net: phy: marvell10g: add support for the 88x2110 PHY
[linux-2.6-microblaze.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20
21 struct nvmem_device {
22         struct module           *owner;
23         struct device           dev;
24         int                     stride;
25         int                     word_size;
26         int                     id;
27         struct kref             refcnt;
28         size_t                  size;
29         bool                    read_only;
30         int                     flags;
31         enum nvmem_type         type;
32         struct bin_attribute    eeprom;
33         struct device           *base_dev;
34         struct list_head        cells;
35         nvmem_reg_read_t        reg_read;
36         nvmem_reg_write_t       reg_write;
37         void *priv;
38 };
39
40 #define FLAG_COMPAT             BIT(0)
41
42 struct nvmem_cell {
43         const char              *name;
44         int                     offset;
45         int                     bytes;
46         int                     bit_offset;
47         int                     nbits;
48         struct device_node      *np;
49         struct nvmem_device     *nvmem;
50         struct list_head        node;
51 };
52
53 static DEFINE_MUTEX(nvmem_mutex);
54 static DEFINE_IDA(nvmem_ida);
55
56 static DEFINE_MUTEX(nvmem_cell_mutex);
57 static LIST_HEAD(nvmem_cell_tables);
58
59 static DEFINE_MUTEX(nvmem_lookup_mutex);
60 static LIST_HEAD(nvmem_lookup_list);
61
62 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
63
64 static const char * const nvmem_type_str[] = {
65         [NVMEM_TYPE_UNKNOWN] = "Unknown",
66         [NVMEM_TYPE_EEPROM] = "EEPROM",
67         [NVMEM_TYPE_OTP] = "OTP",
68         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
69 };
70
71 #ifdef CONFIG_DEBUG_LOCK_ALLOC
72 static struct lock_class_key eeprom_lock_key;
73 #endif
74
75 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
76 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
77                           void *val, size_t bytes)
78 {
79         if (nvmem->reg_read)
80                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
81
82         return -EINVAL;
83 }
84
85 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
86                            void *val, size_t bytes)
87 {
88         if (nvmem->reg_write)
89                 return nvmem->reg_write(nvmem->priv, offset, val, bytes);
90
91         return -EINVAL;
92 }
93
94 static ssize_t type_show(struct device *dev,
95                          struct device_attribute *attr, char *buf)
96 {
97         struct nvmem_device *nvmem = to_nvmem_device(dev);
98
99         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
100 }
101
102 static DEVICE_ATTR_RO(type);
103
104 static struct attribute *nvmem_attrs[] = {
105         &dev_attr_type.attr,
106         NULL,
107 };
108
109 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
110                                     struct bin_attribute *attr,
111                                     char *buf, loff_t pos, size_t count)
112 {
113         struct device *dev;
114         struct nvmem_device *nvmem;
115         int rc;
116
117         if (attr->private)
118                 dev = attr->private;
119         else
120                 dev = container_of(kobj, struct device, kobj);
121         nvmem = to_nvmem_device(dev);
122
123         /* Stop the user from reading */
124         if (pos >= nvmem->size)
125                 return 0;
126
127         if (count < nvmem->word_size)
128                 return -EINVAL;
129
130         if (pos + count > nvmem->size)
131                 count = nvmem->size - pos;
132
133         count = round_down(count, nvmem->word_size);
134
135         rc = nvmem_reg_read(nvmem, pos, buf, count);
136
137         if (rc)
138                 return rc;
139
140         return count;
141 }
142
143 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
144                                      struct bin_attribute *attr,
145                                      char *buf, loff_t pos, size_t count)
146 {
147         struct device *dev;
148         struct nvmem_device *nvmem;
149         int rc;
150
151         if (attr->private)
152                 dev = attr->private;
153         else
154                 dev = container_of(kobj, struct device, kobj);
155         nvmem = to_nvmem_device(dev);
156
157         /* Stop the user from writing */
158         if (pos >= nvmem->size)
159                 return -EFBIG;
160
161         if (count < nvmem->word_size)
162                 return -EINVAL;
163
164         if (pos + count > nvmem->size)
165                 count = nvmem->size - pos;
166
167         count = round_down(count, nvmem->word_size);
168
169         rc = nvmem_reg_write(nvmem, pos, buf, count);
170
171         if (rc)
172                 return rc;
173
174         return count;
175 }
176
177 /* default read/write permissions */
178 static struct bin_attribute bin_attr_rw_nvmem = {
179         .attr   = {
180                 .name   = "nvmem",
181                 .mode   = 0644,
182         },
183         .read   = bin_attr_nvmem_read,
184         .write  = bin_attr_nvmem_write,
185 };
186
187 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
188         &bin_attr_rw_nvmem,
189         NULL,
190 };
191
192 static const struct attribute_group nvmem_bin_rw_group = {
193         .bin_attrs      = nvmem_bin_rw_attributes,
194         .attrs          = nvmem_attrs,
195 };
196
197 static const struct attribute_group *nvmem_rw_dev_groups[] = {
198         &nvmem_bin_rw_group,
199         NULL,
200 };
201
202 /* read only permission */
203 static struct bin_attribute bin_attr_ro_nvmem = {
204         .attr   = {
205                 .name   = "nvmem",
206                 .mode   = 0444,
207         },
208         .read   = bin_attr_nvmem_read,
209 };
210
211 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
212         &bin_attr_ro_nvmem,
213         NULL,
214 };
215
216 static const struct attribute_group nvmem_bin_ro_group = {
217         .bin_attrs      = nvmem_bin_ro_attributes,
218         .attrs          = nvmem_attrs,
219 };
220
221 static const struct attribute_group *nvmem_ro_dev_groups[] = {
222         &nvmem_bin_ro_group,
223         NULL,
224 };
225
226 /* default read/write permissions, root only */
227 static struct bin_attribute bin_attr_rw_root_nvmem = {
228         .attr   = {
229                 .name   = "nvmem",
230                 .mode   = 0600,
231         },
232         .read   = bin_attr_nvmem_read,
233         .write  = bin_attr_nvmem_write,
234 };
235
236 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
237         &bin_attr_rw_root_nvmem,
238         NULL,
239 };
240
241 static const struct attribute_group nvmem_bin_rw_root_group = {
242         .bin_attrs      = nvmem_bin_rw_root_attributes,
243         .attrs          = nvmem_attrs,
244 };
245
246 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
247         &nvmem_bin_rw_root_group,
248         NULL,
249 };
250
251 /* read only permission, root only */
252 static struct bin_attribute bin_attr_ro_root_nvmem = {
253         .attr   = {
254                 .name   = "nvmem",
255                 .mode   = 0400,
256         },
257         .read   = bin_attr_nvmem_read,
258 };
259
260 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
261         &bin_attr_ro_root_nvmem,
262         NULL,
263 };
264
265 static const struct attribute_group nvmem_bin_ro_root_group = {
266         .bin_attrs      = nvmem_bin_ro_root_attributes,
267         .attrs          = nvmem_attrs,
268 };
269
270 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
271         &nvmem_bin_ro_root_group,
272         NULL,
273 };
274
275 static void nvmem_release(struct device *dev)
276 {
277         struct nvmem_device *nvmem = to_nvmem_device(dev);
278
279         ida_simple_remove(&nvmem_ida, nvmem->id);
280         kfree(nvmem);
281 }
282
283 static const struct device_type nvmem_provider_type = {
284         .release        = nvmem_release,
285 };
286
287 static struct bus_type nvmem_bus_type = {
288         .name           = "nvmem",
289 };
290
291 static int of_nvmem_match(struct device *dev, void *nvmem_np)
292 {
293         return dev->of_node == nvmem_np;
294 }
295
296 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
297 {
298         struct device *d;
299
300         if (!nvmem_np)
301                 return NULL;
302
303         d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
304
305         if (!d)
306                 return NULL;
307
308         return to_nvmem_device(d);
309 }
310
311 static struct nvmem_device *nvmem_find(const char *name)
312 {
313         struct device *d;
314
315         d = bus_find_device_by_name(&nvmem_bus_type, NULL, name);
316
317         if (!d)
318                 return NULL;
319
320         return to_nvmem_device(d);
321 }
322
323 static void nvmem_cell_drop(struct nvmem_cell *cell)
324 {
325         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
326         mutex_lock(&nvmem_mutex);
327         list_del(&cell->node);
328         mutex_unlock(&nvmem_mutex);
329         of_node_put(cell->np);
330         kfree(cell->name);
331         kfree(cell);
332 }
333
334 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
335 {
336         struct nvmem_cell *cell, *p;
337
338         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
339                 nvmem_cell_drop(cell);
340 }
341
342 static void nvmem_cell_add(struct nvmem_cell *cell)
343 {
344         mutex_lock(&nvmem_mutex);
345         list_add_tail(&cell->node, &cell->nvmem->cells);
346         mutex_unlock(&nvmem_mutex);
347         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
348 }
349
350 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
351                                    const struct nvmem_cell_info *info,
352                                    struct nvmem_cell *cell)
353 {
354         cell->nvmem = nvmem;
355         cell->offset = info->offset;
356         cell->bytes = info->bytes;
357         cell->name = info->name;
358
359         cell->bit_offset = info->bit_offset;
360         cell->nbits = info->nbits;
361
362         if (cell->nbits)
363                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
364                                            BITS_PER_BYTE);
365
366         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
367                 dev_err(&nvmem->dev,
368                         "cell %s unaligned to nvmem stride %d\n",
369                         cell->name, nvmem->stride);
370                 return -EINVAL;
371         }
372
373         return 0;
374 }
375
376 /**
377  * nvmem_add_cells() - Add cell information to an nvmem device
378  *
379  * @nvmem: nvmem device to add cells to.
380  * @info: nvmem cell info to add to the device
381  * @ncells: number of cells in info
382  *
383  * Return: 0 or negative error code on failure.
384  */
385 static int nvmem_add_cells(struct nvmem_device *nvmem,
386                     const struct nvmem_cell_info *info,
387                     int ncells)
388 {
389         struct nvmem_cell **cells;
390         int i, rval;
391
392         cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
393         if (!cells)
394                 return -ENOMEM;
395
396         for (i = 0; i < ncells; i++) {
397                 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
398                 if (!cells[i]) {
399                         rval = -ENOMEM;
400                         goto err;
401                 }
402
403                 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
404                 if (rval) {
405                         kfree(cells[i]);
406                         goto err;
407                 }
408
409                 nvmem_cell_add(cells[i]);
410         }
411
412         /* remove tmp array */
413         kfree(cells);
414
415         return 0;
416 err:
417         while (i--)
418                 nvmem_cell_drop(cells[i]);
419
420         kfree(cells);
421
422         return rval;
423 }
424
425 /*
426  * nvmem_setup_compat() - Create an additional binary entry in
427  * drivers sys directory, to be backwards compatible with the older
428  * drivers/misc/eeprom drivers.
429  */
430 static int nvmem_setup_compat(struct nvmem_device *nvmem,
431                               const struct nvmem_config *config)
432 {
433         int rval;
434
435         if (!config->base_dev)
436                 return -EINVAL;
437
438         if (nvmem->read_only)
439                 nvmem->eeprom = bin_attr_ro_root_nvmem;
440         else
441                 nvmem->eeprom = bin_attr_rw_root_nvmem;
442         nvmem->eeprom.attr.name = "eeprom";
443         nvmem->eeprom.size = nvmem->size;
444 #ifdef CONFIG_DEBUG_LOCK_ALLOC
445         nvmem->eeprom.attr.key = &eeprom_lock_key;
446 #endif
447         nvmem->eeprom.private = &nvmem->dev;
448         nvmem->base_dev = config->base_dev;
449
450         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
451         if (rval) {
452                 dev_err(&nvmem->dev,
453                         "Failed to create eeprom binary file %d\n", rval);
454                 return rval;
455         }
456
457         nvmem->flags |= FLAG_COMPAT;
458
459         return 0;
460 }
461
462 /**
463  * nvmem_register_notifier() - Register a notifier block for nvmem events.
464  *
465  * @nb: notifier block to be called on nvmem events.
466  *
467  * Return: 0 on success, negative error number on failure.
468  */
469 int nvmem_register_notifier(struct notifier_block *nb)
470 {
471         return blocking_notifier_chain_register(&nvmem_notifier, nb);
472 }
473 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
474
475 /**
476  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
477  *
478  * @nb: notifier block to be unregistered.
479  *
480  * Return: 0 on success, negative error number on failure.
481  */
482 int nvmem_unregister_notifier(struct notifier_block *nb)
483 {
484         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
485 }
486 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
487
488 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
489 {
490         const struct nvmem_cell_info *info;
491         struct nvmem_cell_table *table;
492         struct nvmem_cell *cell;
493         int rval = 0, i;
494
495         mutex_lock(&nvmem_cell_mutex);
496         list_for_each_entry(table, &nvmem_cell_tables, node) {
497                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
498                         for (i = 0; i < table->ncells; i++) {
499                                 info = &table->cells[i];
500
501                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
502                                 if (!cell) {
503                                         rval = -ENOMEM;
504                                         goto out;
505                                 }
506
507                                 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
508                                                                      info,
509                                                                      cell);
510                                 if (rval) {
511                                         kfree(cell);
512                                         goto out;
513                                 }
514
515                                 nvmem_cell_add(cell);
516                         }
517                 }
518         }
519
520 out:
521         mutex_unlock(&nvmem_cell_mutex);
522         return rval;
523 }
524
525 static struct nvmem_cell *
526 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
527 {
528         struct nvmem_cell *cell = NULL;
529
530         mutex_lock(&nvmem_mutex);
531         list_for_each_entry(cell, &nvmem->cells, node) {
532                 if (strcmp(cell_id, cell->name) == 0)
533                         break;
534         }
535         mutex_unlock(&nvmem_mutex);
536
537         return cell;
538 }
539
540 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
541 {
542         struct device_node *parent, *child;
543         struct device *dev = &nvmem->dev;
544         struct nvmem_cell *cell;
545         const __be32 *addr;
546         int len;
547
548         parent = dev->of_node;
549
550         for_each_child_of_node(parent, child) {
551                 addr = of_get_property(child, "reg", &len);
552                 if (!addr || (len < 2 * sizeof(u32))) {
553                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
554                         return -EINVAL;
555                 }
556
557                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
558                 if (!cell)
559                         return -ENOMEM;
560
561                 cell->nvmem = nvmem;
562                 cell->np = of_node_get(child);
563                 cell->offset = be32_to_cpup(addr++);
564                 cell->bytes = be32_to_cpup(addr);
565                 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
566
567                 addr = of_get_property(child, "bits", &len);
568                 if (addr && len == (2 * sizeof(u32))) {
569                         cell->bit_offset = be32_to_cpup(addr++);
570                         cell->nbits = be32_to_cpup(addr);
571                 }
572
573                 if (cell->nbits)
574                         cell->bytes = DIV_ROUND_UP(
575                                         cell->nbits + cell->bit_offset,
576                                         BITS_PER_BYTE);
577
578                 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
579                         dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
580                                 cell->name, nvmem->stride);
581                         /* Cells already added will be freed later. */
582                         kfree(cell->name);
583                         kfree(cell);
584                         return -EINVAL;
585                 }
586
587                 nvmem_cell_add(cell);
588         }
589
590         return 0;
591 }
592
593 /**
594  * nvmem_register() - Register a nvmem device for given nvmem_config.
595  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
596  *
597  * @config: nvmem device configuration with which nvmem device is created.
598  *
599  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
600  * on success.
601  */
602
603 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
604 {
605         struct nvmem_device *nvmem;
606         int rval;
607
608         if (!config->dev)
609                 return ERR_PTR(-EINVAL);
610
611         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
612         if (!nvmem)
613                 return ERR_PTR(-ENOMEM);
614
615         rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
616         if (rval < 0) {
617                 kfree(nvmem);
618                 return ERR_PTR(rval);
619         }
620
621         kref_init(&nvmem->refcnt);
622         INIT_LIST_HEAD(&nvmem->cells);
623
624         nvmem->id = rval;
625         nvmem->owner = config->owner;
626         if (!nvmem->owner && config->dev->driver)
627                 nvmem->owner = config->dev->driver->owner;
628         nvmem->stride = config->stride ?: 1;
629         nvmem->word_size = config->word_size ?: 1;
630         nvmem->size = config->size;
631         nvmem->dev.type = &nvmem_provider_type;
632         nvmem->dev.bus = &nvmem_bus_type;
633         nvmem->dev.parent = config->dev;
634         nvmem->priv = config->priv;
635         nvmem->type = config->type;
636         nvmem->reg_read = config->reg_read;
637         nvmem->reg_write = config->reg_write;
638         if (!config->no_of_node)
639                 nvmem->dev.of_node = config->dev->of_node;
640
641         if (config->id == -1 && config->name) {
642                 dev_set_name(&nvmem->dev, "%s", config->name);
643         } else {
644                 dev_set_name(&nvmem->dev, "%s%d",
645                              config->name ? : "nvmem",
646                              config->name ? config->id : nvmem->id);
647         }
648
649         nvmem->read_only = device_property_present(config->dev, "read-only") |
650                            config->read_only;
651
652         if (config->root_only)
653                 nvmem->dev.groups = nvmem->read_only ?
654                         nvmem_ro_root_dev_groups :
655                         nvmem_rw_root_dev_groups;
656         else
657                 nvmem->dev.groups = nvmem->read_only ?
658                         nvmem_ro_dev_groups :
659                         nvmem_rw_dev_groups;
660
661         device_initialize(&nvmem->dev);
662
663         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
664
665         rval = device_add(&nvmem->dev);
666         if (rval)
667                 goto err_put_device;
668
669         if (config->compat) {
670                 rval = nvmem_setup_compat(nvmem, config);
671                 if (rval)
672                         goto err_device_del;
673         }
674
675         if (config->cells) {
676                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
677                 if (rval)
678                         goto err_teardown_compat;
679         }
680
681         rval = nvmem_add_cells_from_table(nvmem);
682         if (rval)
683                 goto err_remove_cells;
684
685         rval = nvmem_add_cells_from_of(nvmem);
686         if (rval)
687                 goto err_remove_cells;
688
689         rval = blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
690         if (rval)
691                 goto err_remove_cells;
692
693         return nvmem;
694
695 err_remove_cells:
696         nvmem_device_remove_all_cells(nvmem);
697 err_teardown_compat:
698         if (config->compat)
699                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
700 err_device_del:
701         device_del(&nvmem->dev);
702 err_put_device:
703         put_device(&nvmem->dev);
704
705         return ERR_PTR(rval);
706 }
707 EXPORT_SYMBOL_GPL(nvmem_register);
708
709 static void nvmem_device_release(struct kref *kref)
710 {
711         struct nvmem_device *nvmem;
712
713         nvmem = container_of(kref, struct nvmem_device, refcnt);
714
715         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
716
717         if (nvmem->flags & FLAG_COMPAT)
718                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
719
720         nvmem_device_remove_all_cells(nvmem);
721         device_del(&nvmem->dev);
722         put_device(&nvmem->dev);
723 }
724
725 /**
726  * nvmem_unregister() - Unregister previously registered nvmem device
727  *
728  * @nvmem: Pointer to previously registered nvmem device.
729  */
730 void nvmem_unregister(struct nvmem_device *nvmem)
731 {
732         kref_put(&nvmem->refcnt, nvmem_device_release);
733 }
734 EXPORT_SYMBOL_GPL(nvmem_unregister);
735
736 static void devm_nvmem_release(struct device *dev, void *res)
737 {
738         nvmem_unregister(*(struct nvmem_device **)res);
739 }
740
741 /**
742  * devm_nvmem_register() - Register a managed nvmem device for given
743  * nvmem_config.
744  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
745  *
746  * @dev: Device that uses the nvmem device.
747  * @config: nvmem device configuration with which nvmem device is created.
748  *
749  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
750  * on success.
751  */
752 struct nvmem_device *devm_nvmem_register(struct device *dev,
753                                          const struct nvmem_config *config)
754 {
755         struct nvmem_device **ptr, *nvmem;
756
757         ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
758         if (!ptr)
759                 return ERR_PTR(-ENOMEM);
760
761         nvmem = nvmem_register(config);
762
763         if (!IS_ERR(nvmem)) {
764                 *ptr = nvmem;
765                 devres_add(dev, ptr);
766         } else {
767                 devres_free(ptr);
768         }
769
770         return nvmem;
771 }
772 EXPORT_SYMBOL_GPL(devm_nvmem_register);
773
774 static int devm_nvmem_match(struct device *dev, void *res, void *data)
775 {
776         struct nvmem_device **r = res;
777
778         return *r == data;
779 }
780
781 /**
782  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
783  * device.
784  *
785  * @dev: Device that uses the nvmem device.
786  * @nvmem: Pointer to previously registered nvmem device.
787  *
788  * Return: Will be an negative on error or a zero on success.
789  */
790 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
791 {
792         return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
793 }
794 EXPORT_SYMBOL(devm_nvmem_unregister);
795
796 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
797                                                const char *nvmem_name)
798 {
799         struct nvmem_device *nvmem = NULL;
800
801         mutex_lock(&nvmem_mutex);
802         nvmem = np ? of_nvmem_find(np) : nvmem_find(nvmem_name);
803         mutex_unlock(&nvmem_mutex);
804         if (!nvmem)
805                 return ERR_PTR(-EPROBE_DEFER);
806
807         if (!try_module_get(nvmem->owner)) {
808                 dev_err(&nvmem->dev,
809                         "could not increase module refcount for cell %s\n",
810                         nvmem_dev_name(nvmem));
811
812                 return ERR_PTR(-EINVAL);
813         }
814
815         kref_get(&nvmem->refcnt);
816
817         return nvmem;
818 }
819
820 static void __nvmem_device_put(struct nvmem_device *nvmem)
821 {
822         module_put(nvmem->owner);
823         kref_put(&nvmem->refcnt, nvmem_device_release);
824 }
825
826 #if IS_ENABLED(CONFIG_OF)
827 /**
828  * of_nvmem_device_get() - Get nvmem device from a given id
829  *
830  * @np: Device tree node that uses the nvmem device.
831  * @id: nvmem name from nvmem-names property.
832  *
833  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
834  * on success.
835  */
836 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
837 {
838
839         struct device_node *nvmem_np;
840         int index;
841
842         index = of_property_match_string(np, "nvmem-names", id);
843
844         nvmem_np = of_parse_phandle(np, "nvmem", index);
845         if (!nvmem_np)
846                 return ERR_PTR(-EINVAL);
847
848         return __nvmem_device_get(nvmem_np, NULL);
849 }
850 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
851 #endif
852
853 /**
854  * nvmem_device_get() - Get nvmem device from a given id
855  *
856  * @dev: Device that uses the nvmem device.
857  * @dev_name: name of the requested nvmem device.
858  *
859  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
860  * on success.
861  */
862 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
863 {
864         if (dev->of_node) { /* try dt first */
865                 struct nvmem_device *nvmem;
866
867                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
868
869                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
870                         return nvmem;
871
872         }
873
874         return nvmem_find(dev_name);
875 }
876 EXPORT_SYMBOL_GPL(nvmem_device_get);
877
878 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
879 {
880         struct nvmem_device **nvmem = res;
881
882         if (WARN_ON(!nvmem || !*nvmem))
883                 return 0;
884
885         return *nvmem == data;
886 }
887
888 static void devm_nvmem_device_release(struct device *dev, void *res)
889 {
890         nvmem_device_put(*(struct nvmem_device **)res);
891 }
892
893 /**
894  * devm_nvmem_device_put() - put alredy got nvmem device
895  *
896  * @dev: Device that uses the nvmem device.
897  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
898  * that needs to be released.
899  */
900 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
901 {
902         int ret;
903
904         ret = devres_release(dev, devm_nvmem_device_release,
905                              devm_nvmem_device_match, nvmem);
906
907         WARN_ON(ret);
908 }
909 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
910
911 /**
912  * nvmem_device_put() - put alredy got nvmem device
913  *
914  * @nvmem: pointer to nvmem device that needs to be released.
915  */
916 void nvmem_device_put(struct nvmem_device *nvmem)
917 {
918         __nvmem_device_put(nvmem);
919 }
920 EXPORT_SYMBOL_GPL(nvmem_device_put);
921
922 /**
923  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
924  *
925  * @dev: Device that requests the nvmem device.
926  * @id: name id for the requested nvmem device.
927  *
928  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
929  * on success.  The nvmem_cell will be freed by the automatically once the
930  * device is freed.
931  */
932 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
933 {
934         struct nvmem_device **ptr, *nvmem;
935
936         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
937         if (!ptr)
938                 return ERR_PTR(-ENOMEM);
939
940         nvmem = nvmem_device_get(dev, id);
941         if (!IS_ERR(nvmem)) {
942                 *ptr = nvmem;
943                 devres_add(dev, ptr);
944         } else {
945                 devres_free(ptr);
946         }
947
948         return nvmem;
949 }
950 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
951
952 static struct nvmem_cell *
953 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
954 {
955         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
956         struct nvmem_cell_lookup *lookup;
957         struct nvmem_device *nvmem;
958         const char *dev_id;
959
960         if (!dev)
961                 return ERR_PTR(-EINVAL);
962
963         dev_id = dev_name(dev);
964
965         mutex_lock(&nvmem_lookup_mutex);
966
967         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
968                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
969                     (strcmp(lookup->con_id, con_id) == 0)) {
970                         /* This is the right entry. */
971                         nvmem = __nvmem_device_get(NULL, lookup->nvmem_name);
972                         if (IS_ERR(nvmem)) {
973                                 /* Provider may not be registered yet. */
974                                 cell = ERR_CAST(nvmem);
975                                 goto out;
976                         }
977
978                         cell = nvmem_find_cell_by_name(nvmem,
979                                                        lookup->cell_name);
980                         if (!cell) {
981                                 __nvmem_device_put(nvmem);
982                                 cell = ERR_PTR(-ENOENT);
983                                 goto out;
984                         }
985                 }
986         }
987
988 out:
989         mutex_unlock(&nvmem_lookup_mutex);
990         return cell;
991 }
992
993 #if IS_ENABLED(CONFIG_OF)
994 static struct nvmem_cell *
995 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
996 {
997         struct nvmem_cell *cell = NULL;
998
999         mutex_lock(&nvmem_mutex);
1000         list_for_each_entry(cell, &nvmem->cells, node) {
1001                 if (np == cell->np)
1002                         break;
1003         }
1004         mutex_unlock(&nvmem_mutex);
1005
1006         return cell;
1007 }
1008
1009 /**
1010  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1011  *
1012  * @np: Device tree node that uses the nvmem cell.
1013  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1014  *      for the cell at index 0 (the lone cell with no accompanying
1015  *      nvmem-cell-names property).
1016  *
1017  * Return: Will be an ERR_PTR() on error or a valid pointer
1018  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1019  * nvmem_cell_put().
1020  */
1021 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1022 {
1023         struct device_node *cell_np, *nvmem_np;
1024         struct nvmem_device *nvmem;
1025         struct nvmem_cell *cell;
1026         int index = 0;
1027
1028         /* if cell name exists, find index to the name */
1029         if (id)
1030                 index = of_property_match_string(np, "nvmem-cell-names", id);
1031
1032         cell_np = of_parse_phandle(np, "nvmem-cells", index);
1033         if (!cell_np)
1034                 return ERR_PTR(-EINVAL);
1035
1036         nvmem_np = of_get_next_parent(cell_np);
1037         if (!nvmem_np)
1038                 return ERR_PTR(-EINVAL);
1039
1040         nvmem = __nvmem_device_get(nvmem_np, NULL);
1041         of_node_put(nvmem_np);
1042         if (IS_ERR(nvmem))
1043                 return ERR_CAST(nvmem);
1044
1045         cell = nvmem_find_cell_by_node(nvmem, cell_np);
1046         if (!cell) {
1047                 __nvmem_device_put(nvmem);
1048                 return ERR_PTR(-ENOENT);
1049         }
1050
1051         return cell;
1052 }
1053 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1054 #endif
1055
1056 /**
1057  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1058  *
1059  * @dev: Device that requests the nvmem cell.
1060  * @id: nvmem cell name to get (this corresponds with the name from the
1061  *      nvmem-cell-names property for DT systems and with the con_id from
1062  *      the lookup entry for non-DT systems).
1063  *
1064  * Return: Will be an ERR_PTR() on error or a valid pointer
1065  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1066  * nvmem_cell_put().
1067  */
1068 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1069 {
1070         struct nvmem_cell *cell;
1071
1072         if (dev->of_node) { /* try dt first */
1073                 cell = of_nvmem_cell_get(dev->of_node, id);
1074                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1075                         return cell;
1076         }
1077
1078         /* NULL cell id only allowed for device tree; invalid otherwise */
1079         if (!id)
1080                 return ERR_PTR(-EINVAL);
1081
1082         return nvmem_cell_get_from_lookup(dev, id);
1083 }
1084 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1085
1086 static void devm_nvmem_cell_release(struct device *dev, void *res)
1087 {
1088         nvmem_cell_put(*(struct nvmem_cell **)res);
1089 }
1090
1091 /**
1092  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1093  *
1094  * @dev: Device that requests the nvmem cell.
1095  * @id: nvmem cell name id to get.
1096  *
1097  * Return: Will be an ERR_PTR() on error or a valid pointer
1098  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1099  * automatically once the device is freed.
1100  */
1101 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1102 {
1103         struct nvmem_cell **ptr, *cell;
1104
1105         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1106         if (!ptr)
1107                 return ERR_PTR(-ENOMEM);
1108
1109         cell = nvmem_cell_get(dev, id);
1110         if (!IS_ERR(cell)) {
1111                 *ptr = cell;
1112                 devres_add(dev, ptr);
1113         } else {
1114                 devres_free(ptr);
1115         }
1116
1117         return cell;
1118 }
1119 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1120
1121 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1122 {
1123         struct nvmem_cell **c = res;
1124
1125         if (WARN_ON(!c || !*c))
1126                 return 0;
1127
1128         return *c == data;
1129 }
1130
1131 /**
1132  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1133  * from devm_nvmem_cell_get.
1134  *
1135  * @dev: Device that requests the nvmem cell.
1136  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1137  */
1138 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1139 {
1140         int ret;
1141
1142         ret = devres_release(dev, devm_nvmem_cell_release,
1143                                 devm_nvmem_cell_match, cell);
1144
1145         WARN_ON(ret);
1146 }
1147 EXPORT_SYMBOL(devm_nvmem_cell_put);
1148
1149 /**
1150  * nvmem_cell_put() - Release previously allocated nvmem cell.
1151  *
1152  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1153  */
1154 void nvmem_cell_put(struct nvmem_cell *cell)
1155 {
1156         struct nvmem_device *nvmem = cell->nvmem;
1157
1158         __nvmem_device_put(nvmem);
1159 }
1160 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1161
1162 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1163 {
1164         u8 *p, *b;
1165         int i, bit_offset = cell->bit_offset;
1166
1167         p = b = buf;
1168         if (bit_offset) {
1169                 /* First shift */
1170                 *b++ >>= bit_offset;
1171
1172                 /* setup rest of the bytes if any */
1173                 for (i = 1; i < cell->bytes; i++) {
1174                         /* Get bits from next byte and shift them towards msb */
1175                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1176
1177                         p = b;
1178                         *b++ >>= bit_offset;
1179                 }
1180
1181                 /* result fits in less bytes */
1182                 if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
1183                         *p-- = 0;
1184         }
1185         /* clear msb bits if any leftover in the last byte */
1186         *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1187 }
1188
1189 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1190                       struct nvmem_cell *cell,
1191                       void *buf, size_t *len)
1192 {
1193         int rc;
1194
1195         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1196
1197         if (rc)
1198                 return rc;
1199
1200         /* shift bits in-place */
1201         if (cell->bit_offset || cell->nbits)
1202                 nvmem_shift_read_buffer_in_place(cell, buf);
1203
1204         if (len)
1205                 *len = cell->bytes;
1206
1207         return 0;
1208 }
1209
1210 /**
1211  * nvmem_cell_read() - Read a given nvmem cell
1212  *
1213  * @cell: nvmem cell to be read.
1214  * @len: pointer to length of cell which will be populated on successful read;
1215  *       can be NULL.
1216  *
1217  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1218  * buffer should be freed by the consumer with a kfree().
1219  */
1220 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1221 {
1222         struct nvmem_device *nvmem = cell->nvmem;
1223         u8 *buf;
1224         int rc;
1225
1226         if (!nvmem)
1227                 return ERR_PTR(-EINVAL);
1228
1229         buf = kzalloc(cell->bytes, GFP_KERNEL);
1230         if (!buf)
1231                 return ERR_PTR(-ENOMEM);
1232
1233         rc = __nvmem_cell_read(nvmem, cell, buf, len);
1234         if (rc) {
1235                 kfree(buf);
1236                 return ERR_PTR(rc);
1237         }
1238
1239         return buf;
1240 }
1241 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1242
1243 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1244                                              u8 *_buf, int len)
1245 {
1246         struct nvmem_device *nvmem = cell->nvmem;
1247         int i, rc, nbits, bit_offset = cell->bit_offset;
1248         u8 v, *p, *buf, *b, pbyte, pbits;
1249
1250         nbits = cell->nbits;
1251         buf = kzalloc(cell->bytes, GFP_KERNEL);
1252         if (!buf)
1253                 return ERR_PTR(-ENOMEM);
1254
1255         memcpy(buf, _buf, len);
1256         p = b = buf;
1257
1258         if (bit_offset) {
1259                 pbyte = *b;
1260                 *b <<= bit_offset;
1261
1262                 /* setup the first byte with lsb bits from nvmem */
1263                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1264                 if (rc)
1265                         goto err;
1266                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1267
1268                 /* setup rest of the byte if any */
1269                 for (i = 1; i < cell->bytes; i++) {
1270                         /* Get last byte bits and shift them towards lsb */
1271                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1272                         pbyte = *b;
1273                         p = b;
1274                         *b <<= bit_offset;
1275                         *b++ |= pbits;
1276                 }
1277         }
1278
1279         /* if it's not end on byte boundary */
1280         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1281                 /* setup the last byte with msb bits from nvmem */
1282                 rc = nvmem_reg_read(nvmem,
1283                                     cell->offset + cell->bytes - 1, &v, 1);
1284                 if (rc)
1285                         goto err;
1286                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1287
1288         }
1289
1290         return buf;
1291 err:
1292         kfree(buf);
1293         return ERR_PTR(rc);
1294 }
1295
1296 /**
1297  * nvmem_cell_write() - Write to a given nvmem cell
1298  *
1299  * @cell: nvmem cell to be written.
1300  * @buf: Buffer to be written.
1301  * @len: length of buffer to be written to nvmem cell.
1302  *
1303  * Return: length of bytes written or negative on failure.
1304  */
1305 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1306 {
1307         struct nvmem_device *nvmem = cell->nvmem;
1308         int rc;
1309
1310         if (!nvmem || nvmem->read_only ||
1311             (cell->bit_offset == 0 && len != cell->bytes))
1312                 return -EINVAL;
1313
1314         if (cell->bit_offset || cell->nbits) {
1315                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1316                 if (IS_ERR(buf))
1317                         return PTR_ERR(buf);
1318         }
1319
1320         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1321
1322         /* free the tmp buffer */
1323         if (cell->bit_offset || cell->nbits)
1324                 kfree(buf);
1325
1326         if (rc)
1327                 return rc;
1328
1329         return len;
1330 }
1331 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1332
1333 /**
1334  * nvmem_cell_read_u32() - Read a cell value as an u32
1335  *
1336  * @dev: Device that requests the nvmem cell.
1337  * @cell_id: Name of nvmem cell to read.
1338  * @val: pointer to output value.
1339  *
1340  * Return: 0 on success or negative errno.
1341  */
1342 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1343 {
1344         struct nvmem_cell *cell;
1345         void *buf;
1346         size_t len;
1347
1348         cell = nvmem_cell_get(dev, cell_id);
1349         if (IS_ERR(cell))
1350                 return PTR_ERR(cell);
1351
1352         buf = nvmem_cell_read(cell, &len);
1353         if (IS_ERR(buf)) {
1354                 nvmem_cell_put(cell);
1355                 return PTR_ERR(buf);
1356         }
1357         if (len != sizeof(*val)) {
1358                 kfree(buf);
1359                 nvmem_cell_put(cell);
1360                 return -EINVAL;
1361         }
1362         memcpy(val, buf, sizeof(*val));
1363
1364         kfree(buf);
1365         nvmem_cell_put(cell);
1366         return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1369
1370 /**
1371  * nvmem_device_cell_read() - Read a given nvmem device and cell
1372  *
1373  * @nvmem: nvmem device to read from.
1374  * @info: nvmem cell info to be read.
1375  * @buf: buffer pointer which will be populated on successful read.
1376  *
1377  * Return: length of successful bytes read on success and negative
1378  * error code on error.
1379  */
1380 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1381                            struct nvmem_cell_info *info, void *buf)
1382 {
1383         struct nvmem_cell cell;
1384         int rc;
1385         ssize_t len;
1386
1387         if (!nvmem)
1388                 return -EINVAL;
1389
1390         rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1391         if (rc)
1392                 return rc;
1393
1394         rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1395         if (rc)
1396                 return rc;
1397
1398         return len;
1399 }
1400 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1401
1402 /**
1403  * nvmem_device_cell_write() - Write cell to a given nvmem device
1404  *
1405  * @nvmem: nvmem device to be written to.
1406  * @info: nvmem cell info to be written.
1407  * @buf: buffer to be written to cell.
1408  *
1409  * Return: length of bytes written or negative error code on failure.
1410  */
1411 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1412                             struct nvmem_cell_info *info, void *buf)
1413 {
1414         struct nvmem_cell cell;
1415         int rc;
1416
1417         if (!nvmem)
1418                 return -EINVAL;
1419
1420         rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1421         if (rc)
1422                 return rc;
1423
1424         return nvmem_cell_write(&cell, buf, cell.bytes);
1425 }
1426 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1427
1428 /**
1429  * nvmem_device_read() - Read from a given nvmem device
1430  *
1431  * @nvmem: nvmem device to read from.
1432  * @offset: offset in nvmem device.
1433  * @bytes: number of bytes to read.
1434  * @buf: buffer pointer which will be populated on successful read.
1435  *
1436  * Return: length of successful bytes read on success and negative
1437  * error code on error.
1438  */
1439 int nvmem_device_read(struct nvmem_device *nvmem,
1440                       unsigned int offset,
1441                       size_t bytes, void *buf)
1442 {
1443         int rc;
1444
1445         if (!nvmem)
1446                 return -EINVAL;
1447
1448         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1449
1450         if (rc)
1451                 return rc;
1452
1453         return bytes;
1454 }
1455 EXPORT_SYMBOL_GPL(nvmem_device_read);
1456
1457 /**
1458  * nvmem_device_write() - Write cell to a given nvmem device
1459  *
1460  * @nvmem: nvmem device to be written to.
1461  * @offset: offset in nvmem device.
1462  * @bytes: number of bytes to write.
1463  * @buf: buffer to be written.
1464  *
1465  * Return: length of bytes written or negative error code on failure.
1466  */
1467 int nvmem_device_write(struct nvmem_device *nvmem,
1468                        unsigned int offset,
1469                        size_t bytes, void *buf)
1470 {
1471         int rc;
1472
1473         if (!nvmem)
1474                 return -EINVAL;
1475
1476         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1477
1478         if (rc)
1479                 return rc;
1480
1481
1482         return bytes;
1483 }
1484 EXPORT_SYMBOL_GPL(nvmem_device_write);
1485
1486 /**
1487  * nvmem_add_cell_table() - register a table of cell info entries
1488  *
1489  * @table: table of cell info entries
1490  */
1491 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1492 {
1493         mutex_lock(&nvmem_cell_mutex);
1494         list_add_tail(&table->node, &nvmem_cell_tables);
1495         mutex_unlock(&nvmem_cell_mutex);
1496 }
1497 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1498
1499 /**
1500  * nvmem_del_cell_table() - remove a previously registered cell info table
1501  *
1502  * @table: table of cell info entries
1503  */
1504 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1505 {
1506         mutex_lock(&nvmem_cell_mutex);
1507         list_del(&table->node);
1508         mutex_unlock(&nvmem_cell_mutex);
1509 }
1510 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1511
1512 /**
1513  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1514  *
1515  * @entries: array of cell lookup entries
1516  * @nentries: number of cell lookup entries in the array
1517  */
1518 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1519 {
1520         int i;
1521
1522         mutex_lock(&nvmem_lookup_mutex);
1523         for (i = 0; i < nentries; i++)
1524                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1525         mutex_unlock(&nvmem_lookup_mutex);
1526 }
1527 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1528
1529 /**
1530  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1531  *                            entries
1532  *
1533  * @entries: array of cell lookup entries
1534  * @nentries: number of cell lookup entries in the array
1535  */
1536 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1537 {
1538         int i;
1539
1540         mutex_lock(&nvmem_lookup_mutex);
1541         for (i = 0; i < nentries; i++)
1542                 list_del(&entries[i].node);
1543         mutex_unlock(&nvmem_lookup_mutex);
1544 }
1545 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1546
1547 /**
1548  * nvmem_dev_name() - Get the name of a given nvmem device.
1549  *
1550  * @nvmem: nvmem device.
1551  *
1552  * Return: name of the nvmem device.
1553  */
1554 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1555 {
1556         return dev_name(&nvmem->dev);
1557 }
1558 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1559
1560 static int __init nvmem_init(void)
1561 {
1562         return bus_register(&nvmem_bus_type);
1563 }
1564
1565 static void __exit nvmem_exit(void)
1566 {
1567         bus_unregister(&nvmem_bus_type);
1568 }
1569
1570 subsys_initcall(nvmem_init);
1571 module_exit(nvmem_exit);
1572
1573 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1574 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1575 MODULE_DESCRIPTION("nvmem Driver Core");
1576 MODULE_LICENSE("GPL v2");