Merge tag 'irq_urgent_for_v6.5_rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / of / of_reserved_mem.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *              http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11
12 #define pr_fmt(fmt)     "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 #include <linux/kmemleak.h>
25 #include <linux/cma.h>
26
27 #include "of_private.h"
28
29 #define MAX_RESERVED_REGIONS    64
30 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
31 static int reserved_mem_count;
32
33 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
34         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
35         phys_addr_t *res_base)
36 {
37         phys_addr_t base;
38         int err = 0;
39
40         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
41         align = !align ? SMP_CACHE_BYTES : align;
42         base = memblock_phys_alloc_range(size, align, start, end);
43         if (!base)
44                 return -ENOMEM;
45
46         *res_base = base;
47         if (nomap) {
48                 err = memblock_mark_nomap(base, size);
49                 if (err)
50                         memblock_phys_free(base, size);
51         }
52
53         kmemleak_ignore_phys(base);
54
55         return err;
56 }
57
58 /*
59  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
60  */
61 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
62                                       phys_addr_t base, phys_addr_t size)
63 {
64         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
65
66         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
67                 pr_err("not enough space for all defined regions.\n");
68                 return;
69         }
70
71         rmem->fdt_node = node;
72         rmem->name = uname;
73         rmem->base = base;
74         rmem->size = size;
75
76         reserved_mem_count++;
77         return;
78 }
79
80 /*
81  * __reserved_mem_alloc_in_range() - allocate reserved memory described with
82  *      'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
83  *      reserved regions to keep the reserved memory contiguous if possible.
84  */
85 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
86         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
87         phys_addr_t *res_base)
88 {
89         bool prev_bottom_up = memblock_bottom_up();
90         bool bottom_up = false, top_down = false;
91         int ret, i;
92
93         for (i = 0; i < reserved_mem_count; i++) {
94                 struct reserved_mem *rmem = &reserved_mem[i];
95
96                 /* Skip regions that were not reserved yet */
97                 if (rmem->size == 0)
98                         continue;
99
100                 /*
101                  * If range starts next to an existing reservation, use bottom-up:
102                  *      |....RRRR................RRRRRRRR..............|
103                  *             --RRRR------
104                  */
105                 if (start >= rmem->base && start <= (rmem->base + rmem->size))
106                         bottom_up = true;
107
108                 /*
109                  * If range ends next to an existing reservation, use top-down:
110                  *      |....RRRR................RRRRRRRR..............|
111                  *                    -------RRRR-----
112                  */
113                 if (end >= rmem->base && end <= (rmem->base + rmem->size))
114                         top_down = true;
115         }
116
117         /* Change setting only if either bottom-up or top-down was selected */
118         if (bottom_up != top_down)
119                 memblock_set_bottom_up(bottom_up);
120
121         ret = early_init_dt_alloc_reserved_memory_arch(size, align,
122                         start, end, nomap, res_base);
123
124         /* Restore old setting if needed */
125         if (bottom_up != top_down)
126                 memblock_set_bottom_up(prev_bottom_up);
127
128         return ret;
129 }
130
131 /*
132  * __reserved_mem_alloc_size() - allocate reserved memory described by
133  *      'size', 'alignment'  and 'alloc-ranges' properties.
134  */
135 static int __init __reserved_mem_alloc_size(unsigned long node,
136         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
137 {
138         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
139         phys_addr_t start = 0, end = 0;
140         phys_addr_t base = 0, align = 0, size;
141         int len;
142         const __be32 *prop;
143         bool nomap;
144         int ret;
145
146         prop = of_get_flat_dt_prop(node, "size", &len);
147         if (!prop)
148                 return -EINVAL;
149
150         if (len != dt_root_size_cells * sizeof(__be32)) {
151                 pr_err("invalid size property in '%s' node.\n", uname);
152                 return -EINVAL;
153         }
154         size = dt_mem_next_cell(dt_root_size_cells, &prop);
155
156         prop = of_get_flat_dt_prop(node, "alignment", &len);
157         if (prop) {
158                 if (len != dt_root_addr_cells * sizeof(__be32)) {
159                         pr_err("invalid alignment property in '%s' node.\n",
160                                 uname);
161                         return -EINVAL;
162                 }
163                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
164         }
165
166         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
167
168         /* Need adjust the alignment to satisfy the CMA requirement */
169         if (IS_ENABLED(CONFIG_CMA)
170             && of_flat_dt_is_compatible(node, "shared-dma-pool")
171             && of_get_flat_dt_prop(node, "reusable", NULL)
172             && !nomap)
173                 align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
174
175         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
176         if (prop) {
177
178                 if (len % t_len != 0) {
179                         pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
180                                uname);
181                         return -EINVAL;
182                 }
183
184                 base = 0;
185
186                 while (len > 0) {
187                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
188                         end = start + dt_mem_next_cell(dt_root_size_cells,
189                                                        &prop);
190
191                         ret = __reserved_mem_alloc_in_range(size, align,
192                                         start, end, nomap, &base);
193                         if (ret == 0) {
194                                 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
195                                         uname, &base,
196                                         (unsigned long)(size / SZ_1M));
197                                 break;
198                         }
199                         len -= t_len;
200                 }
201
202         } else {
203                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
204                                                         0, 0, nomap, &base);
205                 if (ret == 0)
206                         pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
207                                 uname, &base, (unsigned long)(size / SZ_1M));
208         }
209
210         if (base == 0) {
211                 pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
212                        uname, (unsigned long)(size / SZ_1M));
213                 return -ENOMEM;
214         }
215
216         *res_base = base;
217         *res_size = size;
218
219         return 0;
220 }
221
222 static const struct of_device_id __rmem_of_table_sentinel
223         __used __section("__reservedmem_of_table_end");
224
225 /*
226  * __reserved_mem_init_node() - call region specific reserved memory init code
227  */
228 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
229 {
230         extern const struct of_device_id __reservedmem_of_table[];
231         const struct of_device_id *i;
232         int ret = -ENOENT;
233
234         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
235                 reservedmem_of_init_fn initfn = i->data;
236                 const char *compat = i->compatible;
237
238                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
239                         continue;
240
241                 ret = initfn(rmem);
242                 if (ret == 0) {
243                         pr_info("initialized node %s, compatible id %s\n",
244                                 rmem->name, compat);
245                         break;
246                 }
247         }
248         return ret;
249 }
250
251 static int __init __rmem_cmp(const void *a, const void *b)
252 {
253         const struct reserved_mem *ra = a, *rb = b;
254
255         if (ra->base < rb->base)
256                 return -1;
257
258         if (ra->base > rb->base)
259                 return 1;
260
261         /*
262          * Put the dynamic allocations (address == 0, size == 0) before static
263          * allocations at address 0x0 so that overlap detection works
264          * correctly.
265          */
266         if (ra->size < rb->size)
267                 return -1;
268         if (ra->size > rb->size)
269                 return 1;
270
271         if (ra->fdt_node < rb->fdt_node)
272                 return -1;
273         if (ra->fdt_node > rb->fdt_node)
274                 return 1;
275
276         return 0;
277 }
278
279 static void __init __rmem_check_for_overlap(void)
280 {
281         int i;
282
283         if (reserved_mem_count < 2)
284                 return;
285
286         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
287              __rmem_cmp, NULL);
288         for (i = 0; i < reserved_mem_count - 1; i++) {
289                 struct reserved_mem *this, *next;
290
291                 this = &reserved_mem[i];
292                 next = &reserved_mem[i + 1];
293
294                 if (this->base + this->size > next->base) {
295                         phys_addr_t this_end, next_end;
296
297                         this_end = this->base + this->size;
298                         next_end = next->base + next->size;
299                         pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
300                                this->name, &this->base, &this_end,
301                                next->name, &next->base, &next_end);
302                 }
303         }
304 }
305
306 /**
307  * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
308  */
309 void __init fdt_init_reserved_mem(void)
310 {
311         int i;
312
313         /* check for overlapping reserved regions */
314         __rmem_check_for_overlap();
315
316         for (i = 0; i < reserved_mem_count; i++) {
317                 struct reserved_mem *rmem = &reserved_mem[i];
318                 unsigned long node = rmem->fdt_node;
319                 int len;
320                 const __be32 *prop;
321                 int err = 0;
322                 bool nomap;
323
324                 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
325                 prop = of_get_flat_dt_prop(node, "phandle", &len);
326                 if (!prop)
327                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
328                 if (prop)
329                         rmem->phandle = of_read_number(prop, len/4);
330
331                 if (rmem->size == 0)
332                         err = __reserved_mem_alloc_size(node, rmem->name,
333                                                  &rmem->base, &rmem->size);
334                 if (err == 0) {
335                         err = __reserved_mem_init_node(rmem);
336                         if (err != 0 && err != -ENOENT) {
337                                 pr_info("node %s compatible matching fail\n",
338                                         rmem->name);
339                                 if (nomap)
340                                         memblock_clear_nomap(rmem->base, rmem->size);
341                                 else
342                                         memblock_phys_free(rmem->base,
343                                                            rmem->size);
344                         } else {
345                                 phys_addr_t end = rmem->base + rmem->size - 1;
346                                 bool reusable =
347                                         (of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
348
349                                 pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
350                                         &rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
351                                         nomap ? "nomap" : "map",
352                                         reusable ? "reusable" : "non-reusable",
353                                         rmem->name ? rmem->name : "unknown");
354                         }
355                 }
356         }
357 }
358
359 static inline struct reserved_mem *__find_rmem(struct device_node *node)
360 {
361         unsigned int i;
362
363         if (!node->phandle)
364                 return NULL;
365
366         for (i = 0; i < reserved_mem_count; i++)
367                 if (reserved_mem[i].phandle == node->phandle)
368                         return &reserved_mem[i];
369         return NULL;
370 }
371
372 struct rmem_assigned_device {
373         struct device *dev;
374         struct reserved_mem *rmem;
375         struct list_head list;
376 };
377
378 static LIST_HEAD(of_rmem_assigned_device_list);
379 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
380
381 /**
382  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
383  *                                        given device
384  * @dev:        Pointer to the device to configure
385  * @np:         Pointer to the device_node with 'reserved-memory' property
386  * @idx:        Index of selected region
387  *
388  * This function assigns respective DMA-mapping operations based on reserved
389  * memory region specified by 'memory-region' property in @np node to the @dev
390  * device. When driver needs to use more than one reserved memory region, it
391  * should allocate child devices and initialize regions by name for each of
392  * child device.
393  *
394  * Returns error code or zero on success.
395  */
396 int of_reserved_mem_device_init_by_idx(struct device *dev,
397                                        struct device_node *np, int idx)
398 {
399         struct rmem_assigned_device *rd;
400         struct device_node *target;
401         struct reserved_mem *rmem;
402         int ret;
403
404         if (!np || !dev)
405                 return -EINVAL;
406
407         target = of_parse_phandle(np, "memory-region", idx);
408         if (!target)
409                 return -ENODEV;
410
411         if (!of_device_is_available(target)) {
412                 of_node_put(target);
413                 return 0;
414         }
415
416         rmem = __find_rmem(target);
417         of_node_put(target);
418
419         if (!rmem || !rmem->ops || !rmem->ops->device_init)
420                 return -EINVAL;
421
422         rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
423         if (!rd)
424                 return -ENOMEM;
425
426         ret = rmem->ops->device_init(rmem, dev);
427         if (ret == 0) {
428                 rd->dev = dev;
429                 rd->rmem = rmem;
430
431                 mutex_lock(&of_rmem_assigned_device_mutex);
432                 list_add(&rd->list, &of_rmem_assigned_device_list);
433                 mutex_unlock(&of_rmem_assigned_device_mutex);
434
435                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
436         } else {
437                 kfree(rd);
438         }
439
440         return ret;
441 }
442 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
443
444 /**
445  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
446  *                                         to given device
447  * @dev: pointer to the device to configure
448  * @np: pointer to the device node with 'memory-region' property
449  * @name: name of the selected memory region
450  *
451  * Returns: 0 on success or a negative error-code on failure.
452  */
453 int of_reserved_mem_device_init_by_name(struct device *dev,
454                                         struct device_node *np,
455                                         const char *name)
456 {
457         int idx = of_property_match_string(np, "memory-region-names", name);
458
459         return of_reserved_mem_device_init_by_idx(dev, np, idx);
460 }
461 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
462
463 /**
464  * of_reserved_mem_device_release() - release reserved memory device structures
465  * @dev:        Pointer to the device to deconfigure
466  *
467  * This function releases structures allocated for memory region handling for
468  * the given device.
469  */
470 void of_reserved_mem_device_release(struct device *dev)
471 {
472         struct rmem_assigned_device *rd, *tmp;
473         LIST_HEAD(release_list);
474
475         mutex_lock(&of_rmem_assigned_device_mutex);
476         list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
477                 if (rd->dev == dev)
478                         list_move_tail(&rd->list, &release_list);
479         }
480         mutex_unlock(&of_rmem_assigned_device_mutex);
481
482         list_for_each_entry_safe(rd, tmp, &release_list, list) {
483                 if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
484                         rd->rmem->ops->device_release(rd->rmem, dev);
485
486                 kfree(rd);
487         }
488 }
489 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
490
491 /**
492  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
493  * @np:         node pointer of the desired reserved-memory region
494  *
495  * This function allows drivers to acquire a reference to the reserved_mem
496  * struct based on a device node handle.
497  *
498  * Returns a reserved_mem reference, or NULL on error.
499  */
500 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
501 {
502         const char *name;
503         int i;
504
505         if (!np->full_name)
506                 return NULL;
507
508         name = kbasename(np->full_name);
509         for (i = 0; i < reserved_mem_count; i++)
510                 if (!strcmp(reserved_mem[i].name, name))
511                         return &reserved_mem[i];
512
513         return NULL;
514 }
515 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);