Merge tag 'imx-fixes-4.18-3' of git://git.kernel.org/pub/scm/linux/kernel/git/shawngu...
[linux-2.6-microblaze.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/slab.h>
21 #include <linux/sched/clock.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
25
26 #include <asm/irq_regs.h>
27
28 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
29 static DEFINE_PER_CPU(int, cpu_irq);
30
31 static int
32 armpmu_map_cache_event(const unsigned (*cache_map)
33                                       [PERF_COUNT_HW_CACHE_MAX]
34                                       [PERF_COUNT_HW_CACHE_OP_MAX]
35                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
36                        u64 config)
37 {
38         unsigned int cache_type, cache_op, cache_result, ret;
39
40         cache_type = (config >>  0) & 0xff;
41         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42                 return -EINVAL;
43
44         cache_op = (config >>  8) & 0xff;
45         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46                 return -EINVAL;
47
48         cache_result = (config >> 16) & 0xff;
49         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50                 return -EINVAL;
51
52         if (!cache_map)
53                 return -ENOENT;
54
55         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
56
57         if (ret == CACHE_OP_UNSUPPORTED)
58                 return -ENOENT;
59
60         return ret;
61 }
62
63 static int
64 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
65 {
66         int mapping;
67
68         if (config >= PERF_COUNT_HW_MAX)
69                 return -EINVAL;
70
71         if (!event_map)
72                 return -ENOENT;
73
74         mapping = (*event_map)[config];
75         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
76 }
77
78 static int
79 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
80 {
81         return (int)(config & raw_event_mask);
82 }
83
84 int
85 armpmu_map_event(struct perf_event *event,
86                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
87                  const unsigned (*cache_map)
88                                 [PERF_COUNT_HW_CACHE_MAX]
89                                 [PERF_COUNT_HW_CACHE_OP_MAX]
90                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
91                  u32 raw_event_mask)
92 {
93         u64 config = event->attr.config;
94         int type = event->attr.type;
95
96         if (type == event->pmu->type)
97                 return armpmu_map_raw_event(raw_event_mask, config);
98
99         switch (type) {
100         case PERF_TYPE_HARDWARE:
101                 return armpmu_map_hw_event(event_map, config);
102         case PERF_TYPE_HW_CACHE:
103                 return armpmu_map_cache_event(cache_map, config);
104         case PERF_TYPE_RAW:
105                 return armpmu_map_raw_event(raw_event_mask, config);
106         }
107
108         return -ENOENT;
109 }
110
111 int armpmu_event_set_period(struct perf_event *event)
112 {
113         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
114         struct hw_perf_event *hwc = &event->hw;
115         s64 left = local64_read(&hwc->period_left);
116         s64 period = hwc->sample_period;
117         int ret = 0;
118
119         if (unlikely(left <= -period)) {
120                 left = period;
121                 local64_set(&hwc->period_left, left);
122                 hwc->last_period = period;
123                 ret = 1;
124         }
125
126         if (unlikely(left <= 0)) {
127                 left += period;
128                 local64_set(&hwc->period_left, left);
129                 hwc->last_period = period;
130                 ret = 1;
131         }
132
133         /*
134          * Limit the maximum period to prevent the counter value
135          * from overtaking the one we are about to program. In
136          * effect we are reducing max_period to account for
137          * interrupt latency (and we are being very conservative).
138          */
139         if (left > (armpmu->max_period >> 1))
140                 left = armpmu->max_period >> 1;
141
142         local64_set(&hwc->prev_count, (u64)-left);
143
144         armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
145
146         perf_event_update_userpage(event);
147
148         return ret;
149 }
150
151 u64 armpmu_event_update(struct perf_event *event)
152 {
153         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
154         struct hw_perf_event *hwc = &event->hw;
155         u64 delta, prev_raw_count, new_raw_count;
156
157 again:
158         prev_raw_count = local64_read(&hwc->prev_count);
159         new_raw_count = armpmu->read_counter(event);
160
161         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
162                              new_raw_count) != prev_raw_count)
163                 goto again;
164
165         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
166
167         local64_add(delta, &event->count);
168         local64_sub(delta, &hwc->period_left);
169
170         return new_raw_count;
171 }
172
173 static void
174 armpmu_read(struct perf_event *event)
175 {
176         armpmu_event_update(event);
177 }
178
179 static void
180 armpmu_stop(struct perf_event *event, int flags)
181 {
182         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
183         struct hw_perf_event *hwc = &event->hw;
184
185         /*
186          * ARM pmu always has to update the counter, so ignore
187          * PERF_EF_UPDATE, see comments in armpmu_start().
188          */
189         if (!(hwc->state & PERF_HES_STOPPED)) {
190                 armpmu->disable(event);
191                 armpmu_event_update(event);
192                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
193         }
194 }
195
196 static void armpmu_start(struct perf_event *event, int flags)
197 {
198         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199         struct hw_perf_event *hwc = &event->hw;
200
201         /*
202          * ARM pmu always has to reprogram the period, so ignore
203          * PERF_EF_RELOAD, see the comment below.
204          */
205         if (flags & PERF_EF_RELOAD)
206                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
207
208         hwc->state = 0;
209         /*
210          * Set the period again. Some counters can't be stopped, so when we
211          * were stopped we simply disabled the IRQ source and the counter
212          * may have been left counting. If we don't do this step then we may
213          * get an interrupt too soon or *way* too late if the overflow has
214          * happened since disabling.
215          */
216         armpmu_event_set_period(event);
217         armpmu->enable(event);
218 }
219
220 static void
221 armpmu_del(struct perf_event *event, int flags)
222 {
223         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
224         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
225         struct hw_perf_event *hwc = &event->hw;
226         int idx = hwc->idx;
227
228         armpmu_stop(event, PERF_EF_UPDATE);
229         hw_events->events[idx] = NULL;
230         clear_bit(idx, hw_events->used_mask);
231         if (armpmu->clear_event_idx)
232                 armpmu->clear_event_idx(hw_events, event);
233
234         perf_event_update_userpage(event);
235 }
236
237 static int
238 armpmu_add(struct perf_event *event, int flags)
239 {
240         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
242         struct hw_perf_event *hwc = &event->hw;
243         int idx;
244
245         /* An event following a process won't be stopped earlier */
246         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
247                 return -ENOENT;
248
249         /* If we don't have a space for the counter then finish early. */
250         idx = armpmu->get_event_idx(hw_events, event);
251         if (idx < 0)
252                 return idx;
253
254         /*
255          * If there is an event in the counter we are going to use then make
256          * sure it is disabled.
257          */
258         event->hw.idx = idx;
259         armpmu->disable(event);
260         hw_events->events[idx] = event;
261
262         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
263         if (flags & PERF_EF_START)
264                 armpmu_start(event, PERF_EF_RELOAD);
265
266         /* Propagate our changes to the userspace mapping. */
267         perf_event_update_userpage(event);
268
269         return 0;
270 }
271
272 static int
273 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
274                                struct perf_event *event)
275 {
276         struct arm_pmu *armpmu;
277
278         if (is_software_event(event))
279                 return 1;
280
281         /*
282          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
283          * core perf code won't check that the pmu->ctx == leader->ctx
284          * until after pmu->event_init(event).
285          */
286         if (event->pmu != pmu)
287                 return 0;
288
289         if (event->state < PERF_EVENT_STATE_OFF)
290                 return 1;
291
292         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
293                 return 1;
294
295         armpmu = to_arm_pmu(event->pmu);
296         return armpmu->get_event_idx(hw_events, event) >= 0;
297 }
298
299 static int
300 validate_group(struct perf_event *event)
301 {
302         struct perf_event *sibling, *leader = event->group_leader;
303         struct pmu_hw_events fake_pmu;
304
305         /*
306          * Initialise the fake PMU. We only need to populate the
307          * used_mask for the purposes of validation.
308          */
309         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
310
311         if (!validate_event(event->pmu, &fake_pmu, leader))
312                 return -EINVAL;
313
314         for_each_sibling_event(sibling, leader) {
315                 if (!validate_event(event->pmu, &fake_pmu, sibling))
316                         return -EINVAL;
317         }
318
319         if (!validate_event(event->pmu, &fake_pmu, event))
320                 return -EINVAL;
321
322         return 0;
323 }
324
325 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
326 {
327         struct arm_pmu *armpmu;
328         int ret;
329         u64 start_clock, finish_clock;
330
331         /*
332          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
333          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
334          * do any necessary shifting, we just need to perform the first
335          * dereference.
336          */
337         armpmu = *(void **)dev;
338         if (WARN_ON_ONCE(!armpmu))
339                 return IRQ_NONE;
340
341         start_clock = sched_clock();
342         ret = armpmu->handle_irq(armpmu);
343         finish_clock = sched_clock();
344
345         perf_sample_event_took(finish_clock - start_clock);
346         return ret;
347 }
348
349 static int
350 event_requires_mode_exclusion(struct perf_event_attr *attr)
351 {
352         return attr->exclude_idle || attr->exclude_user ||
353                attr->exclude_kernel || attr->exclude_hv;
354 }
355
356 static int
357 __hw_perf_event_init(struct perf_event *event)
358 {
359         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
360         struct hw_perf_event *hwc = &event->hw;
361         int mapping;
362
363         mapping = armpmu->map_event(event);
364
365         if (mapping < 0) {
366                 pr_debug("event %x:%llx not supported\n", event->attr.type,
367                          event->attr.config);
368                 return mapping;
369         }
370
371         /*
372          * We don't assign an index until we actually place the event onto
373          * hardware. Use -1 to signify that we haven't decided where to put it
374          * yet. For SMP systems, each core has it's own PMU so we can't do any
375          * clever allocation or constraints checking at this point.
376          */
377         hwc->idx                = -1;
378         hwc->config_base        = 0;
379         hwc->config             = 0;
380         hwc->event_base         = 0;
381
382         /*
383          * Check whether we need to exclude the counter from certain modes.
384          */
385         if ((!armpmu->set_event_filter ||
386              armpmu->set_event_filter(hwc, &event->attr)) &&
387              event_requires_mode_exclusion(&event->attr)) {
388                 pr_debug("ARM performance counters do not support "
389                          "mode exclusion\n");
390                 return -EOPNOTSUPP;
391         }
392
393         /*
394          * Store the event encoding into the config_base field.
395          */
396         hwc->config_base            |= (unsigned long)mapping;
397
398         if (!is_sampling_event(event)) {
399                 /*
400                  * For non-sampling runs, limit the sample_period to half
401                  * of the counter width. That way, the new counter value
402                  * is far less likely to overtake the previous one unless
403                  * you have some serious IRQ latency issues.
404                  */
405                 hwc->sample_period  = armpmu->max_period >> 1;
406                 hwc->last_period    = hwc->sample_period;
407                 local64_set(&hwc->period_left, hwc->sample_period);
408         }
409
410         if (event->group_leader != event) {
411                 if (validate_group(event) != 0)
412                         return -EINVAL;
413         }
414
415         return 0;
416 }
417
418 static int armpmu_event_init(struct perf_event *event)
419 {
420         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
421
422         /*
423          * Reject CPU-affine events for CPUs that are of a different class to
424          * that which this PMU handles. Process-following events (where
425          * event->cpu == -1) can be migrated between CPUs, and thus we have to
426          * reject them later (in armpmu_add) if they're scheduled on a
427          * different class of CPU.
428          */
429         if (event->cpu != -1 &&
430                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
431                 return -ENOENT;
432
433         /* does not support taken branch sampling */
434         if (has_branch_stack(event))
435                 return -EOPNOTSUPP;
436
437         if (armpmu->map_event(event) == -ENOENT)
438                 return -ENOENT;
439
440         return __hw_perf_event_init(event);
441 }
442
443 static void armpmu_enable(struct pmu *pmu)
444 {
445         struct arm_pmu *armpmu = to_arm_pmu(pmu);
446         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
447         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
448
449         /* For task-bound events we may be called on other CPUs */
450         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
451                 return;
452
453         if (enabled)
454                 armpmu->start(armpmu);
455 }
456
457 static void armpmu_disable(struct pmu *pmu)
458 {
459         struct arm_pmu *armpmu = to_arm_pmu(pmu);
460
461         /* For task-bound events we may be called on other CPUs */
462         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
463                 return;
464
465         armpmu->stop(armpmu);
466 }
467
468 /*
469  * In heterogeneous systems, events are specific to a particular
470  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
471  * the same microarchitecture.
472  */
473 static int armpmu_filter_match(struct perf_event *event)
474 {
475         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
476         unsigned int cpu = smp_processor_id();
477         return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
478 }
479
480 static ssize_t armpmu_cpumask_show(struct device *dev,
481                                    struct device_attribute *attr, char *buf)
482 {
483         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
484         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
485 }
486
487 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
488
489 static struct attribute *armpmu_common_attrs[] = {
490         &dev_attr_cpus.attr,
491         NULL,
492 };
493
494 static struct attribute_group armpmu_common_attr_group = {
495         .attrs = armpmu_common_attrs,
496 };
497
498 /* Set at runtime when we know what CPU type we are. */
499 static struct arm_pmu *__oprofile_cpu_pmu;
500
501 /*
502  * Despite the names, these two functions are CPU-specific and are used
503  * by the OProfile/perf code.
504  */
505 const char *perf_pmu_name(void)
506 {
507         if (!__oprofile_cpu_pmu)
508                 return NULL;
509
510         return __oprofile_cpu_pmu->name;
511 }
512 EXPORT_SYMBOL_GPL(perf_pmu_name);
513
514 int perf_num_counters(void)
515 {
516         int max_events = 0;
517
518         if (__oprofile_cpu_pmu != NULL)
519                 max_events = __oprofile_cpu_pmu->num_events;
520
521         return max_events;
522 }
523 EXPORT_SYMBOL_GPL(perf_num_counters);
524
525 static int armpmu_count_irq_users(const int irq)
526 {
527         int cpu, count = 0;
528
529         for_each_possible_cpu(cpu) {
530                 if (per_cpu(cpu_irq, cpu) == irq)
531                         count++;
532         }
533
534         return count;
535 }
536
537 void armpmu_free_irq(int irq, int cpu)
538 {
539         if (per_cpu(cpu_irq, cpu) == 0)
540                 return;
541         if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
542                 return;
543
544         if (!irq_is_percpu_devid(irq))
545                 free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
546         else if (armpmu_count_irq_users(irq) == 1)
547                 free_percpu_irq(irq, &cpu_armpmu);
548
549         per_cpu(cpu_irq, cpu) = 0;
550 }
551
552 int armpmu_request_irq(int irq, int cpu)
553 {
554         int err = 0;
555         const irq_handler_t handler = armpmu_dispatch_irq;
556         if (!irq)
557                 return 0;
558
559         if (!irq_is_percpu_devid(irq)) {
560                 unsigned long irq_flags;
561
562                 err = irq_force_affinity(irq, cpumask_of(cpu));
563
564                 if (err && num_possible_cpus() > 1) {
565                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
566                                 irq, cpu);
567                         goto err_out;
568                 }
569
570                 irq_flags = IRQF_PERCPU |
571                             IRQF_NOBALANCING |
572                             IRQF_NO_THREAD;
573
574                 irq_set_status_flags(irq, IRQ_NOAUTOEN);
575                 err = request_irq(irq, handler, irq_flags, "arm-pmu",
576                                   per_cpu_ptr(&cpu_armpmu, cpu));
577         } else if (armpmu_count_irq_users(irq) == 0) {
578                 err = request_percpu_irq(irq, handler, "arm-pmu",
579                                          &cpu_armpmu);
580         }
581
582         if (err)
583                 goto err_out;
584
585         per_cpu(cpu_irq, cpu) = irq;
586         return 0;
587
588 err_out:
589         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
590         return err;
591 }
592
593 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
594 {
595         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
596         return per_cpu(hw_events->irq, cpu);
597 }
598
599 /*
600  * PMU hardware loses all context when a CPU goes offline.
601  * When a CPU is hotplugged back in, since some hardware registers are
602  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
603  * junk values out of them.
604  */
605 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
606 {
607         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
608         int irq;
609
610         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
611                 return 0;
612         if (pmu->reset)
613                 pmu->reset(pmu);
614
615         per_cpu(cpu_armpmu, cpu) = pmu;
616
617         irq = armpmu_get_cpu_irq(pmu, cpu);
618         if (irq) {
619                 if (irq_is_percpu_devid(irq))
620                         enable_percpu_irq(irq, IRQ_TYPE_NONE);
621                 else
622                         enable_irq(irq);
623         }
624
625         return 0;
626 }
627
628 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
629 {
630         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
631         int irq;
632
633         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
634                 return 0;
635
636         irq = armpmu_get_cpu_irq(pmu, cpu);
637         if (irq) {
638                 if (irq_is_percpu_devid(irq))
639                         disable_percpu_irq(irq);
640                 else
641                         disable_irq_nosync(irq);
642         }
643
644         per_cpu(cpu_armpmu, cpu) = NULL;
645
646         return 0;
647 }
648
649 #ifdef CONFIG_CPU_PM
650 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
651 {
652         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
653         struct perf_event *event;
654         int idx;
655
656         for (idx = 0; idx < armpmu->num_events; idx++) {
657                 /*
658                  * If the counter is not used skip it, there is no
659                  * need of stopping/restarting it.
660                  */
661                 if (!test_bit(idx, hw_events->used_mask))
662                         continue;
663
664                 event = hw_events->events[idx];
665
666                 switch (cmd) {
667                 case CPU_PM_ENTER:
668                         /*
669                          * Stop and update the counter
670                          */
671                         armpmu_stop(event, PERF_EF_UPDATE);
672                         break;
673                 case CPU_PM_EXIT:
674                 case CPU_PM_ENTER_FAILED:
675                          /*
676                           * Restore and enable the counter.
677                           * armpmu_start() indirectly calls
678                           *
679                           * perf_event_update_userpage()
680                           *
681                           * that requires RCU read locking to be functional,
682                           * wrap the call within RCU_NONIDLE to make the
683                           * RCU subsystem aware this cpu is not idle from
684                           * an RCU perspective for the armpmu_start() call
685                           * duration.
686                           */
687                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
688                         break;
689                 default:
690                         break;
691                 }
692         }
693 }
694
695 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
696                              void *v)
697 {
698         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
699         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
700         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
701
702         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
703                 return NOTIFY_DONE;
704
705         /*
706          * Always reset the PMU registers on power-up even if
707          * there are no events running.
708          */
709         if (cmd == CPU_PM_EXIT && armpmu->reset)
710                 armpmu->reset(armpmu);
711
712         if (!enabled)
713                 return NOTIFY_OK;
714
715         switch (cmd) {
716         case CPU_PM_ENTER:
717                 armpmu->stop(armpmu);
718                 cpu_pm_pmu_setup(armpmu, cmd);
719                 break;
720         case CPU_PM_EXIT:
721                 cpu_pm_pmu_setup(armpmu, cmd);
722         case CPU_PM_ENTER_FAILED:
723                 armpmu->start(armpmu);
724                 break;
725         default:
726                 return NOTIFY_DONE;
727         }
728
729         return NOTIFY_OK;
730 }
731
732 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
733 {
734         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
735         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
736 }
737
738 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
739 {
740         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
741 }
742 #else
743 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
744 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
745 #endif
746
747 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
748 {
749         int err;
750
751         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
752                                        &cpu_pmu->node);
753         if (err)
754                 goto out;
755
756         err = cpu_pm_pmu_register(cpu_pmu);
757         if (err)
758                 goto out_unregister;
759
760         return 0;
761
762 out_unregister:
763         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
764                                             &cpu_pmu->node);
765 out:
766         return err;
767 }
768
769 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
770 {
771         cpu_pm_pmu_unregister(cpu_pmu);
772         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
773                                             &cpu_pmu->node);
774 }
775
776 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
777 {
778         struct arm_pmu *pmu;
779         int cpu;
780
781         pmu = kzalloc(sizeof(*pmu), flags);
782         if (!pmu) {
783                 pr_info("failed to allocate PMU device!\n");
784                 goto out;
785         }
786
787         pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
788         if (!pmu->hw_events) {
789                 pr_info("failed to allocate per-cpu PMU data.\n");
790                 goto out_free_pmu;
791         }
792
793         pmu->pmu = (struct pmu) {
794                 .pmu_enable     = armpmu_enable,
795                 .pmu_disable    = armpmu_disable,
796                 .event_init     = armpmu_event_init,
797                 .add            = armpmu_add,
798                 .del            = armpmu_del,
799                 .start          = armpmu_start,
800                 .stop           = armpmu_stop,
801                 .read           = armpmu_read,
802                 .filter_match   = armpmu_filter_match,
803                 .attr_groups    = pmu->attr_groups,
804                 /*
805                  * This is a CPU PMU potentially in a heterogeneous
806                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
807                  * and we have taken ctx sharing into account (e.g. with our
808                  * pmu::filter_match callback and pmu::event_init group
809                  * validation).
810                  */
811                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
812         };
813
814         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
815                 &armpmu_common_attr_group;
816
817         for_each_possible_cpu(cpu) {
818                 struct pmu_hw_events *events;
819
820                 events = per_cpu_ptr(pmu->hw_events, cpu);
821                 raw_spin_lock_init(&events->pmu_lock);
822                 events->percpu_pmu = pmu;
823         }
824
825         return pmu;
826
827 out_free_pmu:
828         kfree(pmu);
829 out:
830         return NULL;
831 }
832
833 struct arm_pmu *armpmu_alloc(void)
834 {
835         return __armpmu_alloc(GFP_KERNEL);
836 }
837
838 struct arm_pmu *armpmu_alloc_atomic(void)
839 {
840         return __armpmu_alloc(GFP_ATOMIC);
841 }
842
843
844 void armpmu_free(struct arm_pmu *pmu)
845 {
846         free_percpu(pmu->hw_events);
847         kfree(pmu);
848 }
849
850 int armpmu_register(struct arm_pmu *pmu)
851 {
852         int ret;
853
854         ret = cpu_pmu_init(pmu);
855         if (ret)
856                 return ret;
857
858         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
859         if (ret)
860                 goto out_destroy;
861
862         if (!__oprofile_cpu_pmu)
863                 __oprofile_cpu_pmu = pmu;
864
865         pr_info("enabled with %s PMU driver, %d counters available\n",
866                 pmu->name, pmu->num_events);
867
868         return 0;
869
870 out_destroy:
871         cpu_pmu_destroy(pmu);
872         return ret;
873 }
874
875 static int arm_pmu_hp_init(void)
876 {
877         int ret;
878
879         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
880                                       "perf/arm/pmu:starting",
881                                       arm_perf_starting_cpu,
882                                       arm_perf_teardown_cpu);
883         if (ret)
884                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
885                        ret);
886         return ret;
887 }
888 subsys_initcall(arm_pmu_hp_init);