3c4e97df8331d8e5724599caf37df36fc5bf5680
[linux-2.6-microblaze.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/of_device.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/sched/clock.h>
24 #include <linux/spinlock.h>
25 #include <linux/irq.h>
26 #include <linux/irqdesc.h>
27
28 #include <asm/cputype.h>
29 #include <asm/irq_regs.h>
30
31 static int
32 armpmu_map_cache_event(const unsigned (*cache_map)
33                                       [PERF_COUNT_HW_CACHE_MAX]
34                                       [PERF_COUNT_HW_CACHE_OP_MAX]
35                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
36                        u64 config)
37 {
38         unsigned int cache_type, cache_op, cache_result, ret;
39
40         cache_type = (config >>  0) & 0xff;
41         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42                 return -EINVAL;
43
44         cache_op = (config >>  8) & 0xff;
45         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46                 return -EINVAL;
47
48         cache_result = (config >> 16) & 0xff;
49         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50                 return -EINVAL;
51
52         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
53
54         if (ret == CACHE_OP_UNSUPPORTED)
55                 return -ENOENT;
56
57         return ret;
58 }
59
60 static int
61 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
62 {
63         int mapping;
64
65         if (config >= PERF_COUNT_HW_MAX)
66                 return -EINVAL;
67
68         mapping = (*event_map)[config];
69         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
70 }
71
72 static int
73 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
74 {
75         return (int)(config & raw_event_mask);
76 }
77
78 int
79 armpmu_map_event(struct perf_event *event,
80                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
81                  const unsigned (*cache_map)
82                                 [PERF_COUNT_HW_CACHE_MAX]
83                                 [PERF_COUNT_HW_CACHE_OP_MAX]
84                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
85                  u32 raw_event_mask)
86 {
87         u64 config = event->attr.config;
88         int type = event->attr.type;
89
90         if (type == event->pmu->type)
91                 return armpmu_map_raw_event(raw_event_mask, config);
92
93         switch (type) {
94         case PERF_TYPE_HARDWARE:
95                 return armpmu_map_hw_event(event_map, config);
96         case PERF_TYPE_HW_CACHE:
97                 return armpmu_map_cache_event(cache_map, config);
98         case PERF_TYPE_RAW:
99                 return armpmu_map_raw_event(raw_event_mask, config);
100         }
101
102         return -ENOENT;
103 }
104
105 int armpmu_event_set_period(struct perf_event *event)
106 {
107         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
108         struct hw_perf_event *hwc = &event->hw;
109         s64 left = local64_read(&hwc->period_left);
110         s64 period = hwc->sample_period;
111         int ret = 0;
112
113         if (unlikely(left <= -period)) {
114                 left = period;
115                 local64_set(&hwc->period_left, left);
116                 hwc->last_period = period;
117                 ret = 1;
118         }
119
120         if (unlikely(left <= 0)) {
121                 left += period;
122                 local64_set(&hwc->period_left, left);
123                 hwc->last_period = period;
124                 ret = 1;
125         }
126
127         /*
128          * Limit the maximum period to prevent the counter value
129          * from overtaking the one we are about to program. In
130          * effect we are reducing max_period to account for
131          * interrupt latency (and we are being very conservative).
132          */
133         if (left > (armpmu->max_period >> 1))
134                 left = armpmu->max_period >> 1;
135
136         local64_set(&hwc->prev_count, (u64)-left);
137
138         armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
139
140         perf_event_update_userpage(event);
141
142         return ret;
143 }
144
145 u64 armpmu_event_update(struct perf_event *event)
146 {
147         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148         struct hw_perf_event *hwc = &event->hw;
149         u64 delta, prev_raw_count, new_raw_count;
150
151 again:
152         prev_raw_count = local64_read(&hwc->prev_count);
153         new_raw_count = armpmu->read_counter(event);
154
155         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
156                              new_raw_count) != prev_raw_count)
157                 goto again;
158
159         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
160
161         local64_add(delta, &event->count);
162         local64_sub(delta, &hwc->period_left);
163
164         return new_raw_count;
165 }
166
167 static void
168 armpmu_read(struct perf_event *event)
169 {
170         armpmu_event_update(event);
171 }
172
173 static void
174 armpmu_stop(struct perf_event *event, int flags)
175 {
176         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
177         struct hw_perf_event *hwc = &event->hw;
178
179         /*
180          * ARM pmu always has to update the counter, so ignore
181          * PERF_EF_UPDATE, see comments in armpmu_start().
182          */
183         if (!(hwc->state & PERF_HES_STOPPED)) {
184                 armpmu->disable(event);
185                 armpmu_event_update(event);
186                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
187         }
188 }
189
190 static void armpmu_start(struct perf_event *event, int flags)
191 {
192         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193         struct hw_perf_event *hwc = &event->hw;
194
195         /*
196          * ARM pmu always has to reprogram the period, so ignore
197          * PERF_EF_RELOAD, see the comment below.
198          */
199         if (flags & PERF_EF_RELOAD)
200                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
201
202         hwc->state = 0;
203         /*
204          * Set the period again. Some counters can't be stopped, so when we
205          * were stopped we simply disabled the IRQ source and the counter
206          * may have been left counting. If we don't do this step then we may
207          * get an interrupt too soon or *way* too late if the overflow has
208          * happened since disabling.
209          */
210         armpmu_event_set_period(event);
211         armpmu->enable(event);
212 }
213
214 static void
215 armpmu_del(struct perf_event *event, int flags)
216 {
217         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
219         struct hw_perf_event *hwc = &event->hw;
220         int idx = hwc->idx;
221
222         armpmu_stop(event, PERF_EF_UPDATE);
223         hw_events->events[idx] = NULL;
224         clear_bit(idx, hw_events->used_mask);
225         if (armpmu->clear_event_idx)
226                 armpmu->clear_event_idx(hw_events, event);
227
228         perf_event_update_userpage(event);
229 }
230
231 static int
232 armpmu_add(struct perf_event *event, int flags)
233 {
234         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236         struct hw_perf_event *hwc = &event->hw;
237         int idx;
238
239         /* An event following a process won't be stopped earlier */
240         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
241                 return -ENOENT;
242
243         /* If we don't have a space for the counter then finish early. */
244         idx = armpmu->get_event_idx(hw_events, event);
245         if (idx < 0)
246                 return idx;
247
248         /*
249          * If there is an event in the counter we are going to use then make
250          * sure it is disabled.
251          */
252         event->hw.idx = idx;
253         armpmu->disable(event);
254         hw_events->events[idx] = event;
255
256         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
257         if (flags & PERF_EF_START)
258                 armpmu_start(event, PERF_EF_RELOAD);
259
260         /* Propagate our changes to the userspace mapping. */
261         perf_event_update_userpage(event);
262
263         return 0;
264 }
265
266 static int
267 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
268                                struct perf_event *event)
269 {
270         struct arm_pmu *armpmu;
271
272         if (is_software_event(event))
273                 return 1;
274
275         /*
276          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
277          * core perf code won't check that the pmu->ctx == leader->ctx
278          * until after pmu->event_init(event).
279          */
280         if (event->pmu != pmu)
281                 return 0;
282
283         if (event->state < PERF_EVENT_STATE_OFF)
284                 return 1;
285
286         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
287                 return 1;
288
289         armpmu = to_arm_pmu(event->pmu);
290         return armpmu->get_event_idx(hw_events, event) >= 0;
291 }
292
293 static int
294 validate_group(struct perf_event *event)
295 {
296         struct perf_event *sibling, *leader = event->group_leader;
297         struct pmu_hw_events fake_pmu;
298
299         /*
300          * Initialise the fake PMU. We only need to populate the
301          * used_mask for the purposes of validation.
302          */
303         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
304
305         if (!validate_event(event->pmu, &fake_pmu, leader))
306                 return -EINVAL;
307
308         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
309                 if (!validate_event(event->pmu, &fake_pmu, sibling))
310                         return -EINVAL;
311         }
312
313         if (!validate_event(event->pmu, &fake_pmu, event))
314                 return -EINVAL;
315
316         return 0;
317 }
318
319 static struct arm_pmu_platdata *armpmu_get_platdata(struct arm_pmu *armpmu)
320 {
321         struct platform_device *pdev = armpmu->plat_device;
322
323         return pdev ? dev_get_platdata(&pdev->dev) : NULL;
324 }
325
326 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
327 {
328         struct arm_pmu *armpmu;
329         struct arm_pmu_platdata *plat;
330         int ret;
331         u64 start_clock, finish_clock;
332
333         /*
334          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
335          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
336          * do any necessary shifting, we just need to perform the first
337          * dereference.
338          */
339         armpmu = *(void **)dev;
340
341         plat = armpmu_get_platdata(armpmu);
342
343         start_clock = sched_clock();
344         if (plat && plat->handle_irq)
345                 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
346         else
347                 ret = armpmu->handle_irq(irq, armpmu);
348         finish_clock = sched_clock();
349
350         perf_sample_event_took(finish_clock - start_clock);
351         return ret;
352 }
353
354 static int
355 event_requires_mode_exclusion(struct perf_event_attr *attr)
356 {
357         return attr->exclude_idle || attr->exclude_user ||
358                attr->exclude_kernel || attr->exclude_hv;
359 }
360
361 static int
362 __hw_perf_event_init(struct perf_event *event)
363 {
364         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
365         struct hw_perf_event *hwc = &event->hw;
366         int mapping;
367
368         mapping = armpmu->map_event(event);
369
370         if (mapping < 0) {
371                 pr_debug("event %x:%llx not supported\n", event->attr.type,
372                          event->attr.config);
373                 return mapping;
374         }
375
376         /*
377          * We don't assign an index until we actually place the event onto
378          * hardware. Use -1 to signify that we haven't decided where to put it
379          * yet. For SMP systems, each core has it's own PMU so we can't do any
380          * clever allocation or constraints checking at this point.
381          */
382         hwc->idx                = -1;
383         hwc->config_base        = 0;
384         hwc->config             = 0;
385         hwc->event_base         = 0;
386
387         /*
388          * Check whether we need to exclude the counter from certain modes.
389          */
390         if ((!armpmu->set_event_filter ||
391              armpmu->set_event_filter(hwc, &event->attr)) &&
392              event_requires_mode_exclusion(&event->attr)) {
393                 pr_debug("ARM performance counters do not support "
394                          "mode exclusion\n");
395                 return -EOPNOTSUPP;
396         }
397
398         /*
399          * Store the event encoding into the config_base field.
400          */
401         hwc->config_base            |= (unsigned long)mapping;
402
403         if (!is_sampling_event(event)) {
404                 /*
405                  * For non-sampling runs, limit the sample_period to half
406                  * of the counter width. That way, the new counter value
407                  * is far less likely to overtake the previous one unless
408                  * you have some serious IRQ latency issues.
409                  */
410                 hwc->sample_period  = armpmu->max_period >> 1;
411                 hwc->last_period    = hwc->sample_period;
412                 local64_set(&hwc->period_left, hwc->sample_period);
413         }
414
415         if (event->group_leader != event) {
416                 if (validate_group(event) != 0)
417                         return -EINVAL;
418         }
419
420         return 0;
421 }
422
423 static int armpmu_event_init(struct perf_event *event)
424 {
425         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
426
427         /*
428          * Reject CPU-affine events for CPUs that are of a different class to
429          * that which this PMU handles. Process-following events (where
430          * event->cpu == -1) can be migrated between CPUs, and thus we have to
431          * reject them later (in armpmu_add) if they're scheduled on a
432          * different class of CPU.
433          */
434         if (event->cpu != -1 &&
435                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
436                 return -ENOENT;
437
438         /* does not support taken branch sampling */
439         if (has_branch_stack(event))
440                 return -EOPNOTSUPP;
441
442         if (armpmu->map_event(event) == -ENOENT)
443                 return -ENOENT;
444
445         return __hw_perf_event_init(event);
446 }
447
448 static void armpmu_enable(struct pmu *pmu)
449 {
450         struct arm_pmu *armpmu = to_arm_pmu(pmu);
451         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
452         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
453
454         /* For task-bound events we may be called on other CPUs */
455         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
456                 return;
457
458         if (enabled)
459                 armpmu->start(armpmu);
460 }
461
462 static void armpmu_disable(struct pmu *pmu)
463 {
464         struct arm_pmu *armpmu = to_arm_pmu(pmu);
465
466         /* For task-bound events we may be called on other CPUs */
467         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
468                 return;
469
470         armpmu->stop(armpmu);
471 }
472
473 /*
474  * In heterogeneous systems, events are specific to a particular
475  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
476  * the same microarchitecture.
477  */
478 static int armpmu_filter_match(struct perf_event *event)
479 {
480         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
481         unsigned int cpu = smp_processor_id();
482         return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
483 }
484
485 static ssize_t armpmu_cpumask_show(struct device *dev,
486                                    struct device_attribute *attr, char *buf)
487 {
488         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
489         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
490 }
491
492 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
493
494 static struct attribute *armpmu_common_attrs[] = {
495         &dev_attr_cpus.attr,
496         NULL,
497 };
498
499 static struct attribute_group armpmu_common_attr_group = {
500         .attrs = armpmu_common_attrs,
501 };
502
503 /* Set at runtime when we know what CPU type we are. */
504 static struct arm_pmu *__oprofile_cpu_pmu;
505
506 /*
507  * Despite the names, these two functions are CPU-specific and are used
508  * by the OProfile/perf code.
509  */
510 const char *perf_pmu_name(void)
511 {
512         if (!__oprofile_cpu_pmu)
513                 return NULL;
514
515         return __oprofile_cpu_pmu->name;
516 }
517 EXPORT_SYMBOL_GPL(perf_pmu_name);
518
519 int perf_num_counters(void)
520 {
521         int max_events = 0;
522
523         if (__oprofile_cpu_pmu != NULL)
524                 max_events = __oprofile_cpu_pmu->num_events;
525
526         return max_events;
527 }
528 EXPORT_SYMBOL_GPL(perf_num_counters);
529
530 static void armpmu_free_irqs(struct arm_pmu *armpmu)
531 {
532         int cpu;
533         struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
534
535         for_each_cpu(cpu, &armpmu->supported_cpus) {
536                 int irq = per_cpu(hw_events->irq, cpu);
537                 if (!irq)
538                         continue;
539
540                 if (irq_is_percpu(irq)) {
541                         free_percpu_irq(irq, &hw_events->percpu_pmu);
542                         break;
543                 }
544
545                 if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
546                         continue;
547
548                 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
549         }
550 }
551
552 static int armpmu_request_irqs(struct arm_pmu *armpmu)
553 {
554         int cpu, err;
555         struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
556         const irq_handler_t handler = armpmu_dispatch_irq;
557
558         for_each_cpu(cpu, &armpmu->supported_cpus) {
559                 int irq = per_cpu(hw_events->irq, cpu);
560                 if (!irq)
561                         continue;
562
563                 if (irq_is_percpu(irq)) {
564                         err = request_percpu_irq(irq, handler, "arm-pmu",
565                                                  &hw_events->percpu_pmu);
566                         if (err) {
567                                 pr_err("unable to request IRQ%d for ARM PMU counters\n",
568                                         irq);
569                         }
570
571                         return err;
572                 }
573
574                 err = request_irq(irq, handler,
575                                   IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
576                                   per_cpu_ptr(&hw_events->percpu_pmu, cpu));
577                 if (err) {
578                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
579                                 irq);
580                         return err;
581                 }
582
583                 cpumask_set_cpu(cpu, &armpmu->active_irqs);
584         }
585
586         return 0;
587 }
588
589 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
590 {
591         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
592         return per_cpu(hw_events->irq, cpu);
593 }
594
595 /*
596  * PMU hardware loses all context when a CPU goes offline.
597  * When a CPU is hotplugged back in, since some hardware registers are
598  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
599  * junk values out of them.
600  */
601 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
602 {
603         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
604         int irq;
605
606         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
607                 return 0;
608         if (pmu->reset)
609                 pmu->reset(pmu);
610
611         irq = armpmu_get_cpu_irq(pmu, cpu);
612         if (irq) {
613                 if (irq_is_percpu(irq)) {
614                         enable_percpu_irq(irq, IRQ_TYPE_NONE);
615                         return 0;
616                 }
617
618                 if (irq_force_affinity(irq, cpumask_of(cpu)) &&
619                     num_possible_cpus() > 1) {
620                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
621                                 irq, cpu);
622                 }
623         }
624
625         return 0;
626 }
627
628 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
629 {
630         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
631         int irq;
632
633         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
634                 return 0;
635
636         irq = armpmu_get_cpu_irq(pmu, cpu);
637         if (irq && irq_is_percpu(irq))
638                 disable_percpu_irq(irq);
639
640         return 0;
641 }
642
643 #ifdef CONFIG_CPU_PM
644 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
645 {
646         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
647         struct perf_event *event;
648         int idx;
649
650         for (idx = 0; idx < armpmu->num_events; idx++) {
651                 /*
652                  * If the counter is not used skip it, there is no
653                  * need of stopping/restarting it.
654                  */
655                 if (!test_bit(idx, hw_events->used_mask))
656                         continue;
657
658                 event = hw_events->events[idx];
659
660                 switch (cmd) {
661                 case CPU_PM_ENTER:
662                         /*
663                          * Stop and update the counter
664                          */
665                         armpmu_stop(event, PERF_EF_UPDATE);
666                         break;
667                 case CPU_PM_EXIT:
668                 case CPU_PM_ENTER_FAILED:
669                          /*
670                           * Restore and enable the counter.
671                           * armpmu_start() indirectly calls
672                           *
673                           * perf_event_update_userpage()
674                           *
675                           * that requires RCU read locking to be functional,
676                           * wrap the call within RCU_NONIDLE to make the
677                           * RCU subsystem aware this cpu is not idle from
678                           * an RCU perspective for the armpmu_start() call
679                           * duration.
680                           */
681                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
682                         break;
683                 default:
684                         break;
685                 }
686         }
687 }
688
689 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
690                              void *v)
691 {
692         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
693         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
694         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
695
696         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
697                 return NOTIFY_DONE;
698
699         /*
700          * Always reset the PMU registers on power-up even if
701          * there are no events running.
702          */
703         if (cmd == CPU_PM_EXIT && armpmu->reset)
704                 armpmu->reset(armpmu);
705
706         if (!enabled)
707                 return NOTIFY_OK;
708
709         switch (cmd) {
710         case CPU_PM_ENTER:
711                 armpmu->stop(armpmu);
712                 cpu_pm_pmu_setup(armpmu, cmd);
713                 break;
714         case CPU_PM_EXIT:
715                 cpu_pm_pmu_setup(armpmu, cmd);
716         case CPU_PM_ENTER_FAILED:
717                 armpmu->start(armpmu);
718                 break;
719         default:
720                 return NOTIFY_DONE;
721         }
722
723         return NOTIFY_OK;
724 }
725
726 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
727 {
728         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
729         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
730 }
731
732 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
733 {
734         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
735 }
736 #else
737 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
738 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
739 #endif
740
741 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
742 {
743         int err;
744
745         err = armpmu_request_irqs(cpu_pmu);
746         if (err)
747                 goto out;
748
749         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
750                                        &cpu_pmu->node);
751         if (err)
752                 goto out;
753
754         err = cpu_pm_pmu_register(cpu_pmu);
755         if (err)
756                 goto out_unregister;
757
758         return 0;
759
760 out_unregister:
761         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
762                                             &cpu_pmu->node);
763 out:
764         armpmu_free_irqs(cpu_pmu);
765         return err;
766 }
767
768 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
769 {
770         cpu_pm_pmu_unregister(cpu_pmu);
771         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
772                                             &cpu_pmu->node);
773 }
774
775 /*
776  * CPU PMU identification and probing.
777  */
778 static int probe_current_pmu(struct arm_pmu *pmu,
779                              const struct pmu_probe_info *info)
780 {
781         int cpu = get_cpu();
782         unsigned int cpuid = read_cpuid_id();
783         int ret = -ENODEV;
784
785         pr_info("probing PMU on CPU %d\n", cpu);
786
787         for (; info->init != NULL; info++) {
788                 if ((cpuid & info->mask) != info->cpuid)
789                         continue;
790                 ret = info->init(pmu);
791                 break;
792         }
793
794         put_cpu();
795         return ret;
796 }
797
798 static int pmu_parse_percpu_irq(struct arm_pmu *pmu, int irq)
799 {
800         int cpu, ret;
801         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
802
803         ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
804         if (ret)
805                 return ret;
806
807         for_each_cpu(cpu, &pmu->supported_cpus)
808                 per_cpu(hw_events->irq, cpu) = irq;
809
810         return 0;
811 }
812
813 static bool pmu_has_irq_affinity(struct device_node *node)
814 {
815         return !!of_find_property(node, "interrupt-affinity", NULL);
816 }
817
818 static int pmu_parse_irq_affinity(struct device_node *node, int i)
819 {
820         struct device_node *dn;
821         int cpu;
822
823         /*
824          * If we don't have an interrupt-affinity property, we guess irq
825          * affinity matches our logical CPU order, as we used to assume.
826          * This is fragile, so we'll warn in pmu_parse_irqs().
827          */
828         if (!pmu_has_irq_affinity(node))
829                 return i;
830
831         dn = of_parse_phandle(node, "interrupt-affinity", i);
832         if (!dn) {
833                 pr_warn("failed to parse interrupt-affinity[%d] for %s\n",
834                         i, node->name);
835                 return -EINVAL;
836         }
837
838         /* Now look up the logical CPU number */
839         for_each_possible_cpu(cpu) {
840                 struct device_node *cpu_dn;
841
842                 cpu_dn = of_cpu_device_node_get(cpu);
843                 of_node_put(cpu_dn);
844
845                 if (dn == cpu_dn)
846                         break;
847         }
848
849         if (cpu >= nr_cpu_ids) {
850                 pr_warn("failed to find logical CPU for %s\n", dn->name);
851         }
852
853         of_node_put(dn);
854
855         return cpu;
856 }
857
858 static int pmu_parse_irqs(struct arm_pmu *pmu)
859 {
860         int i = 0, irqs;
861         struct platform_device *pdev = pmu->plat_device;
862         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
863
864         irqs = platform_irq_count(pdev);
865         if (irqs < 0) {
866                 pr_err("unable to count PMU IRQs\n");
867                 return irqs;
868         }
869
870         /*
871          * In this case we have no idea which CPUs are covered by the PMU.
872          * To match our prior behaviour, we assume all CPUs in this case.
873          */
874         if (irqs == 0) {
875                 pr_warn("no irqs for PMU, sampling events not supported\n");
876                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
877                 cpumask_setall(&pmu->supported_cpus);
878                 return 0;
879         }
880
881         if (irqs == 1) {
882                 int irq = platform_get_irq(pdev, 0);
883                 if (irq && irq_is_percpu(irq))
884                         return pmu_parse_percpu_irq(pmu, irq);
885         }
886
887         if (!pmu_has_irq_affinity(pdev->dev.of_node)) {
888                 pr_warn("no interrupt-affinity property for %s, guessing.\n",
889                         of_node_full_name(pdev->dev.of_node));
890         }
891
892         /*
893          * Some platforms have all PMU IRQs OR'd into a single IRQ, with a
894          * special platdata function that attempts to demux them.
895          */
896         if (dev_get_platdata(&pdev->dev))
897                 cpumask_setall(&pmu->supported_cpus);
898
899         for (i = 0; i < irqs; i++) {
900                 int cpu, irq;
901
902                 irq = platform_get_irq(pdev, i);
903                 if (WARN_ON(irq <= 0))
904                         continue;
905
906                 if (irq_is_percpu(irq)) {
907                         pr_warn("multiple PPIs or mismatched SPI/PPI detected\n");
908                         return -EINVAL;
909                 }
910
911                 cpu = pmu_parse_irq_affinity(pdev->dev.of_node, i);
912                 if (cpu < 0)
913                         return cpu;
914                 if (cpu >= nr_cpu_ids)
915                         continue;
916
917                 if (per_cpu(hw_events->irq, cpu)) {
918                         pr_warn("multiple PMU IRQs for the same CPU detected\n");
919                         return -EINVAL;
920                 }
921
922                 per_cpu(hw_events->irq, cpu) = irq;
923                 cpumask_set_cpu(cpu, &pmu->supported_cpus);
924         }
925
926         return 0;
927 }
928
929 static struct arm_pmu *armpmu_alloc(void)
930 {
931         struct arm_pmu *pmu;
932         int cpu;
933
934         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
935         if (!pmu) {
936                 pr_info("failed to allocate PMU device!\n");
937                 goto out;
938         }
939
940         pmu->hw_events = alloc_percpu(struct pmu_hw_events);
941         if (!pmu->hw_events) {
942                 pr_info("failed to allocate per-cpu PMU data.\n");
943                 goto out_free_pmu;
944         }
945
946         pmu->pmu = (struct pmu) {
947                 .pmu_enable     = armpmu_enable,
948                 .pmu_disable    = armpmu_disable,
949                 .event_init     = armpmu_event_init,
950                 .add            = armpmu_add,
951                 .del            = armpmu_del,
952                 .start          = armpmu_start,
953                 .stop           = armpmu_stop,
954                 .read           = armpmu_read,
955                 .filter_match   = armpmu_filter_match,
956                 .attr_groups    = pmu->attr_groups,
957                 /*
958                  * This is a CPU PMU potentially in a heterogeneous
959                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
960                  * and we have taken ctx sharing into account (e.g. with our
961                  * pmu::filter_match callback and pmu::event_init group
962                  * validation).
963                  */
964                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
965         };
966
967         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
968                 &armpmu_common_attr_group;
969
970         for_each_possible_cpu(cpu) {
971                 struct pmu_hw_events *events;
972
973                 events = per_cpu_ptr(pmu->hw_events, cpu);
974                 raw_spin_lock_init(&events->pmu_lock);
975                 events->percpu_pmu = pmu;
976         }
977
978         return pmu;
979
980 out_free_pmu:
981         kfree(pmu);
982 out:
983         return NULL;
984 }
985
986 static void armpmu_free(struct arm_pmu *pmu)
987 {
988         free_percpu(pmu->hw_events);
989         kfree(pmu);
990 }
991
992 int armpmu_register(struct arm_pmu *pmu)
993 {
994         int ret;
995
996         ret = cpu_pmu_init(pmu);
997         if (ret)
998                 return ret;
999
1000         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1001         if (ret)
1002                 goto out_destroy;
1003
1004         if (!__oprofile_cpu_pmu)
1005                 __oprofile_cpu_pmu = pmu;
1006
1007         pr_info("enabled with %s PMU driver, %d counters available\n",
1008                 pmu->name, pmu->num_events);
1009
1010         return 0;
1011
1012 out_destroy:
1013         cpu_pmu_destroy(pmu);
1014         return ret;
1015 }
1016
1017 int arm_pmu_device_probe(struct platform_device *pdev,
1018                          const struct of_device_id *of_table,
1019                          const struct pmu_probe_info *probe_table)
1020 {
1021         const struct of_device_id *of_id;
1022         armpmu_init_fn init_fn;
1023         struct device_node *node = pdev->dev.of_node;
1024         struct arm_pmu *pmu;
1025         int ret = -ENODEV;
1026
1027         pmu = armpmu_alloc();
1028         if (!pmu)
1029                 return -ENOMEM;
1030
1031         pmu->plat_device = pdev;
1032
1033         ret = pmu_parse_irqs(pmu);
1034         if (ret)
1035                 goto out_free;
1036
1037         if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1038                 init_fn = of_id->data;
1039
1040                 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1041                                                            "secure-reg-access");
1042
1043                 /* arm64 systems boot only as non-secure */
1044                 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1045                         pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1046                         pmu->secure_access = false;
1047                 }
1048
1049                 ret = init_fn(pmu);
1050         } else if (probe_table) {
1051                 cpumask_setall(&pmu->supported_cpus);
1052                 ret = probe_current_pmu(pmu, probe_table);
1053         }
1054
1055         if (ret) {
1056                 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1057                 goto out_free;
1058         }
1059
1060         ret = armpmu_register(pmu);
1061         if (ret)
1062                 goto out_free;
1063
1064         return 0;
1065
1066 out_free:
1067         pr_info("%s: failed to register PMU devices!\n",
1068                 of_node_full_name(node));
1069         armpmu_free(pmu);
1070         return ret;
1071 }
1072
1073 static int arm_pmu_hp_init(void)
1074 {
1075         int ret;
1076
1077         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1078                                       "perf/arm/pmu:starting",
1079                                       arm_perf_starting_cpu,
1080                                       arm_perf_teardown_cpu);
1081         if (ret)
1082                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1083                        ret);
1084         return ret;
1085 }
1086 subsys_initcall(arm_pmu_hp_init);