arm64: perf: Add support for event counting threshold
[linux-2.6-microblaze.git] / drivers / perf / arm_pmuv3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ARMv8 PMUv3 Performance Events handling code.
4  *
5  * Copyright (C) 2012 ARM Limited
6  * Author: Will Deacon <will.deacon@arm.com>
7  *
8  * This code is based heavily on the ARMv7 perf event code.
9  */
10
11 #include <asm/irq_regs.h>
12 #include <asm/perf_event.h>
13 #include <asm/virt.h>
14
15 #include <clocksource/arm_arch_timer.h>
16
17 #include <linux/acpi.h>
18 #include <linux/bitfield.h>
19 #include <linux/clocksource.h>
20 #include <linux/of.h>
21 #include <linux/perf/arm_pmu.h>
22 #include <linux/perf/arm_pmuv3.h>
23 #include <linux/platform_device.h>
24 #include <linux/sched_clock.h>
25 #include <linux/smp.h>
26 #include <linux/nmi.h>
27
28 #include <asm/arm_pmuv3.h>
29
30 /* ARMv8 Cortex-A53 specific event types. */
31 #define ARMV8_A53_PERFCTR_PREF_LINEFILL                         0xC2
32
33 /* ARMv8 Cavium ThunderX specific event types. */
34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST                 0xE9
35 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS             0xEA
36 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS               0xEB
37 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS             0xEC
38 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS               0xED
39
40 /*
41  * ARMv8 Architectural defined events, not all of these may
42  * be supported on any given implementation. Unsupported events will
43  * be disabled at run-time based on the PMCEID registers.
44  */
45 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
46         PERF_MAP_ALL_UNSUPPORTED,
47         [PERF_COUNT_HW_CPU_CYCLES]              = ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
48         [PERF_COUNT_HW_INSTRUCTIONS]            = ARMV8_PMUV3_PERFCTR_INST_RETIRED,
49         [PERF_COUNT_HW_CACHE_REFERENCES]        = ARMV8_PMUV3_PERFCTR_L1D_CACHE,
50         [PERF_COUNT_HW_CACHE_MISSES]            = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
51         [PERF_COUNT_HW_BRANCH_MISSES]           = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
52         [PERF_COUNT_HW_BUS_CYCLES]              = ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
53         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
54         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
55 };
56
57 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
58                                                 [PERF_COUNT_HW_CACHE_OP_MAX]
59                                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
60         PERF_CACHE_MAP_ALL_UNSUPPORTED,
61
62         [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_PMUV3_PERFCTR_L1D_CACHE,
63         [C(L1D)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
64
65         [C(L1I)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_PMUV3_PERFCTR_L1I_CACHE,
66         [C(L1I)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
67
68         [C(DTLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
69         [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB,
70
71         [C(ITLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
72         [C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB,
73
74         [C(LL)][C(OP_READ)][C(RESULT_MISS)]     = ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
75         [C(LL)][C(OP_READ)][C(RESULT_ACCESS)]   = ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
76
77         [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_PMUV3_PERFCTR_BR_PRED,
78         [C(BPU)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
79 };
80
81 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
82                                               [PERF_COUNT_HW_CACHE_OP_MAX]
83                                               [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
84         PERF_CACHE_MAP_ALL_UNSUPPORTED,
85
86         [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
87
88         [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
89         [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
90 };
91
92 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
93                                               [PERF_COUNT_HW_CACHE_OP_MAX]
94                                               [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
95         PERF_CACHE_MAP_ALL_UNSUPPORTED,
96
97         [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
98         [C(L1D)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
99         [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
100         [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
101
102         [C(DTLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
103         [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]  = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
104
105         [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
106         [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
107 };
108
109 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
110                                               [PERF_COUNT_HW_CACHE_OP_MAX]
111                                               [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
112         PERF_CACHE_MAP_ALL_UNSUPPORTED,
113
114         [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
115         [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
116 };
117
118 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
119                                                    [PERF_COUNT_HW_CACHE_OP_MAX]
120                                                    [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
121         PERF_CACHE_MAP_ALL_UNSUPPORTED,
122
123         [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
124         [C(L1D)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
125         [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
126         [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
127         [C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
128         [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
129
130         [C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
131         [C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
132
133         [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
134         [C(DTLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
135         [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
136         [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]  = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
137 };
138
139 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
140                                               [PERF_COUNT_HW_CACHE_OP_MAX]
141                                               [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
142         PERF_CACHE_MAP_ALL_UNSUPPORTED,
143
144         [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
145         [C(L1D)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
146         [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
147         [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
148
149         [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
150         [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
151         [C(DTLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
152         [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]  = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
153
154         [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
155         [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
156 };
157
158 static ssize_t
159 armv8pmu_events_sysfs_show(struct device *dev,
160                            struct device_attribute *attr, char *page)
161 {
162         struct perf_pmu_events_attr *pmu_attr;
163
164         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
165
166         return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
167 }
168
169 #define ARMV8_EVENT_ATTR(name, config)                                          \
170         PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
171
172 static struct attribute *armv8_pmuv3_event_attrs[] = {
173         /*
174          * Don't expose the sw_incr event in /sys. It's not usable as writes to
175          * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation
176          * means we don't have a fixed event<->counter relationship regardless.
177          */
178         ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
179         ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
180         ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
181         ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
182         ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
183         ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
184         ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
185         ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
186         ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
187         ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
188         ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
189         ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
190         ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
191         ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
192         ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
193         ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
194         ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
195         ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
196         ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
197         ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
198         ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
199         ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
200         ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
201         ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
202         ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
203         ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
204         ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
205         ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
206         ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
207         /* Don't expose the chain event in /sys, since it's useless in isolation */
208         ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
209         ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
210         ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
211         ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
212         ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
213         ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
214         ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
215         ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
216         ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
217         ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
218         ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
219         ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
220         ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
221         ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
222         ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
223         ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
224         ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
225         ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
226         ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
227         ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
228         ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
229         ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
230         ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
231         ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
232         ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
233         ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
234         ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
235         ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
236         ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
237         ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
238         ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
239         ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
240         ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
241         ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
242         ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
243         ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
244         ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
245         ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
246         ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
247         ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
248         ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
249         ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
250         ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
251         ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
252         ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
253         ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
254         ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
255         ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
256         ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
257         ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
258         ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
259         ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
260         ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
261         ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
262         ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
263         ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
264         ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
265         ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
266         ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
267         NULL,
268 };
269
270 static umode_t
271 armv8pmu_event_attr_is_visible(struct kobject *kobj,
272                                struct attribute *attr, int unused)
273 {
274         struct device *dev = kobj_to_dev(kobj);
275         struct pmu *pmu = dev_get_drvdata(dev);
276         struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
277         struct perf_pmu_events_attr *pmu_attr;
278
279         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
280
281         if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
282             test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
283                 return attr->mode;
284
285         if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
286                 u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
287
288                 if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
289                     test_bit(id, cpu_pmu->pmceid_ext_bitmap))
290                         return attr->mode;
291         }
292
293         return 0;
294 }
295
296 static const struct attribute_group armv8_pmuv3_events_attr_group = {
297         .name = "events",
298         .attrs = armv8_pmuv3_event_attrs,
299         .is_visible = armv8pmu_event_attr_is_visible,
300 };
301
302 /* User ABI */
303 #define ATTR_CFG_FLD_event_CFG          config
304 #define ATTR_CFG_FLD_event_LO           0
305 #define ATTR_CFG_FLD_event_HI           15
306 #define ATTR_CFG_FLD_long_CFG           config1
307 #define ATTR_CFG_FLD_long_LO            0
308 #define ATTR_CFG_FLD_long_HI            0
309 #define ATTR_CFG_FLD_rdpmc_CFG          config1
310 #define ATTR_CFG_FLD_rdpmc_LO           1
311 #define ATTR_CFG_FLD_rdpmc_HI           1
312 #define ATTR_CFG_FLD_threshold_count_CFG        config1 /* PMEVTYPER.TC[0] */
313 #define ATTR_CFG_FLD_threshold_count_LO         2
314 #define ATTR_CFG_FLD_threshold_count_HI         2
315 #define ATTR_CFG_FLD_threshold_compare_CFG      config1 /* PMEVTYPER.TC[2:1] */
316 #define ATTR_CFG_FLD_threshold_compare_LO       3
317 #define ATTR_CFG_FLD_threshold_compare_HI       4
318 #define ATTR_CFG_FLD_threshold_CFG              config1 /* PMEVTYPER.TH */
319 #define ATTR_CFG_FLD_threshold_LO               5
320 #define ATTR_CFG_FLD_threshold_HI               16
321
322 GEN_PMU_FORMAT_ATTR(event);
323 GEN_PMU_FORMAT_ATTR(long);
324 GEN_PMU_FORMAT_ATTR(rdpmc);
325 GEN_PMU_FORMAT_ATTR(threshold_count);
326 GEN_PMU_FORMAT_ATTR(threshold_compare);
327 GEN_PMU_FORMAT_ATTR(threshold);
328
329 static int sysctl_perf_user_access __read_mostly;
330
331 static bool armv8pmu_event_is_64bit(struct perf_event *event)
332 {
333         return ATTR_CFG_GET_FLD(&event->attr, long);
334 }
335
336 static bool armv8pmu_event_want_user_access(struct perf_event *event)
337 {
338         return ATTR_CFG_GET_FLD(&event->attr, rdpmc);
339 }
340
341 static u8 armv8pmu_event_threshold_control(struct perf_event_attr *attr)
342 {
343         u8 th_compare = ATTR_CFG_GET_FLD(attr, threshold_compare);
344         u8 th_count = ATTR_CFG_GET_FLD(attr, threshold_count);
345
346         /*
347          * The count bit is always the bottom bit of the full control field, and
348          * the comparison is the upper two bits, but it's not explicitly
349          * labelled in the Arm ARM. For the Perf interface we split it into two
350          * fields, so reconstruct it here.
351          */
352         return (th_compare << 1) | th_count;
353 }
354
355 static struct attribute *armv8_pmuv3_format_attrs[] = {
356         &format_attr_event.attr,
357         &format_attr_long.attr,
358         &format_attr_rdpmc.attr,
359         &format_attr_threshold.attr,
360         &format_attr_threshold_compare.attr,
361         &format_attr_threshold_count.attr,
362         NULL,
363 };
364
365 static const struct attribute_group armv8_pmuv3_format_attr_group = {
366         .name = "format",
367         .attrs = armv8_pmuv3_format_attrs,
368 };
369
370 static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
371                           char *page)
372 {
373         struct pmu *pmu = dev_get_drvdata(dev);
374         struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
375         u32 slots = FIELD_GET(ARMV8_PMU_SLOTS, cpu_pmu->reg_pmmir);
376
377         return sysfs_emit(page, "0x%08x\n", slots);
378 }
379
380 static DEVICE_ATTR_RO(slots);
381
382 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
383                               char *page)
384 {
385         struct pmu *pmu = dev_get_drvdata(dev);
386         struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
387         u32 bus_slots = FIELD_GET(ARMV8_PMU_BUS_SLOTS, cpu_pmu->reg_pmmir);
388
389         return sysfs_emit(page, "0x%08x\n", bus_slots);
390 }
391
392 static DEVICE_ATTR_RO(bus_slots);
393
394 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
395                               char *page)
396 {
397         struct pmu *pmu = dev_get_drvdata(dev);
398         struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
399         u32 bus_width = FIELD_GET(ARMV8_PMU_BUS_WIDTH, cpu_pmu->reg_pmmir);
400         u32 val = 0;
401
402         /* Encoded as Log2(number of bytes), plus one */
403         if (bus_width > 2 && bus_width < 13)
404                 val = 1 << (bus_width - 1);
405
406         return sysfs_emit(page, "0x%08x\n", val);
407 }
408
409 static DEVICE_ATTR_RO(bus_width);
410
411 static u32 threshold_max(struct arm_pmu *cpu_pmu)
412 {
413         /*
414          * PMMIR.THWIDTH is readable and non-zero on aarch32, but it would be
415          * impossible to write the threshold in the upper 32 bits of PMEVTYPER.
416          */
417         if (IS_ENABLED(CONFIG_ARM))
418                 return 0;
419
420         /*
421          * The largest value that can be written to PMEVTYPER<n>_EL0.TH is
422          * (2 ^ PMMIR.THWIDTH) - 1.
423          */
424         return (1 << FIELD_GET(ARMV8_PMU_THWIDTH, cpu_pmu->reg_pmmir)) - 1;
425 }
426
427 static ssize_t threshold_max_show(struct device *dev,
428                                   struct device_attribute *attr, char *page)
429 {
430         struct pmu *pmu = dev_get_drvdata(dev);
431         struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
432
433         return sysfs_emit(page, "0x%08x\n", threshold_max(cpu_pmu));
434 }
435
436 static DEVICE_ATTR_RO(threshold_max);
437
438 static struct attribute *armv8_pmuv3_caps_attrs[] = {
439         &dev_attr_slots.attr,
440         &dev_attr_bus_slots.attr,
441         &dev_attr_bus_width.attr,
442         &dev_attr_threshold_max.attr,
443         NULL,
444 };
445
446 static const struct attribute_group armv8_pmuv3_caps_attr_group = {
447         .name = "caps",
448         .attrs = armv8_pmuv3_caps_attrs,
449 };
450
451 /*
452  * Perf Events' indices
453  */
454 #define ARMV8_IDX_CYCLE_COUNTER 0
455 #define ARMV8_IDX_COUNTER0      1
456 #define ARMV8_IDX_CYCLE_COUNTER_USER    32
457
458 /*
459  * We unconditionally enable ARMv8.5-PMU long event counter support
460  * (64-bit events) where supported. Indicate if this arm_pmu has long
461  * event counter support.
462  *
463  * On AArch32, long counters make no sense (you can't access the top
464  * bits), so we only enable this on AArch64.
465  */
466 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
467 {
468         return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
469 }
470
471 static bool armv8pmu_event_has_user_read(struct perf_event *event)
472 {
473         return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
474 }
475
476 /*
477  * We must chain two programmable counters for 64 bit events,
478  * except when we have allocated the 64bit cycle counter (for CPU
479  * cycles event) or when user space counter access is enabled.
480  */
481 static bool armv8pmu_event_is_chained(struct perf_event *event)
482 {
483         int idx = event->hw.idx;
484         struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
485
486         return !armv8pmu_event_has_user_read(event) &&
487                armv8pmu_event_is_64bit(event) &&
488                !armv8pmu_has_long_event(cpu_pmu) &&
489                (idx != ARMV8_IDX_CYCLE_COUNTER);
490 }
491
492 /*
493  * ARMv8 low level PMU access
494  */
495
496 /*
497  * Perf Event to low level counters mapping
498  */
499 #define ARMV8_IDX_TO_COUNTER(x) \
500         (((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK)
501
502 static u64 armv8pmu_pmcr_read(void)
503 {
504         return read_pmcr();
505 }
506
507 static void armv8pmu_pmcr_write(u64 val)
508 {
509         val &= ARMV8_PMU_PMCR_MASK;
510         isb();
511         write_pmcr(val);
512 }
513
514 static int armv8pmu_has_overflowed(u32 pmovsr)
515 {
516         return pmovsr & ARMV8_PMU_OVERFLOWED_MASK;
517 }
518
519 static int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
520 {
521         return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx));
522 }
523
524 static u64 armv8pmu_read_evcntr(int idx)
525 {
526         u32 counter = ARMV8_IDX_TO_COUNTER(idx);
527
528         return read_pmevcntrn(counter);
529 }
530
531 static u64 armv8pmu_read_hw_counter(struct perf_event *event)
532 {
533         int idx = event->hw.idx;
534         u64 val = armv8pmu_read_evcntr(idx);
535
536         if (armv8pmu_event_is_chained(event))
537                 val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
538         return val;
539 }
540
541 /*
542  * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
543  * is set the event counters also become 64-bit counters. Unless the
544  * user has requested a long counter (attr.config1) then we want to
545  * interrupt upon 32-bit overflow - we achieve this by applying a bias.
546  */
547 static bool armv8pmu_event_needs_bias(struct perf_event *event)
548 {
549         struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
550         struct hw_perf_event *hwc = &event->hw;
551         int idx = hwc->idx;
552
553         if (armv8pmu_event_is_64bit(event))
554                 return false;
555
556         if (armv8pmu_has_long_event(cpu_pmu) ||
557             idx == ARMV8_IDX_CYCLE_COUNTER)
558                 return true;
559
560         return false;
561 }
562
563 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
564 {
565         if (armv8pmu_event_needs_bias(event))
566                 value |= GENMASK_ULL(63, 32);
567
568         return value;
569 }
570
571 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
572 {
573         if (armv8pmu_event_needs_bias(event))
574                 value &= ~GENMASK_ULL(63, 32);
575
576         return value;
577 }
578
579 static u64 armv8pmu_read_counter(struct perf_event *event)
580 {
581         struct hw_perf_event *hwc = &event->hw;
582         int idx = hwc->idx;
583         u64 value;
584
585         if (idx == ARMV8_IDX_CYCLE_COUNTER)
586                 value = read_pmccntr();
587         else
588                 value = armv8pmu_read_hw_counter(event);
589
590         return  armv8pmu_unbias_long_counter(event, value);
591 }
592
593 static void armv8pmu_write_evcntr(int idx, u64 value)
594 {
595         u32 counter = ARMV8_IDX_TO_COUNTER(idx);
596
597         write_pmevcntrn(counter, value);
598 }
599
600 static void armv8pmu_write_hw_counter(struct perf_event *event,
601                                              u64 value)
602 {
603         int idx = event->hw.idx;
604
605         if (armv8pmu_event_is_chained(event)) {
606                 armv8pmu_write_evcntr(idx, upper_32_bits(value));
607                 armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
608         } else {
609                 armv8pmu_write_evcntr(idx, value);
610         }
611 }
612
613 static void armv8pmu_write_counter(struct perf_event *event, u64 value)
614 {
615         struct hw_perf_event *hwc = &event->hw;
616         int idx = hwc->idx;
617
618         value = armv8pmu_bias_long_counter(event, value);
619
620         if (idx == ARMV8_IDX_CYCLE_COUNTER)
621                 write_pmccntr(value);
622         else
623                 armv8pmu_write_hw_counter(event, value);
624 }
625
626 static void armv8pmu_write_evtype(int idx, unsigned long val)
627 {
628         u32 counter = ARMV8_IDX_TO_COUNTER(idx);
629         unsigned long mask = ARMV8_PMU_EVTYPE_EVENT |
630                              ARMV8_PMU_INCLUDE_EL2 |
631                              ARMV8_PMU_EXCLUDE_EL0 |
632                              ARMV8_PMU_EXCLUDE_EL1;
633
634         if (IS_ENABLED(CONFIG_ARM64))
635                 mask |= ARMV8_PMU_EVTYPE_TC | ARMV8_PMU_EVTYPE_TH;
636
637         val &= mask;
638         write_pmevtypern(counter, val);
639 }
640
641 static void armv8pmu_write_event_type(struct perf_event *event)
642 {
643         struct hw_perf_event *hwc = &event->hw;
644         int idx = hwc->idx;
645
646         /*
647          * For chained events, the low counter is programmed to count
648          * the event of interest and the high counter is programmed
649          * with CHAIN event code with filters set to count at all ELs.
650          */
651         if (armv8pmu_event_is_chained(event)) {
652                 u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
653                                 ARMV8_PMU_INCLUDE_EL2;
654
655                 armv8pmu_write_evtype(idx - 1, hwc->config_base);
656                 armv8pmu_write_evtype(idx, chain_evt);
657         } else {
658                 if (idx == ARMV8_IDX_CYCLE_COUNTER)
659                         write_pmccfiltr(hwc->config_base);
660                 else
661                         armv8pmu_write_evtype(idx, hwc->config_base);
662         }
663 }
664
665 static u32 armv8pmu_event_cnten_mask(struct perf_event *event)
666 {
667         int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
668         u32 mask = BIT(counter);
669
670         if (armv8pmu_event_is_chained(event))
671                 mask |= BIT(counter - 1);
672         return mask;
673 }
674
675 static void armv8pmu_enable_counter(u32 mask)
676 {
677         /*
678          * Make sure event configuration register writes are visible before we
679          * enable the counter.
680          * */
681         isb();
682         write_pmcntenset(mask);
683 }
684
685 static void armv8pmu_enable_event_counter(struct perf_event *event)
686 {
687         struct perf_event_attr *attr = &event->attr;
688         u32 mask = armv8pmu_event_cnten_mask(event);
689
690         kvm_set_pmu_events(mask, attr);
691
692         /* We rely on the hypervisor switch code to enable guest counters */
693         if (!kvm_pmu_counter_deferred(attr))
694                 armv8pmu_enable_counter(mask);
695 }
696
697 static void armv8pmu_disable_counter(u32 mask)
698 {
699         write_pmcntenclr(mask);
700         /*
701          * Make sure the effects of disabling the counter are visible before we
702          * start configuring the event.
703          */
704         isb();
705 }
706
707 static void armv8pmu_disable_event_counter(struct perf_event *event)
708 {
709         struct perf_event_attr *attr = &event->attr;
710         u32 mask = armv8pmu_event_cnten_mask(event);
711
712         kvm_clr_pmu_events(mask);
713
714         /* We rely on the hypervisor switch code to disable guest counters */
715         if (!kvm_pmu_counter_deferred(attr))
716                 armv8pmu_disable_counter(mask);
717 }
718
719 static void armv8pmu_enable_intens(u32 mask)
720 {
721         write_pmintenset(mask);
722 }
723
724 static void armv8pmu_enable_event_irq(struct perf_event *event)
725 {
726         u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
727         armv8pmu_enable_intens(BIT(counter));
728 }
729
730 static void armv8pmu_disable_intens(u32 mask)
731 {
732         write_pmintenclr(mask);
733         isb();
734         /* Clear the overflow flag in case an interrupt is pending. */
735         write_pmovsclr(mask);
736         isb();
737 }
738
739 static void armv8pmu_disable_event_irq(struct perf_event *event)
740 {
741         u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
742         armv8pmu_disable_intens(BIT(counter));
743 }
744
745 static u32 armv8pmu_getreset_flags(void)
746 {
747         u32 value;
748
749         /* Read */
750         value = read_pmovsclr();
751
752         /* Write to clear flags */
753         value &= ARMV8_PMU_OVERFLOWED_MASK;
754         write_pmovsclr(value);
755
756         return value;
757 }
758
759 static void update_pmuserenr(u64 val)
760 {
761         lockdep_assert_irqs_disabled();
762
763         /*
764          * The current PMUSERENR_EL0 value might be the value for the guest.
765          * If that's the case, have KVM keep tracking of the register value
766          * for the host EL0 so that KVM can restore it before returning to
767          * the host EL0. Otherwise, update the register now.
768          */
769         if (kvm_set_pmuserenr(val))
770                 return;
771
772         write_pmuserenr(val);
773 }
774
775 static void armv8pmu_disable_user_access(void)
776 {
777         update_pmuserenr(0);
778 }
779
780 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
781 {
782         int i;
783         struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
784
785         /* Clear any unused counters to avoid leaking their contents */
786         for_each_clear_bit(i, cpuc->used_mask, cpu_pmu->num_events) {
787                 if (i == ARMV8_IDX_CYCLE_COUNTER)
788                         write_pmccntr(0);
789                 else
790                         armv8pmu_write_evcntr(i, 0);
791         }
792
793         update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR);
794 }
795
796 static void armv8pmu_enable_event(struct perf_event *event)
797 {
798         /*
799          * Enable counter and interrupt, and set the counter to count
800          * the event that we're interested in.
801          */
802         armv8pmu_disable_event_counter(event);
803         armv8pmu_write_event_type(event);
804         armv8pmu_enable_event_irq(event);
805         armv8pmu_enable_event_counter(event);
806 }
807
808 static void armv8pmu_disable_event(struct perf_event *event)
809 {
810         armv8pmu_disable_event_counter(event);
811         armv8pmu_disable_event_irq(event);
812 }
813
814 static void armv8pmu_start(struct arm_pmu *cpu_pmu)
815 {
816         struct perf_event_context *ctx;
817         int nr_user = 0;
818
819         ctx = perf_cpu_task_ctx();
820         if (ctx)
821                 nr_user = ctx->nr_user;
822
823         if (sysctl_perf_user_access && nr_user)
824                 armv8pmu_enable_user_access(cpu_pmu);
825         else
826                 armv8pmu_disable_user_access();
827
828         /* Enable all counters */
829         armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
830
831         kvm_vcpu_pmu_resync_el0();
832 }
833
834 static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
835 {
836         /* Disable all counters */
837         armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
838 }
839
840 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
841 {
842         u32 pmovsr;
843         struct perf_sample_data data;
844         struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
845         struct pt_regs *regs;
846         int idx;
847
848         /*
849          * Get and reset the IRQ flags
850          */
851         pmovsr = armv8pmu_getreset_flags();
852
853         /*
854          * Did an overflow occur?
855          */
856         if (!armv8pmu_has_overflowed(pmovsr))
857                 return IRQ_NONE;
858
859         /*
860          * Handle the counter(s) overflow(s)
861          */
862         regs = get_irq_regs();
863
864         /*
865          * Stop the PMU while processing the counter overflows
866          * to prevent skews in group events.
867          */
868         armv8pmu_stop(cpu_pmu);
869         for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
870                 struct perf_event *event = cpuc->events[idx];
871                 struct hw_perf_event *hwc;
872
873                 /* Ignore if we don't have an event. */
874                 if (!event)
875                         continue;
876
877                 /*
878                  * We have a single interrupt for all counters. Check that
879                  * each counter has overflowed before we process it.
880                  */
881                 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
882                         continue;
883
884                 hwc = &event->hw;
885                 armpmu_event_update(event);
886                 perf_sample_data_init(&data, 0, hwc->last_period);
887                 if (!armpmu_event_set_period(event))
888                         continue;
889
890                 /*
891                  * Perf event overflow will queue the processing of the event as
892                  * an irq_work which will be taken care of in the handling of
893                  * IPI_IRQ_WORK.
894                  */
895                 if (perf_event_overflow(event, &data, regs))
896                         cpu_pmu->disable(event);
897         }
898         armv8pmu_start(cpu_pmu);
899
900         return IRQ_HANDLED;
901 }
902
903 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
904                                     struct arm_pmu *cpu_pmu)
905 {
906         int idx;
907
908         for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx++) {
909                 if (!test_and_set_bit(idx, cpuc->used_mask))
910                         return idx;
911         }
912         return -EAGAIN;
913 }
914
915 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
916                                    struct arm_pmu *cpu_pmu)
917 {
918         int idx;
919
920         /*
921          * Chaining requires two consecutive event counters, where
922          * the lower idx must be even.
923          */
924         for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) {
925                 if (!test_and_set_bit(idx, cpuc->used_mask)) {
926                         /* Check if the preceding even counter is available */
927                         if (!test_and_set_bit(idx - 1, cpuc->used_mask))
928                                 return idx;
929                         /* Release the Odd counter */
930                         clear_bit(idx, cpuc->used_mask);
931                 }
932         }
933         return -EAGAIN;
934 }
935
936 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
937                                   struct perf_event *event)
938 {
939         struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
940         struct hw_perf_event *hwc = &event->hw;
941         unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
942
943         /* Always prefer to place a cycle counter into the cycle counter. */
944         if (evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) {
945                 if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
946                         return ARMV8_IDX_CYCLE_COUNTER;
947                 else if (armv8pmu_event_is_64bit(event) &&
948                            armv8pmu_event_want_user_access(event) &&
949                            !armv8pmu_has_long_event(cpu_pmu))
950                                 return -EAGAIN;
951         }
952
953         /*
954          * Otherwise use events counters
955          */
956         if (armv8pmu_event_is_chained(event))
957                 return  armv8pmu_get_chain_idx(cpuc, cpu_pmu);
958         else
959                 return armv8pmu_get_single_idx(cpuc, cpu_pmu);
960 }
961
962 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
963                                      struct perf_event *event)
964 {
965         int idx = event->hw.idx;
966
967         clear_bit(idx, cpuc->used_mask);
968         if (armv8pmu_event_is_chained(event))
969                 clear_bit(idx - 1, cpuc->used_mask);
970 }
971
972 static int armv8pmu_user_event_idx(struct perf_event *event)
973 {
974         if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
975                 return 0;
976
977         /*
978          * We remap the cycle counter index to 32 to
979          * match the offset applied to the rest of
980          * the counter indices.
981          */
982         if (event->hw.idx == ARMV8_IDX_CYCLE_COUNTER)
983                 return ARMV8_IDX_CYCLE_COUNTER_USER;
984
985         return event->hw.idx;
986 }
987
988 /*
989  * Add an event filter to a given event.
990  */
991 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
992                                      struct perf_event_attr *attr)
993 {
994         unsigned long config_base = 0;
995         struct perf_event *perf_event = container_of(attr, struct perf_event,
996                                                      attr);
997         struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
998         u32 th;
999
1000         if (attr->exclude_idle) {
1001                 pr_debug("ARM performance counters do not support mode exclusion\n");
1002                 return -EOPNOTSUPP;
1003         }
1004
1005         /*
1006          * If we're running in hyp mode, then we *are* the hypervisor.
1007          * Therefore we ignore exclude_hv in this configuration, since
1008          * there's no hypervisor to sample anyway. This is consistent
1009          * with other architectures (x86 and Power).
1010          */
1011         if (is_kernel_in_hyp_mode()) {
1012                 if (!attr->exclude_kernel && !attr->exclude_host)
1013                         config_base |= ARMV8_PMU_INCLUDE_EL2;
1014                 if (attr->exclude_guest)
1015                         config_base |= ARMV8_PMU_EXCLUDE_EL1;
1016                 if (attr->exclude_host)
1017                         config_base |= ARMV8_PMU_EXCLUDE_EL0;
1018         } else {
1019                 if (!attr->exclude_hv && !attr->exclude_host)
1020                         config_base |= ARMV8_PMU_INCLUDE_EL2;
1021         }
1022
1023         /*
1024          * Filter out !VHE kernels and guest kernels
1025          */
1026         if (attr->exclude_kernel)
1027                 config_base |= ARMV8_PMU_EXCLUDE_EL1;
1028
1029         if (attr->exclude_user)
1030                 config_base |= ARMV8_PMU_EXCLUDE_EL0;
1031
1032         /*
1033          * If FEAT_PMUv3_TH isn't implemented, then THWIDTH (threshold_max) will
1034          * be 0 and will also trigger this check, preventing it from being used.
1035          */
1036         th = ATTR_CFG_GET_FLD(attr, threshold);
1037         if (th > threshold_max(cpu_pmu)) {
1038                 pr_debug("PMU event threshold exceeds max value\n");
1039                 return -EINVAL;
1040         }
1041
1042         if (IS_ENABLED(CONFIG_ARM64) && th) {
1043                 config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TH, th);
1044                 config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TC,
1045                                           armv8pmu_event_threshold_control(attr));
1046         }
1047
1048         /*
1049          * Install the filter into config_base as this is used to
1050          * construct the event type.
1051          */
1052         event->config_base = config_base;
1053
1054         return 0;
1055 }
1056
1057 static void armv8pmu_reset(void *info)
1058 {
1059         struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
1060         u64 pmcr;
1061
1062         /* The counter and interrupt enable registers are unknown at reset. */
1063         armv8pmu_disable_counter(U32_MAX);
1064         armv8pmu_disable_intens(U32_MAX);
1065
1066         /* Clear the counters we flip at guest entry/exit */
1067         kvm_clr_pmu_events(U32_MAX);
1068
1069         /*
1070          * Initialize & Reset PMNC. Request overflow interrupt for
1071          * 64 bit cycle counter but cheat in armv8pmu_write_counter().
1072          */
1073         pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
1074
1075         /* Enable long event counter support where available */
1076         if (armv8pmu_has_long_event(cpu_pmu))
1077                 pmcr |= ARMV8_PMU_PMCR_LP;
1078
1079         armv8pmu_pmcr_write(pmcr);
1080 }
1081
1082 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
1083                                       struct perf_event *event)
1084 {
1085         if (event->attr.type == PERF_TYPE_HARDWARE &&
1086             event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
1087
1088                 if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
1089                              armpmu->pmceid_bitmap))
1090                         return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
1091
1092                 if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
1093                              armpmu->pmceid_bitmap))
1094                         return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
1095
1096                 return HW_OP_UNSUPPORTED;
1097         }
1098
1099         return armpmu_map_event(event, &armv8_pmuv3_perf_map,
1100                                 &armv8_pmuv3_perf_cache_map,
1101                                 ARMV8_PMU_EVTYPE_EVENT);
1102 }
1103
1104 static int __armv8_pmuv3_map_event(struct perf_event *event,
1105                                    const unsigned (*extra_event_map)
1106                                                   [PERF_COUNT_HW_MAX],
1107                                    const unsigned (*extra_cache_map)
1108                                                   [PERF_COUNT_HW_CACHE_MAX]
1109                                                   [PERF_COUNT_HW_CACHE_OP_MAX]
1110                                                   [PERF_COUNT_HW_CACHE_RESULT_MAX])
1111 {
1112         int hw_event_id;
1113         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1114
1115         hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
1116
1117         /*
1118          * CHAIN events only work when paired with an adjacent counter, and it
1119          * never makes sense for a user to open one in isolation, as they'll be
1120          * rotated arbitrarily.
1121          */
1122         if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
1123                 return -EINVAL;
1124
1125         if (armv8pmu_event_is_64bit(event))
1126                 event->hw.flags |= ARMPMU_EVT_64BIT;
1127
1128         /*
1129          * User events must be allocated into a single counter, and so
1130          * must not be chained.
1131          *
1132          * Most 64-bit events require long counter support, but 64-bit
1133          * CPU_CYCLES events can be placed into the dedicated cycle
1134          * counter when this is free.
1135          */
1136         if (armv8pmu_event_want_user_access(event)) {
1137                 if (!(event->attach_state & PERF_ATTACH_TASK))
1138                         return -EINVAL;
1139                 if (armv8pmu_event_is_64bit(event) &&
1140                     (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
1141                     !armv8pmu_has_long_event(armpmu))
1142                         return -EOPNOTSUPP;
1143
1144                 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1145         }
1146
1147         /* Only expose micro/arch events supported by this PMU */
1148         if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
1149             && test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
1150                 return hw_event_id;
1151         }
1152
1153         return armpmu_map_event(event, extra_event_map, extra_cache_map,
1154                                 ARMV8_PMU_EVTYPE_EVENT);
1155 }
1156
1157 static int armv8_pmuv3_map_event(struct perf_event *event)
1158 {
1159         return __armv8_pmuv3_map_event(event, NULL, NULL);
1160 }
1161
1162 static int armv8_a53_map_event(struct perf_event *event)
1163 {
1164         return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
1165 }
1166
1167 static int armv8_a57_map_event(struct perf_event *event)
1168 {
1169         return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
1170 }
1171
1172 static int armv8_a73_map_event(struct perf_event *event)
1173 {
1174         return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
1175 }
1176
1177 static int armv8_thunder_map_event(struct perf_event *event)
1178 {
1179         return __armv8_pmuv3_map_event(event, NULL,
1180                                        &armv8_thunder_perf_cache_map);
1181 }
1182
1183 static int armv8_vulcan_map_event(struct perf_event *event)
1184 {
1185         return __armv8_pmuv3_map_event(event, NULL,
1186                                        &armv8_vulcan_perf_cache_map);
1187 }
1188
1189 struct armv8pmu_probe_info {
1190         struct arm_pmu *pmu;
1191         bool present;
1192 };
1193
1194 static void __armv8pmu_probe_pmu(void *info)
1195 {
1196         struct armv8pmu_probe_info *probe = info;
1197         struct arm_pmu *cpu_pmu = probe->pmu;
1198         u64 pmceid_raw[2];
1199         u32 pmceid[2];
1200         int pmuver;
1201
1202         pmuver = read_pmuver();
1203         if (!pmuv3_implemented(pmuver))
1204                 return;
1205
1206         cpu_pmu->pmuver = pmuver;
1207         probe->present = true;
1208
1209         /* Read the nb of CNTx counters supported from PMNC */
1210         cpu_pmu->num_events = FIELD_GET(ARMV8_PMU_PMCR_N, armv8pmu_pmcr_read());
1211
1212         /* Add the CPU cycles counter */
1213         cpu_pmu->num_events += 1;
1214
1215         pmceid[0] = pmceid_raw[0] = read_pmceid0();
1216         pmceid[1] = pmceid_raw[1] = read_pmceid1();
1217
1218         bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
1219                              pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1220
1221         pmceid[0] = pmceid_raw[0] >> 32;
1222         pmceid[1] = pmceid_raw[1] >> 32;
1223
1224         bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
1225                              pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1226
1227         /* store PMMIR register for sysfs */
1228         if (is_pmuv3p4(pmuver))
1229                 cpu_pmu->reg_pmmir = read_pmmir();
1230         else
1231                 cpu_pmu->reg_pmmir = 0;
1232 }
1233
1234 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
1235 {
1236         struct armv8pmu_probe_info probe = {
1237                 .pmu = cpu_pmu,
1238                 .present = false,
1239         };
1240         int ret;
1241
1242         ret = smp_call_function_any(&cpu_pmu->supported_cpus,
1243                                     __armv8pmu_probe_pmu,
1244                                     &probe, 1);
1245         if (ret)
1246                 return ret;
1247
1248         return probe.present ? 0 : -ENODEV;
1249 }
1250
1251 static void armv8pmu_disable_user_access_ipi(void *unused)
1252 {
1253         armv8pmu_disable_user_access();
1254 }
1255
1256 static int armv8pmu_proc_user_access_handler(struct ctl_table *table, int write,
1257                 void *buffer, size_t *lenp, loff_t *ppos)
1258 {
1259         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1260         if (ret || !write || sysctl_perf_user_access)
1261                 return ret;
1262
1263         on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
1264         return 0;
1265 }
1266
1267 static struct ctl_table armv8_pmu_sysctl_table[] = {
1268         {
1269                 .procname       = "perf_user_access",
1270                 .data           = &sysctl_perf_user_access,
1271                 .maxlen         = sizeof(unsigned int),
1272                 .mode           = 0644,
1273                 .proc_handler   = armv8pmu_proc_user_access_handler,
1274                 .extra1         = SYSCTL_ZERO,
1275                 .extra2         = SYSCTL_ONE,
1276         },
1277 };
1278
1279 static void armv8_pmu_register_sysctl_table(void)
1280 {
1281         static u32 tbl_registered = 0;
1282
1283         if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
1284                 register_sysctl("kernel", armv8_pmu_sysctl_table);
1285 }
1286
1287 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
1288                           int (*map_event)(struct perf_event *event))
1289 {
1290         int ret = armv8pmu_probe_pmu(cpu_pmu);
1291         if (ret)
1292                 return ret;
1293
1294         cpu_pmu->handle_irq             = armv8pmu_handle_irq;
1295         cpu_pmu->enable                 = armv8pmu_enable_event;
1296         cpu_pmu->disable                = armv8pmu_disable_event;
1297         cpu_pmu->read_counter           = armv8pmu_read_counter;
1298         cpu_pmu->write_counter          = armv8pmu_write_counter;
1299         cpu_pmu->get_event_idx          = armv8pmu_get_event_idx;
1300         cpu_pmu->clear_event_idx        = armv8pmu_clear_event_idx;
1301         cpu_pmu->start                  = armv8pmu_start;
1302         cpu_pmu->stop                   = armv8pmu_stop;
1303         cpu_pmu->reset                  = armv8pmu_reset;
1304         cpu_pmu->set_event_filter       = armv8pmu_set_event_filter;
1305
1306         cpu_pmu->pmu.event_idx          = armv8pmu_user_event_idx;
1307
1308         cpu_pmu->name                   = name;
1309         cpu_pmu->map_event              = map_event;
1310         cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &armv8_pmuv3_events_attr_group;
1311         cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &armv8_pmuv3_format_attr_group;
1312         cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = &armv8_pmuv3_caps_attr_group;
1313         armv8_pmu_register_sysctl_table();
1314         return 0;
1315 }
1316
1317 #define PMUV3_INIT_SIMPLE(name)                                         \
1318 static int name##_pmu_init(struct arm_pmu *cpu_pmu)                     \
1319 {                                                                       \
1320         return armv8_pmu_init(cpu_pmu, #name, armv8_pmuv3_map_event);   \
1321 }
1322
1323 #define PMUV3_INIT_MAP_EVENT(name, map_event)                           \
1324 static int name##_pmu_init(struct arm_pmu *cpu_pmu)                     \
1325 {                                                                       \
1326         return armv8_pmu_init(cpu_pmu, #name, map_event);               \
1327 }
1328
1329 PMUV3_INIT_SIMPLE(armv8_pmuv3)
1330
1331 PMUV3_INIT_SIMPLE(armv8_cortex_a34)
1332 PMUV3_INIT_SIMPLE(armv8_cortex_a55)
1333 PMUV3_INIT_SIMPLE(armv8_cortex_a65)
1334 PMUV3_INIT_SIMPLE(armv8_cortex_a75)
1335 PMUV3_INIT_SIMPLE(armv8_cortex_a76)
1336 PMUV3_INIT_SIMPLE(armv8_cortex_a77)
1337 PMUV3_INIT_SIMPLE(armv8_cortex_a78)
1338 PMUV3_INIT_SIMPLE(armv9_cortex_a510)
1339 PMUV3_INIT_SIMPLE(armv9_cortex_a520)
1340 PMUV3_INIT_SIMPLE(armv9_cortex_a710)
1341 PMUV3_INIT_SIMPLE(armv9_cortex_a715)
1342 PMUV3_INIT_SIMPLE(armv9_cortex_a720)
1343 PMUV3_INIT_SIMPLE(armv8_cortex_x1)
1344 PMUV3_INIT_SIMPLE(armv9_cortex_x2)
1345 PMUV3_INIT_SIMPLE(armv9_cortex_x3)
1346 PMUV3_INIT_SIMPLE(armv9_cortex_x4)
1347 PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
1348 PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
1349 PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
1350 PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
1351
1352 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
1353 PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
1354
1355 PMUV3_INIT_MAP_EVENT(armv8_cortex_a35, armv8_a53_map_event)
1356 PMUV3_INIT_MAP_EVENT(armv8_cortex_a53, armv8_a53_map_event)
1357 PMUV3_INIT_MAP_EVENT(armv8_cortex_a57, armv8_a57_map_event)
1358 PMUV3_INIT_MAP_EVENT(armv8_cortex_a72, armv8_a57_map_event)
1359 PMUV3_INIT_MAP_EVENT(armv8_cortex_a73, armv8_a73_map_event)
1360 PMUV3_INIT_MAP_EVENT(armv8_cavium_thunder, armv8_thunder_map_event)
1361 PMUV3_INIT_MAP_EVENT(armv8_brcm_vulcan, armv8_vulcan_map_event)
1362
1363 static const struct of_device_id armv8_pmu_of_device_ids[] = {
1364         {.compatible = "arm,armv8-pmuv3",       .data = armv8_pmuv3_pmu_init},
1365         {.compatible = "arm,cortex-a34-pmu",    .data = armv8_cortex_a34_pmu_init},
1366         {.compatible = "arm,cortex-a35-pmu",    .data = armv8_cortex_a35_pmu_init},
1367         {.compatible = "arm,cortex-a53-pmu",    .data = armv8_cortex_a53_pmu_init},
1368         {.compatible = "arm,cortex-a55-pmu",    .data = armv8_cortex_a55_pmu_init},
1369         {.compatible = "arm,cortex-a57-pmu",    .data = armv8_cortex_a57_pmu_init},
1370         {.compatible = "arm,cortex-a65-pmu",    .data = armv8_cortex_a65_pmu_init},
1371         {.compatible = "arm,cortex-a72-pmu",    .data = armv8_cortex_a72_pmu_init},
1372         {.compatible = "arm,cortex-a73-pmu",    .data = armv8_cortex_a73_pmu_init},
1373         {.compatible = "arm,cortex-a75-pmu",    .data = armv8_cortex_a75_pmu_init},
1374         {.compatible = "arm,cortex-a76-pmu",    .data = armv8_cortex_a76_pmu_init},
1375         {.compatible = "arm,cortex-a77-pmu",    .data = armv8_cortex_a77_pmu_init},
1376         {.compatible = "arm,cortex-a78-pmu",    .data = armv8_cortex_a78_pmu_init},
1377         {.compatible = "arm,cortex-a510-pmu",   .data = armv9_cortex_a510_pmu_init},
1378         {.compatible = "arm,cortex-a520-pmu",   .data = armv9_cortex_a520_pmu_init},
1379         {.compatible = "arm,cortex-a710-pmu",   .data = armv9_cortex_a710_pmu_init},
1380         {.compatible = "arm,cortex-a715-pmu",   .data = armv9_cortex_a715_pmu_init},
1381         {.compatible = "arm,cortex-a720-pmu",   .data = armv9_cortex_a720_pmu_init},
1382         {.compatible = "arm,cortex-x1-pmu",     .data = armv8_cortex_x1_pmu_init},
1383         {.compatible = "arm,cortex-x2-pmu",     .data = armv9_cortex_x2_pmu_init},
1384         {.compatible = "arm,cortex-x3-pmu",     .data = armv9_cortex_x3_pmu_init},
1385         {.compatible = "arm,cortex-x4-pmu",     .data = armv9_cortex_x4_pmu_init},
1386         {.compatible = "arm,neoverse-e1-pmu",   .data = armv8_neoverse_e1_pmu_init},
1387         {.compatible = "arm,neoverse-n1-pmu",   .data = armv8_neoverse_n1_pmu_init},
1388         {.compatible = "arm,neoverse-n2-pmu",   .data = armv9_neoverse_n2_pmu_init},
1389         {.compatible = "arm,neoverse-v1-pmu",   .data = armv8_neoverse_v1_pmu_init},
1390         {.compatible = "cavium,thunder-pmu",    .data = armv8_cavium_thunder_pmu_init},
1391         {.compatible = "brcm,vulcan-pmu",       .data = armv8_brcm_vulcan_pmu_init},
1392         {.compatible = "nvidia,carmel-pmu",     .data = armv8_nvidia_carmel_pmu_init},
1393         {.compatible = "nvidia,denver-pmu",     .data = armv8_nvidia_denver_pmu_init},
1394         {},
1395 };
1396
1397 static int armv8_pmu_device_probe(struct platform_device *pdev)
1398 {
1399         return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
1400 }
1401
1402 static struct platform_driver armv8_pmu_driver = {
1403         .driver         = {
1404                 .name   = ARMV8_PMU_PDEV_NAME,
1405                 .of_match_table = armv8_pmu_of_device_ids,
1406                 .suppress_bind_attrs = true,
1407         },
1408         .probe          = armv8_pmu_device_probe,
1409 };
1410
1411 static int __init armv8_pmu_driver_init(void)
1412 {
1413         int ret;
1414
1415         if (acpi_disabled)
1416                 ret = platform_driver_register(&armv8_pmu_driver);
1417         else
1418                 ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
1419
1420         if (!ret)
1421                 lockup_detector_retry_init();
1422
1423         return ret;
1424 }
1425 device_initcall(armv8_pmu_driver_init)
1426
1427 void arch_perf_update_userpage(struct perf_event *event,
1428                                struct perf_event_mmap_page *userpg, u64 now)
1429 {
1430         struct clock_read_data *rd;
1431         unsigned int seq;
1432         u64 ns;
1433
1434         userpg->cap_user_time = 0;
1435         userpg->cap_user_time_zero = 0;
1436         userpg->cap_user_time_short = 0;
1437         userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
1438
1439         if (userpg->cap_user_rdpmc) {
1440                 if (event->hw.flags & ARMPMU_EVT_64BIT)
1441                         userpg->pmc_width = 64;
1442                 else
1443                         userpg->pmc_width = 32;
1444         }
1445
1446         do {
1447                 rd = sched_clock_read_begin(&seq);
1448
1449                 if (rd->read_sched_clock != arch_timer_read_counter)
1450                         return;
1451
1452                 userpg->time_mult = rd->mult;
1453                 userpg->time_shift = rd->shift;
1454                 userpg->time_zero = rd->epoch_ns;
1455                 userpg->time_cycles = rd->epoch_cyc;
1456                 userpg->time_mask = rd->sched_clock_mask;
1457
1458                 /*
1459                  * Subtract the cycle base, such that software that
1460                  * doesn't know about cap_user_time_short still 'works'
1461                  * assuming no wraps.
1462                  */
1463                 ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
1464                 userpg->time_zero -= ns;
1465
1466         } while (sched_clock_read_retry(seq));
1467
1468         userpg->time_offset = userpg->time_zero - now;
1469
1470         /*
1471          * time_shift is not expected to be greater than 31 due to
1472          * the original published conversion algorithm shifting a
1473          * 32-bit value (now specifies a 64-bit value) - refer
1474          * perf_event_mmap_page documentation in perf_event.h.
1475          */
1476         if (userpg->time_shift == 32) {
1477                 userpg->time_shift = 31;
1478                 userpg->time_mult >>= 1;
1479         }
1480
1481         /*
1482          * Internal timekeeping for enabled/running/stopped times
1483          * is always computed with the sched_clock.
1484          */
1485         userpg->cap_user_time = 1;
1486         userpg->cap_user_time_zero = 1;
1487         userpg->cap_user_time_short = 1;
1488 }