Merge tag 'for_v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[linux-2.6-microblaze.git] / drivers / power / supply / ab8500_fg.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) ST-Ericsson AB 2012
4  *
5  * Main and Back-up battery management driver.
6  *
7  * Note: Backup battery management is required in case of Li-Ion battery and not
8  * for capacitive battery. HREF boards have capacitive battery and hence backup
9  * battery management is not used and the supported code is available in this
10  * driver.
11  *
12  * Author:
13  *      Johan Palsson <johan.palsson@stericsson.com>
14  *      Karl Komierowski <karl.komierowski@stericsson.com>
15  *      Arun R Murthy <arun.murthy@stericsson.com>
16  */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/time64.h>
29 #include <linux/of.h>
30 #include <linux/completion.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/abx500.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/iio/consumer.h>
35 #include <linux/kernel.h>
36
37 #include "ab8500-bm.h"
38
39 #define MILLI_TO_MICRO                  1000
40 #define FG_LSB_IN_MA                    1627
41 #define QLSB_NANO_AMP_HOURS_X10         1071
42 #define INS_CURR_TIMEOUT                (3 * HZ)
43
44 #define SEC_TO_SAMPLE(S)                (S * 4)
45
46 #define NBR_AVG_SAMPLES                 20
47
48 #define LOW_BAT_CHECK_INTERVAL          (HZ / 16) /* 62.5 ms */
49
50 #define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
51 #define BATT_OK_MIN                     2360 /* mV */
52 #define BATT_OK_INCREMENT               50 /* mV */
53 #define BATT_OK_MAX_NR_INCREMENTS       0xE
54
55 /* FG constants */
56 #define BATT_OVV                        0x01
57
58 #define interpolate(x, x1, y1, x2, y2) \
59         ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
60
61 /**
62  * struct ab8500_fg_interrupts - ab8500 fg interupts
63  * @name:       name of the interrupt
64  * @isr         function pointer to the isr
65  */
66 struct ab8500_fg_interrupts {
67         char *name;
68         irqreturn_t (*isr)(int irq, void *data);
69 };
70
71 enum ab8500_fg_discharge_state {
72         AB8500_FG_DISCHARGE_INIT,
73         AB8500_FG_DISCHARGE_INITMEASURING,
74         AB8500_FG_DISCHARGE_INIT_RECOVERY,
75         AB8500_FG_DISCHARGE_RECOVERY,
76         AB8500_FG_DISCHARGE_READOUT_INIT,
77         AB8500_FG_DISCHARGE_READOUT,
78         AB8500_FG_DISCHARGE_WAKEUP,
79 };
80
81 static char *discharge_state[] = {
82         "DISCHARGE_INIT",
83         "DISCHARGE_INITMEASURING",
84         "DISCHARGE_INIT_RECOVERY",
85         "DISCHARGE_RECOVERY",
86         "DISCHARGE_READOUT_INIT",
87         "DISCHARGE_READOUT",
88         "DISCHARGE_WAKEUP",
89 };
90
91 enum ab8500_fg_charge_state {
92         AB8500_FG_CHARGE_INIT,
93         AB8500_FG_CHARGE_READOUT,
94 };
95
96 static char *charge_state[] = {
97         "CHARGE_INIT",
98         "CHARGE_READOUT",
99 };
100
101 enum ab8500_fg_calibration_state {
102         AB8500_FG_CALIB_INIT,
103         AB8500_FG_CALIB_WAIT,
104         AB8500_FG_CALIB_END,
105 };
106
107 struct ab8500_fg_avg_cap {
108         int avg;
109         int samples[NBR_AVG_SAMPLES];
110         time64_t time_stamps[NBR_AVG_SAMPLES];
111         int pos;
112         int nbr_samples;
113         int sum;
114 };
115
116 struct ab8500_fg_cap_scaling {
117         bool enable;
118         int cap_to_scale[2];
119         int disable_cap_level;
120         int scaled_cap;
121 };
122
123 struct ab8500_fg_battery_capacity {
124         int max_mah_design;
125         int max_mah;
126         int mah;
127         int permille;
128         int level;
129         int prev_mah;
130         int prev_percent;
131         int prev_level;
132         int user_mah;
133         struct ab8500_fg_cap_scaling cap_scale;
134 };
135
136 struct ab8500_fg_flags {
137         bool fg_enabled;
138         bool conv_done;
139         bool charging;
140         bool fully_charged;
141         bool force_full;
142         bool low_bat_delay;
143         bool low_bat;
144         bool bat_ovv;
145         bool batt_unknown;
146         bool calibrate;
147         bool user_cap;
148         bool batt_id_received;
149 };
150
151 struct inst_curr_result_list {
152         struct list_head list;
153         int *result;
154 };
155
156 /**
157  * struct ab8500_fg - ab8500 FG device information
158  * @dev:                Pointer to the structure device
159  * @node:               a list of AB8500 FGs, hence prepared for reentrance
160  * @irq                 holds the CCEOC interrupt number
161  * @vbat:               Battery voltage in mV
162  * @vbat_nom:           Nominal battery voltage in mV
163  * @inst_curr:          Instantenous battery current in mA
164  * @avg_curr:           Average battery current in mA
165  * @bat_temp            battery temperature
166  * @fg_samples:         Number of samples used in the FG accumulation
167  * @accu_charge:        Accumulated charge from the last conversion
168  * @recovery_cnt:       Counter for recovery mode
169  * @high_curr_cnt:      Counter for high current mode
170  * @init_cnt:           Counter for init mode
171  * @low_bat_cnt         Counter for number of consecutive low battery measures
172  * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
173  * @recovery_needed:    Indicate if recovery is needed
174  * @high_curr_mode:     Indicate if we're in high current mode
175  * @init_capacity:      Indicate if initial capacity measuring should be done
176  * @turn_off_fg:        True if fg was off before current measurement
177  * @calib_state         State during offset calibration
178  * @discharge_state:    Current discharge state
179  * @charge_state:       Current charge state
180  * @ab8500_fg_started   Completion struct used for the instant current start
181  * @ab8500_fg_complete  Completion struct used for the instant current reading
182  * @flags:              Structure for information about events triggered
183  * @bat_cap:            Structure for battery capacity specific parameters
184  * @avg_cap:            Average capacity filter
185  * @parent:             Pointer to the struct ab8500
186  * @main_bat_v:         ADC channel for the main battery voltage
187  * @bm:                 Platform specific battery management information
188  * @fg_psy:             Structure that holds the FG specific battery properties
189  * @fg_wq:              Work queue for running the FG algorithm
190  * @fg_periodic_work:   Work to run the FG algorithm periodically
191  * @fg_low_bat_work:    Work to check low bat condition
192  * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
193  * @fg_work:            Work to run the FG algorithm instantly
194  * @fg_acc_cur_work:    Work to read the FG accumulator
195  * @fg_check_hw_failure_work:   Work for checking HW state
196  * @cc_lock:            Mutex for locking the CC
197  * @fg_kobject:         Structure of type kobject
198  */
199 struct ab8500_fg {
200         struct device *dev;
201         struct list_head node;
202         int irq;
203         int vbat;
204         int vbat_nom;
205         int inst_curr;
206         int avg_curr;
207         int bat_temp;
208         int fg_samples;
209         int accu_charge;
210         int recovery_cnt;
211         int high_curr_cnt;
212         int init_cnt;
213         int low_bat_cnt;
214         int nbr_cceoc_irq_cnt;
215         bool recovery_needed;
216         bool high_curr_mode;
217         bool init_capacity;
218         bool turn_off_fg;
219         enum ab8500_fg_calibration_state calib_state;
220         enum ab8500_fg_discharge_state discharge_state;
221         enum ab8500_fg_charge_state charge_state;
222         struct completion ab8500_fg_started;
223         struct completion ab8500_fg_complete;
224         struct ab8500_fg_flags flags;
225         struct ab8500_fg_battery_capacity bat_cap;
226         struct ab8500_fg_avg_cap avg_cap;
227         struct ab8500 *parent;
228         struct iio_channel *main_bat_v;
229         struct abx500_bm_data *bm;
230         struct power_supply *fg_psy;
231         struct workqueue_struct *fg_wq;
232         struct delayed_work fg_periodic_work;
233         struct delayed_work fg_low_bat_work;
234         struct delayed_work fg_reinit_work;
235         struct work_struct fg_work;
236         struct work_struct fg_acc_cur_work;
237         struct delayed_work fg_check_hw_failure_work;
238         struct mutex cc_lock;
239         struct kobject fg_kobject;
240 };
241 static LIST_HEAD(ab8500_fg_list);
242
243 /**
244  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
245  * (i.e. the first fuel gauge in the instance list)
246  */
247 struct ab8500_fg *ab8500_fg_get(void)
248 {
249         return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
250                                         node);
251 }
252
253 /* Main battery properties */
254 static enum power_supply_property ab8500_fg_props[] = {
255         POWER_SUPPLY_PROP_VOLTAGE_NOW,
256         POWER_SUPPLY_PROP_CURRENT_NOW,
257         POWER_SUPPLY_PROP_CURRENT_AVG,
258         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
259         POWER_SUPPLY_PROP_ENERGY_FULL,
260         POWER_SUPPLY_PROP_ENERGY_NOW,
261         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
262         POWER_SUPPLY_PROP_CHARGE_FULL,
263         POWER_SUPPLY_PROP_CHARGE_NOW,
264         POWER_SUPPLY_PROP_CAPACITY,
265         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
266 };
267
268 /*
269  * This array maps the raw hex value to lowbat voltage used by the AB8500
270  * Values taken from the UM0836
271  */
272 static int ab8500_fg_lowbat_voltage_map[] = {
273         2300 ,
274         2325 ,
275         2350 ,
276         2375 ,
277         2400 ,
278         2425 ,
279         2450 ,
280         2475 ,
281         2500 ,
282         2525 ,
283         2550 ,
284         2575 ,
285         2600 ,
286         2625 ,
287         2650 ,
288         2675 ,
289         2700 ,
290         2725 ,
291         2750 ,
292         2775 ,
293         2800 ,
294         2825 ,
295         2850 ,
296         2875 ,
297         2900 ,
298         2925 ,
299         2950 ,
300         2975 ,
301         3000 ,
302         3025 ,
303         3050 ,
304         3075 ,
305         3100 ,
306         3125 ,
307         3150 ,
308         3175 ,
309         3200 ,
310         3225 ,
311         3250 ,
312         3275 ,
313         3300 ,
314         3325 ,
315         3350 ,
316         3375 ,
317         3400 ,
318         3425 ,
319         3450 ,
320         3475 ,
321         3500 ,
322         3525 ,
323         3550 ,
324         3575 ,
325         3600 ,
326         3625 ,
327         3650 ,
328         3675 ,
329         3700 ,
330         3725 ,
331         3750 ,
332         3775 ,
333         3800 ,
334         3825 ,
335         3850 ,
336         3850 ,
337 };
338
339 static u8 ab8500_volt_to_regval(int voltage)
340 {
341         int i;
342
343         if (voltage < ab8500_fg_lowbat_voltage_map[0])
344                 return 0;
345
346         for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
347                 if (voltage < ab8500_fg_lowbat_voltage_map[i])
348                         return (u8) i - 1;
349         }
350
351         /* If not captured above, return index of last element */
352         return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
353 }
354
355 /**
356  * ab8500_fg_is_low_curr() - Low or high current mode
357  * @di:         pointer to the ab8500_fg structure
358  * @curr:       the current to base or our decision on
359  *
360  * Low current mode if the current consumption is below a certain threshold
361  */
362 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
363 {
364         /*
365          * We want to know if we're in low current mode
366          */
367         if (curr > -di->bm->fg_params->high_curr_threshold)
368                 return true;
369         else
370                 return false;
371 }
372
373 /**
374  * ab8500_fg_add_cap_sample() - Add capacity to average filter
375  * @di:         pointer to the ab8500_fg structure
376  * @sample:     the capacity in mAh to add to the filter
377  *
378  * A capacity is added to the filter and a new mean capacity is calculated and
379  * returned
380  */
381 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
382 {
383         time64_t now = ktime_get_boottime_seconds();
384         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
385
386         do {
387                 avg->sum += sample - avg->samples[avg->pos];
388                 avg->samples[avg->pos] = sample;
389                 avg->time_stamps[avg->pos] = now;
390                 avg->pos++;
391
392                 if (avg->pos == NBR_AVG_SAMPLES)
393                         avg->pos = 0;
394
395                 if (avg->nbr_samples < NBR_AVG_SAMPLES)
396                         avg->nbr_samples++;
397
398                 /*
399                  * Check the time stamp for each sample. If too old,
400                  * replace with latest sample
401                  */
402         } while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
403
404         avg->avg = avg->sum / avg->nbr_samples;
405
406         return avg->avg;
407 }
408
409 /**
410  * ab8500_fg_clear_cap_samples() - Clear average filter
411  * @di:         pointer to the ab8500_fg structure
412  *
413  * The capacity filter is is reset to zero.
414  */
415 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
416 {
417         int i;
418         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
419
420         avg->pos = 0;
421         avg->nbr_samples = 0;
422         avg->sum = 0;
423         avg->avg = 0;
424
425         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
426                 avg->samples[i] = 0;
427                 avg->time_stamps[i] = 0;
428         }
429 }
430
431 /**
432  * ab8500_fg_fill_cap_sample() - Fill average filter
433  * @di:         pointer to the ab8500_fg structure
434  * @sample:     the capacity in mAh to fill the filter with
435  *
436  * The capacity filter is filled with a capacity in mAh
437  */
438 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
439 {
440         int i;
441         time64_t now;
442         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
443
444         now = ktime_get_boottime_seconds();
445
446         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
447                 avg->samples[i] = sample;
448                 avg->time_stamps[i] = now;
449         }
450
451         avg->pos = 0;
452         avg->nbr_samples = NBR_AVG_SAMPLES;
453         avg->sum = sample * NBR_AVG_SAMPLES;
454         avg->avg = sample;
455 }
456
457 /**
458  * ab8500_fg_coulomb_counter() - enable coulomb counter
459  * @di:         pointer to the ab8500_fg structure
460  * @enable:     enable/disable
461  *
462  * Enable/Disable coulomb counter.
463  * On failure returns negative value.
464  */
465 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
466 {
467         int ret = 0;
468         mutex_lock(&di->cc_lock);
469         if (enable) {
470                 /* To be able to reprogram the number of samples, we have to
471                  * first stop the CC and then enable it again */
472                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
473                         AB8500_RTC_CC_CONF_REG, 0x00);
474                 if (ret)
475                         goto cc_err;
476
477                 /* Program the samples */
478                 ret = abx500_set_register_interruptible(di->dev,
479                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
480                         di->fg_samples);
481                 if (ret)
482                         goto cc_err;
483
484                 /* Start the CC */
485                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
486                         AB8500_RTC_CC_CONF_REG,
487                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
488                 if (ret)
489                         goto cc_err;
490
491                 di->flags.fg_enabled = true;
492         } else {
493                 /* Clear any pending read requests */
494                 ret = abx500_mask_and_set_register_interruptible(di->dev,
495                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
496                         (RESET_ACCU | READ_REQ), 0);
497                 if (ret)
498                         goto cc_err;
499
500                 ret = abx500_set_register_interruptible(di->dev,
501                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
502                 if (ret)
503                         goto cc_err;
504
505                 /* Stop the CC */
506                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
507                         AB8500_RTC_CC_CONF_REG, 0);
508                 if (ret)
509                         goto cc_err;
510
511                 di->flags.fg_enabled = false;
512
513         }
514         dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
515                 enable, di->fg_samples);
516
517         mutex_unlock(&di->cc_lock);
518
519         return ret;
520 cc_err:
521         dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
522         mutex_unlock(&di->cc_lock);
523         return ret;
524 }
525
526 /**
527  * ab8500_fg_inst_curr_start() - start battery instantaneous current
528  * @di:         pointer to the ab8500_fg structure
529  *
530  * Returns 0 or error code
531  * Note: This is part "one" and has to be called before
532  * ab8500_fg_inst_curr_finalize()
533  */
534 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
535 {
536         u8 reg_val;
537         int ret;
538
539         mutex_lock(&di->cc_lock);
540
541         di->nbr_cceoc_irq_cnt = 0;
542         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
543                 AB8500_RTC_CC_CONF_REG, &reg_val);
544         if (ret < 0)
545                 goto fail;
546
547         if (!(reg_val & CC_PWR_UP_ENA)) {
548                 dev_dbg(di->dev, "%s Enable FG\n", __func__);
549                 di->turn_off_fg = true;
550
551                 /* Program the samples */
552                 ret = abx500_set_register_interruptible(di->dev,
553                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
554                         SEC_TO_SAMPLE(10));
555                 if (ret)
556                         goto fail;
557
558                 /* Start the CC */
559                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
560                         AB8500_RTC_CC_CONF_REG,
561                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
562                 if (ret)
563                         goto fail;
564         } else {
565                 di->turn_off_fg = false;
566         }
567
568         /* Return and WFI */
569         reinit_completion(&di->ab8500_fg_started);
570         reinit_completion(&di->ab8500_fg_complete);
571         enable_irq(di->irq);
572
573         /* Note: cc_lock is still locked */
574         return 0;
575 fail:
576         mutex_unlock(&di->cc_lock);
577         return ret;
578 }
579
580 /**
581  * ab8500_fg_inst_curr_started() - check if fg conversion has started
582  * @di:         pointer to the ab8500_fg structure
583  *
584  * Returns 1 if conversion started, 0 if still waiting
585  */
586 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
587 {
588         return completion_done(&di->ab8500_fg_started);
589 }
590
591 /**
592  * ab8500_fg_inst_curr_done() - check if fg conversion is done
593  * @di:         pointer to the ab8500_fg structure
594  *
595  * Returns 1 if conversion done, 0 if still waiting
596  */
597 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
598 {
599         return completion_done(&di->ab8500_fg_complete);
600 }
601
602 /**
603  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
604  * @di:         pointer to the ab8500_fg structure
605  * @res:        battery instantenous current(on success)
606  *
607  * Returns 0 or an error code
608  * Note: This is part "two" and has to be called at earliest 250 ms
609  * after ab8500_fg_inst_curr_start()
610  */
611 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
612 {
613         u8 low, high;
614         int val;
615         int ret;
616         unsigned long timeout;
617
618         if (!completion_done(&di->ab8500_fg_complete)) {
619                 timeout = wait_for_completion_timeout(
620                         &di->ab8500_fg_complete,
621                         INS_CURR_TIMEOUT);
622                 dev_dbg(di->dev, "Finalize time: %d ms\n",
623                         jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
624                 if (!timeout) {
625                         ret = -ETIME;
626                         disable_irq(di->irq);
627                         di->nbr_cceoc_irq_cnt = 0;
628                         dev_err(di->dev, "completion timed out [%d]\n",
629                                 __LINE__);
630                         goto fail;
631                 }
632         }
633
634         disable_irq(di->irq);
635         di->nbr_cceoc_irq_cnt = 0;
636
637         ret = abx500_mask_and_set_register_interruptible(di->dev,
638                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
639                         READ_REQ, READ_REQ);
640
641         /* 100uS between read request and read is needed */
642         usleep_range(100, 100);
643
644         /* Read CC Sample conversion value Low and high */
645         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
646                 AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
647         if (ret < 0)
648                 goto fail;
649
650         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
651                 AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
652         if (ret < 0)
653                 goto fail;
654
655         /*
656          * negative value for Discharging
657          * convert 2's complement into decimal
658          */
659         if (high & 0x10)
660                 val = (low | (high << 8) | 0xFFFFE000);
661         else
662                 val = (low | (high << 8));
663
664         /*
665          * Convert to unit value in mA
666          * Full scale input voltage is
667          * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
668          * Given a 250ms conversion cycle time the LSB corresponds
669          * to 107.1 nAh. Convert to current by dividing by the conversion
670          * time in hours (250ms = 1 / (3600 * 4)h)
671          * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
672          */
673         val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
674                 (1000 * di->bm->fg_res);
675
676         if (di->turn_off_fg) {
677                 dev_dbg(di->dev, "%s Disable FG\n", __func__);
678
679                 /* Clear any pending read requests */
680                 ret = abx500_set_register_interruptible(di->dev,
681                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
682                 if (ret)
683                         goto fail;
684
685                 /* Stop the CC */
686                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
687                         AB8500_RTC_CC_CONF_REG, 0);
688                 if (ret)
689                         goto fail;
690         }
691         mutex_unlock(&di->cc_lock);
692         (*res) = val;
693
694         return 0;
695 fail:
696         mutex_unlock(&di->cc_lock);
697         return ret;
698 }
699
700 /**
701  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
702  * @di:         pointer to the ab8500_fg structure
703  * @res:        battery instantenous current(on success)
704  *
705  * Returns 0 else error code
706  */
707 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
708 {
709         int ret;
710         unsigned long timeout;
711         int res = 0;
712
713         ret = ab8500_fg_inst_curr_start(di);
714         if (ret) {
715                 dev_err(di->dev, "Failed to initialize fg_inst\n");
716                 return 0;
717         }
718
719         /* Wait for CC to actually start */
720         if (!completion_done(&di->ab8500_fg_started)) {
721                 timeout = wait_for_completion_timeout(
722                         &di->ab8500_fg_started,
723                         INS_CURR_TIMEOUT);
724                 dev_dbg(di->dev, "Start time: %d ms\n",
725                         jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
726                 if (!timeout) {
727                         ret = -ETIME;
728                         dev_err(di->dev, "completion timed out [%d]\n",
729                                 __LINE__);
730                         goto fail;
731                 }
732         }
733
734         ret = ab8500_fg_inst_curr_finalize(di, &res);
735         if (ret) {
736                 dev_err(di->dev, "Failed to finalize fg_inst\n");
737                 return 0;
738         }
739
740         dev_dbg(di->dev, "%s instant current: %d", __func__, res);
741         return res;
742 fail:
743         disable_irq(di->irq);
744         mutex_unlock(&di->cc_lock);
745         return ret;
746 }
747
748 /**
749  * ab8500_fg_acc_cur_work() - average battery current
750  * @work:       pointer to the work_struct structure
751  *
752  * Updated the average battery current obtained from the
753  * coulomb counter.
754  */
755 static void ab8500_fg_acc_cur_work(struct work_struct *work)
756 {
757         int val;
758         int ret;
759         u8 low, med, high;
760
761         struct ab8500_fg *di = container_of(work,
762                 struct ab8500_fg, fg_acc_cur_work);
763
764         mutex_lock(&di->cc_lock);
765         ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
766                 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
767         if (ret)
768                 goto exit;
769
770         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
771                 AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
772         if (ret < 0)
773                 goto exit;
774
775         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
776                 AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
777         if (ret < 0)
778                 goto exit;
779
780         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
781                 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
782         if (ret < 0)
783                 goto exit;
784
785         /* Check for sign bit in case of negative value, 2's complement */
786         if (high & 0x10)
787                 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
788         else
789                 val = (low | (med << 8) | (high << 16));
790
791         /*
792          * Convert to uAh
793          * Given a 250ms conversion cycle time the LSB corresponds
794          * to 112.9 nAh.
795          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
796          */
797         di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
798                 (100 * di->bm->fg_res);
799
800         /*
801          * Convert to unit value in mA
802          * by dividing by the conversion
803          * time in hours (= samples / (3600 * 4)h)
804          * and multiply with 1000
805          */
806         di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
807                 (1000 * di->bm->fg_res * (di->fg_samples / 4));
808
809         di->flags.conv_done = true;
810
811         mutex_unlock(&di->cc_lock);
812
813         queue_work(di->fg_wq, &di->fg_work);
814
815         dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
816                                 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
817         return;
818 exit:
819         dev_err(di->dev,
820                 "Failed to read or write gas gauge registers\n");
821         mutex_unlock(&di->cc_lock);
822         queue_work(di->fg_wq, &di->fg_work);
823 }
824
825 /**
826  * ab8500_fg_bat_voltage() - get battery voltage
827  * @di:         pointer to the ab8500_fg structure
828  *
829  * Returns battery voltage(on success) else error code
830  */
831 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
832 {
833         int vbat, ret;
834         static int prev;
835
836         ret = iio_read_channel_processed(di->main_bat_v, &vbat);
837         if (ret < 0) {
838                 dev_err(di->dev,
839                         "%s ADC conversion failed, using previous value\n",
840                         __func__);
841                 return prev;
842         }
843
844         prev = vbat;
845         return vbat;
846 }
847
848 /**
849  * ab8500_fg_volt_to_capacity() - Voltage based capacity
850  * @di:         pointer to the ab8500_fg structure
851  * @voltage:    The voltage to convert to a capacity
852  *
853  * Returns battery capacity in per mille based on voltage
854  */
855 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
856 {
857         int i, tbl_size;
858         const struct abx500_v_to_cap *tbl;
859         int cap = 0;
860
861         tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl;
862         tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
863
864         for (i = 0; i < tbl_size; ++i) {
865                 if (voltage > tbl[i].voltage)
866                         break;
867         }
868
869         if ((i > 0) && (i < tbl_size)) {
870                 cap = interpolate(voltage,
871                         tbl[i].voltage,
872                         tbl[i].capacity * 10,
873                         tbl[i-1].voltage,
874                         tbl[i-1].capacity * 10);
875         } else if (i == 0) {
876                 cap = 1000;
877         } else {
878                 cap = 0;
879         }
880
881         dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
882                 __func__, voltage, cap);
883
884         return cap;
885 }
886
887 /**
888  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
889  * @di:         pointer to the ab8500_fg structure
890  *
891  * Returns battery capacity based on battery voltage that is not compensated
892  * for the voltage drop due to the load
893  */
894 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
895 {
896         di->vbat = ab8500_fg_bat_voltage(di);
897         return ab8500_fg_volt_to_capacity(di, di->vbat);
898 }
899
900 /**
901  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
902  * @di:         pointer to the ab8500_fg structure
903  *
904  * Returns battery inner resistance added with the fuel gauge resistor value
905  * to get the total resistance in the whole link from gnd to bat+ node.
906  */
907 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
908 {
909         int i, tbl_size;
910         const struct batres_vs_temp *tbl;
911         int resist = 0;
912
913         tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
914         tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
915
916         for (i = 0; i < tbl_size; ++i) {
917                 if (di->bat_temp / 10 > tbl[i].temp)
918                         break;
919         }
920
921         if ((i > 0) && (i < tbl_size)) {
922                 resist = interpolate(di->bat_temp / 10,
923                         tbl[i].temp,
924                         tbl[i].resist,
925                         tbl[i-1].temp,
926                         tbl[i-1].resist);
927         } else if (i == 0) {
928                 resist = tbl[0].resist;
929         } else {
930                 resist = tbl[tbl_size - 1].resist;
931         }
932
933         dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
934             " fg resistance %d, total: %d (mOhm)\n",
935                 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
936                 (di->bm->fg_res / 10) + resist);
937
938         /* fg_res variable is in 0.1mOhm */
939         resist += di->bm->fg_res / 10;
940
941         return resist;
942 }
943
944 /**
945  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
946  * @di:         pointer to the ab8500_fg structure
947  *
948  * Returns battery capacity based on battery voltage that is load compensated
949  * for the voltage drop
950  */
951 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
952 {
953         int vbat_comp, res;
954         int i = 0;
955         int vbat = 0;
956
957         ab8500_fg_inst_curr_start(di);
958
959         do {
960                 vbat += ab8500_fg_bat_voltage(di);
961                 i++;
962                 usleep_range(5000, 6000);
963         } while (!ab8500_fg_inst_curr_done(di));
964
965         ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
966
967         di->vbat = vbat / i;
968         res = ab8500_fg_battery_resistance(di);
969
970         /* Use Ohms law to get the load compensated voltage */
971         vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
972
973         dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
974                 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
975                 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
976
977         return ab8500_fg_volt_to_capacity(di, vbat_comp);
978 }
979
980 /**
981  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
982  * @di:         pointer to the ab8500_fg structure
983  * @cap_mah:    capacity in mAh
984  *
985  * Converts capacity in mAh to capacity in permille
986  */
987 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
988 {
989         return (cap_mah * 1000) / di->bat_cap.max_mah_design;
990 }
991
992 /**
993  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
994  * @di:         pointer to the ab8500_fg structure
995  * @cap_pm:     capacity in permille
996  *
997  * Converts capacity in permille to capacity in mAh
998  */
999 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1000 {
1001         return cap_pm * di->bat_cap.max_mah_design / 1000;
1002 }
1003
1004 /**
1005  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1006  * @di:         pointer to the ab8500_fg structure
1007  * @cap_mah:    capacity in mAh
1008  *
1009  * Converts capacity in mAh to capacity in uWh
1010  */
1011 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1012 {
1013         u64 div_res;
1014         u32 div_rem;
1015
1016         div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1017         div_rem = do_div(div_res, 1000);
1018
1019         /* Make sure to round upwards if necessary */
1020         if (div_rem >= 1000 / 2)
1021                 div_res++;
1022
1023         return (int) div_res;
1024 }
1025
1026 /**
1027  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1028  * @di:         pointer to the ab8500_fg structure
1029  *
1030  * Return the capacity in mAh based on previous calculated capcity and the FG
1031  * accumulator register value. The filter is filled with this capacity
1032  */
1033 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1034 {
1035         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1036                 __func__,
1037                 di->bat_cap.mah,
1038                 di->accu_charge);
1039
1040         /* Capacity should not be less than 0 */
1041         if (di->bat_cap.mah + di->accu_charge > 0)
1042                 di->bat_cap.mah += di->accu_charge;
1043         else
1044                 di->bat_cap.mah = 0;
1045         /*
1046          * We force capacity to 100% once when the algorithm
1047          * reports that it's full.
1048          */
1049         if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1050                 di->flags.force_full) {
1051                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1052         }
1053
1054         ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1055         di->bat_cap.permille =
1056                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1057
1058         /* We need to update battery voltage and inst current when charging */
1059         di->vbat = ab8500_fg_bat_voltage(di);
1060         di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1061
1062         return di->bat_cap.mah;
1063 }
1064
1065 /**
1066  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1067  * @di:         pointer to the ab8500_fg structure
1068  * @comp:       if voltage should be load compensated before capacity calc
1069  *
1070  * Return the capacity in mAh based on the battery voltage. The voltage can
1071  * either be load compensated or not. This value is added to the filter and a
1072  * new mean value is calculated and returned.
1073  */
1074 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1075 {
1076         int permille, mah;
1077
1078         if (comp)
1079                 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1080         else
1081                 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1082
1083         mah = ab8500_fg_convert_permille_to_mah(di, permille);
1084
1085         di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1086         di->bat_cap.permille =
1087                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1088
1089         return di->bat_cap.mah;
1090 }
1091
1092 /**
1093  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1094  * @di:         pointer to the ab8500_fg structure
1095  *
1096  * Return the capacity in mAh based on previous calculated capcity and the FG
1097  * accumulator register value. This value is added to the filter and a
1098  * new mean value is calculated and returned.
1099  */
1100 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1101 {
1102         int permille_volt, permille;
1103
1104         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1105                 __func__,
1106                 di->bat_cap.mah,
1107                 di->accu_charge);
1108
1109         /* Capacity should not be less than 0 */
1110         if (di->bat_cap.mah + di->accu_charge > 0)
1111                 di->bat_cap.mah += di->accu_charge;
1112         else
1113                 di->bat_cap.mah = 0;
1114
1115         if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1116                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1117
1118         /*
1119          * Check against voltage based capacity. It can not be lower
1120          * than what the uncompensated voltage says
1121          */
1122         permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1123         permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1124
1125         if (permille < permille_volt) {
1126                 di->bat_cap.permille = permille_volt;
1127                 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1128                         di->bat_cap.permille);
1129
1130                 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1131                         __func__,
1132                         permille,
1133                         permille_volt);
1134
1135                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1136         } else {
1137                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1138                 di->bat_cap.permille =
1139                         ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1140         }
1141
1142         return di->bat_cap.mah;
1143 }
1144
1145 /**
1146  * ab8500_fg_capacity_level() - Get the battery capacity level
1147  * @di:         pointer to the ab8500_fg structure
1148  *
1149  * Get the battery capacity level based on the capacity in percent
1150  */
1151 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1152 {
1153         int ret, percent;
1154
1155         percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1156
1157         if (percent <= di->bm->cap_levels->critical ||
1158                 di->flags.low_bat)
1159                 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1160         else if (percent <= di->bm->cap_levels->low)
1161                 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1162         else if (percent <= di->bm->cap_levels->normal)
1163                 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1164         else if (percent <= di->bm->cap_levels->high)
1165                 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1166         else
1167                 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1168
1169         return ret;
1170 }
1171
1172 /**
1173  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1174  * @di:         pointer to the ab8500_fg structure
1175  *
1176  * Calculates the capacity to be shown to upper layers. Scales the capacity
1177  * to have 100% as a reference from the actual capacity upon removal of charger
1178  * when charging is in maintenance mode.
1179  */
1180 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1181 {
1182         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1183         int capacity = di->bat_cap.prev_percent;
1184
1185         if (!cs->enable)
1186                 return capacity;
1187
1188         /*
1189          * As long as we are in fully charge mode scale the capacity
1190          * to show 100%.
1191          */
1192         if (di->flags.fully_charged) {
1193                 cs->cap_to_scale[0] = 100;
1194                 cs->cap_to_scale[1] =
1195                         max(capacity, di->bm->fg_params->maint_thres);
1196                 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1197                          cs->cap_to_scale[0], cs->cap_to_scale[1]);
1198         }
1199
1200         /* Calculates the scaled capacity. */
1201         if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1202                                         && (cs->cap_to_scale[1] > 0))
1203                 capacity = min(100,
1204                                  DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1205                                                  cs->cap_to_scale[0],
1206                                                  cs->cap_to_scale[1]));
1207
1208         if (di->flags.charging) {
1209                 if (capacity < cs->disable_cap_level) {
1210                         cs->disable_cap_level = capacity;
1211                         dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1212                                 cs->disable_cap_level);
1213                 } else if (!di->flags.fully_charged) {
1214                         if (di->bat_cap.prev_percent >=
1215                             cs->disable_cap_level) {
1216                                 dev_dbg(di->dev, "Disabling scaled capacity\n");
1217                                 cs->enable = false;
1218                                 capacity = di->bat_cap.prev_percent;
1219                         } else {
1220                                 dev_dbg(di->dev,
1221                                         "Waiting in cap to level %d%%\n",
1222                                         cs->disable_cap_level);
1223                                 capacity = cs->disable_cap_level;
1224                         }
1225                 }
1226         }
1227
1228         return capacity;
1229 }
1230
1231 /**
1232  * ab8500_fg_update_cap_scalers() - Capacity scaling
1233  * @di:         pointer to the ab8500_fg structure
1234  *
1235  * To be called when state change from charge<->discharge to update
1236  * the capacity scalers.
1237  */
1238 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1239 {
1240         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1241
1242         if (!cs->enable)
1243                 return;
1244         if (di->flags.charging) {
1245                 di->bat_cap.cap_scale.disable_cap_level =
1246                         di->bat_cap.cap_scale.scaled_cap;
1247                 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1248                                 di->bat_cap.cap_scale.disable_cap_level);
1249         } else {
1250                 if (cs->scaled_cap != 100) {
1251                         cs->cap_to_scale[0] = cs->scaled_cap;
1252                         cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1253                 } else {
1254                         cs->cap_to_scale[0] = 100;
1255                         cs->cap_to_scale[1] =
1256                                 max(di->bat_cap.prev_percent,
1257                                     di->bm->fg_params->maint_thres);
1258                 }
1259
1260                 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1261                                 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1262         }
1263 }
1264
1265 /**
1266  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1267  * @di:         pointer to the ab8500_fg structure
1268  * @init:       capacity is allowed to go up in init mode
1269  *
1270  * Check if capacity or capacity limit has changed and notify the system
1271  * about it using the power_supply framework
1272  */
1273 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1274 {
1275         bool changed = false;
1276         int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1277
1278         di->bat_cap.level = ab8500_fg_capacity_level(di);
1279
1280         if (di->bat_cap.level != di->bat_cap.prev_level) {
1281                 /*
1282                  * We do not allow reported capacity level to go up
1283                  * unless we're charging or if we're in init
1284                  */
1285                 if (!(!di->flags.charging && di->bat_cap.level >
1286                         di->bat_cap.prev_level) || init) {
1287                         dev_dbg(di->dev, "level changed from %d to %d\n",
1288                                 di->bat_cap.prev_level,
1289                                 di->bat_cap.level);
1290                         di->bat_cap.prev_level = di->bat_cap.level;
1291                         changed = true;
1292                 } else {
1293                         dev_dbg(di->dev, "level not allowed to go up "
1294                                 "since no charger is connected: %d to %d\n",
1295                                 di->bat_cap.prev_level,
1296                                 di->bat_cap.level);
1297                 }
1298         }
1299
1300         /*
1301          * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1302          * shutdown
1303          */
1304         if (di->flags.low_bat) {
1305                 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1306                 di->bat_cap.prev_percent = 0;
1307                 di->bat_cap.permille = 0;
1308                 percent = 0;
1309                 di->bat_cap.prev_mah = 0;
1310                 di->bat_cap.mah = 0;
1311                 changed = true;
1312         } else if (di->flags.fully_charged) {
1313                 /*
1314                  * We report 100% if algorithm reported fully charged
1315                  * and show 100% during maintenance charging (scaling).
1316                  */
1317                 if (di->flags.force_full) {
1318                         di->bat_cap.prev_percent = percent;
1319                         di->bat_cap.prev_mah = di->bat_cap.mah;
1320
1321                         changed = true;
1322
1323                         if (!di->bat_cap.cap_scale.enable &&
1324                                                 di->bm->capacity_scaling) {
1325                                 di->bat_cap.cap_scale.enable = true;
1326                                 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1327                                 di->bat_cap.cap_scale.cap_to_scale[1] =
1328                                                 di->bat_cap.prev_percent;
1329                                 di->bat_cap.cap_scale.disable_cap_level = 100;
1330                         }
1331                 } else if (di->bat_cap.prev_percent != percent) {
1332                         dev_dbg(di->dev,
1333                                 "battery reported full "
1334                                 "but capacity dropping: %d\n",
1335                                 percent);
1336                         di->bat_cap.prev_percent = percent;
1337                         di->bat_cap.prev_mah = di->bat_cap.mah;
1338
1339                         changed = true;
1340                 }
1341         } else if (di->bat_cap.prev_percent != percent) {
1342                 if (percent == 0) {
1343                         /*
1344                          * We will not report 0% unless we've got
1345                          * the LOW_BAT IRQ, no matter what the FG
1346                          * algorithm says.
1347                          */
1348                         di->bat_cap.prev_percent = 1;
1349                         percent = 1;
1350
1351                         changed = true;
1352                 } else if (!(!di->flags.charging &&
1353                         percent > di->bat_cap.prev_percent) || init) {
1354                         /*
1355                          * We do not allow reported capacity to go up
1356                          * unless we're charging or if we're in init
1357                          */
1358                         dev_dbg(di->dev,
1359                                 "capacity changed from %d to %d (%d)\n",
1360                                 di->bat_cap.prev_percent,
1361                                 percent,
1362                                 di->bat_cap.permille);
1363                         di->bat_cap.prev_percent = percent;
1364                         di->bat_cap.prev_mah = di->bat_cap.mah;
1365
1366                         changed = true;
1367                 } else {
1368                         dev_dbg(di->dev, "capacity not allowed to go up since "
1369                                 "no charger is connected: %d to %d (%d)\n",
1370                                 di->bat_cap.prev_percent,
1371                                 percent,
1372                                 di->bat_cap.permille);
1373                 }
1374         }
1375
1376         if (changed) {
1377                 if (di->bm->capacity_scaling) {
1378                         di->bat_cap.cap_scale.scaled_cap =
1379                                 ab8500_fg_calculate_scaled_capacity(di);
1380
1381                         dev_info(di->dev, "capacity=%d (%d)\n",
1382                                 di->bat_cap.prev_percent,
1383                                 di->bat_cap.cap_scale.scaled_cap);
1384                 }
1385                 power_supply_changed(di->fg_psy);
1386                 if (di->flags.fully_charged && di->flags.force_full) {
1387                         dev_dbg(di->dev, "Battery full, notifying.\n");
1388                         di->flags.force_full = false;
1389                         sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1390                 }
1391                 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1392         }
1393 }
1394
1395 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1396         enum ab8500_fg_charge_state new_state)
1397 {
1398         dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1399                 di->charge_state,
1400                 charge_state[di->charge_state],
1401                 new_state,
1402                 charge_state[new_state]);
1403
1404         di->charge_state = new_state;
1405 }
1406
1407 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1408         enum ab8500_fg_discharge_state new_state)
1409 {
1410         dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1411                 di->discharge_state,
1412                 discharge_state[di->discharge_state],
1413                 new_state,
1414                 discharge_state[new_state]);
1415
1416         di->discharge_state = new_state;
1417 }
1418
1419 /**
1420  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1421  * @di:         pointer to the ab8500_fg structure
1422  *
1423  * Battery capacity calculation state machine for when we're charging
1424  */
1425 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1426 {
1427         /*
1428          * If we change to discharge mode
1429          * we should start with recovery
1430          */
1431         if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1432                 ab8500_fg_discharge_state_to(di,
1433                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1434
1435         switch (di->charge_state) {
1436         case AB8500_FG_CHARGE_INIT:
1437                 di->fg_samples = SEC_TO_SAMPLE(
1438                         di->bm->fg_params->accu_charging);
1439
1440                 ab8500_fg_coulomb_counter(di, true);
1441                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1442
1443                 break;
1444
1445         case AB8500_FG_CHARGE_READOUT:
1446                 /*
1447                  * Read the FG and calculate the new capacity
1448                  */
1449                 mutex_lock(&di->cc_lock);
1450                 if (!di->flags.conv_done && !di->flags.force_full) {
1451                         /* Wasn't the CC IRQ that got us here */
1452                         mutex_unlock(&di->cc_lock);
1453                         dev_dbg(di->dev, "%s CC conv not done\n",
1454                                 __func__);
1455
1456                         break;
1457                 }
1458                 di->flags.conv_done = false;
1459                 mutex_unlock(&di->cc_lock);
1460
1461                 ab8500_fg_calc_cap_charging(di);
1462
1463                 break;
1464
1465         default:
1466                 break;
1467         }
1468
1469         /* Check capacity limits */
1470         ab8500_fg_check_capacity_limits(di, false);
1471 }
1472
1473 static void force_capacity(struct ab8500_fg *di)
1474 {
1475         int cap;
1476
1477         ab8500_fg_clear_cap_samples(di);
1478         cap = di->bat_cap.user_mah;
1479         if (cap > di->bat_cap.max_mah_design) {
1480                 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1481                         " %d\n", cap, di->bat_cap.max_mah_design);
1482                 cap = di->bat_cap.max_mah_design;
1483         }
1484         ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1485         di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1486         di->bat_cap.mah = cap;
1487         ab8500_fg_check_capacity_limits(di, true);
1488 }
1489
1490 static bool check_sysfs_capacity(struct ab8500_fg *di)
1491 {
1492         int cap, lower, upper;
1493         int cap_permille;
1494
1495         cap = di->bat_cap.user_mah;
1496
1497         cap_permille = ab8500_fg_convert_mah_to_permille(di,
1498                 di->bat_cap.user_mah);
1499
1500         lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1501         upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1502
1503         if (lower < 0)
1504                 lower = 0;
1505         /* 1000 is permille, -> 100 percent */
1506         if (upper > 1000)
1507                 upper = 1000;
1508
1509         dev_dbg(di->dev, "Capacity limits:"
1510                 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1511                 lower, cap_permille, upper, cap, di->bat_cap.mah);
1512
1513         /* If within limits, use the saved capacity and exit estimation...*/
1514         if (cap_permille > lower && cap_permille < upper) {
1515                 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1516                 force_capacity(di);
1517                 return true;
1518         }
1519         dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1520         return false;
1521 }
1522
1523 /**
1524  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1525  * @di:         pointer to the ab8500_fg structure
1526  *
1527  * Battery capacity calculation state machine for when we're discharging
1528  */
1529 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1530 {
1531         int sleep_time;
1532
1533         /* If we change to charge mode we should start with init */
1534         if (di->charge_state != AB8500_FG_CHARGE_INIT)
1535                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1536
1537         switch (di->discharge_state) {
1538         case AB8500_FG_DISCHARGE_INIT:
1539                 /* We use the FG IRQ to work on */
1540                 di->init_cnt = 0;
1541                 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1542                 ab8500_fg_coulomb_counter(di, true);
1543                 ab8500_fg_discharge_state_to(di,
1544                         AB8500_FG_DISCHARGE_INITMEASURING);
1545
1546                 fallthrough;
1547         case AB8500_FG_DISCHARGE_INITMEASURING:
1548                 /*
1549                  * Discard a number of samples during startup.
1550                  * After that, use compensated voltage for a few
1551                  * samples to get an initial capacity.
1552                  * Then go to READOUT
1553                  */
1554                 sleep_time = di->bm->fg_params->init_timer;
1555
1556                 /* Discard the first [x] seconds */
1557                 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1558                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1559
1560                         ab8500_fg_check_capacity_limits(di, true);
1561                 }
1562
1563                 di->init_cnt += sleep_time;
1564                 if (di->init_cnt > di->bm->fg_params->init_total_time)
1565                         ab8500_fg_discharge_state_to(di,
1566                                 AB8500_FG_DISCHARGE_READOUT_INIT);
1567
1568                 break;
1569
1570         case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1571                 di->recovery_cnt = 0;
1572                 di->recovery_needed = true;
1573                 ab8500_fg_discharge_state_to(di,
1574                         AB8500_FG_DISCHARGE_RECOVERY);
1575
1576                 fallthrough;
1577
1578         case AB8500_FG_DISCHARGE_RECOVERY:
1579                 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1580
1581                 /*
1582                  * We should check the power consumption
1583                  * If low, go to READOUT (after x min) or
1584                  * RECOVERY_SLEEP if time left.
1585                  * If high, go to READOUT
1586                  */
1587                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1588
1589                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1590                         if (di->recovery_cnt >
1591                                 di->bm->fg_params->recovery_total_time) {
1592                                 di->fg_samples = SEC_TO_SAMPLE(
1593                                         di->bm->fg_params->accu_high_curr);
1594                                 ab8500_fg_coulomb_counter(di, true);
1595                                 ab8500_fg_discharge_state_to(di,
1596                                         AB8500_FG_DISCHARGE_READOUT);
1597                                 di->recovery_needed = false;
1598                         } else {
1599                                 queue_delayed_work(di->fg_wq,
1600                                         &di->fg_periodic_work,
1601                                         sleep_time * HZ);
1602                         }
1603                         di->recovery_cnt += sleep_time;
1604                 } else {
1605                         di->fg_samples = SEC_TO_SAMPLE(
1606                                 di->bm->fg_params->accu_high_curr);
1607                         ab8500_fg_coulomb_counter(di, true);
1608                         ab8500_fg_discharge_state_to(di,
1609                                 AB8500_FG_DISCHARGE_READOUT);
1610                 }
1611                 break;
1612
1613         case AB8500_FG_DISCHARGE_READOUT_INIT:
1614                 di->fg_samples = SEC_TO_SAMPLE(
1615                         di->bm->fg_params->accu_high_curr);
1616                 ab8500_fg_coulomb_counter(di, true);
1617                 ab8500_fg_discharge_state_to(di,
1618                                 AB8500_FG_DISCHARGE_READOUT);
1619                 break;
1620
1621         case AB8500_FG_DISCHARGE_READOUT:
1622                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1623
1624                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1625                         /* Detect mode change */
1626                         if (di->high_curr_mode) {
1627                                 di->high_curr_mode = false;
1628                                 di->high_curr_cnt = 0;
1629                         }
1630
1631                         if (di->recovery_needed) {
1632                                 ab8500_fg_discharge_state_to(di,
1633                                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1634
1635                                 queue_delayed_work(di->fg_wq,
1636                                         &di->fg_periodic_work, 0);
1637
1638                                 break;
1639                         }
1640
1641                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1642                 } else {
1643                         mutex_lock(&di->cc_lock);
1644                         if (!di->flags.conv_done) {
1645                                 /* Wasn't the CC IRQ that got us here */
1646                                 mutex_unlock(&di->cc_lock);
1647                                 dev_dbg(di->dev, "%s CC conv not done\n",
1648                                         __func__);
1649
1650                                 break;
1651                         }
1652                         di->flags.conv_done = false;
1653                         mutex_unlock(&di->cc_lock);
1654
1655                         /* Detect mode change */
1656                         if (!di->high_curr_mode) {
1657                                 di->high_curr_mode = true;
1658                                 di->high_curr_cnt = 0;
1659                         }
1660
1661                         di->high_curr_cnt +=
1662                                 di->bm->fg_params->accu_high_curr;
1663                         if (di->high_curr_cnt >
1664                                 di->bm->fg_params->high_curr_time)
1665                                 di->recovery_needed = true;
1666
1667                         ab8500_fg_calc_cap_discharge_fg(di);
1668                 }
1669
1670                 ab8500_fg_check_capacity_limits(di, false);
1671
1672                 break;
1673
1674         case AB8500_FG_DISCHARGE_WAKEUP:
1675                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1676
1677                 di->fg_samples = SEC_TO_SAMPLE(
1678                         di->bm->fg_params->accu_high_curr);
1679                 ab8500_fg_coulomb_counter(di, true);
1680                 ab8500_fg_discharge_state_to(di,
1681                                 AB8500_FG_DISCHARGE_READOUT);
1682
1683                 ab8500_fg_check_capacity_limits(di, false);
1684
1685                 break;
1686
1687         default:
1688                 break;
1689         }
1690 }
1691
1692 /**
1693  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1694  * @di:         pointer to the ab8500_fg structure
1695  *
1696  */
1697 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1698 {
1699         int ret;
1700
1701         switch (di->calib_state) {
1702         case AB8500_FG_CALIB_INIT:
1703                 dev_dbg(di->dev, "Calibration ongoing...\n");
1704
1705                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1706                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1707                         CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1708                 if (ret < 0)
1709                         goto err;
1710
1711                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1712                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1713                         CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1714                 if (ret < 0)
1715                         goto err;
1716                 di->calib_state = AB8500_FG_CALIB_WAIT;
1717                 break;
1718         case AB8500_FG_CALIB_END:
1719                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1720                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1721                         CC_MUXOFFSET, CC_MUXOFFSET);
1722                 if (ret < 0)
1723                         goto err;
1724                 di->flags.calibrate = false;
1725                 dev_dbg(di->dev, "Calibration done...\n");
1726                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1727                 break;
1728         case AB8500_FG_CALIB_WAIT:
1729                 dev_dbg(di->dev, "Calibration WFI\n");
1730         default:
1731                 break;
1732         }
1733         return;
1734 err:
1735         /* Something went wrong, don't calibrate then */
1736         dev_err(di->dev, "failed to calibrate the CC\n");
1737         di->flags.calibrate = false;
1738         di->calib_state = AB8500_FG_CALIB_INIT;
1739         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1740 }
1741
1742 /**
1743  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1744  * @di:         pointer to the ab8500_fg structure
1745  *
1746  * Entry point for the battery capacity calculation state machine
1747  */
1748 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1749 {
1750         if (di->flags.calibrate)
1751                 ab8500_fg_algorithm_calibrate(di);
1752         else {
1753                 if (di->flags.charging)
1754                         ab8500_fg_algorithm_charging(di);
1755                 else
1756                         ab8500_fg_algorithm_discharging(di);
1757         }
1758
1759         dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1760                 "%d %d %d %d %d %d %d\n",
1761                 di->bat_cap.max_mah_design,
1762                 di->bat_cap.max_mah,
1763                 di->bat_cap.mah,
1764                 di->bat_cap.permille,
1765                 di->bat_cap.level,
1766                 di->bat_cap.prev_mah,
1767                 di->bat_cap.prev_percent,
1768                 di->bat_cap.prev_level,
1769                 di->vbat,
1770                 di->inst_curr,
1771                 di->avg_curr,
1772                 di->accu_charge,
1773                 di->flags.charging,
1774                 di->charge_state,
1775                 di->discharge_state,
1776                 di->high_curr_mode,
1777                 di->recovery_needed);
1778 }
1779
1780 /**
1781  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1782  * @work:       pointer to the work_struct structure
1783  *
1784  * Work queue function for periodic work
1785  */
1786 static void ab8500_fg_periodic_work(struct work_struct *work)
1787 {
1788         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1789                 fg_periodic_work.work);
1790
1791         if (di->init_capacity) {
1792                 /* Get an initial capacity calculation */
1793                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1794                 ab8500_fg_check_capacity_limits(di, true);
1795                 di->init_capacity = false;
1796
1797                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1798         } else if (di->flags.user_cap) {
1799                 if (check_sysfs_capacity(di)) {
1800                         ab8500_fg_check_capacity_limits(di, true);
1801                         if (di->flags.charging)
1802                                 ab8500_fg_charge_state_to(di,
1803                                         AB8500_FG_CHARGE_INIT);
1804                         else
1805                                 ab8500_fg_discharge_state_to(di,
1806                                         AB8500_FG_DISCHARGE_READOUT_INIT);
1807                 }
1808                 di->flags.user_cap = false;
1809                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1810         } else
1811                 ab8500_fg_algorithm(di);
1812
1813 }
1814
1815 /**
1816  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1817  * @work:       pointer to the work_struct structure
1818  *
1819  * Work queue function for checking the OVV_BAT condition
1820  */
1821 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1822 {
1823         int ret;
1824         u8 reg_value;
1825
1826         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1827                 fg_check_hw_failure_work.work);
1828
1829         /*
1830          * If we have had a battery over-voltage situation,
1831          * check ovv-bit to see if it should be reset.
1832          */
1833         ret = abx500_get_register_interruptible(di->dev,
1834                 AB8500_CHARGER, AB8500_CH_STAT_REG,
1835                 &reg_value);
1836         if (ret < 0) {
1837                 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1838                 return;
1839         }
1840         if ((reg_value & BATT_OVV) == BATT_OVV) {
1841                 if (!di->flags.bat_ovv) {
1842                         dev_dbg(di->dev, "Battery OVV\n");
1843                         di->flags.bat_ovv = true;
1844                         power_supply_changed(di->fg_psy);
1845                 }
1846                 /* Not yet recovered from ovv, reschedule this test */
1847                 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1848                                    HZ);
1849                 } else {
1850                         dev_dbg(di->dev, "Battery recovered from OVV\n");
1851                         di->flags.bat_ovv = false;
1852                         power_supply_changed(di->fg_psy);
1853         }
1854 }
1855
1856 /**
1857  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1858  * @work:       pointer to the work_struct structure
1859  *
1860  * Work queue function for checking the LOW_BAT condition
1861  */
1862 static void ab8500_fg_low_bat_work(struct work_struct *work)
1863 {
1864         int vbat;
1865
1866         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1867                 fg_low_bat_work.work);
1868
1869         vbat = ab8500_fg_bat_voltage(di);
1870
1871         /* Check if LOW_BAT still fulfilled */
1872         if (vbat < di->bm->fg_params->lowbat_threshold) {
1873                 /* Is it time to shut down? */
1874                 if (di->low_bat_cnt < 1) {
1875                         di->flags.low_bat = true;
1876                         dev_warn(di->dev, "Shut down pending...\n");
1877                 } else {
1878                         /*
1879                         * Else we need to re-schedule this check to be able to detect
1880                         * if the voltage increases again during charging or
1881                         * due to decreasing load.
1882                         */
1883                         di->low_bat_cnt--;
1884                         dev_warn(di->dev, "Battery voltage still LOW\n");
1885                         queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1886                                 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1887                 }
1888         } else {
1889                 di->flags.low_bat_delay = false;
1890                 di->low_bat_cnt = 10;
1891                 dev_warn(di->dev, "Battery voltage OK again\n");
1892         }
1893
1894         /* This is needed to dispatch LOW_BAT */
1895         ab8500_fg_check_capacity_limits(di, false);
1896 }
1897
1898 /**
1899  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1900  * to the target voltage.
1901  * @di:       pointer to the ab8500_fg structure
1902  * @target:   target voltage
1903  *
1904  * Returns bit pattern closest to the target voltage
1905  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1906  */
1907
1908 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1909 {
1910         if (target > BATT_OK_MIN +
1911                 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1912                 return BATT_OK_MAX_NR_INCREMENTS;
1913         if (target < BATT_OK_MIN)
1914                 return 0;
1915         return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1916 }
1917
1918 /**
1919  * ab8500_fg_battok_init_hw_register - init battok levels
1920  * @di:       pointer to the ab8500_fg structure
1921  *
1922  */
1923
1924 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1925 {
1926         int selected;
1927         int sel0;
1928         int sel1;
1929         int cbp_sel0;
1930         int cbp_sel1;
1931         int ret;
1932         int new_val;
1933
1934         sel0 = di->bm->fg_params->battok_falling_th_sel0;
1935         sel1 = di->bm->fg_params->battok_raising_th_sel1;
1936
1937         cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1938         cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1939
1940         selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1941
1942         if (selected != sel0)
1943                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1944                         sel0, selected, cbp_sel0);
1945
1946         selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1947
1948         if (selected != sel1)
1949                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1950                         sel1, selected, cbp_sel1);
1951
1952         new_val = cbp_sel0 | (cbp_sel1 << 4);
1953
1954         dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1955         ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1956                 AB8500_BATT_OK_REG, new_val);
1957         return ret;
1958 }
1959
1960 /**
1961  * ab8500_fg_instant_work() - Run the FG state machine instantly
1962  * @work:       pointer to the work_struct structure
1963  *
1964  * Work queue function for instant work
1965  */
1966 static void ab8500_fg_instant_work(struct work_struct *work)
1967 {
1968         struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1969
1970         ab8500_fg_algorithm(di);
1971 }
1972
1973 /**
1974  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1975  * @irq:       interrupt number
1976  * @_di:       pointer to the ab8500_fg structure
1977  *
1978  * Returns IRQ status(IRQ_HANDLED)
1979  */
1980 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1981 {
1982         struct ab8500_fg *di = _di;
1983         if (!di->nbr_cceoc_irq_cnt) {
1984                 di->nbr_cceoc_irq_cnt++;
1985                 complete(&di->ab8500_fg_started);
1986         } else {
1987                 di->nbr_cceoc_irq_cnt = 0;
1988                 complete(&di->ab8500_fg_complete);
1989         }
1990         return IRQ_HANDLED;
1991 }
1992
1993 /**
1994  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
1995  * @irq:       interrupt number
1996  * @_di:       pointer to the ab8500_fg structure
1997  *
1998  * Returns IRQ status(IRQ_HANDLED)
1999  */
2000 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2001 {
2002         struct ab8500_fg *di = _di;
2003         di->calib_state = AB8500_FG_CALIB_END;
2004         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2005         return IRQ_HANDLED;
2006 }
2007
2008 /**
2009  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2010  * @irq:       interrupt number
2011  * @_di:       pointer to the ab8500_fg structure
2012  *
2013  * Returns IRQ status(IRQ_HANDLED)
2014  */
2015 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2016 {
2017         struct ab8500_fg *di = _di;
2018
2019         queue_work(di->fg_wq, &di->fg_acc_cur_work);
2020
2021         return IRQ_HANDLED;
2022 }
2023
2024 /**
2025  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2026  * @irq:       interrupt number
2027  * @_di:       pointer to the ab8500_fg structure
2028  *
2029  * Returns IRQ status(IRQ_HANDLED)
2030  */
2031 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2032 {
2033         struct ab8500_fg *di = _di;
2034
2035         dev_dbg(di->dev, "Battery OVV\n");
2036
2037         /* Schedule a new HW failure check */
2038         queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2039
2040         return IRQ_HANDLED;
2041 }
2042
2043 /**
2044  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2045  * @irq:       interrupt number
2046  * @_di:       pointer to the ab8500_fg structure
2047  *
2048  * Returns IRQ status(IRQ_HANDLED)
2049  */
2050 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2051 {
2052         struct ab8500_fg *di = _di;
2053
2054         /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2055         if (!di->flags.low_bat_delay) {
2056                 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2057                 di->flags.low_bat_delay = true;
2058                 /*
2059                  * Start a timer to check LOW_BAT again after some time
2060                  * This is done to avoid shutdown on single voltage dips
2061                  */
2062                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2063                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
2064         }
2065         return IRQ_HANDLED;
2066 }
2067
2068 /**
2069  * ab8500_fg_get_property() - get the fg properties
2070  * @psy:        pointer to the power_supply structure
2071  * @psp:        pointer to the power_supply_property structure
2072  * @val:        pointer to the power_supply_propval union
2073  *
2074  * This function gets called when an application tries to get the
2075  * fg properties by reading the sysfs files.
2076  * voltage_now:         battery voltage
2077  * current_now:         battery instant current
2078  * current_avg:         battery average current
2079  * charge_full_design:  capacity where battery is considered full
2080  * charge_now:          battery capacity in nAh
2081  * capacity:            capacity in percent
2082  * capacity_level:      capacity level
2083  *
2084  * Returns error code in case of failure else 0 on success
2085  */
2086 static int ab8500_fg_get_property(struct power_supply *psy,
2087         enum power_supply_property psp,
2088         union power_supply_propval *val)
2089 {
2090         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2091
2092         /*
2093          * If battery is identified as unknown and charging of unknown
2094          * batteries is disabled, we always report 100% capacity and
2095          * capacity level UNKNOWN, since we can't calculate
2096          * remaining capacity
2097          */
2098
2099         switch (psp) {
2100         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2101                 if (di->flags.bat_ovv)
2102                         val->intval = BATT_OVV_VALUE * 1000;
2103                 else
2104                         val->intval = di->vbat * 1000;
2105                 break;
2106         case POWER_SUPPLY_PROP_CURRENT_NOW:
2107                 val->intval = di->inst_curr * 1000;
2108                 break;
2109         case POWER_SUPPLY_PROP_CURRENT_AVG:
2110                 val->intval = di->avg_curr * 1000;
2111                 break;
2112         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2113                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2114                                 di->bat_cap.max_mah_design);
2115                 break;
2116         case POWER_SUPPLY_PROP_ENERGY_FULL:
2117                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2118                                 di->bat_cap.max_mah);
2119                 break;
2120         case POWER_SUPPLY_PROP_ENERGY_NOW:
2121                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2122                                 di->flags.batt_id_received)
2123                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2124                                         di->bat_cap.max_mah);
2125                 else
2126                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2127                                         di->bat_cap.prev_mah);
2128                 break;
2129         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2130                 val->intval = di->bat_cap.max_mah_design;
2131                 break;
2132         case POWER_SUPPLY_PROP_CHARGE_FULL:
2133                 val->intval = di->bat_cap.max_mah;
2134                 break;
2135         case POWER_SUPPLY_PROP_CHARGE_NOW:
2136                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2137                                 di->flags.batt_id_received)
2138                         val->intval = di->bat_cap.max_mah;
2139                 else
2140                         val->intval = di->bat_cap.prev_mah;
2141                 break;
2142         case POWER_SUPPLY_PROP_CAPACITY:
2143                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2144                                 di->flags.batt_id_received)
2145                         val->intval = 100;
2146                 else
2147                         val->intval = di->bat_cap.prev_percent;
2148                 break;
2149         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2150                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2151                                 di->flags.batt_id_received)
2152                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2153                 else
2154                         val->intval = di->bat_cap.prev_level;
2155                 break;
2156         default:
2157                 return -EINVAL;
2158         }
2159         return 0;
2160 }
2161
2162 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2163 {
2164         struct power_supply *psy;
2165         struct power_supply *ext = dev_get_drvdata(dev);
2166         const char **supplicants = (const char **)ext->supplied_to;
2167         struct ab8500_fg *di;
2168         union power_supply_propval ret;
2169         int j;
2170
2171         psy = (struct power_supply *)data;
2172         di = power_supply_get_drvdata(psy);
2173
2174         /*
2175          * For all psy where the name of your driver
2176          * appears in any supplied_to
2177          */
2178         j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2179         if (j < 0)
2180                 return 0;
2181
2182         /* Go through all properties for the psy */
2183         for (j = 0; j < ext->desc->num_properties; j++) {
2184                 enum power_supply_property prop;
2185                 prop = ext->desc->properties[j];
2186
2187                 if (power_supply_get_property(ext, prop, &ret))
2188                         continue;
2189
2190                 switch (prop) {
2191                 case POWER_SUPPLY_PROP_STATUS:
2192                         switch (ext->desc->type) {
2193                         case POWER_SUPPLY_TYPE_BATTERY:
2194                                 switch (ret.intval) {
2195                                 case POWER_SUPPLY_STATUS_UNKNOWN:
2196                                 case POWER_SUPPLY_STATUS_DISCHARGING:
2197                                 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2198                                         if (!di->flags.charging)
2199                                                 break;
2200                                         di->flags.charging = false;
2201                                         di->flags.fully_charged = false;
2202                                         if (di->bm->capacity_scaling)
2203                                                 ab8500_fg_update_cap_scalers(di);
2204                                         queue_work(di->fg_wq, &di->fg_work);
2205                                         break;
2206                                 case POWER_SUPPLY_STATUS_FULL:
2207                                         if (di->flags.fully_charged)
2208                                                 break;
2209                                         di->flags.fully_charged = true;
2210                                         di->flags.force_full = true;
2211                                         /* Save current capacity as maximum */
2212                                         di->bat_cap.max_mah = di->bat_cap.mah;
2213                                         queue_work(di->fg_wq, &di->fg_work);
2214                                         break;
2215                                 case POWER_SUPPLY_STATUS_CHARGING:
2216                                         if (di->flags.charging &&
2217                                                 !di->flags.fully_charged)
2218                                                 break;
2219                                         di->flags.charging = true;
2220                                         di->flags.fully_charged = false;
2221                                         if (di->bm->capacity_scaling)
2222                                                 ab8500_fg_update_cap_scalers(di);
2223                                         queue_work(di->fg_wq, &di->fg_work);
2224                                         break;
2225                                 }
2226                         default:
2227                                 break;
2228                         }
2229                         break;
2230                 case POWER_SUPPLY_PROP_TECHNOLOGY:
2231                         switch (ext->desc->type) {
2232                         case POWER_SUPPLY_TYPE_BATTERY:
2233                                 if (!di->flags.batt_id_received &&
2234                                     di->bm->batt_id != BATTERY_UNKNOWN) {
2235                                         const struct abx500_battery_type *b;
2236
2237                                         b = &(di->bm->bat_type[di->bm->batt_id]);
2238
2239                                         di->flags.batt_id_received = true;
2240
2241                                         di->bat_cap.max_mah_design =
2242                                                 MILLI_TO_MICRO *
2243                                                 b->charge_full_design;
2244
2245                                         di->bat_cap.max_mah =
2246                                                 di->bat_cap.max_mah_design;
2247
2248                                         di->vbat_nom = b->nominal_voltage;
2249                                 }
2250
2251                                 if (ret.intval)
2252                                         di->flags.batt_unknown = false;
2253                                 else
2254                                         di->flags.batt_unknown = true;
2255                                 break;
2256                         default:
2257                                 break;
2258                         }
2259                         break;
2260                 case POWER_SUPPLY_PROP_TEMP:
2261                         switch (ext->desc->type) {
2262                         case POWER_SUPPLY_TYPE_BATTERY:
2263                                 if (di->flags.batt_id_received)
2264                                         di->bat_temp = ret.intval;
2265                                 break;
2266                         default:
2267                                 break;
2268                         }
2269                         break;
2270                 default:
2271                         break;
2272                 }
2273         }
2274         return 0;
2275 }
2276
2277 /**
2278  * ab8500_fg_init_hw_registers() - Set up FG related registers
2279  * @di:         pointer to the ab8500_fg structure
2280  *
2281  * Set up battery OVV, low battery voltage registers
2282  */
2283 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2284 {
2285         int ret;
2286
2287         /* Set VBAT OVV threshold */
2288         ret = abx500_mask_and_set_register_interruptible(di->dev,
2289                 AB8500_CHARGER,
2290                 AB8500_BATT_OVV,
2291                 BATT_OVV_TH_4P75,
2292                 BATT_OVV_TH_4P75);
2293         if (ret) {
2294                 dev_err(di->dev, "failed to set BATT_OVV\n");
2295                 goto out;
2296         }
2297
2298         /* Enable VBAT OVV detection */
2299         ret = abx500_mask_and_set_register_interruptible(di->dev,
2300                 AB8500_CHARGER,
2301                 AB8500_BATT_OVV,
2302                 BATT_OVV_ENA,
2303                 BATT_OVV_ENA);
2304         if (ret) {
2305                 dev_err(di->dev, "failed to enable BATT_OVV\n");
2306                 goto out;
2307         }
2308
2309         /* Low Battery Voltage */
2310         ret = abx500_set_register_interruptible(di->dev,
2311                 AB8500_SYS_CTRL2_BLOCK,
2312                 AB8500_LOW_BAT_REG,
2313                 ab8500_volt_to_regval(
2314                         di->bm->fg_params->lowbat_threshold) << 1 |
2315                 LOW_BAT_ENABLE);
2316         if (ret) {
2317                 dev_err(di->dev, "%s write failed\n", __func__);
2318                 goto out;
2319         }
2320
2321         /* Battery OK threshold */
2322         ret = ab8500_fg_battok_init_hw_register(di);
2323         if (ret) {
2324                 dev_err(di->dev, "BattOk init write failed.\n");
2325                 goto out;
2326         }
2327
2328         if (is_ab8505(di->parent)) {
2329                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2330                         AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2331
2332                 if (ret) {
2333                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2334                         goto out;
2335                 }
2336
2337                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2338                         AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2339
2340                 if (ret) {
2341                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2342                         goto out;
2343                 }
2344
2345                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2346                         AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2347
2348                 if (ret) {
2349                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2350                         goto out;
2351                 }
2352
2353                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2354                         AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2355
2356                 if (ret) {
2357                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2358                         goto out;
2359                 }
2360
2361                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2362                         AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2363
2364                 if (ret) {
2365                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2366                         goto out;
2367                 }
2368         }
2369 out:
2370         return ret;
2371 }
2372
2373 /**
2374  * ab8500_fg_external_power_changed() - callback for power supply changes
2375  * @psy:       pointer to the structure power_supply
2376  *
2377  * This function is the entry point of the pointer external_power_changed
2378  * of the structure power_supply.
2379  * This function gets executed when there is a change in any external power
2380  * supply that this driver needs to be notified of.
2381  */
2382 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2383 {
2384         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2385
2386         class_for_each_device(power_supply_class, NULL,
2387                 di->fg_psy, ab8500_fg_get_ext_psy_data);
2388 }
2389
2390 /**
2391  * ab8500_fg_reinit_work() - work to reset the FG algorithm
2392  * @work:       pointer to the work_struct structure
2393  *
2394  * Used to reset the current battery capacity to be able to
2395  * retrigger a new voltage base capacity calculation. For
2396  * test and verification purpose.
2397  */
2398 static void ab8500_fg_reinit_work(struct work_struct *work)
2399 {
2400         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2401                 fg_reinit_work.work);
2402
2403         if (!di->flags.calibrate) {
2404                 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2405                 ab8500_fg_clear_cap_samples(di);
2406                 ab8500_fg_calc_cap_discharge_voltage(di, true);
2407                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2408                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2409                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2410
2411         } else {
2412                 dev_err(di->dev, "Residual offset calibration ongoing "
2413                         "retrying..\n");
2414                 /* Wait one second until next try*/
2415                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2416                         round_jiffies(1));
2417         }
2418 }
2419
2420 /* Exposure to the sysfs interface */
2421
2422 struct ab8500_fg_sysfs_entry {
2423         struct attribute attr;
2424         ssize_t (*show)(struct ab8500_fg *, char *);
2425         ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2426 };
2427
2428 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2429 {
2430         return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2431 }
2432
2433 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2434                                  size_t count)
2435 {
2436         unsigned long charge_full;
2437         int ret;
2438
2439         ret = kstrtoul(buf, 10, &charge_full);
2440         if (ret)
2441                 return ret;
2442
2443         di->bat_cap.max_mah = (int) charge_full;
2444         return count;
2445 }
2446
2447 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2448 {
2449         return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2450 }
2451
2452 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2453                                  size_t count)
2454 {
2455         unsigned long charge_now;
2456         int ret;
2457
2458         ret = kstrtoul(buf, 10, &charge_now);
2459         if (ret)
2460                 return ret;
2461
2462         di->bat_cap.user_mah = (int) charge_now;
2463         di->flags.user_cap = true;
2464         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2465         return count;
2466 }
2467
2468 static struct ab8500_fg_sysfs_entry charge_full_attr =
2469         __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2470
2471 static struct ab8500_fg_sysfs_entry charge_now_attr =
2472         __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2473
2474 static ssize_t
2475 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2476 {
2477         struct ab8500_fg_sysfs_entry *entry;
2478         struct ab8500_fg *di;
2479
2480         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2481         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2482
2483         if (!entry->show)
2484                 return -EIO;
2485
2486         return entry->show(di, buf);
2487 }
2488 static ssize_t
2489 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2490                 size_t count)
2491 {
2492         struct ab8500_fg_sysfs_entry *entry;
2493         struct ab8500_fg *di;
2494
2495         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2496         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2497
2498         if (!entry->store)
2499                 return -EIO;
2500
2501         return entry->store(di, buf, count);
2502 }
2503
2504 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2505         .show = ab8500_fg_show,
2506         .store = ab8500_fg_store,
2507 };
2508
2509 static struct attribute *ab8500_fg_attrs[] = {
2510         &charge_full_attr.attr,
2511         &charge_now_attr.attr,
2512         NULL,
2513 };
2514
2515 static struct kobj_type ab8500_fg_ktype = {
2516         .sysfs_ops = &ab8500_fg_sysfs_ops,
2517         .default_attrs = ab8500_fg_attrs,
2518 };
2519
2520 /**
2521  * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2522  * @di:                pointer to the struct ab8500_chargalg
2523  *
2524  * This function removes the entry in sysfs.
2525  */
2526 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2527 {
2528         kobject_del(&di->fg_kobject);
2529 }
2530
2531 /**
2532  * ab8500_fg_sysfs_init() - init of sysfs entry
2533  * @di:                pointer to the struct ab8500_chargalg
2534  *
2535  * This function adds an entry in sysfs.
2536  * Returns error code in case of failure else 0(on success)
2537  */
2538 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2539 {
2540         int ret = 0;
2541
2542         ret = kobject_init_and_add(&di->fg_kobject,
2543                 &ab8500_fg_ktype,
2544                 NULL, "battery");
2545         if (ret < 0)
2546                 dev_err(di->dev, "failed to create sysfs entry\n");
2547
2548         return ret;
2549 }
2550
2551 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2552                              struct device_attribute *attr,
2553                              char *buf)
2554 {
2555         int ret;
2556         u8 reg_value;
2557         struct power_supply *psy = dev_get_drvdata(dev);
2558         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2559
2560         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2561                 AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2562
2563         if (ret < 0) {
2564                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2565                 goto fail;
2566         }
2567
2568         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2569
2570 fail:
2571         return ret;
2572 }
2573
2574 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2575                                   struct device_attribute *attr,
2576                                   const char *buf, size_t count)
2577 {
2578         int ret;
2579         int reg_value;
2580         struct power_supply *psy = dev_get_drvdata(dev);
2581         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2582
2583         if (kstrtoint(buf, 10, &reg_value))
2584                 goto fail;
2585
2586         if (reg_value > 0x7F) {
2587                 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2588                 goto fail;
2589         }
2590
2591         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2592                 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2593
2594         if (ret < 0)
2595                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2596
2597 fail:
2598         return count;
2599 }
2600
2601 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2602                              struct device_attribute *attr,
2603                              char *buf)
2604 {
2605         int ret;
2606         u8 reg_value;
2607         struct power_supply *psy = dev_get_drvdata(dev);
2608         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2609
2610         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2611                 AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2612
2613         if (ret < 0) {
2614                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2615                 goto fail;
2616         }
2617
2618         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2619
2620 fail:
2621         return ret;
2622
2623 }
2624
2625 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2626                                   struct device_attribute *attr,
2627                                   const char *buf, size_t count)
2628 {
2629         int ret;
2630         int reg_value;
2631         struct power_supply *psy = dev_get_drvdata(dev);
2632         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2633
2634         if (kstrtoint(buf, 10, &reg_value))
2635                 goto fail;
2636
2637         if (reg_value > 0x7F) {
2638                 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2639                 goto fail;
2640         }
2641
2642         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2643                 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2644
2645         if (ret < 0)
2646                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2647
2648 fail:
2649         return count;
2650 }
2651
2652 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2653                              struct device_attribute *attr,
2654                              char *buf)
2655 {
2656         int ret;
2657         u8 reg_value;
2658         struct power_supply *psy = dev_get_drvdata(dev);
2659         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2660
2661         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2662                 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2663
2664         if (ret < 0) {
2665                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2666                 goto fail;
2667         }
2668
2669         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2670
2671 fail:
2672         return ret;
2673 }
2674
2675 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2676                                              struct device_attribute *attr,
2677                                              const char *buf, size_t count)
2678 {
2679         int ret;
2680         int reg_value;
2681         struct power_supply *psy = dev_get_drvdata(dev);
2682         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2683
2684         if (kstrtoint(buf, 10, &reg_value))
2685                 goto fail;
2686
2687         if (reg_value > 0xF) {
2688                 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2689                 goto fail;
2690         }
2691
2692         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2693                                                 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2694
2695         if (ret < 0)
2696                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2697
2698 fail:
2699         return count;
2700
2701 }
2702
2703 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2704                                           struct device_attribute *attr,
2705                                           char *buf)
2706 {
2707         int ret;
2708         u8 reg_value;
2709         struct power_supply *psy = dev_get_drvdata(dev);
2710         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2711
2712         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2713                                                 AB8505_RTC_PCUT_TIME_REG, &reg_value);
2714
2715         if (ret < 0) {
2716                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2717                 goto fail;
2718         }
2719
2720         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2721
2722 fail:
2723         return ret;
2724 }
2725
2726 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2727                                                     struct device_attribute *attr,
2728                                                     char *buf)
2729 {
2730         int ret;
2731         u8 reg_value;
2732         struct power_supply *psy = dev_get_drvdata(dev);
2733         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2734
2735         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2736                                                 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2737
2738         if (ret < 0) {
2739                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2740                 goto fail;
2741         }
2742
2743         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2744
2745 fail:
2746         return ret;
2747 }
2748
2749 static ssize_t ab8505_powercut_read(struct device *dev,
2750                                     struct device_attribute *attr,
2751                                     char *buf)
2752 {
2753         int ret;
2754         u8 reg_value;
2755         struct power_supply *psy = dev_get_drvdata(dev);
2756         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2757
2758         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2759                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2760
2761         if (ret < 0)
2762                 goto fail;
2763
2764         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2765
2766 fail:
2767         return ret;
2768 }
2769
2770 static ssize_t ab8505_powercut_write(struct device *dev,
2771                                      struct device_attribute *attr,
2772                                      const char *buf, size_t count)
2773 {
2774         int ret;
2775         int reg_value;
2776         struct power_supply *psy = dev_get_drvdata(dev);
2777         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2778
2779         if (kstrtoint(buf, 10, &reg_value))
2780                 goto fail;
2781
2782         if (reg_value > 0x1) {
2783                 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2784                 goto fail;
2785         }
2786
2787         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2788                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2789
2790         if (ret < 0)
2791                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2792
2793 fail:
2794         return count;
2795 }
2796
2797 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2798                                          struct device_attribute *attr,
2799                                          char *buf)
2800 {
2801
2802         int ret;
2803         u8 reg_value;
2804         struct power_supply *psy = dev_get_drvdata(dev);
2805         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2806
2807         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2808                                                 AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2809
2810         if (ret < 0) {
2811                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2812                 goto fail;
2813         }
2814
2815         return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2816
2817 fail:
2818         return ret;
2819 }
2820
2821 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2822                                              struct device_attribute *attr,
2823                                              char *buf)
2824 {
2825         int ret;
2826         u8 reg_value;
2827         struct power_supply *psy = dev_get_drvdata(dev);
2828         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2829
2830         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2831                                                 AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2832
2833         if (ret < 0) {
2834                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2835                 goto fail;
2836         }
2837
2838         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2839
2840 fail:
2841         return ret;
2842 }
2843
2844 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2845                                               struct device_attribute *attr,
2846                                               const char *buf, size_t count)
2847 {
2848         int ret;
2849         int reg_value;
2850         struct power_supply *psy = dev_get_drvdata(dev);
2851         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2852
2853         if (kstrtoint(buf, 10, &reg_value))
2854                 goto fail;
2855
2856         if (reg_value > 0x7) {
2857                 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2858                 goto fail;
2859         }
2860
2861         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2862                                                 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2863
2864         if (ret < 0)
2865                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2866
2867 fail:
2868         return count;
2869 }
2870
2871 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2872                                                   struct device_attribute *attr,
2873                                                   char *buf)
2874 {
2875         int ret;
2876         u8 reg_value;
2877         struct power_supply *psy = dev_get_drvdata(dev);
2878         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2879
2880         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2881                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2882
2883         if (ret < 0) {
2884                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2885                 goto fail;
2886         }
2887
2888         return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2889
2890 fail:
2891         return ret;
2892 }
2893
2894 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2895         __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2896                 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2897         __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2898                 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2899         __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2900                 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2901         __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2902         __ATTR(powercut_restart_counter, S_IRUGO,
2903                 ab8505_powercut_restart_counter_read, NULL),
2904         __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2905                 ab8505_powercut_read, ab8505_powercut_write),
2906         __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2907         __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2908                 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2909         __ATTR(powercut_enable_status, S_IRUGO,
2910                 ab8505_powercut_enable_status_read, NULL),
2911 };
2912
2913 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2914 {
2915         unsigned int i;
2916
2917         if (is_ab8505(di->parent)) {
2918                 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2919                         if (device_create_file(&di->fg_psy->dev,
2920                                                &ab8505_fg_sysfs_psy_attrs[i]))
2921                                 goto sysfs_psy_create_attrs_failed_ab8505;
2922         }
2923         return 0;
2924 sysfs_psy_create_attrs_failed_ab8505:
2925         dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2926         while (i--)
2927                 device_remove_file(&di->fg_psy->dev,
2928                                    &ab8505_fg_sysfs_psy_attrs[i]);
2929
2930         return -EIO;
2931 }
2932
2933 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2934 {
2935         unsigned int i;
2936
2937         if (is_ab8505(di->parent)) {
2938                 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2939                         (void)device_remove_file(&di->fg_psy->dev,
2940                                                  &ab8505_fg_sysfs_psy_attrs[i]);
2941         }
2942 }
2943
2944 /* Exposure to the sysfs interface <<END>> */
2945
2946 static int __maybe_unused ab8500_fg_resume(struct device *dev)
2947 {
2948         struct ab8500_fg *di = dev_get_drvdata(dev);
2949
2950         /*
2951          * Change state if we're not charging. If we're charging we will wake
2952          * up on the FG IRQ
2953          */
2954         if (!di->flags.charging) {
2955                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2956                 queue_work(di->fg_wq, &di->fg_work);
2957         }
2958
2959         return 0;
2960 }
2961
2962 static int __maybe_unused ab8500_fg_suspend(struct device *dev)
2963 {
2964         struct ab8500_fg *di = dev_get_drvdata(dev);
2965
2966         flush_delayed_work(&di->fg_periodic_work);
2967         flush_work(&di->fg_work);
2968         flush_work(&di->fg_acc_cur_work);
2969         flush_delayed_work(&di->fg_reinit_work);
2970         flush_delayed_work(&di->fg_low_bat_work);
2971         flush_delayed_work(&di->fg_check_hw_failure_work);
2972
2973         /*
2974          * If the FG is enabled we will disable it before going to suspend
2975          * only if we're not charging
2976          */
2977         if (di->flags.fg_enabled && !di->flags.charging)
2978                 ab8500_fg_coulomb_counter(di, false);
2979
2980         return 0;
2981 }
2982
2983 static int ab8500_fg_remove(struct platform_device *pdev)
2984 {
2985         int ret = 0;
2986         struct ab8500_fg *di = platform_get_drvdata(pdev);
2987
2988         list_del(&di->node);
2989
2990         /* Disable coulomb counter */
2991         ret = ab8500_fg_coulomb_counter(di, false);
2992         if (ret)
2993                 dev_err(di->dev, "failed to disable coulomb counter\n");
2994
2995         destroy_workqueue(di->fg_wq);
2996         ab8500_fg_sysfs_exit(di);
2997
2998         flush_scheduled_work();
2999         ab8500_fg_sysfs_psy_remove_attrs(di);
3000         power_supply_unregister(di->fg_psy);
3001         return ret;
3002 }
3003
3004 /* ab8500 fg driver interrupts and their respective isr */
3005 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
3006         {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3007         {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3008         {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3009         {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3010         {"CCEOC", ab8500_fg_cc_data_end_handler},
3011 };
3012
3013 static char *supply_interface[] = {
3014         "ab8500_chargalg",
3015         "ab8500_usb",
3016 };
3017
3018 static const struct power_supply_desc ab8500_fg_desc = {
3019         .name                   = "ab8500_fg",
3020         .type                   = POWER_SUPPLY_TYPE_BATTERY,
3021         .properties             = ab8500_fg_props,
3022         .num_properties         = ARRAY_SIZE(ab8500_fg_props),
3023         .get_property           = ab8500_fg_get_property,
3024         .external_power_changed = ab8500_fg_external_power_changed,
3025 };
3026
3027 static int ab8500_fg_probe(struct platform_device *pdev)
3028 {
3029         struct device_node *np = pdev->dev.of_node;
3030         struct power_supply_config psy_cfg = {};
3031         struct device *dev = &pdev->dev;
3032         struct ab8500_fg *di;
3033         int i, irq;
3034         int ret = 0;
3035
3036         di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL);
3037         if (!di)
3038                 return -ENOMEM;
3039
3040         di->bm = &ab8500_bm_data;
3041
3042         ret = ab8500_bm_of_probe(dev, np, di->bm);
3043         if (ret) {
3044                 dev_err(dev, "failed to get battery information\n");
3045                 return ret;
3046         }
3047
3048         mutex_init(&di->cc_lock);
3049
3050         /* get parent data */
3051         di->dev = dev;
3052         di->parent = dev_get_drvdata(pdev->dev.parent);
3053
3054         di->main_bat_v = devm_iio_channel_get(dev, "main_bat_v");
3055         if (IS_ERR(di->main_bat_v)) {
3056                 ret = dev_err_probe(dev, PTR_ERR(di->main_bat_v),
3057                                     "failed to get main battery ADC channel\n");
3058                 return ret;
3059         }
3060
3061         psy_cfg.supplied_to = supply_interface;
3062         psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3063         psy_cfg.drv_data = di;
3064
3065         di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3066                 di->bm->bat_type[di->bm->batt_id].charge_full_design;
3067
3068         di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3069
3070         di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3071
3072         di->init_capacity = true;
3073
3074         ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3075         ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3076
3077         /* Create a work queue for running the FG algorithm */
3078         di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3079         if (di->fg_wq == NULL) {
3080                 dev_err(dev, "failed to create work queue\n");
3081                 return -ENOMEM;
3082         }
3083
3084         /* Init work for running the fg algorithm instantly */
3085         INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3086
3087         /* Init work for getting the battery accumulated current */
3088         INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3089
3090         /* Init work for reinitialising the fg algorithm */
3091         INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3092                 ab8500_fg_reinit_work);
3093
3094         /* Work delayed Queue to run the state machine */
3095         INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3096                 ab8500_fg_periodic_work);
3097
3098         /* Work to check low battery condition */
3099         INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3100                 ab8500_fg_low_bat_work);
3101
3102         /* Init work for HW failure check */
3103         INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3104                 ab8500_fg_check_hw_failure_work);
3105
3106         /* Reset battery low voltage flag */
3107         di->flags.low_bat = false;
3108
3109         /* Initialize low battery counter */
3110         di->low_bat_cnt = 10;
3111
3112         /* Initialize OVV, and other registers */
3113         ret = ab8500_fg_init_hw_registers(di);
3114         if (ret) {
3115                 dev_err(dev, "failed to initialize registers\n");
3116                 goto free_inst_curr_wq;
3117         }
3118
3119         /* Consider battery unknown until we're informed otherwise */
3120         di->flags.batt_unknown = true;
3121         di->flags.batt_id_received = false;
3122
3123         /* Register FG power supply class */
3124         di->fg_psy = power_supply_register(dev, &ab8500_fg_desc, &psy_cfg);
3125         if (IS_ERR(di->fg_psy)) {
3126                 dev_err(dev, "failed to register FG psy\n");
3127                 ret = PTR_ERR(di->fg_psy);
3128                 goto free_inst_curr_wq;
3129         }
3130
3131         di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3132         ab8500_fg_coulomb_counter(di, true);
3133
3134         /*
3135          * Initialize completion used to notify completion and start
3136          * of inst current
3137          */
3138         init_completion(&di->ab8500_fg_started);
3139         init_completion(&di->ab8500_fg_complete);
3140
3141         /* Register primary interrupt handlers */
3142         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3143                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3144                 if (irq < 0) {
3145                         ret = irq;
3146                         goto free_irq;
3147                 }
3148
3149                 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
3150                                   IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3151                                   ab8500_fg_irq[i].name, di);
3152
3153                 if (ret != 0) {
3154                         dev_err(dev, "failed to request %s IRQ %d: %d\n",
3155                                 ab8500_fg_irq[i].name, irq, ret);
3156                         goto free_irq;
3157                 }
3158                 dev_dbg(dev, "Requested %s IRQ %d: %d\n",
3159                         ab8500_fg_irq[i].name, irq, ret);
3160         }
3161
3162         di->irq = platform_get_irq_byname(pdev, "CCEOC");
3163         disable_irq(di->irq);
3164         di->nbr_cceoc_irq_cnt = 0;
3165
3166         platform_set_drvdata(pdev, di);
3167
3168         ret = ab8500_fg_sysfs_init(di);
3169         if (ret) {
3170                 dev_err(dev, "failed to create sysfs entry\n");
3171                 goto free_irq;
3172         }
3173
3174         ret = ab8500_fg_sysfs_psy_create_attrs(di);
3175         if (ret) {
3176                 dev_err(dev, "failed to create FG psy\n");
3177                 ab8500_fg_sysfs_exit(di);
3178                 goto free_irq;
3179         }
3180
3181         /* Calibrate the fg first time */
3182         di->flags.calibrate = true;
3183         di->calib_state = AB8500_FG_CALIB_INIT;
3184
3185         /* Use room temp as default value until we get an update from driver. */
3186         di->bat_temp = 210;
3187
3188         /* Run the FG algorithm */
3189         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3190
3191         list_add_tail(&di->node, &ab8500_fg_list);
3192
3193         return ret;
3194
3195 free_irq:
3196         /* We also have to free all registered irqs */
3197         while (--i >= 0) {
3198                 /* Last assignment of i from primary interrupt handlers */
3199                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3200                 free_irq(irq, di);
3201         }
3202
3203         power_supply_unregister(di->fg_psy);
3204 free_inst_curr_wq:
3205         destroy_workqueue(di->fg_wq);
3206         return ret;
3207 }
3208
3209 static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume);
3210
3211 static const struct of_device_id ab8500_fg_match[] = {
3212         { .compatible = "stericsson,ab8500-fg", },
3213         { },
3214 };
3215
3216 static struct platform_driver ab8500_fg_driver = {
3217         .probe = ab8500_fg_probe,
3218         .remove = ab8500_fg_remove,
3219         .driver = {
3220                 .name = "ab8500-fg",
3221                 .of_match_table = ab8500_fg_match,
3222                 .pm = &ab8500_fg_pm_ops,
3223         },
3224 };
3225
3226 static int __init ab8500_fg_init(void)
3227 {
3228         return platform_driver_register(&ab8500_fg_driver);
3229 }
3230
3231 static void __exit ab8500_fg_exit(void)
3232 {
3233         platform_driver_unregister(&ab8500_fg_driver);
3234 }
3235
3236 subsys_initcall_sync(ab8500_fg_init);
3237 module_exit(ab8500_fg_exit);
3238
3239 MODULE_LICENSE("GPL v2");
3240 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3241 MODULE_ALIAS("platform:ab8500-fg");
3242 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");