7607e112df3fb5574da344fd67fef1eec6e74198
[linux-2.6-microblaze.git] / drivers / opp / of.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *      Nishanth Menon
7  *      Romit Dasgupta
8  *      Kevin Hilman
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21
22 #include "opp.h"
23
24 /*
25  * Returns opp descriptor node for a device node, caller must
26  * do of_node_put().
27  */
28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
29                                                      int index)
30 {
31         /* "operating-points-v2" can be an array for power domain providers */
32         return of_parse_phandle(np, "operating-points-v2", index);
33 }
34
35 /* Returns opp descriptor node for a device, caller must do of_node_put() */
36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
37 {
38         return _opp_of_get_opp_desc_node(dev->of_node, 0);
39 }
40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
41
42 struct opp_table *_managed_opp(struct device *dev, int index)
43 {
44         struct opp_table *opp_table, *managed_table = NULL;
45         struct device_node *np;
46
47         np = _opp_of_get_opp_desc_node(dev->of_node, index);
48         if (!np)
49                 return NULL;
50
51         list_for_each_entry(opp_table, &opp_tables, node) {
52                 if (opp_table->np == np) {
53                         /*
54                          * Multiple devices can point to the same OPP table and
55                          * so will have same node-pointer, np.
56                          *
57                          * But the OPPs will be considered as shared only if the
58                          * OPP table contains a "opp-shared" property.
59                          */
60                         if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
61                                 _get_opp_table_kref(opp_table);
62                                 managed_table = opp_table;
63                         }
64
65                         break;
66                 }
67         }
68
69         of_node_put(np);
70
71         return managed_table;
72 }
73
74 /* The caller must call dev_pm_opp_put() after the OPP is used */
75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
76                                           struct device_node *opp_np)
77 {
78         struct dev_pm_opp *opp;
79
80         mutex_lock(&opp_table->lock);
81
82         list_for_each_entry(opp, &opp_table->opp_list, node) {
83                 if (opp->np == opp_np) {
84                         dev_pm_opp_get(opp);
85                         mutex_unlock(&opp_table->lock);
86                         return opp;
87                 }
88         }
89
90         mutex_unlock(&opp_table->lock);
91
92         return NULL;
93 }
94
95 static struct device_node *of_parse_required_opp(struct device_node *np,
96                                                  int index)
97 {
98         return of_parse_phandle(np, "required-opps", index);
99 }
100
101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
103 {
104         struct opp_table *opp_table;
105         struct device_node *opp_table_np;
106
107         opp_table_np = of_get_parent(opp_np);
108         if (!opp_table_np)
109                 goto err;
110
111         /* It is safe to put the node now as all we need now is its address */
112         of_node_put(opp_table_np);
113
114         mutex_lock(&opp_table_lock);
115         list_for_each_entry(opp_table, &opp_tables, node) {
116                 if (opp_table_np == opp_table->np) {
117                         _get_opp_table_kref(opp_table);
118                         mutex_unlock(&opp_table_lock);
119                         return opp_table;
120                 }
121         }
122         mutex_unlock(&opp_table_lock);
123
124 err:
125         return ERR_PTR(-ENODEV);
126 }
127
128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
129 static void _opp_table_free_required_tables(struct opp_table *opp_table)
130 {
131         struct opp_table **required_opp_tables = opp_table->required_opp_tables;
132         int i;
133
134         if (!required_opp_tables)
135                 return;
136
137         for (i = 0; i < opp_table->required_opp_count; i++) {
138                 if (IS_ERR_OR_NULL(required_opp_tables[i]))
139                         continue;
140
141                 dev_pm_opp_put_opp_table(required_opp_tables[i]);
142         }
143
144         kfree(required_opp_tables);
145
146         opp_table->required_opp_count = 0;
147         opp_table->required_opp_tables = NULL;
148         list_del(&opp_table->lazy);
149 }
150
151 /*
152  * Populate all devices and opp tables which are part of "required-opps" list.
153  * Checking only the first OPP node should be enough.
154  */
155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
156                                              struct device *dev,
157                                              struct device_node *opp_np)
158 {
159         struct opp_table **required_opp_tables;
160         struct device_node *required_np, *np;
161         bool lazy = false;
162         int count, i;
163
164         /* Traversing the first OPP node is all we need */
165         np = of_get_next_available_child(opp_np, NULL);
166         if (!np) {
167                 dev_warn(dev, "Empty OPP table\n");
168
169                 return;
170         }
171
172         count = of_count_phandle_with_args(np, "required-opps", NULL);
173         if (count <= 0)
174                 goto put_np;
175
176         required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
177                                       GFP_KERNEL);
178         if (!required_opp_tables)
179                 goto put_np;
180
181         opp_table->required_opp_tables = required_opp_tables;
182         opp_table->required_opp_count = count;
183
184         for (i = 0; i < count; i++) {
185                 required_np = of_parse_required_opp(np, i);
186                 if (!required_np)
187                         goto free_required_tables;
188
189                 required_opp_tables[i] = _find_table_of_opp_np(required_np);
190                 of_node_put(required_np);
191
192                 if (IS_ERR(required_opp_tables[i]))
193                         lazy = true;
194         }
195
196         /* Let's do the linking later on */
197         if (lazy)
198                 list_add(&opp_table->lazy, &lazy_opp_tables);
199
200         goto put_np;
201
202 free_required_tables:
203         _opp_table_free_required_tables(opp_table);
204 put_np:
205         of_node_put(np);
206 }
207
208 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
209                         int index)
210 {
211         struct device_node *np, *opp_np;
212         u32 val;
213
214         /*
215          * Only required for backward compatibility with v1 bindings, but isn't
216          * harmful for other cases. And so we do it unconditionally.
217          */
218         np = of_node_get(dev->of_node);
219         if (!np)
220                 return;
221
222         if (!of_property_read_u32(np, "clock-latency", &val))
223                 opp_table->clock_latency_ns_max = val;
224         of_property_read_u32(np, "voltage-tolerance",
225                              &opp_table->voltage_tolerance_v1);
226
227         if (of_find_property(np, "#power-domain-cells", NULL))
228                 opp_table->is_genpd = true;
229
230         /* Get OPP table node */
231         opp_np = _opp_of_get_opp_desc_node(np, index);
232         of_node_put(np);
233
234         if (!opp_np)
235                 return;
236
237         if (of_property_read_bool(opp_np, "opp-shared"))
238                 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
239         else
240                 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
241
242         opp_table->np = opp_np;
243
244         _opp_table_alloc_required_tables(opp_table, dev, opp_np);
245         of_node_put(opp_np);
246 }
247
248 void _of_clear_opp_table(struct opp_table *opp_table)
249 {
250         _opp_table_free_required_tables(opp_table);
251 }
252
253 /*
254  * Release all resources previously acquired with a call to
255  * _of_opp_alloc_required_opps().
256  */
257 void _of_opp_free_required_opps(struct opp_table *opp_table,
258                                 struct dev_pm_opp *opp)
259 {
260         struct dev_pm_opp **required_opps = opp->required_opps;
261         int i;
262
263         if (!required_opps)
264                 return;
265
266         for (i = 0; i < opp_table->required_opp_count; i++) {
267                 if (!required_opps[i])
268                         continue;
269
270                 /* Put the reference back */
271                 dev_pm_opp_put(required_opps[i]);
272         }
273
274         opp->required_opps = NULL;
275         kfree(required_opps);
276 }
277
278 /* Populate all required OPPs which are part of "required-opps" list */
279 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
280                                        struct dev_pm_opp *opp)
281 {
282         struct dev_pm_opp **required_opps;
283         struct opp_table *required_table;
284         struct device_node *np;
285         int i, ret, count = opp_table->required_opp_count;
286
287         if (!count)
288                 return 0;
289
290         required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
291         if (!required_opps)
292                 return -ENOMEM;
293
294         opp->required_opps = required_opps;
295
296         for (i = 0; i < count; i++) {
297                 required_table = opp_table->required_opp_tables[i];
298
299                 /* Required table not added yet, we will link later */
300                 if (IS_ERR_OR_NULL(required_table))
301                         continue;
302
303                 np = of_parse_required_opp(opp->np, i);
304                 if (unlikely(!np)) {
305                         ret = -ENODEV;
306                         goto free_required_opps;
307                 }
308
309                 required_opps[i] = _find_opp_of_np(required_table, np);
310                 of_node_put(np);
311
312                 if (!required_opps[i]) {
313                         pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
314                                __func__, opp->np, i);
315                         ret = -ENODEV;
316                         goto free_required_opps;
317                 }
318         }
319
320         return 0;
321
322 free_required_opps:
323         _of_opp_free_required_opps(opp_table, opp);
324
325         return ret;
326 }
327
328 /* Link required OPPs for an individual OPP */
329 static int lazy_link_required_opps(struct opp_table *opp_table,
330                                    struct opp_table *new_table, int index)
331 {
332         struct device_node *required_np;
333         struct dev_pm_opp *opp;
334
335         list_for_each_entry(opp, &opp_table->opp_list, node) {
336                 required_np = of_parse_required_opp(opp->np, index);
337                 if (unlikely(!required_np))
338                         return -ENODEV;
339
340                 opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
341                 of_node_put(required_np);
342
343                 if (!opp->required_opps[index]) {
344                         pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
345                                __func__, opp->np, index);
346                         return -ENODEV;
347                 }
348         }
349
350         return 0;
351 }
352
353 /* Link required OPPs for all OPPs of the newly added OPP table */
354 static void lazy_link_required_opp_table(struct opp_table *new_table)
355 {
356         struct opp_table *opp_table, *temp, **required_opp_tables;
357         struct device_node *required_np, *opp_np, *required_table_np;
358         struct dev_pm_opp *opp;
359         int i, ret;
360
361         mutex_lock(&opp_table_lock);
362
363         list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
364                 bool lazy = false;
365
366                 /* opp_np can't be invalid here */
367                 opp_np = of_get_next_available_child(opp_table->np, NULL);
368
369                 for (i = 0; i < opp_table->required_opp_count; i++) {
370                         required_opp_tables = opp_table->required_opp_tables;
371
372                         /* Required opp-table is already parsed */
373                         if (!IS_ERR(required_opp_tables[i]))
374                                 continue;
375
376                         /* required_np can't be invalid here */
377                         required_np = of_parse_required_opp(opp_np, i);
378                         required_table_np = of_get_parent(required_np);
379
380                         of_node_put(required_table_np);
381                         of_node_put(required_np);
382
383                         /*
384                          * Newly added table isn't the required opp-table for
385                          * opp_table.
386                          */
387                         if (required_table_np != new_table->np) {
388                                 lazy = true;
389                                 continue;
390                         }
391
392                         required_opp_tables[i] = new_table;
393                         _get_opp_table_kref(new_table);
394
395                         /* Link OPPs now */
396                         ret = lazy_link_required_opps(opp_table, new_table, i);
397                         if (ret) {
398                                 /* The OPPs will be marked unusable */
399                                 lazy = false;
400                                 break;
401                         }
402                 }
403
404                 of_node_put(opp_np);
405
406                 /* All required opp-tables found, remove from lazy list */
407                 if (!lazy) {
408                         list_del_init(&opp_table->lazy);
409
410                         list_for_each_entry(opp, &opp_table->opp_list, node)
411                                 _required_opps_available(opp, opp_table->required_opp_count);
412                 }
413         }
414
415         mutex_unlock(&opp_table_lock);
416 }
417
418 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
419 {
420         struct device_node *np, *opp_np;
421         struct property *prop;
422
423         if (!opp_table) {
424                 np = of_node_get(dev->of_node);
425                 if (!np)
426                         return -ENODEV;
427
428                 opp_np = _opp_of_get_opp_desc_node(np, 0);
429                 of_node_put(np);
430         } else {
431                 opp_np = of_node_get(opp_table->np);
432         }
433
434         /* Lets not fail in case we are parsing opp-v1 bindings */
435         if (!opp_np)
436                 return 0;
437
438         /* Checking only first OPP is sufficient */
439         np = of_get_next_available_child(opp_np, NULL);
440         of_node_put(opp_np);
441         if (!np) {
442                 dev_err(dev, "OPP table empty\n");
443                 return -EINVAL;
444         }
445
446         prop = of_find_property(np, "opp-peak-kBps", NULL);
447         of_node_put(np);
448
449         if (!prop || !prop->length)
450                 return 0;
451
452         return 1;
453 }
454
455 int dev_pm_opp_of_find_icc_paths(struct device *dev,
456                                  struct opp_table *opp_table)
457 {
458         struct device_node *np;
459         int ret, i, count, num_paths;
460         struct icc_path **paths;
461
462         ret = _bandwidth_supported(dev, opp_table);
463         if (ret == -EINVAL)
464                 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
465         else if (ret <= 0)
466                 return ret;
467
468         ret = 0;
469
470         np = of_node_get(dev->of_node);
471         if (!np)
472                 return 0;
473
474         count = of_count_phandle_with_args(np, "interconnects",
475                                            "#interconnect-cells");
476         of_node_put(np);
477         if (count < 0)
478                 return 0;
479
480         /* two phandles when #interconnect-cells = <1> */
481         if (count % 2) {
482                 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
483                 return -EINVAL;
484         }
485
486         num_paths = count / 2;
487         paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
488         if (!paths)
489                 return -ENOMEM;
490
491         for (i = 0; i < num_paths; i++) {
492                 paths[i] = of_icc_get_by_index(dev, i);
493                 if (IS_ERR(paths[i])) {
494                         ret = PTR_ERR(paths[i]);
495                         if (ret != -EPROBE_DEFER) {
496                                 dev_err(dev, "%s: Unable to get path%d: %d\n",
497                                         __func__, i, ret);
498                         }
499                         goto err;
500                 }
501         }
502
503         if (opp_table) {
504                 opp_table->paths = paths;
505                 opp_table->path_count = num_paths;
506                 return 0;
507         }
508
509 err:
510         while (i--)
511                 icc_put(paths[i]);
512
513         kfree(paths);
514
515         return ret;
516 }
517 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
518
519 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
520                               struct device_node *np)
521 {
522         unsigned int levels = opp_table->supported_hw_count;
523         int count, versions, ret, i, j;
524         u32 val;
525
526         if (!opp_table->supported_hw) {
527                 /*
528                  * In the case that no supported_hw has been set by the
529                  * platform but there is an opp-supported-hw value set for
530                  * an OPP then the OPP should not be enabled as there is
531                  * no way to see if the hardware supports it.
532                  */
533                 if (of_find_property(np, "opp-supported-hw", NULL))
534                         return false;
535                 else
536                         return true;
537         }
538
539         count = of_property_count_u32_elems(np, "opp-supported-hw");
540         if (count <= 0 || count % levels) {
541                 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
542                         __func__, count);
543                 return false;
544         }
545
546         versions = count / levels;
547
548         /* All levels in at least one of the versions should match */
549         for (i = 0; i < versions; i++) {
550                 bool supported = true;
551
552                 for (j = 0; j < levels; j++) {
553                         ret = of_property_read_u32_index(np, "opp-supported-hw",
554                                                          i * levels + j, &val);
555                         if (ret) {
556                                 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
557                                          __func__, i * levels + j, ret);
558                                 return false;
559                         }
560
561                         /* Check if the level is supported */
562                         if (!(val & opp_table->supported_hw[j])) {
563                                 supported = false;
564                                 break;
565                         }
566                 }
567
568                 if (supported)
569                         return true;
570         }
571
572         return false;
573 }
574
575 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
576                               struct opp_table *opp_table)
577 {
578         u32 *microvolt, *microamp = NULL, *microwatt = NULL;
579         int supplies = opp_table->regulator_count;
580         int vcount, icount, pcount, ret, i, j;
581         struct property *prop = NULL;
582         char name[NAME_MAX];
583
584         /* Search for "opp-microvolt-<name>" */
585         if (opp_table->prop_name) {
586                 snprintf(name, sizeof(name), "opp-microvolt-%s",
587                          opp_table->prop_name);
588                 prop = of_find_property(opp->np, name, NULL);
589         }
590
591         if (!prop) {
592                 /* Search for "opp-microvolt" */
593                 sprintf(name, "opp-microvolt");
594                 prop = of_find_property(opp->np, name, NULL);
595
596                 /* Missing property isn't a problem, but an invalid entry is */
597                 if (!prop) {
598                         if (unlikely(supplies == -1)) {
599                                 /* Initialize regulator_count */
600                                 opp_table->regulator_count = 0;
601                                 return 0;
602                         }
603
604                         if (!supplies)
605                                 return 0;
606
607                         dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
608                                 __func__);
609                         return -EINVAL;
610                 }
611         }
612
613         if (unlikely(supplies == -1)) {
614                 /* Initialize regulator_count */
615                 supplies = opp_table->regulator_count = 1;
616         } else if (unlikely(!supplies)) {
617                 dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
618                 return -EINVAL;
619         }
620
621         vcount = of_property_count_u32_elems(opp->np, name);
622         if (vcount < 0) {
623                 dev_err(dev, "%s: Invalid %s property (%d)\n",
624                         __func__, name, vcount);
625                 return vcount;
626         }
627
628         /* There can be one or three elements per supply */
629         if (vcount != supplies && vcount != supplies * 3) {
630                 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
631                         __func__, name, vcount, supplies);
632                 return -EINVAL;
633         }
634
635         microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
636         if (!microvolt)
637                 return -ENOMEM;
638
639         ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
640         if (ret) {
641                 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
642                 ret = -EINVAL;
643                 goto free_microvolt;
644         }
645
646         /* Search for "opp-microamp-<name>" */
647         prop = NULL;
648         if (opp_table->prop_name) {
649                 snprintf(name, sizeof(name), "opp-microamp-%s",
650                          opp_table->prop_name);
651                 prop = of_find_property(opp->np, name, NULL);
652         }
653
654         if (!prop) {
655                 /* Search for "opp-microamp" */
656                 sprintf(name, "opp-microamp");
657                 prop = of_find_property(opp->np, name, NULL);
658         }
659
660         if (prop) {
661                 icount = of_property_count_u32_elems(opp->np, name);
662                 if (icount < 0) {
663                         dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
664                                 name, icount);
665                         ret = icount;
666                         goto free_microvolt;
667                 }
668
669                 if (icount != supplies) {
670                         dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
671                                 __func__, name, icount, supplies);
672                         ret = -EINVAL;
673                         goto free_microvolt;
674                 }
675
676                 microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
677                 if (!microamp) {
678                         ret = -EINVAL;
679                         goto free_microvolt;
680                 }
681
682                 ret = of_property_read_u32_array(opp->np, name, microamp,
683                                                  icount);
684                 if (ret) {
685                         dev_err(dev, "%s: error parsing %s: %d\n", __func__,
686                                 name, ret);
687                         ret = -EINVAL;
688                         goto free_microamp;
689                 }
690         }
691
692         /* Search for "opp-microwatt" */
693         sprintf(name, "opp-microwatt");
694         prop = of_find_property(opp->np, name, NULL);
695
696         if (prop) {
697                 pcount = of_property_count_u32_elems(opp->np, name);
698                 if (pcount < 0) {
699                         dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
700                                 name, pcount);
701                         ret = pcount;
702                         goto free_microamp;
703                 }
704
705                 if (pcount != supplies) {
706                         dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
707                                 __func__, name, pcount, supplies);
708                         ret = -EINVAL;
709                         goto free_microamp;
710                 }
711
712                 microwatt = kmalloc_array(pcount, sizeof(*microwatt),
713                                           GFP_KERNEL);
714                 if (!microwatt) {
715                         ret = -EINVAL;
716                         goto free_microamp;
717                 }
718
719                 ret = of_property_read_u32_array(opp->np, name, microwatt,
720                                                  pcount);
721                 if (ret) {
722                         dev_err(dev, "%s: error parsing %s: %d\n", __func__,
723                                 name, ret);
724                         ret = -EINVAL;
725                         goto free_microwatt;
726                 }
727         }
728
729         for (i = 0, j = 0; i < supplies; i++) {
730                 opp->supplies[i].u_volt = microvolt[j++];
731
732                 if (vcount == supplies) {
733                         opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
734                         opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
735                 } else {
736                         opp->supplies[i].u_volt_min = microvolt[j++];
737                         opp->supplies[i].u_volt_max = microvolt[j++];
738                 }
739
740                 if (microamp)
741                         opp->supplies[i].u_amp = microamp[i];
742
743                 if (microwatt)
744                         opp->supplies[i].u_watt = microwatt[i];
745         }
746
747 free_microwatt:
748         kfree(microwatt);
749 free_microamp:
750         kfree(microamp);
751 free_microvolt:
752         kfree(microvolt);
753
754         return ret;
755 }
756
757 /**
758  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
759  *                                entries
760  * @dev:        device pointer used to lookup OPP table.
761  *
762  * Free OPPs created using static entries present in DT.
763  */
764 void dev_pm_opp_of_remove_table(struct device *dev)
765 {
766         dev_pm_opp_remove_table(dev);
767 }
768 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
769
770 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
771                       struct device_node *np)
772 {
773         struct property *prop;
774         int i, count, ret;
775         u64 *rates;
776
777         prop = of_find_property(np, "opp-hz", NULL);
778         if (!prop)
779                 return -ENODEV;
780
781         count = prop->length / sizeof(u64);
782         if (opp_table->clk_count != count) {
783                 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
784                        __func__, count, opp_table->clk_count);
785                 return -EINVAL;
786         }
787
788         rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
789         if (!rates)
790                 return -ENOMEM;
791
792         ret = of_property_read_u64_array(np, "opp-hz", rates, count);
793         if (ret) {
794                 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
795         } else {
796                 /*
797                  * Rate is defined as an unsigned long in clk API, and so
798                  * casting explicitly to its type. Must be fixed once rate is 64
799                  * bit guaranteed in clk API.
800                  */
801                 for (i = 0; i < count; i++) {
802                         new_opp->rates[i] = (unsigned long)rates[i];
803
804                         /* This will happen for frequencies > 4.29 GHz */
805                         WARN_ON(new_opp->rates[i] != rates[i]);
806                 }
807         }
808
809         kfree(rates);
810
811         return ret;
812 }
813
814 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
815                     struct device_node *np, bool peak)
816 {
817         const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
818         struct property *prop;
819         int i, count, ret;
820         u32 *bw;
821
822         prop = of_find_property(np, name, NULL);
823         if (!prop)
824                 return -ENODEV;
825
826         count = prop->length / sizeof(u32);
827         if (opp_table->path_count != count) {
828                 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
829                                 __func__, name, count, opp_table->path_count);
830                 return -EINVAL;
831         }
832
833         bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
834         if (!bw)
835                 return -ENOMEM;
836
837         ret = of_property_read_u32_array(np, name, bw, count);
838         if (ret) {
839                 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
840                 goto out;
841         }
842
843         for (i = 0; i < count; i++) {
844                 if (peak)
845                         new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
846                 else
847                         new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
848         }
849
850 out:
851         kfree(bw);
852         return ret;
853 }
854
855 static int _read_opp_key(struct dev_pm_opp *new_opp,
856                          struct opp_table *opp_table, struct device_node *np)
857 {
858         bool found = false;
859         int ret;
860
861         ret = _read_rate(new_opp, opp_table, np);
862         if (!ret)
863                 found = true;
864         else if (ret != -ENODEV)
865                 return ret;
866
867         /*
868          * Bandwidth consists of peak and average (optional) values:
869          * opp-peak-kBps = <path1_value path2_value>;
870          * opp-avg-kBps = <path1_value path2_value>;
871          */
872         ret = _read_bw(new_opp, opp_table, np, true);
873         if (!ret) {
874                 found = true;
875                 ret = _read_bw(new_opp, opp_table, np, false);
876         }
877
878         /* The properties were found but we failed to parse them */
879         if (ret && ret != -ENODEV)
880                 return ret;
881
882         if (!of_property_read_u32(np, "opp-level", &new_opp->level))
883                 found = true;
884
885         if (found)
886                 return 0;
887
888         return ret;
889 }
890
891 /**
892  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
893  * @opp_table:  OPP table
894  * @dev:        device for which we do this operation
895  * @np:         device node
896  *
897  * This function adds an opp definition to the opp table and returns status. The
898  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
899  * removed by dev_pm_opp_remove.
900  *
901  * Return:
902  * Valid OPP pointer:
903  *              On success
904  * NULL:
905  *              Duplicate OPPs (both freq and volt are same) and opp->available
906  *              OR if the OPP is not supported by hardware.
907  * ERR_PTR(-EEXIST):
908  *              Freq are same and volt are different OR
909  *              Duplicate OPPs (both freq and volt are same) and !opp->available
910  * ERR_PTR(-ENOMEM):
911  *              Memory allocation failure
912  * ERR_PTR(-EINVAL):
913  *              Failed parsing the OPP node
914  */
915 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
916                 struct device *dev, struct device_node *np)
917 {
918         struct dev_pm_opp *new_opp;
919         u32 val;
920         int ret;
921
922         new_opp = _opp_allocate(opp_table);
923         if (!new_opp)
924                 return ERR_PTR(-ENOMEM);
925
926         ret = _read_opp_key(new_opp, opp_table, np);
927         if (ret < 0) {
928                 dev_err(dev, "%s: opp key field not found\n", __func__);
929                 goto free_opp;
930         }
931
932         /* Check if the OPP supports hardware's hierarchy of versions or not */
933         if (!_opp_is_supported(dev, opp_table, np)) {
934                 dev_dbg(dev, "OPP not supported by hardware: %s\n",
935                         of_node_full_name(np));
936                 goto free_opp;
937         }
938
939         new_opp->turbo = of_property_read_bool(np, "turbo-mode");
940
941         new_opp->np = np;
942         new_opp->dynamic = false;
943         new_opp->available = true;
944
945         ret = _of_opp_alloc_required_opps(opp_table, new_opp);
946         if (ret)
947                 goto free_opp;
948
949         if (!of_property_read_u32(np, "clock-latency-ns", &val))
950                 new_opp->clock_latency_ns = val;
951
952         ret = opp_parse_supplies(new_opp, dev, opp_table);
953         if (ret)
954                 goto free_required_opps;
955
956         if (opp_table->is_genpd)
957                 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
958
959         ret = _opp_add(dev, new_opp, opp_table);
960         if (ret) {
961                 /* Don't return error for duplicate OPPs */
962                 if (ret == -EBUSY)
963                         ret = 0;
964                 goto free_required_opps;
965         }
966
967         /* OPP to select on device suspend */
968         if (of_property_read_bool(np, "opp-suspend")) {
969                 if (opp_table->suspend_opp) {
970                         /* Pick the OPP with higher rate/bw/level as suspend OPP */
971                         if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
972                                 opp_table->suspend_opp->suspend = false;
973                                 new_opp->suspend = true;
974                                 opp_table->suspend_opp = new_opp;
975                         }
976                 } else {
977                         new_opp->suspend = true;
978                         opp_table->suspend_opp = new_opp;
979                 }
980         }
981
982         if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
983                 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
984
985         pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
986                  __func__, new_opp->turbo, new_opp->rates[0],
987                  new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
988                  new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
989                  new_opp->level);
990
991         /*
992          * Notify the changes in the availability of the operable
993          * frequency/voltage list.
994          */
995         blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
996         return new_opp;
997
998 free_required_opps:
999         _of_opp_free_required_opps(opp_table, new_opp);
1000 free_opp:
1001         _opp_free(new_opp);
1002
1003         return ret ? ERR_PTR(ret) : NULL;
1004 }
1005
1006 /* Initializes OPP tables based on new bindings */
1007 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1008 {
1009         struct device_node *np;
1010         int ret, count = 0;
1011         struct dev_pm_opp *opp;
1012
1013         /* OPP table is already initialized for the device */
1014         mutex_lock(&opp_table->lock);
1015         if (opp_table->parsed_static_opps) {
1016                 opp_table->parsed_static_opps++;
1017                 mutex_unlock(&opp_table->lock);
1018                 return 0;
1019         }
1020
1021         opp_table->parsed_static_opps = 1;
1022         mutex_unlock(&opp_table->lock);
1023
1024         /* We have opp-table node now, iterate over it and add OPPs */
1025         for_each_available_child_of_node(opp_table->np, np) {
1026                 opp = _opp_add_static_v2(opp_table, dev, np);
1027                 if (IS_ERR(opp)) {
1028                         ret = PTR_ERR(opp);
1029                         dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1030                                 ret);
1031                         of_node_put(np);
1032                         goto remove_static_opp;
1033                 } else if (opp) {
1034                         count++;
1035                 }
1036         }
1037
1038         /* There should be one or more OPPs defined */
1039         if (!count) {
1040                 dev_err(dev, "%s: no supported OPPs", __func__);
1041                 ret = -ENOENT;
1042                 goto remove_static_opp;
1043         }
1044
1045         list_for_each_entry(opp, &opp_table->opp_list, node) {
1046                 /* Any non-zero performance state would enable the feature */
1047                 if (opp->pstate) {
1048                         opp_table->genpd_performance_state = true;
1049                         break;
1050                 }
1051         }
1052
1053         lazy_link_required_opp_table(opp_table);
1054
1055         return 0;
1056
1057 remove_static_opp:
1058         _opp_remove_all_static(opp_table);
1059
1060         return ret;
1061 }
1062
1063 /* Initializes OPP tables based on old-deprecated bindings */
1064 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1065 {
1066         const struct property *prop;
1067         const __be32 *val;
1068         int nr, ret = 0;
1069
1070         mutex_lock(&opp_table->lock);
1071         if (opp_table->parsed_static_opps) {
1072                 opp_table->parsed_static_opps++;
1073                 mutex_unlock(&opp_table->lock);
1074                 return 0;
1075         }
1076
1077         opp_table->parsed_static_opps = 1;
1078         mutex_unlock(&opp_table->lock);
1079
1080         prop = of_find_property(dev->of_node, "operating-points", NULL);
1081         if (!prop) {
1082                 ret = -ENODEV;
1083                 goto remove_static_opp;
1084         }
1085         if (!prop->value) {
1086                 ret = -ENODATA;
1087                 goto remove_static_opp;
1088         }
1089
1090         /*
1091          * Each OPP is a set of tuples consisting of frequency and
1092          * voltage like <freq-kHz vol-uV>.
1093          */
1094         nr = prop->length / sizeof(u32);
1095         if (nr % 2) {
1096                 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1097                 ret = -EINVAL;
1098                 goto remove_static_opp;
1099         }
1100
1101         val = prop->value;
1102         while (nr) {
1103                 unsigned long freq = be32_to_cpup(val++) * 1000;
1104                 unsigned long volt = be32_to_cpup(val++);
1105
1106                 ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1107                 if (ret) {
1108                         dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1109                                 __func__, freq, ret);
1110                         goto remove_static_opp;
1111                 }
1112                 nr -= 2;
1113         }
1114
1115         return 0;
1116
1117 remove_static_opp:
1118         _opp_remove_all_static(opp_table);
1119
1120         return ret;
1121 }
1122
1123 static int _of_add_table_indexed(struct device *dev, int index, bool getclk)
1124 {
1125         struct opp_table *opp_table;
1126         int ret, count;
1127
1128         if (index) {
1129                 /*
1130                  * If only one phandle is present, then the same OPP table
1131                  * applies for all index requests.
1132                  */
1133                 count = of_count_phandle_with_args(dev->of_node,
1134                                                    "operating-points-v2", NULL);
1135                 if (count == 1)
1136                         index = 0;
1137         }
1138
1139         opp_table = _add_opp_table_indexed(dev, index, getclk);
1140         if (IS_ERR(opp_table))
1141                 return PTR_ERR(opp_table);
1142
1143         /*
1144          * OPPs have two version of bindings now. Also try the old (v1)
1145          * bindings for backward compatibility with older dtbs.
1146          */
1147         if (opp_table->np)
1148                 ret = _of_add_opp_table_v2(dev, opp_table);
1149         else
1150                 ret = _of_add_opp_table_v1(dev, opp_table);
1151
1152         if (ret)
1153                 dev_pm_opp_put_opp_table(opp_table);
1154
1155         return ret;
1156 }
1157
1158 static void devm_pm_opp_of_table_release(void *data)
1159 {
1160         dev_pm_opp_of_remove_table(data);
1161 }
1162
1163 static int _devm_of_add_table_indexed(struct device *dev, int index, bool getclk)
1164 {
1165         int ret;
1166
1167         ret = _of_add_table_indexed(dev, index, getclk);
1168         if (ret)
1169                 return ret;
1170
1171         return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1172 }
1173
1174 /**
1175  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1176  * @dev:        device pointer used to lookup OPP table.
1177  *
1178  * Register the initial OPP table with the OPP library for given device.
1179  *
1180  * The opp_table structure will be freed after the device is destroyed.
1181  *
1182  * Return:
1183  * 0            On success OR
1184  *              Duplicate OPPs (both freq and volt are same) and opp->available
1185  * -EEXIST      Freq are same and volt are different OR
1186  *              Duplicate OPPs (both freq and volt are same) and !opp->available
1187  * -ENOMEM      Memory allocation failure
1188  * -ENODEV      when 'operating-points' property is not found or is invalid data
1189  *              in device node.
1190  * -ENODATA     when empty 'operating-points' property is found
1191  * -EINVAL      when invalid entries are found in opp-v2 table
1192  */
1193 int devm_pm_opp_of_add_table(struct device *dev)
1194 {
1195         return _devm_of_add_table_indexed(dev, 0, true);
1196 }
1197 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1198
1199 /**
1200  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1201  * @dev:        device pointer used to lookup OPP table.
1202  *
1203  * Register the initial OPP table with the OPP library for given device.
1204  *
1205  * Return:
1206  * 0            On success OR
1207  *              Duplicate OPPs (both freq and volt are same) and opp->available
1208  * -EEXIST      Freq are same and volt are different OR
1209  *              Duplicate OPPs (both freq and volt are same) and !opp->available
1210  * -ENOMEM      Memory allocation failure
1211  * -ENODEV      when 'operating-points' property is not found or is invalid data
1212  *              in device node.
1213  * -ENODATA     when empty 'operating-points' property is found
1214  * -EINVAL      when invalid entries are found in opp-v2 table
1215  */
1216 int dev_pm_opp_of_add_table(struct device *dev)
1217 {
1218         return _of_add_table_indexed(dev, 0, true);
1219 }
1220 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1221
1222 /**
1223  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1224  * @dev:        device pointer used to lookup OPP table.
1225  * @index:      Index number.
1226  *
1227  * Register the initial OPP table with the OPP library for given device only
1228  * using the "operating-points-v2" property.
1229  *
1230  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1231  */
1232 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1233 {
1234         return _of_add_table_indexed(dev, index, true);
1235 }
1236 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1237
1238 /**
1239  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1240  * @dev:        device pointer used to lookup OPP table.
1241  * @index:      Index number.
1242  *
1243  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1244  */
1245 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1246 {
1247         return _devm_of_add_table_indexed(dev, index, true);
1248 }
1249 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1250
1251 /**
1252  * dev_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device
1253  *              tree without getting clk for device.
1254  * @dev:        device pointer used to lookup OPP table.
1255  * @index:      Index number.
1256  *
1257  * Register the initial OPP table with the OPP library for given device only
1258  * using the "operating-points-v2" property. Do not try to get the clk for the
1259  * device.
1260  *
1261  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1262  */
1263 int dev_pm_opp_of_add_table_noclk(struct device *dev, int index)
1264 {
1265         return _of_add_table_indexed(dev, index, false);
1266 }
1267 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_noclk);
1268
1269 /**
1270  * devm_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device
1271  *              tree without getting clk for device.
1272  * @dev:        device pointer used to lookup OPP table.
1273  * @index:      Index number.
1274  *
1275  * This is a resource-managed variant of dev_pm_opp_of_add_table_noclk().
1276  */
1277 int devm_pm_opp_of_add_table_noclk(struct device *dev, int index)
1278 {
1279         return _devm_of_add_table_indexed(dev, index, false);
1280 }
1281 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_noclk);
1282
1283 /* CPU device specific helpers */
1284
1285 /**
1286  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1287  * @cpumask:    cpumask for which OPP table needs to be removed
1288  *
1289  * This removes the OPP tables for CPUs present in the @cpumask.
1290  * This should be used only to remove static entries created from DT.
1291  */
1292 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1293 {
1294         _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1295 }
1296 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1297
1298 /**
1299  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1300  * @cpumask:    cpumask for which OPP table needs to be added.
1301  *
1302  * This adds the OPP tables for CPUs present in the @cpumask.
1303  */
1304 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1305 {
1306         struct device *cpu_dev;
1307         int cpu, ret;
1308
1309         if (WARN_ON(cpumask_empty(cpumask)))
1310                 return -ENODEV;
1311
1312         for_each_cpu(cpu, cpumask) {
1313                 cpu_dev = get_cpu_device(cpu);
1314                 if (!cpu_dev) {
1315                         pr_err("%s: failed to get cpu%d device\n", __func__,
1316                                cpu);
1317                         ret = -ENODEV;
1318                         goto remove_table;
1319                 }
1320
1321                 ret = dev_pm_opp_of_add_table(cpu_dev);
1322                 if (ret) {
1323                         /*
1324                          * OPP may get registered dynamically, don't print error
1325                          * message here.
1326                          */
1327                         pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1328                                  __func__, cpu, ret);
1329
1330                         goto remove_table;
1331                 }
1332         }
1333
1334         return 0;
1335
1336 remove_table:
1337         /* Free all other OPPs */
1338         _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1339
1340         return ret;
1341 }
1342 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1343
1344 /*
1345  * Works only for OPP v2 bindings.
1346  *
1347  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1348  */
1349 /**
1350  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1351  *                                    @cpu_dev using operating-points-v2
1352  *                                    bindings.
1353  *
1354  * @cpu_dev:    CPU device for which we do this operation
1355  * @cpumask:    cpumask to update with information of sharing CPUs
1356  *
1357  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1358  *
1359  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1360  */
1361 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1362                                    struct cpumask *cpumask)
1363 {
1364         struct device_node *np, *tmp_np, *cpu_np;
1365         int cpu, ret = 0;
1366
1367         /* Get OPP descriptor node */
1368         np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1369         if (!np) {
1370                 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1371                 return -ENOENT;
1372         }
1373
1374         cpumask_set_cpu(cpu_dev->id, cpumask);
1375
1376         /* OPPs are shared ? */
1377         if (!of_property_read_bool(np, "opp-shared"))
1378                 goto put_cpu_node;
1379
1380         for_each_possible_cpu(cpu) {
1381                 if (cpu == cpu_dev->id)
1382                         continue;
1383
1384                 cpu_np = of_cpu_device_node_get(cpu);
1385                 if (!cpu_np) {
1386                         dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1387                                 __func__, cpu);
1388                         ret = -ENOENT;
1389                         goto put_cpu_node;
1390                 }
1391
1392                 /* Get OPP descriptor node */
1393                 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1394                 of_node_put(cpu_np);
1395                 if (!tmp_np) {
1396                         pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1397                         ret = -ENOENT;
1398                         goto put_cpu_node;
1399                 }
1400
1401                 /* CPUs are sharing opp node */
1402                 if (np == tmp_np)
1403                         cpumask_set_cpu(cpu, cpumask);
1404
1405                 of_node_put(tmp_np);
1406         }
1407
1408 put_cpu_node:
1409         of_node_put(np);
1410         return ret;
1411 }
1412 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1413
1414 /**
1415  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1416  * @np: Node that contains the "required-opps" property.
1417  * @index: Index of the phandle to parse.
1418  *
1419  * Returns the performance state of the OPP pointed out by the "required-opps"
1420  * property at @index in @np.
1421  *
1422  * Return: Zero or positive performance state on success, otherwise negative
1423  * value on errors.
1424  */
1425 int of_get_required_opp_performance_state(struct device_node *np, int index)
1426 {
1427         struct dev_pm_opp *opp;
1428         struct device_node *required_np;
1429         struct opp_table *opp_table;
1430         int pstate = -EINVAL;
1431
1432         required_np = of_parse_required_opp(np, index);
1433         if (!required_np)
1434                 return -ENODEV;
1435
1436         opp_table = _find_table_of_opp_np(required_np);
1437         if (IS_ERR(opp_table)) {
1438                 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1439                        __func__, np, PTR_ERR(opp_table));
1440                 goto put_required_np;
1441         }
1442
1443         opp = _find_opp_of_np(opp_table, required_np);
1444         if (opp) {
1445                 pstate = opp->pstate;
1446                 dev_pm_opp_put(opp);
1447         }
1448
1449         dev_pm_opp_put_opp_table(opp_table);
1450
1451 put_required_np:
1452         of_node_put(required_np);
1453
1454         return pstate;
1455 }
1456 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1457
1458 /**
1459  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1460  * @opp:        opp for which DT node has to be returned for
1461  *
1462  * Return: DT node corresponding to the opp, else 0 on success.
1463  *
1464  * The caller needs to put the node with of_node_put() after using it.
1465  */
1466 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1467 {
1468         if (IS_ERR_OR_NULL(opp)) {
1469                 pr_err("%s: Invalid parameters\n", __func__);
1470                 return NULL;
1471         }
1472
1473         return of_node_get(opp->np);
1474 }
1475 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1476
1477 /*
1478  * Callback function provided to the Energy Model framework upon registration.
1479  * It provides the power used by @dev at @kHz if it is the frequency of an
1480  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1481  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1482  * frequency and @mW to the associated power.
1483  *
1484  * Returns 0 on success or a proper -EINVAL value in case of error.
1485  */
1486 static int __maybe_unused
1487 _get_dt_power(struct device *dev, unsigned long *mW, unsigned long *kHz)
1488 {
1489         struct dev_pm_opp *opp;
1490         unsigned long opp_freq, opp_power;
1491
1492         /* Find the right frequency and related OPP */
1493         opp_freq = *kHz * 1000;
1494         opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1495         if (IS_ERR(opp))
1496                 return -EINVAL;
1497
1498         opp_power = dev_pm_opp_get_power(opp);
1499         dev_pm_opp_put(opp);
1500         if (!opp_power)
1501                 return -EINVAL;
1502
1503         *kHz = opp_freq / 1000;
1504         *mW = opp_power / 1000;
1505
1506         return 0;
1507 }
1508
1509 /*
1510  * Callback function provided to the Energy Model framework upon registration.
1511  * This computes the power estimated by @dev at @kHz if it is the frequency
1512  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1513  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1514  * frequency and @mW to the associated power. The power is estimated as
1515  * P = C * V^2 * f with C being the device's capacitance and V and f
1516  * respectively the voltage and frequency of the OPP.
1517  *
1518  * Returns -EINVAL if the power calculation failed because of missing
1519  * parameters, 0 otherwise.
1520  */
1521 static int __maybe_unused _get_power(struct device *dev, unsigned long *mW,
1522                                      unsigned long *kHz)
1523 {
1524         struct dev_pm_opp *opp;
1525         struct device_node *np;
1526         unsigned long mV, Hz;
1527         u32 cap;
1528         u64 tmp;
1529         int ret;
1530
1531         np = of_node_get(dev->of_node);
1532         if (!np)
1533                 return -EINVAL;
1534
1535         ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1536         of_node_put(np);
1537         if (ret)
1538                 return -EINVAL;
1539
1540         Hz = *kHz * 1000;
1541         opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1542         if (IS_ERR(opp))
1543                 return -EINVAL;
1544
1545         mV = dev_pm_opp_get_voltage(opp) / 1000;
1546         dev_pm_opp_put(opp);
1547         if (!mV)
1548                 return -EINVAL;
1549
1550         tmp = (u64)cap * mV * mV * (Hz / 1000000);
1551         do_div(tmp, 1000000000);
1552
1553         *mW = (unsigned long)tmp;
1554         *kHz = Hz / 1000;
1555
1556         return 0;
1557 }
1558
1559 static bool _of_has_opp_microwatt_property(struct device *dev)
1560 {
1561         unsigned long power, freq = 0;
1562         struct dev_pm_opp *opp;
1563
1564         /* Check if at least one OPP has needed property */
1565         opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1566         if (IS_ERR(opp))
1567                 return false;
1568
1569         power = dev_pm_opp_get_power(opp);
1570         dev_pm_opp_put(opp);
1571         if (!power)
1572                 return false;
1573
1574         return true;
1575 }
1576
1577 /**
1578  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1579  * @dev         : Device for which an Energy Model has to be registered
1580  * @cpus        : CPUs for which an Energy Model has to be registered. For
1581  *              other type of devices it should be set to NULL.
1582  *
1583  * This checks whether the "dynamic-power-coefficient" devicetree property has
1584  * been specified, and tries to register an Energy Model with it if it has.
1585  * Having this property means the voltages are known for OPPs and the EM
1586  * might be calculated.
1587  */
1588 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1589 {
1590         struct em_data_callback em_cb;
1591         struct device_node *np;
1592         int ret, nr_opp;
1593         u32 cap;
1594
1595         if (IS_ERR_OR_NULL(dev)) {
1596                 ret = -EINVAL;
1597                 goto failed;
1598         }
1599
1600         nr_opp = dev_pm_opp_get_opp_count(dev);
1601         if (nr_opp <= 0) {
1602                 ret = -EINVAL;
1603                 goto failed;
1604         }
1605
1606         /* First, try to find more precised Energy Model in DT */
1607         if (_of_has_opp_microwatt_property(dev)) {
1608                 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1609                 goto register_em;
1610         }
1611
1612         np = of_node_get(dev->of_node);
1613         if (!np) {
1614                 ret = -EINVAL;
1615                 goto failed;
1616         }
1617
1618         /*
1619          * Register an EM only if the 'dynamic-power-coefficient' property is
1620          * set in devicetree. It is assumed the voltage values are known if that
1621          * property is set since it is useless otherwise. If voltages are not
1622          * known, just let the EM registration fail with an error to alert the
1623          * user about the inconsistent configuration.
1624          */
1625         ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1626         of_node_put(np);
1627         if (ret || !cap) {
1628                 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1629                 ret = -EINVAL;
1630                 goto failed;
1631         }
1632
1633         EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1634
1635 register_em:
1636         ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1637         if (ret)
1638                 goto failed;
1639
1640         return 0;
1641
1642 failed:
1643         dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1644         return ret;
1645 }
1646 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);