hexagon: use asm-generic/mmu_context.h for no-op implementations
[linux-2.6-microblaze.git] / drivers / of / of_reserved_mem.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *              http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11
12 #define pr_fmt(fmt)     "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24
25 #define MAX_RESERVED_REGIONS    64
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28
29 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
30         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
31         phys_addr_t *res_base)
32 {
33         phys_addr_t base;
34
35         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
36         align = !align ? SMP_CACHE_BYTES : align;
37         base = memblock_find_in_range(start, end, size, align);
38         if (!base)
39                 return -ENOMEM;
40
41         *res_base = base;
42         if (nomap)
43                 return memblock_remove(base, size);
44
45         return memblock_reserve(base, size);
46 }
47
48 /**
49  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
50  */
51 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
52                                       phys_addr_t base, phys_addr_t size)
53 {
54         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
55
56         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
57                 pr_err("not enough space for all defined regions.\n");
58                 return;
59         }
60
61         rmem->fdt_node = node;
62         rmem->name = uname;
63         rmem->base = base;
64         rmem->size = size;
65
66         reserved_mem_count++;
67         return;
68 }
69
70 /**
71  * __reserved_mem_alloc_size() - allocate reserved memory described by
72  *      'size', 'alignment'  and 'alloc-ranges' properties.
73  */
74 static int __init __reserved_mem_alloc_size(unsigned long node,
75         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
76 {
77         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
78         phys_addr_t start = 0, end = 0;
79         phys_addr_t base = 0, align = 0, size;
80         int len;
81         const __be32 *prop;
82         bool nomap;
83         int ret;
84
85         prop = of_get_flat_dt_prop(node, "size", &len);
86         if (!prop)
87                 return -EINVAL;
88
89         if (len != dt_root_size_cells * sizeof(__be32)) {
90                 pr_err("invalid size property in '%s' node.\n", uname);
91                 return -EINVAL;
92         }
93         size = dt_mem_next_cell(dt_root_size_cells, &prop);
94
95         prop = of_get_flat_dt_prop(node, "alignment", &len);
96         if (prop) {
97                 if (len != dt_root_addr_cells * sizeof(__be32)) {
98                         pr_err("invalid alignment property in '%s' node.\n",
99                                 uname);
100                         return -EINVAL;
101                 }
102                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
103         }
104
105         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
106
107         /* Need adjust the alignment to satisfy the CMA requirement */
108         if (IS_ENABLED(CONFIG_CMA)
109             && of_flat_dt_is_compatible(node, "shared-dma-pool")
110             && of_get_flat_dt_prop(node, "reusable", NULL)
111             && !nomap) {
112                 unsigned long order =
113                         max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
114
115                 align = max(align, (phys_addr_t)PAGE_SIZE << order);
116         }
117
118         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
119         if (prop) {
120
121                 if (len % t_len != 0) {
122                         pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
123                                uname);
124                         return -EINVAL;
125                 }
126
127                 base = 0;
128
129                 while (len > 0) {
130                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
131                         end = start + dt_mem_next_cell(dt_root_size_cells,
132                                                        &prop);
133
134                         ret = early_init_dt_alloc_reserved_memory_arch(size,
135                                         align, start, end, nomap, &base);
136                         if (ret == 0) {
137                                 pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
138                                         uname, &base,
139                                         (unsigned long)size / SZ_1M);
140                                 break;
141                         }
142                         len -= t_len;
143                 }
144
145         } else {
146                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
147                                                         0, 0, nomap, &base);
148                 if (ret == 0)
149                         pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
150                                 uname, &base, (unsigned long)size / SZ_1M);
151         }
152
153         if (base == 0) {
154                 pr_info("failed to allocate memory for node '%s'\n", uname);
155                 return -ENOMEM;
156         }
157
158         *res_base = base;
159         *res_size = size;
160
161         return 0;
162 }
163
164 static const struct of_device_id __rmem_of_table_sentinel
165         __used __section("__reservedmem_of_table_end");
166
167 /**
168  * __reserved_mem_init_node() - call region specific reserved memory init code
169  */
170 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
171 {
172         extern const struct of_device_id __reservedmem_of_table[];
173         const struct of_device_id *i;
174         int ret = -ENOENT;
175
176         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
177                 reservedmem_of_init_fn initfn = i->data;
178                 const char *compat = i->compatible;
179
180                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
181                         continue;
182
183                 ret = initfn(rmem);
184                 if (ret == 0) {
185                         pr_info("initialized node %s, compatible id %s\n",
186                                 rmem->name, compat);
187                         break;
188                 }
189         }
190         return ret;
191 }
192
193 static int __init __rmem_cmp(const void *a, const void *b)
194 {
195         const struct reserved_mem *ra = a, *rb = b;
196
197         if (ra->base < rb->base)
198                 return -1;
199
200         if (ra->base > rb->base)
201                 return 1;
202
203         return 0;
204 }
205
206 static void __init __rmem_check_for_overlap(void)
207 {
208         int i;
209
210         if (reserved_mem_count < 2)
211                 return;
212
213         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
214              __rmem_cmp, NULL);
215         for (i = 0; i < reserved_mem_count - 1; i++) {
216                 struct reserved_mem *this, *next;
217
218                 this = &reserved_mem[i];
219                 next = &reserved_mem[i + 1];
220                 if (!(this->base && next->base))
221                         continue;
222                 if (this->base + this->size > next->base) {
223                         phys_addr_t this_end, next_end;
224
225                         this_end = this->base + this->size;
226                         next_end = next->base + next->size;
227                         pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
228                                this->name, &this->base, &this_end,
229                                next->name, &next->base, &next_end);
230                 }
231         }
232 }
233
234 /**
235  * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
236  */
237 void __init fdt_init_reserved_mem(void)
238 {
239         int i;
240
241         /* check for overlapping reserved regions */
242         __rmem_check_for_overlap();
243
244         for (i = 0; i < reserved_mem_count; i++) {
245                 struct reserved_mem *rmem = &reserved_mem[i];
246                 unsigned long node = rmem->fdt_node;
247                 int len;
248                 const __be32 *prop;
249                 int err = 0;
250                 bool nomap;
251
252                 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
253                 prop = of_get_flat_dt_prop(node, "phandle", &len);
254                 if (!prop)
255                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
256                 if (prop)
257                         rmem->phandle = of_read_number(prop, len/4);
258
259                 if (rmem->size == 0)
260                         err = __reserved_mem_alloc_size(node, rmem->name,
261                                                  &rmem->base, &rmem->size);
262                 if (err == 0) {
263                         err = __reserved_mem_init_node(rmem);
264                         if (err != 0 && err != -ENOENT) {
265                                 pr_info("node %s compatible matching fail\n",
266                                         rmem->name);
267                                 memblock_free(rmem->base, rmem->size);
268                                 if (nomap)
269                                         memblock_add(rmem->base, rmem->size);
270                         }
271                 }
272         }
273 }
274
275 static inline struct reserved_mem *__find_rmem(struct device_node *node)
276 {
277         unsigned int i;
278
279         if (!node->phandle)
280                 return NULL;
281
282         for (i = 0; i < reserved_mem_count; i++)
283                 if (reserved_mem[i].phandle == node->phandle)
284                         return &reserved_mem[i];
285         return NULL;
286 }
287
288 struct rmem_assigned_device {
289         struct device *dev;
290         struct reserved_mem *rmem;
291         struct list_head list;
292 };
293
294 static LIST_HEAD(of_rmem_assigned_device_list);
295 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
296
297 /**
298  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
299  *                                        given device
300  * @dev:        Pointer to the device to configure
301  * @np:         Pointer to the device_node with 'reserved-memory' property
302  * @idx:        Index of selected region
303  *
304  * This function assigns respective DMA-mapping operations based on reserved
305  * memory region specified by 'memory-region' property in @np node to the @dev
306  * device. When driver needs to use more than one reserved memory region, it
307  * should allocate child devices and initialize regions by name for each of
308  * child device.
309  *
310  * Returns error code or zero on success.
311  */
312 int of_reserved_mem_device_init_by_idx(struct device *dev,
313                                        struct device_node *np, int idx)
314 {
315         struct rmem_assigned_device *rd;
316         struct device_node *target;
317         struct reserved_mem *rmem;
318         int ret;
319
320         if (!np || !dev)
321                 return -EINVAL;
322
323         target = of_parse_phandle(np, "memory-region", idx);
324         if (!target)
325                 return -ENODEV;
326
327         if (!of_device_is_available(target)) {
328                 of_node_put(target);
329                 return 0;
330         }
331
332         rmem = __find_rmem(target);
333         of_node_put(target);
334
335         if (!rmem || !rmem->ops || !rmem->ops->device_init)
336                 return -EINVAL;
337
338         rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
339         if (!rd)
340                 return -ENOMEM;
341
342         ret = rmem->ops->device_init(rmem, dev);
343         if (ret == 0) {
344                 rd->dev = dev;
345                 rd->rmem = rmem;
346
347                 mutex_lock(&of_rmem_assigned_device_mutex);
348                 list_add(&rd->list, &of_rmem_assigned_device_list);
349                 mutex_unlock(&of_rmem_assigned_device_mutex);
350
351                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
352         } else {
353                 kfree(rd);
354         }
355
356         return ret;
357 }
358 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
359
360 /**
361  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
362  *                                         to given device
363  * @dev: pointer to the device to configure
364  * @np: pointer to the device node with 'memory-region' property
365  * @name: name of the selected memory region
366  *
367  * Returns: 0 on success or a negative error-code on failure.
368  */
369 int of_reserved_mem_device_init_by_name(struct device *dev,
370                                         struct device_node *np,
371                                         const char *name)
372 {
373         int idx = of_property_match_string(np, "memory-region-names", name);
374
375         return of_reserved_mem_device_init_by_idx(dev, np, idx);
376 }
377 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
378
379 /**
380  * of_reserved_mem_device_release() - release reserved memory device structures
381  * @dev:        Pointer to the device to deconfigure
382  *
383  * This function releases structures allocated for memory region handling for
384  * the given device.
385  */
386 void of_reserved_mem_device_release(struct device *dev)
387 {
388         struct rmem_assigned_device *rd, *tmp;
389         LIST_HEAD(release_list);
390
391         mutex_lock(&of_rmem_assigned_device_mutex);
392         list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
393                 if (rd->dev == dev)
394                         list_move_tail(&rd->list, &release_list);
395         }
396         mutex_unlock(&of_rmem_assigned_device_mutex);
397
398         list_for_each_entry_safe(rd, tmp, &release_list, list) {
399                 if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
400                         rd->rmem->ops->device_release(rd->rmem, dev);
401
402                 kfree(rd);
403         }
404 }
405 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
406
407 /**
408  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
409  * @np:         node pointer of the desired reserved-memory region
410  *
411  * This function allows drivers to acquire a reference to the reserved_mem
412  * struct based on a device node handle.
413  *
414  * Returns a reserved_mem reference, or NULL on error.
415  */
416 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
417 {
418         const char *name;
419         int i;
420
421         if (!np->full_name)
422                 return NULL;
423
424         name = kbasename(np->full_name);
425         for (i = 0; i < reserved_mem_count; i++)
426                 if (!strcmp(reserved_mem[i].name, name))
427                         return &reserved_mem[i];
428
429         return NULL;
430 }
431 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);