PCI: host: Mark PCIe/PCI (MSI) cascade ISR as IRQF_NO_THREAD
[linux-2.6-microblaze.git] / drivers / pci / host / vmd.c
1 /*
2  * Volume Management Device driver
3  * Copyright (c) 2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/pci.h>
22 #include <linux/srcu.h>
23 #include <linux/rculist.h>
24 #include <linux/rcupdate.h>
25
26 #include <asm/irqdomain.h>
27 #include <asm/device.h>
28 #include <asm/msi.h>
29 #include <asm/msidef.h>
30
31 #define VMD_CFGBAR      0
32 #define VMD_MEMBAR1     2
33 #define VMD_MEMBAR2     4
34
35 /*
36  * Lock for manipulating VMD IRQ lists.
37  */
38 static DEFINE_RAW_SPINLOCK(list_lock);
39
40 /**
41  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
42  * @node:       list item for parent traversal.
43  * @irq:        back pointer to parent.
44  * @enabled:    true if driver enabled IRQ
45  * @virq:       the virtual IRQ value provided to the requesting driver.
46  *
47  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
48  * a VMD IRQ using this structure.
49  */
50 struct vmd_irq {
51         struct list_head        node;
52         struct vmd_irq_list     *irq;
53         bool                    enabled;
54         unsigned int            virq;
55 };
56
57 /**
58  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
59  * @irq_list:   the list of irq's the VMD one demuxes to.
60  * @srcu:       SRCU struct for local synchronization.
61  * @count:      number of child IRQs assigned to this vector; used to track
62  *              sharing.
63  */
64 struct vmd_irq_list {
65         struct list_head        irq_list;
66         struct srcu_struct      srcu;
67         unsigned int            count;
68 };
69
70 struct vmd_dev {
71         struct pci_dev          *dev;
72
73         spinlock_t              cfg_lock;
74         char __iomem            *cfgbar;
75
76         int msix_count;
77         struct vmd_irq_list     *irqs;
78
79         struct pci_sysdata      sysdata;
80         struct resource         resources[3];
81         struct irq_domain       *irq_domain;
82         struct pci_bus          *bus;
83
84 #ifdef CONFIG_X86_DEV_DMA_OPS
85         struct dma_map_ops      dma_ops;
86         struct dma_domain       dma_domain;
87 #endif
88 };
89
90 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
91 {
92         return container_of(bus->sysdata, struct vmd_dev, sysdata);
93 }
94
95 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
96                                            struct vmd_irq_list *irqs)
97 {
98         return irqs - vmd->irqs;
99 }
100
101 /*
102  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
103  * but the MSI entry for the hardware it's driving will be programmed with a
104  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
105  * domain into one of its own, and the VMD driver de-muxes these for the
106  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
107  * and irq_chip to set this up.
108  */
109 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
110 {
111         struct vmd_irq *vmdirq = data->chip_data;
112         struct vmd_irq_list *irq = vmdirq->irq;
113         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
114
115         msg->address_hi = MSI_ADDR_BASE_HI;
116         msg->address_lo = MSI_ADDR_BASE_LO |
117                           MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
118         msg->data = 0;
119 }
120
121 /*
122  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
123  */
124 static void vmd_irq_enable(struct irq_data *data)
125 {
126         struct vmd_irq *vmdirq = data->chip_data;
127         unsigned long flags;
128
129         raw_spin_lock_irqsave(&list_lock, flags);
130         WARN_ON(vmdirq->enabled);
131         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
132         vmdirq->enabled = true;
133         raw_spin_unlock_irqrestore(&list_lock, flags);
134
135         data->chip->irq_unmask(data);
136 }
137
138 static void vmd_irq_disable(struct irq_data *data)
139 {
140         struct vmd_irq *vmdirq = data->chip_data;
141         unsigned long flags;
142
143         data->chip->irq_mask(data);
144
145         raw_spin_lock_irqsave(&list_lock, flags);
146         if (vmdirq->enabled) {
147                 list_del_rcu(&vmdirq->node);
148                 vmdirq->enabled = false;
149         }
150         raw_spin_unlock_irqrestore(&list_lock, flags);
151 }
152
153 /*
154  * XXX: Stubbed until we develop acceptable way to not create conflicts with
155  * other devices sharing the same vector.
156  */
157 static int vmd_irq_set_affinity(struct irq_data *data,
158                                 const struct cpumask *dest, bool force)
159 {
160         return -EINVAL;
161 }
162
163 static struct irq_chip vmd_msi_controller = {
164         .name                   = "VMD-MSI",
165         .irq_enable             = vmd_irq_enable,
166         .irq_disable            = vmd_irq_disable,
167         .irq_compose_msi_msg    = vmd_compose_msi_msg,
168         .irq_set_affinity       = vmd_irq_set_affinity,
169 };
170
171 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
172                                      msi_alloc_info_t *arg)
173 {
174         return 0;
175 }
176
177 /*
178  * XXX: We can be even smarter selecting the best IRQ once we solve the
179  * affinity problem.
180  */
181 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
182 {
183         int i, best = 1;
184         unsigned long flags;
185
186         if (!desc->msi_attrib.is_msix || vmd->msix_count == 1)
187                 return &vmd->irqs[0];
188
189         raw_spin_lock_irqsave(&list_lock, flags);
190         for (i = 1; i < vmd->msix_count; i++)
191                 if (vmd->irqs[i].count < vmd->irqs[best].count)
192                         best = i;
193         vmd->irqs[best].count++;
194         raw_spin_unlock_irqrestore(&list_lock, flags);
195
196         return &vmd->irqs[best];
197 }
198
199 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
200                         unsigned int virq, irq_hw_number_t hwirq,
201                         msi_alloc_info_t *arg)
202 {
203         struct msi_desc *desc = arg->desc;
204         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
205         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
206         unsigned int index, vector;
207
208         if (!vmdirq)
209                 return -ENOMEM;
210
211         INIT_LIST_HEAD(&vmdirq->node);
212         vmdirq->irq = vmd_next_irq(vmd, desc);
213         vmdirq->virq = virq;
214         index = index_from_irqs(vmd, vmdirq->irq);
215         vector = pci_irq_vector(vmd->dev, index);
216
217         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
218                             handle_untracked_irq, vmd, NULL);
219         return 0;
220 }
221
222 static void vmd_msi_free(struct irq_domain *domain,
223                         struct msi_domain_info *info, unsigned int virq)
224 {
225         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
226         unsigned long flags;
227
228         synchronize_srcu(&vmdirq->irq->srcu);
229
230         /* XXX: Potential optimization to rebalance */
231         raw_spin_lock_irqsave(&list_lock, flags);
232         vmdirq->irq->count--;
233         raw_spin_unlock_irqrestore(&list_lock, flags);
234
235         kfree(vmdirq);
236 }
237
238 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
239                            int nvec, msi_alloc_info_t *arg)
240 {
241         struct pci_dev *pdev = to_pci_dev(dev);
242         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
243
244         if (nvec > vmd->msix_count)
245                 return vmd->msix_count;
246
247         memset(arg, 0, sizeof(*arg));
248         return 0;
249 }
250
251 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
252 {
253         arg->desc = desc;
254 }
255
256 static struct msi_domain_ops vmd_msi_domain_ops = {
257         .get_hwirq      = vmd_get_hwirq,
258         .msi_init       = vmd_msi_init,
259         .msi_free       = vmd_msi_free,
260         .msi_prepare    = vmd_msi_prepare,
261         .set_desc       = vmd_set_desc,
262 };
263
264 static struct msi_domain_info vmd_msi_domain_info = {
265         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
266                           MSI_FLAG_PCI_MSIX,
267         .ops            = &vmd_msi_domain_ops,
268         .chip           = &vmd_msi_controller,
269 };
270
271 #ifdef CONFIG_X86_DEV_DMA_OPS
272 /*
273  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
274  * VMD domain need to be mapped for the VMD, not the device requiring
275  * the mapping.
276  */
277 static struct device *to_vmd_dev(struct device *dev)
278 {
279         struct pci_dev *pdev = to_pci_dev(dev);
280         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
281
282         return &vmd->dev->dev;
283 }
284
285 static const struct dma_map_ops *vmd_dma_ops(struct device *dev)
286 {
287         return get_dma_ops(to_vmd_dev(dev));
288 }
289
290 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
291                        gfp_t flag, unsigned long attrs)
292 {
293         return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
294                                        attrs);
295 }
296
297 static void vmd_free(struct device *dev, size_t size, void *vaddr,
298                      dma_addr_t addr, unsigned long attrs)
299 {
300         return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
301                                       attrs);
302 }
303
304 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
305                     void *cpu_addr, dma_addr_t addr, size_t size,
306                     unsigned long attrs)
307 {
308         return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
309                                       size, attrs);
310 }
311
312 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
313                            void *cpu_addr, dma_addr_t addr, size_t size,
314                            unsigned long attrs)
315 {
316         return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
317                                              addr, size, attrs);
318 }
319
320 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
321                                unsigned long offset, size_t size,
322                                enum dma_data_direction dir,
323                                unsigned long attrs)
324 {
325         return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
326                                           dir, attrs);
327 }
328
329 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
330                            enum dma_data_direction dir, unsigned long attrs)
331 {
332         vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
333 }
334
335 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
336                       enum dma_data_direction dir, unsigned long attrs)
337 {
338         return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
339 }
340
341 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
342                          enum dma_data_direction dir, unsigned long attrs)
343 {
344         vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
345 }
346
347 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
348                                     size_t size, enum dma_data_direction dir)
349 {
350         vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
351 }
352
353 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
354                                        size_t size, enum dma_data_direction dir)
355 {
356         vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
357                                                  dir);
358 }
359
360 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
361                                 int nents, enum dma_data_direction dir)
362 {
363         vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
364 }
365
366 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
367                                    int nents, enum dma_data_direction dir)
368 {
369         vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
370 }
371
372 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
373 {
374         return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
375 }
376
377 static int vmd_dma_supported(struct device *dev, u64 mask)
378 {
379         return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
380 }
381
382 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
383 static u64 vmd_get_required_mask(struct device *dev)
384 {
385         return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
386 }
387 #endif
388
389 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
390 {
391         struct dma_domain *domain = &vmd->dma_domain;
392
393         if (get_dma_ops(&vmd->dev->dev))
394                 del_dma_domain(domain);
395 }
396
397 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
398         do {                                    \
399                 if (source->fn)                 \
400                         dest->fn = vmd_##fn;    \
401         } while (0)
402
403 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
404 {
405         const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
406         struct dma_map_ops *dest = &vmd->dma_ops;
407         struct dma_domain *domain = &vmd->dma_domain;
408
409         domain->domain_nr = vmd->sysdata.domain;
410         domain->dma_ops = dest;
411
412         if (!source)
413                 return;
414         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
415         ASSIGN_VMD_DMA_OPS(source, dest, free);
416         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
417         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
418         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
419         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
420         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
421         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
422         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
423         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
424         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
425         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
426         ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
427         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
428 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
429         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
430 #endif
431         add_dma_domain(domain);
432 }
433 #undef ASSIGN_VMD_DMA_OPS
434 #else
435 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
436 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
437 #endif
438
439 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
440                                   unsigned int devfn, int reg, int len)
441 {
442         char __iomem *addr = vmd->cfgbar +
443                              (bus->number << 20) + (devfn << 12) + reg;
444
445         if ((addr - vmd->cfgbar) + len >=
446             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
447                 return NULL;
448
449         return addr;
450 }
451
452 /*
453  * CPU may deadlock if config space is not serialized on some versions of this
454  * hardware, so all config space access is done under a spinlock.
455  */
456 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
457                         int len, u32 *value)
458 {
459         struct vmd_dev *vmd = vmd_from_bus(bus);
460         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
461         unsigned long flags;
462         int ret = 0;
463
464         if (!addr)
465                 return -EFAULT;
466
467         spin_lock_irqsave(&vmd->cfg_lock, flags);
468         switch (len) {
469         case 1:
470                 *value = readb(addr);
471                 break;
472         case 2:
473                 *value = readw(addr);
474                 break;
475         case 4:
476                 *value = readl(addr);
477                 break;
478         default:
479                 ret = -EINVAL;
480                 break;
481         }
482         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
483         return ret;
484 }
485
486 /*
487  * VMD h/w converts non-posted config writes to posted memory writes. The
488  * read-back in this function forces the completion so it returns only after
489  * the config space was written, as expected.
490  */
491 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
492                          int len, u32 value)
493 {
494         struct vmd_dev *vmd = vmd_from_bus(bus);
495         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
496         unsigned long flags;
497         int ret = 0;
498
499         if (!addr)
500                 return -EFAULT;
501
502         spin_lock_irqsave(&vmd->cfg_lock, flags);
503         switch (len) {
504         case 1:
505                 writeb(value, addr);
506                 readb(addr);
507                 break;
508         case 2:
509                 writew(value, addr);
510                 readw(addr);
511                 break;
512         case 4:
513                 writel(value, addr);
514                 readl(addr);
515                 break;
516         default:
517                 ret = -EINVAL;
518                 break;
519         }
520         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
521         return ret;
522 }
523
524 static struct pci_ops vmd_ops = {
525         .read           = vmd_pci_read,
526         .write          = vmd_pci_write,
527 };
528
529 static void vmd_attach_resources(struct vmd_dev *vmd)
530 {
531         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
532         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
533 }
534
535 static void vmd_detach_resources(struct vmd_dev *vmd)
536 {
537         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
538         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
539 }
540
541 /*
542  * VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
543  */
544 static int vmd_find_free_domain(void)
545 {
546         int domain = 0xffff;
547         struct pci_bus *bus = NULL;
548
549         while ((bus = pci_find_next_bus(bus)) != NULL)
550                 domain = max_t(int, domain, pci_domain_nr(bus));
551         return domain + 1;
552 }
553
554 static int vmd_enable_domain(struct vmd_dev *vmd)
555 {
556         struct pci_sysdata *sd = &vmd->sysdata;
557         struct resource *res;
558         u32 upper_bits;
559         unsigned long flags;
560         LIST_HEAD(resources);
561
562         res = &vmd->dev->resource[VMD_CFGBAR];
563         vmd->resources[0] = (struct resource) {
564                 .name  = "VMD CFGBAR",
565                 .start = 0,
566                 .end   = (resource_size(res) >> 20) - 1,
567                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
568         };
569
570         /*
571          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
572          * put 32-bit resources in the window.
573          *
574          * There's no hardware reason why a 64-bit window *couldn't*
575          * contain a 32-bit resource, but pbus_size_mem() computes the
576          * bridge window size assuming a 64-bit window will contain no
577          * 32-bit resources.  __pci_assign_resource() enforces that
578          * artificial restriction to make sure everything will fit.
579          *
580          * The only way we could use a 64-bit non-prefechable MEMBAR is
581          * if its address is <4GB so that we can convert it to a 32-bit
582          * resource.  To be visible to the host OS, all VMD endpoints must
583          * be initially configured by platform BIOS, which includes setting
584          * up these resources.  We can assume the device is configured
585          * according to the platform needs.
586          */
587         res = &vmd->dev->resource[VMD_MEMBAR1];
588         upper_bits = upper_32_bits(res->end);
589         flags = res->flags & ~IORESOURCE_SIZEALIGN;
590         if (!upper_bits)
591                 flags &= ~IORESOURCE_MEM_64;
592         vmd->resources[1] = (struct resource) {
593                 .name  = "VMD MEMBAR1",
594                 .start = res->start,
595                 .end   = res->end,
596                 .flags = flags,
597                 .parent = res,
598         };
599
600         res = &vmd->dev->resource[VMD_MEMBAR2];
601         upper_bits = upper_32_bits(res->end);
602         flags = res->flags & ~IORESOURCE_SIZEALIGN;
603         if (!upper_bits)
604                 flags &= ~IORESOURCE_MEM_64;
605         vmd->resources[2] = (struct resource) {
606                 .name  = "VMD MEMBAR2",
607                 .start = res->start + 0x2000,
608                 .end   = res->end,
609                 .flags = flags,
610                 .parent = res,
611         };
612
613         sd->vmd_domain = true;
614         sd->domain = vmd_find_free_domain();
615         if (sd->domain < 0)
616                 return sd->domain;
617
618         sd->node = pcibus_to_node(vmd->dev->bus);
619
620         vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
621                                                     x86_vector_domain);
622         if (!vmd->irq_domain)
623                 return -ENODEV;
624
625         pci_add_resource(&resources, &vmd->resources[0]);
626         pci_add_resource(&resources, &vmd->resources[1]);
627         pci_add_resource(&resources, &vmd->resources[2]);
628         vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
629                                        &resources);
630         if (!vmd->bus) {
631                 pci_free_resource_list(&resources);
632                 irq_domain_remove(vmd->irq_domain);
633                 return -ENODEV;
634         }
635
636         vmd_attach_resources(vmd);
637         vmd_setup_dma_ops(vmd);
638         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
639         pci_rescan_bus(vmd->bus);
640
641         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
642                                "domain"), "Can't create symlink to domain\n");
643         return 0;
644 }
645
646 static irqreturn_t vmd_irq(int irq, void *data)
647 {
648         struct vmd_irq_list *irqs = data;
649         struct vmd_irq *vmdirq;
650         int idx;
651
652         idx = srcu_read_lock(&irqs->srcu);
653         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
654                 generic_handle_irq(vmdirq->virq);
655         srcu_read_unlock(&irqs->srcu, idx);
656
657         return IRQ_HANDLED;
658 }
659
660 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
661 {
662         struct vmd_dev *vmd;
663         int i, err;
664
665         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
666                 return -ENOMEM;
667
668         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
669         if (!vmd)
670                 return -ENOMEM;
671
672         vmd->dev = dev;
673         err = pcim_enable_device(dev);
674         if (err < 0)
675                 return err;
676
677         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
678         if (!vmd->cfgbar)
679                 return -ENOMEM;
680
681         pci_set_master(dev);
682         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
683             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
684                 return -ENODEV;
685
686         vmd->msix_count = pci_msix_vec_count(dev);
687         if (vmd->msix_count < 0)
688                 return -ENODEV;
689
690         vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
691                                         PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
692         if (vmd->msix_count < 0)
693                 return vmd->msix_count;
694
695         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
696                                  GFP_KERNEL);
697         if (!vmd->irqs)
698                 return -ENOMEM;
699
700         for (i = 0; i < vmd->msix_count; i++) {
701                 err = init_srcu_struct(&vmd->irqs[i].srcu);
702                 if (err)
703                         return err;
704
705                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
706                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
707                                        vmd_irq, IRQF_NO_THREAD,
708                                        "vmd", &vmd->irqs[i]);
709                 if (err)
710                         return err;
711         }
712
713         spin_lock_init(&vmd->cfg_lock);
714         pci_set_drvdata(dev, vmd);
715         err = vmd_enable_domain(vmd);
716         if (err)
717                 return err;
718
719         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
720                  vmd->sysdata.domain);
721         return 0;
722 }
723
724 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
725 {
726         int i;
727
728         for (i = 0; i < vmd->msix_count; i++)
729                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
730 }
731
732 static void vmd_remove(struct pci_dev *dev)
733 {
734         struct vmd_dev *vmd = pci_get_drvdata(dev);
735
736         vmd_detach_resources(vmd);
737         vmd_cleanup_srcu(vmd);
738         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
739         pci_stop_root_bus(vmd->bus);
740         pci_remove_root_bus(vmd->bus);
741         vmd_teardown_dma_ops(vmd);
742         irq_domain_remove(vmd->irq_domain);
743 }
744
745 #ifdef CONFIG_PM_SLEEP
746 static int vmd_suspend(struct device *dev)
747 {
748         struct pci_dev *pdev = to_pci_dev(dev);
749
750         pci_save_state(pdev);
751         return 0;
752 }
753
754 static int vmd_resume(struct device *dev)
755 {
756         struct pci_dev *pdev = to_pci_dev(dev);
757
758         pci_restore_state(pdev);
759         return 0;
760 }
761 #endif
762 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
763
764 static const struct pci_device_id vmd_ids[] = {
765         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
766         {0,}
767 };
768 MODULE_DEVICE_TABLE(pci, vmd_ids);
769
770 static struct pci_driver vmd_drv = {
771         .name           = "vmd",
772         .id_table       = vmd_ids,
773         .probe          = vmd_probe,
774         .remove         = vmd_remove,
775         .driver         = {
776                 .pm     = &vmd_dev_pm_ops,
777         },
778 };
779 module_pci_driver(vmd_drv);
780
781 MODULE_AUTHOR("Intel Corporation");
782 MODULE_LICENSE("GPL v2");
783 MODULE_VERSION("0.6");