(data->battery, &info);
1006         if (ret) {
1007                 dev_err(data->dev, "failed to get battery information\n");
1008                 return ret;
1009         }
1010
1011         data->total_cap = info.charge_full_design_uah / 1000;
1012         data->max_volt = info.constant_charge_voltage_max_uv / 1000;
1013         data->internal_resist = info.factory_internal_resistance_uohm / 1000;
1014         data->min_volt = info.voltage_min_design_uv;
1015
1016         /*
1017          * For SC27XX fuel gauge device, we only use one ocv-capacity
1018          * table in normal temperature 20 Celsius.
1019          */
1020         table = power_supply_find_ocv2cap_table(&info, 20, &data->table_len);
1021         if (!table)
1022                 return -EINVAL;
1023
1024         data->cap_table = devm_kmemdup(data->dev, table,
1025                                        data->table_len * sizeof(*table),
1026                                        GFP_KERNEL);
1027         if (!data->cap_table) {
1028                 power_supply_put_battery_info(data->battery, &info);
1029                 return -ENOMEM;
1030         }
1031
1032         data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
1033                                                       data->table_len,
1034                                                       data->min_volt);
1035         if (!data->alarm_cap)
1036                 data->alarm_cap += 1;
1037
1038         data->resist_table_len = info.resist_table_size;
1039         if (data->resist_table_len > 0) {
1040                 data->resist_table = devm_kmemdup(data->dev, info.resist_table,
1041                                                   data->resist_table_len *
1042                                                   sizeof(struct power_supply_resistance_temp_table),
1043                                                   GFP_KERNEL);
1044                 if (!data->resist_table) {
1045                         power_supply_put_battery_info(data->battery, &info);
1046                         return -ENOMEM;
1047                 }
1048         }
1049
1050         power_supply_put_battery_info(data->battery, &info);
1051
1052         ret = sc27xx_fgu_calibration(data);
1053         if (ret)
1054                 return ret;
1055
1056         /* Enable the FGU module */
1057         ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
1058                                  SC27XX_FGU_EN, SC27XX_FGU_EN);
1059         if (ret) {
1060                 dev_err(data->dev, "failed to enable fgu\n");
1061                 return ret;
1062         }
1063
1064         /* Enable the FGU RTC clock to make it work */
1065         ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
1066                                  SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
1067         if (ret) {
1068                 dev_err(data->dev, "failed to enable fgu RTC clock\n");
1069                 goto disable_fgu;
1070         }
1071
1072         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
1073                                  SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
1074         if (ret) {
1075                 dev_err(data->dev, "failed to clear interrupt status\n");
1076                 goto disable_clk;
1077         }
1078
1079         /*
1080          * Set the voltage low overload threshold, which means when the battery
1081          * voltage is lower than this threshold, the controller will generate
1082          * one interrupt to notify.
1083          */
1084         alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
1085         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
1086                                  SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
1087         if (ret) {
1088                 dev_err(data->dev, "failed to set fgu low overload\n");
1089                 goto disable_clk;
1090         }
1091
1092         /*
1093          * Set the coulomb counter delta threshold, that means when the coulomb
1094          * counter change is multiples of the delta threshold, the controller
1095          * will generate one interrupt to notify the users to update the battery
1096          * capacity. Now we set the delta threshold as a counter value of 1%
1097          * capacity.
1098          */
1099         delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);
1100
1101         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
1102                                  SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
1103         if (ret) {
1104                 dev_err(data->dev, "failed to set low delta coulomb counter\n");
1105                 goto disable_clk;
1106         }
1107
1108         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
1109                                  SC27XX_FGU_CLBCNT_MASK,
1110                                  delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
1111         if (ret) {
1112                 dev_err(data->dev, "failed to set high delta coulomb counter\n");
1113                 goto disable_clk;
1114         }
1115
1116         /*
1117          * Get the boot battery capacity when system powers on, which is used to
1118          * initialize the coulomb counter. After that, we can read the coulomb
1119          * counter to measure the battery capacity.
1120          */
1121         ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
1122         if (ret) {
1123                 dev_err(data->dev, "failed to get boot capacity\n");
1124                 goto disable_clk;
1125         }
1126
1127         /*
1128          * Convert battery capacity to the corresponding initial coulomb counter
1129          * and set into coulomb counter registers.
1130          */
1131         data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
1132         ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
1133         if (ret) {
1134                 dev_err(data->dev, "failed to initialize coulomb counter\n");
1135                 goto disable_clk;
1136         }
1137
1138         return 0;
1139
1140 disable_clk:
1141         regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
1142 disable_fgu:
1143         regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
1144
1145         return ret;
1146 }
1147
1148 static int sc27xx_fgu_probe(struct platform_device *pdev)
1149 {
1150         struct device *dev = &pdev->dev;
1151         struct device_node *np = dev->of_node;
1152         struct power_supply_config fgu_cfg = { };
1153         struct sc27xx_fgu_data *data;
1154         int ret, irq;
1155
1156         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1157         if (!data)
1158                 return -ENOMEM;
1159
1160         data->regmap = dev_get_regmap(dev->parent, NULL);
1161         if (!data->regmap) {
1162                 dev_err(dev, "failed to get regmap\n");
1163                 return -ENODEV;
1164         }
1165
1166         ret = device_property_read_u32(dev, "reg", &data->base);
1167         if (ret) {
1168                 dev_err(dev, "failed to get fgu address\n");
1169                 return ret;
1170         }
1171
1172         ret = device_property_read_u32(&pdev->dev,
1173                                        "sprd,calib-resistance-micro-ohms",
1174                                        &data->calib_resist);
1175         if (ret) {
1176                 dev_err(&pdev->dev,
1177                         "failed to get fgu calibration resistance\n");
1178                 return ret;
1179         }
1180
1181         data->channel = devm_iio_channel_get(dev, "bat-temp");
1182         if (IS_ERR(data->channel)) {
1183                 dev_err(dev, "failed to get IIO channel\n");
1184                 return PTR_ERR(data->channel);
1185         }
1186
1187         data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
1188         if (IS_ERR(data->charge_chan)) {
1189                 dev_err(dev, "failed to get charge IIO channel\n");
1190                 return PTR_ERR(data->charge_chan);
1191         }
1192
1193         data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
1194         if (IS_ERR(data->gpiod)) {
1195                 dev_err(dev, "failed to get battery detection GPIO\n");
1196                 return PTR_ERR(data->gpiod);
1197         }
1198
1199         ret = gpiod_get_value_cansleep(data->gpiod);
1200         if (ret < 0) {
1201                 dev_err(dev, "failed to get gpio state\n");
1202                 return ret;
1203         }
1204
1205         data->bat_present = !!ret;
1206         mutex_init(&data->lock);
1207         data->dev = dev;
1208         platform_set_drvdata(pdev, data);
1209
1210         fgu_cfg.drv_data = data;
1211         fgu_cfg.of_node = np;
1212         data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
1213                                                    &fgu_cfg);
1214         if (IS_ERR(data->battery)) {
1215                 dev_err(dev, "failed to register power supply\n");
1216                 return PTR_ERR(data->battery);
1217         }
1218
1219         ret = sc27xx_fgu_hw_init(data);
1220         if (ret) {
1221                 dev_err(dev, "failed to initialize fgu hardware\n");
1222                 return ret;
1223         }
1224
1225         ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
1226         if (ret) {
1227                 dev_err(dev, "failed to add fgu disable action\n");
1228                 return ret;
1229         }
1230
1231         irq = platform_get_irq(pdev, 0);
1232         if (irq < 0) {
1233                 dev_err(dev, "no irq resource specified\n");
1234                 return irq;
1235         }
1236
1237         ret = devm_request_threaded_irq(data->dev, irq, NULL,
1238                                         sc27xx_fgu_interrupt,
1239                                         IRQF_NO_SUSPEND | IRQF_ONESHOT,
1240                                         pdev->name, data);
1241         if (ret) {
1242                 dev_err(data->dev, "failed to request fgu IRQ\n");
1243                 return ret;
1244         }
1245
1246         irq = gpiod_to_irq(data->gpiod);
1247         if (irq < 0) {
1248                 dev_err(dev, "failed to translate GPIO to IRQ\n");
1249                 return irq;
1250         }
1251
1252         ret = devm_request_threaded_irq(dev, irq, NULL,
1253                                         sc27xx_fgu_bat_detection,
1254                                         IRQF_ONESHOT | IRQF_TRIGGER_RISING |
1255                                         IRQF_TRIGGER_FALLING,
1256                                         pdev->name, data);
1257         if (ret) {
1258                 dev_err(dev, "failed to request IRQ\n");
1259                 return ret;
1260         }
1261
1262         return 0;
1263 }
1264
1265 #ifdef CONFIG_PM_SLEEP
1266 static int sc27xx_fgu_resume(struct device *dev)
1267 {
1268         struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1269         int ret;
1270
1271         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1272                                  SC27XX_FGU_LOW_OVERLOAD_INT |
1273                                  SC27XX_FGU_CLBCNT_DELTA_INT, 0);
1274         if (ret) {
1275                 dev_err(data->dev, "failed to disable fgu interrupts\n");
1276                 return ret;
1277         }
1278
1279         return 0;
1280 }
1281
1282 static int sc27xx_fgu_suspend(struct device *dev)
1283 {
1284         struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1285         int ret, status, ocv;
1286
1287         ret = sc27xx_fgu_get_status(data, &status);
1288         if (ret)
1289                 return ret;
1290
1291         /*
1292          * If we are charging, then no need to enable the FGU interrupts to
1293          * adjust the battery capacity.
1294          */
1295         if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
1296             status != POWER_SUPPLY_STATUS_DISCHARGING)
1297                 return 0;
1298
1299         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1300                                  SC27XX_FGU_LOW_OVERLOAD_INT,
1301                                  SC27XX_FGU_LOW_OVERLOAD_INT);
1302         if (ret) {
1303                 dev_err(data->dev, "failed to enable low voltage interrupt\n");
1304                 return ret;
1305         }
1306
1307         ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
1308         if (ret)
1309                 goto disable_int;
1310
1311         /*
1312          * If current OCV is less than the minimum voltage, we should enable the
1313          * coulomb counter threshold interrupt to notify events to adjust the
1314          * battery capacity.
1315          */
1316         if (ocv < data->min_volt) {
1317                 ret = regmap_update_bits(data->regmap,
1318                                          data->base + SC27XX_FGU_INT_EN,
1319                                          SC27XX_FGU_CLBCNT_DELTA_INT,
1320                                          SC27XX_FGU_CLBCNT_DELTA_INT);
1321                 if (ret) {
1322                         dev_err(data->dev,
1323                                 "failed to enable coulomb threshold int\n");
1324                         goto disable_int;
1325                 }
1326         }
1327
1328         return 0;
1329
1330 disable_int:
1331         regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1332                            SC27XX_FGU_LOW_OVERLOAD_INT, 0);
1333         return ret;
1334 }
1335 #endif
1336
1337 static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
1338         SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
1339 };
1340
1341 static const struct of_device_id sc27xx_fgu_of_match[] = {
1342         { .compatible = "sprd,sc2731-fgu", },
1343         { }
1344 };
1345
1346 static struct platform_driver sc27xx_fgu_driver = {
1347         .probe = sc27xx_fgu_probe,
1348         .driver = {
1349                 .name = "sc27xx-fgu",
1350                 .of_match_table = sc27xx_fgu_of_match,
1351                 .pm = &sc27xx_fgu_pm_ops,
1352         }
1353 };
1354
1355 module_platform_driver(sc27xx_fgu_driver);
1356
1357 MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
1358 MODULE_LICENSE("GPL v2");