nvmem: core: fix missing of_node_put() in of_nvmem_device_get()
[linux-2.6-microblaze.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23         struct module           *owner;
24         struct device           dev;
25         int                     stride;
26         int                     word_size;
27         int                     id;
28         struct kref             refcnt;
29         size_t                  size;
30         bool                    read_only;
31         bool                    root_only;
32         int                     flags;
33         enum nvmem_type         type;
34         struct bin_attribute    eeprom;
35         struct device           *base_dev;
36         struct list_head        cells;
37         nvmem_reg_read_t        reg_read;
38         nvmem_reg_write_t       reg_write;
39         struct gpio_desc        *wp_gpio;
40         void *priv;
41 };
42
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44
45 #define FLAG_COMPAT             BIT(0)
46
47 struct nvmem_cell {
48         const char              *name;
49         int                     offset;
50         int                     bytes;
51         int                     bit_offset;
52         int                     nbits;
53         struct device_node      *np;
54         struct nvmem_device     *nvmem;
55         struct list_head        node;
56 };
57
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68
69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70                           void *val, size_t bytes)
71 {
72         if (nvmem->reg_read)
73                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74
75         return -EINVAL;
76 }
77
78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79                            void *val, size_t bytes)
80 {
81         int ret;
82
83         if (nvmem->reg_write) {
84                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87                 return ret;
88         }
89
90         return -EINVAL;
91 }
92
93 #ifdef CONFIG_NVMEM_SYSFS
94 static const char * const nvmem_type_str[] = {
95         [NVMEM_TYPE_UNKNOWN] = "Unknown",
96         [NVMEM_TYPE_EEPROM] = "EEPROM",
97         [NVMEM_TYPE_OTP] = "OTP",
98         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99 };
100
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 static struct lock_class_key eeprom_lock_key;
103 #endif
104
105 static ssize_t type_show(struct device *dev,
106                          struct device_attribute *attr, char *buf)
107 {
108         struct nvmem_device *nvmem = to_nvmem_device(dev);
109
110         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111 }
112
113 static DEVICE_ATTR_RO(type);
114
115 static struct attribute *nvmem_attrs[] = {
116         &dev_attr_type.attr,
117         NULL,
118 };
119
120 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121                                    struct bin_attribute *attr, char *buf,
122                                    loff_t pos, size_t count)
123 {
124         struct device *dev;
125         struct nvmem_device *nvmem;
126         int rc;
127
128         if (attr->private)
129                 dev = attr->private;
130         else
131                 dev = kobj_to_dev(kobj);
132         nvmem = to_nvmem_device(dev);
133
134         /* Stop the user from reading */
135         if (pos >= nvmem->size)
136                 return 0;
137
138         if (!IS_ALIGNED(pos, nvmem->stride))
139                 return -EINVAL;
140
141         if (count < nvmem->word_size)
142                 return -EINVAL;
143
144         if (pos + count > nvmem->size)
145                 count = nvmem->size - pos;
146
147         count = round_down(count, nvmem->word_size);
148
149         if (!nvmem->reg_read)
150                 return -EPERM;
151
152         rc = nvmem_reg_read(nvmem, pos, buf, count);
153
154         if (rc)
155                 return rc;
156
157         return count;
158 }
159
160 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161                                     struct bin_attribute *attr, char *buf,
162                                     loff_t pos, size_t count)
163 {
164         struct device *dev;
165         struct nvmem_device *nvmem;
166         int rc;
167
168         if (attr->private)
169                 dev = attr->private;
170         else
171                 dev = kobj_to_dev(kobj);
172         nvmem = to_nvmem_device(dev);
173
174         /* Stop the user from writing */
175         if (pos >= nvmem->size)
176                 return -EFBIG;
177
178         if (!IS_ALIGNED(pos, nvmem->stride))
179                 return -EINVAL;
180
181         if (count < nvmem->word_size)
182                 return -EINVAL;
183
184         if (pos + count > nvmem->size)
185                 count = nvmem->size - pos;
186
187         count = round_down(count, nvmem->word_size);
188
189         if (!nvmem->reg_write)
190                 return -EPERM;
191
192         rc = nvmem_reg_write(nvmem, pos, buf, count);
193
194         if (rc)
195                 return rc;
196
197         return count;
198 }
199
200 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201 {
202         umode_t mode = 0400;
203
204         if (!nvmem->root_only)
205                 mode |= 0044;
206
207         if (!nvmem->read_only)
208                 mode |= 0200;
209
210         if (!nvmem->reg_write)
211                 mode &= ~0200;
212
213         if (!nvmem->reg_read)
214                 mode &= ~0444;
215
216         return mode;
217 }
218
219 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220                                          struct bin_attribute *attr, int i)
221 {
222         struct device *dev = kobj_to_dev(kobj);
223         struct nvmem_device *nvmem = to_nvmem_device(dev);
224
225         return nvmem_bin_attr_get_umode(nvmem);
226 }
227
228 /* default read/write permissions */
229 static struct bin_attribute bin_attr_rw_nvmem = {
230         .attr   = {
231                 .name   = "nvmem",
232                 .mode   = 0644,
233         },
234         .read   = bin_attr_nvmem_read,
235         .write  = bin_attr_nvmem_write,
236 };
237
238 static struct bin_attribute *nvmem_bin_attributes[] = {
239         &bin_attr_rw_nvmem,
240         NULL,
241 };
242
243 static const struct attribute_group nvmem_bin_group = {
244         .bin_attrs      = nvmem_bin_attributes,
245         .attrs          = nvmem_attrs,
246         .is_bin_visible = nvmem_bin_attr_is_visible,
247 };
248
249 static const struct attribute_group *nvmem_dev_groups[] = {
250         &nvmem_bin_group,
251         NULL,
252 };
253
254 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
255         .attr   = {
256                 .name   = "eeprom",
257         },
258         .read   = bin_attr_nvmem_read,
259         .write  = bin_attr_nvmem_write,
260 };
261
262 /*
263  * nvmem_setup_compat() - Create an additional binary entry in
264  * drivers sys directory, to be backwards compatible with the older
265  * drivers/misc/eeprom drivers.
266  */
267 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
268                                     const struct nvmem_config *config)
269 {
270         int rval;
271
272         if (!config->compat)
273                 return 0;
274
275         if (!config->base_dev)
276                 return -EINVAL;
277
278         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
279         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
280         nvmem->eeprom.size = nvmem->size;
281 #ifdef CONFIG_DEBUG_LOCK_ALLOC
282         nvmem->eeprom.attr.key = &eeprom_lock_key;
283 #endif
284         nvmem->eeprom.private = &nvmem->dev;
285         nvmem->base_dev = config->base_dev;
286
287         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
288         if (rval) {
289                 dev_err(&nvmem->dev,
290                         "Failed to create eeprom binary file %d\n", rval);
291                 return rval;
292         }
293
294         nvmem->flags |= FLAG_COMPAT;
295
296         return 0;
297 }
298
299 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
300                               const struct nvmem_config *config)
301 {
302         if (config->compat)
303                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
304 }
305
306 #else /* CONFIG_NVMEM_SYSFS */
307
308 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
309                                     const struct nvmem_config *config)
310 {
311         return -ENOSYS;
312 }
313 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
314                                       const struct nvmem_config *config)
315 {
316 }
317
318 #endif /* CONFIG_NVMEM_SYSFS */
319
320 static void nvmem_release(struct device *dev)
321 {
322         struct nvmem_device *nvmem = to_nvmem_device(dev);
323
324         ida_free(&nvmem_ida, nvmem->id);
325         gpiod_put(nvmem->wp_gpio);
326         kfree(nvmem);
327 }
328
329 static const struct device_type nvmem_provider_type = {
330         .release        = nvmem_release,
331 };
332
333 static struct bus_type nvmem_bus_type = {
334         .name           = "nvmem",
335 };
336
337 static void nvmem_cell_drop(struct nvmem_cell *cell)
338 {
339         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
340         mutex_lock(&nvmem_mutex);
341         list_del(&cell->node);
342         mutex_unlock(&nvmem_mutex);
343         of_node_put(cell->np);
344         kfree_const(cell->name);
345         kfree(cell);
346 }
347
348 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
349 {
350         struct nvmem_cell *cell, *p;
351
352         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
353                 nvmem_cell_drop(cell);
354 }
355
356 static void nvmem_cell_add(struct nvmem_cell *cell)
357 {
358         mutex_lock(&nvmem_mutex);
359         list_add_tail(&cell->node, &cell->nvmem->cells);
360         mutex_unlock(&nvmem_mutex);
361         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
362 }
363
364 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
365                                    const struct nvmem_cell_info *info,
366                                    struct nvmem_cell *cell)
367 {
368         cell->nvmem = nvmem;
369         cell->offset = info->offset;
370         cell->bytes = info->bytes;
371         cell->name = kstrdup_const(info->name, GFP_KERNEL);
372         if (!cell->name)
373                 return -ENOMEM;
374
375         cell->bit_offset = info->bit_offset;
376         cell->nbits = info->nbits;
377
378         if (cell->nbits)
379                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
380                                            BITS_PER_BYTE);
381
382         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
383                 dev_err(&nvmem->dev,
384                         "cell %s unaligned to nvmem stride %d\n",
385                         cell->name, nvmem->stride);
386                 return -EINVAL;
387         }
388
389         return 0;
390 }
391
392 /**
393  * nvmem_add_cells() - Add cell information to an nvmem device
394  *
395  * @nvmem: nvmem device to add cells to.
396  * @info: nvmem cell info to add to the device
397  * @ncells: number of cells in info
398  *
399  * Return: 0 or negative error code on failure.
400  */
401 static int nvmem_add_cells(struct nvmem_device *nvmem,
402                     const struct nvmem_cell_info *info,
403                     int ncells)
404 {
405         struct nvmem_cell **cells;
406         int i, rval;
407
408         cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
409         if (!cells)
410                 return -ENOMEM;
411
412         for (i = 0; i < ncells; i++) {
413                 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
414                 if (!cells[i]) {
415                         rval = -ENOMEM;
416                         goto err;
417                 }
418
419                 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
420                 if (rval) {
421                         kfree(cells[i]);
422                         goto err;
423                 }
424
425                 nvmem_cell_add(cells[i]);
426         }
427
428         /* remove tmp array */
429         kfree(cells);
430
431         return 0;
432 err:
433         while (i--)
434                 nvmem_cell_drop(cells[i]);
435
436         kfree(cells);
437
438         return rval;
439 }
440
441 /**
442  * nvmem_register_notifier() - Register a notifier block for nvmem events.
443  *
444  * @nb: notifier block to be called on nvmem events.
445  *
446  * Return: 0 on success, negative error number on failure.
447  */
448 int nvmem_register_notifier(struct notifier_block *nb)
449 {
450         return blocking_notifier_chain_register(&nvmem_notifier, nb);
451 }
452 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
453
454 /**
455  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
456  *
457  * @nb: notifier block to be unregistered.
458  *
459  * Return: 0 on success, negative error number on failure.
460  */
461 int nvmem_unregister_notifier(struct notifier_block *nb)
462 {
463         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
464 }
465 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
466
467 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
468 {
469         const struct nvmem_cell_info *info;
470         struct nvmem_cell_table *table;
471         struct nvmem_cell *cell;
472         int rval = 0, i;
473
474         mutex_lock(&nvmem_cell_mutex);
475         list_for_each_entry(table, &nvmem_cell_tables, node) {
476                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
477                         for (i = 0; i < table->ncells; i++) {
478                                 info = &table->cells[i];
479
480                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
481                                 if (!cell) {
482                                         rval = -ENOMEM;
483                                         goto out;
484                                 }
485
486                                 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
487                                                                      info,
488                                                                      cell);
489                                 if (rval) {
490                                         kfree(cell);
491                                         goto out;
492                                 }
493
494                                 nvmem_cell_add(cell);
495                         }
496                 }
497         }
498
499 out:
500         mutex_unlock(&nvmem_cell_mutex);
501         return rval;
502 }
503
504 static struct nvmem_cell *
505 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
506 {
507         struct nvmem_cell *iter, *cell = NULL;
508
509         mutex_lock(&nvmem_mutex);
510         list_for_each_entry(iter, &nvmem->cells, node) {
511                 if (strcmp(cell_id, iter->name) == 0) {
512                         cell = iter;
513                         break;
514                 }
515         }
516         mutex_unlock(&nvmem_mutex);
517
518         return cell;
519 }
520
521 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
522 {
523         struct device_node *parent, *child;
524         struct device *dev = &nvmem->dev;
525         struct nvmem_cell *cell;
526         const __be32 *addr;
527         int len;
528
529         parent = dev->of_node;
530
531         for_each_child_of_node(parent, child) {
532                 addr = of_get_property(child, "reg", &len);
533                 if (!addr || (len < 2 * sizeof(u32))) {
534                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
535                         return -EINVAL;
536                 }
537
538                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
539                 if (!cell)
540                         return -ENOMEM;
541
542                 cell->nvmem = nvmem;
543                 cell->np = of_node_get(child);
544                 cell->offset = be32_to_cpup(addr++);
545                 cell->bytes = be32_to_cpup(addr);
546                 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
547
548                 addr = of_get_property(child, "bits", &len);
549                 if (addr && len == (2 * sizeof(u32))) {
550                         cell->bit_offset = be32_to_cpup(addr++);
551                         cell->nbits = be32_to_cpup(addr);
552                 }
553
554                 if (cell->nbits)
555                         cell->bytes = DIV_ROUND_UP(
556                                         cell->nbits + cell->bit_offset,
557                                         BITS_PER_BYTE);
558
559                 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
560                         dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
561                                 cell->name, nvmem->stride);
562                         /* Cells already added will be freed later. */
563                         kfree_const(cell->name);
564                         kfree(cell);
565                         return -EINVAL;
566                 }
567
568                 nvmem_cell_add(cell);
569         }
570
571         return 0;
572 }
573
574 /**
575  * nvmem_register() - Register a nvmem device for given nvmem_config.
576  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
577  *
578  * @config: nvmem device configuration with which nvmem device is created.
579  *
580  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
581  * on success.
582  */
583
584 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
585 {
586         struct nvmem_device *nvmem;
587         int rval;
588
589         if (!config->dev)
590                 return ERR_PTR(-EINVAL);
591
592         if (!config->reg_read && !config->reg_write)
593                 return ERR_PTR(-EINVAL);
594
595         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
596         if (!nvmem)
597                 return ERR_PTR(-ENOMEM);
598
599         rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
600         if (rval < 0) {
601                 kfree(nvmem);
602                 return ERR_PTR(rval);
603         }
604
605         if (config->wp_gpio)
606                 nvmem->wp_gpio = config->wp_gpio;
607         else
608                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
609                                                     GPIOD_OUT_HIGH);
610         if (IS_ERR(nvmem->wp_gpio)) {
611                 ida_free(&nvmem_ida, nvmem->id);
612                 rval = PTR_ERR(nvmem->wp_gpio);
613                 kfree(nvmem);
614                 return ERR_PTR(rval);
615         }
616
617         kref_init(&nvmem->refcnt);
618         INIT_LIST_HEAD(&nvmem->cells);
619
620         nvmem->id = rval;
621         nvmem->owner = config->owner;
622         if (!nvmem->owner && config->dev->driver)
623                 nvmem->owner = config->dev->driver->owner;
624         nvmem->stride = config->stride ?: 1;
625         nvmem->word_size = config->word_size ?: 1;
626         nvmem->size = config->size;
627         nvmem->dev.type = &nvmem_provider_type;
628         nvmem->dev.bus = &nvmem_bus_type;
629         nvmem->dev.parent = config->dev;
630         nvmem->root_only = config->root_only;
631         nvmem->priv = config->priv;
632         nvmem->type = config->type;
633         nvmem->reg_read = config->reg_read;
634         nvmem->reg_write = config->reg_write;
635         if (!config->no_of_node)
636                 nvmem->dev.of_node = config->dev->of_node;
637
638         switch (config->id) {
639         case NVMEM_DEVID_NONE:
640                 dev_set_name(&nvmem->dev, "%s", config->name);
641                 break;
642         case NVMEM_DEVID_AUTO:
643                 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
644                 break;
645         default:
646                 dev_set_name(&nvmem->dev, "%s%d",
647                              config->name ? : "nvmem",
648                              config->name ? config->id : nvmem->id);
649                 break;
650         }
651
652         nvmem->read_only = device_property_present(config->dev, "read-only") ||
653                            config->read_only || !nvmem->reg_write;
654
655 #ifdef CONFIG_NVMEM_SYSFS
656         nvmem->dev.groups = nvmem_dev_groups;
657 #endif
658
659         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
660
661         rval = device_register(&nvmem->dev);
662         if (rval)
663                 goto err_put_device;
664
665         if (config->compat) {
666                 rval = nvmem_sysfs_setup_compat(nvmem, config);
667                 if (rval)
668                         goto err_device_del;
669         }
670
671         if (config->cells) {
672                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
673                 if (rval)
674                         goto err_teardown_compat;
675         }
676
677         rval = nvmem_add_cells_from_table(nvmem);
678         if (rval)
679                 goto err_remove_cells;
680
681         rval = nvmem_add_cells_from_of(nvmem);
682         if (rval)
683                 goto err_remove_cells;
684
685         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
686
687         return nvmem;
688
689 err_remove_cells:
690         nvmem_device_remove_all_cells(nvmem);
691 err_teardown_compat:
692         if (config->compat)
693                 nvmem_sysfs_remove_compat(nvmem, config);
694 err_device_del:
695         device_del(&nvmem->dev);
696 err_put_device:
697         put_device(&nvmem->dev);
698
699         return ERR_PTR(rval);
700 }
701 EXPORT_SYMBOL_GPL(nvmem_register);
702
703 static void nvmem_device_release(struct kref *kref)
704 {
705         struct nvmem_device *nvmem;
706
707         nvmem = container_of(kref, struct nvmem_device, refcnt);
708
709         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
710
711         if (nvmem->flags & FLAG_COMPAT)
712                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
713
714         nvmem_device_remove_all_cells(nvmem);
715         device_unregister(&nvmem->dev);
716 }
717
718 /**
719  * nvmem_unregister() - Unregister previously registered nvmem device
720  *
721  * @nvmem: Pointer to previously registered nvmem device.
722  */
723 void nvmem_unregister(struct nvmem_device *nvmem)
724 {
725         kref_put(&nvmem->refcnt, nvmem_device_release);
726 }
727 EXPORT_SYMBOL_GPL(nvmem_unregister);
728
729 static void devm_nvmem_release(struct device *dev, void *res)
730 {
731         nvmem_unregister(*(struct nvmem_device **)res);
732 }
733
734 /**
735  * devm_nvmem_register() - Register a managed nvmem device for given
736  * nvmem_config.
737  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
738  *
739  * @dev: Device that uses the nvmem device.
740  * @config: nvmem device configuration with which nvmem device is created.
741  *
742  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
743  * on success.
744  */
745 struct nvmem_device *devm_nvmem_register(struct device *dev,
746                                          const struct nvmem_config *config)
747 {
748         struct nvmem_device **ptr, *nvmem;
749
750         ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
751         if (!ptr)
752                 return ERR_PTR(-ENOMEM);
753
754         nvmem = nvmem_register(config);
755
756         if (!IS_ERR(nvmem)) {
757                 *ptr = nvmem;
758                 devres_add(dev, ptr);
759         } else {
760                 devres_free(ptr);
761         }
762
763         return nvmem;
764 }
765 EXPORT_SYMBOL_GPL(devm_nvmem_register);
766
767 static int devm_nvmem_match(struct device *dev, void *res, void *data)
768 {
769         struct nvmem_device **r = res;
770
771         return *r == data;
772 }
773
774 /**
775  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
776  * device.
777  *
778  * @dev: Device that uses the nvmem device.
779  * @nvmem: Pointer to previously registered nvmem device.
780  *
781  * Return: Will be negative on error or zero on success.
782  */
783 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
784 {
785         return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
786 }
787 EXPORT_SYMBOL(devm_nvmem_unregister);
788
789 static struct nvmem_device *__nvmem_device_get(void *data,
790                         int (*match)(struct device *dev, const void *data))
791 {
792         struct nvmem_device *nvmem = NULL;
793         struct device *dev;
794
795         mutex_lock(&nvmem_mutex);
796         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
797         if (dev)
798                 nvmem = to_nvmem_device(dev);
799         mutex_unlock(&nvmem_mutex);
800         if (!nvmem)
801                 return ERR_PTR(-EPROBE_DEFER);
802
803         if (!try_module_get(nvmem->owner)) {
804                 dev_err(&nvmem->dev,
805                         "could not increase module refcount for cell %s\n",
806                         nvmem_dev_name(nvmem));
807
808                 put_device(&nvmem->dev);
809                 return ERR_PTR(-EINVAL);
810         }
811
812         kref_get(&nvmem->refcnt);
813
814         return nvmem;
815 }
816
817 static void __nvmem_device_put(struct nvmem_device *nvmem)
818 {
819         put_device(&nvmem->dev);
820         module_put(nvmem->owner);
821         kref_put(&nvmem->refcnt, nvmem_device_release);
822 }
823
824 #if IS_ENABLED(CONFIG_OF)
825 /**
826  * of_nvmem_device_get() - Get nvmem device from a given id
827  *
828  * @np: Device tree node that uses the nvmem device.
829  * @id: nvmem name from nvmem-names property.
830  *
831  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
832  * on success.
833  */
834 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
835 {
836
837         struct device_node *nvmem_np;
838         struct nvmem_device *nvmem;
839         int index = 0;
840
841         if (id)
842                 index = of_property_match_string(np, "nvmem-names", id);
843
844         nvmem_np = of_parse_phandle(np, "nvmem", index);
845         if (!nvmem_np)
846                 return ERR_PTR(-ENOENT);
847
848         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
849         of_node_put(nvmem_np);
850         return nvmem;
851 }
852 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
853 #endif
854
855 /**
856  * nvmem_device_get() - Get nvmem device from a given id
857  *
858  * @dev: Device that uses the nvmem device.
859  * @dev_name: name of the requested nvmem device.
860  *
861  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
862  * on success.
863  */
864 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
865 {
866         if (dev->of_node) { /* try dt first */
867                 struct nvmem_device *nvmem;
868
869                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
870
871                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
872                         return nvmem;
873
874         }
875
876         return __nvmem_device_get((void *)dev_name, device_match_name);
877 }
878 EXPORT_SYMBOL_GPL(nvmem_device_get);
879
880 /**
881  * nvmem_device_find() - Find nvmem device with matching function
882  *
883  * @data: Data to pass to match function
884  * @match: Callback function to check device
885  *
886  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
887  * on success.
888  */
889 struct nvmem_device *nvmem_device_find(void *data,
890                         int (*match)(struct device *dev, const void *data))
891 {
892         return __nvmem_device_get(data, match);
893 }
894 EXPORT_SYMBOL_GPL(nvmem_device_find);
895
896 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
897 {
898         struct nvmem_device **nvmem = res;
899
900         if (WARN_ON(!nvmem || !*nvmem))
901                 return 0;
902
903         return *nvmem == data;
904 }
905
906 static void devm_nvmem_device_release(struct device *dev, void *res)
907 {
908         nvmem_device_put(*(struct nvmem_device **)res);
909 }
910
911 /**
912  * devm_nvmem_device_put() - put alredy got nvmem device
913  *
914  * @dev: Device that uses the nvmem device.
915  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
916  * that needs to be released.
917  */
918 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
919 {
920         int ret;
921
922         ret = devres_release(dev, devm_nvmem_device_release,
923                              devm_nvmem_device_match, nvmem);
924
925         WARN_ON(ret);
926 }
927 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
928
929 /**
930  * nvmem_device_put() - put alredy got nvmem device
931  *
932  * @nvmem: pointer to nvmem device that needs to be released.
933  */
934 void nvmem_device_put(struct nvmem_device *nvmem)
935 {
936         __nvmem_device_put(nvmem);
937 }
938 EXPORT_SYMBOL_GPL(nvmem_device_put);
939
940 /**
941  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
942  *
943  * @dev: Device that requests the nvmem device.
944  * @id: name id for the requested nvmem device.
945  *
946  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
947  * on success.  The nvmem_cell will be freed by the automatically once the
948  * device is freed.
949  */
950 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
951 {
952         struct nvmem_device **ptr, *nvmem;
953
954         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
955         if (!ptr)
956                 return ERR_PTR(-ENOMEM);
957
958         nvmem = nvmem_device_get(dev, id);
959         if (!IS_ERR(nvmem)) {
960                 *ptr = nvmem;
961                 devres_add(dev, ptr);
962         } else {
963                 devres_free(ptr);
964         }
965
966         return nvmem;
967 }
968 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
969
970 static struct nvmem_cell *
971 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
972 {
973         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
974         struct nvmem_cell_lookup *lookup;
975         struct nvmem_device *nvmem;
976         const char *dev_id;
977
978         if (!dev)
979                 return ERR_PTR(-EINVAL);
980
981         dev_id = dev_name(dev);
982
983         mutex_lock(&nvmem_lookup_mutex);
984
985         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
986                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
987                     (strcmp(lookup->con_id, con_id) == 0)) {
988                         /* This is the right entry. */
989                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
990                                                    device_match_name);
991                         if (IS_ERR(nvmem)) {
992                                 /* Provider may not be registered yet. */
993                                 cell = ERR_CAST(nvmem);
994                                 break;
995                         }
996
997                         cell = nvmem_find_cell_by_name(nvmem,
998                                                        lookup->cell_name);
999                         if (!cell) {
1000                                 __nvmem_device_put(nvmem);
1001                                 cell = ERR_PTR(-ENOENT);
1002                         }
1003                         break;
1004                 }
1005         }
1006
1007         mutex_unlock(&nvmem_lookup_mutex);
1008         return cell;
1009 }
1010
1011 #if IS_ENABLED(CONFIG_OF)
1012 static struct nvmem_cell *
1013 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1014 {
1015         struct nvmem_cell *iter, *cell = NULL;
1016
1017         mutex_lock(&nvmem_mutex);
1018         list_for_each_entry(iter, &nvmem->cells, node) {
1019                 if (np == iter->np) {
1020                         cell = iter;
1021                         break;
1022                 }
1023         }
1024         mutex_unlock(&nvmem_mutex);
1025
1026         return cell;
1027 }
1028
1029 /**
1030  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1031  *
1032  * @np: Device tree node that uses the nvmem cell.
1033  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1034  *      for the cell at index 0 (the lone cell with no accompanying
1035  *      nvmem-cell-names property).
1036  *
1037  * Return: Will be an ERR_PTR() on error or a valid pointer
1038  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1039  * nvmem_cell_put().
1040  */
1041 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1042 {
1043         struct device_node *cell_np, *nvmem_np;
1044         struct nvmem_device *nvmem;
1045         struct nvmem_cell *cell;
1046         int index = 0;
1047
1048         /* if cell name exists, find index to the name */
1049         if (id)
1050                 index = of_property_match_string(np, "nvmem-cell-names", id);
1051
1052         cell_np = of_parse_phandle(np, "nvmem-cells", index);
1053         if (!cell_np)
1054                 return ERR_PTR(-ENOENT);
1055
1056         nvmem_np = of_get_next_parent(cell_np);
1057         if (!nvmem_np)
1058                 return ERR_PTR(-EINVAL);
1059
1060         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1061         of_node_put(nvmem_np);
1062         if (IS_ERR(nvmem))
1063                 return ERR_CAST(nvmem);
1064
1065         cell = nvmem_find_cell_by_node(nvmem, cell_np);
1066         if (!cell) {
1067                 __nvmem_device_put(nvmem);
1068                 return ERR_PTR(-ENOENT);
1069         }
1070
1071         return cell;
1072 }
1073 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1074 #endif
1075
1076 /**
1077  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1078  *
1079  * @dev: Device that requests the nvmem cell.
1080  * @id: nvmem cell name to get (this corresponds with the name from the
1081  *      nvmem-cell-names property for DT systems and with the con_id from
1082  *      the lookup entry for non-DT systems).
1083  *
1084  * Return: Will be an ERR_PTR() on error or a valid pointer
1085  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1086  * nvmem_cell_put().
1087  */
1088 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1089 {
1090         struct nvmem_cell *cell;
1091
1092         if (dev->of_node) { /* try dt first */
1093                 cell = of_nvmem_cell_get(dev->of_node, id);
1094                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1095                         return cell;
1096         }
1097
1098         /* NULL cell id only allowed for device tree; invalid otherwise */
1099         if (!id)
1100                 return ERR_PTR(-EINVAL);
1101
1102         return nvmem_cell_get_from_lookup(dev, id);
1103 }
1104 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1105
1106 static void devm_nvmem_cell_release(struct device *dev, void *res)
1107 {
1108         nvmem_cell_put(*(struct nvmem_cell **)res);
1109 }
1110
1111 /**
1112  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1113  *
1114  * @dev: Device that requests the nvmem cell.
1115  * @id: nvmem cell name id to get.
1116  *
1117  * Return: Will be an ERR_PTR() on error or a valid pointer
1118  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1119  * automatically once the device is freed.
1120  */
1121 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1122 {
1123         struct nvmem_cell **ptr, *cell;
1124
1125         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1126         if (!ptr)
1127                 return ERR_PTR(-ENOMEM);
1128
1129         cell = nvmem_cell_get(dev, id);
1130         if (!IS_ERR(cell)) {
1131                 *ptr = cell;
1132                 devres_add(dev, ptr);
1133         } else {
1134                 devres_free(ptr);
1135         }
1136
1137         return cell;
1138 }
1139 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1140
1141 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1142 {
1143         struct nvmem_cell **c = res;
1144
1145         if (WARN_ON(!c || !*c))
1146                 return 0;
1147
1148         return *c == data;
1149 }
1150
1151 /**
1152  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1153  * from devm_nvmem_cell_get.
1154  *
1155  * @dev: Device that requests the nvmem cell.
1156  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1157  */
1158 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1159 {
1160         int ret;
1161
1162         ret = devres_release(dev, devm_nvmem_cell_release,
1163                                 devm_nvmem_cell_match, cell);
1164
1165         WARN_ON(ret);
1166 }
1167 EXPORT_SYMBOL(devm_nvmem_cell_put);
1168
1169 /**
1170  * nvmem_cell_put() - Release previously allocated nvmem cell.
1171  *
1172  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1173  */
1174 void nvmem_cell_put(struct nvmem_cell *cell)
1175 {
1176         struct nvmem_device *nvmem = cell->nvmem;
1177
1178         __nvmem_device_put(nvmem);
1179 }
1180 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1181
1182 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1183 {
1184         u8 *p, *b;
1185         int i, extra, bit_offset = cell->bit_offset;
1186
1187         p = b = buf;
1188         if (bit_offset) {
1189                 /* First shift */
1190                 *b++ >>= bit_offset;
1191
1192                 /* setup rest of the bytes if any */
1193                 for (i = 1; i < cell->bytes; i++) {
1194                         /* Get bits from next byte and shift them towards msb */
1195                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1196
1197                         p = b;
1198                         *b++ >>= bit_offset;
1199                 }
1200         } else {
1201                 /* point to the msb */
1202                 p += cell->bytes - 1;
1203         }
1204
1205         /* result fits in less bytes */
1206         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1207         while (--extra >= 0)
1208                 *p-- = 0;
1209
1210         /* clear msb bits if any leftover in the last byte */
1211         *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1212 }
1213
1214 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1215                       struct nvmem_cell *cell,
1216                       void *buf, size_t *len)
1217 {
1218         int rc;
1219
1220         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1221
1222         if (rc)
1223                 return rc;
1224
1225         /* shift bits in-place */
1226         if (cell->bit_offset || cell->nbits)
1227                 nvmem_shift_read_buffer_in_place(cell, buf);
1228
1229         if (len)
1230                 *len = cell->bytes;
1231
1232         return 0;
1233 }
1234
1235 /**
1236  * nvmem_cell_read() - Read a given nvmem cell
1237  *
1238  * @cell: nvmem cell to be read.
1239  * @len: pointer to length of cell which will be populated on successful read;
1240  *       can be NULL.
1241  *
1242  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1243  * buffer should be freed by the consumer with a kfree().
1244  */
1245 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1246 {
1247         struct nvmem_device *nvmem = cell->nvmem;
1248         u8 *buf;
1249         int rc;
1250
1251         if (!nvmem)
1252                 return ERR_PTR(-EINVAL);
1253
1254         buf = kzalloc(cell->bytes, GFP_KERNEL);
1255         if (!buf)
1256                 return ERR_PTR(-ENOMEM);
1257
1258         rc = __nvmem_cell_read(nvmem, cell, buf, len);
1259         if (rc) {
1260                 kfree(buf);
1261                 return ERR_PTR(rc);
1262         }
1263
1264         return buf;
1265 }
1266 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1267
1268 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1269                                              u8 *_buf, int len)
1270 {
1271         struct nvmem_device *nvmem = cell->nvmem;
1272         int i, rc, nbits, bit_offset = cell->bit_offset;
1273         u8 v, *p, *buf, *b, pbyte, pbits;
1274
1275         nbits = cell->nbits;
1276         buf = kzalloc(cell->bytes, GFP_KERNEL);
1277         if (!buf)
1278                 return ERR_PTR(-ENOMEM);
1279
1280         memcpy(buf, _buf, len);
1281         p = b = buf;
1282
1283         if (bit_offset) {
1284                 pbyte = *b;
1285                 *b <<= bit_offset;
1286
1287                 /* setup the first byte with lsb bits from nvmem */
1288                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1289                 if (rc)
1290                         goto err;
1291                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1292
1293                 /* setup rest of the byte if any */
1294                 for (i = 1; i < cell->bytes; i++) {
1295                         /* Get last byte bits and shift them towards lsb */
1296                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1297                         pbyte = *b;
1298                         p = b;
1299                         *b <<= bit_offset;
1300                         *b++ |= pbits;
1301                 }
1302         }
1303
1304         /* if it's not end on byte boundary */
1305         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1306                 /* setup the last byte with msb bits from nvmem */
1307                 rc = nvmem_reg_read(nvmem,
1308                                     cell->offset + cell->bytes - 1, &v, 1);
1309                 if (rc)
1310                         goto err;
1311                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1312
1313         }
1314
1315         return buf;
1316 err:
1317         kfree(buf);
1318         return ERR_PTR(rc);
1319 }
1320
1321 /**
1322  * nvmem_cell_write() - Write to a given nvmem cell
1323  *
1324  * @cell: nvmem cell to be written.
1325  * @buf: Buffer to be written.
1326  * @len: length of buffer to be written to nvmem cell.
1327  *
1328  * Return: length of bytes written or negative on failure.
1329  */
1330 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1331 {
1332         struct nvmem_device *nvmem = cell->nvmem;
1333         int rc;
1334
1335         if (!nvmem || nvmem->read_only ||
1336             (cell->bit_offset == 0 && len != cell->bytes))
1337                 return -EINVAL;
1338
1339         if (cell->bit_offset || cell->nbits) {
1340                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1341                 if (IS_ERR(buf))
1342                         return PTR_ERR(buf);
1343         }
1344
1345         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1346
1347         /* free the tmp buffer */
1348         if (cell->bit_offset || cell->nbits)
1349                 kfree(buf);
1350
1351         if (rc)
1352                 return rc;
1353
1354         return len;
1355 }
1356 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1357
1358 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1359                                   void *val, size_t count)
1360 {
1361         struct nvmem_cell *cell;
1362         void *buf;
1363         size_t len;
1364
1365         cell = nvmem_cell_get(dev, cell_id);
1366         if (IS_ERR(cell))
1367                 return PTR_ERR(cell);
1368
1369         buf = nvmem_cell_read(cell, &len);
1370         if (IS_ERR(buf)) {
1371                 nvmem_cell_put(cell);
1372                 return PTR_ERR(buf);
1373         }
1374         if (len != count) {
1375                 kfree(buf);
1376                 nvmem_cell_put(cell);
1377                 return -EINVAL;
1378         }
1379         memcpy(val, buf, count);
1380         kfree(buf);
1381         nvmem_cell_put(cell);
1382
1383         return 0;
1384 }
1385
1386 /**
1387  * nvmem_cell_read_u8() - Read a cell value as a u8
1388  *
1389  * @dev: Device that requests the nvmem cell.
1390  * @cell_id: Name of nvmem cell to read.
1391  * @val: pointer to output value.
1392  *
1393  * Return: 0 on success or negative errno.
1394  */
1395 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1396 {
1397         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1398 }
1399 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1400
1401 /**
1402  * nvmem_cell_read_u16() - Read a cell value as a u16
1403  *
1404  * @dev: Device that requests the nvmem cell.
1405  * @cell_id: Name of nvmem cell to read.
1406  * @val: pointer to output value.
1407  *
1408  * Return: 0 on success or negative errno.
1409  */
1410 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1411 {
1412         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1413 }
1414 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1415
1416 /**
1417  * nvmem_cell_read_u32() - Read a cell value as a u32
1418  *
1419  * @dev: Device that requests the nvmem cell.
1420  * @cell_id: Name of nvmem cell to read.
1421  * @val: pointer to output value.
1422  *
1423  * Return: 0 on success or negative errno.
1424  */
1425 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1426 {
1427         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1428 }
1429 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1430
1431 /**
1432  * nvmem_cell_read_u64() - Read a cell value as a u64
1433  *
1434  * @dev: Device that requests the nvmem cell.
1435  * @cell_id: Name of nvmem cell to read.
1436  * @val: pointer to output value.
1437  *
1438  * Return: 0 on success or negative errno.
1439  */
1440 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1441 {
1442         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1443 }
1444 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1445
1446 /**
1447  * nvmem_device_cell_read() - Read a given nvmem device and cell
1448  *
1449  * @nvmem: nvmem device to read from.
1450  * @info: nvmem cell info to be read.
1451  * @buf: buffer pointer which will be populated on successful read.
1452  *
1453  * Return: length of successful bytes read on success and negative
1454  * error code on error.
1455  */
1456 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1457                            struct nvmem_cell_info *info, void *buf)
1458 {
1459         struct nvmem_cell cell;
1460         int rc;
1461         ssize_t len;
1462
1463         if (!nvmem)
1464                 return -EINVAL;
1465
1466         rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1467         if (rc)
1468                 return rc;
1469
1470         rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1471         if (rc)
1472                 return rc;
1473
1474         return len;
1475 }
1476 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1477
1478 /**
1479  * nvmem_device_cell_write() - Write cell to a given nvmem device
1480  *
1481  * @nvmem: nvmem device to be written to.
1482  * @info: nvmem cell info to be written.
1483  * @buf: buffer to be written to cell.
1484  *
1485  * Return: length of bytes written or negative error code on failure.
1486  */
1487 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1488                             struct nvmem_cell_info *info, void *buf)
1489 {
1490         struct nvmem_cell cell;
1491         int rc;
1492
1493         if (!nvmem)
1494                 return -EINVAL;
1495
1496         rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1497         if (rc)
1498                 return rc;
1499
1500         return nvmem_cell_write(&cell, buf, cell.bytes);
1501 }
1502 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1503
1504 /**
1505  * nvmem_device_read() - Read from a given nvmem device
1506  *
1507  * @nvmem: nvmem device to read from.
1508  * @offset: offset in nvmem device.
1509  * @bytes: number of bytes to read.
1510  * @buf: buffer pointer which will be populated on successful read.
1511  *
1512  * Return: length of successful bytes read on success and negative
1513  * error code on error.
1514  */
1515 int nvmem_device_read(struct nvmem_device *nvmem,
1516                       unsigned int offset,
1517                       size_t bytes, void *buf)
1518 {
1519         int rc;
1520
1521         if (!nvmem)
1522                 return -EINVAL;
1523
1524         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1525
1526         if (rc)
1527                 return rc;
1528
1529         return bytes;
1530 }
1531 EXPORT_SYMBOL_GPL(nvmem_device_read);
1532
1533 /**
1534  * nvmem_device_write() - Write cell to a given nvmem device
1535  *
1536  * @nvmem: nvmem device to be written to.
1537  * @offset: offset in nvmem device.
1538  * @bytes: number of bytes to write.
1539  * @buf: buffer to be written.
1540  *
1541  * Return: length of bytes written or negative error code on failure.
1542  */
1543 int nvmem_device_write(struct nvmem_device *nvmem,
1544                        unsigned int offset,
1545                        size_t bytes, void *buf)
1546 {
1547         int rc;
1548
1549         if (!nvmem)
1550                 return -EINVAL;
1551
1552         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1553
1554         if (rc)
1555                 return rc;
1556
1557
1558         return bytes;
1559 }
1560 EXPORT_SYMBOL_GPL(nvmem_device_write);
1561
1562 /**
1563  * nvmem_add_cell_table() - register a table of cell info entries
1564  *
1565  * @table: table of cell info entries
1566  */
1567 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1568 {
1569         mutex_lock(&nvmem_cell_mutex);
1570         list_add_tail(&table->node, &nvmem_cell_tables);
1571         mutex_unlock(&nvmem_cell_mutex);
1572 }
1573 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1574
1575 /**
1576  * nvmem_del_cell_table() - remove a previously registered cell info table
1577  *
1578  * @table: table of cell info entries
1579  */
1580 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1581 {
1582         mutex_lock(&nvmem_cell_mutex);
1583         list_del(&table->node);
1584         mutex_unlock(&nvmem_cell_mutex);
1585 }
1586 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1587
1588 /**
1589  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1590  *
1591  * @entries: array of cell lookup entries
1592  * @nentries: number of cell lookup entries in the array
1593  */
1594 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1595 {
1596         int i;
1597
1598         mutex_lock(&nvmem_lookup_mutex);
1599         for (i = 0; i < nentries; i++)
1600                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1601         mutex_unlock(&nvmem_lookup_mutex);
1602 }
1603 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1604
1605 /**
1606  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1607  *                            entries
1608  *
1609  * @entries: array of cell lookup entries
1610  * @nentries: number of cell lookup entries in the array
1611  */
1612 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1613 {
1614         int i;
1615
1616         mutex_lock(&nvmem_lookup_mutex);
1617         for (i = 0; i < nentries; i++)
1618                 list_del(&entries[i].node);
1619         mutex_unlock(&nvmem_lookup_mutex);
1620 }
1621 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1622
1623 /**
1624  * nvmem_dev_name() - Get the name of a given nvmem device.
1625  *
1626  * @nvmem: nvmem device.
1627  *
1628  * Return: name of the nvmem device.
1629  */
1630 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1631 {
1632         return dev_name(&nvmem->dev);
1633 }
1634 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1635
1636 static int __init nvmem_init(void)
1637 {
1638         return bus_register(&nvmem_bus_type);
1639 }
1640
1641 static void __exit nvmem_exit(void)
1642 {
1643         bus_unregister(&nvmem_bus_type);
1644 }
1645
1646 subsys_initcall(nvmem_init);
1647 module_exit(nvmem_exit);
1648
1649 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1650 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1651 MODULE_DESCRIPTION("nvmem Driver Core");
1652 MODULE_LICENSE("GPL v2");