Merge tag 'ceph-for-5.12-rc1' of git://github.com/ceph/ceph-client
[linux-2.6-microblaze.git] / drivers / perf / arm_spe_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10
11 #define PMUNAME                                 "arm_spe"
12 #define DRVNAME                                 PMUNAME "_pmu"
13 #define pr_fmt(fmt)                             DRVNAME ": " fmt
14
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 #define ARM_SPE_BUF_PAD_BYTE                    0
43
44 struct arm_spe_pmu_buf {
45         int                                     nr_pages;
46         bool                                    snapshot;
47         void                                    *base;
48 };
49
50 struct arm_spe_pmu {
51         struct pmu                              pmu;
52         struct platform_device                  *pdev;
53         cpumask_t                               supported_cpus;
54         struct hlist_node                       hotplug_node;
55
56         int                                     irq; /* PPI */
57         u16                                     pmsver;
58         u16                                     min_period;
59         u16                                     counter_sz;
60
61 #define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
62 #define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
63 #define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
64 #define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
65 #define SPE_PMU_FEAT_LDS                        (1UL << 4)
66 #define SPE_PMU_FEAT_ERND                       (1UL << 5)
67 #define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
68         u64                                     features;
69
70         u16                                     max_record_sz;
71         u16                                     align;
72         struct perf_output_handle __percpu      *handle;
73 };
74
75 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
76
77 /* Convert a free-running index from perf into an SPE buffer offset */
78 #define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
79
80 /* Keep track of our dynamic hotplug state */
81 static enum cpuhp_state arm_spe_pmu_online;
82
83 enum arm_spe_pmu_buf_fault_action {
84         SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
85         SPE_PMU_BUF_FAULT_ACT_FATAL,
86         SPE_PMU_BUF_FAULT_ACT_OK,
87 };
88
89 /* This sysfs gunk was really good fun to write. */
90 enum arm_spe_pmu_capabilities {
91         SPE_PMU_CAP_ARCH_INST = 0,
92         SPE_PMU_CAP_ERND,
93         SPE_PMU_CAP_FEAT_MAX,
94         SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
95         SPE_PMU_CAP_MIN_IVAL,
96 };
97
98 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
99         [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
100         [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
101 };
102
103 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
104 {
105         if (cap < SPE_PMU_CAP_FEAT_MAX)
106                 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
107
108         switch (cap) {
109         case SPE_PMU_CAP_CNT_SZ:
110                 return spe_pmu->counter_sz;
111         case SPE_PMU_CAP_MIN_IVAL:
112                 return spe_pmu->min_period;
113         default:
114                 WARN(1, "unknown cap %d\n", cap);
115         }
116
117         return 0;
118 }
119
120 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
121                                     struct device_attribute *attr,
122                                     char *buf)
123 {
124         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
125         struct dev_ext_attribute *ea =
126                 container_of(attr, struct dev_ext_attribute, attr);
127         int cap = (long)ea->var;
128
129         return snprintf(buf, PAGE_SIZE, "%u\n",
130                 arm_spe_pmu_cap_get(spe_pmu, cap));
131 }
132
133 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
134         &((struct dev_ext_attribute[]) {                                \
135                 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
136         })[0].attr.attr
137
138 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
139         SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
140
141 static struct attribute *arm_spe_pmu_cap_attr[] = {
142         SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
143         SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
144         SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
145         SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
146         NULL,
147 };
148
149 static const struct attribute_group arm_spe_pmu_cap_group = {
150         .name   = "caps",
151         .attrs  = arm_spe_pmu_cap_attr,
152 };
153
154 /* User ABI */
155 #define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
156 #define ATTR_CFG_FLD_ts_enable_LO               0
157 #define ATTR_CFG_FLD_ts_enable_HI               0
158 #define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
159 #define ATTR_CFG_FLD_pa_enable_LO               1
160 #define ATTR_CFG_FLD_pa_enable_HI               1
161 #define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
162 #define ATTR_CFG_FLD_pct_enable_LO              2
163 #define ATTR_CFG_FLD_pct_enable_HI              2
164 #define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
165 #define ATTR_CFG_FLD_jitter_LO                  16
166 #define ATTR_CFG_FLD_jitter_HI                  16
167 #define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
168 #define ATTR_CFG_FLD_branch_filter_LO           32
169 #define ATTR_CFG_FLD_branch_filter_HI           32
170 #define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
171 #define ATTR_CFG_FLD_load_filter_LO             33
172 #define ATTR_CFG_FLD_load_filter_HI             33
173 #define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
174 #define ATTR_CFG_FLD_store_filter_LO            34
175 #define ATTR_CFG_FLD_store_filter_HI            34
176
177 #define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
178 #define ATTR_CFG_FLD_event_filter_LO            0
179 #define ATTR_CFG_FLD_event_filter_HI            63
180
181 #define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
182 #define ATTR_CFG_FLD_min_latency_LO             0
183 #define ATTR_CFG_FLD_min_latency_HI             11
184
185 /* Why does everything I do descend into this? */
186 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
187         (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
188
189 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
190         __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
191
192 #define GEN_PMU_FORMAT_ATTR(name)                                       \
193         PMU_FORMAT_ATTR(name,                                           \
194         _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
195                              ATTR_CFG_FLD_##name##_LO,                  \
196                              ATTR_CFG_FLD_##name##_HI))
197
198 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
199         ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
200
201 #define ATTR_CFG_GET_FLD(attr, name)                                    \
202         _ATTR_CFG_GET_FLD(attr,                                         \
203                           ATTR_CFG_FLD_##name##_CFG,                    \
204                           ATTR_CFG_FLD_##name##_LO,                     \
205                           ATTR_CFG_FLD_##name##_HI)
206
207 GEN_PMU_FORMAT_ATTR(ts_enable);
208 GEN_PMU_FORMAT_ATTR(pa_enable);
209 GEN_PMU_FORMAT_ATTR(pct_enable);
210 GEN_PMU_FORMAT_ATTR(jitter);
211 GEN_PMU_FORMAT_ATTR(branch_filter);
212 GEN_PMU_FORMAT_ATTR(load_filter);
213 GEN_PMU_FORMAT_ATTR(store_filter);
214 GEN_PMU_FORMAT_ATTR(event_filter);
215 GEN_PMU_FORMAT_ATTR(min_latency);
216
217 static struct attribute *arm_spe_pmu_formats_attr[] = {
218         &format_attr_ts_enable.attr,
219         &format_attr_pa_enable.attr,
220         &format_attr_pct_enable.attr,
221         &format_attr_jitter.attr,
222         &format_attr_branch_filter.attr,
223         &format_attr_load_filter.attr,
224         &format_attr_store_filter.attr,
225         &format_attr_event_filter.attr,
226         &format_attr_min_latency.attr,
227         NULL,
228 };
229
230 static const struct attribute_group arm_spe_pmu_format_group = {
231         .name   = "format",
232         .attrs  = arm_spe_pmu_formats_attr,
233 };
234
235 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
236                                             struct device_attribute *attr,
237                                             char *buf)
238 {
239         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
240
241         return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
242 }
243 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
244
245 static struct attribute *arm_spe_pmu_attrs[] = {
246         &dev_attr_cpumask.attr,
247         NULL,
248 };
249
250 static const struct attribute_group arm_spe_pmu_group = {
251         .attrs  = arm_spe_pmu_attrs,
252 };
253
254 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
255         &arm_spe_pmu_group,
256         &arm_spe_pmu_cap_group,
257         &arm_spe_pmu_format_group,
258         NULL,
259 };
260
261 /* Convert between user ABI and register values */
262 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
263 {
264         struct perf_event_attr *attr = &event->attr;
265         u64 reg = 0;
266
267         reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
268         reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
269         reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
270
271         if (!attr->exclude_user)
272                 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
273
274         if (!attr->exclude_kernel)
275                 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
276
277         if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
278                 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
279
280         return reg;
281 }
282
283 static void arm_spe_event_sanitise_period(struct perf_event *event)
284 {
285         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
286         u64 period = event->hw.sample_period;
287         u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
288                          << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
289
290         if (period < spe_pmu->min_period)
291                 period = spe_pmu->min_period;
292         else if (period > max_period)
293                 period = max_period;
294         else
295                 period &= max_period;
296
297         event->hw.sample_period = period;
298 }
299
300 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
301 {
302         struct perf_event_attr *attr = &event->attr;
303         u64 reg = 0;
304
305         arm_spe_event_sanitise_period(event);
306
307         reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
308         reg |= event->hw.sample_period;
309
310         return reg;
311 }
312
313 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
314 {
315         struct perf_event_attr *attr = &event->attr;
316         u64 reg = 0;
317
318         reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
319         reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
320         reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
321
322         if (reg)
323                 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
324
325         if (ATTR_CFG_GET_FLD(attr, event_filter))
326                 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
327
328         if (ATTR_CFG_GET_FLD(attr, min_latency))
329                 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
330
331         return reg;
332 }
333
334 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
335 {
336         struct perf_event_attr *attr = &event->attr;
337         return ATTR_CFG_GET_FLD(attr, event_filter);
338 }
339
340 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
341 {
342         struct perf_event_attr *attr = &event->attr;
343         return ATTR_CFG_GET_FLD(attr, min_latency)
344                << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
345 }
346
347 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
348 {
349         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
350         u64 head = PERF_IDX2OFF(handle->head, buf);
351
352         memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
353         if (!buf->snapshot)
354                 perf_aux_output_skip(handle, len);
355 }
356
357 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
358 {
359         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
360         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
361         u64 head = PERF_IDX2OFF(handle->head, buf);
362         u64 limit = buf->nr_pages * PAGE_SIZE;
363
364         /*
365          * The trace format isn't parseable in reverse, so clamp
366          * the limit to half of the buffer size in snapshot mode
367          * so that the worst case is half a buffer of records, as
368          * opposed to a single record.
369          */
370         if (head < limit >> 1)
371                 limit >>= 1;
372
373         /*
374          * If we're within max_record_sz of the limit, we must
375          * pad, move the head index and recompute the limit.
376          */
377         if (limit - head < spe_pmu->max_record_sz) {
378                 arm_spe_pmu_pad_buf(handle, limit - head);
379                 handle->head = PERF_IDX2OFF(limit, buf);
380                 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
381         }
382
383         return limit;
384 }
385
386 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
387 {
388         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
389         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
390         const u64 bufsize = buf->nr_pages * PAGE_SIZE;
391         u64 limit = bufsize;
392         u64 head, tail, wakeup;
393
394         /*
395          * The head can be misaligned for two reasons:
396          *
397          * 1. The hardware left PMBPTR pointing to the first byte after
398          *    a record when generating a buffer management event.
399          *
400          * 2. We used perf_aux_output_skip to consume handle->size bytes
401          *    and CIRC_SPACE was used to compute the size, which always
402          *    leaves one entry free.
403          *
404          * Deal with this by padding to the next alignment boundary and
405          * moving the head index. If we run out of buffer space, we'll
406          * reduce handle->size to zero and end up reporting truncation.
407          */
408         head = PERF_IDX2OFF(handle->head, buf);
409         if (!IS_ALIGNED(head, spe_pmu->align)) {
410                 unsigned long delta = roundup(head, spe_pmu->align) - head;
411
412                 delta = min(delta, handle->size);
413                 arm_spe_pmu_pad_buf(handle, delta);
414                 head = PERF_IDX2OFF(handle->head, buf);
415         }
416
417         /* If we've run out of free space, then nothing more to do */
418         if (!handle->size)
419                 goto no_space;
420
421         /* Compute the tail and wakeup indices now that we've aligned head */
422         tail = PERF_IDX2OFF(handle->head + handle->size, buf);
423         wakeup = PERF_IDX2OFF(handle->wakeup, buf);
424
425         /*
426          * Avoid clobbering unconsumed data. We know we have space, so
427          * if we see head == tail we know that the buffer is empty. If
428          * head > tail, then there's nothing to clobber prior to
429          * wrapping.
430          */
431         if (head < tail)
432                 limit = round_down(tail, PAGE_SIZE);
433
434         /*
435          * Wakeup may be arbitrarily far into the future. If it's not in
436          * the current generation, either we'll wrap before hitting it,
437          * or it's in the past and has been handled already.
438          *
439          * If there's a wakeup before we wrap, arrange to be woken up by
440          * the page boundary following it. Keep the tail boundary if
441          * that's lower.
442          */
443         if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
444                 limit = min(limit, round_up(wakeup, PAGE_SIZE));
445
446         if (limit > head)
447                 return limit;
448
449         arm_spe_pmu_pad_buf(handle, handle->size);
450 no_space:
451         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
452         perf_aux_output_end(handle, 0);
453         return 0;
454 }
455
456 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
457 {
458         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
459         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
460         u64 limit = __arm_spe_pmu_next_off(handle);
461         u64 head = PERF_IDX2OFF(handle->head, buf);
462
463         /*
464          * If the head has come too close to the end of the buffer,
465          * then pad to the end and recompute the limit.
466          */
467         if (limit && (limit - head < spe_pmu->max_record_sz)) {
468                 arm_spe_pmu_pad_buf(handle, limit - head);
469                 limit = __arm_spe_pmu_next_off(handle);
470         }
471
472         return limit;
473 }
474
475 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
476                                           struct perf_event *event)
477 {
478         u64 base, limit;
479         struct arm_spe_pmu_buf *buf;
480
481         /* Start a new aux session */
482         buf = perf_aux_output_begin(handle, event);
483         if (!buf) {
484                 event->hw.state |= PERF_HES_STOPPED;
485                 /*
486                  * We still need to clear the limit pointer, since the
487                  * profiler might only be disabled by virtue of a fault.
488                  */
489                 limit = 0;
490                 goto out_write_limit;
491         }
492
493         limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
494                               : arm_spe_pmu_next_off(handle);
495         if (limit)
496                 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
497
498         limit += (u64)buf->base;
499         base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
500         write_sysreg_s(base, SYS_PMBPTR_EL1);
501
502 out_write_limit:
503         write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
504 }
505
506 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
507 {
508         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
509         u64 offset, size;
510
511         offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
512         size = offset - PERF_IDX2OFF(handle->head, buf);
513
514         if (buf->snapshot)
515                 handle->head = offset;
516
517         perf_aux_output_end(handle, size);
518 }
519
520 static void arm_spe_pmu_disable_and_drain_local(void)
521 {
522         /* Disable profiling at EL0 and EL1 */
523         write_sysreg_s(0, SYS_PMSCR_EL1);
524         isb();
525
526         /* Drain any buffered data */
527         psb_csync();
528         dsb(nsh);
529
530         /* Disable the profiling buffer */
531         write_sysreg_s(0, SYS_PMBLIMITR_EL1);
532         isb();
533 }
534
535 /* IRQ handling */
536 static enum arm_spe_pmu_buf_fault_action
537 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
538 {
539         const char *err_str;
540         u64 pmbsr;
541         enum arm_spe_pmu_buf_fault_action ret;
542
543         /*
544          * Ensure new profiling data is visible to the CPU and any external
545          * aborts have been resolved.
546          */
547         psb_csync();
548         dsb(nsh);
549
550         /* Ensure hardware updates to PMBPTR_EL1 are visible */
551         isb();
552
553         /* Service required? */
554         pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
555         if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
556                 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
557
558         /*
559          * If we've lost data, disable profiling and also set the PARTIAL
560          * flag to indicate that the last record is corrupted.
561          */
562         if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
563                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
564                                              PERF_AUX_FLAG_PARTIAL);
565
566         /* Report collisions to userspace so that it can up the period */
567         if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
568                 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
569
570         /* We only expect buffer management events */
571         switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
572         case SYS_PMBSR_EL1_EC_BUF:
573                 /* Handled below */
574                 break;
575         case SYS_PMBSR_EL1_EC_FAULT_S1:
576         case SYS_PMBSR_EL1_EC_FAULT_S2:
577                 err_str = "Unexpected buffer fault";
578                 goto out_err;
579         default:
580                 err_str = "Unknown error code";
581                 goto out_err;
582         }
583
584         /* Buffer management event */
585         switch (pmbsr &
586                 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
587         case SYS_PMBSR_EL1_BUF_BSC_FULL:
588                 ret = SPE_PMU_BUF_FAULT_ACT_OK;
589                 goto out_stop;
590         default:
591                 err_str = "Unknown buffer status code";
592         }
593
594 out_err:
595         pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
596                            err_str, smp_processor_id(), pmbsr,
597                            read_sysreg_s(SYS_PMBPTR_EL1),
598                            read_sysreg_s(SYS_PMBLIMITR_EL1));
599         ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
600
601 out_stop:
602         arm_spe_perf_aux_output_end(handle);
603         return ret;
604 }
605
606 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
607 {
608         struct perf_output_handle *handle = dev;
609         struct perf_event *event = handle->event;
610         enum arm_spe_pmu_buf_fault_action act;
611
612         if (!perf_get_aux(handle))
613                 return IRQ_NONE;
614
615         act = arm_spe_pmu_buf_get_fault_act(handle);
616         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
617                 return IRQ_NONE;
618
619         /*
620          * Ensure perf callbacks have completed, which may disable the
621          * profiling buffer in response to a TRUNCATION flag.
622          */
623         irq_work_run();
624
625         switch (act) {
626         case SPE_PMU_BUF_FAULT_ACT_FATAL:
627                 /*
628                  * If a fatal exception occurred then leaving the profiling
629                  * buffer enabled is a recipe waiting to happen. Since
630                  * fatal faults don't always imply truncation, make sure
631                  * that the profiling buffer is disabled explicitly before
632                  * clearing the syndrome register.
633                  */
634                 arm_spe_pmu_disable_and_drain_local();
635                 break;
636         case SPE_PMU_BUF_FAULT_ACT_OK:
637                 /*
638                  * We handled the fault (the buffer was full), so resume
639                  * profiling as long as we didn't detect truncation.
640                  * PMBPTR might be misaligned, but we'll burn that bridge
641                  * when we get to it.
642                  */
643                 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
644                         arm_spe_perf_aux_output_begin(handle, event);
645                         isb();
646                 }
647                 break;
648         case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
649                 /* We've seen you before, but GCC has the memory of a sieve. */
650                 break;
651         }
652
653         /* The buffer pointers are now sane, so resume profiling. */
654         write_sysreg_s(0, SYS_PMBSR_EL1);
655         return IRQ_HANDLED;
656 }
657
658 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
659 {
660         switch (pmsver) {
661         case ID_AA64DFR0_PMSVER_8_2:
662                 return SYS_PMSEVFR_EL1_RES0_8_2;
663         case ID_AA64DFR0_PMSVER_8_3:
664         /* Return the highest version we support in default */
665         default:
666                 return SYS_PMSEVFR_EL1_RES0_8_3;
667         }
668 }
669
670 /* Perf callbacks */
671 static int arm_spe_pmu_event_init(struct perf_event *event)
672 {
673         u64 reg;
674         struct perf_event_attr *attr = &event->attr;
675         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
676
677         /* This is, of course, deeply driver-specific */
678         if (attr->type != event->pmu->type)
679                 return -ENOENT;
680
681         if (event->cpu >= 0 &&
682             !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
683                 return -ENOENT;
684
685         if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
686                 return -EOPNOTSUPP;
687
688         if (attr->exclude_idle)
689                 return -EOPNOTSUPP;
690
691         /*
692          * Feedback-directed frequency throttling doesn't work when we
693          * have a buffer of samples. We'd need to manually count the
694          * samples in the buffer when it fills up and adjust the event
695          * count to reflect that. Instead, just force the user to specify
696          * a sample period.
697          */
698         if (attr->freq)
699                 return -EINVAL;
700
701         reg = arm_spe_event_to_pmsfcr(event);
702         if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
703             !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
704                 return -EOPNOTSUPP;
705
706         if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
707             !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
708                 return -EOPNOTSUPP;
709
710         if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
711             !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
712                 return -EOPNOTSUPP;
713
714         reg = arm_spe_event_to_pmscr(event);
715         if (!perfmon_capable() &&
716             (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
717                     BIT(SYS_PMSCR_EL1_CX_SHIFT) |
718                     BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
719                 return -EACCES;
720
721         return 0;
722 }
723
724 static void arm_spe_pmu_start(struct perf_event *event, int flags)
725 {
726         u64 reg;
727         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
728         struct hw_perf_event *hwc = &event->hw;
729         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
730
731         hwc->state = 0;
732         arm_spe_perf_aux_output_begin(handle, event);
733         if (hwc->state)
734                 return;
735
736         reg = arm_spe_event_to_pmsfcr(event);
737         write_sysreg_s(reg, SYS_PMSFCR_EL1);
738
739         reg = arm_spe_event_to_pmsevfr(event);
740         write_sysreg_s(reg, SYS_PMSEVFR_EL1);
741
742         reg = arm_spe_event_to_pmslatfr(event);
743         write_sysreg_s(reg, SYS_PMSLATFR_EL1);
744
745         if (flags & PERF_EF_RELOAD) {
746                 reg = arm_spe_event_to_pmsirr(event);
747                 write_sysreg_s(reg, SYS_PMSIRR_EL1);
748                 isb();
749                 reg = local64_read(&hwc->period_left);
750                 write_sysreg_s(reg, SYS_PMSICR_EL1);
751         }
752
753         reg = arm_spe_event_to_pmscr(event);
754         isb();
755         write_sysreg_s(reg, SYS_PMSCR_EL1);
756 }
757
758 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
759 {
760         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
761         struct hw_perf_event *hwc = &event->hw;
762         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
763
764         /* If we're already stopped, then nothing to do */
765         if (hwc->state & PERF_HES_STOPPED)
766                 return;
767
768         /* Stop all trace generation */
769         arm_spe_pmu_disable_and_drain_local();
770
771         if (flags & PERF_EF_UPDATE) {
772                 /*
773                  * If there's a fault pending then ensure we contain it
774                  * to this buffer, since we might be on the context-switch
775                  * path.
776                  */
777                 if (perf_get_aux(handle)) {
778                         enum arm_spe_pmu_buf_fault_action act;
779
780                         act = arm_spe_pmu_buf_get_fault_act(handle);
781                         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
782                                 arm_spe_perf_aux_output_end(handle);
783                         else
784                                 write_sysreg_s(0, SYS_PMBSR_EL1);
785                 }
786
787                 /*
788                  * This may also contain ECOUNT, but nobody else should
789                  * be looking at period_left, since we forbid frequency
790                  * based sampling.
791                  */
792                 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
793                 hwc->state |= PERF_HES_UPTODATE;
794         }
795
796         hwc->state |= PERF_HES_STOPPED;
797 }
798
799 static int arm_spe_pmu_add(struct perf_event *event, int flags)
800 {
801         int ret = 0;
802         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
803         struct hw_perf_event *hwc = &event->hw;
804         int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
805
806         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
807                 return -ENOENT;
808
809         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
810
811         if (flags & PERF_EF_START) {
812                 arm_spe_pmu_start(event, PERF_EF_RELOAD);
813                 if (hwc->state & PERF_HES_STOPPED)
814                         ret = -EINVAL;
815         }
816
817         return ret;
818 }
819
820 static void arm_spe_pmu_del(struct perf_event *event, int flags)
821 {
822         arm_spe_pmu_stop(event, PERF_EF_UPDATE);
823 }
824
825 static void arm_spe_pmu_read(struct perf_event *event)
826 {
827 }
828
829 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
830                                    int nr_pages, bool snapshot)
831 {
832         int i, cpu = event->cpu;
833         struct page **pglist;
834         struct arm_spe_pmu_buf *buf;
835
836         /* We need at least two pages for this to work. */
837         if (nr_pages < 2)
838                 return NULL;
839
840         /*
841          * We require an even number of pages for snapshot mode, so that
842          * we can effectively treat the buffer as consisting of two equal
843          * parts and give userspace a fighting chance of getting some
844          * useful data out of it.
845          */
846         if (snapshot && (nr_pages & 1))
847                 return NULL;
848
849         if (cpu == -1)
850                 cpu = raw_smp_processor_id();
851
852         buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
853         if (!buf)
854                 return NULL;
855
856         pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
857         if (!pglist)
858                 goto out_free_buf;
859
860         for (i = 0; i < nr_pages; ++i)
861                 pglist[i] = virt_to_page(pages[i]);
862
863         buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
864         if (!buf->base)
865                 goto out_free_pglist;
866
867         buf->nr_pages   = nr_pages;
868         buf->snapshot   = snapshot;
869
870         kfree(pglist);
871         return buf;
872
873 out_free_pglist:
874         kfree(pglist);
875 out_free_buf:
876         kfree(buf);
877         return NULL;
878 }
879
880 static void arm_spe_pmu_free_aux(void *aux)
881 {
882         struct arm_spe_pmu_buf *buf = aux;
883
884         vunmap(buf->base);
885         kfree(buf);
886 }
887
888 /* Initialisation and teardown functions */
889 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
890 {
891         static atomic_t pmu_idx = ATOMIC_INIT(-1);
892
893         int idx;
894         char *name;
895         struct device *dev = &spe_pmu->pdev->dev;
896
897         spe_pmu->pmu = (struct pmu) {
898                 .module = THIS_MODULE,
899                 .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
900                 .attr_groups    = arm_spe_pmu_attr_groups,
901                 /*
902                  * We hitch a ride on the software context here, so that
903                  * we can support per-task profiling (which is not possible
904                  * with the invalid context as it doesn't get sched callbacks).
905                  * This requires that userspace either uses a dummy event for
906                  * perf_event_open, since the aux buffer is not setup until
907                  * a subsequent mmap, or creates the profiling event in a
908                  * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
909                  * once the buffer has been created.
910                  */
911                 .task_ctx_nr    = perf_sw_context,
912                 .event_init     = arm_spe_pmu_event_init,
913                 .add            = arm_spe_pmu_add,
914                 .del            = arm_spe_pmu_del,
915                 .start          = arm_spe_pmu_start,
916                 .stop           = arm_spe_pmu_stop,
917                 .read           = arm_spe_pmu_read,
918                 .setup_aux      = arm_spe_pmu_setup_aux,
919                 .free_aux       = arm_spe_pmu_free_aux,
920         };
921
922         idx = atomic_inc_return(&pmu_idx);
923         name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
924         if (!name) {
925                 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
926                 return -ENOMEM;
927         }
928
929         return perf_pmu_register(&spe_pmu->pmu, name, -1);
930 }
931
932 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
933 {
934         perf_pmu_unregister(&spe_pmu->pmu);
935 }
936
937 static void __arm_spe_pmu_dev_probe(void *info)
938 {
939         int fld;
940         u64 reg;
941         struct arm_spe_pmu *spe_pmu = info;
942         struct device *dev = &spe_pmu->pdev->dev;
943
944         fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
945                                                    ID_AA64DFR0_PMSVER_SHIFT);
946         if (!fld) {
947                 dev_err(dev,
948                         "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
949                         fld, smp_processor_id());
950                 return;
951         }
952         spe_pmu->pmsver = (u16)fld;
953
954         /* Read PMBIDR first to determine whether or not we have access */
955         reg = read_sysreg_s(SYS_PMBIDR_EL1);
956         if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
957                 dev_err(dev,
958                         "profiling buffer owned by higher exception level\n");
959                 return;
960         }
961
962         /* Minimum alignment. If it's out-of-range, then fail the probe */
963         fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
964         spe_pmu->align = 1 << fld;
965         if (spe_pmu->align > SZ_2K) {
966                 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
967                         fld, smp_processor_id());
968                 return;
969         }
970
971         /* It's now safe to read PMSIDR and figure out what we've got */
972         reg = read_sysreg_s(SYS_PMSIDR_EL1);
973         if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
974                 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
975
976         if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
977                 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
978
979         if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
980                 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
981
982         if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
983                 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
984
985         if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
986                 spe_pmu->features |= SPE_PMU_FEAT_LDS;
987
988         if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
989                 spe_pmu->features |= SPE_PMU_FEAT_ERND;
990
991         /* This field has a spaced out encoding, so just use a look-up */
992         fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
993         switch (fld) {
994         case 0:
995                 spe_pmu->min_period = 256;
996                 break;
997         case 2:
998                 spe_pmu->min_period = 512;
999                 break;
1000         case 3:
1001                 spe_pmu->min_period = 768;
1002                 break;
1003         case 4:
1004                 spe_pmu->min_period = 1024;
1005                 break;
1006         case 5:
1007                 spe_pmu->min_period = 1536;
1008                 break;
1009         case 6:
1010                 spe_pmu->min_period = 2048;
1011                 break;
1012         case 7:
1013                 spe_pmu->min_period = 3072;
1014                 break;
1015         default:
1016                 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1017                          fld);
1018                 fallthrough;
1019         case 8:
1020                 spe_pmu->min_period = 4096;
1021         }
1022
1023         /* Maximum record size. If it's out-of-range, then fail the probe */
1024         fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1025         spe_pmu->max_record_sz = 1 << fld;
1026         if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1027                 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1028                         fld, smp_processor_id());
1029                 return;
1030         }
1031
1032         fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1033         switch (fld) {
1034         default:
1035                 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1036                          fld);
1037                 fallthrough;
1038         case 2:
1039                 spe_pmu->counter_sz = 12;
1040         }
1041
1042         dev_info(dev,
1043                  "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1044                  cpumask_pr_args(&spe_pmu->supported_cpus),
1045                  spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1046
1047         spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1048         return;
1049 }
1050
1051 static void __arm_spe_pmu_reset_local(void)
1052 {
1053         /*
1054          * This is probably overkill, as we have no idea where we're
1055          * draining any buffered data to...
1056          */
1057         arm_spe_pmu_disable_and_drain_local();
1058
1059         /* Reset the buffer base pointer */
1060         write_sysreg_s(0, SYS_PMBPTR_EL1);
1061         isb();
1062
1063         /* Clear any pending management interrupts */
1064         write_sysreg_s(0, SYS_PMBSR_EL1);
1065         isb();
1066 }
1067
1068 static void __arm_spe_pmu_setup_one(void *info)
1069 {
1070         struct arm_spe_pmu *spe_pmu = info;
1071
1072         __arm_spe_pmu_reset_local();
1073         enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1074 }
1075
1076 static void __arm_spe_pmu_stop_one(void *info)
1077 {
1078         struct arm_spe_pmu *spe_pmu = info;
1079
1080         disable_percpu_irq(spe_pmu->irq);
1081         __arm_spe_pmu_reset_local();
1082 }
1083
1084 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1085 {
1086         struct arm_spe_pmu *spe_pmu;
1087
1088         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1089         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1090                 return 0;
1091
1092         __arm_spe_pmu_setup_one(spe_pmu);
1093         return 0;
1094 }
1095
1096 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1097 {
1098         struct arm_spe_pmu *spe_pmu;
1099
1100         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1101         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1102                 return 0;
1103
1104         __arm_spe_pmu_stop_one(spe_pmu);
1105         return 0;
1106 }
1107
1108 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1109 {
1110         int ret;
1111         cpumask_t *mask = &spe_pmu->supported_cpus;
1112
1113         /* Make sure we probe the hardware on a relevant CPU */
1114         ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1115         if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1116                 return -ENXIO;
1117
1118         /* Request our PPIs (note that the IRQ is still disabled) */
1119         ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1120                                  spe_pmu->handle);
1121         if (ret)
1122                 return ret;
1123
1124         /*
1125          * Register our hotplug notifier now so we don't miss any events.
1126          * This will enable the IRQ for any supported CPUs that are already
1127          * up.
1128          */
1129         ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1130                                        &spe_pmu->hotplug_node);
1131         if (ret)
1132                 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1133
1134         return ret;
1135 }
1136
1137 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1138 {
1139         cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1140         free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1141 }
1142
1143 /* Driver and device probing */
1144 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1145 {
1146         struct platform_device *pdev = spe_pmu->pdev;
1147         int irq = platform_get_irq(pdev, 0);
1148
1149         if (irq < 0)
1150                 return -ENXIO;
1151
1152         if (!irq_is_percpu(irq)) {
1153                 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1154                 return -EINVAL;
1155         }
1156
1157         if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1158                 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1159                 return -EINVAL;
1160         }
1161
1162         spe_pmu->irq = irq;
1163         return 0;
1164 }
1165
1166 static const struct of_device_id arm_spe_pmu_of_match[] = {
1167         { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1168         { /* Sentinel */ },
1169 };
1170 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1171
1172 static const struct platform_device_id arm_spe_match[] = {
1173         { ARMV8_SPE_PDEV_NAME, 0},
1174         { }
1175 };
1176 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1177
1178 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1179 {
1180         int ret;
1181         struct arm_spe_pmu *spe_pmu;
1182         struct device *dev = &pdev->dev;
1183
1184         /*
1185          * If kernelspace is unmapped when running at EL0, then the SPE
1186          * buffer will fault and prematurely terminate the AUX session.
1187          */
1188         if (arm64_kernel_unmapped_at_el0()) {
1189                 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1190                 return -EPERM;
1191         }
1192
1193         spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1194         if (!spe_pmu) {
1195                 dev_err(dev, "failed to allocate spe_pmu\n");
1196                 return -ENOMEM;
1197         }
1198
1199         spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1200         if (!spe_pmu->handle)
1201                 return -ENOMEM;
1202
1203         spe_pmu->pdev = pdev;
1204         platform_set_drvdata(pdev, spe_pmu);
1205
1206         ret = arm_spe_pmu_irq_probe(spe_pmu);
1207         if (ret)
1208                 goto out_free_handle;
1209
1210         ret = arm_spe_pmu_dev_init(spe_pmu);
1211         if (ret)
1212                 goto out_free_handle;
1213
1214         ret = arm_spe_pmu_perf_init(spe_pmu);
1215         if (ret)
1216                 goto out_teardown_dev;
1217
1218         return 0;
1219
1220 out_teardown_dev:
1221         arm_spe_pmu_dev_teardown(spe_pmu);
1222 out_free_handle:
1223         free_percpu(spe_pmu->handle);
1224         return ret;
1225 }
1226
1227 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1228 {
1229         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1230
1231         arm_spe_pmu_perf_destroy(spe_pmu);
1232         arm_spe_pmu_dev_teardown(spe_pmu);
1233         free_percpu(spe_pmu->handle);
1234         return 0;
1235 }
1236
1237 static struct platform_driver arm_spe_pmu_driver = {
1238         .id_table = arm_spe_match,
1239         .driver = {
1240                 .name           = DRVNAME,
1241                 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1242                 .suppress_bind_attrs = true,
1243         },
1244         .probe  = arm_spe_pmu_device_probe,
1245         .remove = arm_spe_pmu_device_remove,
1246 };
1247
1248 static int __init arm_spe_pmu_init(void)
1249 {
1250         int ret;
1251
1252         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1253                                       arm_spe_pmu_cpu_startup,
1254                                       arm_spe_pmu_cpu_teardown);
1255         if (ret < 0)
1256                 return ret;
1257         arm_spe_pmu_online = ret;
1258
1259         ret = platform_driver_register(&arm_spe_pmu_driver);
1260         if (ret)
1261                 cpuhp_remove_multi_state(arm_spe_pmu_online);
1262
1263         return ret;
1264 }
1265
1266 static void __exit arm_spe_pmu_exit(void)
1267 {
1268         platform_driver_unregister(&arm_spe_pmu_driver);
1269         cpuhp_remove_multi_state(arm_spe_pmu_online);
1270 }
1271
1272 module_init(arm_spe_pmu_init);
1273 module_exit(arm_spe_pmu_exit);
1274
1275 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1276 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1277 MODULE_LICENSE("GPL v2");