powerpc: Only include kup-radix.h for 64-bit Book3S
[linux-2.6-microblaze.git] / drivers / perf / arm_spe_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10
11 #define PMUNAME                                 "arm_spe"
12 #define DRVNAME                                 PMUNAME "_pmu"
13 #define pr_fmt(fmt)                             DRVNAME ": " fmt
14
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 #define ARM_SPE_BUF_PAD_BYTE                    0
43
44 struct arm_spe_pmu_buf {
45         int                                     nr_pages;
46         bool                                    snapshot;
47         void                                    *base;
48 };
49
50 struct arm_spe_pmu {
51         struct pmu                              pmu;
52         struct platform_device                  *pdev;
53         cpumask_t                               supported_cpus;
54         struct hlist_node                       hotplug_node;
55
56         int                                     irq; /* PPI */
57
58         u16                                     min_period;
59         u16                                     counter_sz;
60
61 #define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
62 #define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
63 #define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
64 #define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
65 #define SPE_PMU_FEAT_LDS                        (1UL << 4)
66 #define SPE_PMU_FEAT_ERND                       (1UL << 5)
67 #define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
68         u64                                     features;
69
70         u16                                     max_record_sz;
71         u16                                     align;
72         struct perf_output_handle __percpu      *handle;
73 };
74
75 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
76
77 /* Convert a free-running index from perf into an SPE buffer offset */
78 #define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
79
80 /* Keep track of our dynamic hotplug state */
81 static enum cpuhp_state arm_spe_pmu_online;
82
83 enum arm_spe_pmu_buf_fault_action {
84         SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
85         SPE_PMU_BUF_FAULT_ACT_FATAL,
86         SPE_PMU_BUF_FAULT_ACT_OK,
87 };
88
89 /* This sysfs gunk was really good fun to write. */
90 enum arm_spe_pmu_capabilities {
91         SPE_PMU_CAP_ARCH_INST = 0,
92         SPE_PMU_CAP_ERND,
93         SPE_PMU_CAP_FEAT_MAX,
94         SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
95         SPE_PMU_CAP_MIN_IVAL,
96 };
97
98 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
99         [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
100         [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
101 };
102
103 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
104 {
105         if (cap < SPE_PMU_CAP_FEAT_MAX)
106                 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
107
108         switch (cap) {
109         case SPE_PMU_CAP_CNT_SZ:
110                 return spe_pmu->counter_sz;
111         case SPE_PMU_CAP_MIN_IVAL:
112                 return spe_pmu->min_period;
113         default:
114                 WARN(1, "unknown cap %d\n", cap);
115         }
116
117         return 0;
118 }
119
120 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
121                                     struct device_attribute *attr,
122                                     char *buf)
123 {
124         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
125         struct dev_ext_attribute *ea =
126                 container_of(attr, struct dev_ext_attribute, attr);
127         int cap = (long)ea->var;
128
129         return snprintf(buf, PAGE_SIZE, "%u\n",
130                 arm_spe_pmu_cap_get(spe_pmu, cap));
131 }
132
133 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
134         &((struct dev_ext_attribute[]) {                                \
135                 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
136         })[0].attr.attr
137
138 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
139         SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
140
141 static struct attribute *arm_spe_pmu_cap_attr[] = {
142         SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
143         SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
144         SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
145         SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
146         NULL,
147 };
148
149 static struct attribute_group arm_spe_pmu_cap_group = {
150         .name   = "caps",
151         .attrs  = arm_spe_pmu_cap_attr,
152 };
153
154 /* User ABI */
155 #define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
156 #define ATTR_CFG_FLD_ts_enable_LO               0
157 #define ATTR_CFG_FLD_ts_enable_HI               0
158 #define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
159 #define ATTR_CFG_FLD_pa_enable_LO               1
160 #define ATTR_CFG_FLD_pa_enable_HI               1
161 #define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
162 #define ATTR_CFG_FLD_pct_enable_LO              2
163 #define ATTR_CFG_FLD_pct_enable_HI              2
164 #define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
165 #define ATTR_CFG_FLD_jitter_LO                  16
166 #define ATTR_CFG_FLD_jitter_HI                  16
167 #define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
168 #define ATTR_CFG_FLD_branch_filter_LO           32
169 #define ATTR_CFG_FLD_branch_filter_HI           32
170 #define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
171 #define ATTR_CFG_FLD_load_filter_LO             33
172 #define ATTR_CFG_FLD_load_filter_HI             33
173 #define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
174 #define ATTR_CFG_FLD_store_filter_LO            34
175 #define ATTR_CFG_FLD_store_filter_HI            34
176
177 #define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
178 #define ATTR_CFG_FLD_event_filter_LO            0
179 #define ATTR_CFG_FLD_event_filter_HI            63
180
181 #define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
182 #define ATTR_CFG_FLD_min_latency_LO             0
183 #define ATTR_CFG_FLD_min_latency_HI             11
184
185 /* Why does everything I do descend into this? */
186 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
187         (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
188
189 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
190         __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
191
192 #define GEN_PMU_FORMAT_ATTR(name)                                       \
193         PMU_FORMAT_ATTR(name,                                           \
194         _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
195                              ATTR_CFG_FLD_##name##_LO,                  \
196                              ATTR_CFG_FLD_##name##_HI))
197
198 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
199         ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
200
201 #define ATTR_CFG_GET_FLD(attr, name)                                    \
202         _ATTR_CFG_GET_FLD(attr,                                         \
203                           ATTR_CFG_FLD_##name##_CFG,                    \
204                           ATTR_CFG_FLD_##name##_LO,                     \
205                           ATTR_CFG_FLD_##name##_HI)
206
207 GEN_PMU_FORMAT_ATTR(ts_enable);
208 GEN_PMU_FORMAT_ATTR(pa_enable);
209 GEN_PMU_FORMAT_ATTR(pct_enable);
210 GEN_PMU_FORMAT_ATTR(jitter);
211 GEN_PMU_FORMAT_ATTR(branch_filter);
212 GEN_PMU_FORMAT_ATTR(load_filter);
213 GEN_PMU_FORMAT_ATTR(store_filter);
214 GEN_PMU_FORMAT_ATTR(event_filter);
215 GEN_PMU_FORMAT_ATTR(min_latency);
216
217 static struct attribute *arm_spe_pmu_formats_attr[] = {
218         &format_attr_ts_enable.attr,
219         &format_attr_pa_enable.attr,
220         &format_attr_pct_enable.attr,
221         &format_attr_jitter.attr,
222         &format_attr_branch_filter.attr,
223         &format_attr_load_filter.attr,
224         &format_attr_store_filter.attr,
225         &format_attr_event_filter.attr,
226         &format_attr_min_latency.attr,
227         NULL,
228 };
229
230 static struct attribute_group arm_spe_pmu_format_group = {
231         .name   = "format",
232         .attrs  = arm_spe_pmu_formats_attr,
233 };
234
235 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
236                                             struct device_attribute *attr,
237                                             char *buf)
238 {
239         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
240
241         return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
242 }
243 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
244
245 static struct attribute *arm_spe_pmu_attrs[] = {
246         &dev_attr_cpumask.attr,
247         NULL,
248 };
249
250 static struct attribute_group arm_spe_pmu_group = {
251         .attrs  = arm_spe_pmu_attrs,
252 };
253
254 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
255         &arm_spe_pmu_group,
256         &arm_spe_pmu_cap_group,
257         &arm_spe_pmu_format_group,
258         NULL,
259 };
260
261 /* Convert between user ABI and register values */
262 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
263 {
264         struct perf_event_attr *attr = &event->attr;
265         u64 reg = 0;
266
267         reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
268         reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
269         reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
270
271         if (!attr->exclude_user)
272                 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
273
274         if (!attr->exclude_kernel)
275                 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
276
277         if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
278                 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
279
280         return reg;
281 }
282
283 static void arm_spe_event_sanitise_period(struct perf_event *event)
284 {
285         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
286         u64 period = event->hw.sample_period;
287         u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
288                          << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
289
290         if (period < spe_pmu->min_period)
291                 period = spe_pmu->min_period;
292         else if (period > max_period)
293                 period = max_period;
294         else
295                 period &= max_period;
296
297         event->hw.sample_period = period;
298 }
299
300 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
301 {
302         struct perf_event_attr *attr = &event->attr;
303         u64 reg = 0;
304
305         arm_spe_event_sanitise_period(event);
306
307         reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
308         reg |= event->hw.sample_period;
309
310         return reg;
311 }
312
313 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
314 {
315         struct perf_event_attr *attr = &event->attr;
316         u64 reg = 0;
317
318         reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
319         reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
320         reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
321
322         if (reg)
323                 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
324
325         if (ATTR_CFG_GET_FLD(attr, event_filter))
326                 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
327
328         if (ATTR_CFG_GET_FLD(attr, min_latency))
329                 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
330
331         return reg;
332 }
333
334 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
335 {
336         struct perf_event_attr *attr = &event->attr;
337         return ATTR_CFG_GET_FLD(attr, event_filter);
338 }
339
340 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
341 {
342         struct perf_event_attr *attr = &event->attr;
343         return ATTR_CFG_GET_FLD(attr, min_latency)
344                << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
345 }
346
347 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
348 {
349         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
350         u64 head = PERF_IDX2OFF(handle->head, buf);
351
352         memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
353         if (!buf->snapshot)
354                 perf_aux_output_skip(handle, len);
355 }
356
357 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
358 {
359         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
360         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
361         u64 head = PERF_IDX2OFF(handle->head, buf);
362         u64 limit = buf->nr_pages * PAGE_SIZE;
363
364         /*
365          * The trace format isn't parseable in reverse, so clamp
366          * the limit to half of the buffer size in snapshot mode
367          * so that the worst case is half a buffer of records, as
368          * opposed to a single record.
369          */
370         if (head < limit >> 1)
371                 limit >>= 1;
372
373         /*
374          * If we're within max_record_sz of the limit, we must
375          * pad, move the head index and recompute the limit.
376          */
377         if (limit - head < spe_pmu->max_record_sz) {
378                 arm_spe_pmu_pad_buf(handle, limit - head);
379                 handle->head = PERF_IDX2OFF(limit, buf);
380                 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
381         }
382
383         return limit;
384 }
385
386 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
387 {
388         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
389         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
390         const u64 bufsize = buf->nr_pages * PAGE_SIZE;
391         u64 limit = bufsize;
392         u64 head, tail, wakeup;
393
394         /*
395          * The head can be misaligned for two reasons:
396          *
397          * 1. The hardware left PMBPTR pointing to the first byte after
398          *    a record when generating a buffer management event.
399          *
400          * 2. We used perf_aux_output_skip to consume handle->size bytes
401          *    and CIRC_SPACE was used to compute the size, which always
402          *    leaves one entry free.
403          *
404          * Deal with this by padding to the next alignment boundary and
405          * moving the head index. If we run out of buffer space, we'll
406          * reduce handle->size to zero and end up reporting truncation.
407          */
408         head = PERF_IDX2OFF(handle->head, buf);
409         if (!IS_ALIGNED(head, spe_pmu->align)) {
410                 unsigned long delta = roundup(head, spe_pmu->align) - head;
411
412                 delta = min(delta, handle->size);
413                 arm_spe_pmu_pad_buf(handle, delta);
414                 head = PERF_IDX2OFF(handle->head, buf);
415         }
416
417         /* If we've run out of free space, then nothing more to do */
418         if (!handle->size)
419                 goto no_space;
420
421         /* Compute the tail and wakeup indices now that we've aligned head */
422         tail = PERF_IDX2OFF(handle->head + handle->size, buf);
423         wakeup = PERF_IDX2OFF(handle->wakeup, buf);
424
425         /*
426          * Avoid clobbering unconsumed data. We know we have space, so
427          * if we see head == tail we know that the buffer is empty. If
428          * head > tail, then there's nothing to clobber prior to
429          * wrapping.
430          */
431         if (head < tail)
432                 limit = round_down(tail, PAGE_SIZE);
433
434         /*
435          * Wakeup may be arbitrarily far into the future. If it's not in
436          * the current generation, either we'll wrap before hitting it,
437          * or it's in the past and has been handled already.
438          *
439          * If there's a wakeup before we wrap, arrange to be woken up by
440          * the page boundary following it. Keep the tail boundary if
441          * that's lower.
442          */
443         if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
444                 limit = min(limit, round_up(wakeup, PAGE_SIZE));
445
446         if (limit > head)
447                 return limit;
448
449         arm_spe_pmu_pad_buf(handle, handle->size);
450 no_space:
451         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
452         perf_aux_output_end(handle, 0);
453         return 0;
454 }
455
456 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
457 {
458         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
459         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
460         u64 limit = __arm_spe_pmu_next_off(handle);
461         u64 head = PERF_IDX2OFF(handle->head, buf);
462
463         /*
464          * If the head has come too close to the end of the buffer,
465          * then pad to the end and recompute the limit.
466          */
467         if (limit && (limit - head < spe_pmu->max_record_sz)) {
468                 arm_spe_pmu_pad_buf(handle, limit - head);
469                 limit = __arm_spe_pmu_next_off(handle);
470         }
471
472         return limit;
473 }
474
475 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
476                                           struct perf_event *event)
477 {
478         u64 base, limit;
479         struct arm_spe_pmu_buf *buf;
480
481         /* Start a new aux session */
482         buf = perf_aux_output_begin(handle, event);
483         if (!buf) {
484                 event->hw.state |= PERF_HES_STOPPED;
485                 /*
486                  * We still need to clear the limit pointer, since the
487                  * profiler might only be disabled by virtue of a fault.
488                  */
489                 limit = 0;
490                 goto out_write_limit;
491         }
492
493         limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
494                               : arm_spe_pmu_next_off(handle);
495         if (limit)
496                 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
497
498         limit += (u64)buf->base;
499         base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
500         write_sysreg_s(base, SYS_PMBPTR_EL1);
501
502 out_write_limit:
503         write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
504 }
505
506 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
507 {
508         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
509         u64 offset, size;
510
511         offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
512         size = offset - PERF_IDX2OFF(handle->head, buf);
513
514         if (buf->snapshot)
515                 handle->head = offset;
516
517         perf_aux_output_end(handle, size);
518 }
519
520 static void arm_spe_pmu_disable_and_drain_local(void)
521 {
522         /* Disable profiling at EL0 and EL1 */
523         write_sysreg_s(0, SYS_PMSCR_EL1);
524         isb();
525
526         /* Drain any buffered data */
527         psb_csync();
528         dsb(nsh);
529
530         /* Disable the profiling buffer */
531         write_sysreg_s(0, SYS_PMBLIMITR_EL1);
532         isb();
533 }
534
535 /* IRQ handling */
536 static enum arm_spe_pmu_buf_fault_action
537 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
538 {
539         const char *err_str;
540         u64 pmbsr;
541         enum arm_spe_pmu_buf_fault_action ret;
542
543         /*
544          * Ensure new profiling data is visible to the CPU and any external
545          * aborts have been resolved.
546          */
547         psb_csync();
548         dsb(nsh);
549
550         /* Ensure hardware updates to PMBPTR_EL1 are visible */
551         isb();
552
553         /* Service required? */
554         pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
555         if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
556                 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
557
558         /*
559          * If we've lost data, disable profiling and also set the PARTIAL
560          * flag to indicate that the last record is corrupted.
561          */
562         if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
563                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
564                                              PERF_AUX_FLAG_PARTIAL);
565
566         /* Report collisions to userspace so that it can up the period */
567         if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
568                 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
569
570         /* We only expect buffer management events */
571         switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
572         case SYS_PMBSR_EL1_EC_BUF:
573                 /* Handled below */
574                 break;
575         case SYS_PMBSR_EL1_EC_FAULT_S1:
576         case SYS_PMBSR_EL1_EC_FAULT_S2:
577                 err_str = "Unexpected buffer fault";
578                 goto out_err;
579         default:
580                 err_str = "Unknown error code";
581                 goto out_err;
582         }
583
584         /* Buffer management event */
585         switch (pmbsr &
586                 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
587         case SYS_PMBSR_EL1_BUF_BSC_FULL:
588                 ret = SPE_PMU_BUF_FAULT_ACT_OK;
589                 goto out_stop;
590         default:
591                 err_str = "Unknown buffer status code";
592         }
593
594 out_err:
595         pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
596                            err_str, smp_processor_id(), pmbsr,
597                            read_sysreg_s(SYS_PMBPTR_EL1),
598                            read_sysreg_s(SYS_PMBLIMITR_EL1));
599         ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
600
601 out_stop:
602         arm_spe_perf_aux_output_end(handle);
603         return ret;
604 }
605
606 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
607 {
608         struct perf_output_handle *handle = dev;
609         struct perf_event *event = handle->event;
610         enum arm_spe_pmu_buf_fault_action act;
611
612         if (!perf_get_aux(handle))
613                 return IRQ_NONE;
614
615         act = arm_spe_pmu_buf_get_fault_act(handle);
616         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
617                 return IRQ_NONE;
618
619         /*
620          * Ensure perf callbacks have completed, which may disable the
621          * profiling buffer in response to a TRUNCATION flag.
622          */
623         irq_work_run();
624
625         switch (act) {
626         case SPE_PMU_BUF_FAULT_ACT_FATAL:
627                 /*
628                  * If a fatal exception occurred then leaving the profiling
629                  * buffer enabled is a recipe waiting to happen. Since
630                  * fatal faults don't always imply truncation, make sure
631                  * that the profiling buffer is disabled explicitly before
632                  * clearing the syndrome register.
633                  */
634                 arm_spe_pmu_disable_and_drain_local();
635                 break;
636         case SPE_PMU_BUF_FAULT_ACT_OK:
637                 /*
638                  * We handled the fault (the buffer was full), so resume
639                  * profiling as long as we didn't detect truncation.
640                  * PMBPTR might be misaligned, but we'll burn that bridge
641                  * when we get to it.
642                  */
643                 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
644                         arm_spe_perf_aux_output_begin(handle, event);
645                         isb();
646                 }
647                 break;
648         case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
649                 /* We've seen you before, but GCC has the memory of a sieve. */
650                 break;
651         }
652
653         /* The buffer pointers are now sane, so resume profiling. */
654         write_sysreg_s(0, SYS_PMBSR_EL1);
655         return IRQ_HANDLED;
656 }
657
658 /* Perf callbacks */
659 static int arm_spe_pmu_event_init(struct perf_event *event)
660 {
661         u64 reg;
662         struct perf_event_attr *attr = &event->attr;
663         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
664
665         /* This is, of course, deeply driver-specific */
666         if (attr->type != event->pmu->type)
667                 return -ENOENT;
668
669         if (event->cpu >= 0 &&
670             !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
671                 return -ENOENT;
672
673         if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
674                 return -EOPNOTSUPP;
675
676         if (attr->exclude_idle)
677                 return -EOPNOTSUPP;
678
679         /*
680          * Feedback-directed frequency throttling doesn't work when we
681          * have a buffer of samples. We'd need to manually count the
682          * samples in the buffer when it fills up and adjust the event
683          * count to reflect that. Instead, just force the user to specify
684          * a sample period.
685          */
686         if (attr->freq)
687                 return -EINVAL;
688
689         reg = arm_spe_event_to_pmsfcr(event);
690         if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
691             !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
692                 return -EOPNOTSUPP;
693
694         if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
695             !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
696                 return -EOPNOTSUPP;
697
698         if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
699             !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
700                 return -EOPNOTSUPP;
701
702         reg = arm_spe_event_to_pmscr(event);
703         if (!perfmon_capable() &&
704             (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
705                     BIT(SYS_PMSCR_EL1_CX_SHIFT) |
706                     BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
707                 return -EACCES;
708
709         return 0;
710 }
711
712 static void arm_spe_pmu_start(struct perf_event *event, int flags)
713 {
714         u64 reg;
715         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
716         struct hw_perf_event *hwc = &event->hw;
717         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
718
719         hwc->state = 0;
720         arm_spe_perf_aux_output_begin(handle, event);
721         if (hwc->state)
722                 return;
723
724         reg = arm_spe_event_to_pmsfcr(event);
725         write_sysreg_s(reg, SYS_PMSFCR_EL1);
726
727         reg = arm_spe_event_to_pmsevfr(event);
728         write_sysreg_s(reg, SYS_PMSEVFR_EL1);
729
730         reg = arm_spe_event_to_pmslatfr(event);
731         write_sysreg_s(reg, SYS_PMSLATFR_EL1);
732
733         if (flags & PERF_EF_RELOAD) {
734                 reg = arm_spe_event_to_pmsirr(event);
735                 write_sysreg_s(reg, SYS_PMSIRR_EL1);
736                 isb();
737                 reg = local64_read(&hwc->period_left);
738                 write_sysreg_s(reg, SYS_PMSICR_EL1);
739         }
740
741         reg = arm_spe_event_to_pmscr(event);
742         isb();
743         write_sysreg_s(reg, SYS_PMSCR_EL1);
744 }
745
746 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
747 {
748         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
749         struct hw_perf_event *hwc = &event->hw;
750         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
751
752         /* If we're already stopped, then nothing to do */
753         if (hwc->state & PERF_HES_STOPPED)
754                 return;
755
756         /* Stop all trace generation */
757         arm_spe_pmu_disable_and_drain_local();
758
759         if (flags & PERF_EF_UPDATE) {
760                 /*
761                  * If there's a fault pending then ensure we contain it
762                  * to this buffer, since we might be on the context-switch
763                  * path.
764                  */
765                 if (perf_get_aux(handle)) {
766                         enum arm_spe_pmu_buf_fault_action act;
767
768                         act = arm_spe_pmu_buf_get_fault_act(handle);
769                         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
770                                 arm_spe_perf_aux_output_end(handle);
771                         else
772                                 write_sysreg_s(0, SYS_PMBSR_EL1);
773                 }
774
775                 /*
776                  * This may also contain ECOUNT, but nobody else should
777                  * be looking at period_left, since we forbid frequency
778                  * based sampling.
779                  */
780                 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
781                 hwc->state |= PERF_HES_UPTODATE;
782         }
783
784         hwc->state |= PERF_HES_STOPPED;
785 }
786
787 static int arm_spe_pmu_add(struct perf_event *event, int flags)
788 {
789         int ret = 0;
790         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
791         struct hw_perf_event *hwc = &event->hw;
792         int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
793
794         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
795                 return -ENOENT;
796
797         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
798
799         if (flags & PERF_EF_START) {
800                 arm_spe_pmu_start(event, PERF_EF_RELOAD);
801                 if (hwc->state & PERF_HES_STOPPED)
802                         ret = -EINVAL;
803         }
804
805         return ret;
806 }
807
808 static void arm_spe_pmu_del(struct perf_event *event, int flags)
809 {
810         arm_spe_pmu_stop(event, PERF_EF_UPDATE);
811 }
812
813 static void arm_spe_pmu_read(struct perf_event *event)
814 {
815 }
816
817 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
818                                    int nr_pages, bool snapshot)
819 {
820         int i, cpu = event->cpu;
821         struct page **pglist;
822         struct arm_spe_pmu_buf *buf;
823
824         /* We need at least two pages for this to work. */
825         if (nr_pages < 2)
826                 return NULL;
827
828         /*
829          * We require an even number of pages for snapshot mode, so that
830          * we can effectively treat the buffer as consisting of two equal
831          * parts and give userspace a fighting chance of getting some
832          * useful data out of it.
833          */
834         if (snapshot && (nr_pages & 1))
835                 return NULL;
836
837         if (cpu == -1)
838                 cpu = raw_smp_processor_id();
839
840         buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
841         if (!buf)
842                 return NULL;
843
844         pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
845         if (!pglist)
846                 goto out_free_buf;
847
848         for (i = 0; i < nr_pages; ++i)
849                 pglist[i] = virt_to_page(pages[i]);
850
851         buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
852         if (!buf->base)
853                 goto out_free_pglist;
854
855         buf->nr_pages   = nr_pages;
856         buf->snapshot   = snapshot;
857
858         kfree(pglist);
859         return buf;
860
861 out_free_pglist:
862         kfree(pglist);
863 out_free_buf:
864         kfree(buf);
865         return NULL;
866 }
867
868 static void arm_spe_pmu_free_aux(void *aux)
869 {
870         struct arm_spe_pmu_buf *buf = aux;
871
872         vunmap(buf->base);
873         kfree(buf);
874 }
875
876 /* Initialisation and teardown functions */
877 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
878 {
879         static atomic_t pmu_idx = ATOMIC_INIT(-1);
880
881         int idx;
882         char *name;
883         struct device *dev = &spe_pmu->pdev->dev;
884
885         spe_pmu->pmu = (struct pmu) {
886                 .module = THIS_MODULE,
887                 .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
888                 .attr_groups    = arm_spe_pmu_attr_groups,
889                 /*
890                  * We hitch a ride on the software context here, so that
891                  * we can support per-task profiling (which is not possible
892                  * with the invalid context as it doesn't get sched callbacks).
893                  * This requires that userspace either uses a dummy event for
894                  * perf_event_open, since the aux buffer is not setup until
895                  * a subsequent mmap, or creates the profiling event in a
896                  * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
897                  * once the buffer has been created.
898                  */
899                 .task_ctx_nr    = perf_sw_context,
900                 .event_init     = arm_spe_pmu_event_init,
901                 .add            = arm_spe_pmu_add,
902                 .del            = arm_spe_pmu_del,
903                 .start          = arm_spe_pmu_start,
904                 .stop           = arm_spe_pmu_stop,
905                 .read           = arm_spe_pmu_read,
906                 .setup_aux      = arm_spe_pmu_setup_aux,
907                 .free_aux       = arm_spe_pmu_free_aux,
908         };
909
910         idx = atomic_inc_return(&pmu_idx);
911         name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
912         if (!name) {
913                 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
914                 return -ENOMEM;
915         }
916
917         return perf_pmu_register(&spe_pmu->pmu, name, -1);
918 }
919
920 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
921 {
922         perf_pmu_unregister(&spe_pmu->pmu);
923 }
924
925 static void __arm_spe_pmu_dev_probe(void *info)
926 {
927         int fld;
928         u64 reg;
929         struct arm_spe_pmu *spe_pmu = info;
930         struct device *dev = &spe_pmu->pdev->dev;
931
932         fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
933                                                    ID_AA64DFR0_PMSVER_SHIFT);
934         if (!fld) {
935                 dev_err(dev,
936                         "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
937                         fld, smp_processor_id());
938                 return;
939         }
940
941         /* Read PMBIDR first to determine whether or not we have access */
942         reg = read_sysreg_s(SYS_PMBIDR_EL1);
943         if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
944                 dev_err(dev,
945                         "profiling buffer owned by higher exception level\n");
946                 return;
947         }
948
949         /* Minimum alignment. If it's out-of-range, then fail the probe */
950         fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
951         spe_pmu->align = 1 << fld;
952         if (spe_pmu->align > SZ_2K) {
953                 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
954                         fld, smp_processor_id());
955                 return;
956         }
957
958         /* It's now safe to read PMSIDR and figure out what we've got */
959         reg = read_sysreg_s(SYS_PMSIDR_EL1);
960         if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
961                 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
962
963         if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
964                 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
965
966         if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
967                 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
968
969         if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
970                 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
971
972         if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
973                 spe_pmu->features |= SPE_PMU_FEAT_LDS;
974
975         if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
976                 spe_pmu->features |= SPE_PMU_FEAT_ERND;
977
978         /* This field has a spaced out encoding, so just use a look-up */
979         fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
980         switch (fld) {
981         case 0:
982                 spe_pmu->min_period = 256;
983                 break;
984         case 2:
985                 spe_pmu->min_period = 512;
986                 break;
987         case 3:
988                 spe_pmu->min_period = 768;
989                 break;
990         case 4:
991                 spe_pmu->min_period = 1024;
992                 break;
993         case 5:
994                 spe_pmu->min_period = 1536;
995                 break;
996         case 6:
997                 spe_pmu->min_period = 2048;
998                 break;
999         case 7:
1000                 spe_pmu->min_period = 3072;
1001                 break;
1002         default:
1003                 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1004                          fld);
1005                 fallthrough;
1006         case 8:
1007                 spe_pmu->min_period = 4096;
1008         }
1009
1010         /* Maximum record size. If it's out-of-range, then fail the probe */
1011         fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1012         spe_pmu->max_record_sz = 1 << fld;
1013         if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1014                 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1015                         fld, smp_processor_id());
1016                 return;
1017         }
1018
1019         fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1020         switch (fld) {
1021         default:
1022                 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1023                          fld);
1024                 fallthrough;
1025         case 2:
1026                 spe_pmu->counter_sz = 12;
1027         }
1028
1029         dev_info(dev,
1030                  "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1031                  cpumask_pr_args(&spe_pmu->supported_cpus),
1032                  spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1033
1034         spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1035         return;
1036 }
1037
1038 static void __arm_spe_pmu_reset_local(void)
1039 {
1040         /*
1041          * This is probably overkill, as we have no idea where we're
1042          * draining any buffered data to...
1043          */
1044         arm_spe_pmu_disable_and_drain_local();
1045
1046         /* Reset the buffer base pointer */
1047         write_sysreg_s(0, SYS_PMBPTR_EL1);
1048         isb();
1049
1050         /* Clear any pending management interrupts */
1051         write_sysreg_s(0, SYS_PMBSR_EL1);
1052         isb();
1053 }
1054
1055 static void __arm_spe_pmu_setup_one(void *info)
1056 {
1057         struct arm_spe_pmu *spe_pmu = info;
1058
1059         __arm_spe_pmu_reset_local();
1060         enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1061 }
1062
1063 static void __arm_spe_pmu_stop_one(void *info)
1064 {
1065         struct arm_spe_pmu *spe_pmu = info;
1066
1067         disable_percpu_irq(spe_pmu->irq);
1068         __arm_spe_pmu_reset_local();
1069 }
1070
1071 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1072 {
1073         struct arm_spe_pmu *spe_pmu;
1074
1075         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1076         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1077                 return 0;
1078
1079         __arm_spe_pmu_setup_one(spe_pmu);
1080         return 0;
1081 }
1082
1083 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1084 {
1085         struct arm_spe_pmu *spe_pmu;
1086
1087         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1088         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1089                 return 0;
1090
1091         __arm_spe_pmu_stop_one(spe_pmu);
1092         return 0;
1093 }
1094
1095 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1096 {
1097         int ret;
1098         cpumask_t *mask = &spe_pmu->supported_cpus;
1099
1100         /* Make sure we probe the hardware on a relevant CPU */
1101         ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1102         if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1103                 return -ENXIO;
1104
1105         /* Request our PPIs (note that the IRQ is still disabled) */
1106         ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1107                                  spe_pmu->handle);
1108         if (ret)
1109                 return ret;
1110
1111         /*
1112          * Register our hotplug notifier now so we don't miss any events.
1113          * This will enable the IRQ for any supported CPUs that are already
1114          * up.
1115          */
1116         ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1117                                        &spe_pmu->hotplug_node);
1118         if (ret)
1119                 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1120
1121         return ret;
1122 }
1123
1124 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1125 {
1126         cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1127         free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1128 }
1129
1130 /* Driver and device probing */
1131 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1132 {
1133         struct platform_device *pdev = spe_pmu->pdev;
1134         int irq = platform_get_irq(pdev, 0);
1135
1136         if (irq < 0)
1137                 return -ENXIO;
1138
1139         if (!irq_is_percpu(irq)) {
1140                 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1141                 return -EINVAL;
1142         }
1143
1144         if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1145                 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1146                 return -EINVAL;
1147         }
1148
1149         spe_pmu->irq = irq;
1150         return 0;
1151 }
1152
1153 static const struct of_device_id arm_spe_pmu_of_match[] = {
1154         { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1155         { /* Sentinel */ },
1156 };
1157 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1158
1159 static const struct platform_device_id arm_spe_match[] = {
1160         { ARMV8_SPE_PDEV_NAME, 0},
1161         { }
1162 };
1163 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1164
1165 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1166 {
1167         int ret;
1168         struct arm_spe_pmu *spe_pmu;
1169         struct device *dev = &pdev->dev;
1170
1171         /*
1172          * If kernelspace is unmapped when running at EL0, then the SPE
1173          * buffer will fault and prematurely terminate the AUX session.
1174          */
1175         if (arm64_kernel_unmapped_at_el0()) {
1176                 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1177                 return -EPERM;
1178         }
1179
1180         spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1181         if (!spe_pmu) {
1182                 dev_err(dev, "failed to allocate spe_pmu\n");
1183                 return -ENOMEM;
1184         }
1185
1186         spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1187         if (!spe_pmu->handle)
1188                 return -ENOMEM;
1189
1190         spe_pmu->pdev = pdev;
1191         platform_set_drvdata(pdev, spe_pmu);
1192
1193         ret = arm_spe_pmu_irq_probe(spe_pmu);
1194         if (ret)
1195                 goto out_free_handle;
1196
1197         ret = arm_spe_pmu_dev_init(spe_pmu);
1198         if (ret)
1199                 goto out_free_handle;
1200
1201         ret = arm_spe_pmu_perf_init(spe_pmu);
1202         if (ret)
1203                 goto out_teardown_dev;
1204
1205         return 0;
1206
1207 out_teardown_dev:
1208         arm_spe_pmu_dev_teardown(spe_pmu);
1209 out_free_handle:
1210         free_percpu(spe_pmu->handle);
1211         return ret;
1212 }
1213
1214 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1215 {
1216         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1217
1218         arm_spe_pmu_perf_destroy(spe_pmu);
1219         arm_spe_pmu_dev_teardown(spe_pmu);
1220         free_percpu(spe_pmu->handle);
1221         return 0;
1222 }
1223
1224 static struct platform_driver arm_spe_pmu_driver = {
1225         .id_table = arm_spe_match,
1226         .driver = {
1227                 .name           = DRVNAME,
1228                 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1229                 .suppress_bind_attrs = true,
1230         },
1231         .probe  = arm_spe_pmu_device_probe,
1232         .remove = arm_spe_pmu_device_remove,
1233 };
1234
1235 static int __init arm_spe_pmu_init(void)
1236 {
1237         int ret;
1238
1239         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1240                                       arm_spe_pmu_cpu_startup,
1241                                       arm_spe_pmu_cpu_teardown);
1242         if (ret < 0)
1243                 return ret;
1244         arm_spe_pmu_online = ret;
1245
1246         ret = platform_driver_register(&arm_spe_pmu_driver);
1247         if (ret)
1248                 cpuhp_remove_multi_state(arm_spe_pmu_online);
1249
1250         return ret;
1251 }
1252
1253 static void __exit arm_spe_pmu_exit(void)
1254 {
1255         platform_driver_unregister(&arm_spe_pmu_driver);
1256         cpuhp_remove_multi_state(arm_spe_pmu_online);
1257 }
1258
1259 module_init(arm_spe_pmu_init);
1260 module_exit(arm_spe_pmu_exit);
1261
1262 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1263 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1264 MODULE_LICENSE("GPL v2");