Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[linux-2.6-microblaze.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23         struct module           *owner;
24         struct device           dev;
25         int                     stride;
26         int                     word_size;
27         int                     id;
28         struct kref             refcnt;
29         size_t                  size;
30         bool                    read_only;
31         bool                    root_only;
32         int                     flags;
33         enum nvmem_type         type;
34         struct bin_attribute    eeprom;
35         struct device           *base_dev;
36         struct list_head        cells;
37         nvmem_reg_read_t        reg_read;
38         nvmem_reg_write_t       reg_write;
39         struct gpio_desc        *wp_gpio;
40         void *priv;
41 };
42
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44
45 #define FLAG_COMPAT             BIT(0)
46
47 struct nvmem_cell {
48         const char              *name;
49         int                     offset;
50         int                     bytes;
51         int                     bit_offset;
52         int                     nbits;
53         struct device_node      *np;
54         struct nvmem_device     *nvmem;
55         struct list_head        node;
56 };
57
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68
69 #ifdef CONFIG_NVMEM_SYSFS
70 static const char * const nvmem_type_str[] = {
71         [NVMEM_TYPE_UNKNOWN] = "Unknown",
72         [NVMEM_TYPE_EEPROM] = "EEPROM",
73         [NVMEM_TYPE_OTP] = "OTP",
74         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
75 };
76
77 #ifdef CONFIG_DEBUG_LOCK_ALLOC
78 static struct lock_class_key eeprom_lock_key;
79 #endif
80
81 static ssize_t type_show(struct device *dev,
82                          struct device_attribute *attr, char *buf)
83 {
84         struct nvmem_device *nvmem = to_nvmem_device(dev);
85
86         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
87 }
88
89 static DEVICE_ATTR_RO(type);
90
91 static struct attribute *nvmem_attrs[] = {
92         &dev_attr_type.attr,
93         NULL,
94 };
95
96 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
97                                    struct bin_attribute *attr, char *buf,
98                                    loff_t pos, size_t count)
99 {
100         struct device *dev;
101         struct nvmem_device *nvmem;
102         int rc;
103
104         if (attr->private)
105                 dev = attr->private;
106         else
107                 dev = container_of(kobj, struct device, kobj);
108         nvmem = to_nvmem_device(dev);
109
110         /* Stop the user from reading */
111         if (pos >= nvmem->size)
112                 return 0;
113
114         if (count < nvmem->word_size)
115                 return -EINVAL;
116
117         if (pos + count > nvmem->size)
118                 count = nvmem->size - pos;
119
120         count = round_down(count, nvmem->word_size);
121
122         if (!nvmem->reg_read)
123                 return -EPERM;
124
125         rc = nvmem->reg_read(nvmem->priv, pos, buf, count);
126
127         if (rc)
128                 return rc;
129
130         return count;
131 }
132
133 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
134                                     struct bin_attribute *attr, char *buf,
135                                     loff_t pos, size_t count)
136 {
137         struct device *dev;
138         struct nvmem_device *nvmem;
139         int rc;
140
141         if (attr->private)
142                 dev = attr->private;
143         else
144                 dev = container_of(kobj, struct device, kobj);
145         nvmem = to_nvmem_device(dev);
146
147         /* Stop the user from writing */
148         if (pos >= nvmem->size)
149                 return -EFBIG;
150
151         if (count < nvmem->word_size)
152                 return -EINVAL;
153
154         if (pos + count > nvmem->size)
155                 count = nvmem->size - pos;
156
157         count = round_down(count, nvmem->word_size);
158
159         if (!nvmem->reg_write)
160                 return -EPERM;
161
162         rc = nvmem->reg_write(nvmem->priv, pos, buf, count);
163
164         if (rc)
165                 return rc;
166
167         return count;
168 }
169
170 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
171                                          struct bin_attribute *attr, int i)
172 {
173         struct device *dev = container_of(kobj, struct device, kobj);
174         struct nvmem_device *nvmem = to_nvmem_device(dev);
175         umode_t mode = 0400;
176
177         if (!nvmem->root_only)
178                 mode |= 0044;
179
180         if (!nvmem->read_only)
181                 mode |= 0200;
182
183         if (!nvmem->reg_write)
184                 mode &= ~0200;
185
186         if (!nvmem->reg_read)
187                 mode &= ~0444;
188
189         return mode;
190 }
191
192 /* default read/write permissions */
193 static struct bin_attribute bin_attr_rw_nvmem = {
194         .attr   = {
195                 .name   = "nvmem",
196                 .mode   = 0644,
197         },
198         .read   = bin_attr_nvmem_read,
199         .write  = bin_attr_nvmem_write,
200 };
201
202 static struct bin_attribute *nvmem_bin_attributes[] = {
203         &bin_attr_rw_nvmem,
204         NULL,
205 };
206
207 static const struct attribute_group nvmem_bin_group = {
208         .bin_attrs      = nvmem_bin_attributes,
209         .attrs          = nvmem_attrs,
210         .is_bin_visible = nvmem_bin_attr_is_visible,
211 };
212
213 static const struct attribute_group *nvmem_dev_groups[] = {
214         &nvmem_bin_group,
215         NULL,
216 };
217
218 /* read only permission */
219 static struct bin_attribute bin_attr_ro_nvmem = {
220         .attr   = {
221                 .name   = "nvmem",
222                 .mode   = 0444,
223         },
224         .read   = bin_attr_nvmem_read,
225 };
226
227 /* default read/write permissions, root only */
228 static struct bin_attribute bin_attr_rw_root_nvmem = {
229         .attr   = {
230                 .name   = "nvmem",
231                 .mode   = 0600,
232         },
233         .read   = bin_attr_nvmem_read,
234         .write  = bin_attr_nvmem_write,
235 };
236
237 /* read only permission, root only */
238 static struct bin_attribute bin_attr_ro_root_nvmem = {
239         .attr   = {
240                 .name   = "nvmem",
241                 .mode   = 0400,
242         },
243         .read   = bin_attr_nvmem_read,
244 };
245
246 /*
247  * nvmem_setup_compat() - Create an additional binary entry in
248  * drivers sys directory, to be backwards compatible with the older
249  * drivers/misc/eeprom drivers.
250  */
251 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
252                                     const struct nvmem_config *config)
253 {
254         int rval;
255
256         if (!config->compat)
257                 return 0;
258
259         if (!config->base_dev)
260                 return -EINVAL;
261
262         if (nvmem->read_only) {
263                 if (config->root_only)
264                         nvmem->eeprom = bin_attr_ro_root_nvmem;
265                 else
266                         nvmem->eeprom = bin_attr_ro_nvmem;
267         } else {
268                 if (config->root_only)
269                         nvmem->eeprom = bin_attr_rw_root_nvmem;
270                 else
271                         nvmem->eeprom = bin_attr_rw_nvmem;
272         }
273         nvmem->eeprom.attr.name = "eeprom";
274         nvmem->eeprom.size = nvmem->size;
275 #ifdef CONFIG_DEBUG_LOCK_ALLOC
276         nvmem->eeprom.attr.key = &eeprom_lock_key;
277 #endif
278         nvmem->eeprom.private = &nvmem->dev;
279         nvmem->base_dev = config->base_dev;
280
281         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
282         if (rval) {
283                 dev_err(&nvmem->dev,
284                         "Failed to create eeprom binary file %d\n", rval);
285                 return rval;
286         }
287
288         nvmem->flags |= FLAG_COMPAT;
289
290         return 0;
291 }
292
293 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
294                               const struct nvmem_config *config)
295 {
296         if (config->compat)
297                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
298 }
299
300 #else /* CONFIG_NVMEM_SYSFS */
301
302 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
303                                     const struct nvmem_config *config)
304 {
305         return -ENOSYS;
306 }
307 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
308                                       const struct nvmem_config *config)
309 {
310 }
311
312 #endif /* CONFIG_NVMEM_SYSFS */
313
314 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
315                           void *val, size_t bytes)
316 {
317         if (nvmem->reg_read)
318                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
319
320         return -EINVAL;
321 }
322
323 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
324                            void *val, size_t bytes)
325 {
326         int ret;
327
328         if (nvmem->reg_write) {
329                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
330                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
331                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
332                 return ret;
333         }
334
335         return -EINVAL;
336 }
337
338 static void nvmem_release(struct device *dev)
339 {
340         struct nvmem_device *nvmem = to_nvmem_device(dev);
341
342         ida_simple_remove(&nvmem_ida, nvmem->id);
343         gpiod_put(nvmem->wp_gpio);
344         kfree(nvmem);
345 }
346
347 static const struct device_type nvmem_provider_type = {
348         .release        = nvmem_release,
349 };
350
351 static struct bus_type nvmem_bus_type = {
352         .name           = "nvmem",
353 };
354
355 static void nvmem_cell_drop(struct nvmem_cell *cell)
356 {
357         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
358         mutex_lock(&nvmem_mutex);
359         list_del(&cell->node);
360         mutex_unlock(&nvmem_mutex);
361         of_node_put(cell->np);
362         kfree_const(cell->name);
363         kfree(cell);
364 }
365
366 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
367 {
368         struct nvmem_cell *cell, *p;
369
370         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
371                 nvmem_cell_drop(cell);
372 }
373
374 static void nvmem_cell_add(struct nvmem_cell *cell)
375 {
376         mutex_lock(&nvmem_mutex);
377         list_add_tail(&cell->node, &cell->nvmem->cells);
378         mutex_unlock(&nvmem_mutex);
379         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
380 }
381
382 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
383                                    const struct nvmem_cell_info *info,
384                                    struct nvmem_cell *cell)
385 {
386         cell->nvmem = nvmem;
387         cell->offset = info->offset;
388         cell->bytes = info->bytes;
389         cell->name = kstrdup_const(info->name, GFP_KERNEL);
390         if (!cell->name)
391                 return -ENOMEM;
392
393         cell->bit_offset = info->bit_offset;
394         cell->nbits = info->nbits;
395
396         if (cell->nbits)
397                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
398                                            BITS_PER_BYTE);
399
400         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
401                 dev_err(&nvmem->dev,
402                         "cell %s unaligned to nvmem stride %d\n",
403                         cell->name, nvmem->stride);
404                 return -EINVAL;
405         }
406
407         return 0;
408 }
409
410 /**
411  * nvmem_add_cells() - Add cell information to an nvmem device
412  *
413  * @nvmem: nvmem device to add cells to.
414  * @info: nvmem cell info to add to the device
415  * @ncells: number of cells in info
416  *
417  * Return: 0 or negative error code on failure.
418  */
419 static int nvmem_add_cells(struct nvmem_device *nvmem,
420                     const struct nvmem_cell_info *info,
421                     int ncells)
422 {
423         struct nvmem_cell **cells;
424         int i, rval;
425
426         cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
427         if (!cells)
428                 return -ENOMEM;
429
430         for (i = 0; i < ncells; i++) {
431                 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
432                 if (!cells[i]) {
433                         rval = -ENOMEM;
434                         goto err;
435                 }
436
437                 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
438                 if (rval) {
439                         kfree(cells[i]);
440                         goto err;
441                 }
442
443                 nvmem_cell_add(cells[i]);
444         }
445
446         /* remove tmp array */
447         kfree(cells);
448
449         return 0;
450 err:
451         while (i--)
452                 nvmem_cell_drop(cells[i]);
453
454         kfree(cells);
455
456         return rval;
457 }
458
459 /**
460  * nvmem_register_notifier() - Register a notifier block for nvmem events.
461  *
462  * @nb: notifier block to be called on nvmem events.
463  *
464  * Return: 0 on success, negative error number on failure.
465  */
466 int nvmem_register_notifier(struct notifier_block *nb)
467 {
468         return blocking_notifier_chain_register(&nvmem_notifier, nb);
469 }
470 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
471
472 /**
473  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
474  *
475  * @nb: notifier block to be unregistered.
476  *
477  * Return: 0 on success, negative error number on failure.
478  */
479 int nvmem_unregister_notifier(struct notifier_block *nb)
480 {
481         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
482 }
483 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
484
485 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
486 {
487         const struct nvmem_cell_info *info;
488         struct nvmem_cell_table *table;
489         struct nvmem_cell *cell;
490         int rval = 0, i;
491
492         mutex_lock(&nvmem_cell_mutex);
493         list_for_each_entry(table, &nvmem_cell_tables, node) {
494                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
495                         for (i = 0; i < table->ncells; i++) {
496                                 info = &table->cells[i];
497
498                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
499                                 if (!cell) {
500                                         rval = -ENOMEM;
501                                         goto out;
502                                 }
503
504                                 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
505                                                                      info,
506                                                                      cell);
507                                 if (rval) {
508                                         kfree(cell);
509                                         goto out;
510                                 }
511
512                                 nvmem_cell_add(cell);
513                         }
514                 }
515         }
516
517 out:
518         mutex_unlock(&nvmem_cell_mutex);
519         return rval;
520 }
521
522 static struct nvmem_cell *
523 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
524 {
525         struct nvmem_cell *iter, *cell = NULL;
526
527         mutex_lock(&nvmem_mutex);
528         list_for_each_entry(iter, &nvmem->cells, node) {
529                 if (strcmp(cell_id, iter->name) == 0) {
530                         cell = iter;
531                         break;
532                 }
533         }
534         mutex_unlock(&nvmem_mutex);
535
536         return cell;
537 }
538
539 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
540 {
541         struct device_node *parent, *child;
542         struct device *dev = &nvmem->dev;
543         struct nvmem_cell *cell;
544         const __be32 *addr;
545         int len;
546
547         parent = dev->of_node;
548
549         for_each_child_of_node(parent, child) {
550                 addr = of_get_property(child, "reg", &len);
551                 if (!addr || (len < 2 * sizeof(u32))) {
552                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
553                         return -EINVAL;
554                 }
555
556                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
557                 if (!cell)
558                         return -ENOMEM;
559
560                 cell->nvmem = nvmem;
561                 cell->np = of_node_get(child);
562                 cell->offset = be32_to_cpup(addr++);
563                 cell->bytes = be32_to_cpup(addr);
564                 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
565
566                 addr = of_get_property(child, "bits", &len);
567                 if (addr && len == (2 * sizeof(u32))) {
568                         cell->bit_offset = be32_to_cpup(addr++);
569                         cell->nbits = be32_to_cpup(addr);
570                 }
571
572                 if (cell->nbits)
573                         cell->bytes = DIV_ROUND_UP(
574                                         cell->nbits + cell->bit_offset,
575                                         BITS_PER_BYTE);
576
577                 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
578                         dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
579                                 cell->name, nvmem->stride);
580                         /* Cells already added will be freed later. */
581                         kfree_const(cell->name);
582                         kfree(cell);
583                         return -EINVAL;
584                 }
585
586                 nvmem_cell_add(cell);
587         }
588
589         return 0;
590 }
591
592 /**
593  * nvmem_register() - Register a nvmem device for given nvmem_config.
594  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
595  *
596  * @config: nvmem device configuration with which nvmem device is created.
597  *
598  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
599  * on success.
600  */
601
602 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
603 {
604         struct nvmem_device *nvmem;
605         int rval;
606
607         if (!config->dev)
608                 return ERR_PTR(-EINVAL);
609
610         if (!config->reg_read && !config->reg_write)
611                 return ERR_PTR(-EINVAL);
612
613         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
614         if (!nvmem)
615                 return ERR_PTR(-ENOMEM);
616
617         rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
618         if (rval < 0) {
619                 kfree(nvmem);
620                 return ERR_PTR(rval);
621         }
622
623         if (config->wp_gpio)
624                 nvmem->wp_gpio = config->wp_gpio;
625         else
626                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
627                                                     GPIOD_OUT_HIGH);
628         if (IS_ERR(nvmem->wp_gpio)) {
629                 ida_simple_remove(&nvmem_ida, nvmem->id);
630                 rval = PTR_ERR(nvmem->wp_gpio);
631                 kfree(nvmem);
632                 return ERR_PTR(rval);
633         }
634
635         kref_init(&nvmem->refcnt);
636         INIT_LIST_HEAD(&nvmem->cells);
637
638         nvmem->id = rval;
639         nvmem->owner = config->owner;
640         if (!nvmem->owner && config->dev->driver)
641                 nvmem->owner = config->dev->driver->owner;
642         nvmem->stride = config->stride ?: 1;
643         nvmem->word_size = config->word_size ?: 1;
644         nvmem->size = config->size;
645         nvmem->dev.type = &nvmem_provider_type;
646         nvmem->dev.bus = &nvmem_bus_type;
647         nvmem->dev.parent = config->dev;
648         nvmem->root_only = config->root_only;
649         nvmem->priv = config->priv;
650         nvmem->type = config->type;
651         nvmem->reg_read = config->reg_read;
652         nvmem->reg_write = config->reg_write;
653         if (!config->no_of_node)
654                 nvmem->dev.of_node = config->dev->of_node;
655
656         if (config->id == -1 && config->name) {
657                 dev_set_name(&nvmem->dev, "%s", config->name);
658         } else {
659                 dev_set_name(&nvmem->dev, "%s%d",
660                              config->name ? : "nvmem",
661                              config->name ? config->id : nvmem->id);
662         }
663
664         nvmem->read_only = device_property_present(config->dev, "read-only") ||
665                            config->read_only || !nvmem->reg_write;
666
667 #ifdef CONFIG_NVMEM_SYSFS
668         nvmem->dev.groups = nvmem_dev_groups;
669 #endif
670
671         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
672
673         rval = device_register(&nvmem->dev);
674         if (rval)
675                 goto err_put_device;
676
677         if (config->compat) {
678                 rval = nvmem_sysfs_setup_compat(nvmem, config);
679                 if (rval)
680                         goto err_device_del;
681         }
682
683         if (config->cells) {
684                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
685                 if (rval)
686                         goto err_teardown_compat;
687         }
688
689         rval = nvmem_add_cells_from_table(nvmem);
690         if (rval)
691                 goto err_remove_cells;
692
693         rval = nvmem_add_cells_from_of(nvmem);
694         if (rval)
695                 goto err_remove_cells;
696
697         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
698
699         return nvmem;
700
701 err_remove_cells:
702         nvmem_device_remove_all_cells(nvmem);
703 err_teardown_compat:
704         if (config->compat)
705                 nvmem_sysfs_remove_compat(nvmem, config);
706 err_device_del:
707         device_del(&nvmem->dev);
708 err_put_device:
709         put_device(&nvmem->dev);
710
711         return ERR_PTR(rval);
712 }
713 EXPORT_SYMBOL_GPL(nvmem_register);
714
715 static void nvmem_device_release(struct kref *kref)
716 {
717         struct nvmem_device *nvmem;
718
719         nvmem = container_of(kref, struct nvmem_device, refcnt);
720
721         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
722
723         if (nvmem->flags & FLAG_COMPAT)
724                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
725
726         nvmem_device_remove_all_cells(nvmem);
727         device_unregister(&nvmem->dev);
728 }
729
730 /**
731  * nvmem_unregister() - Unregister previously registered nvmem device
732  *
733  * @nvmem: Pointer to previously registered nvmem device.
734  */
735 void nvmem_unregister(struct nvmem_device *nvmem)
736 {
737         kref_put(&nvmem->refcnt, nvmem_device_release);
738 }
739 EXPORT_SYMBOL_GPL(nvmem_unregister);
740
741 static void devm_nvmem_release(struct device *dev, void *res)
742 {
743         nvmem_unregister(*(struct nvmem_device **)res);
744 }
745
746 /**
747  * devm_nvmem_register() - Register a managed nvmem device for given
748  * nvmem_config.
749  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
750  *
751  * @dev: Device that uses the nvmem device.
752  * @config: nvmem device configuration with which nvmem device is created.
753  *
754  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
755  * on success.
756  */
757 struct nvmem_device *devm_nvmem_register(struct device *dev,
758                                          const struct nvmem_config *config)
759 {
760         struct nvmem_device **ptr, *nvmem;
761
762         ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
763         if (!ptr)
764                 return ERR_PTR(-ENOMEM);
765
766         nvmem = nvmem_register(config);
767
768         if (!IS_ERR(nvmem)) {
769                 *ptr = nvmem;
770                 devres_add(dev, ptr);
771         } else {
772                 devres_free(ptr);
773         }
774
775         return nvmem;
776 }
777 EXPORT_SYMBOL_GPL(devm_nvmem_register);
778
779 static int devm_nvmem_match(struct device *dev, void *res, void *data)
780 {
781         struct nvmem_device **r = res;
782
783         return *r == data;
784 }
785
786 /**
787  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
788  * device.
789  *
790  * @dev: Device that uses the nvmem device.
791  * @nvmem: Pointer to previously registered nvmem device.
792  *
793  * Return: Will be an negative on error or a zero on success.
794  */
795 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
796 {
797         return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
798 }
799 EXPORT_SYMBOL(devm_nvmem_unregister);
800
801 static struct nvmem_device *__nvmem_device_get(void *data,
802                         int (*match)(struct device *dev, const void *data))
803 {
804         struct nvmem_device *nvmem = NULL;
805         struct device *dev;
806
807         mutex_lock(&nvmem_mutex);
808         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
809         if (dev)
810                 nvmem = to_nvmem_device(dev);
811         mutex_unlock(&nvmem_mutex);
812         if (!nvmem)
813                 return ERR_PTR(-EPROBE_DEFER);
814
815         if (!try_module_get(nvmem->owner)) {
816                 dev_err(&nvmem->dev,
817                         "could not increase module refcount for cell %s\n",
818                         nvmem_dev_name(nvmem));
819
820                 put_device(&nvmem->dev);
821                 return ERR_PTR(-EINVAL);
822         }
823
824         kref_get(&nvmem->refcnt);
825
826         return nvmem;
827 }
828
829 static void __nvmem_device_put(struct nvmem_device *nvmem)
830 {
831         put_device(&nvmem->dev);
832         module_put(nvmem->owner);
833         kref_put(&nvmem->refcnt, nvmem_device_release);
834 }
835
836 #if IS_ENABLED(CONFIG_OF)
837 /**
838  * of_nvmem_device_get() - Get nvmem device from a given id
839  *
840  * @np: Device tree node that uses the nvmem device.
841  * @id: nvmem name from nvmem-names property.
842  *
843  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
844  * on success.
845  */
846 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
847 {
848
849         struct device_node *nvmem_np;
850         int index = 0;
851
852         if (id)
853                 index = of_property_match_string(np, "nvmem-names", id);
854
855         nvmem_np = of_parse_phandle(np, "nvmem", index);
856         if (!nvmem_np)
857                 return ERR_PTR(-ENOENT);
858
859         return __nvmem_device_get(nvmem_np, device_match_of_node);
860 }
861 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
862 #endif
863
864 /**
865  * nvmem_device_get() - Get nvmem device from a given id
866  *
867  * @dev: Device that uses the nvmem device.
868  * @dev_name: name of the requested nvmem device.
869  *
870  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
871  * on success.
872  */
873 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
874 {
875         if (dev->of_node) { /* try dt first */
876                 struct nvmem_device *nvmem;
877
878                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
879
880                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
881                         return nvmem;
882
883         }
884
885         return __nvmem_device_get((void *)dev_name, device_match_name);
886 }
887 EXPORT_SYMBOL_GPL(nvmem_device_get);
888
889 /**
890  * nvmem_device_find() - Find nvmem device with matching function
891  *
892  * @data: Data to pass to match function
893  * @match: Callback function to check device
894  *
895  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
896  * on success.
897  */
898 struct nvmem_device *nvmem_device_find(void *data,
899                         int (*match)(struct device *dev, const void *data))
900 {
901         return __nvmem_device_get(data, match);
902 }
903 EXPORT_SYMBOL_GPL(nvmem_device_find);
904
905 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
906 {
907         struct nvmem_device **nvmem = res;
908
909         if (WARN_ON(!nvmem || !*nvmem))
910                 return 0;
911
912         return *nvmem == data;
913 }
914
915 static void devm_nvmem_device_release(struct device *dev, void *res)
916 {
917         nvmem_device_put(*(struct nvmem_device **)res);
918 }
919
920 /**
921  * devm_nvmem_device_put() - put alredy got nvmem device
922  *
923  * @dev: Device that uses the nvmem device.
924  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
925  * that needs to be released.
926  */
927 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
928 {
929         int ret;
930
931         ret = devres_release(dev, devm_nvmem_device_release,
932                              devm_nvmem_device_match, nvmem);
933
934         WARN_ON(ret);
935 }
936 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
937
938 /**
939  * nvmem_device_put() - put alredy got nvmem device
940  *
941  * @nvmem: pointer to nvmem device that needs to be released.
942  */
943 void nvmem_device_put(struct nvmem_device *nvmem)
944 {
945         __nvmem_device_put(nvmem);
946 }
947 EXPORT_SYMBOL_GPL(nvmem_device_put);
948
949 /**
950  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
951  *
952  * @dev: Device that requests the nvmem device.
953  * @id: name id for the requested nvmem device.
954  *
955  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
956  * on success.  The nvmem_cell will be freed by the automatically once the
957  * device is freed.
958  */
959 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
960 {
961         struct nvmem_device **ptr, *nvmem;
962
963         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
964         if (!ptr)
965                 return ERR_PTR(-ENOMEM);
966
967         nvmem = nvmem_device_get(dev, id);
968         if (!IS_ERR(nvmem)) {
969                 *ptr = nvmem;
970                 devres_add(dev, ptr);
971         } else {
972                 devres_free(ptr);
973         }
974
975         return nvmem;
976 }
977 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
978
979 static struct nvmem_cell *
980 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
981 {
982         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
983         struct nvmem_cell_lookup *lookup;
984         struct nvmem_device *nvmem;
985         const char *dev_id;
986
987         if (!dev)
988                 return ERR_PTR(-EINVAL);
989
990         dev_id = dev_name(dev);
991
992         mutex_lock(&nvmem_lookup_mutex);
993
994         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
995                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
996                     (strcmp(lookup->con_id, con_id) == 0)) {
997                         /* This is the right entry. */
998                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
999                                                    device_match_name);
1000                         if (IS_ERR(nvmem)) {
1001                                 /* Provider may not be registered yet. */
1002                                 cell = ERR_CAST(nvmem);
1003                                 break;
1004                         }
1005
1006                         cell = nvmem_find_cell_by_name(nvmem,
1007                                                        lookup->cell_name);
1008                         if (!cell) {
1009                                 __nvmem_device_put(nvmem);
1010                                 cell = ERR_PTR(-ENOENT);
1011                         }
1012                         break;
1013                 }
1014         }
1015
1016         mutex_unlock(&nvmem_lookup_mutex);
1017         return cell;
1018 }
1019
1020 #if IS_ENABLED(CONFIG_OF)
1021 static struct nvmem_cell *
1022 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1023 {
1024         struct nvmem_cell *iter, *cell = NULL;
1025
1026         mutex_lock(&nvmem_mutex);
1027         list_for_each_entry(iter, &nvmem->cells, node) {
1028                 if (np == iter->np) {
1029                         cell = iter;
1030                         break;
1031                 }
1032         }
1033         mutex_unlock(&nvmem_mutex);
1034
1035         return cell;
1036 }
1037
1038 /**
1039  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1040  *
1041  * @np: Device tree node that uses the nvmem cell.
1042  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1043  *      for the cell at index 0 (the lone cell with no accompanying
1044  *      nvmem-cell-names property).
1045  *
1046  * Return: Will be an ERR_PTR() on error or a valid pointer
1047  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1048  * nvmem_cell_put().
1049  */
1050 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1051 {
1052         struct device_node *cell_np, *nvmem_np;
1053         struct nvmem_device *nvmem;
1054         struct nvmem_cell *cell;
1055         int index = 0;
1056
1057         /* if cell name exists, find index to the name */
1058         if (id)
1059                 index = of_property_match_string(np, "nvmem-cell-names", id);
1060
1061         cell_np = of_parse_phandle(np, "nvmem-cells", index);
1062         if (!cell_np)
1063                 return ERR_PTR(-ENOENT);
1064
1065         nvmem_np = of_get_next_parent(cell_np);
1066         if (!nvmem_np)
1067                 return ERR_PTR(-EINVAL);
1068
1069         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1070         of_node_put(nvmem_np);
1071         if (IS_ERR(nvmem))
1072                 return ERR_CAST(nvmem);
1073
1074         cell = nvmem_find_cell_by_node(nvmem, cell_np);
1075         if (!cell) {
1076                 __nvmem_device_put(nvmem);
1077                 return ERR_PTR(-ENOENT);
1078         }
1079
1080         return cell;
1081 }
1082 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1083 #endif
1084
1085 /**
1086  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1087  *
1088  * @dev: Device that requests the nvmem cell.
1089  * @id: nvmem cell name to get (this corresponds with the name from the
1090  *      nvmem-cell-names property for DT systems and with the con_id from
1091  *      the lookup entry for non-DT systems).
1092  *
1093  * Return: Will be an ERR_PTR() on error or a valid pointer
1094  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1095  * nvmem_cell_put().
1096  */
1097 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1098 {
1099         struct nvmem_cell *cell;
1100
1101         if (dev->of_node) { /* try dt first */
1102                 cell = of_nvmem_cell_get(dev->of_node, id);
1103                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1104                         return cell;
1105         }
1106
1107         /* NULL cell id only allowed for device tree; invalid otherwise */
1108         if (!id)
1109                 return ERR_PTR(-EINVAL);
1110
1111         return nvmem_cell_get_from_lookup(dev, id);
1112 }
1113 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1114
1115 static void devm_nvmem_cell_release(struct device *dev, void *res)
1116 {
1117         nvmem_cell_put(*(struct nvmem_cell **)res);
1118 }
1119
1120 /**
1121  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1122  *
1123  * @dev: Device that requests the nvmem cell.
1124  * @id: nvmem cell name id to get.
1125  *
1126  * Return: Will be an ERR_PTR() on error or a valid pointer
1127  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1128  * automatically once the device is freed.
1129  */
1130 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1131 {
1132         struct nvmem_cell **ptr, *cell;
1133
1134         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1135         if (!ptr)
1136                 return ERR_PTR(-ENOMEM);
1137
1138         cell = nvmem_cell_get(dev, id);
1139         if (!IS_ERR(cell)) {
1140                 *ptr = cell;
1141                 devres_add(dev, ptr);
1142         } else {
1143                 devres_free(ptr);
1144         }
1145
1146         return cell;
1147 }
1148 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1149
1150 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1151 {
1152         struct nvmem_cell **c = res;
1153
1154         if (WARN_ON(!c || !*c))
1155                 return 0;
1156
1157         return *c == data;
1158 }
1159
1160 /**
1161  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1162  * from devm_nvmem_cell_get.
1163  *
1164  * @dev: Device that requests the nvmem cell.
1165  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1166  */
1167 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1168 {
1169         int ret;
1170
1171         ret = devres_release(dev, devm_nvmem_cell_release,
1172                                 devm_nvmem_cell_match, cell);
1173
1174         WARN_ON(ret);
1175 }
1176 EXPORT_SYMBOL(devm_nvmem_cell_put);
1177
1178 /**
1179  * nvmem_cell_put() - Release previously allocated nvmem cell.
1180  *
1181  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1182  */
1183 void nvmem_cell_put(struct nvmem_cell *cell)
1184 {
1185         struct nvmem_device *nvmem = cell->nvmem;
1186
1187         __nvmem_device_put(nvmem);
1188 }
1189 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1190
1191 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1192 {
1193         u8 *p, *b;
1194         int i, extra, bit_offset = cell->bit_offset;
1195
1196         p = b = buf;
1197         if (bit_offset) {
1198                 /* First shift */
1199                 *b++ >>= bit_offset;
1200
1201                 /* setup rest of the bytes if any */
1202                 for (i = 1; i < cell->bytes; i++) {
1203                         /* Get bits from next byte and shift them towards msb */
1204                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1205
1206                         p = b;
1207                         *b++ >>= bit_offset;
1208                 }
1209         } else {
1210                 /* point to the msb */
1211                 p += cell->bytes - 1;
1212         }
1213
1214         /* result fits in less bytes */
1215         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1216         while (--extra >= 0)
1217                 *p-- = 0;
1218
1219         /* clear msb bits if any leftover in the last byte */
1220         *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1221 }
1222
1223 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1224                       struct nvmem_cell *cell,
1225                       void *buf, size_t *len)
1226 {
1227         int rc;
1228
1229         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1230
1231         if (rc)
1232                 return rc;
1233
1234         /* shift bits in-place */
1235         if (cell->bit_offset || cell->nbits)
1236                 nvmem_shift_read_buffer_in_place(cell, buf);
1237
1238         if (len)
1239                 *len = cell->bytes;
1240
1241         return 0;
1242 }
1243
1244 /**
1245  * nvmem_cell_read() - Read a given nvmem cell
1246  *
1247  * @cell: nvmem cell to be read.
1248  * @len: pointer to length of cell which will be populated on successful read;
1249  *       can be NULL.
1250  *
1251  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1252  * buffer should be freed by the consumer with a kfree().
1253  */
1254 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1255 {
1256         struct nvmem_device *nvmem = cell->nvmem;
1257         u8 *buf;
1258         int rc;
1259
1260         if (!nvmem)
1261                 return ERR_PTR(-EINVAL);
1262
1263         buf = kzalloc(cell->bytes, GFP_KERNEL);
1264         if (!buf)
1265                 return ERR_PTR(-ENOMEM);
1266
1267         rc = __nvmem_cell_read(nvmem, cell, buf, len);
1268         if (rc) {
1269                 kfree(buf);
1270                 return ERR_PTR(rc);
1271         }
1272
1273         return buf;
1274 }
1275 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1276
1277 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1278                                              u8 *_buf, int len)
1279 {
1280         struct nvmem_device *nvmem = cell->nvmem;
1281         int i, rc, nbits, bit_offset = cell->bit_offset;
1282         u8 v, *p, *buf, *b, pbyte, pbits;
1283
1284         nbits = cell->nbits;
1285         buf = kzalloc(cell->bytes, GFP_KERNEL);
1286         if (!buf)
1287                 return ERR_PTR(-ENOMEM);
1288
1289         memcpy(buf, _buf, len);
1290         p = b = buf;
1291
1292         if (bit_offset) {
1293                 pbyte = *b;
1294                 *b <<= bit_offset;
1295
1296                 /* setup the first byte with lsb bits from nvmem */
1297                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1298                 if (rc)
1299                         goto err;
1300                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1301
1302                 /* setup rest of the byte if any */
1303                 for (i = 1; i < cell->bytes; i++) {
1304                         /* Get last byte bits and shift them towards lsb */
1305                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1306                         pbyte = *b;
1307                         p = b;
1308                         *b <<= bit_offset;
1309                         *b++ |= pbits;
1310                 }
1311         }
1312
1313         /* if it's not end on byte boundary */
1314         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1315                 /* setup the last byte with msb bits from nvmem */
1316                 rc = nvmem_reg_read(nvmem,
1317                                     cell->offset + cell->bytes - 1, &v, 1);
1318                 if (rc)
1319                         goto err;
1320                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1321
1322         }
1323
1324         return buf;
1325 err:
1326         kfree(buf);
1327         return ERR_PTR(rc);
1328 }
1329
1330 /**
1331  * nvmem_cell_write() - Write to a given nvmem cell
1332  *
1333  * @cell: nvmem cell to be written.
1334  * @buf: Buffer to be written.
1335  * @len: length of buffer to be written to nvmem cell.
1336  *
1337  * Return: length of bytes written or negative on failure.
1338  */
1339 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1340 {
1341         struct nvmem_device *nvmem = cell->nvmem;
1342         int rc;
1343
1344         if (!nvmem || nvmem->read_only ||
1345             (cell->bit_offset == 0 && len != cell->bytes))
1346                 return -EINVAL;
1347
1348         if (cell->bit_offset || cell->nbits) {
1349                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1350                 if (IS_ERR(buf))
1351                         return PTR_ERR(buf);
1352         }
1353
1354         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1355
1356         /* free the tmp buffer */
1357         if (cell->bit_offset || cell->nbits)
1358                 kfree(buf);
1359
1360         if (rc)
1361                 return rc;
1362
1363         return len;
1364 }
1365 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1366
1367 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1368                                   void *val, size_t count)
1369 {
1370         struct nvmem_cell *cell;
1371         void *buf;
1372         size_t len;
1373
1374         cell = nvmem_cell_get(dev, cell_id);
1375         if (IS_ERR(cell))
1376                 return PTR_ERR(cell);
1377
1378         buf = nvmem_cell_read(cell, &len);
1379         if (IS_ERR(buf)) {
1380                 nvmem_cell_put(cell);
1381                 return PTR_ERR(buf);
1382         }
1383         if (len != count) {
1384                 kfree(buf);
1385                 nvmem_cell_put(cell);
1386                 return -EINVAL;
1387         }
1388         memcpy(val, buf, count);
1389         kfree(buf);
1390         nvmem_cell_put(cell);
1391
1392         return 0;
1393 }
1394
1395 /**
1396  * nvmem_cell_read_u16() - Read a cell value as an u16
1397  *
1398  * @dev: Device that requests the nvmem cell.
1399  * @cell_id: Name of nvmem cell to read.
1400  * @val: pointer to output value.
1401  *
1402  * Return: 0 on success or negative errno.
1403  */
1404 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1405 {
1406         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1407 }
1408 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1409
1410 /**
1411  * nvmem_cell_read_u32() - Read a cell value as an u32
1412  *
1413  * @dev: Device that requests the nvmem cell.
1414  * @cell_id: Name of nvmem cell to read.
1415  * @val: pointer to output value.
1416  *
1417  * Return: 0 on success or negative errno.
1418  */
1419 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1420 {
1421         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1422 }
1423 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1424
1425 /**
1426  * nvmem_cell_read_u64() - Read a cell value as an u64
1427  *
1428  * @dev: Device that requests the nvmem cell.
1429  * @cell_id: Name of nvmem cell to read.
1430  * @val: pointer to output value.
1431  *
1432  * Return: 0 on success or negative errno.
1433  */
1434 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1435 {
1436         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1437 }
1438 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1439
1440 /**
1441  * nvmem_device_cell_read() - Read a given nvmem device and cell
1442  *
1443  * @nvmem: nvmem device to read from.
1444  * @info: nvmem cell info to be read.
1445  * @buf: buffer pointer which will be populated on successful read.
1446  *
1447  * Return: length of successful bytes read on success and negative
1448  * error code on error.
1449  */
1450 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1451                            struct nvmem_cell_info *info, void *buf)
1452 {
1453         struct nvmem_cell cell;
1454         int rc;
1455         ssize_t len;
1456
1457         if (!nvmem)
1458                 return -EINVAL;
1459
1460         rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1461         if (rc)
1462                 return rc;
1463
1464         rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1465         if (rc)
1466                 return rc;
1467
1468         return len;
1469 }
1470 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1471
1472 /**
1473  * nvmem_device_cell_write() - Write cell to a given nvmem device
1474  *
1475  * @nvmem: nvmem device to be written to.
1476  * @info: nvmem cell info to be written.
1477  * @buf: buffer to be written to cell.
1478  *
1479  * Return: length of bytes written or negative error code on failure.
1480  */
1481 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1482                             struct nvmem_cell_info *info, void *buf)
1483 {
1484         struct nvmem_cell cell;
1485         int rc;
1486
1487         if (!nvmem)
1488                 return -EINVAL;
1489
1490         rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1491         if (rc)
1492                 return rc;
1493
1494         return nvmem_cell_write(&cell, buf, cell.bytes);
1495 }
1496 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1497
1498 /**
1499  * nvmem_device_read() - Read from a given nvmem device
1500  *
1501  * @nvmem: nvmem device to read from.
1502  * @offset: offset in nvmem device.
1503  * @bytes: number of bytes to read.
1504  * @buf: buffer pointer which will be populated on successful read.
1505  *
1506  * Return: length of successful bytes read on success and negative
1507  * error code on error.
1508  */
1509 int nvmem_device_read(struct nvmem_device *nvmem,
1510                       unsigned int offset,
1511                       size_t bytes, void *buf)
1512 {
1513         int rc;
1514
1515         if (!nvmem)
1516                 return -EINVAL;
1517
1518         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1519
1520         if (rc)
1521                 return rc;
1522
1523         return bytes;
1524 }
1525 EXPORT_SYMBOL_GPL(nvmem_device_read);
1526
1527 /**
1528  * nvmem_device_write() - Write cell to a given nvmem device
1529  *
1530  * @nvmem: nvmem device to be written to.
1531  * @offset: offset in nvmem device.
1532  * @bytes: number of bytes to write.
1533  * @buf: buffer to be written.
1534  *
1535  * Return: length of bytes written or negative error code on failure.
1536  */
1537 int nvmem_device_write(struct nvmem_device *nvmem,
1538                        unsigned int offset,
1539                        size_t bytes, void *buf)
1540 {
1541         int rc;
1542
1543         if (!nvmem)
1544                 return -EINVAL;
1545
1546         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1547
1548         if (rc)
1549                 return rc;
1550
1551
1552         return bytes;
1553 }
1554 EXPORT_SYMBOL_GPL(nvmem_device_write);
1555
1556 /**
1557  * nvmem_add_cell_table() - register a table of cell info entries
1558  *
1559  * @table: table of cell info entries
1560  */
1561 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1562 {
1563         mutex_lock(&nvmem_cell_mutex);
1564         list_add_tail(&table->node, &nvmem_cell_tables);
1565         mutex_unlock(&nvmem_cell_mutex);
1566 }
1567 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1568
1569 /**
1570  * nvmem_del_cell_table() - remove a previously registered cell info table
1571  *
1572  * @table: table of cell info entries
1573  */
1574 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1575 {
1576         mutex_lock(&nvmem_cell_mutex);
1577         list_del(&table->node);
1578         mutex_unlock(&nvmem_cell_mutex);
1579 }
1580 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1581
1582 /**
1583  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1584  *
1585  * @entries: array of cell lookup entries
1586  * @nentries: number of cell lookup entries in the array
1587  */
1588 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1589 {
1590         int i;
1591
1592         mutex_lock(&nvmem_lookup_mutex);
1593         for (i = 0; i < nentries; i++)
1594                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1595         mutex_unlock(&nvmem_lookup_mutex);
1596 }
1597 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1598
1599 /**
1600  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1601  *                            entries
1602  *
1603  * @entries: array of cell lookup entries
1604  * @nentries: number of cell lookup entries in the array
1605  */
1606 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1607 {
1608         int i;
1609
1610         mutex_lock(&nvmem_lookup_mutex);
1611         for (i = 0; i < nentries; i++)
1612                 list_del(&entries[i].node);
1613         mutex_unlock(&nvmem_lookup_mutex);
1614 }
1615 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1616
1617 /**
1618  * nvmem_dev_name() - Get the name of a given nvmem device.
1619  *
1620  * @nvmem: nvmem device.
1621  *
1622  * Return: name of the nvmem device.
1623  */
1624 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1625 {
1626         return dev_name(&nvmem->dev);
1627 }
1628 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1629
1630 static int __init nvmem_init(void)
1631 {
1632         return bus_register(&nvmem_bus_type);
1633 }
1634
1635 static void __exit nvmem_exit(void)
1636 {
1637         bus_unregister(&nvmem_bus_type);
1638 }
1639
1640 subsys_initcall(nvmem_init);
1641 module_exit(nvmem_exit);
1642
1643 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1644 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1645 MODULE_DESCRIPTION("nvmem Driver Core");
1646 MODULE_LICENSE("GPL v2");