cxgb4: use CLIP with LIP6 on T6 for TCAM filters
[linux-2.6-microblaze.git] / drivers / perf / arm_spe_pmu.c
1 /*
2  * Perf support for the Statistical Profiling Extension, introduced as
3  * part of ARMv8.2.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * Copyright (C) 2016 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  */
21
22 #define PMUNAME                                 "arm_spe"
23 #define DRVNAME                                 PMUNAME "_pmu"
24 #define pr_fmt(fmt)                             DRVNAME ": " fmt
25
26 #include <linux/cpuhotplug.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/module.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/perf_event.h>
33 #include <linux/platform_device.h>
34 #include <linux/slab.h>
35
36 #include <asm/sysreg.h>
37
38 #define ARM_SPE_BUF_PAD_BYTE                    0
39
40 struct arm_spe_pmu_buf {
41         int                                     nr_pages;
42         bool                                    snapshot;
43         void                                    *base;
44 };
45
46 struct arm_spe_pmu {
47         struct pmu                              pmu;
48         struct platform_device                  *pdev;
49         cpumask_t                               supported_cpus;
50         struct hlist_node                       hotplug_node;
51
52         int                                     irq; /* PPI */
53
54         u16                                     min_period;
55         u16                                     counter_sz;
56
57 #define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
58 #define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
59 #define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
60 #define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
61 #define SPE_PMU_FEAT_LDS                        (1UL << 4)
62 #define SPE_PMU_FEAT_ERND                       (1UL << 5)
63 #define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
64         u64                                     features;
65
66         u16                                     max_record_sz;
67         u16                                     align;
68         struct perf_output_handle __percpu      *handle;
69 };
70
71 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
72
73 /* Convert a free-running index from perf into an SPE buffer offset */
74 #define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
75
76 /* Keep track of our dynamic hotplug state */
77 static enum cpuhp_state arm_spe_pmu_online;
78
79 enum arm_spe_pmu_buf_fault_action {
80         SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
81         SPE_PMU_BUF_FAULT_ACT_FATAL,
82         SPE_PMU_BUF_FAULT_ACT_OK,
83 };
84
85 /* This sysfs gunk was really good fun to write. */
86 enum arm_spe_pmu_capabilities {
87         SPE_PMU_CAP_ARCH_INST = 0,
88         SPE_PMU_CAP_ERND,
89         SPE_PMU_CAP_FEAT_MAX,
90         SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
91         SPE_PMU_CAP_MIN_IVAL,
92 };
93
94 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
95         [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
96         [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
97 };
98
99 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
100 {
101         if (cap < SPE_PMU_CAP_FEAT_MAX)
102                 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
103
104         switch (cap) {
105         case SPE_PMU_CAP_CNT_SZ:
106                 return spe_pmu->counter_sz;
107         case SPE_PMU_CAP_MIN_IVAL:
108                 return spe_pmu->min_period;
109         default:
110                 WARN(1, "unknown cap %d\n", cap);
111         }
112
113         return 0;
114 }
115
116 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
117                                     struct device_attribute *attr,
118                                     char *buf)
119 {
120         struct platform_device *pdev = to_platform_device(dev);
121         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
122         struct dev_ext_attribute *ea =
123                 container_of(attr, struct dev_ext_attribute, attr);
124         int cap = (long)ea->var;
125
126         return snprintf(buf, PAGE_SIZE, "%u\n",
127                 arm_spe_pmu_cap_get(spe_pmu, cap));
128 }
129
130 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
131         &((struct dev_ext_attribute[]) {                                \
132                 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
133         })[0].attr.attr
134
135 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
136         SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
137
138 static struct attribute *arm_spe_pmu_cap_attr[] = {
139         SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
140         SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
141         SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
142         SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
143         NULL,
144 };
145
146 static struct attribute_group arm_spe_pmu_cap_group = {
147         .name   = "caps",
148         .attrs  = arm_spe_pmu_cap_attr,
149 };
150
151 /* User ABI */
152 #define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
153 #define ATTR_CFG_FLD_ts_enable_LO               0
154 #define ATTR_CFG_FLD_ts_enable_HI               0
155 #define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
156 #define ATTR_CFG_FLD_pa_enable_LO               1
157 #define ATTR_CFG_FLD_pa_enable_HI               1
158 #define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
159 #define ATTR_CFG_FLD_pct_enable_LO              2
160 #define ATTR_CFG_FLD_pct_enable_HI              2
161 #define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
162 #define ATTR_CFG_FLD_jitter_LO                  16
163 #define ATTR_CFG_FLD_jitter_HI                  16
164 #define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
165 #define ATTR_CFG_FLD_branch_filter_LO           32
166 #define ATTR_CFG_FLD_branch_filter_HI           32
167 #define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
168 #define ATTR_CFG_FLD_load_filter_LO             33
169 #define ATTR_CFG_FLD_load_filter_HI             33
170 #define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
171 #define ATTR_CFG_FLD_store_filter_LO            34
172 #define ATTR_CFG_FLD_store_filter_HI            34
173
174 #define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
175 #define ATTR_CFG_FLD_event_filter_LO            0
176 #define ATTR_CFG_FLD_event_filter_HI            63
177
178 #define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
179 #define ATTR_CFG_FLD_min_latency_LO             0
180 #define ATTR_CFG_FLD_min_latency_HI             11
181
182 /* Why does everything I do descend into this? */
183 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
184         (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
185
186 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
187         __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
188
189 #define GEN_PMU_FORMAT_ATTR(name)                                       \
190         PMU_FORMAT_ATTR(name,                                           \
191         _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
192                              ATTR_CFG_FLD_##name##_LO,                  \
193                              ATTR_CFG_FLD_##name##_HI))
194
195 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
196         ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
197
198 #define ATTR_CFG_GET_FLD(attr, name)                                    \
199         _ATTR_CFG_GET_FLD(attr,                                         \
200                           ATTR_CFG_FLD_##name##_CFG,                    \
201                           ATTR_CFG_FLD_##name##_LO,                     \
202                           ATTR_CFG_FLD_##name##_HI)
203
204 GEN_PMU_FORMAT_ATTR(ts_enable);
205 GEN_PMU_FORMAT_ATTR(pa_enable);
206 GEN_PMU_FORMAT_ATTR(pct_enable);
207 GEN_PMU_FORMAT_ATTR(jitter);
208 GEN_PMU_FORMAT_ATTR(branch_filter);
209 GEN_PMU_FORMAT_ATTR(load_filter);
210 GEN_PMU_FORMAT_ATTR(store_filter);
211 GEN_PMU_FORMAT_ATTR(event_filter);
212 GEN_PMU_FORMAT_ATTR(min_latency);
213
214 static struct attribute *arm_spe_pmu_formats_attr[] = {
215         &format_attr_ts_enable.attr,
216         &format_attr_pa_enable.attr,
217         &format_attr_pct_enable.attr,
218         &format_attr_jitter.attr,
219         &format_attr_branch_filter.attr,
220         &format_attr_load_filter.attr,
221         &format_attr_store_filter.attr,
222         &format_attr_event_filter.attr,
223         &format_attr_min_latency.attr,
224         NULL,
225 };
226
227 static struct attribute_group arm_spe_pmu_format_group = {
228         .name   = "format",
229         .attrs  = arm_spe_pmu_formats_attr,
230 };
231
232 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
233                                             struct device_attribute *attr,
234                                             char *buf)
235 {
236         struct platform_device *pdev = to_platform_device(dev);
237         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
238
239         return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
240 }
241 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
242
243 static struct attribute *arm_spe_pmu_attrs[] = {
244         &dev_attr_cpumask.attr,
245         NULL,
246 };
247
248 static struct attribute_group arm_spe_pmu_group = {
249         .attrs  = arm_spe_pmu_attrs,
250 };
251
252 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
253         &arm_spe_pmu_group,
254         &arm_spe_pmu_cap_group,
255         &arm_spe_pmu_format_group,
256         NULL,
257 };
258
259 /* Convert between user ABI and register values */
260 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
261 {
262         struct perf_event_attr *attr = &event->attr;
263         u64 reg = 0;
264
265         reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
266         reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
267         reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
268
269         if (!attr->exclude_user)
270                 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
271
272         if (!attr->exclude_kernel)
273                 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
274
275         if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
276                 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
277
278         return reg;
279 }
280
281 static void arm_spe_event_sanitise_period(struct perf_event *event)
282 {
283         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
284         u64 period = event->hw.sample_period;
285         u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
286                          << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
287
288         if (period < spe_pmu->min_period)
289                 period = spe_pmu->min_period;
290         else if (period > max_period)
291                 period = max_period;
292         else
293                 period &= max_period;
294
295         event->hw.sample_period = period;
296 }
297
298 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
299 {
300         struct perf_event_attr *attr = &event->attr;
301         u64 reg = 0;
302
303         arm_spe_event_sanitise_period(event);
304
305         reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
306         reg |= event->hw.sample_period;
307
308         return reg;
309 }
310
311 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
312 {
313         struct perf_event_attr *attr = &event->attr;
314         u64 reg = 0;
315
316         reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
317         reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
318         reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
319
320         if (reg)
321                 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
322
323         if (ATTR_CFG_GET_FLD(attr, event_filter))
324                 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
325
326         if (ATTR_CFG_GET_FLD(attr, min_latency))
327                 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
328
329         return reg;
330 }
331
332 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
333 {
334         struct perf_event_attr *attr = &event->attr;
335         return ATTR_CFG_GET_FLD(attr, event_filter);
336 }
337
338 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
339 {
340         struct perf_event_attr *attr = &event->attr;
341         return ATTR_CFG_GET_FLD(attr, min_latency)
342                << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
343 }
344
345 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
346 {
347         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
348         u64 head = PERF_IDX2OFF(handle->head, buf);
349
350         memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
351         if (!buf->snapshot)
352                 perf_aux_output_skip(handle, len);
353 }
354
355 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
356 {
357         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
358         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
359         u64 head = PERF_IDX2OFF(handle->head, buf);
360         u64 limit = buf->nr_pages * PAGE_SIZE;
361
362         /*
363          * The trace format isn't parseable in reverse, so clamp
364          * the limit to half of the buffer size in snapshot mode
365          * so that the worst case is half a buffer of records, as
366          * opposed to a single record.
367          */
368         if (head < limit >> 1)
369                 limit >>= 1;
370
371         /*
372          * If we're within max_record_sz of the limit, we must
373          * pad, move the head index and recompute the limit.
374          */
375         if (limit - head < spe_pmu->max_record_sz) {
376                 arm_spe_pmu_pad_buf(handle, limit - head);
377                 handle->head = PERF_IDX2OFF(limit, buf);
378                 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
379         }
380
381         return limit;
382 }
383
384 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
385 {
386         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
387         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
388         const u64 bufsize = buf->nr_pages * PAGE_SIZE;
389         u64 limit = bufsize;
390         u64 head, tail, wakeup;
391
392         /*
393          * The head can be misaligned for two reasons:
394          *
395          * 1. The hardware left PMBPTR pointing to the first byte after
396          *    a record when generating a buffer management event.
397          *
398          * 2. We used perf_aux_output_skip to consume handle->size bytes
399          *    and CIRC_SPACE was used to compute the size, which always
400          *    leaves one entry free.
401          *
402          * Deal with this by padding to the next alignment boundary and
403          * moving the head index. If we run out of buffer space, we'll
404          * reduce handle->size to zero and end up reporting truncation.
405          */
406         head = PERF_IDX2OFF(handle->head, buf);
407         if (!IS_ALIGNED(head, spe_pmu->align)) {
408                 unsigned long delta = roundup(head, spe_pmu->align) - head;
409
410                 delta = min(delta, handle->size);
411                 arm_spe_pmu_pad_buf(handle, delta);
412                 head = PERF_IDX2OFF(handle->head, buf);
413         }
414
415         /* If we've run out of free space, then nothing more to do */
416         if (!handle->size)
417                 goto no_space;
418
419         /* Compute the tail and wakeup indices now that we've aligned head */
420         tail = PERF_IDX2OFF(handle->head + handle->size, buf);
421         wakeup = PERF_IDX2OFF(handle->wakeup, buf);
422
423         /*
424          * Avoid clobbering unconsumed data. We know we have space, so
425          * if we see head == tail we know that the buffer is empty. If
426          * head > tail, then there's nothing to clobber prior to
427          * wrapping.
428          */
429         if (head < tail)
430                 limit = round_down(tail, PAGE_SIZE);
431
432         /*
433          * Wakeup may be arbitrarily far into the future. If it's not in
434          * the current generation, either we'll wrap before hitting it,
435          * or it's in the past and has been handled already.
436          *
437          * If there's a wakeup before we wrap, arrange to be woken up by
438          * the page boundary following it. Keep the tail boundary if
439          * that's lower.
440          */
441         if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
442                 limit = min(limit, round_up(wakeup, PAGE_SIZE));
443
444         if (limit > head)
445                 return limit;
446
447         arm_spe_pmu_pad_buf(handle, handle->size);
448 no_space:
449         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
450         perf_aux_output_end(handle, 0);
451         return 0;
452 }
453
454 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
455 {
456         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
457         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
458         u64 limit = __arm_spe_pmu_next_off(handle);
459         u64 head = PERF_IDX2OFF(handle->head, buf);
460
461         /*
462          * If the head has come too close to the end of the buffer,
463          * then pad to the end and recompute the limit.
464          */
465         if (limit && (limit - head < spe_pmu->max_record_sz)) {
466                 arm_spe_pmu_pad_buf(handle, limit - head);
467                 limit = __arm_spe_pmu_next_off(handle);
468         }
469
470         return limit;
471 }
472
473 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
474                                           struct perf_event *event)
475 {
476         u64 base, limit;
477         struct arm_spe_pmu_buf *buf;
478
479         /* Start a new aux session */
480         buf = perf_aux_output_begin(handle, event);
481         if (!buf) {
482                 event->hw.state |= PERF_HES_STOPPED;
483                 /*
484                  * We still need to clear the limit pointer, since the
485                  * profiler might only be disabled by virtue of a fault.
486                  */
487                 limit = 0;
488                 goto out_write_limit;
489         }
490
491         limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
492                               : arm_spe_pmu_next_off(handle);
493         if (limit)
494                 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
495
496         limit += (u64)buf->base;
497         base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
498         write_sysreg_s(base, SYS_PMBPTR_EL1);
499
500 out_write_limit:
501         write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
502 }
503
504 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
505 {
506         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
507         u64 offset, size;
508
509         offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
510         size = offset - PERF_IDX2OFF(handle->head, buf);
511
512         if (buf->snapshot)
513                 handle->head = offset;
514
515         perf_aux_output_end(handle, size);
516 }
517
518 static void arm_spe_pmu_disable_and_drain_local(void)
519 {
520         /* Disable profiling at EL0 and EL1 */
521         write_sysreg_s(0, SYS_PMSCR_EL1);
522         isb();
523
524         /* Drain any buffered data */
525         psb_csync();
526         dsb(nsh);
527
528         /* Disable the profiling buffer */
529         write_sysreg_s(0, SYS_PMBLIMITR_EL1);
530         isb();
531 }
532
533 /* IRQ handling */
534 static enum arm_spe_pmu_buf_fault_action
535 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
536 {
537         const char *err_str;
538         u64 pmbsr;
539         enum arm_spe_pmu_buf_fault_action ret;
540
541         /*
542          * Ensure new profiling data is visible to the CPU and any external
543          * aborts have been resolved.
544          */
545         psb_csync();
546         dsb(nsh);
547
548         /* Ensure hardware updates to PMBPTR_EL1 are visible */
549         isb();
550
551         /* Service required? */
552         pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
553         if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
554                 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
555
556         /*
557          * If we've lost data, disable profiling and also set the PARTIAL
558          * flag to indicate that the last record is corrupted.
559          */
560         if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
561                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
562                                              PERF_AUX_FLAG_PARTIAL);
563
564         /* Report collisions to userspace so that it can up the period */
565         if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
566                 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
567
568         /* We only expect buffer management events */
569         switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
570         case SYS_PMBSR_EL1_EC_BUF:
571                 /* Handled below */
572                 break;
573         case SYS_PMBSR_EL1_EC_FAULT_S1:
574         case SYS_PMBSR_EL1_EC_FAULT_S2:
575                 err_str = "Unexpected buffer fault";
576                 goto out_err;
577         default:
578                 err_str = "Unknown error code";
579                 goto out_err;
580         }
581
582         /* Buffer management event */
583         switch (pmbsr &
584                 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
585         case SYS_PMBSR_EL1_BUF_BSC_FULL:
586                 ret = SPE_PMU_BUF_FAULT_ACT_OK;
587                 goto out_stop;
588         default:
589                 err_str = "Unknown buffer status code";
590         }
591
592 out_err:
593         pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
594                            err_str, smp_processor_id(), pmbsr,
595                            read_sysreg_s(SYS_PMBPTR_EL1),
596                            read_sysreg_s(SYS_PMBLIMITR_EL1));
597         ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
598
599 out_stop:
600         arm_spe_perf_aux_output_end(handle);
601         return ret;
602 }
603
604 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
605 {
606         struct perf_output_handle *handle = dev;
607         struct perf_event *event = handle->event;
608         enum arm_spe_pmu_buf_fault_action act;
609
610         if (!perf_get_aux(handle))
611                 return IRQ_NONE;
612
613         act = arm_spe_pmu_buf_get_fault_act(handle);
614         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
615                 return IRQ_NONE;
616
617         /*
618          * Ensure perf callbacks have completed, which may disable the
619          * profiling buffer in response to a TRUNCATION flag.
620          */
621         irq_work_run();
622
623         switch (act) {
624         case SPE_PMU_BUF_FAULT_ACT_FATAL:
625                 /*
626                  * If a fatal exception occurred then leaving the profiling
627                  * buffer enabled is a recipe waiting to happen. Since
628                  * fatal faults don't always imply truncation, make sure
629                  * that the profiling buffer is disabled explicitly before
630                  * clearing the syndrome register.
631                  */
632                 arm_spe_pmu_disable_and_drain_local();
633                 break;
634         case SPE_PMU_BUF_FAULT_ACT_OK:
635                 /*
636                  * We handled the fault (the buffer was full), so resume
637                  * profiling as long as we didn't detect truncation.
638                  * PMBPTR might be misaligned, but we'll burn that bridge
639                  * when we get to it.
640                  */
641                 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
642                         arm_spe_perf_aux_output_begin(handle, event);
643                         isb();
644                 }
645                 break;
646         case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
647                 /* We've seen you before, but GCC has the memory of a sieve. */
648                 break;
649         }
650
651         /* The buffer pointers are now sane, so resume profiling. */
652         write_sysreg_s(0, SYS_PMBSR_EL1);
653         return IRQ_HANDLED;
654 }
655
656 /* Perf callbacks */
657 static int arm_spe_pmu_event_init(struct perf_event *event)
658 {
659         u64 reg;
660         struct perf_event_attr *attr = &event->attr;
661         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
662
663         /* This is, of course, deeply driver-specific */
664         if (attr->type != event->pmu->type)
665                 return -ENOENT;
666
667         if (event->cpu >= 0 &&
668             !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
669                 return -ENOENT;
670
671         if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
672                 return -EOPNOTSUPP;
673
674         if (attr->exclude_idle)
675                 return -EOPNOTSUPP;
676
677         /*
678          * Feedback-directed frequency throttling doesn't work when we
679          * have a buffer of samples. We'd need to manually count the
680          * samples in the buffer when it fills up and adjust the event
681          * count to reflect that. Instead, just force the user to specify
682          * a sample period.
683          */
684         if (attr->freq)
685                 return -EINVAL;
686
687         reg = arm_spe_event_to_pmsfcr(event);
688         if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
689             !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
690                 return -EOPNOTSUPP;
691
692         if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
693             !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
694                 return -EOPNOTSUPP;
695
696         if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
697             !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
698                 return -EOPNOTSUPP;
699
700         reg = arm_spe_event_to_pmscr(event);
701         if (!capable(CAP_SYS_ADMIN) &&
702             (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
703                     BIT(SYS_PMSCR_EL1_CX_SHIFT) |
704                     BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
705                 return -EACCES;
706
707         return 0;
708 }
709
710 static void arm_spe_pmu_start(struct perf_event *event, int flags)
711 {
712         u64 reg;
713         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
714         struct hw_perf_event *hwc = &event->hw;
715         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
716
717         hwc->state = 0;
718         arm_spe_perf_aux_output_begin(handle, event);
719         if (hwc->state)
720                 return;
721
722         reg = arm_spe_event_to_pmsfcr(event);
723         write_sysreg_s(reg, SYS_PMSFCR_EL1);
724
725         reg = arm_spe_event_to_pmsevfr(event);
726         write_sysreg_s(reg, SYS_PMSEVFR_EL1);
727
728         reg = arm_spe_event_to_pmslatfr(event);
729         write_sysreg_s(reg, SYS_PMSLATFR_EL1);
730
731         if (flags & PERF_EF_RELOAD) {
732                 reg = arm_spe_event_to_pmsirr(event);
733                 write_sysreg_s(reg, SYS_PMSIRR_EL1);
734                 isb();
735                 reg = local64_read(&hwc->period_left);
736                 write_sysreg_s(reg, SYS_PMSICR_EL1);
737         }
738
739         reg = arm_spe_event_to_pmscr(event);
740         isb();
741         write_sysreg_s(reg, SYS_PMSCR_EL1);
742 }
743
744 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
745 {
746         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
747         struct hw_perf_event *hwc = &event->hw;
748         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
749
750         /* If we're already stopped, then nothing to do */
751         if (hwc->state & PERF_HES_STOPPED)
752                 return;
753
754         /* Stop all trace generation */
755         arm_spe_pmu_disable_and_drain_local();
756
757         if (flags & PERF_EF_UPDATE) {
758                 /*
759                  * If there's a fault pending then ensure we contain it
760                  * to this buffer, since we might be on the context-switch
761                  * path.
762                  */
763                 if (perf_get_aux(handle)) {
764                         enum arm_spe_pmu_buf_fault_action act;
765
766                         act = arm_spe_pmu_buf_get_fault_act(handle);
767                         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
768                                 arm_spe_perf_aux_output_end(handle);
769                         else
770                                 write_sysreg_s(0, SYS_PMBSR_EL1);
771                 }
772
773                 /*
774                  * This may also contain ECOUNT, but nobody else should
775                  * be looking at period_left, since we forbid frequency
776                  * based sampling.
777                  */
778                 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
779                 hwc->state |= PERF_HES_UPTODATE;
780         }
781
782         hwc->state |= PERF_HES_STOPPED;
783 }
784
785 static int arm_spe_pmu_add(struct perf_event *event, int flags)
786 {
787         int ret = 0;
788         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
789         struct hw_perf_event *hwc = &event->hw;
790         int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
791
792         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
793                 return -ENOENT;
794
795         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
796
797         if (flags & PERF_EF_START) {
798                 arm_spe_pmu_start(event, PERF_EF_RELOAD);
799                 if (hwc->state & PERF_HES_STOPPED)
800                         ret = -EINVAL;
801         }
802
803         return ret;
804 }
805
806 static void arm_spe_pmu_del(struct perf_event *event, int flags)
807 {
808         arm_spe_pmu_stop(event, PERF_EF_UPDATE);
809 }
810
811 static void arm_spe_pmu_read(struct perf_event *event)
812 {
813 }
814
815 static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages,
816                                    bool snapshot)
817 {
818         int i;
819         struct page **pglist;
820         struct arm_spe_pmu_buf *buf;
821
822         /* We need at least two pages for this to work. */
823         if (nr_pages < 2)
824                 return NULL;
825
826         /*
827          * We require an even number of pages for snapshot mode, so that
828          * we can effectively treat the buffer as consisting of two equal
829          * parts and give userspace a fighting chance of getting some
830          * useful data out of it.
831          */
832         if (!nr_pages || (snapshot && (nr_pages & 1)))
833                 return NULL;
834
835         if (cpu == -1)
836                 cpu = raw_smp_processor_id();
837
838         buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
839         if (!buf)
840                 return NULL;
841
842         pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
843         if (!pglist)
844                 goto out_free_buf;
845
846         for (i = 0; i < nr_pages; ++i) {
847                 struct page *page = virt_to_page(pages[i]);
848
849                 if (PagePrivate(page)) {
850                         pr_warn("unexpected high-order page for auxbuf!");
851                         goto out_free_pglist;
852                 }
853
854                 pglist[i] = virt_to_page(pages[i]);
855         }
856
857         buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
858         if (!buf->base)
859                 goto out_free_pglist;
860
861         buf->nr_pages   = nr_pages;
862         buf->snapshot   = snapshot;
863
864         kfree(pglist);
865         return buf;
866
867 out_free_pglist:
868         kfree(pglist);
869 out_free_buf:
870         kfree(buf);
871         return NULL;
872 }
873
874 static void arm_spe_pmu_free_aux(void *aux)
875 {
876         struct arm_spe_pmu_buf *buf = aux;
877
878         vunmap(buf->base);
879         kfree(buf);
880 }
881
882 /* Initialisation and teardown functions */
883 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
884 {
885         static atomic_t pmu_idx = ATOMIC_INIT(-1);
886
887         int idx;
888         char *name;
889         struct device *dev = &spe_pmu->pdev->dev;
890
891         spe_pmu->pmu = (struct pmu) {
892                 .module = THIS_MODULE,
893                 .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
894                 .attr_groups    = arm_spe_pmu_attr_groups,
895                 /*
896                  * We hitch a ride on the software context here, so that
897                  * we can support per-task profiling (which is not possible
898                  * with the invalid context as it doesn't get sched callbacks).
899                  * This requires that userspace either uses a dummy event for
900                  * perf_event_open, since the aux buffer is not setup until
901                  * a subsequent mmap, or creates the profiling event in a
902                  * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
903                  * once the buffer has been created.
904                  */
905                 .task_ctx_nr    = perf_sw_context,
906                 .event_init     = arm_spe_pmu_event_init,
907                 .add            = arm_spe_pmu_add,
908                 .del            = arm_spe_pmu_del,
909                 .start          = arm_spe_pmu_start,
910                 .stop           = arm_spe_pmu_stop,
911                 .read           = arm_spe_pmu_read,
912                 .setup_aux      = arm_spe_pmu_setup_aux,
913                 .free_aux       = arm_spe_pmu_free_aux,
914         };
915
916         idx = atomic_inc_return(&pmu_idx);
917         name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
918         return perf_pmu_register(&spe_pmu->pmu, name, -1);
919 }
920
921 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
922 {
923         perf_pmu_unregister(&spe_pmu->pmu);
924 }
925
926 static void __arm_spe_pmu_dev_probe(void *info)
927 {
928         int fld;
929         u64 reg;
930         struct arm_spe_pmu *spe_pmu = info;
931         struct device *dev = &spe_pmu->pdev->dev;
932
933         fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
934                                                    ID_AA64DFR0_PMSVER_SHIFT);
935         if (!fld) {
936                 dev_err(dev,
937                         "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
938                         fld, smp_processor_id());
939                 return;
940         }
941
942         /* Read PMBIDR first to determine whether or not we have access */
943         reg = read_sysreg_s(SYS_PMBIDR_EL1);
944         if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
945                 dev_err(dev,
946                         "profiling buffer owned by higher exception level\n");
947                 return;
948         }
949
950         /* Minimum alignment. If it's out-of-range, then fail the probe */
951         fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
952         spe_pmu->align = 1 << fld;
953         if (spe_pmu->align > SZ_2K) {
954                 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
955                         fld, smp_processor_id());
956                 return;
957         }
958
959         /* It's now safe to read PMSIDR and figure out what we've got */
960         reg = read_sysreg_s(SYS_PMSIDR_EL1);
961         if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
962                 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
963
964         if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
965                 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
966
967         if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
968                 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
969
970         if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
971                 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
972
973         if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
974                 spe_pmu->features |= SPE_PMU_FEAT_LDS;
975
976         if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
977                 spe_pmu->features |= SPE_PMU_FEAT_ERND;
978
979         /* This field has a spaced out encoding, so just use a look-up */
980         fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
981         switch (fld) {
982         case 0:
983                 spe_pmu->min_period = 256;
984                 break;
985         case 2:
986                 spe_pmu->min_period = 512;
987                 break;
988         case 3:
989                 spe_pmu->min_period = 768;
990                 break;
991         case 4:
992                 spe_pmu->min_period = 1024;
993                 break;
994         case 5:
995                 spe_pmu->min_period = 1536;
996                 break;
997         case 6:
998                 spe_pmu->min_period = 2048;
999                 break;
1000         case 7:
1001                 spe_pmu->min_period = 3072;
1002                 break;
1003         default:
1004                 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1005                          fld);
1006                 /* Fallthrough */
1007         case 8:
1008                 spe_pmu->min_period = 4096;
1009         }
1010
1011         /* Maximum record size. If it's out-of-range, then fail the probe */
1012         fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1013         spe_pmu->max_record_sz = 1 << fld;
1014         if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1015                 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1016                         fld, smp_processor_id());
1017                 return;
1018         }
1019
1020         fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1021         switch (fld) {
1022         default:
1023                 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1024                          fld);
1025                 /* Fallthrough */
1026         case 2:
1027                 spe_pmu->counter_sz = 12;
1028         }
1029
1030         dev_info(dev,
1031                  "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1032                  cpumask_pr_args(&spe_pmu->supported_cpus),
1033                  spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1034
1035         spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1036         return;
1037 }
1038
1039 static void __arm_spe_pmu_reset_local(void)
1040 {
1041         /*
1042          * This is probably overkill, as we have no idea where we're
1043          * draining any buffered data to...
1044          */
1045         arm_spe_pmu_disable_and_drain_local();
1046
1047         /* Reset the buffer base pointer */
1048         write_sysreg_s(0, SYS_PMBPTR_EL1);
1049         isb();
1050
1051         /* Clear any pending management interrupts */
1052         write_sysreg_s(0, SYS_PMBSR_EL1);
1053         isb();
1054 }
1055
1056 static void __arm_spe_pmu_setup_one(void *info)
1057 {
1058         struct arm_spe_pmu *spe_pmu = info;
1059
1060         __arm_spe_pmu_reset_local();
1061         enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1062 }
1063
1064 static void __arm_spe_pmu_stop_one(void *info)
1065 {
1066         struct arm_spe_pmu *spe_pmu = info;
1067
1068         disable_percpu_irq(spe_pmu->irq);
1069         __arm_spe_pmu_reset_local();
1070 }
1071
1072 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1073 {
1074         struct arm_spe_pmu *spe_pmu;
1075
1076         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1077         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1078                 return 0;
1079
1080         __arm_spe_pmu_setup_one(spe_pmu);
1081         return 0;
1082 }
1083
1084 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1085 {
1086         struct arm_spe_pmu *spe_pmu;
1087
1088         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1089         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1090                 return 0;
1091
1092         __arm_spe_pmu_stop_one(spe_pmu);
1093         return 0;
1094 }
1095
1096 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1097 {
1098         int ret;
1099         cpumask_t *mask = &spe_pmu->supported_cpus;
1100
1101         /* Make sure we probe the hardware on a relevant CPU */
1102         ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1103         if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1104                 return -ENXIO;
1105
1106         /* Request our PPIs (note that the IRQ is still disabled) */
1107         ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1108                                  spe_pmu->handle);
1109         if (ret)
1110                 return ret;
1111
1112         /*
1113          * Register our hotplug notifier now so we don't miss any events.
1114          * This will enable the IRQ for any supported CPUs that are already
1115          * up.
1116          */
1117         ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1118                                        &spe_pmu->hotplug_node);
1119         if (ret)
1120                 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1121
1122         return ret;
1123 }
1124
1125 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1126 {
1127         cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1128         free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1129 }
1130
1131 /* Driver and device probing */
1132 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1133 {
1134         struct platform_device *pdev = spe_pmu->pdev;
1135         int irq = platform_get_irq(pdev, 0);
1136
1137         if (irq < 0) {
1138                 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1139                 return -ENXIO;
1140         }
1141
1142         if (!irq_is_percpu(irq)) {
1143                 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1144                 return -EINVAL;
1145         }
1146
1147         if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1148                 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1149                 return -EINVAL;
1150         }
1151
1152         spe_pmu->irq = irq;
1153         return 0;
1154 }
1155
1156 static const struct of_device_id arm_spe_pmu_of_match[] = {
1157         { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1158         { /* Sentinel */ },
1159 };
1160
1161 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1162 {
1163         int ret;
1164         struct arm_spe_pmu *spe_pmu;
1165         struct device *dev = &pdev->dev;
1166
1167         spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1168         if (!spe_pmu) {
1169                 dev_err(dev, "failed to allocate spe_pmu\n");
1170                 return -ENOMEM;
1171         }
1172
1173         spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1174         if (!spe_pmu->handle)
1175                 return -ENOMEM;
1176
1177         spe_pmu->pdev = pdev;
1178         platform_set_drvdata(pdev, spe_pmu);
1179
1180         ret = arm_spe_pmu_irq_probe(spe_pmu);
1181         if (ret)
1182                 goto out_free_handle;
1183
1184         ret = arm_spe_pmu_dev_init(spe_pmu);
1185         if (ret)
1186                 goto out_free_handle;
1187
1188         ret = arm_spe_pmu_perf_init(spe_pmu);
1189         if (ret)
1190                 goto out_teardown_dev;
1191
1192         return 0;
1193
1194 out_teardown_dev:
1195         arm_spe_pmu_dev_teardown(spe_pmu);
1196 out_free_handle:
1197         free_percpu(spe_pmu->handle);
1198         return ret;
1199 }
1200
1201 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1202 {
1203         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1204
1205         arm_spe_pmu_perf_destroy(spe_pmu);
1206         arm_spe_pmu_dev_teardown(spe_pmu);
1207         free_percpu(spe_pmu->handle);
1208         return 0;
1209 }
1210
1211 static struct platform_driver arm_spe_pmu_driver = {
1212         .driver = {
1213                 .name           = DRVNAME,
1214                 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1215         },
1216         .probe  = arm_spe_pmu_device_dt_probe,
1217         .remove = arm_spe_pmu_device_remove,
1218 };
1219
1220 static int __init arm_spe_pmu_init(void)
1221 {
1222         int ret;
1223
1224         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1225                                       arm_spe_pmu_cpu_startup,
1226                                       arm_spe_pmu_cpu_teardown);
1227         if (ret < 0)
1228                 return ret;
1229         arm_spe_pmu_online = ret;
1230
1231         ret = platform_driver_register(&arm_spe_pmu_driver);
1232         if (ret)
1233                 cpuhp_remove_multi_state(arm_spe_pmu_online);
1234
1235         return ret;
1236 }
1237
1238 static void __exit arm_spe_pmu_exit(void)
1239 {
1240         platform_driver_unregister(&arm_spe_pmu_driver);
1241         cpuhp_remove_multi_state(arm_spe_pmu_online);
1242 }
1243
1244 module_init(arm_spe_pmu_init);
1245 module_exit(arm_spe_pmu_exit);
1246
1247 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1248 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1249 MODULE_LICENSE("GPL v2");