Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / of / of_reserved_mem.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *              http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11
12 #define pr_fmt(fmt)     "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/libfdt.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_platform.h>
19 #include <linux/mm.h>
20 #include <linux/sizes.h>
21 #include <linux/of_reserved_mem.h>
22 #include <linux/sort.h>
23 #include <linux/slab.h>
24 #include <linux/memblock.h>
25 #include <linux/kmemleak.h>
26 #include <linux/cma.h>
27
28 #include "of_private.h"
29
30 #define MAX_RESERVED_REGIONS    64
31 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
32 static int reserved_mem_count;
33
34 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
35         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
36         phys_addr_t *res_base)
37 {
38         phys_addr_t base;
39         int err = 0;
40
41         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
42         align = !align ? SMP_CACHE_BYTES : align;
43         base = memblock_phys_alloc_range(size, align, start, end);
44         if (!base)
45                 return -ENOMEM;
46
47         *res_base = base;
48         if (nomap) {
49                 err = memblock_mark_nomap(base, size);
50                 if (err)
51                         memblock_phys_free(base, size);
52         }
53
54         kmemleak_ignore_phys(base);
55
56         return err;
57 }
58
59 /*
60  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
61  */
62 static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
63                                               phys_addr_t base, phys_addr_t size)
64 {
65         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
66
67         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
68                 pr_err("not enough space for all defined regions.\n");
69                 return;
70         }
71
72         rmem->fdt_node = node;
73         rmem->name = uname;
74         rmem->base = base;
75         rmem->size = size;
76
77         reserved_mem_count++;
78         return;
79 }
80
81 static int __init early_init_dt_reserve_memory(phys_addr_t base,
82                                                phys_addr_t size, bool nomap)
83 {
84         if (nomap) {
85                 /*
86                  * If the memory is already reserved (by another region), we
87                  * should not allow it to be marked nomap, but don't worry
88                  * if the region isn't memory as it won't be mapped.
89                  */
90                 if (memblock_overlaps_region(&memblock.memory, base, size) &&
91                     memblock_is_region_reserved(base, size))
92                         return -EBUSY;
93
94                 return memblock_mark_nomap(base, size);
95         }
96         return memblock_reserve(base, size);
97 }
98
99 /*
100  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
101  */
102 static int __init __reserved_mem_reserve_reg(unsigned long node,
103                                              const char *uname)
104 {
105         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
106         phys_addr_t base, size;
107         int len;
108         const __be32 *prop;
109         int first = 1;
110         bool nomap;
111
112         prop = of_get_flat_dt_prop(node, "reg", &len);
113         if (!prop)
114                 return -ENOENT;
115
116         if (len && len % t_len != 0) {
117                 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
118                        uname);
119                 return -EINVAL;
120         }
121
122         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
123
124         while (len >= t_len) {
125                 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
126                 size = dt_mem_next_cell(dt_root_size_cells, &prop);
127
128                 if (size &&
129                     early_init_dt_reserve_memory(base, size, nomap) == 0)
130                         pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
131                                 uname, &base, (unsigned long)(size / SZ_1M));
132                 else
133                         pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
134                                uname, &base, (unsigned long)(size / SZ_1M));
135
136                 len -= t_len;
137                 if (first) {
138                         fdt_reserved_mem_save_node(node, uname, base, size);
139                         first = 0;
140                 }
141         }
142         return 0;
143 }
144
145 /*
146  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
147  * in /reserved-memory matches the values supported by the current implementation,
148  * also check if ranges property has been provided
149  */
150 static int __init __reserved_mem_check_root(unsigned long node)
151 {
152         const __be32 *prop;
153
154         prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
155         if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
156                 return -EINVAL;
157
158         prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
159         if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
160                 return -EINVAL;
161
162         prop = of_get_flat_dt_prop(node, "ranges", NULL);
163         if (!prop)
164                 return -EINVAL;
165         return 0;
166 }
167
168 /*
169  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
170  */
171 int __init fdt_scan_reserved_mem(void)
172 {
173         int node, child;
174         const void *fdt = initial_boot_params;
175
176         node = fdt_path_offset(fdt, "/reserved-memory");
177         if (node < 0)
178                 return -ENODEV;
179
180         if (__reserved_mem_check_root(node) != 0) {
181                 pr_err("Reserved memory: unsupported node format, ignoring\n");
182                 return -EINVAL;
183         }
184
185         fdt_for_each_subnode(child, fdt, node) {
186                 const char *uname;
187                 int err;
188
189                 if (!of_fdt_device_is_available(fdt, child))
190                         continue;
191
192                 uname = fdt_get_name(fdt, child, NULL);
193
194                 err = __reserved_mem_reserve_reg(child, uname);
195                 if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
196                         fdt_reserved_mem_save_node(child, uname, 0, 0);
197         }
198         return 0;
199 }
200
201 /*
202  * __reserved_mem_alloc_in_range() - allocate reserved memory described with
203  *      'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
204  *      reserved regions to keep the reserved memory contiguous if possible.
205  */
206 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
207         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
208         phys_addr_t *res_base)
209 {
210         bool prev_bottom_up = memblock_bottom_up();
211         bool bottom_up = false, top_down = false;
212         int ret, i;
213
214         for (i = 0; i < reserved_mem_count; i++) {
215                 struct reserved_mem *rmem = &reserved_mem[i];
216
217                 /* Skip regions that were not reserved yet */
218                 if (rmem->size == 0)
219                         continue;
220
221                 /*
222                  * If range starts next to an existing reservation, use bottom-up:
223                  *      |....RRRR................RRRRRRRR..............|
224                  *             --RRRR------
225                  */
226                 if (start >= rmem->base && start <= (rmem->base + rmem->size))
227                         bottom_up = true;
228
229                 /*
230                  * If range ends next to an existing reservation, use top-down:
231                  *      |....RRRR................RRRRRRRR..............|
232                  *                    -------RRRR-----
233                  */
234                 if (end >= rmem->base && end <= (rmem->base + rmem->size))
235                         top_down = true;
236         }
237
238         /* Change setting only if either bottom-up or top-down was selected */
239         if (bottom_up != top_down)
240                 memblock_set_bottom_up(bottom_up);
241
242         ret = early_init_dt_alloc_reserved_memory_arch(size, align,
243                         start, end, nomap, res_base);
244
245         /* Restore old setting if needed */
246         if (bottom_up != top_down)
247                 memblock_set_bottom_up(prev_bottom_up);
248
249         return ret;
250 }
251
252 /*
253  * __reserved_mem_alloc_size() - allocate reserved memory described by
254  *      'size', 'alignment'  and 'alloc-ranges' properties.
255  */
256 static int __init __reserved_mem_alloc_size(unsigned long node,
257         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
258 {
259         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
260         phys_addr_t start = 0, end = 0;
261         phys_addr_t base = 0, align = 0, size;
262         int len;
263         const __be32 *prop;
264         bool nomap;
265         int ret;
266
267         prop = of_get_flat_dt_prop(node, "size", &len);
268         if (!prop)
269                 return -EINVAL;
270
271         if (len != dt_root_size_cells * sizeof(__be32)) {
272                 pr_err("invalid size property in '%s' node.\n", uname);
273                 return -EINVAL;
274         }
275         size = dt_mem_next_cell(dt_root_size_cells, &prop);
276
277         prop = of_get_flat_dt_prop(node, "alignment", &len);
278         if (prop) {
279                 if (len != dt_root_addr_cells * sizeof(__be32)) {
280                         pr_err("invalid alignment property in '%s' node.\n",
281                                 uname);
282                         return -EINVAL;
283                 }
284                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
285         }
286
287         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
288
289         /* Need adjust the alignment to satisfy the CMA requirement */
290         if (IS_ENABLED(CONFIG_CMA)
291             && of_flat_dt_is_compatible(node, "shared-dma-pool")
292             && of_get_flat_dt_prop(node, "reusable", NULL)
293             && !nomap)
294                 align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
295
296         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
297         if (prop) {
298
299                 if (len % t_len != 0) {
300                         pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
301                                uname);
302                         return -EINVAL;
303                 }
304
305                 base = 0;
306
307                 while (len > 0) {
308                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
309                         end = start + dt_mem_next_cell(dt_root_size_cells,
310                                                        &prop);
311
312                         ret = __reserved_mem_alloc_in_range(size, align,
313                                         start, end, nomap, &base);
314                         if (ret == 0) {
315                                 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
316                                         uname, &base,
317                                         (unsigned long)(size / SZ_1M));
318                                 break;
319                         }
320                         len -= t_len;
321                 }
322
323         } else {
324                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
325                                                         0, 0, nomap, &base);
326                 if (ret == 0)
327                         pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
328                                 uname, &base, (unsigned long)(size / SZ_1M));
329         }
330
331         if (base == 0) {
332                 pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
333                        uname, (unsigned long)(size / SZ_1M));
334                 return -ENOMEM;
335         }
336
337         *res_base = base;
338         *res_size = size;
339
340         return 0;
341 }
342
343 static const struct of_device_id __rmem_of_table_sentinel
344         __used __section("__reservedmem_of_table_end");
345
346 /*
347  * __reserved_mem_init_node() - call region specific reserved memory init code
348  */
349 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
350 {
351         extern const struct of_device_id __reservedmem_of_table[];
352         const struct of_device_id *i;
353         int ret = -ENOENT;
354
355         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
356                 reservedmem_of_init_fn initfn = i->data;
357                 const char *compat = i->compatible;
358
359                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
360                         continue;
361
362                 ret = initfn(rmem);
363                 if (ret == 0) {
364                         pr_info("initialized node %s, compatible id %s\n",
365                                 rmem->name, compat);
366                         break;
367                 }
368         }
369         return ret;
370 }
371
372 static int __init __rmem_cmp(const void *a, const void *b)
373 {
374         const struct reserved_mem *ra = a, *rb = b;
375
376         if (ra->base < rb->base)
377                 return -1;
378
379         if (ra->base > rb->base)
380                 return 1;
381
382         /*
383          * Put the dynamic allocations (address == 0, size == 0) before static
384          * allocations at address 0x0 so that overlap detection works
385          * correctly.
386          */
387         if (ra->size < rb->size)
388                 return -1;
389         if (ra->size > rb->size)
390                 return 1;
391
392         if (ra->fdt_node < rb->fdt_node)
393                 return -1;
394         if (ra->fdt_node > rb->fdt_node)
395                 return 1;
396
397         return 0;
398 }
399
400 static void __init __rmem_check_for_overlap(void)
401 {
402         int i;
403
404         if (reserved_mem_count < 2)
405                 return;
406
407         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
408              __rmem_cmp, NULL);
409         for (i = 0; i < reserved_mem_count - 1; i++) {
410                 struct reserved_mem *this, *next;
411
412                 this = &reserved_mem[i];
413                 next = &reserved_mem[i + 1];
414
415                 if (this->base + this->size > next->base) {
416                         phys_addr_t this_end, next_end;
417
418                         this_end = this->base + this->size;
419                         next_end = next->base + next->size;
420                         pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
421                                this->name, &this->base, &this_end,
422                                next->name, &next->base, &next_end);
423                 }
424         }
425 }
426
427 /**
428  * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
429  */
430 void __init fdt_init_reserved_mem(void)
431 {
432         int i;
433
434         /* check for overlapping reserved regions */
435         __rmem_check_for_overlap();
436
437         for (i = 0; i < reserved_mem_count; i++) {
438                 struct reserved_mem *rmem = &reserved_mem[i];
439                 unsigned long node = rmem->fdt_node;
440                 int len;
441                 const __be32 *prop;
442                 int err = 0;
443                 bool nomap;
444
445                 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
446                 prop = of_get_flat_dt_prop(node, "phandle", &len);
447                 if (!prop)
448                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
449                 if (prop)
450                         rmem->phandle = of_read_number(prop, len/4);
451
452                 if (rmem->size == 0)
453                         err = __reserved_mem_alloc_size(node, rmem->name,
454                                                  &rmem->base, &rmem->size);
455                 if (err == 0) {
456                         err = __reserved_mem_init_node(rmem);
457                         if (err != 0 && err != -ENOENT) {
458                                 pr_info("node %s compatible matching fail\n",
459                                         rmem->name);
460                                 if (nomap)
461                                         memblock_clear_nomap(rmem->base, rmem->size);
462                                 else
463                                         memblock_phys_free(rmem->base,
464                                                            rmem->size);
465                         } else {
466                                 phys_addr_t end = rmem->base + rmem->size - 1;
467                                 bool reusable =
468                                         (of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
469
470                                 pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
471                                         &rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
472                                         nomap ? "nomap" : "map",
473                                         reusable ? "reusable" : "non-reusable",
474                                         rmem->name ? rmem->name : "unknown");
475                         }
476                 }
477         }
478 }
479
480 static inline struct reserved_mem *__find_rmem(struct device_node *node)
481 {
482         unsigned int i;
483
484         if (!node->phandle)
485                 return NULL;
486
487         for (i = 0; i < reserved_mem_count; i++)
488                 if (reserved_mem[i].phandle == node->phandle)
489                         return &reserved_mem[i];
490         return NULL;
491 }
492
493 struct rmem_assigned_device {
494         struct device *dev;
495         struct reserved_mem *rmem;
496         struct list_head list;
497 };
498
499 static LIST_HEAD(of_rmem_assigned_device_list);
500 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
501
502 /**
503  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
504  *                                        given device
505  * @dev:        Pointer to the device to configure
506  * @np:         Pointer to the device_node with 'reserved-memory' property
507  * @idx:        Index of selected region
508  *
509  * This function assigns respective DMA-mapping operations based on reserved
510  * memory region specified by 'memory-region' property in @np node to the @dev
511  * device. When driver needs to use more than one reserved memory region, it
512  * should allocate child devices and initialize regions by name for each of
513  * child device.
514  *
515  * Returns error code or zero on success.
516  */
517 int of_reserved_mem_device_init_by_idx(struct device *dev,
518                                        struct device_node *np, int idx)
519 {
520         struct rmem_assigned_device *rd;
521         struct device_node *target;
522         struct reserved_mem *rmem;
523         int ret;
524
525         if (!np || !dev)
526                 return -EINVAL;
527
528         target = of_parse_phandle(np, "memory-region", idx);
529         if (!target)
530                 return -ENODEV;
531
532         if (!of_device_is_available(target)) {
533                 of_node_put(target);
534                 return 0;
535         }
536
537         rmem = __find_rmem(target);
538         of_node_put(target);
539
540         if (!rmem || !rmem->ops || !rmem->ops->device_init)
541                 return -EINVAL;
542
543         rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
544         if (!rd)
545                 return -ENOMEM;
546
547         ret = rmem->ops->device_init(rmem, dev);
548         if (ret == 0) {
549                 rd->dev = dev;
550                 rd->rmem = rmem;
551
552                 mutex_lock(&of_rmem_assigned_device_mutex);
553                 list_add(&rd->list, &of_rmem_assigned_device_list);
554                 mutex_unlock(&of_rmem_assigned_device_mutex);
555
556                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
557         } else {
558                 kfree(rd);
559         }
560
561         return ret;
562 }
563 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
564
565 /**
566  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
567  *                                         to given device
568  * @dev: pointer to the device to configure
569  * @np: pointer to the device node with 'memory-region' property
570  * @name: name of the selected memory region
571  *
572  * Returns: 0 on success or a negative error-code on failure.
573  */
574 int of_reserved_mem_device_init_by_name(struct device *dev,
575                                         struct device_node *np,
576                                         const char *name)
577 {
578         int idx = of_property_match_string(np, "memory-region-names", name);
579
580         return of_reserved_mem_device_init_by_idx(dev, np, idx);
581 }
582 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
583
584 /**
585  * of_reserved_mem_device_release() - release reserved memory device structures
586  * @dev:        Pointer to the device to deconfigure
587  *
588  * This function releases structures allocated for memory region handling for
589  * the given device.
590  */
591 void of_reserved_mem_device_release(struct device *dev)
592 {
593         struct rmem_assigned_device *rd, *tmp;
594         LIST_HEAD(release_list);
595
596         mutex_lock(&of_rmem_assigned_device_mutex);
597         list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
598                 if (rd->dev == dev)
599                         list_move_tail(&rd->list, &release_list);
600         }
601         mutex_unlock(&of_rmem_assigned_device_mutex);
602
603         list_for_each_entry_safe(rd, tmp, &release_list, list) {
604                 if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
605                         rd->rmem->ops->device_release(rd->rmem, dev);
606
607                 kfree(rd);
608         }
609 }
610 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
611
612 /**
613  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
614  * @np:         node pointer of the desired reserved-memory region
615  *
616  * This function allows drivers to acquire a reference to the reserved_mem
617  * struct based on a device node handle.
618  *
619  * Returns a reserved_mem reference, or NULL on error.
620  */
621 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
622 {
623         const char *name;
624         int i;
625
626         if (!np->full_name)
627                 return NULL;
628
629         name = kbasename(np->full_name);
630         for (i = 0; i < reserved_mem_count; i++)
631                 if (!strcmp(reserved_mem[i].name, name))
632                         return &reserved_mem[i];
633
634         return NULL;
635 }
636 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);