Merge tag 'timers-core-2024-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / power / supply / power_supply_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include <linux/fixp-arith.h>
25 #include "power_supply.h"
26 #include "samsung-sdi-battery.h"
27
28 static const struct class power_supply_class = {
29         .name = "power_supply",
30         .dev_uevent = power_supply_uevent,
31 };
32
33 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
34
35 static const struct device_type power_supply_dev_type = {
36         .name = "power_supply",
37         .groups = power_supply_attr_groups,
38 };
39
40 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME     msecs_to_jiffies(10)
41
42 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
43                                          struct power_supply *supply)
44 {
45         int i;
46
47         if (!supply->supplied_from && !supplier->supplied_to)
48                 return false;
49
50         /* Support both supplied_to and supplied_from modes */
51         if (supply->supplied_from) {
52                 if (!supplier->desc->name)
53                         return false;
54                 for (i = 0; i < supply->num_supplies; i++)
55                         if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
56                                 return true;
57         } else {
58                 if (!supply->desc->name)
59                         return false;
60                 for (i = 0; i < supplier->num_supplicants; i++)
61                         if (!strcmp(supplier->supplied_to[i], supply->desc->name))
62                                 return true;
63         }
64
65         return false;
66 }
67
68 static int __power_supply_changed_work(struct device *dev, void *data)
69 {
70         struct power_supply *psy = data;
71         struct power_supply *pst = dev_get_drvdata(dev);
72
73         if (__power_supply_is_supplied_by(psy, pst)) {
74                 if (pst->desc->external_power_changed)
75                         pst->desc->external_power_changed(pst);
76         }
77
78         return 0;
79 }
80
81 static void power_supply_changed_work(struct work_struct *work)
82 {
83         unsigned long flags;
84         struct power_supply *psy = container_of(work, struct power_supply,
85                                                 changed_work);
86
87         dev_dbg(&psy->dev, "%s\n", __func__);
88
89         spin_lock_irqsave(&psy->changed_lock, flags);
90         /*
91          * Check 'changed' here to avoid issues due to race between
92          * power_supply_changed() and this routine. In worst case
93          * power_supply_changed() can be called again just before we take above
94          * lock. During the first call of this routine we will mark 'changed' as
95          * false and it will stay false for the next call as well.
96          */
97         if (likely(psy->changed)) {
98                 psy->changed = false;
99                 spin_unlock_irqrestore(&psy->changed_lock, flags);
100                 power_supply_for_each_device(psy, __power_supply_changed_work);
101                 power_supply_update_leds(psy);
102                 blocking_notifier_call_chain(&power_supply_notifier,
103                                 PSY_EVENT_PROP_CHANGED, psy);
104                 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
105                 spin_lock_irqsave(&psy->changed_lock, flags);
106         }
107
108         /*
109          * Hold the wakeup_source until all events are processed.
110          * power_supply_changed() might have called again and have set 'changed'
111          * to true.
112          */
113         if (likely(!psy->changed))
114                 pm_relax(&psy->dev);
115         spin_unlock_irqrestore(&psy->changed_lock, flags);
116 }
117
118 int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data))
119 {
120         return class_for_each_device(&power_supply_class, NULL, data, fn);
121 }
122 EXPORT_SYMBOL_GPL(power_supply_for_each_device);
123
124 void power_supply_changed(struct power_supply *psy)
125 {
126         unsigned long flags;
127
128         dev_dbg(&psy->dev, "%s\n", __func__);
129
130         spin_lock_irqsave(&psy->changed_lock, flags);
131         psy->changed = true;
132         pm_stay_awake(&psy->dev);
133         spin_unlock_irqrestore(&psy->changed_lock, flags);
134         schedule_work(&psy->changed_work);
135 }
136 EXPORT_SYMBOL_GPL(power_supply_changed);
137
138 /*
139  * Notify that power supply was registered after parent finished the probing.
140  *
141  * Often power supply is registered from driver's probe function. However
142  * calling power_supply_changed() directly from power_supply_register()
143  * would lead to execution of get_property() function provided by the driver
144  * too early - before the probe ends.
145  *
146  * Avoid that by waiting on parent's mutex.
147  */
148 static void power_supply_deferred_register_work(struct work_struct *work)
149 {
150         struct power_supply *psy = container_of(work, struct power_supply,
151                                                 deferred_register_work.work);
152
153         if (psy->dev.parent) {
154                 while (!mutex_trylock(&psy->dev.parent->mutex)) {
155                         if (psy->removing)
156                                 return;
157                         msleep(10);
158                 }
159         }
160
161         power_supply_changed(psy);
162
163         if (psy->dev.parent)
164                 mutex_unlock(&psy->dev.parent->mutex);
165 }
166
167 #ifdef CONFIG_OF
168 static int __power_supply_populate_supplied_from(struct device *dev,
169                                                  void *data)
170 {
171         struct power_supply *psy = data;
172         struct power_supply *epsy = dev_get_drvdata(dev);
173         struct device_node *np;
174         int i = 0;
175
176         do {
177                 np = of_parse_phandle(psy->of_node, "power-supplies", i++);
178                 if (!np)
179                         break;
180
181                 if (np == epsy->of_node) {
182                         dev_dbg(&psy->dev, "%s: Found supply : %s\n",
183                                 psy->desc->name, epsy->desc->name);
184                         psy->supplied_from[i-1] = (char *)epsy->desc->name;
185                         psy->num_supplies++;
186                         of_node_put(np);
187                         break;
188                 }
189                 of_node_put(np);
190         } while (np);
191
192         return 0;
193 }
194
195 static int power_supply_populate_supplied_from(struct power_supply *psy)
196 {
197         int error;
198
199         error = power_supply_for_each_device(psy, __power_supply_populate_supplied_from);
200
201         dev_dbg(&psy->dev, "%s %d\n", __func__, error);
202
203         return error;
204 }
205
206 static int  __power_supply_find_supply_from_node(struct device *dev,
207                                                  void *data)
208 {
209         struct device_node *np = data;
210         struct power_supply *epsy = dev_get_drvdata(dev);
211
212         /* returning non-zero breaks out of power_supply_for_each_device loop */
213         if (epsy->of_node == np)
214                 return 1;
215
216         return 0;
217 }
218
219 static int power_supply_find_supply_from_node(struct device_node *supply_node)
220 {
221         int error;
222
223         /*
224          * power_supply_for_each_device() either returns its own errors or values
225          * returned by __power_supply_find_supply_from_node().
226          *
227          * __power_supply_find_supply_from_node() will return 0 (no match)
228          * or 1 (match).
229          *
230          * We return 0 if power_supply_for_each_device() returned 1, -EPROBE_DEFER if
231          * it returned 0, or error as returned by it.
232          */
233         error = power_supply_for_each_device(supply_node, __power_supply_find_supply_from_node);
234
235         return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
236 }
237
238 static int power_supply_check_supplies(struct power_supply *psy)
239 {
240         struct device_node *np;
241         int cnt = 0;
242
243         /* If there is already a list honor it */
244         if (psy->supplied_from && psy->num_supplies > 0)
245                 return 0;
246
247         /* No device node found, nothing to do */
248         if (!psy->of_node)
249                 return 0;
250
251         do {
252                 int ret;
253
254                 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
255                 if (!np)
256                         break;
257
258                 ret = power_supply_find_supply_from_node(np);
259                 of_node_put(np);
260
261                 if (ret) {
262                         dev_dbg(&psy->dev, "Failed to find supply!\n");
263                         return ret;
264                 }
265         } while (np);
266
267         /* Missing valid "power-supplies" entries */
268         if (cnt == 1)
269                 return 0;
270
271         /* All supplies found, allocate char ** array for filling */
272         psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
273                                           GFP_KERNEL);
274         if (!psy->supplied_from)
275                 return -ENOMEM;
276
277         *psy->supplied_from = devm_kcalloc(&psy->dev,
278                                            cnt - 1, sizeof(**psy->supplied_from),
279                                            GFP_KERNEL);
280         if (!*psy->supplied_from)
281                 return -ENOMEM;
282
283         return power_supply_populate_supplied_from(psy);
284 }
285 #else
286 static int power_supply_check_supplies(struct power_supply *psy)
287 {
288         int nval, ret;
289
290         if (!psy->dev.parent)
291                 return 0;
292
293         nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
294         if (nval <= 0)
295                 return 0;
296
297         psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
298                                                 sizeof(char *), GFP_KERNEL);
299         if (!psy->supplied_from)
300                 return -ENOMEM;
301
302         ret = device_property_read_string_array(psy->dev.parent,
303                 "supplied-from", (const char **)psy->supplied_from, nval);
304         if (ret < 0)
305                 return ret;
306
307         psy->num_supplies = nval;
308
309         return 0;
310 }
311 #endif
312
313 struct psy_am_i_supplied_data {
314         struct power_supply *psy;
315         unsigned int count;
316 };
317
318 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
319 {
320         union power_supply_propval ret = {0,};
321         struct power_supply *epsy = dev_get_drvdata(dev);
322         struct psy_am_i_supplied_data *data = _data;
323
324         if (__power_supply_is_supplied_by(epsy, data->psy)) {
325                 data->count++;
326                 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
327                                         &ret))
328                         return ret.intval;
329         }
330
331         return 0;
332 }
333
334 int power_supply_am_i_supplied(struct power_supply *psy)
335 {
336         struct psy_am_i_supplied_data data = { psy, 0 };
337         int error;
338
339         error = power_supply_for_each_device(&data, __power_supply_am_i_supplied);
340
341         dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
342
343         if (data.count == 0)
344                 return -ENODEV;
345
346         return error;
347 }
348 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
349
350 static int __power_supply_is_system_supplied(struct device *dev, void *data)
351 {
352         union power_supply_propval ret = {0,};
353         struct power_supply *psy = dev_get_drvdata(dev);
354         unsigned int *count = data;
355
356         if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
357                 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
358                         return 0;
359
360         (*count)++;
361         if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
362                 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
363                                         &ret))
364                         return ret.intval;
365
366         return 0;
367 }
368
369 int power_supply_is_system_supplied(void)
370 {
371         int error;
372         unsigned int count = 0;
373
374         error = power_supply_for_each_device(&count, __power_supply_is_system_supplied);
375
376         /*
377          * If no system scope power class device was found at all, most probably we
378          * are running on a desktop system, so assume we are on mains power.
379          */
380         if (count == 0)
381                 return 1;
382
383         return error;
384 }
385 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
386
387 struct psy_get_supplier_prop_data {
388         struct power_supply *psy;
389         enum power_supply_property psp;
390         union power_supply_propval *val;
391 };
392
393 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
394 {
395         struct power_supply *epsy = dev_get_drvdata(dev);
396         struct psy_get_supplier_prop_data *data = _data;
397
398         if (__power_supply_is_supplied_by(epsy, data->psy))
399                 if (!power_supply_get_property(epsy, data->psp, data->val))
400                         return 1; /* Success */
401
402         return 0; /* Continue iterating */
403 }
404
405 int power_supply_get_property_from_supplier(struct power_supply *psy,
406                                             enum power_supply_property psp,
407                                             union power_supply_propval *val)
408 {
409         struct psy_get_supplier_prop_data data = {
410                 .psy = psy,
411                 .psp = psp,
412                 .val = val,
413         };
414         int ret;
415
416         /*
417          * This function is not intended for use with a supply with multiple
418          * suppliers, we simply pick the first supply to report the psp.
419          */
420         ret = power_supply_for_each_device(&data, __power_supply_get_supplier_property);
421         if (ret < 0)
422                 return ret;
423         if (ret == 0)
424                 return -ENODEV;
425
426         return 0;
427 }
428 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
429
430 int power_supply_set_battery_charged(struct power_supply *psy)
431 {
432         if (atomic_read(&psy->use_cnt) >= 0 &&
433                         psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
434                         psy->desc->set_charged) {
435                 psy->desc->set_charged(psy);
436                 return 0;
437         }
438
439         return -EINVAL;
440 }
441 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
442
443 static int power_supply_match_device_by_name(struct device *dev, const void *data)
444 {
445         const char *name = data;
446         struct power_supply *psy = dev_get_drvdata(dev);
447
448         return strcmp(psy->desc->name, name) == 0;
449 }
450
451 /**
452  * power_supply_get_by_name() - Search for a power supply and returns its ref
453  * @name: Power supply name to fetch
454  *
455  * If power supply was found, it increases reference count for the
456  * internal power supply's device. The user should power_supply_put()
457  * after usage.
458  *
459  * Return: On success returns a reference to a power supply with
460  * matching name equals to @name, a NULL otherwise.
461  */
462 struct power_supply *power_supply_get_by_name(const char *name)
463 {
464         struct power_supply *psy = NULL;
465         struct device *dev = class_find_device(&power_supply_class, NULL, name,
466                                                power_supply_match_device_by_name);
467
468         if (dev) {
469                 psy = dev_get_drvdata(dev);
470                 atomic_inc(&psy->use_cnt);
471         }
472
473         return psy;
474 }
475 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
476
477 /**
478  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
479  * @psy: Reference to put
480  *
481  * The reference to power supply should be put before unregistering
482  * the power supply.
483  */
484 void power_supply_put(struct power_supply *psy)
485 {
486         might_sleep();
487
488         atomic_dec(&psy->use_cnt);
489         put_device(&psy->dev);
490 }
491 EXPORT_SYMBOL_GPL(power_supply_put);
492
493 #ifdef CONFIG_OF
494 static int power_supply_match_device_node(struct device *dev, const void *data)
495 {
496         return dev->parent && dev->parent->of_node == data;
497 }
498
499 /**
500  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
501  * @np: Pointer to device node holding phandle property
502  * @property: Name of property holding a power supply name
503  *
504  * If power supply was found, it increases reference count for the
505  * internal power supply's device. The user should power_supply_put()
506  * after usage.
507  *
508  * Return: On success returns a reference to a power supply with
509  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
510  */
511 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
512                                                         const char *property)
513 {
514         struct device_node *power_supply_np;
515         struct power_supply *psy = NULL;
516         struct device *dev;
517
518         power_supply_np = of_parse_phandle(np, property, 0);
519         if (!power_supply_np)
520                 return ERR_PTR(-ENODEV);
521
522         dev = class_find_device(&power_supply_class, NULL, power_supply_np,
523                                 power_supply_match_device_node);
524
525         of_node_put(power_supply_np);
526
527         if (dev) {
528                 psy = dev_get_drvdata(dev);
529                 atomic_inc(&psy->use_cnt);
530         }
531
532         return psy;
533 }
534 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
535
536 static void devm_power_supply_put(struct device *dev, void *res)
537 {
538         struct power_supply **psy = res;
539
540         power_supply_put(*psy);
541 }
542
543 /**
544  * devm_power_supply_get_by_phandle() - Resource managed version of
545  *  power_supply_get_by_phandle()
546  * @dev: Pointer to device holding phandle property
547  * @property: Name of property holding a power supply phandle
548  *
549  * Return: On success returns a reference to a power supply with
550  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
551  */
552 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
553                                                       const char *property)
554 {
555         struct power_supply **ptr, *psy;
556
557         if (!dev->of_node)
558                 return ERR_PTR(-ENODEV);
559
560         ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
561         if (!ptr)
562                 return ERR_PTR(-ENOMEM);
563
564         psy = power_supply_get_by_phandle(dev->of_node, property);
565         if (IS_ERR_OR_NULL(psy)) {
566                 devres_free(ptr);
567         } else {
568                 *ptr = psy;
569                 devres_add(dev, ptr);
570         }
571         return psy;
572 }
573 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
574 #endif /* CONFIG_OF */
575
576 int power_supply_get_battery_info(struct power_supply *psy,
577                                   struct power_supply_battery_info **info_out)
578 {
579         struct power_supply_resistance_temp_table *resist_table;
580         struct power_supply_battery_info *info;
581         struct device_node *battery_np = NULL;
582         struct fwnode_reference_args args;
583         struct fwnode_handle *fwnode = NULL;
584         const char *value;
585         int err, len, index;
586         const __be32 *list;
587         u32 min_max[2];
588
589         if (psy->of_node) {
590                 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
591                 if (!battery_np)
592                         return -ENODEV;
593
594                 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
595         } else if (psy->dev.parent) {
596                 err = fwnode_property_get_reference_args(
597                                         dev_fwnode(psy->dev.parent),
598                                         "monitored-battery", NULL, 0, 0, &args);
599                 if (err)
600                         return err;
601
602                 fwnode = args.fwnode;
603         }
604
605         if (!fwnode)
606                 return -ENOENT;
607
608         err = fwnode_property_read_string(fwnode, "compatible", &value);
609         if (err)
610                 goto out_put_node;
611
612
613         /* Try static batteries first */
614         err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
615         if (!err)
616                 goto out_ret_pointer;
617         else if (err == -ENODEV)
618                 /*
619                  * Device does not have a static battery.
620                  * Proceed to look for a simple battery.
621                  */
622                 err = 0;
623
624         if (strcmp("simple-battery", value)) {
625                 err = -ENODEV;
626                 goto out_put_node;
627         }
628
629         info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
630         if (!info) {
631                 err = -ENOMEM;
632                 goto out_put_node;
633         }
634
635         info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
636         info->energy_full_design_uwh         = -EINVAL;
637         info->charge_full_design_uah         = -EINVAL;
638         info->voltage_min_design_uv          = -EINVAL;
639         info->voltage_max_design_uv          = -EINVAL;
640         info->precharge_current_ua           = -EINVAL;
641         info->charge_term_current_ua         = -EINVAL;
642         info->constant_charge_current_max_ua = -EINVAL;
643         info->constant_charge_voltage_max_uv = -EINVAL;
644         info->tricklecharge_current_ua       = -EINVAL;
645         info->precharge_voltage_max_uv       = -EINVAL;
646         info->charge_restart_voltage_uv      = -EINVAL;
647         info->overvoltage_limit_uv           = -EINVAL;
648         info->maintenance_charge             = NULL;
649         info->alert_low_temp_charge_current_ua = -EINVAL;
650         info->alert_low_temp_charge_voltage_uv = -EINVAL;
651         info->alert_high_temp_charge_current_ua = -EINVAL;
652         info->alert_high_temp_charge_voltage_uv = -EINVAL;
653         info->temp_ambient_alert_min         = INT_MIN;
654         info->temp_ambient_alert_max         = INT_MAX;
655         info->temp_alert_min                 = INT_MIN;
656         info->temp_alert_max                 = INT_MAX;
657         info->temp_min                       = INT_MIN;
658         info->temp_max                       = INT_MAX;
659         info->factory_internal_resistance_uohm  = -EINVAL;
660         info->resist_table                   = NULL;
661         info->bti_resistance_ohm             = -EINVAL;
662         info->bti_resistance_tolerance       = -EINVAL;
663
664         for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
665                 info->ocv_table[index]       = NULL;
666                 info->ocv_temp[index]        = -EINVAL;
667                 info->ocv_table_size[index]  = -EINVAL;
668         }
669
670         /* The property and field names below must correspond to elements
671          * in enum power_supply_property. For reasoning, see
672          * Documentation/power/power_supply_class.rst.
673          */
674
675         if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
676                 if (!strcmp("nickel-cadmium", value))
677                         info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
678                 else if (!strcmp("nickel-metal-hydride", value))
679                         info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
680                 else if (!strcmp("lithium-ion", value))
681                         /* Imprecise lithium-ion type */
682                         info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
683                 else if (!strcmp("lithium-ion-polymer", value))
684                         info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
685                 else if (!strcmp("lithium-ion-iron-phosphate", value))
686                         info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
687                 else if (!strcmp("lithium-ion-manganese-oxide", value))
688                         info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
689                 else
690                         dev_warn(&psy->dev, "%s unknown battery type\n", value);
691         }
692
693         fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
694                              &info->energy_full_design_uwh);
695         fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
696                              &info->charge_full_design_uah);
697         fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
698                              &info->voltage_min_design_uv);
699         fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
700                              &info->voltage_max_design_uv);
701         fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
702                              &info->tricklecharge_current_ua);
703         fwnode_property_read_u32(fwnode, "precharge-current-microamp",
704                              &info->precharge_current_ua);
705         fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
706                              &info->precharge_voltage_max_uv);
707         fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
708                              &info->charge_term_current_ua);
709         fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
710                              &info->charge_restart_voltage_uv);
711         fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
712                              &info->overvoltage_limit_uv);
713         fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
714                              &info->constant_charge_current_max_ua);
715         fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
716                              &info->constant_charge_voltage_max_uv);
717         fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
718                              &info->factory_internal_resistance_uohm);
719
720         if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
721                                             min_max, ARRAY_SIZE(min_max))) {
722                 info->temp_ambient_alert_min = min_max[0];
723                 info->temp_ambient_alert_max = min_max[1];
724         }
725         if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
726                                             min_max, ARRAY_SIZE(min_max))) {
727                 info->temp_alert_min = min_max[0];
728                 info->temp_alert_max = min_max[1];
729         }
730         if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
731                                             min_max, ARRAY_SIZE(min_max))) {
732                 info->temp_min = min_max[0];
733                 info->temp_max = min_max[1];
734         }
735
736         /*
737          * The below code uses raw of-data parsing to parse
738          * /schemas/types.yaml#/definitions/uint32-matrix
739          * data, so for now this is only support with of.
740          */
741         if (!battery_np)
742                 goto out_ret_pointer;
743
744         len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
745         if (len < 0 && len != -EINVAL) {
746                 err = len;
747                 goto out_put_node;
748         } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
749                 dev_err(&psy->dev, "Too many temperature values\n");
750                 err = -EINVAL;
751                 goto out_put_node;
752         } else if (len > 0) {
753                 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
754                                            info->ocv_temp, len);
755         }
756
757         for (index = 0; index < len; index++) {
758                 struct power_supply_battery_ocv_table *table;
759                 char *propname;
760                 int i, tab_len, size;
761
762                 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
763                 if (!propname) {
764                         power_supply_put_battery_info(psy, info);
765                         err = -ENOMEM;
766                         goto out_put_node;
767                 }
768                 list = of_get_property(battery_np, propname, &size);
769                 if (!list || !size) {
770                         dev_err(&psy->dev, "failed to get %s\n", propname);
771                         kfree(propname);
772                         power_supply_put_battery_info(psy, info);
773                         err = -EINVAL;
774                         goto out_put_node;
775                 }
776
777                 kfree(propname);
778                 tab_len = size / (2 * sizeof(__be32));
779                 info->ocv_table_size[index] = tab_len;
780
781                 table = info->ocv_table[index] =
782                         devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
783                 if (!info->ocv_table[index]) {
784                         power_supply_put_battery_info(psy, info);
785                         err = -ENOMEM;
786                         goto out_put_node;
787                 }
788
789                 for (i = 0; i < tab_len; i++) {
790                         table[i].ocv = be32_to_cpu(*list);
791                         list++;
792                         table[i].capacity = be32_to_cpu(*list);
793                         list++;
794                 }
795         }
796
797         list = of_get_property(battery_np, "resistance-temp-table", &len);
798         if (!list || !len)
799                 goto out_ret_pointer;
800
801         info->resist_table_size = len / (2 * sizeof(__be32));
802         resist_table = info->resist_table = devm_kcalloc(&psy->dev,
803                                                          info->resist_table_size,
804                                                          sizeof(*resist_table),
805                                                          GFP_KERNEL);
806         if (!info->resist_table) {
807                 power_supply_put_battery_info(psy, info);
808                 err = -ENOMEM;
809                 goto out_put_node;
810         }
811
812         for (index = 0; index < info->resist_table_size; index++) {
813                 resist_table[index].temp = be32_to_cpu(*list++);
814                 resist_table[index].resistance = be32_to_cpu(*list++);
815         }
816
817 out_ret_pointer:
818         /* Finally return the whole thing */
819         *info_out = info;
820
821 out_put_node:
822         fwnode_handle_put(fwnode);
823         of_node_put(battery_np);
824         return err;
825 }
826 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
827
828 void power_supply_put_battery_info(struct power_supply *psy,
829                                    struct power_supply_battery_info *info)
830 {
831         int i;
832
833         for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
834                 if (info->ocv_table[i])
835                         devm_kfree(&psy->dev, info->ocv_table[i]);
836         }
837
838         if (info->resist_table)
839                 devm_kfree(&psy->dev, info->resist_table);
840
841         devm_kfree(&psy->dev, info);
842 }
843 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
844
845 const enum power_supply_property power_supply_battery_info_properties[] = {
846         POWER_SUPPLY_PROP_TECHNOLOGY,
847         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
848         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
849         POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
850         POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
851         POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
852         POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
853         POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
854         POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
855         POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
856         POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
857         POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
858         POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
859         POWER_SUPPLY_PROP_TEMP_MIN,
860         POWER_SUPPLY_PROP_TEMP_MAX,
861 };
862 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
863
864 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
865 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
866
867 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
868                                         enum power_supply_property psp)
869 {
870         if (!info)
871                 return false;
872
873         switch (psp) {
874         case POWER_SUPPLY_PROP_TECHNOLOGY:
875                 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
876         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
877                 return info->energy_full_design_uwh >= 0;
878         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
879                 return info->charge_full_design_uah >= 0;
880         case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
881                 return info->voltage_min_design_uv >= 0;
882         case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
883                 return info->voltage_max_design_uv >= 0;
884         case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
885                 return info->precharge_current_ua >= 0;
886         case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
887                 return info->charge_term_current_ua >= 0;
888         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
889                 return info->constant_charge_current_max_ua >= 0;
890         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
891                 return info->constant_charge_voltage_max_uv >= 0;
892         case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
893                 return info->temp_ambient_alert_min > INT_MIN;
894         case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
895                 return info->temp_ambient_alert_max < INT_MAX;
896         case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
897                 return info->temp_alert_min > INT_MIN;
898         case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
899                 return info->temp_alert_max < INT_MAX;
900         case POWER_SUPPLY_PROP_TEMP_MIN:
901                 return info->temp_min > INT_MIN;
902         case POWER_SUPPLY_PROP_TEMP_MAX:
903                 return info->temp_max < INT_MAX;
904         default:
905                 return false;
906         }
907 }
908 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
909
910 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
911                                        enum power_supply_property psp,
912                                        union power_supply_propval *val)
913 {
914         if (!info)
915                 return -EINVAL;
916
917         if (!power_supply_battery_info_has_prop(info, psp))
918                 return -EINVAL;
919
920         switch (psp) {
921         case POWER_SUPPLY_PROP_TECHNOLOGY:
922                 val->intval = info->technology;
923                 return 0;
924         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
925                 val->intval = info->energy_full_design_uwh;
926                 return 0;
927         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
928                 val->intval = info->charge_full_design_uah;
929                 return 0;
930         case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
931                 val->intval = info->voltage_min_design_uv;
932                 return 0;
933         case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
934                 val->intval = info->voltage_max_design_uv;
935                 return 0;
936         case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
937                 val->intval = info->precharge_current_ua;
938                 return 0;
939         case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
940                 val->intval = info->charge_term_current_ua;
941                 return 0;
942         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
943                 val->intval = info->constant_charge_current_max_ua;
944                 return 0;
945         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
946                 val->intval = info->constant_charge_voltage_max_uv;
947                 return 0;
948         case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
949                 val->intval = info->temp_ambient_alert_min;
950                 return 0;
951         case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
952                 val->intval = info->temp_ambient_alert_max;
953                 return 0;
954         case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
955                 val->intval = info->temp_alert_min;
956                 return 0;
957         case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
958                 val->intval = info->temp_alert_max;
959                 return 0;
960         case POWER_SUPPLY_PROP_TEMP_MIN:
961                 val->intval = info->temp_min;
962                 return 0;
963         case POWER_SUPPLY_PROP_TEMP_MAX:
964                 val->intval = info->temp_max;
965                 return 0;
966         default:
967                 return -EINVAL;
968         }
969 }
970 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
971
972 /**
973  * power_supply_temp2resist_simple() - find the battery internal resistance
974  * percent from temperature
975  * @table: Pointer to battery resistance temperature table
976  * @table_len: The table length
977  * @temp: Current temperature
978  *
979  * This helper function is used to look up battery internal resistance percent
980  * according to current temperature value from the resistance temperature table,
981  * and the table must be ordered descending. Then the actual battery internal
982  * resistance = the ideal battery internal resistance * percent / 100.
983  *
984  * Return: the battery internal resistance percent
985  */
986 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
987                                     int table_len, int temp)
988 {
989         int i, high, low;
990
991         for (i = 0; i < table_len; i++)
992                 if (temp > table[i].temp)
993                         break;
994
995         /* The library function will deal with high == low */
996         if (i == 0)
997                 high = low = i;
998         else if (i == table_len)
999                 high = low = i - 1;
1000         else
1001                 high = (low = i) - 1;
1002
1003         return fixp_linear_interpolate(table[low].temp,
1004                                        table[low].resistance,
1005                                        table[high].temp,
1006                                        table[high].resistance,
1007                                        temp);
1008 }
1009 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1010
1011 /**
1012  * power_supply_vbat2ri() - find the battery internal resistance
1013  * from the battery voltage
1014  * @info: The battery information container
1015  * @vbat_uv: The battery voltage in microvolt
1016  * @charging: If we are charging (true) or not (false)
1017  *
1018  * This helper function is used to look up battery internal resistance
1019  * according to current battery voltage. Depending on whether the battery
1020  * is currently charging or not, different resistance will be returned.
1021  *
1022  * Returns the internal resistance in microohm or negative error code.
1023  */
1024 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1025                          int vbat_uv, bool charging)
1026 {
1027         struct power_supply_vbat_ri_table *vbat2ri;
1028         int table_len;
1029         int i, high, low;
1030
1031         /*
1032          * If we are charging, and the battery supplies a separate table
1033          * for this state, we use that in order to compensate for the
1034          * charging voltage. Otherwise we use the main table.
1035          */
1036         if (charging && info->vbat2ri_charging) {
1037                 vbat2ri = info->vbat2ri_charging;
1038                 table_len = info->vbat2ri_charging_size;
1039         } else {
1040                 vbat2ri = info->vbat2ri_discharging;
1041                 table_len = info->vbat2ri_discharging_size;
1042         }
1043
1044         /*
1045          * If no tables are specified, or if we are above the highest voltage in
1046          * the voltage table, just return the factory specified internal resistance.
1047          */
1048         if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1049                 if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1050                         return info->factory_internal_resistance_charging_uohm;
1051                 else
1052                         return info->factory_internal_resistance_uohm;
1053         }
1054
1055         /* Break loop at table_len - 1 because that is the highest index */
1056         for (i = 0; i < table_len - 1; i++)
1057                 if (vbat_uv > vbat2ri[i].vbat_uv)
1058                         break;
1059
1060         /* The library function will deal with high == low */
1061         if ((i == 0) || (i == (table_len - 1)))
1062                 high = i;
1063         else
1064                 high = i - 1;
1065         low = i;
1066
1067         return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1068                                        vbat2ri[low].ri_uohm,
1069                                        vbat2ri[high].vbat_uv,
1070                                        vbat2ri[high].ri_uohm,
1071                                        vbat_uv);
1072 }
1073 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1074
1075 struct power_supply_maintenance_charge_table *
1076 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1077                                               int index)
1078 {
1079         if (index >= info->maintenance_charge_size)
1080                 return NULL;
1081         return &info->maintenance_charge[index];
1082 }
1083 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1084
1085 /**
1086  * power_supply_ocv2cap_simple() - find the battery capacity
1087  * @table: Pointer to battery OCV lookup table
1088  * @table_len: OCV table length
1089  * @ocv: Current OCV value
1090  *
1091  * This helper function is used to look up battery capacity according to
1092  * current OCV value from one OCV table, and the OCV table must be ordered
1093  * descending.
1094  *
1095  * Return: the battery capacity.
1096  */
1097 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
1098                                 int table_len, int ocv)
1099 {
1100         int i, high, low;
1101
1102         for (i = 0; i < table_len; i++)
1103                 if (ocv > table[i].ocv)
1104                         break;
1105
1106         /* The library function will deal with high == low */
1107         if (i == 0)
1108                 high = low = i;
1109         else if (i == table_len)
1110                 high = low = i - 1;
1111         else
1112                 high = (low = i) - 1;
1113
1114         return fixp_linear_interpolate(table[low].ocv,
1115                                        table[low].capacity,
1116                                        table[high].ocv,
1117                                        table[high].capacity,
1118                                        ocv);
1119 }
1120 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1121
1122 struct power_supply_battery_ocv_table *
1123 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1124                                 int temp, int *table_len)
1125 {
1126         int best_temp_diff = INT_MAX, temp_diff;
1127         u8 i, best_index = 0;
1128
1129         if (!info->ocv_table[0])
1130                 return NULL;
1131
1132         for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1133                 /* Out of capacity tables */
1134                 if (!info->ocv_table[i])
1135                         break;
1136
1137                 temp_diff = abs(info->ocv_temp[i] - temp);
1138
1139                 if (temp_diff < best_temp_diff) {
1140                         best_temp_diff = temp_diff;
1141                         best_index = i;
1142                 }
1143         }
1144
1145         *table_len = info->ocv_table_size[best_index];
1146         return info->ocv_table[best_index];
1147 }
1148 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1149
1150 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1151                                  int ocv, int temp)
1152 {
1153         struct power_supply_battery_ocv_table *table;
1154         int table_len;
1155
1156         table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1157         if (!table)
1158                 return -EINVAL;
1159
1160         return power_supply_ocv2cap_simple(table, table_len, ocv);
1161 }
1162 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1163
1164 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1165                                        int resistance)
1166 {
1167         int low, high;
1168
1169         /* Nothing like this can be checked */
1170         if (info->bti_resistance_ohm <= 0)
1171                 return false;
1172
1173         /* This will be extremely strict and unlikely to work */
1174         if (info->bti_resistance_tolerance <= 0)
1175                 return (info->bti_resistance_ohm == resistance);
1176
1177         low = info->bti_resistance_ohm -
1178                 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1179         high = info->bti_resistance_ohm +
1180                 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1181
1182         return ((resistance >= low) && (resistance <= high));
1183 }
1184 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1185
1186 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1187                              enum power_supply_property psp)
1188 {
1189         bool found = false;
1190         int i;
1191
1192         for (i = 0; i < psy_desc->num_properties; i++) {
1193                 if (psy_desc->properties[i] == psp) {
1194                         found = true;
1195                         break;
1196                 }
1197         }
1198
1199         return found;
1200 }
1201
1202 int power_supply_get_property(struct power_supply *psy,
1203                             enum power_supply_property psp,
1204                             union power_supply_propval *val)
1205 {
1206         if (atomic_read(&psy->use_cnt) <= 0) {
1207                 if (!psy->initialized)
1208                         return -EAGAIN;
1209                 return -ENODEV;
1210         }
1211
1212         if (psy_has_property(psy->desc, psp))
1213                 return psy->desc->get_property(psy, psp, val);
1214         else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1215                 return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1216         else
1217                 return -EINVAL;
1218 }
1219 EXPORT_SYMBOL_GPL(power_supply_get_property);
1220
1221 int power_supply_set_property(struct power_supply *psy,
1222                             enum power_supply_property psp,
1223                             const union power_supply_propval *val)
1224 {
1225         if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1226                 return -ENODEV;
1227
1228         return psy->desc->set_property(psy, psp, val);
1229 }
1230 EXPORT_SYMBOL_GPL(power_supply_set_property);
1231
1232 int power_supply_property_is_writeable(struct power_supply *psy,
1233                                         enum power_supply_property psp)
1234 {
1235         if (atomic_read(&psy->use_cnt) <= 0 ||
1236                         !psy->desc->property_is_writeable)
1237                 return -ENODEV;
1238
1239         return psy->desc->property_is_writeable(psy, psp);
1240 }
1241 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1242
1243 void power_supply_external_power_changed(struct power_supply *psy)
1244 {
1245         if (atomic_read(&psy->use_cnt) <= 0 ||
1246                         !psy->desc->external_power_changed)
1247                 return;
1248
1249         psy->desc->external_power_changed(psy);
1250 }
1251 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1252
1253 int power_supply_powers(struct power_supply *psy, struct device *dev)
1254 {
1255         return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1256 }
1257 EXPORT_SYMBOL_GPL(power_supply_powers);
1258
1259 static void power_supply_dev_release(struct device *dev)
1260 {
1261         struct power_supply *psy = to_power_supply(dev);
1262
1263         dev_dbg(dev, "%s\n", __func__);
1264         kfree(psy);
1265 }
1266
1267 int power_supply_reg_notifier(struct notifier_block *nb)
1268 {
1269         return blocking_notifier_chain_register(&power_supply_notifier, nb);
1270 }
1271 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1272
1273 void power_supply_unreg_notifier(struct notifier_block *nb)
1274 {
1275         blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1276 }
1277 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1278
1279 #ifdef CONFIG_THERMAL
1280 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1281                 int *temp)
1282 {
1283         struct power_supply *psy;
1284         union power_supply_propval val;
1285         int ret;
1286
1287         WARN_ON(tzd == NULL);
1288         psy = thermal_zone_device_priv(tzd);
1289         ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1290         if (ret)
1291                 return ret;
1292
1293         /* Convert tenths of degree Celsius to milli degree Celsius. */
1294         *temp = val.intval * 100;
1295
1296         return ret;
1297 }
1298
1299 static struct thermal_zone_device_ops psy_tzd_ops = {
1300         .get_temp = power_supply_read_temp,
1301 };
1302
1303 static int psy_register_thermal(struct power_supply *psy)
1304 {
1305         int ret;
1306
1307         if (psy->desc->no_thermal)
1308                 return 0;
1309
1310         /* Register battery zone device psy reports temperature */
1311         if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1312                 /* Prefer our hwmon device and avoid duplicates */
1313                 struct thermal_zone_params tzp = {
1314                         .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1315                 };
1316                 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1317                                 psy, &psy_tzd_ops, &tzp);
1318                 if (IS_ERR(psy->tzd))
1319                         return PTR_ERR(psy->tzd);
1320                 ret = thermal_zone_device_enable(psy->tzd);
1321                 if (ret)
1322                         thermal_zone_device_unregister(psy->tzd);
1323                 return ret;
1324         }
1325
1326         return 0;
1327 }
1328
1329 static void psy_unregister_thermal(struct power_supply *psy)
1330 {
1331         if (IS_ERR_OR_NULL(psy->tzd))
1332                 return;
1333         thermal_zone_device_unregister(psy->tzd);
1334 }
1335
1336 #else
1337 static int psy_register_thermal(struct power_supply *psy)
1338 {
1339         return 0;
1340 }
1341
1342 static void psy_unregister_thermal(struct power_supply *psy)
1343 {
1344 }
1345 #endif
1346
1347 static struct power_supply *__must_check
1348 __power_supply_register(struct device *parent,
1349                                    const struct power_supply_desc *desc,
1350                                    const struct power_supply_config *cfg,
1351                                    bool ws)
1352 {
1353         struct device *dev;
1354         struct power_supply *psy;
1355         int rc;
1356
1357         if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1358                 return ERR_PTR(-EINVAL);
1359
1360         if (!parent)
1361                 pr_warn("%s: Expected proper parent device for '%s'\n",
1362                         __func__, desc->name);
1363
1364         if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1365             (!desc->usb_types || !desc->num_usb_types))
1366                 return ERR_PTR(-EINVAL);
1367
1368         psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1369         if (!psy)
1370                 return ERR_PTR(-ENOMEM);
1371
1372         dev = &psy->dev;
1373
1374         device_initialize(dev);
1375
1376         dev->class = &power_supply_class;
1377         dev->type = &power_supply_dev_type;
1378         dev->parent = parent;
1379         dev->release = power_supply_dev_release;
1380         dev_set_drvdata(dev, psy);
1381         psy->desc = desc;
1382         if (cfg) {
1383                 dev->groups = cfg->attr_grp;
1384                 psy->drv_data = cfg->drv_data;
1385                 psy->of_node =
1386                         cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1387                 dev->of_node = psy->of_node;
1388                 psy->supplied_to = cfg->supplied_to;
1389                 psy->num_supplicants = cfg->num_supplicants;
1390         }
1391
1392         rc = dev_set_name(dev, "%s", desc->name);
1393         if (rc)
1394                 goto dev_set_name_failed;
1395
1396         INIT_WORK(&psy->changed_work, power_supply_changed_work);
1397         INIT_DELAYED_WORK(&psy->deferred_register_work,
1398                           power_supply_deferred_register_work);
1399
1400         rc = power_supply_check_supplies(psy);
1401         if (rc) {
1402                 dev_dbg(dev, "Not all required supplies found, defer probe\n");
1403                 goto check_supplies_failed;
1404         }
1405
1406         /*
1407          * Expose constant battery info, if it is available. While there are
1408          * some chargers accessing constant battery data, we only want to
1409          * expose battery data to userspace for battery devices.
1410          */
1411         if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1412                 rc = power_supply_get_battery_info(psy, &psy->battery_info);
1413                 if (rc && rc != -ENODEV && rc != -ENOENT)
1414                         goto check_supplies_failed;
1415         }
1416
1417         spin_lock_init(&psy->changed_lock);
1418         rc = device_add(dev);
1419         if (rc)
1420                 goto device_add_failed;
1421
1422         rc = device_init_wakeup(dev, ws);
1423         if (rc)
1424                 goto wakeup_init_failed;
1425
1426         rc = psy_register_thermal(psy);
1427         if (rc)
1428                 goto register_thermal_failed;
1429
1430         rc = power_supply_create_triggers(psy);
1431         if (rc)
1432                 goto create_triggers_failed;
1433
1434         rc = power_supply_add_hwmon_sysfs(psy);
1435         if (rc)
1436                 goto add_hwmon_sysfs_failed;
1437
1438         /*
1439          * Update use_cnt after any uevents (most notably from device_add()).
1440          * We are here still during driver's probe but
1441          * the power_supply_uevent() calls back driver's get_property
1442          * method so:
1443          * 1. Driver did not assigned the returned struct power_supply,
1444          * 2. Driver could not finish initialization (anything in its probe
1445          *    after calling power_supply_register()).
1446          */
1447         atomic_inc(&psy->use_cnt);
1448         psy->initialized = true;
1449
1450         queue_delayed_work(system_power_efficient_wq,
1451                            &psy->deferred_register_work,
1452                            POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1453
1454         return psy;
1455
1456 add_hwmon_sysfs_failed:
1457         power_supply_remove_triggers(psy);
1458 create_triggers_failed:
1459         psy_unregister_thermal(psy);
1460 register_thermal_failed:
1461 wakeup_init_failed:
1462         device_del(dev);
1463 device_add_failed:
1464 check_supplies_failed:
1465 dev_set_name_failed:
1466         put_device(dev);
1467         return ERR_PTR(rc);
1468 }
1469
1470 /**
1471  * power_supply_register() - Register new power supply
1472  * @parent:     Device to be a parent of power supply's device, usually
1473  *              the device which probe function calls this
1474  * @desc:       Description of power supply, must be valid through whole
1475  *              lifetime of this power supply
1476  * @cfg:        Run-time specific configuration accessed during registering,
1477  *              may be NULL
1478  *
1479  * Return: A pointer to newly allocated power_supply on success
1480  * or ERR_PTR otherwise.
1481  * Use power_supply_unregister() on returned power_supply pointer to release
1482  * resources.
1483  */
1484 struct power_supply *__must_check power_supply_register(struct device *parent,
1485                 const struct power_supply_desc *desc,
1486                 const struct power_supply_config *cfg)
1487 {
1488         return __power_supply_register(parent, desc, cfg, true);
1489 }
1490 EXPORT_SYMBOL_GPL(power_supply_register);
1491
1492 /**
1493  * power_supply_register_no_ws() - Register new non-waking-source power supply
1494  * @parent:     Device to be a parent of power supply's device, usually
1495  *              the device which probe function calls this
1496  * @desc:       Description of power supply, must be valid through whole
1497  *              lifetime of this power supply
1498  * @cfg:        Run-time specific configuration accessed during registering,
1499  *              may be NULL
1500  *
1501  * Return: A pointer to newly allocated power_supply on success
1502  * or ERR_PTR otherwise.
1503  * Use power_supply_unregister() on returned power_supply pointer to release
1504  * resources.
1505  */
1506 struct power_supply *__must_check
1507 power_supply_register_no_ws(struct device *parent,
1508                 const struct power_supply_desc *desc,
1509                 const struct power_supply_config *cfg)
1510 {
1511         return __power_supply_register(parent, desc, cfg, false);
1512 }
1513 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1514
1515 static void devm_power_supply_release(struct device *dev, void *res)
1516 {
1517         struct power_supply **psy = res;
1518
1519         power_supply_unregister(*psy);
1520 }
1521
1522 /**
1523  * devm_power_supply_register() - Register managed power supply
1524  * @parent:     Device to be a parent of power supply's device, usually
1525  *              the device which probe function calls this
1526  * @desc:       Description of power supply, must be valid through whole
1527  *              lifetime of this power supply
1528  * @cfg:        Run-time specific configuration accessed during registering,
1529  *              may be NULL
1530  *
1531  * Return: A pointer to newly allocated power_supply on success
1532  * or ERR_PTR otherwise.
1533  * The returned power_supply pointer will be automatically unregistered
1534  * on driver detach.
1535  */
1536 struct power_supply *__must_check
1537 devm_power_supply_register(struct device *parent,
1538                 const struct power_supply_desc *desc,
1539                 const struct power_supply_config *cfg)
1540 {
1541         struct power_supply **ptr, *psy;
1542
1543         ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1544
1545         if (!ptr)
1546                 return ERR_PTR(-ENOMEM);
1547         psy = __power_supply_register(parent, desc, cfg, true);
1548         if (IS_ERR(psy)) {
1549                 devres_free(ptr);
1550         } else {
1551                 *ptr = psy;
1552                 devres_add(parent, ptr);
1553         }
1554         return psy;
1555 }
1556 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1557
1558 /**
1559  * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1560  * @parent:     Device to be a parent of power supply's device, usually
1561  *              the device which probe function calls this
1562  * @desc:       Description of power supply, must be valid through whole
1563  *              lifetime of this power supply
1564  * @cfg:        Run-time specific configuration accessed during registering,
1565  *              may be NULL
1566  *
1567  * Return: A pointer to newly allocated power_supply on success
1568  * or ERR_PTR otherwise.
1569  * The returned power_supply pointer will be automatically unregistered
1570  * on driver detach.
1571  */
1572 struct power_supply *__must_check
1573 devm_power_supply_register_no_ws(struct device *parent,
1574                 const struct power_supply_desc *desc,
1575                 const struct power_supply_config *cfg)
1576 {
1577         struct power_supply **ptr, *psy;
1578
1579         ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1580
1581         if (!ptr)
1582                 return ERR_PTR(-ENOMEM);
1583         psy = __power_supply_register(parent, desc, cfg, false);
1584         if (IS_ERR(psy)) {
1585                 devres_free(ptr);
1586         } else {
1587                 *ptr = psy;
1588                 devres_add(parent, ptr);
1589         }
1590         return psy;
1591 }
1592 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1593
1594 /**
1595  * power_supply_unregister() - Remove this power supply from system
1596  * @psy:        Pointer to power supply to unregister
1597  *
1598  * Remove this power supply from the system. The resources of power supply
1599  * will be freed here or on last power_supply_put() call.
1600  */
1601 void power_supply_unregister(struct power_supply *psy)
1602 {
1603         WARN_ON(atomic_dec_return(&psy->use_cnt));
1604         psy->removing = true;
1605         cancel_work_sync(&psy->changed_work);
1606         cancel_delayed_work_sync(&psy->deferred_register_work);
1607         sysfs_remove_link(&psy->dev.kobj, "powers");
1608         power_supply_remove_hwmon_sysfs(psy);
1609         power_supply_remove_triggers(psy);
1610         psy_unregister_thermal(psy);
1611         device_init_wakeup(&psy->dev, false);
1612         device_unregister(&psy->dev);
1613 }
1614 EXPORT_SYMBOL_GPL(power_supply_unregister);
1615
1616 void *power_supply_get_drvdata(struct power_supply *psy)
1617 {
1618         return psy->drv_data;
1619 }
1620 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1621
1622 static int __init power_supply_class_init(void)
1623 {
1624         power_supply_init_attrs();
1625         return class_register(&power_supply_class);
1626 }
1627
1628 static void __exit power_supply_class_exit(void)
1629 {
1630         class_unregister(&power_supply_class);
1631 }
1632
1633 subsys_initcall(power_supply_class_init);
1634 module_exit(power_supply_class_exit);
1635
1636 MODULE_DESCRIPTION("Universal power supply monitor class");
1637 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>");
1638 MODULE_AUTHOR("Szabolcs Gyurko");
1639 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>");